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1. OBJECTIVES
The long range objective of this project, as described in the
Statement of Work (Article I, JPL Contract No. 952492) is to

conduct a study of theory and technigues applicable to the design,

analysis and fault diagnosis of reliable spacecraft data systems.
In accomplishing this effort, the investigation will be concerned with

the following problems:

(A) Design and analysis of redundant combinational and sequential
' networks. This shall include the development of mathematical

models for the study of temporary and permanent faults in

switching networks, the results having application to the design
of ultrareliable subsystems of the type prevalent in existing
sdiience data systems such as counters, sequence gencrators
for timing and encoding, analog-to-digital converters and
scratchpad memories, JExplore in detfail errors which result
from permanent malfunctions of memory in sequential switching
systems.

(B) TFault diagnosis of redundant systems at both the component and
subgystem level. This shall include investigéting the problem
of specifying test and checkout procedures for systems in which

the reliability has been enhanced using redundancy techniques

which mask internal faults. Specific areas to be investigated

shall include:




(i1)

(i)

Development of efficient diegnostic algorithms for
sequential switching networks which contain redundancy.
Development of theory and techniques for determining
test-point allocation in order to reduce the time

(relative to input/output testmg) needed to isolate and
locate faults.

Investigate questions relating to how a daia system should

be organized to best {acilitate both pre-flight and in-

flight fault diagnosis.




II. PERSONNEL

The principal investigator on the project is Professor John T
Meyer, Depuritment of Electrical Engincering and Depaftmen’c of
Computer and Communication Sciences, . the University of Michigan.
Three Research Assistants; Miy. F. Gail Gray, Mr. John R. Kinkel,

- and Mr. Koumin (Ken) Yeh have been working full-time on the project

" during the past quarter.




M. SUMMARY OF TECHNICAL STATUS

During the past quarter, investigations have bzen initiated with

regard tc the following three problemc:

1) Permanent memory faults
2) Fault masking in combinational networks
and 3) Fault diagnosis of sequential machines

The technical status of each of these iz}xrestigétiozls is summavrized
b;’i@ﬂy iﬁ the paragraphs that follow. Also included is a discussion
of planned efforts for the next period. _A detailed technical report
-on each of these studies is contair;ed in the body of this report

(Section IV).

Permanent Memory Faults

The purpose of this investigation is to study permanent memory
faults in sequential switching systems and, in pa.rticﬁlar, the relation-
ship between such faults and the resulting system behavior. One of
the vprimary applications of this knowledge JS the design of féult»
tolerant switching systems. In addition to obtaining synthesis algorithms,
a fundamental question which under.‘.ies the study is whether certain
types of finite-state behavior are inherently 1e.ss susceptible to memory
faults th n others.

The study is based on a machine;theoretic model wherein the
result of a permanent fault in memory is formulated in terms of a

sequential machine M that represents the fault-free sequential




switching system and g function p on the states of M that represents
the fault. The result of the fault is then represented by a second
machine Mﬁ appropriately determined by M and p,.. Summarizing
the research effort during the past quarter, it has been shown, first
of all, that a succession of such faults can be regarnded, alternatively

M & $wvar | S 0wy
as some single fault which is simply the compositionf{f the faults in
the succession. With regard to the fault-masking problem, several
formal ﬁotionsvof masking have been introduced, compared, and
investigated with respect to properties that imply or are implied. by a
certain type of masking. Finally,v a s‘peci‘al‘ class of faults called
gtable" faults has been studied with regard to its bas‘ic properties
and to how these properties relate to the masking problem.

During the next U;ua.r’;.er, we will begin study of the synthesis
problem by applying these results to the design of fault tolerant
sequential switching networks. In parfipuliar, given the degired
behavior and the class of faults that are to be masked, we wish to
investigate state assignment procedures for ;ealizations that mask
the specified faults, In addition, relative‘ to each of the various types
of masking under consideration, we will continue to investigate
conditions that are necessary and/or sufficient for a given type of

magking.

Fault Masking in Combinational Networks

A mathematical model for studying fault-masking and fault-

diagnosis in combinational networks has been developed that allows a




hierarchy of fault-diagnosis concepts {o he defined. Necessary and
sufficient conditions have been obtained for a single fault to he
masked or detected in a two node and in a three node system. It

has been shown that any system may be transformed into the three
node system for the purpose of analyzing system response to single
faults at a node or for analyzing .tbe .response to multiple faults in a
connected subsystem. Necessary and sufficient conditions have been
found for masking all faults and for detecting all faults in a connected
suhsystem of a large system.

Theorems have been discovéred that allow efficient enumeration
of the number of single faults masked (and/or the number of single
faults detected) at a node in a general system. These theorems
also apply to multiple faults in a connected subsystem. PBased on
these theorems, an algorithm is being developed for analyzing single-
fault masking in 2 general network. The algorithm can also be
used for analyzing a2 network for multiple fault masking in connected
subsystems. This effort will be reported in .the next Quarterly
Progress Report.

Effort during the next quarter will also include employment
of the combinational network model in conjunction with input space
partitions to prove some general resu:ic about fault-masking when
all faulis are assumed equally likely.

Work will continue on the development of an algorithm to

analyze general networks for fault-masking. Known functional




decomposition schemes will be investigatéd for possible application to
' 4re1'1able design., The concepts of test point and test input will be
incorporated into the model in order to hegin a s'tudy of test point
allocation for the diagnosis of 1:edundant combinational netvo rks,

Further attention will be given to the problem of masking specific

types of faults,

Fault Diagnosis of Sequential Machines

A sﬁudy of the problem of designing Sequeﬁtial machines with
faulf detecting capabilities has been initiated, beginning with a c]ass.ifr-
cation of machines according to some machine-theoretic properties
'pertinént to the design of fault detecting experiments. This permits
identification of classes of machines having short distinguishing
sequencésl Necessary and sufficient conditions for the existence of a
repeated symbol distinguishing sequence and a bound on its length
have also been obtained. Based on these conditions, methods for
constructing sequential machines with such distinguishing sequences

are being developed. Machines so constructed yield shorter fault

detecting experimentg thanthe original bound given by Kohaviand
‘Lavallee.

During the next quarter we intend to explore the possibility of
applying certai_n fault detecting experim ents to the problem of fault
location in sequential networks. It is easily seen that if failures
preserve the diagnosable and strongly connected properties of the

original machine then each of the faults can be uniquely identified.




This may have particular application to types of faults such as thosec
caused by the malfunction of memory elements which can not be
easily located by the convéntionalv teéhnique of cutting feedback lines.
Queg;tions such as the relationship between state assignment and the
preservation of strongly-comnectedness under memory faults and the
relationship between definite diagnosability and the pr »servation of

diagnosability under memory faults will also be investigated.

.




IV, TECHNICAL PROGRESS REPORT

The following is a technical progress report on the rescarch
activity of the past quarter. Investigations during this period were
concerned with the three problem areas su}.nmé,rized in Section II:
1) permanent memory faults, 2) fault magking in combinational
networks and 3) fault diagnosis in .sequential machines.

The report is quite comprehensive but omits, for the most
part, detailed examples and proofs of theorems. This is done in
the interest of providing a more cohesive discussion of concepts
and results and more commentary 1egazong motivation and inter-
pretation. Proofs and examples which are omitted will be included

in the first annual report. .
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1. PERWMANEN T MEMORY FAULTS

The purpose of this investigation is to study permanent memory
faults in sequential switching systems aﬁd -in prarticu].ar the relation-
ship between such faults and the resulting system behavior, It has
been shown [ 5 ] that the result of a permanent fault in memory can
be formulated in terms of a sequential machine M that represents
the fault-free sequential switching system and a function p on the
states (ﬁ M that reprecents the fault. The result of the fault is then
1‘é13resen,ted by a second machine i appropriately determined irom
M and . Given this represention, it is possible to investigate
conditions under which the behavior of M relates in some specified
way to the behavior of M.

The fundamental question which underlies the search er such
conditions is whether certain types of finite-state behavior ére
inherently less susceptible to memory faults than others. One measure
of susceptibility is the m’inimum_ amount of redundant memory
required to reliably realize the behavior when the realization is
subject to some specified class of fﬁx11ts.

We pegin with a review of several basic concepts of sequential
machine theory in order to precisely establish the terminology and

notation used throughout the discussio.

Definition 1.0

A Mealy sequential machine is a system M = (I, Q, 0,0 ,w) where

~
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i) T is a finite sct of input symbols,

i)  Qis a finite set of states,

iii) O is a finite set of output symbols,

iv) & iz a function from QI into Q, the transition

function of M,

v) w is a function from QxI into O, the output function

of M.

A Moore sequential machine is as above except that

v')  w is a function from Q into O.
To describe the behavior of a sequential machine M, let A be

any finite set, A the set of all sequences (words, strings) over A

* *
(A includes the null sequence A), and if xe A let

lg(x)
“denote the length of x (the number of symbols in the sequence X).

Then for each nonnegative integer k, we define the set

A¥ - Ixlxe A" ana lg(x) = k}

which is sirﬁply the set of all sequences over A of length k. Note

that, in terms of the sets AX,

If we let A? denote all sequences except the null sequence then

0
AT = U Ak
k=1
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Using this notation we extend the transition and output functions of a

sequential machine as follows:

Definition 1.1

M =(1,Q,0,8,w) is a sequential machine its extended

transition function § and extended output function w are

defined inductively as follows:

Transition fen. Output fen. Output fen.
- (Mealy) .. (Moore)
0:QxI ~Q w: QX1 =0 w: QXTI ~ 0O
where
i) xe¢ IO:{A}, g(q,x) =q ~ undefined (T)(q,x).—-w (@)
i) xe 11: I, E(q,x) =0 (q,x) a(q,x) =w(a,x) a(q,x) =0 (6 (g, )

iii) xe¢ Ik, ael, E(q,xa):é (.S(C;‘_, X), &) -Z)(q xa)=x(6(q,%),a) wla,xa)=w (8(a ,EaY)
(> 1)

(Note that given values of 0, w for all x ¢ I, (iii) defines values
of E, w for ail ve Ik+1.)
In terms of these extended functions, the Behavior of M relative to

some fixed state qe Q is defined as foliows,

Definition 1.2

IM=(,Q,0,06,w)is a sequential machine and ¢ Q, the

beravior of M for initial state g ic ¢ function {j’q defined as

follows:



13

Mealy | ~ Moore
% .ot - By 1ol
where |
i) xel ={A}, undefined 7 Bq(X)=(0(Q)
i) xell =1, B9 =0(@,%) B,09) =0 (@) (0 (2,%))
i) xel%, acl, B (xa) = p_(x)w(q,xa) 5 (xa) = B _(%)w(q,xa)
(s>1) q ' q | q q V

Note that if M is a Mealy machine then
1g(B,(x)) = 1g(),
i.e.

, an input sequence of length k produces an output sequence of

length k. On the other hand, if M is a Moore machine then

1g({3q(><)) =1g(x) + 1

since an output symbol is associated with the initial state q.

Definition 1. 3

The behavior of a sequential machine M with states Q is the set
By = {_Bqlqe Q}.

In other words, the behavior of M is the collection of input-output
transforinations such that each transformation in the collection can
be realized with an appropriate choice of initial state. Note that

3

distinct states of M need not give rise to distinct behaviors, i.e.

it may be the case that q # r and yet By = By This observation leads
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to the following fundamental concept of machine theory.

Definition 1.4

M = (1,QM,O, GM’(”M) and N = (L,QN,O, GN,wN) are
sequential machines (of the same type), qe QM’ and re Q’N

then g is equivalent to » (g = r) if Bq =P

In words, state q of machine M is equivalent to state r of N if M
when started in ¢ has the same inpuﬂoutput hehavior as N when
started in r. It should be obvious that in the special case where
M = N, = is an equivalence relation OD'QM' One élso notes that

state equivalence can he characterized in terms of the extended

oulput functions as follows:
q= 1 Hf w,{q,x) = 0y (r,x) (.1)
' T A .
for all x ¢I' (Mealy case) or for all xe¢I (Moore case). (This
characterization is thz one most often used as the definition of

state equivalence).

Extending the notion of state equivalence to machines we have:

Definition 1.5

If M and N are sequential machines (having the same input

alphabet I and output alphabet O) then M is equivalent to N

(M = N - T
(M=N)if B =B,

In other words, equivalent machines are identical when viewed

externally. If we let ‘771(1,0) denote the set of ali sequential




15

machines with input symbols I and cutpat symbols O then = is

. . mn . _ .
clearly an equivalence relation on® /?E(I,O). In comparing the
behavior of machines, it is convenient to introduce a second notion

that is somewhat weaker than machine equivalence, namely

Definition 1.6

1t M, Ne)@E,0) then M includes N (M > N) if By 2 By

Thus if M includes N, each state of N is equivalent to some state of
M but there may be states of M not equivalent to any state of N,
Paraphrasing the notion, M includes N if M can do anything that

N does. From the definitions it is bbvivou.s that M and N are
equivalent if‘ and only M includes N and N includes M. Acgordingly,
the notiqn of "includes' determines a partial ordering of the set of all
equivalence classes of machines in ‘@’)z(I,O).

In terms of these basic notions of machine structure and behavior,
suppose now that in some physical syétem represented by a seguential
machine M, there is 2 permanent fault which permanently alters
the structnre of the system but results in a configuration which is

still machine-representable., In this case one can represent the

result of the fault as a second machine:
M' =(,Q",0,0"' w")

where the states Q', transition function 6', and output function w'
of the faulty machine are related in some way to the original machine

M. A more precise statement of this relationship depends, of course,
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N

on more detailed knowledge of the fault,
In what follows we restrict our ai‘.ii.ention to faults that occur
in the memory portion of the physical system. This restriction is
motivated by the fact fhat it is memory which distinguishes nontrivial
sequential switching systems from purely combinational systems.
The restriction also has the advantage that the function of memory
is the same from machine to machine, that is, to store the infor-ma.ti.on
presented at the memory input. ,
In a sequential machine the transition function repreéents both
decision and memory processes in that we inferpret 6(q,a) to be the
"next" state given the "present" staté is g and the "pregsent' input is
a, To distinguish the functions of memory and decision let & = p* X
(the functional compésiti&n of X and p, first applying A) where (g, a)
is the memory input and represents a purely combinational process,
and p. is the memory function represe.nting the storage of A(g,a). In
case the memory operates properly, p i's simply the identity function

on the states Q. Hence,
& = A ' , (1.2)

Suppose, now, that there is some permanent fault in memory that
causes certain of the memory inputs to be stored improperly. Then
the function p representing faully memory operation is no longer
the idéntity function and the transition function of the faulty machine

is given by
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6'=p e X ‘ (1.3)

Assuming that there are no faults in the combinational processing,
we have

| A=
and hence
S'=p A =peA=pc 6. - (1L 4)
The above observations can be formalized as follows:

Definition 1.7

If M is a sequential machine, a (memory)fault of M is a

function on the states of M.

Definition 1.8

IfM=(,Q,0,06,w) is a sequential machine and : Q~Q is

a fault of M, the result of u is the sequential machine

mf = @,Q", 0,8 ")

- where

Q" = 1(Q) (the range of p),
i) oM =p- 6 restricted to Q¥ xI,
| 1 ( Q%1 (Mealy)

s2e
~r

[y " = w restricted to

. Q (Moore)

Note that, by definition, the identity function (on Q) is regarded as

a fault even through, under the intended interpretation, it represents
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fault-free operation. Thus the identity function is referred to as an

improper fault, all other faulls being proper. In defining the result

4, T N ) : )
P oof a fault Iy Q! is taken to be the range of p since, under the

M
interpretation, these are the only states accessible from the nemory
input. The definition of the faulty transition function " tollows
directly from (1.2) - (1.4). Since the fault occurs in memory, the

output function wh

is essentially the same as w. Definitions 1.7
and 1. 8 thus comprise the basic 1nod¢l of permanent memory error
upon which the following investigation is based.

Before discussing the effects of faults on behavior, we note ihé‘t
a fault p can represent either some singlé physical fault in the
corresponding switching system or the culmination of a series of
many physical faults: For this reason we should make precise what
is meant by one fault "following" another. We note first of all that
if M is & sequential machine, p is a fault of M and v is a fault of wt
then

VS USS VU @)

This follows by Definitions 1.7 and 1.8 and séys that the result of
successivé faults p of M and y of M* can be regarded as the result
of the single fault Vol the composition of p and 7 (with the
codomain of ¢+ p extended to Q).

Given p and y as above, one can also regard y as a fault of the

original machine M provided the following condition is satistied.



19

Iy Q-Qand R CQ, let n|R denote the rectriction of pto R.

Then

. Definition 1.9

: L

If p,yare faults of M then y can follow y, if Q’ is a fault

p) '} e i 'y

' )

of MM,
Although the definition reflects the interpretation of the notion "can
follow', a more convenient characterization is given by the following

3 ; O o O

theorem. If we let f((‘u.) denote the range of a function on p (i.e.

/7(, (b) = Q) if Y Q ~Q) then

Theorem. 1.1

If p, v are faults of M then y can follow p if and only if

K we gu.

This observation follows immediately from Definitions 1.7 and 1.9,
The above is casily generalized to allow for a succession of more than

two faulis.

Definition 1.10

If pyg, Hos -« s iy ATE faults of M then (,“1’ Hos v e p,n) isa

stocession of faults of M if

.

by g cAD follow by ‘U‘i-l. by

fori=1,2,...,n-1,

Theorem 1.1 can then be generalized as follows.
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Theorem 1.2

‘¢ faulis of M the 1S
It Pys Pgs e v s by are faults of M then (/J,i, Pos , ;Jln) isa

succegsion of faulls of M if and only if
|~ . LI I 7 ] * e
% (g0 1 py) € DLy g7 1y
fori=1,2,...,n~1.

If we now extend Definition 1.8 to successive faults in the obvious way,

it follows ‘tha.t

Theorem 1.3

The result of a succession of faults (i , ;un) of M is

i’ ”‘2’
the machine

z
M

C 1

REERL

n

In other words, the result of a succession of faults of M can be re-
garded as the result of a single fault p of M where 1 is‘ justvthe com-
position of all the jaults in the successioﬁ. (Ataken iAn the order with
which they éccul‘). Thus multiple physical faults can he analyzed

in terms of a single machine fault and, more generally, the various
effects of any presci‘ibed s‘etrof physical faults can he analyzed by

studying the individual effect of each fault in some appropriately

determined set of machine faults,

TFault Masking

" Let us now consider the fundamental problem of relating

faulty structure to desired behavior. Informally we can say that
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a machine M has "failed" under some fault p if Vv no longer exhibitg
the desired behavior, On the other hand, if thé desired behavior is
preserved under g then, adopting a term used quite freqguently in this
context, the fault p is "masked." The precise sense in which a fault
is masked depends, of courrse, on what is meant by ""desired behavior:"
In what follows, we propose several types of masking which we feel
have meaningful interpretation.

Perhaps the most natural choice of desired behavior for the
faulty machine is a bhehavior equal to that of the fault-iree machine,
In this case we say that

Definition 1. 11:

A favlt s of M is e-masked if M = M,

If we require only that the faulty machine be able to do everything the
original machine did then

Definition 1. 12:

A fault p of M is i-masked if MP > M.

Clearly, if a fault is e-masked it is i-masked.

Exam i)le 1.1

“Consider the modulo 3 counter (Mealy type) having the follow-
*
ing transition-output table:

. ‘
The entry in row g and column a is 6 (q, a) /u{q, a).




~U o |
0 0/ | 1/0
1 1/0 2/0
12 2/0 | 3/1
M 3 3/1 4/6
4 4/0 5/0
5 5/0 | 0/1
and faults s bos and I given by:
q [l | ugla | opgla)
0| 0 0 0
1 4 1 2
2 0 2 2
3 5 0 5-
4 4 4 0
5 5 4 5
' . Fr Py Ps .
Then the faulty machines M 7, M “and M ° are given by:
- I | I
1 0 1 Q2 0 1
0 0/1 4/0 : 0 0/1 1/0
4 4/0 | 5/0 2| 1/0 | 2/0
5 5/0 0/1‘ 2 2/0 0/1
4 4/ 0

4/0 |
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~o 1
Mo ’
5 \_-,_ 0 1
0 0/1 | 2/0
P
M 2 ' 2/0 5/1
5 5/0 | 0/1

In the ynachine M, B =B, By = By By = By I we let ﬁ“‘q denote

. ¥ s . . L
the behavior of MM for initial state g then, by inspection of ! , we

have:
H st By
Po =Py By = Py Py = By
by ‘
and soM ~ = M, i e, Py is e-masked.

1L
Regarding M

uz ILZ ' uz
BO = B(y 61 = Bj ’ [32 ‘ = BZ
Bo :
but g, " Bq’ for all g ¢ Q. Hence Iy is i-masked but not e-
masked. _ |
N3 'u?)
As for M 7, we see that no state of M * is equivalent to

any state of M and consequently g is not 1~-masked.

By definition, a fault p is e-masked if the faulty machine

- M" has the same terminal behavior as the fault-free machine M.
In physical terms, this says that the faulty circuit or system
represented by M can do the same thing as the original system

represented by M. This is not to say, however, that every state
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M

1(q) ¢ Q’ behaves in M’ as state g does in M, i.e. it may be the

case that BZ@ # By This is illustrated in Example 1. 1 where
Py Py |
B = B £ Ba Accordingly if we were to attempt to reset
11,1(2) 0 2 " :
- the faulty system (represented by M 1) to state 2 it would actually
reset to state 11;1(2) = 0 and consequently exhibit o different behav-
ior than expected after reset. Since the ability to reset to some
known behavior is desirable in certain applications, we introduce

the following notion.

Definition 1. 13:

If M is a machine with states Q and R g Q then a fault

is R-measkedqd if

H

P p(r)

= Br’ dorallre R

(where Bﬁ, as earlier, is the behavior of M for initi?;.l
state q).
Thus if p is R-masked then wi is reseta.blé to every state r ¢ R in
the sense that the behavior of Mfor initial state r is the same as
the behavior of_M’J’ for initial state p(r). Referring to Example
9 is
{0,1, 2, 3} -masked. #tq is not R-masked if R # ¢ (¢ being the empty

1.1, one can easily verify that py s {0,1, 4, 5} -masked and

set; note that every fault is ¢-masked).
Relating R-masking to e-masking and i-masking we note the

following facts,




Theorem 1. 4

If M is a machine with states Q and a fault 4 is Q-masked

then 1 is e-masked.

The proof of 1. 4 is immediate from Definitions 1. 11 and 1.13. That

the converse fails tc hold is illustrated by fault p, of example 1. 1.

1
Indeed one can construct a machine M along with a fault p such that
i is e-masked and yet R £ ¢ implies p is not R-masked.

If M is 2 machine with states Q and behavior B, , let us say

M
that 2 subset R of Q is complete if

‘ {Br!r e R} = By,
Then

Theorem 1.5

If M is a machine with states Q, R is complete (R C Q)

and p1 is R-masked then p is i-masked,

Proof: Iy is R-masked then
Ire R} = H |r ¢ R},
{p Iy e R} = {p, ] e R}
But R-is complete and so

T Al
By = ByylrerRt C {B)\laecql = B

In other words m" > M and hence p is i-masked.
To illustrate Theorem 1.5, consider the fault o, of Example 1.
along with the subset R= {0,1,2,3}. Then R is complete ang, ag

noted earlier, Po, is R-masked. Hence Lo must be i-masked and
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we obgerved in B mple 1.1 that this was }the case. The converse of
Theorem 1.5 does not hold, that is, a fault i can be i~mzasgked and yet
there is no complete subget R such that 1 is R-~masked.

Let us now look ahead, for a moment, to the synthesis problem;
that is, given some bebavior B specified say by a reduced machine '
»such that BM‘ = B, design a machine M that realizes M' and relative to

some specified set of faults {u ce ’[J'}:;}’ A is [I-masked (i=1,2,...,k)

i’ 1L2>
where D. denotes one of the specific types of magking just diccussed.
Solutions to this problem require a greater understanding of how a fault

p must relate to a machine M in order that it be | |-masked. In particular
it would be convenient to relate p divectly to M without having to com-
pletely cietérmine the nature of the faulty machine M. The following
resulis a.re. so motivated.

;

For a machine M with states Q let = denote the relation of state

equivalence on Q.

Theorem 1.6

If pisa fault of Mand p(q) =q, forall g e Q, then yis

Q-masked (and hence e-masked).

‘Theorem 1.6 can be proved by showing that there exists a (machine)
homomorphism-n from the faulty machirs W onto a reduced machine

equivalent to M. This implies it

=M (i.e., pis e-masgked). Moreover,
n can be chosen such that n(u(q)) =q which, by the behavior preserving

property of homomorphisms, implies that p is Q-masked. A detailed
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proof of this theorem and theorems that {follow will be supplied in a
Jater report.

A somewhat more general form of Theorem 1.6 is the following.

Theorem 1.7

If pisa fault of M and R € Q such that
i) pr)y =r, forallre R

and
i) O(uR)xI) CR

then p is R-masked.

Corollary
I pand R satisfy the conditions of Theorem 1.7 and R is

complete then p is i~masked.

Note that when R = Q, condition ii) is automatically satisfied and
Theorem 1.7 reduces to Theorem 1.86.

" Theorems 1.6 and 1.7 give sufficient conditions for Q-masking and,
more generally, R-magking a fault p in terms of u, the state-eguivalence
relation for M, and ~the transition function Qf M. The conditions, however,
are not :zécessary and to date we have been unable to discover nece ssary
and sufficient conditions for R-masking that can be easily stated in terms
of properiie of M and p. The best characterization obtained so far is

stated in terms of a relation PR defined as follows:



Definition 1. 14

If M is a machine with states Q and R C Q then, for all

9 q'eQ, ,
q PR q'if jr ¢ Randx e I* such that
o(r,x) =g and B (u(x),x) =q'.

=l "y . )

(8" is the extended transition function of 1 )

If further we let =1 denote the relation of i-equivalence on the
states of M (i.e. g =, o' if Bq(a,) = ﬁq‘(a) foralla e I) then:

1 A

Theorem 1.8

If M is a Mealy machine and pis a fault of W then

L is R-masked iff i © =g

An amlogous statement for Moore machines involves O-—equiva.],ence‘
(i.e. g =g ¢ L wlg) =w(q")):

Theorem 1. 8'

If M is a Moore machine ang (L is a fault of M then

b is R-masgked iff PR - =0

_In many applications, a sequential swilching system will have a
distinguished "reset state' where only the behavior of interest is the
input-cutpi: function that results when lie system ig initially in the
reset state. If sucha system is represented by a machine M and the
reset state by some distinguished "initial state' of M, say Ay then the

fault masking of interest is a special case of R-ma sking where




In this case we will eay that p ig Oor masked (ratl her than {q } -masked)

and write o instead of finition 1 14). M’oreever, the relation
4, {a }

Hp can be described Gom"whac more simply when R = {q }, that is

= {0ag,%), [UCRIEVIETS 33 (1.6)

Using this characterization of u_ and applying Theorem 1.8 it
%
follows that:

Theorem 1.9

If M is a Mealy machine and s is a fault of M then

1 is°q ~-masked iff ﬁ(qo, x) = —SIJ‘(LL(qO) , %), for all x e I*,

Theorem 1.9

In the statement of Theorem 1.9 replace "Mealy" by "Moore!'

and = by =0

Applications of Theorers 1.6 - 1.9 to the design of fault-tolerant
switching networks is presently under inves tigation and this activity will

be reported on in the next Quarterly Progress Report.

Stable Faults

If M is a machine and p: Q - Q isa fault of M, we may interpret p(q)

as the state stored when the memory input is ¢ and in case ;L(q_) # 4, q
is stored erroneously. In general if we now attempt to stove u(q),

too may be stored erroneously, i.e. it may be the case that
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plda) ) + ple) . Borrowing sopie terminology from ithe theory of asyn-

chronous machines we say that plq), in thic ca se, is unstable. On

the other hand, if p(ula)) = pq), then po) is stable,

Axtending this

notion to the fault iteelf we haves

Definition .15

Ifu Q~Qisa fault of M then pis stable if - p=pu(i.e,
! pis stable 3 gu e o=
p(@)) = q), for allge Q).
. e 1 r pr J» . 2 -~
In other words, p is stable if every state of W is stable. In

mathematical terms, p is stable if and only if it is an idempotent

element of the semigroup of functions‘on Q. Accordingly, the notion

of a stable fault can alternatively be characterized as follows.

Theorem 1.10

I p: Q~Q isa fault of M then the following statements are
equivalent:

i) pis stable

i) p(r) =r, forallre ﬁ/(p,)
N

1) e e p (W), forallq e Q.

Stable.faults are of interest since many types of physical meinory
faults may be repre sented by a machiﬁe fault of this type. In particular,
a combination of "stuck at 0" and “stuck at 1" faults in one or more
two-state memory cells is represented by a stable fault of the corres-

ponding sequential machine.




w
o

If M is a sequential machine with states Q let

denote the sct of all stable faults of M. As S(Q) is just the set of all
idempotent elements of the full transformation semigroup, a partial

. b3 R .
ordering™ of S(Q) can bz definedas follows [ 1 ]:

Definition 1.16

If 1,y ¢ S(@Q) then y is under v (u <v) if yop = IJ} Y= |

In general, if B is a set of idempotents, the partial ordering

defined above is referred toasthe natural partial ordering of B, In the

cacge of stable faults, the ordering hasa much more revealing charac-
terization. ¥ u: Q - Q let\ﬁ denote the equivalence relation on @

induced by p, that is

]

q 5 (@) = ). ‘ (1.7)

Then’

Theorem 1. 11

I p,y e S(Q) then p <vyif and only if
) 7w <h

and

i) =cC

~ it
=

. - _
A relation R ona set A iga partial ordering of A if R is
reflexive, antisymmetric, and transitive.
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In other words p is under v if and onlv if the range of |1 is contained
7 - Y S

r implies g = v, forallg,r ¢ Q

3 et

in the range of y and ¢

~

T Example 1,9

Let Q = 10, 1, 2} and denote a stable fault e 8Q) as the
triple

(u(0), (1), w2)).

If further we let Hu denote the partition of @ corre sponding
to the equivalence relation = then, for each pe $({0, 1, 2},
m

- A (p) and HH are given by the following table.

I E (1) ”
(0,1, 9) {0,1, 2} {0,1,%9}
(0,1,0 | {o,1} {1, 02}
(0,1, 1) {0, 1} {0, 12}
(0,0,2) {o,2} | {goi}
(0,2, 2) {o,20 {0, 12}
(1,1,9) {1, 2} 12, 01}
(2,1, 2) {1,2} {1, 02}
(0,0,0 {o} {012}
(1,1, 1) {1} {012}
(2,2,2) {2} {017}

Accordingly, the natural ordering of these faults has the

folluwing Hasse diagram:
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(03 1; 0) %
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By Theorem 1,11 and the preceding example it should be ol
vious that a stable fault is uniguely specified by its range /@(;J,)
-and induced eguivalence relation 73 . Also, it is relatively casy

to determine the number of stable faults that are possible for a ma-

‘chine with n states.

Theorem 1.12

n

It tQ{ =n then lS(Q)[ = n>kn—k

1{:1 (k
Thus, fo;‘ example, of the 10 billion possible.faults of a
machine with 10 sitates, 2, 1\37, 921 are stable faults.
Let us now relate the noticn of a stable fault to zome of the
concepts introduced earlier, TFirst of all, we note that if one
stable fault can follow (Def. 19) another then thé composite iaul’c

is stable, that is,

Theorem 1. 12

I,y are stable faults of M and y can follow py then y -

is a stable fault of M.

Proof: et q e ﬁ(y- (1) . Since y can follow p, q € U/PL(U,) (Theorem 1. 1)

and since p is stable, p(q) = g (Theorem 1.10). Thus
(L)) = v(q).
But q € %(y/‘ 1) implies g ¢ %(7/) and as y is also stable

v(d) = q.




Combining the above identities
[

Y(pa)) =q

forallq e /,? (y- ) or eguivalently (by Theorem 1.10) - is stable.

Generalizing Theorem 1. 13 it follows that if (11,1, Hos v ;J,n)
is a succession of stable faults then Py " Pyt

Also of interest are the conditions under which the order of

Tl is stable.

occurrence of faults is irrelevant or, more formally, when faults
commute (with respect to the operation of composition). This

question is answered by the following theorem.

Theorem 1. 14'
If pand y are stable faulls of M then the follbwing statements
are equivalent:
) yep=pey
1) Qv CRW, @) RO,
= (C ¢
')/ — .
) pe(y-p) =y pandy-(uy) =py

iv) yp <pandp.-y <.

Condition iv) gives an intere sting characterization of com-
mutativity in that it relates directly tc {ke natural ordering of stable
faults. If y can follow |1 we can interpret p <y as meaning p |
"dominates' y in the sense that v has no further effect once p has

occurred. Accordingly, by part iv) of Theorem 1. 14, the order in




36

which (L and y occur is irrelevant if and oﬂy il the succession (i, y)
.dominates pand (y, p) dominates .

Finally, with regard to fault masking, ﬂ we examine lhe most
restrictive typ° of masgking (Q-masking) under the assumption that

a fault is stable we find that a rather easily tested condition is both

necessary and sufficient for Q-masking (compare with Theorem 1.6).

Theorem 1.15

If M is a machine with states Q and p is a stable fault of W then

B is Q- masked if = C =,

'ﬁ:

(= denotes the relation of state equivalence on Q.)

In other words, a stable fault u of M is masked if and only if

p(g) = plr) implies q =x, forallq,re Q.
Corollary

- I M is a reduced machine then no p) oper stable fault of M

can be Q-masked.

Theorem 1. 15 is an important result in the sense that the
restrictive nature of Q@ masking is now quite obvious. If only a
relatively few stable faults are to be masked, it is conceivable that

one could Q-mask all faults. On the other hand it appears that

Q-masking a reasonable number of stable faults will be very difficult’

and, in many cases, impossible.
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2. ‘FAUI[.,TJ‘JL/«\LSKH\?G IN COMBINATIONA L NETWORKS
Before any interesting que stiong abhout fault ma sking can he
- -explored, a model must be developed that can be used efficiently to
analyze the fault-ma sking properties of networks with redim.dancy.

The ideas of fault and failure should arise naturally in the model,

THE CONCEPT OF NET

The term net is intended to include all layout information about g
system. It must identify all the devices in a system, and all the signals
that can appear in the system. It must also account for the manner in

which devices are interconnected.

Definition

An (n,m, k, £) -net is 2 2-tuple

P=(D,s

D is a connected loop-free directed graph (digraph) with ntm+k
abeled points and ¢ Iabeled lines. Exactly n of the points, called input
terminals (or just inputs), have indegree 0 ang outdegree greater than

~

or equal to 1. Similarly, exactly m points, called output terminals

(or just catputs), have outdegree 0 and indegree 1. The remaining
k points are called nodes, and have both indegree and outdegree
greater than or équal to‘ 1. Ingeneral, node i will have indegree ny
and outdegree my where ny and m, are positive integers.

S is an £-tuple of gets.
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When interpreting the model in a physical sense, n is the number
of iﬁlputs, m is the number of outputs, k is the number of internal
nodes, and £ is the number of interconnecting lines. A node may vbe a
simple logic gate or a complex sub-system. Hence, if desired, a com-
plex system may he deco;ﬁposed into several sub~systems for ease of
analysis. The model can he applied to the decomposition by allowing
each sub-system to be considered as a node. Then, the model may be
applied separately fo each sub-system. Amnalysis of a modular structure
at any level of complexity is po séible‘

The signals that may appear on ’che' ith line in the system is the
set appearing as the ith coordinate of the f-tuple S. Fach line leaving
the same input node must have the same signal set; otherwise, it is
permissible for each of the sets to be different. However, in the
~usual switching circuit interpretation, each coordin‘;i’ce of Swill be tﬁe

binavy set B = {0, 1}.

Definition

The input space associated with node i, called Ii’

is defined as the cartesian product of the signal sets speci-
'ﬁéd by S for the input lines to nbde i. The coordinate sets
for the input spa'ce shall be taken in the order of ascending

line labels, for consistency.

. Deﬁnitio_g

The output space associated with node i, called Oi’ is defined
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a5 the cartesian procuct of the signal sets on the output
lines, again taken iu order of ascending line labels for

convenience,

Definition

E = {(gl, o v v &) lgi is & mapping from I, into O, for 1 <i < x}.

In the usual switching circuit interpretation, g in the above

e s . n;) . m, \ .
definition is a mapping from B( i) into B( 1) . The set & represents
all theoretically possible combinations of nodal actions in the net.

In many physical systems, only a small fraction of these will ever

.Qceur,

A COMBINATIONAL NETWCRK MODEL

Definition -

An (n, m, k, 0) ~combinational network, is a 3-tuple

C=(P,F,h)
“where P isan (n,m,k, £)-net
F C F, T is called the fault set
be F, bis called the 0-fault
Definition
A proper fault of the combinational network C = (P, F, b) is an
elemenc of the set F-{b}.

Note that the 0-fault of C is not a proper fault of C. In the usual

interpretation, the 0-fault corresponds to the fault-free condition.
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THE BEHAVIOR OF A COMBINATIONAL NETWORK

Definition

= (P, ¥, D)
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is defined as the cartesian product of the signal sets on

the lines of P leaving the input teﬁninéls taken in order of
increasing node label, Theré is one coordinate in the input
~space for each terminal; hence, the input space is an n-
dimensional space. In the usual switching theory inter-

pretation, I = B(n) .

Definition

The output space, O, for combinational network C is defined
k i3 s Y

as the cartesian product of the sigral sets appearing on the

lines of P that terminate on the output termimals taken in

order of increasing node labels.

-There is one coordinate for each output terminal; hence, the
output space isan m-dimensional space. In the usual switching circuit
. . m
interpretation, O = B( ).

Definiticn
Tp = {mappings from I into O}
The net P in a combinational network C = (P, I, b) induces a

mapping a, called the net mapping, from F into Tp in a natural way.

When a fault f = (fl’ fz, . ,-fk) occurs in a net P, the net performs some

mapping from I into O. This mapping is the image of the fault f under «.
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Definition

The function of the network C is the element t = o(b).

Definition

The function set of network C ig the set T = {F).

Definition

A malfunction of C is an element of the set T-{t}.

In a’ physical interpretation, the function of the gsystem is the
behavior of the system when it is fault~free. The function set is the
set of all possible behaviors that can result from faults in the network.

A malfunction ie some behavior different {rom the fault-free behavior.

A HIERARCHY OF FAULT DIAGNOSIS CONCEPTS

Consider the combinational network

C= (P, Fqb) .

Recall that b = (k

D15 bZ’ cay blf) is the fault-free condition in the network.

Definition
Vi= (5. f) ¢ F, letK = {i]1 <i <K, fiJfbi}
V feF, let Jg = {f‘lf' ¢ T, K = X}

Fault Diagnosis Concepts

feFis masked iff aff) =t

fe Fis detectable iff off) 4 t

N
fe ¥ is completely diagnosable iff (' ¢ F, &{f) = o{f") =>1{ = {')




Note that the 0-faunlt is always ma .mcu and that detectable
faults are always proper faults. On the other hand, the 0-fault may
or may not be locatable and may or may not Vbe completely diagnosable.
If the network has a non-empty set of proper masged faults, then the
0-fault is not ].ogatable and not completely diagnosable. However, if
the set of proper masked faulls is emptly, t} en the 0-faull is locatable

and completely diagnosable.

Definition

A failure of C is a detectable fault of C.

It should be obvious that

{magked { a.ults of C} U {failures of C}

i

I and that

o}

It

{masked faults of C} 0 {failures of C}

A masked fault in the usual ifﬁ;erpreiation is a change i:n structure
of the system from its fault-free structure that preserves the fault-{ree
beha\jior of the system. A failure of a Sy'stez.n is a change in structure
that causes a change in behavior,

Interms of actual diagnosis, there is no experiment that may be
performed on the oySLem terminals to distinguish a ma sked fault struc-
ture {from the 0 -fault structure. However, there alWays exists a
terminal exper‘im»ent to determine the presence or absence of a detectable
fault structure, although the particular detectable fault, if present, may

not be known.
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If fisa locatable fault, with o SSOC‘L’:{‘tOd sels Kf end J o then
there exists a ferminal experimem’; that will verify the presence or
-_absence of a fault in the set J £ élthough the particular member of
the set J f that is present may not he revealed.

If f isa completely diagnosable f.zmlt, then there exists a terminal

experiment to verify the presence or absence of the fault f.

SINGLE FAULT ANALYSIS

The masking of single faults in a combinational network is often of
extreme importance because the probability of a single fault is usually
much greater than the probability of a multiple fault. For this reason,
Vit is frequently desirable to prot.f:ct the circuit against the occurrence

of certain single faults.
Definition
Afault £=((. f,,..., %) inan (n, m, k, 0) ~combinational network
i) 2) 3 1{ 3 3 3

.is called a single fault if

¥

(1) £, Db, for some iwith1 < i< X
and

2 f5=b, jfiwithl<j<k
Note that all single faults are by definition proper faults.

A SIMPLE TWO NODE SYSTEM

The analysis begins by considering a two-node combinational
network. This special type of network is easier to work with than

more general types, and the results obtained can be used directly to
3
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Figure 2.1

Graph of a simple two-node system.



solve the single {faull masking problem in general networks. Figure 2

displays the graph, P, of an (n,m, 2, ¢) ~combinational network, C,

~with
C=@,Fn)
P = (D,5)
where

P is as shown in Ficure 2.1
O

b= (by,b,)
F = {(fl,fz) |(f1>f2) c E, £y =D, ;4 b("}
U - 1 A :'c =
{(e;,1,) I(fi?fz) ¢ B, £, by, £,=D,}

u{nh}

The lines are not labeled because we are allowing arbitrary signal

For this graph,

ni =1
my =1,
m, = m
In the usual application, t = b, - b, = bz'.'b1

x = W _ gy
w = 1) _ )

v = B(mg) B(m)

However, our analysis will be completely general in that arbi

trary signal sets are allowed.

S
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3.
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o

1
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Since b. isa mapping from W into Y, b, induces an equivalence
? o o " M 9 £
«3 #)

relation, Rb g O the set W defined as follows:
w. =w, if hy(w.) = b (w
i R 2 Z( 1) 2( ‘2)
b2

The set of equivalence classes of X, , are the biocks of a
v b2

]

partition of W called 7 b’

-l

Theorem 2.1

A single fault at node 1, £ = (., b, is masked if and only if
O 3 13 ZJ b

fl(x) }; bl(};)
b2

Corollary 2. 1.1

A single fault at node 1 isa failure of C if and only if theve
exists an x € X such that

£,06) § by(x)

sz

The corollary follows directly from Theorem 1 because of the
exclusive character of masked faults and railures.
The next two theorems answer important questions about complete

fault-masking and complete fault-detecting.

Theorem %. 2

All single faults at node 1 are masked iff b2 is a constant function.



Theorem 2,3

All single faults at node 1 ave failures iff

lez[bi(x) =1 w¥=xc X

. Corollary 2.3.1

1t b? isa 1-1 function from W into Y, then all single faults of
C at node 1 will be failures.

A systematic method for counting the number of single faults

at node 1 that are masked will now be developed.

Definition

Fq= {i}te F, fisa single masked fault at node 1}

Definition

For every y; € b2 bl(X) , define

. and

Theorem 2. 4 ‘
' d

[Fll =-14+ - 1I

C.
. o1
ijyeb 2b1( 0

The minus 1 appears because the recond term counts the 0-favlt

which is not a single fault,
Note that lFll = 0 only if every ¢y is 1. From the definition of C

 this implies that the pre-image of each element of bzbl(X) in the space
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<

W must be a gingle element. This ie the same as caying that every

o

equwalonce class of R, that intersects the range of bj must consist

[$34
~of a single element of W. The counting theorem is seen to support
(o]
Theorem 2.3
If b, isa 1-1 function, thenall ¢, must be 1. Our countine
2 ) i )

theorem indicates no single faults masked at node 1 under this

condition as stated by Corollary 2. 3. 1.

Corol].ary 2.4.1

The number of single faults at node 1 that are failures is given by

]W[le - 11 e

When bz is a constant function, there is only one element in the

anda

set bei(X) . Also, b?kl[b oP(X)] = W. This means that ¢ = |w
= [X] hence Corollary 2.4.1 states that there are no single faults
at node 1 that are failures. This implies tizat all single faults must be
masked, as stated by Theorem 2. 2.
Also, since Zci g |w l and Ed‘i = le, we see that the only time
this expression is zero is under the condi Uon,s just stated.
The following theorems and corollaries answer similar questions

about node 2.

Theorem 2.5

“A single fault of C at node 2, { = (bl’ fz) is masked iff



Corollary 2.0

A single faull of C at node 2, 1. ) is a failure of C il

(1
to) Ryt g A

"Lemma 2.6.1

The proper fault get of C is empty, iff [\Zl =

Theorem 2.6

It is impossible for all single faults of C at node 2 to be
masked except in the singular case when ]Yi = J, in which

case the set of single faults at node 2 is empty.

Theorem 2.7
All single faults of C at node 2 are failures if and only if

b, is onto W,

1
Theorem 2.5 adds substance to the often presented hypothesis
that error in the final gate in a network will always contribute some
error to the system. In particular, we ShQW that it is never possible
to mask all single faults at the final output node except in the trivial
case when the system doesn't “‘do';_ anything.
Before pre senting a theorem to enumerate the munber of
single faults &t node 2 that are masked, 4 couple of definitions are

required.

Definition




Definition

Definition

¥, = {{!f ¢ I, {isa single masked fault at node 2}

Theorem 2.8

Corollary 2.86.1

The number of detectable single faults at node 2 is given by

PR

THE GENE RAL SYSTEM

To descriibe the faults masked at a nrticular node in a general
combinational network, we first seck a general form intc which any
network may be put for anzlysis. Such a form is shown in Figure 2. 2.
The following theorems stated in terms of the general form may be

used to analyze faults in an arbitrary system.

-The general form is an (n,m, 3, £) ~combinational network
C=(P,F,b)

P =(D,9)
- where

D is as shown in Figure 2.2
S is an arbitrary f-tuple of sats
b= (bi’ bz, h)
¥ - {(fl,fz,fs) |(f1,f2, fo) € B, 1, = by,
fq = hj
in describing fault behavior at node 2, it is convenient to decom-

pose the h mapping,.




Figure 2, 2
General form for single fault analysis

at a specified node,




Defi 1«11uo

For each input combination

5

, 3, define the mapping hX as iollows:
h_: W —=Y
p:4

(x», .\\7)

The mapping h

completely describes
space W when the input cow

actionr of node 3 on
mbination is x
effect that nod

With a knowledee of the
1 and 2 have on the
hX to complete the descri

‘.-..I

input combination x
ption of the

circuit action on x.
Each mapping hx induces an equivale

Definition

we may use

e relation on the set W
R is i
X

3 the equivalence relation on W induced by the mapping

e mapping
h from W into Y. This equivalence rel&’won is obtained in
the usual way

R Wy A hx(wl)

15w

In a physical system Wy is Rx equivalent to w,, if and only if the
[F RO R
1.

system output when the input configuration i

x and the W configuration
is equal to the system output when the input configuration is x and
the W configuration is w

9°
Theorem 2.9

A single f:wlt {= (b fn, 1)

, at node 2 in the general form is
masked iff |
M bﬁh); ‘Zbl(x)

X



Corollary 2.9.1

A single fault, f = (bl’ { 99 h), at node 2 in the general form

is a failure iff
be_‘L(}‘)'T fzbl(ﬂ) for some x ¢ X
R
bl

Theorem 2. 10

All single faults at node 2 in the general form are masked

iff hX is a constant function for all x e .

Theorem 2. 11

All single faults at node 2 in the general form are {ailures iff

. Y o= o > ) =
(1) bzbl(x) = w =Dh hl(z.) =W

b
P
and :

(2) |W|41=2D isontoV

L4

Before infroducing the counting tl%eorem for the general case, it
is necessary to extend some defini@ions ucged for the siraple two node
‘system. |

First, we define a counting constant Vfor each element in the set
V. In the two node case, we defined & counting constant for eachx € X,
since 'X was then the input space to thé node of interest. This wag done
indirectly t‘u’oﬁgh the constants ¢4 and r’i. We must now account for
both kinds of masked faults encountered during the analysis of the two

node case. One type arose because of the action of the following node

(here h), and the other type because of the action of the preceding node,
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(here by). Beth may be accounted for in the same process, as we

‘shall show.

\

Consider first the range of the mapning b Let v be any

1
element in this range. The counting constants for elements in the
range of b1 cover the cases where the mapping h allows some var-
iation inthe image of v under b?. These arise in the saime manner
. -
as those that are counted by the c_ constants in the two node case.
X

-1 . ‘ ‘
However, here b ] (v) may contain more than one element, hence
hX must allow the image of v to vary within an equivalence class of
R for eachx ¢ bl (v) before any fault that changes the image of v
from its value under bz can be masked. Hence, to find how many
images of v produce the same system ouiput, we must look at a new

equivalence relation on W.

Def)milon

For every ve ﬂ? 1 define the eou)val@ncc relation, RV,

on the set W as follows:

W, =W

Ry

. ‘ -1
{ {w = 7 T 3
1 g if hX (w 1) hX(\x 2) Vxe 81 (v)

* Definition

Aty 3 - £ a
For every v e J)bl’ define the counting constant Cy &8 follows:

, = Ryl ]

We reca]‘lv from the two node case that elements of V not in the

range of b1 may be mapped onto any element of W. This can be dove




(b
<

in |W | wavs, thus the counting constant for elements not in the range
b SO

[

of b, is defined as followg:

1

Definition

For every v ¢ (f

7 define the counting constant, ¢, as follows:
b1’ o s Ty?

c, = |w

Theorem 2. 12

The number of single faults at node 2 that are masked in

the general form is given by

|Pol=-14+°1 ¢

veV v

Corollary 2.12.1

The number of single faults at node 2 that are failures is given
by

lwllv‘ ST e
vev ¥

We éee that the expression in Theorem .2. 12 is zero only when
all ¢, are equal to 1. All ¢, are equal to 1 only when

(1) each equivalence class of R.V intersecting the range

of bz has only one element

and

(2) |w] =1, o:rﬁ,b1 =V |

Statements (1) and (2) above are equivalent to the conditions
(1) and (2) of Theorem 2. 11. The- counting theorem is thus consistent

with Theorem 2., 11, because if the number of single faults masked is
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zero, then all single faults must be failures.
The expression in Corollary 2.12.1 is zero only when each
Cy is equal to lW ‘ Thig can only happen if every hx is a congtant

function. Hence, Corollary 2.12.1 is consistent with Theorem 2. 10.
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3, DIAGNOSIS OF SEQUENTIATL, MACIﬁNES

Design of {fault de{écting experiiments for a sequential machine
can be greatly simplified if the machine possesses some distinguishing
sequences thus permitting unigue identific.ation bf the initial state at
each step of the experiment. Unfortunatclj,r,' not every sequential
xr()avc.hine has distinguishing sequences, The problem considered here
is to obtain, for an arbitrary sequerﬁzial machine, a modified machine
which contains the original machine and possesses some special
distinguishing sequences,

| The seguential machines considered here are assumed to be
strongly connected, reduced, and the malfunctions which occur in the
circuit do not increase the number of states in the machine.

The design of a diagnosable machine in which every input
sequence of a certain length is a dis’ltinguishing seguence was first
studied by Kohavi and Lavallee [4]. A machine which possesses
this property is called "definitely diagnosaﬁle” (D.D.). They have
proposed a method of constructing such a machine from an arbitrary
sequeni‘ial machine by augmenting additional output logic purely for
thé purpose of testing., However, definite diagnosability is not a
necessary cond.i.tion for designing short fault detecting experiments
nor is it the most economical method. A closer examination indicates
that a machine ha\(ing a short distinguishing sequence is generally

sufficient for designing such experiments,
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First, we generalize the D13, property and obtain a classificalion

N

of machines according to various degrees of magnosa.bility and
homability from a machine-theoretical viewpoint. This may lend
some ingight into various levels of machine diagnostic capability,

Second, a method of constructing a machine to possess a repeated
symbol distinguishing sec;uellée bjf augmenting its cutput symbols
is presented. Machines so constriucted are‘seel'l to have a reduced
ﬁpper bound on the minimum length distinguishing sequencer and
consequently have shorter fault detecting experiments.

Finally, a second method is presénted waich concerns the
solution of the same problem by augmenting the machine input
symbols. This is done by construc’cing a reduced single -‘input machine
and appending it to the original machine., It is shown that it is always
possible to construct an n-state, k-output sihgle—input machine so |
that its distinguishing sequence is of minimal ].ez.)gth, i.e. of length
[ldgk n] where [log, n] is the least integer greater than or equal to

log, n and both k and n are powers of 2.
k

BASIC DEFINITIONS
The following definitions are based on Mealy type sequential

machines., The notation used is consistent with that of Section 1.
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Definition
Lot M be a machine and xcI'. We say that x is a

distinguishing seqguence (D.8.) for M if

B) =B ) =>dq=x Vg,reQ

Let M be a machire and xcI', We say that x is @ homing

sequence (H.S.) for Mif Vg, reQ
B0 =BG = B(q,%) = 6(r,%)

Definition
Let M be a sequential machine and ¢, re Q (g } r). We

ot
say that q and r converge under sequence x¢1' if

Bq(x) = Br(x) and g(q_,xj = g(r,g)

In case only E(Q,X) = E(r,x) holds, we say that g and r merge

under x.

If no pair of states converge, we say that the machine is

convergence free (C. F.)

Definition
Let M be a sequential machine. Then M is said-to be

'deﬁnite]v diagnosable (D.D.) if there is an integer ( such

that every input sequence of length ¢ is a distinguishing
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seguence, The least such inteper fis called the order of
8 o

diagnosability.

MACHINE CLASSIFICATIONS

We Iirst observe the following alternative characterization

of the definitely diagnosable property.

Theorém 3.1

If M is an n-state machine, then M is definitely diagnosable
if and only if every input sequence of length greater than
X  n(n-1) e
or equal to —, isa distinguishing sequence of M. -
Lemma 3.1
(Hennie [3]) An input sequence is a D.S. iff it is 2 H. 8.

that causes no convergence,

Lemma 3.2
I{ there exists k such that £g(x) = k implies that x is

a D.S.,then no state pair converges under any H.S.

It is well known that every distinguishing sequence is also
a homing sequence. However, the converse is not generally
true. Jf a machine is definitely diagnosable then the latter

is also true. This is stated in the next theorem.
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Theorem 3.7

If a2 machine is D.D. then every H. S, is also a D. S.

Note that the converse of Theorem 2.2 is not true. For example,
a machine which does not have any D. 8. and H. S. salisfies the above

property vacuously but this machine is clearly not D. D.

Theorem 3.3

If M is D.D. then M is convergence {ree or simply abbreviated
as
_
D.D. =—==C.F.

We say that a machine is diagnosable if it has 2 distinguishing

sequence., Similarly, we say that a machine is homable if it has a

homing sequence. Next, we define a notion of definitely homable

analogous to that of definitely diagnosable.

Definition

A machine M is definitely homable (D.H.) if there is an integer

k such that every input sequence of length k is a homing sequence.

The least such integer k is called the order of homability.

‘Note that the least such k is < h(n—l)/?, as can be seen frdm the
fact that there are at most n(n-1)/2 nodes in the testing graph of an
n-state machine, The lesting graph of a machine is constructed
from the set of all state pairs which yield the same output response

for some input and their non-merging successor state pairs.
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The D. H. property corregponds essentially to the loop free
condition in the testing graph. The next theorem relates proper-

ties of D.D. and D. H.

Theorem 3.4

Any definitely diagnosable machine is also definitely homable

i.e. D.D.—>D.1.

The converse of theorem 3.4 is not true. One simple example

is a D.H. machine which has some state pair convergence,

Theorem 3.5

If no two difierent states converge in a reduced machine, then

every .S, is also a D. S,

Illeorelzl 3£

A machine is D.D. iff it is both-C.F. and D. H..

Let us call a distinguishing sequénce or homing sequence
proper if no proper subsequence of it is also a distinguishing
sequence or homing sequence respectively. The notion ofrd‘efinite
homability may be useful in the sense that its proper D. S. have the
same upper bound as that of a D.D. machine. This is characterized

by the {following theorem.

Theo'rein'?;. 7

Let M be an n-state D.H, machine. If M is also diagnosable,

then the upper bound of its proper D, S. is n(n—i)/Z.
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It is clear that if a machine is definite >13 homable then it is also
homable. I a machine is diagncsable then it is also homable. To

summarize what we have done so far, a Venn diagram is constructed

to represent the hierarchy of machine classes.

H

> VRN P
)C’ﬁ !" ()25*(733C~\(\l)1c_

Dmin*bf ble
n;,ﬂ,h“}c ]/ ;(,m.',\/ /

Note that the class of machines as defined in Theorem 3.7 is
the intersection of the class of diagnosable machines and that of
definitely homable machines,
CONSTRUCTION OF A DIAGNOSABLE MACHINE WITH A REPEATED

SYMBOL ZISTINGUISHING SEQUENCL BY AUGMENTING OUTPUY
LOGIC

Recall that we mentioned earlier that although "being reduced"

is a sulficient condition for the existence of a homing sequence in a




sequential machine, euch is not the case for distinguishing
sequences. Lemma 2, 1 gives us a sufficient condition for the existence
of aD.S. This is re-stated in termsg of the diagnosable notion in the

next theorem.

Theorem 3. 8

A sequential machine is diagnogable if it has & homing sequence

x such that no pair of states converge under x.

However, if the machine has only one input symbol, then "being
reduced" is also sufficient for the existence of a D. S, The following
theorem formalizes the ahove observation.

2]

Theorem 3.9

N

If an n~state, single inputl machine is reduced, then it has a

broper D. S of length at most n-1.
I g

A distinguishing seduence which has only one input symbol is

called a repeated symbol distinguishing sequence (R.S.D.S.).

Theorem 3.9 provides a convenient way of checking whether a
sequential machine has any R.S.D. S, and constructing one if there

is'none, The following corollary will characterize this property.

Corollary 3.9.1

L

A sequential machine has a repeatad symbol distinguishing
sequence. if and only if it has a reduced single~input submachine,

Here by a single~-input submachine of a machine we mean a submachine

whose state fable is a column of the state table c¢f the complete machine.
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Thus to see whether a machine M bas any R. S. D. 5., it is only
necessary to examine whether any of its single-input submachines
Ml’MZ" . ,Mm is reduced. Since a reduced Single-«input machine
is a definitely diagnosable machine, it is only necessary to make
some Mi. definitely diagnosable if we want to obtain an ij - R.5.D.8S.
A general procedure for constructing a definitely diagnosable machine
from the original machine by augmenting ther original output symbols
has beejn outlined by Kohavi and Lavallee [4].

In choosing an input symbol to obt_ain a reduced single-input
submachihe, optimization criteria 91’ choosing either one that giveé
rise to minim:—xl additional output logic, or one that results in the
. shortest D, S. may be used. To obtain minimal additional output

logic in the final 1‘e9:1'izai‘:i-on, it is generally desirablé to look for a
single-input submachine of the original machine whose largest
equivalence class induced by the partition of states éccording to
their output response is minimal among 2ll the single-output
submachines. The length of D. 8. Woulci be reduced if we use more
additional output symbols. Here a compromise is generally needed
between acceptable length of a D. 8. and the amount of additiona!l
hardware required.

The upperbound of the length of & checking experiment using -

repeated symbol distinguishing sequence is £:

£ < nman(m-1)0+ 0+ (in~1)(n—~1)2
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where

n = numhber of state

o]

m = number of input symbols

(¢ = length of proper D.S. [which is < (n-1)]

In the general case, it may be possible to construct a diagnosable
machine which reguires less additional hardware than that required

to construct a diagnosable maéhine with a R.S.D. S. However,

the upperbound of the length of this kind of D.S. may be .qui’ce large,

" CONSTRUCTION OFF A DIAGNOSABLE MACHINE WITH A REPEATED
i&(’)lg?COL DISTINGUISHING SEQUENCE USING ADDITIONAL INPUT

Consider the machine M whoge state table ig shown helow

a2 waif_—w
94 94 /0 99 /0
M= 19 | 90 4 /0
Y3 | Y0 | %
Y | Y Y0

This machine does not have any distinguishing sequence. Now
let us rorstruct a reduced 1-columm razhine and append it to the
original state table. The modified machine is shown below with the

appended column on the right of the state table:
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al b C

i/0 1 %0 | %/

wit= |92 | %0 Y30 | Y4
% | Y0 Y0 | 930

“ L %1 % Y /1

This modified machine has a distinguishing sequence of cc.

The upperbound of the length of the fault detecting experiment is now

modified 2s shown helow

£ < n(m+l) + (m+1)L+ m(n--l)2
where
"n = number of sté'tes
m = number of original input alphabets

£ = length of the distinguishing sequence used.

Wé know that for an n-state, k-output machine, the lower bound on
the length of a D. S, is [logk n]. We will show that in case both k
and n are powers of 2, we can always construct a single-input
machine which has a D. 5. 'of this rength,

For purposes of illustration, let us consider the binary output
case of a s-stage shift register \vith the last stage memory output
being monitored externally. To see what state the machine was
initially in, it is only necessary to shift the register s times. Thus

this circuit corresponds to a 27 state, single-input and binary output
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machine with a dislinguishing sequence 6;5 length s,  Appending
such a single-input machine to a given machine is equivalent to

a modification that causes the machine to act as a shift register .
under certain inputs. The above obgervaticn can be formally stated

as follows:

Theorem 3.10

. . S . . . . .
There is an = 2" state, hinary output, single-nput machine which

has a distinguishing sequence of length s.

»Thus,b any 9° state, binary outl;ut machine can he made to possess
a repeated symbol distinguishing sequence of length s by augmenting
to the original machine a reduced n-state, single input machine which
satisfies Theorem 3.10.

In general if both the number of oﬁtput symbols and the mmﬂ;er of
states are powers of 2, we can al\vayé. find a siﬁgle ~input machine
which has a distinguishing sequence of the shortest possible length.

This is stated in the next theorem.

Theorem 3.11

has = distinguishing sequence of 1:ngth [1ogkn] = [-1].
The upperbound of the length of the fault detectiﬁg experiment
using the above construction of providing a "diagonsable input" is

thus:
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E<nm+1)+ (@m+ 1)'[1oglrn] + 111(11««1)2

The last term in the equation above comes from the pbssible
need of applying transfer sequences in the experiment. This last
term may be decreased if we providé a reset inpuat to the modified
ma.chin.e. The upper-bound of the length of the fault detecting experi-
ment in this case of providing both diagnosable input and reset input
becomes:

n] (m+nn-1)

ij < n(m+2) + [n(m+1)+1j [10 en

“

COMPARISON OF UPPERBOUNDS

Let us now compare the upperbounds of the length of the fault
detecting experiment derived in this report to that given by Kchavi
and Lavallee [4]. |

Let

‘EDD. = PBound of D.D. machines.

gDD = PBound of diagnosable machines which have

. aR.S.D.S. by augmenting output logic.
£ D= Bound of diagnosable machines which have a

R.S.D. S. by appending a single-inpuf machine.

gIDR = Bound as éID with additional reset input.
n = number of states.
m = m;mber of input symbols in the original machine.
k = number of output syrmpors.
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Then we have

*

£ DD < nm+(mm1) 2%—1—) + (m --1)(11»1)2

Eob < nm+ [n(m-1)+1 ] (n-1)+ (m—l»)v(nmi)z

3

gID' < n(m+1) + (nm+1)[logkn]+ m(n-1)

< n{m+3) + [n(m+1)+1][lo gkn] + 2(-1)(m+1)

CE
YIDR 9

From a numerical evaluation, it has been shown that g].DR
is the smallest among the four bounds compared for general n, m
o d I 3

and k. The numerical ordering of these bounds is shown below:
EIDR < ‘EID < gO.‘D < SD,D

for n, kand m > 4,

* .
This bound was not originally stated correctly by Kohavi
and Lavallee,
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