
2 

NQn- -AnQ-q N70- 4081 & 
) 'A- (TERU) 

, (NASA CR OR TMX OR AD NUMBER) (CATEGORY) 

COMPUTING PROCEDURES IN 
STATISTICAL DISCRIMINATE ANALYSIS 

13L 

-1p 

TEXAS CENTER FOR RESEARCH >­

3100 PERRY LANE, AUSTIN, TEXAS I Lt* 
fteproduced by 

NATIONAL TECHNICAL 

INFORMATION SERVICE I 
Spdlngfiold, Va.. 22151 

https://ntrs.nasa.gov/search.jsp?R=19700031497 2020-03-11T22:43:48+00:00Z



N70- 40813
 

THREE LECTURES
 

ON 

COMPUTING PROCEDURES IN STATISTICAL
 

DISCRIMINATE ANALYSIS
 

by Patrick L. Odell
 

Professor of Mathematics and Statistics
 

Texas Tech University
 

Lubbock, Texas
 

July, 1969
 



Preface
 

In this short monograph, I have recorded in manuscript three
 

lectures and a selected bibliography on statistical discriminate
 

analysis. The lectures were given to scientists at NASA Manned
 

Spacecraft Center in July 1969. Each of the lectures which are
 

preliminary drafts of papers to be published contain information
 

not found in the statistical literature. In the process several
 

questions have been introduced that remain open at this date, and
 

it remains an important task to resolve these.
 

The efforts of Dr. T. G. Newman, Texas Tech University, and
 

Dr. Mike Speed of NASA Manned Spacecraft Center who contributed
 

portions of their knowledge and experience to this study are
 

gratefully acknowledged.
 

P. L. 0.
 

July, 1969
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PRELIMINARY REMARKS
 

in Chapter 6 of his excellent text [1] Professor Anderson
 

gives a clear and precise development of the theory of statistical
 

discrimination. The definitions and theorems presented here are
 

essentially those in that chapter and give a brief background for
 

the lectures.
 

Let 71 , 2,..., tm denote m distinct population whose associ­

ated probability p-variate density functions are p1 (x),p 2 (x),...,
 

Pm(X), respectively. Let x be an observation from one of these
 

populations. Let 

C(iI j ,R) (1) 

denote the cost of misclassification of an individual from popula­

tion u. as being from population r. using the decision rule

J 1
 

R = (11R 2 ...,R
 

where R. denotes a distinct p-dimensional region such that if x
 
1
 

belongs to Ri , the individual is assigned to vi Also, we denote
 

the a priori probabilities that an observation comes from popula­

tion i i as qi We note that 

P(jli,R) = Pi(x)dx (2) 
R.3 

is the probability of classifying on observation x from 7i as being
 

from 7j. The classification procedure, then, is to classify an
 

observation as coming from 7j if it falls in Rj. The following
 

theorem summarizes the procedure R = (R1 ,R2 ,...,Rm) such that
 

the expected loss
 



m m 

X q, I C(jl i)P(jliR) 
i=l j=l 

j74
 

is minimized. That procedure is usually called the Bayes procedure.
 

The classification procedure, then, is to classify an observation
 

as coming from j if it falls in R.
 

Theorem 1. If qi is the a priori probability of drawing an obser­

vation from population 7i with density pi(x) (i = 1,...,m) and if
 

the cost of misclassifying an observation from wi as from 7-. is
 

C(jli), then the regions of classification, Ri,...,,Rm that mini­

mize the expected cost are defined by assigning x to Rif 

m m 
IqiPi (x) C(kl i ) < I qiPi (x) C (jii) (3) 

i=l i=l
 
i3k i/j
 

(j = l,...,m, j # k). 

[If (3) holds for all j(j 3$k) except for h indices and the inequal­

ity is replaced by equality for those indices, then this point can
 

be assigned to any of the h + 1 i's.] If the probability of equal­

ity between right-hand and left-hand sides of (3) is zero for each
 

k and j under it (each i), then the minimizing procedure is unique
 

except for sets of probability zero.
 

We note that in many cases the values of ql,...,qm are unknown.
 

If this is true then one can define
 

m
 
IC(jli)P(jli,R) = r(i,R),
 

j=l
 
j~i
 

the conditional expected loss if the observation is from ui. If
 

2
 



we choose a procedure R = (Ri,...,Rm) which minimizes the maximum
 

conditional expected loss, this procedure is called the minimax
 

procedure.
 

If Ci(R) 1 - P(ili,R) is the probability of making a wrong
= 


decision when using procedure R and sampling from wi' then
 

Von Mises [2] has shown that the set of q's, say q rq2 .... such 

that 

a1 (R ) = a2 (R*) = a...m(R) 

yields the minimax solution. The problem becomes one of searching
 

for the set q* = {*... ,qm} and then computing the regions of
 

classification R*,...,R* which follows from Theorem 1.
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Lecture
 

NON-PARAMETRIC DISCRIMINATION TECHNIQUES
1
 

3
 
P. 	L. Odell2, T. G. Newman

2 and M. Speed


Introduction
 

Except for the work done by Kendall [1], [2] and Fix and
 

Hodges [3], little has been reported concerning non-parametric
 

techniques for performing statistical discrimination. By non­

parametric techniques we mean only that the mathematical form of
 

the multivariate probability density functions of the populations
 

involved are unknown to the experimenter. It should be noted that
 

we did not use the term distribution free which is used by many in
 

a different sense, (See [2, p. 170] or [21, p. 15-17]).
 

For clarity and completeness we define what we mean by:
 

The Discrimination Problem, I. Let 7,, 2,...,7m denote m distinct
 

p-variate populations whose multivariate probability density func­

tions pl(x), P2 (X) ,...,pm(x) are known. Let q,, q2 '... qm be the
 

known a priori probabilities that a sample is selected from 2opula­

' 

ir ''''mrespectively.
tion ri, 2 " ,	 Let C(ilj) be the cost of assign­

ing an 	individual from population fj to population i such that
 

C(ilj) 	> 0 i y j ij = 1,...,m 

= i= j i =l,...,m. 

Given a sample generated by an individual selected at random from
 

1 	This research was supported in part by NASA-MSC, under Contract
 
NAS - 9-6963.
 

2 	Texas Tech University, Lubbock, Texas.
 

3 	Computation and Analysis Division, NASA-MSC, Houston, Texas
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one of the populations, give a decision rule to assign the individ­

ual to one of the m populations.
 

A decision rule for assigning an individual to one of the
 

populations wi' i = 1,2 ,...,p which minimizes the expected cost of
 

[4, p. 142-147].
misclassification is known and discussed clearly in 


The following theorem summarizes the technique:
 

Theorem 1. The regions of classification R1 ,...,R , that minimizes
 

the expected cost of misclassification are defined by assigning x
 

to Rkif 

I qiPi (x) C(kl i ) < I qiPi (x) C(j Ii)(i 

i=l i=l
 
i~k i~j
 

j = l,...,m j 74 k. 

We will use the notation R = {R ,...,R mI to be a set of disjoint
 

but not necessarily connected regions whose union is the Euclidean
 

p-space.
 

Clearly, one must know a great amount in order to apply
 

Theorem 1. However, in practice most of the quantities qi,C(ilj),
 

and pi(x) i = 1,...,m are actually estimates yet can be assumed
 

known exactly so that Theorem 1 can be applied. References which
 

discuss Problem I are [4], [5], and [6].
 

The Discriminate Problem II. Let the conditions in Problem I
 

remain true, except that qi,...,qm are unknown. Given a sample
 

selected at random from one of the populations give a decision
 

rule to assign a sample x to a population.
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Various reductions can be made if q, = q2 = .. qm' and/or 

C(iij) = C(i'jj') for all i,i' and j,j' i j4 j, i 3 j. 

Obviously (1) cannot be used to determine the regions R1, 

R2,... Rm when q1 ,...,qm are unknown, hence another strategy for 

,making decisions has been developed. If we have a region Ri for
 

classifying x as from i' the probability or classifying the sample
 

x as from i. is
 

P(jji) = f pi(x) dx. 
R. 

3 

The expected loss for classifying x as being in ij if the observa­

tion is from ffi is
 

C(jli) P(jli) = r.(i,R) 

where R = (Ri,...,Rm) again denotes the partition of the Euclidean
 

p-space into m distinct regions of classification.
 

A principle that usually leads to a unique procedure is the
 

so-called minimax principle. A procedure is minimax if the maximum
 

expected loss r(i,R) is minimum for all possible values of qj,
 

q2,....,qm.
 

iR = 


two partioning associated with two procedures for classifying.
 

Let rK denote the (3x3) matrix
 

Example 1. Let R (I ) = (R1 12,R13) and RJ 2) (R21 ,R2 2 ,R23) be 

r {rj(ilR(K))} K = 1,2 

0 ri( 2 IR(K)) ri(3IR(K) ) 

= r2 (iIR(K) 0 r2 (31R(K)) 

r 3 (IIR(K) r2 iK(K)) 0 
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Select that procedure R ( and R (2) that minimizes the maximum
 

expected loss as q1, q2' and q3 range over all admissible values,
3
 

that is 0 < qi < 1 , qi > 0 and 1 qi = 1. The elements of
 
1 1 i=l1
 

each matrix is easily computed if the regions R (l) and R(2) are
 

given. However, if one is searching for a procedure (or a parti­

tion) R which gives a minimax solution, it is not clear how one
 

establishes that procedure. Comparisons of procedures once they
 

are given is not difficult, but defining the region out of all
 

possible regions can be difficult. [See 4, p. 142-147]. Solutions
 

for m = 2 and 3 have been indicated. The reader is referred to
 

[4, pp. 134-136] for a discussion of these cases and an indication
 

of the problems associated with searching for a minimax solution.
 

The solution in general is iterative and approximate.
 

Clearly, the problem of discrimination is ill-posed if the
 

costs of misclassification are not known; however, there are many
 

applications in which these costs can be assumed identical and
 

further special results obtained when costs are unknown.
 

The Discrimination Problem III. Let the conditions defined in
 

Problem I be true except that the set {pi(x),...Ipm(X)} is not known.
 

Instead let pi(x) s Fi (x;ei) where F.I is a known family of probabil­

ity densities depending on a ki x 1 parameter vector ei, whose
 

elements are unknown and must be estimated using a previously drawn
 

sample xi = {Xii,xi2 ,***Xin} i = 1,2,...,n. Given a sample
 

selected at random from one of the populations give a decision rule
 

to assign the sample x to one of the m populations.
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As one might suspect, great amounts have been reported con­

cerning this problem when for each i, Fi is the normal family with
 

the covariance matrix held fixed either known or unknown. Generally,
 

one requires that if F is the normal family with unknown mean vector
 

and covariance matrix Z for each population, then
 

Pi(x) = N(P (i), E ( i)) 

It is popular, but not necessary, to assume that
 

Z(1) = (2) = .. = E(M) 

the covariances to be the same. This assumption leads to the linear
 

discriminate function. The analysis is summarized in [4, pp. 137­

139]. One should be aware of the work done by Kabe [7] which is
 

not referenced there.
 

Briefly, one proceeds as in Problem I with each P(i) 
and Z(i)
 

replaced by its maximum likelihood estimate obtained from the m
 

previously drawn samples xi i = 1,2,...,m.
 

In this paper we are interested primarily in
 

The Discrimination Problem IV. Let the conditions in Problem I
 

be true, except that there is no information concerning pi(x) i = 

2,...,m except that they are continuous, finite and-their moments
 

exist. Given a sample from each of the m populations, devise a
 

decision rule for assigning a sample value from one of these
 

.
populations to a population of the set w = {r1,w2,...,m)


2. Kendall's Suggestions
 

Kendall has suggested two techniques; one he calls the convex
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hull technique; the second he calls the order-statistic method.
 

In his discussion Kendall discounts the convex hull technique and
 

gives reasons why it may not be particularly useful. The authors
 

refer the interested reader to [1] and [2) for these comments.
 

Kendall's example in [21 indicates there may be some real value in
 

using his second suggestion, the order-statistic method. This lat­

ter technique is compared with a new technique proposed in this
 

paper.
 

Let x (i ) be a p x 1 random vector whose probability density
 

function pi(x) is unknown. Let
 

(k)= ( (k)}, 9 = 1,2,..,N ixj ij 
 k=1,..,
 

denote a random sample of size Ni from the kth population.
 

Define the interval for each (i,k)
 

(k)I(i,k) = [min x. (k) max x 

k =,2,...,m
 

j = 1,2,...,N i
 

Hence for each i there are m such intervals
 

I(i,l),set.ntatio,
 

Using set notation, let
 



10 

Di = I(i,l) - U I(i,j')
j 'yi 

m 
D2 = I(i,2) U I(i,j')Di2 
 j'#2
 

m
 
D = I(i,j) - U I(i,j'),
 

jilj,
 

the set of points in I(i,j) but not in the union of sets I(i,3') 

j # j, j' = 1,2,...,M. Let 

x1
 

x2
 

X 

P 

be the sample from one of the m populations to be assigned. The
 

decision rule proposed by Kendall is simply
 

a. if x. 1 D.j for some j assign the sample to 7 o
 

b. if x e D . for all j then consider x , where i2 3 i . 

c. if x. P D. for some j, then assign the sample to ij.
 
1 1F 

d. if xi2 D 2.J for all j, then consider xi3 where
 

or . 

xi D i, j 1,2,..,m 

i 3 i2 i3
 

e. finally if for every i and every j 


then x cannot be assigned and no decision is made.
 

The advantages cited by Kendall are as follows.
 

(1) The procedure is distribution-free.
 

(2) The procedure involves no arithmetic other than counting.
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For
Relatively small amounts of data can be analyzed by hand. 


large amounts it would be simple to write a program for an elec­

tronic computer.
 

(3) 	It shows which variables are the most important in the
 

In fact, it proceeds by using the variables in
discrimination. 


order of importance as measured by degree of overlap.
 

It is important to note if for all i, that x is assigned to
 

is indeed confident that the assignment is correct.
fj, that one 


However, there exists no reason to believe that such a situation
 

would exist for every sample taken. Hence, different decisions
 

would result depending on the order of elements of the vector x 
used
 

It is also clear that as the sample sizes
in discriminating. 


increase in magnitude, that the number of indecisions will
N1,...,Nm 


the larger the initial sample sizes, the greater
increase. That is, 


the confusion. Clearly, this appears strange to those who are used
 

to techniques in which the more information one has the better 
one
 

can estimate or discriminate.
 

3. An Alternative Technique
 

Assuming that the experimenter can sample from j,.•.,t*m, we
 

denote these samples by the sets
 
2(i) ... x 1(i)
x(1) {x1 (1), 


x(2) = {X (2), x2(2) '''''XN2(2)} 

m

(m) .. FN(m)}x(m) = {x I (m), _ x,2 '•°7XN 
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i = 1,2,...,m denotes the sample sizes 
and each xj(k)
 

where N. 

j = 1,2,...,N. is a p x 1 vector of elements xij(k) i = 1,2,...,p. 

The kth sample is used to estimate the k
th probability density 

function by an estimator discribed later in this section. If the
 

set
 
p(x) (P1(x)'p^2(x)r's'Pm(X)} 

denotes the set of estimators of pl(X),p2(x),...,pm(x) respectively,
 

and x* a sample from one of the populations, then the individual 

whose measurements yielded x* is assigned to Tp if k is such that 

Pk(x*) = max j (x*). 

l<j < M
 

That is to say, we assign the individual to that population whose
 

estimated likelihood is maximum.
 

Note that if pi(x) is a consistent estimator for Pi(X) for
 

1,2,... ,m, then, in the limit, we have the situation
every i = 


defined in Problem I whose solution is known to possess optimal
 

properties with respect to minimizing expected costs of misclassi­

fication.
 

The estimator pi(x) for the probability density function
 

pi(x) is defined by
 
Nk
 

1 (kc) (2)
Pk(x) = Nk 1 Wh(X X. ) 

sample vector from the kth population and
where X. (k ) is the ith 


ii(sin(x. k) Xii/ 2i(k)(kW~c ~x~k- p i ( - 4 
- X i ( k ) ) = C p iP l

W k(X ~(3)Xij/ 



[xi13
=X 

where
 

The constant C p is selected in such a manner such that
 

f w(t)dt = 1
 

The estimator selected is then consistent in quadratic mean. A
 

discussion of such estimators can be found in [8], [9], [10].
 

However, we will give an outline for a precise development of the
 

estimator. Let
 

6(t1t2,..t
 
p )
 

be a p-dimensional Dirac delta functional and P(XlX 2 ,...,Xp) a
 

p-variate continuous probability density function, then
 

P(X ,X2,...,x)=f ... f s(xl-tl,...,xp-tp)p(tl,...,t) 

dtI ... dtp
 

which can be approximated by (read as "approximately equal to")
 

p(x ,x ,...,x )-=f ... f W(x-t 1 ...,Xp-t
 

dt1 ...dt
 

where W(sometimes called a window function) is an approximation
 

for S. Then
 

E [W(xi-ti ) p (Xi1(Xp-tp 


Finally, the arithmetic mean of W's is approximately the best
 

linear unbiased estimator for E[W], that is
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A N
 

P(X, ...,xp) = I W(xi-t i . .,xp-tij).1 j=l 1 J'" P "' 

We have selected W for each k to be (3).
 

It should be noted that there are other estimators for pi(x)
 

depending on the form of W. The right-hand side of (3) is only
 

one of many approximations of the p-dimensional Dirac delta function.
 

In summary, one approaches the Problem IV just as one would 

in Problem I, except one replaces the probability-density functions 

Pl (x) 'p 2 (x) , ... ,pm(x) by their estimators p1 (x)4P (x),... ,pr(x) 

obtained by using (2). 

4. A Comparison Of Techniques
 

Since the optimality properties of the alternative technique
 

proposed in this paper cannot be easily studied analytically, it
 

is at least convenient to study its properties using a simulation
 

based on the technique popularly called "Monte Carlo" [11], [12].
 

The results of the simulation performed on a Univac 1108 at NASA
 

Manned Spacecraft Center are presented and discussed in this section.
 

In the simulation we arbitrarily let m = 3, p = 2; that is, we
 

considered the problem of assigning a (2 x 1) observation vector to
 

one of three bivariate populations, u1, 7r2 ' and 3- Each popula­

tion is defined by a mean vector and a (2 x 2) covariance matrix.
 

Table 1. briefly summarizes the input data to the simulation.
 



The Elements of the
 

Case i i Mean Vector Covariance Matrix
 

=
 
1 100 (0,0) 1 22 1 12 0 

1 2 100 (1,1) a11 =022 =1, a12 = 0 

= 

3 100 (-l,1) 	 all 022 = , a12 = 0
 

a11= a22 m i, 012 = 0
1 100 (2,1) 


=
 
2 	 2 100 (-.3,.6) a1 1 22 =, al2 = 0 

3 100 (1.5,.8) all = a22 = 1, a12 = 0 

1 100 (2,1) al1 = 1.6, a22 = 2.0, a12 =3 

= 
3 	 2 100 (-.3,.6) al! = 4, a22 = 1.2, '12 .5 

3 100 (1.5a,.8) 011= .-9, 22 7 4.0, a12 .6 

=1 100 (2,5) 	 al1 = 3, a22 3, 012 = .6 

4 	 2 100 (1,-i) a 1 = 1, a22 = 2.5, a12 = 0.2 

3 100 (6,1) 0.1 = 2, a22 = 1.2, a12 >0.4 

1 100 (2,5) a11 d22 = i, a12 = 0 

5 	 2 a(,-i) =a 22 = 012 0100 11 = 

(6,1) all= a22 = ,012=03 100 


The Input Data for First Simulation
Table 1. 


One hundred (2 x 1) samples from population, 71 in each of the
 

five cases defined in Table I, when the probability density was
 

assumed to be bivariate normal with appropriate mean vectors and
 

covariance matrices we generated using the usual Monte Carlo tech­

niques. Three techniques were compared, those being
 

(i) Kendall's ranking technique
 

(ii) The Optimal Technique as 	defined by Theorem 1.
 

(iii) 	The Non-Parametric Technique using Estimated Probability
 

Densities
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The number 	of times a sample value from population 1l was assigned
 

to'each population is listed along with the number of times where
 

Kendall's technique led to a no-decision situation. These counts
 

are summarized and presented in Table II.
 

NO
'2 3 DECISION

CASE 	 TECHNIQUE 7i 


Kendall 7 0 4 89
 

1 Optimal 61 16 23 0
 

Non-Parametric -57 18 25 0
 

Kendall 3 1 0 96
 

2 optimal 56 9 35 0
 

Non-Parametric 60 9 31 0
 

Kendall 0 0 2 98
 

3 optimal 45 9 46 0
 

Non-Parametric 48 9 43 0
 

Kendall 88 0 2 10
 

4 optimal 96 2 2 0
 

Non-Parametric 94 4 2- 0
 

Kendall 92 0 5 3
 

5 Optimal 100 0 0 0
 

Non-Parametric 99 1 0 0
 

Table II. 	 The Number of Samples from fIrAssigned to fi
 

i = 1,2,3 or No-Decision.
 

Clearly, Kendall's technique leads to what many, including
 

these authors, would believe to be an unrealistic number of no­

decision situations. The value of Kendall's technique can be
 

questioned, especially when sample sizes are relatively large.
 

It is noted that the proposed non-parametric technique is
 

indeed efficient when compared with the optimal technique. However,
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as previously indicated one would expect Kendall's technique to be
 

poor for relatively large sample sizes. A natural question arises.
 

Is there a sample size such that the Kendall technique is more or
 

equally efficient?
 

In order to study the effect of sample size on the probabili­

ties of proper classification, we considered three populations
 

T1 ', 72 7" The first population wi is bimodal and is the simple
 

average of two univariate normals, that is
 

p(x) = 1P (x) + p4 (x)
2(i 4() (4)) 

where p1 (x) and p4Ox) are bivariate normal with mean p and p 

and covariance matrices E(I) and z The probability density 

functions for w. and 7r3 were selected as bivariate normal with
 

means P(2) and p (3). The covariance matrices are Z (2) and E(3).
 

This data for the four cases studied are listed in Table 3.
 



THE ELEMENTS OF THE
N.

CASE 	 i a MEAN VECTOR COVARIANCE MATRIX
 

1 20(20)100 all 1 122 112
(0,0) 	 = a 0 

1 	 2 20(20)100 (.5,1) all = .6,022 = . 9 a12 =0 

3 20(20)100 (1.6,.2) a11 = 1.5,a22 9,a12 = .4 

4 20(20)100 (1,2) 011 = 1,22 = 1,012 = 0 

1 20(20)100 (1.5,-i) all = 1,022 = 1.5,a12 = .4 

2 	 2 20(20)100 (0,0) a11 = 1,22 = 1,012 = 0 

3 20 (20)100 (.3,1-) ol = .6,022 = 11012 = .2 

4 20(20)100 (.5,0) (1 = 1, = 1,12 = 0 

1 20(20)100 (-2,0) a11 = 1,U22 = 1,G12 = 0 

2 20(20)100 (.5,1) l1 = 1.5,22 = 1'12 = .2 

3 20(20)100 (-1,-.2) 011 = 1 ,Y2 2 = 1,12 = 0 

4 -20(20)100 .(0,.1) all = .9,a2 2 = 1,012 = .1 

1 20(20)100 (1.3,2) C11 = 1,C22 = 11012 = .4 

2 20(20)100 (.2,.5) 0i 1'22 = 1'a12 = 0 

3 20(20)100 (3,1) all = 1.9,22 = 1,G12 = .4 

4 20(20)-100 (0,0) a11 = 1.8,22 = 2-.4,a12 = .6 

Table 3. Input Data for the Second Simulation
 

In this part of the-study we include the technique in which
 

it is assumed each Pi(x) i = 1,2,3 is normal and from the samples
 

estimate the parameters given in turn estimates of the density
 

Pi(x;,Z) by Pi(x;, 2 ) where p and s are the usual maximum likeli­

hood estimators [4, Chapter 3] for p and Z. Samples of size 20, 

40, 60, 80 and 100 were generated to estimate the probability 

densities pi(x), i = 1,2,3. An additional 100 observations were 
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generated from the first population (the bimodal population) and
 

the classification performed with the four techniques. The results 

are listed in Table 4a, 4b, 4c and 4d. 

SAMPLE SIZE TECHNIQUE 72 73 NO 
DECISION 

Kendall 15 2 6 77 

optimal 40 47 13 0 
20 

Non-Parametric 46 43 11 0 

Assumed Norm- 30 58 12 0 

Kendall 12 0 0 88 

Optimal 40 56 17 0 
40 

Non-Parametric 27 56 17 0 

Assumed Norm 16 7.0 14 0 

Kendall 19 0 2 79 

Optimal 40 47 13 0 
60 

Non-Parametric 45 42 13 0 

Assumed Norm 28 64 8 0 

Kendall 16 0 1 83 

Optimal 40 47 13 0 
80 

Non-Parametric 37 47 16 0 

Assumed Norm 31 56 13 0 

Kendall 16 0 0 84 

optimal 40 47 13 0 
100 

Non-Parametric 32 55 13 0 

Assumed Norm 20 65 15 0 

Table 4a. The Comparison, Case I.
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SAMPLE SIZE TECHNIQUE R1 R2 
I 

R3 NO 
I DECISION 

Kendall 22 8 0 70 

20 
Optimal 

Non-Parametric 

51 

47 

25 

30 

24 

23 

0 

0 

Assumed Norm 47 19 34 0 

Kendall 9 0 0 91 

40 
Optimal 

Non-Parametric 

51 

49 

25 

37 

24 

14 

0 

0 

Assumed Norm 25 51 24 0 

Kendall 15 0 1 84 

60 
Optimal 

Non-Parametric 

51 

51 

25 

19 

24 

30 

0 

0 

Assumed Norm 40 30 30 0 

Kendall 5 3 0 92 

80 
Optimal 

Non-Parametric 

51 

46 

25 

33 

24 

21 

0 

0 

Assumed Norm 42 29 29 0 

Kendall 12 2 0 86 

100 
Optimal 

Non-Parametric 

51 

50 

25 

31 

24 

19 

0 

0 

Assumed Norm 46 26 28 0 

Table 4b. The Comparison, CaseII. 
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SAMPLE SIZE TECHNIQUE R R R 
NO 

DECISION 

Kendall 16 3 0 81 

20 
Optimal 

Non-Parametric 

37 

20 

20 

26 

43 

54 

0 

0 

Assumed Norm 12 13 75 0 

Kendall 3 2 0 95 

40 
optimal 

Non-Parametric 

37 

34 

20 

24 

43 

42 

0 

0 

Assumed Norm 16 32 52 0 

Kendall 5 1 1 93 

60 
optimal 

Non-Parametric 

37 

40 

20 

25 

43 

35 

0 

0 

Assumed Norm 24 26 50 0 

Kendall 5 4 0 91 

80 
Optimal 

Non-Parametric 

37 

26 

20 

21 

43 

53 

0 

0 

Assumed Norm 18 24 58 0 

Kendall 5 3 0 92 

100 
Optimal 

Non-Parametric 

37 

34 

20 

26 

43 

40 

0 

0 

Assumed Norm 17 28 55 0 

Table 4c. The Comparison, Case III 
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SAMPLE SIZE TECHNIQUE R1 R2 R3 
NO 

DECISION 

Kendall 13 1 0 86 

20 
Optimal 

Non-Parametric 

44 

39 

52 

49 

4 

12 

0 

0 

Assumed Norm 28 59 13 0 

Kendall 19 0 0 81 

40 
Optimal 

Non-Parametric 

44 

32 

52 

63 

4 

5 

0 

0 

Assumed Norm 23 69 8 0 

Kendall 14 0 0 86 

60 
Optimal 

Non-Parametric 

44 

47 

52 

45 

4 

8 

0 

0 

Assumed Norm 35 55 10 0 

Kendall 10 0 0 90 

80 
Optimal 

Non-Parametric 

44 

40 

52 

48 

4 

12 

0 

0 

Assumed Norm 23 64 13 0 

Kendall 17 0 0 83 

100 
Optimal 

Non-Parametric 

44 

38 

52 

57 

4 

5 

0 

0 

Assumed Norm 27 65 8 0 

Table 4d. The Comparison, Case IV. 
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We note that the comparison remains relatively invariant
 

under changing sample sizes. The non-parametric technique remains
 

nearly as effective as the optimal technique. Kendall's technique
 

still gives large numbers of no-decision results.
 

5. CONCLUDING REMARKS
 

We have considered here only those measurements that are
 

quantitative. Discriminating techniques which include quantal
 

or qualitative data have been ignored. However, the concepts and
 

techniques remain valid. For a discussion of problems associated
 

with such data the interested reader is referred to [13], [14],
 

and [15].
 

A valid way to evaluate the techniques discussed in this
 

paper would be to compute probabilities of misclassification under
 

perhaps normality assumptions. This is indeed a difficult problem
 

since integration over the regions R1 ,...,R m can be very compli­

cated [16][17]. However, techniques employed by Lachenbruch [18],
 

Lachenbruch and Mickey [19], and Dunn and Vardy [20] can be
 

mimicked to obtain estimates of probabilities of misclassification.
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Lecture II.
 

ON COMPUTING MINIMAX PROCEDURES 
 815 
IN DISCRIMINATION ANALYSIS 1
 

and T. G. Newman
2
 

P. 	L. Odell
2 


1. Introduction 

In his text [1] Anderson outlines the theory of statistical 

discriminate analysis based on a Bayes and on a minimax criteria
 

of evaluation. For completeness we state the problems.
 

Problem I. (The Bayesian Discriminate Problem) Let rI,,...,7m
 

denote m distinct p-variate populations whose multivariate probabil­

ity density functions pl (x),P 2 (x),...,Pm(X) are known. Let
 

qlq2,...,qm be the known a priori probabilities that a sample is
 

selected from population 71, 2,...,m, respectively. Let c(ijj) be
 

as being
the cost of misclassifying an individual from population itj 


from population wi such that
 

c(ilj) > 0 i 3 j ij = 1,2,...,m 

0 i j i = 1,2,...,m. 

Given a sample X selected at random from one of the populations
 

give a decision rule R which minimized the expected cost of mis­

classification for assigning individuals to ith population 'i
 

Such a rule R is called a Bayesian procedure.
i = 1,2,...,m. 


A decision rule R for assigning an individual to one of the
 

populations wi i = 1,2,...,m which minimizes the expected cost of 

1 	This research was supported in part by NASA-Manned Spacecraft
 

Center under Contract NAS-9-6963.
 

2 	Texas Tech University, Lubbock, Texas 79409
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misclassification c, where
 

21 i ji c(jli)P(JliR) (i)
 

j7si 

where 

P(jli,R) = f pi(x)dx (2)
R. 

is the probability that X belongs to R. given it is actually from
 

wi, where the procedure R is a partition of the sample space into
 

m mutually exclusive and exhaustive regions Ri,R2,...,Rm . The
 

following theorem proved in [1] summarizes an approach to compute
 

the optimal procedure, R.
 

Theorem 1. The procedure R, or equivalently, the regions of class­

ification R1 ,R21 ... Rm, that minimizes the expected cost of mis­

classification (1) are defined by assigning X to kif
 

m m 
Sqipi(x)c(kii) < I qipi(x)c(jli) j = 1,2,...,m. (3)

i=l il 
i/k. i/j
 

We use the notation R = (Ri,...,Rm) to be a set of disjoint but
 

not necessarily connected regions whose union is the total Eucli­

dean p-space, the sample space. The partition R constructed as
 

indicated in Theorem 1 is called a Bayes procedure.
 

It is important to note that one must know a great amount in
 

order to apply Theorem 1. Unfortunately in practice, there are
 

cases in which the a priori probabilities qi are unknown. If
 

c(j i) are unknown or not assumed equal, then the problem is not
 



well-posed. If the set q = {q ,...,qml are unknown, then a
 

strategy for selecting a decision procedure can be based on the
 

minimax criteria. One can define this problem as
 

Problem II. (The Minimax Discriminate Problem) Let the conditions
 

in Problem I remain true, except that the a priori probabilities
 

are not known. Given a sample X selected at random from one of
 

the populations wt,...,wm give a decision rule that will minimize
 

the maximum expected loss, where
 

m 
r(iR) = I c(jli)P(jli,R) i,j = 1,2,...,m (4) 

j=l 
ji
 

is the expected loss if observation is fromji and assigned to 7T.
 

Von Mises [2] considered Problem II and observed that the
 

{RI,...,Rm} that solves Problem II is characterized
partition R = 


by two properties, (i) the probabilities of correct classification
 

P(ili,R) = f pi(x)dx. (5) 
R
 

are equal for all i = 1,2,...,m, and (ii), on the border of Ri.and
 

Ri, the ratio pi(x)/pj(x) is constant. The value of the constant
 

is simply
 
qjc (iij)/qic (il j ) . (6) 

In [1] this problem is solved when m = 2, pi(x) i = 1,2 are 

normal with identical covariance matrices. Also, Problem II. is
 

discussed in general terms for m = 3. However, there exist no
 

general algorithms available for computing the regions R for
 

m > 2 and for densities other than normal.
 



It is the purpose of this paper to discuss the problems
 

= (Ri,...,Rm)
associated with the actual computing of the procedure R 


which solves Problem II. Theorem 1 gives the solution to Problem
 

I and little computational difficulties exist.
 

2. Fundamental Concepts [1]
 

Suppose that we are confronted with Problem II, that is we do
 

not have a priori probabilities. Hence, c in (1) cannot be defined.
 

One can defiie expected cost of misclassification on.the condition
 

that the observation comes from a given population. The expected
 

cost of misclassifying an observation given that the sample actual­

ly came from wi with respect to a procedure R is given by (4).
 

A'procedure R is at least as good as a competing procedure R
 

if
 
r(i,R) < R(i,R*) i = 1,2,...,m , (7) 

and R is better if at least one inequality is strict. R is said
 

to be admissible, if there is no procedure R* that is better. A
 

class of procedures is complete if for every procedure R* outside
 

the class, there is a procedure R in the class that is better. A
 

minimal complete class is a complete class such that no proper
 

subset is a complete class.
 

The following Theorems summarize well-known [1] facts.
 

Theorem 2. If qi > 0 (i = 1,2,...,m), then every Bayes procedure 

is admissible. 

Theorem 3. If Prfpi(x) $ 01w j } = 0, then a Bayes procedure is 

admissible.
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Theorem 4. If Pr{Pi(x) Ipj(x) = kinh } = 0 i / j 0 < k < , then 

,every admissible procedure is a Bayes procedure. 

Theorem. If Pr{pi(x)/p 9 (x) = klrk} = 0 i 3 j 0< k < -, the 

class of Bayes procedures is minimal complete. 

Let 

i (R) = -1- P(ii,R) 	 (8) 

be the probability of making a wrong decision using procedure R
 

and sampling from i" When R is a Bayes procedure ai (R) is a
 

function of q,q 2 ,...,qm in the following manner.
 

P(x)CqiC(l) 

P2(x) 
__ 	

qC(21i) 
__ .. ; 

Pilx) 
qii

qC(i-iIi)
- __ ;. _ 	 i- ) 

1 	 1 i-l.ir
 

(X) 	 qiC(i+ii) P X) qC( 

qi+ C ( i l i + l ) ;''m; - qmC ( i l m ) ](x) 


We now 	consider the minimax problem. There is a Bayes solution
 

for which
 
= 
 am 	 (10).
a1 a2 


for the totality of points for which a, = a2 = "" = am-1 is con­

nected 	and includes point am = 1 and for which am = 0. By continu­

ity there is a point for which (10) holds. Since this procedure
 

is admissible, there is no other procedure which has smaller maxi­

mum probability of error. Thus (10) gives the minimax procedure.
 

The quantities (9) and (10) give Von Mises conclusion (ii) and (i),
 

respectively.
 



3. An Algorithm
 

If pI(x),p2(x),...,Pm(X) are known, and the joint probability
 

density functions of the ratios
 

(11)
Pi(x)/pj(x) i 0 j'-- 1,2,...,m 

can be obtained analytically, one can write in integral form the
 

quantities ai~a2 ,...,am as functions of q,q2.. since
 

m-1
 
q 1- qi (12)
 

L=1
 

Define 

f1 (ql'''q = a1 a2 

(13)

f2(qll''.qm -i) =-, 2 - a3 

f- 1 (ql..qm-i) = m-2 - am-i 

In matrix notation then (13) can be written as
 

f = Pa
 

where 1 -1 0 0 0
 

f 0 1 -1 0 0 a2
 

fm-1 0 0 0 -1 0 a 

0 0 0 .1 -1 m 

We note that P is (m-1) x m matrix whose rank is m-l. Also we note
 

=that if q* = (q I...q_) such that f 4,, then a, = a2 m
 

and the procedure R = (Ri,...,Rm) defined by (3) in Theorem 1, 

with each qi replaced by q. i = 1,2,...,m-l and q* is given by
i
1 1 


http:f2(qll''.qm
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= # for q(12). -Hence, we have reduced Problem II to solving f 


Unfortunately, it cannot be assured in general that q* .is unique
 

in the sense that (10) holds. Suppose that q and q* are such that
 

a(q) = a2 (q) = ... = am(q) = (q) 

and 

a1 (q*) = a2 (q*) = "m (q*) = a(q*) 

where 

c(q) > a(q*) 

Then q* would lead to the minim&x procedure. Except in pathelogi­

cal cases one would expect a finite number of solutions for
 

are
f = Pa = . One must remember the solution q,q 2 ''.q, 

such that 

0 < q < 1 i = 1,...,m-l . (15) 

That is, we solve for all solutions q* such that
 

(16)
Pa = 0 


and (15) is true.
 

One can use the following iteration formula for solving for q*
 

(17)
qN= q -_ f(qN-l)-1 f(qN-l 

where the (m-l) x (m-l) matrix
 

f'(qN) = 3 4 N-l (18)
qj q=q
 

cases must be approximated using
and the elements Sfi/aqj for some 


one of the standard formulas for numerical differentiation- [2]. One
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1 

such formula is
 

af.i Iaf - 1N - + A) f - A) (19) 
ag-j g 

-

q3 

where A is an incremental value of q. and
 

N-I 	 N- N- N-1 N-i 
f ( q . + A) = f(q -,q 2 - ,...,q +m 

N-	 N-i N-I N-i N-I 
-f ig(q A) = fi (q q 2 I....'qj -A''''qm-l) 

During the iteration if for some k, q1 > 1 one replaces that 

element with unity and continues to iterate. If for some k
k 

q. < 0, one replaces that element with zero. These rules will 

N N+1 
assure that condition (15) holds. 'If q = qN, one assumes that 

qN = q. 

the desired solution.
 

We will summarize the process in the following.
 

Algorithm. Let
 

N-1 N-I N-I N-I
 
q = (ql ,q2 .. qmi ) 

be an approximate solution of (16) such that (15.) holds, then 

a. 	Compute the Bayes procedure RN - I = 1 -1; i = 1,2,.. .,m) 

using Theorem 1. 

b. 	Using the probability densities pi(x) i = 1,2,...,M,
 

compute the sets
 

P(ili,RN- 1 ) fN P. (x)dx
 
RN-i
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,d-i N-I
 
and fan~dCq f~q N-1 i 1,2,oml
1l' ,.o~m-1) 1=1= 


Using the 	sets
 

{q, 	 N-i
Q, = N-I 7 Al'q2N-I .°'.'qm-1
 

'qm-i
Q2 = {qN-I, 	'q 3 A .... N-1
 

Qm-i = {q,N-I 'q2r''''m-1 m-l1
N-I
 

compute the set
 

fi(qj+ Aj) i,j = 1,2,°..,m-l
 

d. Compute the matrix [afi/aq]. N-i using (19) or some
 
1 jq=g
 

other appropriate formula for numerical differentiation
 

if necessary.
 

e. 	Compute q using (17).
 

N 
< 1 for all i and replace those elements
f. Check,if 0 < q 


less than zero by zero and those greater than unity by
 

unity.
 

g. 	Replace qN-1 b qN and repeat the process.
 

N N-1

h. When q q 	 , assume that q* = qN and compute the
 

minimax decision rule R* b2 computing theBayesian
 

procedure using Theorem 1.
 

A reasonable choice of q(l) would be
 

1I q 1 	= 1/im.q= q2 "' m
 

Also one should check
 

aI (q*) ct " am(q*)
2 (q*) = = 
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or equivalently
 

P(l]1,R*) = P(212,R*) = = P(mlm,R*)o 

4. An Example
 

Let m = 3, that is, we are to classify an observation x as
 

being from one of the populations 7' 7'2, or 73' Let the obser­

vation be bivariate, that is p1 (x), p2 (x) and P3 (x) are bivariate
 

normals. Let the costs C(ilj) be unity for all i and j.,
 

(2)
 

" -R
 

./ 	 P3/P R 

(3) 1( )
 

Fig. 1. The First Approximation to the Minimax Solution
 

Let ql ,q2 ,q3 = 1 - q, - q2 be unknown probabilities that an 

observation comes from wra, t 2 and 73, respectively. Let pi (x) be 

bivariate normal with the following parameters­

(1) = (l,0)T()
T	 = 2)=62
 

(2) 	 T(2)
 

(0,2)T E = 621
 

and 	 1 (3) = (-1,0) z (3) = 621 

where 	g2 is a known scalar. Then
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1 1 

= { C X2 x2 < Tx I + (76n q/q, + 3/4)1 


and X1 >h- 62 1n[(i - q2 - ql)/ql]
 

1 1
 

= {(X5 'x 2 ; x 1x2 + [2611n q2/q1 + 3/4]
R2 1 1 

and x2 >- xI + [I &2 1n(l - ql - q2/q, + 3/4] 

d 2 ' 1{;x 1 


R = {(XX X - x1 + [6&2 1n q2/q1 + 3/4] 

and Xl1 < 621n[(i - q, - q2)/ql]
 

We note that from the geometry of our example that if qg=q2=q3=l/3
 

that the regions R1 , R2 , R3 are not minimax. Yet these values
 

seem to be reasonable first estimates. R,, R2, and R. are computed
 

by letting
 

in q2/q1 = 0, ln(l - - q2 )/ql = 0, and ln(l -q - q2 )/q2 = 0.
 

We can write in general
 

x + [I 621n q2/q1 + 3/4]
 

P(IjI;R) = j f l(x 1 ,X)dxdx 2 

621n q3/q1 -,
 

2x2 [Sin q2 /q1 + 3/4]
f ft2

P(212,R) =P2(Xl,X2)dXdX2 

62 1n q2/q1 + 31/4 -2x2 621n q/q + 3/4]
7 



37 

and 	 1%&21n q/ 1 1
 
d2 q3/q1, x1 + [1 621n q2/q1 + 3/4]
 

P(313,R) f 	 f P 3 (x ,X2)dxldx 2 

Then 

f1 (ql,q 2 ) = P(ljl,R) - P(212,R) = 0 

f2 (ql,q 2 ) = P(212,R) - P(313,R) = 0 

= 
where q3 1 - q, - q2 

Using Leibnitz's rule [3] for differentiation of an integral,
 

one can obtain the matrix {fi/aqj1 as a function of q and q2.
 

Using our initial guess for ql,q 2 one can proceed to compute
 

These values q* and q*
iteratively the solution, say q* and q*. 1 2n 1 2 

using Theorem 1 give the minimax regions R*, R*, and R*. These
1 2 3 

R2, and R3 of this section with q1 , q2, q3 replaced
regions are R,, 


by q*, q* and 1 

1 2 

-

1 
-

2 
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Lecture III. 40816 

WILK'S SCATTER TECHNIQUES 

AND STATISTICAL DISCRIMINATION1 

and T. G. Newman
2 

P. L. Odell
2 


1.' Introduction
 

In his text [1] Wilks discusses a concept of multidimensional
 

scatter [21 and implies that the concept can lead to ways for
 

reducing the dimension of some statistical discriminate problems.
 

Sebestyan [3], in developing a technique for recognizing patterns,
 

has developed a theory similar to the theory of scatter developed
 

by Wilks and apparently has had some affect on engineering appli­

cations [4], [5].
 

The discriminate problem of interest in this paper can be
 

described as follows-:
 

Given the distinct populations i''''
The Discriminate Problem. 


7r m > 2 and m sets of p-dimensional observations
 

{Xj (i) j =1,2,o..'N i }, i 

each from one of the populations, formulate a "good" decision rule
 

to assign an individual from one of the populations bY using the
 

data contained in an observation X made on that individual.
 

Several techniques [6], [7], [8] are available to solve this
 

1 This research was supported in part by NASA- Manned Spacecraft
 

Center under contract NAS 9-6963.
 

2 Texas Tech University, Lubbock, Texas 79409.
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problem. These formulations either minimize expected cost of
 

misclassification or minimize maximum expected cost of misclass­

ification. So called non-parametric techniques are discussed in
 

[8], [9), and [10].. These techniques ate all applicable to the
 

data after one has reduced the dimensions by techniques discussed
 

in this paper.
 

2,. The Problem
 

We define the ith sample scatter matrix defined by
 

N.Si jIlI (X (i) W(i ( (i) _ (i))T. (2) 

N.
 

where = X (1/N-

The determinae ut the matri 

Sw = m s (3' 
i=l 

is called the within scatter of the m samples. The determinate oj
 

the matrix
 
N. 

m I (i) (X. (i) 
Sp.= ix (X (4) 

i=l j=l ) 
N. 

M
X = X. W + N + ... + N)where 

j=li=l 

is called the pooled scatter. It is easy to show that
 

Sp =Sw + SB (6) 

where the determinate of the matrix
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m (( ) (-(i) T (7) 
B - X) 7 

is called the between scatter. It is-important to note that the
 

rank of the matrix SB is the maximal value of p and m (almost
 

surely).
 

In order to reduce the size we introduce a r x p matrix C of
 

rank r and such that if the vector
 

Z.(i) = CX.(i) (8)
3 3 

is defined for j = 1,2,...,N i and i = 1,2,...,m. We select the 

rows of C in such a manner so that SB(Z) is minimal and SW(Z) 

remains constant in such a way that 

ISw Isw_ ISw(Z)I ISwCZ) I_l 

I pi ?w+_SBi Sw(z)+SB(Z)I ISp(Z) 

where S(.) (Z) denotes S( with the X's replaced by the Z's as
 

defined by (8). That is, one selects C in such a manner that
 

Q ISw(Z)l + [K - ISB(Z) I]I (10) 

is minimum where K is a constant. Let r = 1, then C is a 1 x p 

matrix. Then (10) reduces to 

Q = CSCT + [K - CSBC]I 

since SB(Z) = CSBCT (11) 

Sw(Z) = CSwCT (12) 
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and

Taking the derivative of Q with respect to the elements of C

T 

equating with the p x 1 zero vector 0 yields necessary conditions 

for a maximum
 

(13)
(Sw - XSB)C
T 0 


and
 
T
 (14)
K - CSwC = 0 

(13) has a non-zero solution only if
It is well-known [i] that 


(15)
Isw - ASS' = 0 

such that
Let P be a non-singular matrix (P exists [11]) 


(16)
PTS P = I, 


the p x p identity matrix, and
 

A2 

(17)
pTSBP 	 r0 


0'.
 

where
 

A > A 2 > ... > r >0 	 (18)

1 


(15). Note that 	SB is almost surely
the characteristic roots in 


is almost surely positive definite.
positive semi-definite and Sw 


One should note that
 

IPT(S B - XSw)PI 	 = IPTSBP - XPTSwP 

= IL - Ill 
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where
 

12
 

L 
r= 

0 

or
 

IPTIIs - XSA (PI ) ... (Xr - X), 

and finally
 

AX (A1 . .. - A)0) - (A 
isB XS = IPI2 (19 

T t 

Let CT be the j characteristic vector associated with the 
J
 

characteristic root X. , that is
 

-XSw)Cj
(SB - .j). == j = 1,2,;...,r 

and
 
T
 

C.SC =K,
Jwj
 

the constant.
 

Let CT, CT .. ,CT be the characteristic vectors associated
 

The matrix
with the characteristic roots Al,...,A r -


C1
 

C C2
 

=
 C
 

is the matrix that reduces the dimensions from a p-dimensional to
 

one of only j < r < p dimensions. 
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From (13) and (14) it follows that
 

cjsBc XjCjSwC;
 

= A.K. (20)J
 

Also if'Ci # Cj, then from (13) 

CiSBC - X.CiSwC = 0 

and
 

CjsBcI - icXS C = 0. 

T T
 
From this we subtract and note that CSwC. = C.S C. We find that 

(Xj X.)C.SwC 0 

which implies that
 

C = (21) 

since A. 3 A., which in turn implies
 

(22)
CiS C = 0. 

Alsc S w(Z) = CS CT (23) 

W 0 

0 0 " 1 

=Dia fK}
 

is a r x r diagonal matrix with the constant Y as the common
 

diagonal element. The statements (20), (21), (22) and (23) lead
 

to the result that
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S(Z) = Sw(Z) + SB(Z) 

= Dia {K} + Dia {jK 

or 

IS(Z) I = <r(l + X1)i + X 2)... (+ Ar) 

= KrIsw(Z)I 

Hence
 

Is(z) I 1
 

IS(z)I (1 + X1 )(l + A2 ) (1 + Xr)
 

Finally we note that (16) implies that
 

= 1/1PI2
ISwI 

and 

IPTS P + PTSBPI = II + l 

= (1 + A1) (I + A2)... (1 + Ar)
 

+ (i + X1)( + 2 )... (l + r )
imples I w + BI1 =IP12
 

impliess 


which results in
 

Sw__ 1 - lSw(Z) I (24) 

+ A1)(1 + X2 )...(l + Xr ) IS(Z)I
ISI (1 

In summary, we selected C so that the between scatter for
 

Note that we can force the dimen­Z's are maximum yet (24) holds. 


sion from p to 1 by selecting A1 the largest characteristic root.
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3. A Proposed Numerical Simulation
 

In order to clarify what we have described in section 2,
 

consider the following simulation plan: Let wi W2' W3 be three
 

populations with associated observations 
X ( I) , X (2) , and X (3 )
 

such that
 

x(i)- N[ei,I] i = 1,2,3 p = 1,2,3,4
 

where
 

el = (a,0,0,0)T
 

e2-'= (O,a,0,0)T
 

= (0,0,a,O)T
 e3
and 


One then generates three samples, one from each of the p6pula­

tions by the usual methods [12] for generating normal variates,
 

computes the matrices SW and SB , determines C,, C2 ' C3 . Determine
 

the set of 3 x 1 vectors defined by
 

1,2,3
1]~ y =[ 
z= C2 j=l1,2,3,...,NY'
 

Determine the setof 2 x 1 vectors defined by
 

Y [C1]x;Y 1,2,3 
3 L C2 j = 1,2,3,...,NY 

Determine the set of scalars defined by
 

1,2,3
Y Y=y 

= c 3 3 = ,2,,...,NY
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Generate an- additional 100 samples of X's from one of the density, 

say X(1) N(elI ) 

Classify the 100 samples according to the two techniques described
 

below.. Repeat the experiment 100 times and compare the average
 

percentages of correct classification for each level of dimension
 

reduction.
 

In order to study the effect of closeness of the populations,
 

let the value of the constant, a, take on -asequence of positive
 

In the cases proposed for study the
values that tend to zero. 


sequence selected should be {2,1,3/4,1/2}. The results then may
 

be summarized in table form.
 

Two techniques which are suggested to be used to assign the
 

or w3 . The first technique assumes the
observations to w1 , "'a, 


are normal and estimates the
probability density function of X's 

mean 11j j'= 1,2,3 and variances Zj j = 1,2,3 , then assigns 

X to '. if 

pi(x; iZ i ) > P2 (x;IzE) 

and	 > p3(X;k,Zk)
 

where
 
i,j,k = 1,2,3 and i 4 j, i 3 k, and j # k. 

The second technique is to estimate pi by using the non-para­

metric estimator pi formulated in Lecture I and then assign X to
 

7. 	 if
 

Pi1 > Pj
 

and
 
> Pk
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j k.i,j,k = 1,2,3 and i 6 j, i k, and 

Details of these techniques are discussed in a previous 
lec-


The reader is referred
 ture and hence will not be discussed here. 


to the first lecture.
 

4. Concluding Remarks
 

Let the set A.. be defined as follows.
13
 

Aij(x) = {x;pi(x)/pC(x) > 11 

and
 

Ai (z) = {z;pi (z)/p j (z) > 11 

C' from
where pi (') is the probability density of () given that 

the i t h population. 

The question that arises is as follows: If x belongs to Aij, 

does z = cx belong to A.j (z)? 
Z (i ) 

= i and Coy(X) = 
Let Pi(x) be normal, such that E(X) 

i = 1,2. Then Z = CX is distributed normally with mean C (x) and 

Ci)cT. suppose that Pi.(x)/pj (x) = 1 , then
covariance matrix Now 

( i (x _ (i)) 
- p ) ) T CT (CE(iC)c 

= i)()cT -. [(x
Piz)/Pj(z) 

C cTI
ICY
P. 


- 110)-(x- j)TcT(czJcT)-lc(x 

But we know that
 
-aTT (CXi)CT) Ca < T5 (i1 

for every vector a.
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Let E(l) = z (2) I then 

p.(z) 1 (x - (i))cT(cCT)- 1 c(x - (i)) 

( j 1 - ))
- (X - V (i))CT(CCT)-lC(x 

which implies that in general one cannot be sure that if x is
 

such that
 

pi(x)
 

pjx­

then it is not true that
 

pi(z)
 

Clearly if cT (CCT)-1C = I when Z (l) = (2) = 1, then these 

conditions would hold. But rank considerations force CT(CCT)- C 

-to be of rank r although CT (CCT ) C is a p x p matrix. 

Further study is necessary to define those conditions such
 

that no loss of discrimination power results from the suggested
 

reduction of dimension. The proposed simulation discussed in
 

Part III of this lecture should imply facts that may lead to some
 

analytical statements concerning the effects of reduction of
 

dimension.
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