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ABSTRACT

The Phase I results to investigate the use of
advanced fabrication techniques for liquid rocket
injectors which allow for fabrication of non-
circular orifices, and to determine if noncircular
orifices can provide greater flexibility and/or a
significant improvement in injector element designs
arc presented,  The study consists of an analytical
study of various injector patterns and c¢lement. that
utilize noncircular orifices, and experimental cval-
nations of promising element configurations. Cold-
flow characterization and theoretical combustion
modeling combined with single clement hot-firing
experiments are employed to predict the relative
merits of liquid rocket engine injector clements
incorporating orifices of noncircular shape as
compared to circular shapes. The frozen wax tech-
nique is used to determine dropsize; water/tri-

chloroethylene spray collection through a tube

matrix is used to determine mixing efficiency.
Unlike-doublet elements incorporating circular,
triangular, rectangular, and self-atomizing ori-
fices are compared on the basis of overall c*
efficiency. Results indicate that at optimum
design conditions for equal thrust per element
designs, mixing levels are higher for noncircular
shapes while circular orifices produce smaller

dropsizes.
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1.0 INTRODUCTTON
The most commonly used rocket enpine injector designs in existence today
employ circular orifices. Historically, circular holes have heen employed
because of manufacturing limitations. With the advent of new fabrication
techniques, cirveular orifices can nowv be made by means other than twist
drilling. Noncircular orilices can also be produced with relative easc,
Becnuse of these fabrication advances, it is appropriate to re-cevalnite
injector desipn practices 10 dotermine whether noncircular orifice desipns
can ofter superior qualities cither in terms of preater flevibility, lower
costs, and petter reproducibility, or in terms of equivalent or improved

performance and injector-thrust chamber desipn cempatibility,

Potential advantages of noncircular orifices can be scen from an exami-
nation of current problem arcas associated with circular orifices.
Circular orifice design is particularly sensitive to tolerances and
machining practices which control such paramcters as: impingement point,
orifice diameter, entrance conditions, and free-stream L/D. Minor mis-
impingement of two circular streams (in terms of a few thousandths of an
inch for a 0.030-inch-diameter orifice) causes gross distortion of fan
shape and distribution. In spite of the specification of very close
tolerances, cngine-to-engine performance and thrust chamber wall crosion
variations occur which can be traced, in part, to slight misimpingement.
The flowratc through a circular orifice is proportional to the diamcter
squared, and vhus local flowrates are particularly sensitive to drill
diameter. In addition, the diamecter ratio used in the design of circular
orifice unlike-impinging-strcum patterns, is dictated by consideration

of the propellant momentum and diameter ratio required to maximize mixing.
Almost without cxception, unequal sizes result. Although this condition
may producc the best mixing, it is highly probablc that atomization is

impared (the fan shape is also influcnced) .




Many of these disadvantages can he overcome utilizing noncircular orifice
shapes.  For instance, tolerance control relaxation can be exercised on
rectangular orifices on the small side (which is more difficult to control)
beeause flow variation is less sensitive to this single dimension, in
addition, the use of noncircular orifices certainly lends itself to the
possibility of equalizing contact dimension (impingement of a square on

the smaller side of a rectangle, for instance).

To assess the possible advantages of nepcirenlar orifices, an applied re-
search program wos condneted containing analysis, desipgn, and experiment

to determine if noncirenlar orifices can provide greater flexibility and/or
a significant improvement in injector desipgns as opposed to the conven-
tional circular orifices. The overall propram is divided into two phases:
Phase 1, analytical and cxperimental study of noncircular orifices and
elemcnts-liquid/liduid propellants, and Phase 11, analytical and experi-
mental study of noncircular orifices and elements-gas/liquid propellants.

To meet program objcctives, the program is structured such that, initially,

orifice and element designs are conceived with no restraints other than
those imposed by specific propellant combinations, engine size, and oper-
ating conditions. The orifice and element geometry concepts are then
evaluated by a rating technique which includes orifice flow and e¢lement
spray characteristics as well as fabrication considerations. The pre-
liminary evaluation is made using only analytical and existing empirical
estimations. Fcllowing this, data are obtained with single orifice and
element cold-flow and hot-fire characterization experiments using sclected
geometries. These data are then fed back into the established rating

system. The results of Phase T of this program arc presented herein.

| 199




2.0 SUMMARY

This report contains the results of Phase 1 of an applied research program
of manalysis, design, and experiment to evaluate and characterize potential
Liquid rocket engine injecior clement designs that utilize the flexibility
of advaneed fabrication technigues and noncirveular orifices utilizing
Tiquid/Tiguid and pas/liquid propelimts,  The overall program objective

is to determine if noncireular orifices can provide greater flexibility
and/or o sipnificant improvement in injector clement desipns, as opposed to

the conventional cireular orifTices,

Phase | consists of an analytieal study of various injector patterns and
clements that utilize noncirenlar orifices and experimental cvaluntion of
promising clement configurations. The most promising orifices are cold-
flow tested with propeilant simulants to characterize them as well as
verify analytical predictions. The orifices arc configured into promising
clement configurations and analytical predictions made with regard to
their combustion and operating characteristics. These elements are then
cold flowed and hot fired in a small test engine (designed as a part of
this program) to further characterize them as well as to verify the

analytical predictions.

Phase I is organized in three sections; (1) Preliminary Evaluation of
C-ifices and Elements, (2) Experimental Evaluation of Orifices and

Elements, and (3) Finsl Evaluation of Orifices and Elements.

The Preliminary Evaluation included selection of program guidelines and
criteria which were then used to judge the relative merit of circular
and noncircuiar configurations. As a result of this evaluation, nine
orificzs [cirele, =quare, retangle (aspect ratio = 2 and 8), triangle
(isosceles and equilateral), diamond, and spray nozzle | were selected
for cold-flow study. The unlike-doublet injector clement type was
selected as a standard for comparison with the various orifice shapes

circle, rectangles, triangles, and spray nozzles).
8 > 8




ixperimental evaluation encompassed cold-1low characterizat iton of single
orifices, cold-flow characterization af clements with regard to both mixing
) and atomization, and hot-fire cvaluation of elements, Data obtained with
single orifices indicates that all shapes produce similar discharge coeffi -
cients and {low characteristics. Noncircular shapes were, in general, less

sensitive to operating conditions than circular orifices.
Cold-flow evaluation of single elements showed that at equivalent desigp
conditions noncirenlar elements produce more uni formly mixed sprays hut

larger spray dropsizes,

Final evaluation of elements showed that noneireular and eircular orifices

have advantages and disadvantages and that selection would depend upon

the specific application.




5.0 PRELIMINARY TVALUATTON

The objective of the preliminary evaluation is to investigate the relative
merits of noncircular orifices and injector elements with respect to circu-
lar orifices and eclements. Because there are an infinite number of possi-
ble orifice shapes and element types, the Tirst task of the preliminary
evaluntion is to conduct a preliminary analysis to define the desipn of
typical clement types applicable to liguid/liguid and pas/ligquid propel-
l:ant rocket enpines. The preliminary evaluation was then used to define
the shapes and elements most promising for application to an NTO/A-H0
rocket engince.  Cthe evaluation is hased upon the most pertinent existing
experiment al data and analytical technigues available.  Where data are

not available, extrapolations arc mide hased upon some rational analyti-
cal approach. The preliminary evaluation then shows where additional
technology arc required, and therefore, defines the scope of the Bxperi-
mental lvaluation. Described in a later scetion of this report, the
experimental results were subscquently used to cheek the initial assump-

tions and a re-evaluation is made.

‘The preliminary ovaluation criteria for evaluation of orifice shapes are
subdivided into two major categories: (1) functional, and (2) fabrication.
Functional considerations arc those which describe the fluid flow charac-
teristics of an orifice. Fabrication considerations describe the degree

of difficulty and cost of fabricating the orifice.

Eight criteria were sclected for functional evaluation:

1. AP, Pressurc drop
2. CD’ Orifice coefficient

3. Free-stream stability

4. Sensitivity to propellant temperature

[y




5. Sensitivity to propellant backpressure
(. Sensitivity to cross velocity at the orifice entrance
7. Sensitivity to AP fluctuations

8. Sensitivity to contamination.

The hasic factors considered for each of the criterion along with those
characteristics which would be considered desirable under cach criterion

are listed in Table 1.

Criterin selected for the evaluation of orifice shapes from a fabrication

standpoint are:

1. ‘Tolerance Obtainable
2. Design Flexibility
3. Fabrication Time

4, Fabrication Cost

5. Tnspection

6. ‘Tooling Structural Limits

The factors considered for each criterion along with desirable features

for each are listed in Table 2.

Six manufacturing techniques are selected for evaluation of orifice

shapes for the various fabrication criterion. These techniques are:

1. Cast
2. TFlectrical-Discharge Machining (EDM)

3. Electrochemical Machining (ECM)

L
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4. DPhotocetch
5. Powder Metallurpy (I'/M)

6. Llectroforming (1/F)

For circular orifices, the additional technique of twist drilling is con-
sidered. A1l manufacturing techniques for a1l shapes are cvaluated wsing
the circular-shaped orifice manufactured by twist drillivg as a standard

of comparison,  Fach fabrication technigne is considered ander cach evalu-

ation criterion,

The resulis of the preliminary cvaluation were reviewed by three independent
rosceareh teams, cach performing a separate eviluat fon,  Fach team assipred
mamerical values to the various evaluation eriteria which refiected ihe
opinion of that particular team. The final preliminary cvaluation viclues
wore obtained by numerically averaging the evahutions of the three teams,

An identical technique was used to perform the final cvaluation.

ALl ceriteria in the preliminary ovaluation were given equal weight. This
wias done so as to make the evaluation as general as possible. Weighting
factors are strongly affected by the specific application of a given
injector clement, For specific application, one miy choose his own weight-
ing factors, and using the valucs shown in the preliminary evaluation,

perform a weighted evaluation,

9/10




3.1 PRELIMINARY ANALYS 15

There is an infinity of orifice shapes and injector element. types which
could he envisioned for application to rocket engine injector design., In
addition, there are many propellant configurations and engine operating
leve ! requirements which could be considered for ecach injector type.  Con-
sequent ly, it is mandatory to first define the engine operating conditions
which are most representative of carrent engine requirement s, and e fement
types which could be envisioned for practical desipgnn, For the purpones
of the Preliminary Analysis, five propellant combination, were selected,
Phene comhinations, along with specitic operating conditions for cach,

are Fbistod in Table 3,

The results of an analytical study of the applicabi ity of various injec.
tor clement types to the propelbam combinations and engine operating
conditions listed in Table 3 are presented.  This evaluat ion is based
upon present circular orifice technology concerning mixing and

atomization.
fhe element types considerad include:

1. Unlike doublet
2. ‘Two-on-one (triplet)
3. Jlour-on-one

4. Like doublet

For the triplet and the four-on-one, analysis is performed for clements
with the oxidizer in the center orifice and with the oxidizer in the outer
orifices for the liquid/liquid combinotions. lor gas/liquid propellants,

only c¢lements with the gas species in the conter orifice are considered,

11




I'ropel lamt
Combinations

N, 0, (50/50)

Prosonre: Ped

Fg/”t
Prossure-Fod
Pamp-Fed

FLHX/““q
Pressure-lod
Pump-1ied

UFJ/HZHh
Pressure-taed

“2/02
Pressurce-lred

Pump -Fed

IS P

ENGINE OPERATING CONDPTTONS

Chamber
Pressure,
poia

100

10O 1o 300

A0 1o 800

100 1o 300

300 to 800

100 to

300

100 to
300 to

300
1,300

TABLLE 5

Thrust,
pounds

20,000

4,000 to 20,000

5,000 to 20,000

3,000 to
5,000

20,000

1o 20,000

3,000 to

20,000

3,000 to
3,000 to

20,000
20,000

injector
Orifice
AP, psid

20 1o

10 to

H0 1o

10 to
50 to

10 to

10 to

50 to

S0

h

200

H0
200

o)

50
200

|

Mixrare
Ratio,
o/t

#to 1o
g to 1o

4 1o 8

205 to 8




A caleulation proceduare for the desipn of an injector element s shown in
Fig., 1. A primary consideration in the indicated procedure is attain-
ment of optimum propel lant mixing., The dnpnt, ov independent , conditions

ares

T, wmixture ratio
2. thrast per element

S0 oxidizer orilice AP

AL the ontset of oach desipn For oo opiven propelband combination, the
oxidicer orifice pressure dreop, theast per element (nen leve ! optimm),
overall mixtire ratio, chamber prossure, and propel bt temperatures are
apecitied, The area vation for cach anbit s iapinging clement are then
comprit od using empivical (cold-Flow) mixing, critevia, dn the case of the
Like doublets, mixing is not a function ol wrea rid io, hut rather geo-
metrie orientation,  Conscquently, the area ratio was set equal to 1.0
(Tor the gas-liquid like-doublet elements, the AP vatio was set cquitl to
1,0).  Arca ratios are defined in two di fforent ways.  Area ratio is ob-
tained by dividing the arvea of one oxidizer orifice by the arca of one
fuel orifice. Total arca ratio is computed by dividing total element

oxidizer arca by total clement fuel area,
Once the arca ratios have been computed, the velocity, momentum and AP

ratios are computed, based on the overall mixture ratio, the density

ratio, and the arca ratio. The total clement flowrate is determined

13
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11

next from the theoretical, thermochemical value of specific impulse and
the assumed value of thrust per element. The oxidizer velocity is computed
from the given value of oxidizer AP- and an assumed value of (In. The {fuel
velocity is computed from the velocity ratio, and, based on an assumed fuel

side ( the fucel AP is caleulated. Actual fucl and oxidizer arcas arce

e
then computed from the continuity equation. Finally, mean dropsize ratios
are computed to compare the at omization capabilirties of the components of
the varions clements to the oxidizer size of the unlire-doublet element

fused an a standard of comparison).

The details of mixing and atomization ealculations are presented in the

following seetions.
PDESTON CRITERLA FOR MIXTNG

For liquid-liquid propellant combinations, optimum mixing design condi -
tions werc computed using equations developed by Elverum and Morey
(Ref. 1) and Rupe (Ref. 2 ).

Rupe's equation (Ref. 2), for circular orifices, cxpresses the relation-
ship between propellant properties and element geometry for optimum mixing

for unlike doublets. The equation appears below:

. 2/3 1/3

P1
(6;) =

where
D = orifice diameter
o = propellant density
w = propellant flowrate

This relationship, given a propellant density ratio and mixture ratio,

defines a specific arca ratio for the orifices in the element.




For the gas-liquid propellant combinations, the design ceriterion (i.e.,

for optimumm mixing with triplet and four on-one iniector clements) is that
the liquid jet should pencetrate half way throuph the ceatral gas jet,
However, for the unlike doublet, the penetration should be 100 percent of
jet diameter. The terminelogy is illustrated in Fig., » . Thus, for triplet

and four-on-one elements, optimum penetration is defined as X) = 0,5 I, or

)
G
‘.(])/l)(‘ = 0.5, The desipgn equation for penetration is taken from a study
]

accomplished at Rocketdyne by Dickersen (Ret'y 5).

Moot (,N_ﬂ_)‘ i o)
A w AN Py, .
G
where
A = Arca of onc orifice
K = 1.56 for unlike doublet
w = Flowrate
N = Number of orifices of given type in element
p = Density
subscripts
L. = Liquid
G = Gas

Again an optimum area ratio will be specified upe. selection of mixture

ratio and the ratio of propellant densities.

3.1.2  ATOMIZATION ANALYSIS
The fina! step in the clement cvaluation is the computation of dropsize.
The equations of Dickerson (Ref. 4) were used to caleulate dropsizes

for liquid-liquid systems while Ingebo's cquation (Ref. 6 ) was used to

caleulate dropsize for the gas-ligquid systems.

16
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RESULTS OF PRELIMINARY ANALYS 1S

The results of the preliminary analysis are presented in Tables 1 through
12, The propellant combinations and operating conditions considered were
listed in Table 3. Primary considerations for the selection of an in-
jector element arc: (1) mixing, (2) atomization, and (3) pressure drop.
Further, the consideration of relative area is important for elements
with circular orifices, 1f the circular orifices in a given element have
preatly different areas, their dimmetors will he different and result in
nonimpingement of some of the fluid from the larger orifices, This pro-

duces doepradation of mixing wind atomization,

The element concepts analyzed were cach hazed upon erit eria of opt imum
mixing., 1t is important to note that optimur mixing for cach type of
clement does not impliy any comparison of mixing level from once type of
clement to another. For cxample, an optimum four-on-onc miy produce more

uniform mixing than an optimum unlike doublet.

The results of the clement analyses for the two liquid/liquid propellant
combinations are prescented in Tables 4 for N204 (50-50) and 12 for
OFZ/BZHO. In general, all of the clement types are applicable to these
two propcllant combinations. 7The selection of the specific element would
depend upon the particular propellant combination sclected. For cxample,
cortain of the elements do represcent rather poor designs from an overall
system point of view. For example, in Table 4 for N204 (50-50), the
four-on-one element requires a great deal of difference between the fuel
and oxidizer AP's. The reason that the four-on-one with oxidizer in the
center produces small propellant droplets relative to the other clements
is that the {fuel AP is large. For OFZ/BBHG’ on the other hand (lable 12),
the four-on-onc with a fuel center has a reasonable relationship between
fucel and oxidizer AP's. For the OF2/B2“0’ the four-on-one with oxidizer

in the center is totally unrealistic with respect to AP fucel.,

18
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4.2 PRELIMINARY LEVALUATHON

The preliminary cvaluation is made for orifices and clements for use with
the Nq04 (50-50) propellant comhination. Therefore, the evaluation of
“~

injector clement types will be basced on the data presented in Table 4 only.
ORTETCE SHAPE BVALUATTON
Functional

Based simply on the very general guidelines for analysis (i.c., propellant

combinations and cngine operating conditions), it is difficult, a priori,
to climinate any particular orifice shapes or configurations from

cvaluation.

Howcver, to limit the number of orifices which will be considered for in-
corporation into element design, a seiection of orifice shapes must be
made. Ninc shapes were, therefore, chosen which appeared to be most

amenable to injector element design. These shapes are listed below:

1. Circle

2. Square

3. Rectangle

4. Equilateral Triangle
5. Isosceles Triangle
6. Diamond

7. Ellipse

8. Star

9, Sclf-Atomizing Nozzle




A basis for cvaluation for cach orifice is presented,  Quantitative tech-
niques arce employed where data or theory are available; otherwise, analysis
is based upon qualitative reasoning. Results of the orifice shape pre-
Piminary functional evaluation are presented in ‘Table 13, Note that for
cach parameter an arbitrary ranking of 10 is given to the circle, Param-
cters ranked greater than 10 have operational characteristics hetter than

the cirentar oritfice standard,

For the comparison of various shapes, the length-to=diameter ratio and
cross—scetional arca of all shapes will be equal.  The diameter, or char-
actoeristic length, of an orifice shape is assumed to be the hydraulice
diometer, The hydraulic diameter is defined as four times the cross-
seetional aren divided by the wetted perimeter;

AN

by = 5

The terminology used in describing orifices is explained in the sketch

shown below.

HEIGHT

\

FLOW
DIRECTION

The basis for each ranking is given below.
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(:I Variation. Pressure drop defines the consistency of operation ol an
)

orifice shape over a range of flowrate il pressure drope A desirable
{feature for an orifice would be a discharpe coefficient, (Z“, which remains
constant over a large AP range.  An undesirable feature wonld be o sipnifi-
cant discontinuity of flow coefficient at one or more A Tevels, making

predictions of {lowrate versus pressare drop difficult,

11 would he expected that the perimeter of shape at the entranee to an
orifice would have the controlling influcnce on the major pressure dirop
charaeteristics of the orifice,  The preater the perimeter aned the more
prrepularitices in the shape of that perimeter, the more sensitive the

orifice should be to AP Tevel,

Because no analytical data were available before initiation of this program,
the cvaluation of shapes is based upon wetted perimeter. The shapes with
the greatest length of perimeter are ranked lowest.  Since perimeter and
aspect ratio arc related, shapes with the high aspect ratio reccive low

ranking in Table 13.

CD Level. Flow coefficient evaluation was based on limited data

Available for noncircular-orifice orifices with short length to hydraulic
diameter (L/D“). Data taken by Calleghan and Bowden in 1949 (Ret. 0)
indicates that the higher the perimeter for a given arca, the higher the
flow cocfficient. The authors showed that ua short circular orifice would
yield a value of CD lower than any other shape. This result they rational-
ized on the basis of the number of degrees into which momentum is con-
verted from radial to axial momentum at the entrance to an orifice. For

a circle, momentum is converted in all 360 degrees at the entrance, while
for a slot of infinite width, momentum is converted from only two

directions.
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Orifices are evaluated on the basis that a layge ("l) is desirable from
minimum orifice pressure drop considerations. Basced on Calleghan and
Bowdents work, those shapes which deviate most from a circle will have the

highest vs. This criterion is used in Table 13 to rank all of the shapes

¢
D
except for the spray nozzle. The nozzle has unique pressure drop charac-

teristics that must be estimated qualitatively.

_|V{_-17~7_(;(-;.",1;.;7(-:11117.‘;'1;571]#)}‘;l_i;_['\{. The stahility of o liguid jet penetrating o gascous
cnvironment is affected by the shape of the ovifice which produces the
jot and the condition of the floid unstream of the orifice,  For a flow
with a piven volume flux, the most stable jet will be produced by an orifice
with o minimm wetted perimeter for o piven cross-scctional arca. The

orifice shape which satisfies this eriterion is, of course, the cirele,

The factors which affect free jet mechanies are (1) the tendency of sur-
face tension forces to minimize the surface arca of a jet, (2) the drag of
the enviromment over the surface of the jet, and (3) the level of turbu-
lence in the fluid upon injection. Premature jet breakup is undesirable
for impinging type injector clements. Jets which have undergone substan-
tial breakup prior to impingement (i.c., incoherent) produce sprays which
arc poorly mixed and atomized. Incoherent jets can also lead to impinge-

ment which in turn leads to poor mixing and atomization,
Rating of the various shapes in Table 13 follows basically their deviation
from circular configurations. The lowest ratings are given to shapes with

large perimeters and large deviation from circular shape.

Propellant Temperature. Propellant temperaturc can influence the flow

characteristics of an orifice in several ways. One way is the change of
viscosity with temperature. Because the Reynolds number is inversely pro-
portional to temperaturc, the Reynolds number varies dircetly with

tomperature.
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Another effect of flaid temperatare on orifice performance ia prodieed by
changes in the vapor pressure of the {huid and the Jevel of selubility of
pases in the flaid,  Both vapor pressure and dissoltved pas affect the operi-
Cional tevel at which an orifice will undergo hydraulic flip. As the tem-
perature of o flaid is inceeased, its vapor pressure is inereased which, in
firn, inercases the likelihood of cavitat ion.,  On the other hand, as the
temperature increases, the solubi ity of forcipn pases decreases, decreasing
the sensitivity fron sudden decompression, (1 0 faid in which there s

a preat deal of dissolved gas s suddenly decompressed, the pas will come
ont of solution and Corm bubbles.  This can happen as o Alaid procecds

From o rescrevoir to the exit of an orifice.) These two offects tend to

of fsel one another.  lowever, the degree to which they do is not woell -
known.  The cvaluation shown in Tahle 1a is hased onestimat od sensitivity

to cavitation, separation, and hydraulbic flip.

Propel lant_Pressure. Many of the comments made concerning propellant tem-

perature apply cqually well to propellant pressure.,  The pressure level of
a system affects the hydraulic flip characteristics. The higher the pres-
sure, the higher the AP mnst be to produce hydraulic flip. Propellant

pressure cvaluation is shown in Table 13,

Cross Velocity. Scnsitivity to cross velocity will depend not only on

orifice shape but also on the directional oricntation of the cross velocity
to the shape. For the purpose of the rating, it is assumed that the cross
velocity vector is parallel to the longest axis or side of a given shape.
With this velocity orientation, the lower ratings in Table 13 are given to
the shapes with the higher aspect ratios. This rating is, by nuature,
qualitative. No data exists to relate shape to cross velocity

sensitivity,

AP Variations. 1t is assumed that all shapes operate at a fixed average

AP such that all arc in their "unflipped" regime. Sensitivity to AP




variations is defined as the amount of flowrate variation exhibited for
a given AP variation or dw/dAP ., the higher this ratio, the more sensitive,
To obtain a crude estimate of the ratio dw/dAP, the orifice flow equation

is differentiated (lg. 3).

dw T | .
v VAt LA

From L. 3 it ins evident that the ftow sensitivity is indirectly propor-
tional to the square root of the averige AP level and direetly proportional

1o (:1,' Therefore, an of fictent orifice is o sensitive orifice,

Gontaminat ion Sensitivity, Evaluation under this catepory is fairly obvious,
As shown by the relative rankings given in Table 13, those shapes with
narrow passages arc more likely to he contaminated and received a lower

ranking value than thosc with fairly open cross sections.

Overall Functional Rating of Orifice Shapes. From a functional point of

view, the circle, spray nozzle, squarc, and cquilateral triangle received

the highest ratings., The poorest rating was reccived by the star shape.

Fabrication

Results of the fabrication evaluation arc presented in Table 14, This
evaluation is based upon the criteria shown in Table 14, Lvaluation
within cach criterion was made for cach of the six manufacturing tech-
niques which arc listed in Table 14, under fabrication methods. Rankings

greater than 10 are better than the twist drill standard.

In the fabrication cvaluation, both the shape and the fabrication tech-
nique employed to make that shape were considered. As shown in "Fabri-
cation Totals" (Tablc 14), the electrical discharge machining (EDM)
process received the highest rating among all the fabrication techniques,

regardless of the shape of the orifice upon which it was employed.
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(F i1 i assumed thot atbl shapes are mannfactured by tihe HIM process,
{then the circle, square, triangle, and el lipse rank highest among the

shapes Crom a fabrication point of view.
02,0 SUMMARY OF RESULTS

A componite evaluation of all oritice shapes s presented in Table 15,
A overall averape rating number i presented which includes both the

functional and Cabrication rating mmbers,

sised npon the EDM proces:, the cirele, square, equi bteral triangle and

Che spray o le receive the hiphest ratings,
Bo00%  LLEMENT CONEFTGURATTON BVALUATION

Results of the clement confipuration evaluation arc presented in Table 16,
This cvalustion is based on the preliminary analysis data from Table 4.
The varions clements are evaluated for the N,‘,()4 (50-50) propellant combi-
nation at 30 1h,. thrust per clement, mixture ratio 1.6, chamber pressure

1
100 psia, and oxidizer orifice AP = 30 psid.

Tolerance Considerations

Tolerance sensitivity rotings were based on qualitative estimates made by
design specialists as to che relative degree of difficulty of producing
clements of each type. Also considered was the degree of difficulty of

manufacture.

Performance Considerations

it has been shown in the past with circular orifices that the level of
mixing is quite similar for the different element types shown in Table l6.
when cach has been designed for optimum mixing., During preliminary cevalu-

ation, it was assumed that this would also be true for noncircular
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SINGLE ORTEICE RATING CHART, COMPOSITE

TARLE

15

EVALUATTON OF ALY ORIFICE SHAPES

T

Functional
and

Orifice Fabrication l'abrication Overall
Configurafion ~_Methods Totuls Average
Drill 140 10
(ast 132 9,43
1M 150 10.7)
1:CM 134 9,57
Cirenlar /M 135 9,064
| (Base Point) AL o320 9.0 ]
Cast 119 8.50
BhM 139 9,03
[HeY! 123 8.79
P/M 120 8,57
Squire L/ 114 8.14
Cast 98 7.0
EDM 115 8.21
1 ECM 102 7.29
P/M 98 7.0
Rectangle E/F 106 7.57
Cast 112 8.00
Ziik EDM 129 9.21
: ECM 117 8.36
Equilateral P/M 111 7.93
Triangle E/F 113 8.07
Cast 93 6.64
A EDM 111 7.92
ECM 100 7.14
Isosceles P/M 95 6.79
Triangle E/F 99 7.07
Cast 89 6.36
EDM 110 7.86
ECM 100 7.14
P/M 9l 6.50
Diamond LE/F 96 6.86
Cast 103 7.36
DM 120 8.57
O LCM 111 7.93
' P/M 99 7.07
LEllipse E/F 102 7.29
Cast 71 5.07
EDM 89 6.36
<<:> ECM 79 5.604
P/M 75 5.30
star L/ 77 5.8
Cast 113 8.07
\J [HN 126 9.0
—" LM 117 8.306
Nozzlc P/M 116 .29
Compound Ii/E 122 8.71
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arifices.  As shown in Table 16, all clements have been given an

cquivalent rating with respect to mixing,

Since mixing has been optimized, the performance considerations which are

left for comparison are:

1. DPressure drop (fuel)

2. Atomization
1 is interesting first to note the pressure drop considerations, The oxi-
dizer pressure drop has been Cixed at 30 paid,  The dependent variable is,
therefore the el AP, Relative magnitude of the fucel AP versus oxidizer
AP is obtained from the row labelad AP ratio in Table 1o, These ratios
were obtained by dividing the oxidizer by the fucl AP, The ratios for the
unlike doublet, triplet, and like doublet are reasonable. That is, for a
pressure-fed mission, the two propellant AP's should be fairly close to one
another from an overall system design standpoint. However, for the four-
on-one elcment, the AP ratio is 0.1385 with the oxidizer in the center and
4.16 with the fuel in the center. This makes the fuel AP's respectively

217 and 7.2 psid. These are not reasonable values.

Rating for the AP consideration is shown in Table :6. Highest ratings are

given to elements with the fuel and oxidizer AP's closest in value.

Results of the atomization equations are shown along the row labeled
"Dropsize" in Table 16. The values were computed by dividing the mass
mean dropsize of a given propellant by the dropsize of the oxidizer pro-
duced in the unlike doublet. The term o/f indicates that the oxidizer
dropsize is given first fullowed by that of the fuel. It appears from the
data that the four-on-one oxidizer center strcam elcment possesses signi-
ficant advantages for atomization. However, the small relative dropsizes
are merely a reflection of the high fuel velocity caused by the high fuel
AP. That is, an advantage is produced as a byproduct of a disadvantage,

Aside from this element, the dropsizes produced by the other clements are
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all fairly close in magnitude. The largest drops are produced by the fuel
side of the triplet with oxidizer center stremm. Large drops are un-
desirable from a performance standpoint because of the time required to
complete vaporization. Rating in Table 16 is such that small drops yicld

high ratings.
Stabil il)'ﬂpﬁ()l)»t%ﬂjik(r‘__ﬂ)lii_(‘)llfi

Rating with respect to combustion stability is basced on a preliminary
analysis. This analysis indicated that the stability characteristics of
211 the elements should he quite similar. Theretore, all were given the

same rating (sce Table 106).
SELECTION OF MOST PROMISING ORIFICLES AND ELEMENTS

The ratings for performance, stability, and machineability were added to-

gether and averaged. These results are shown in Table 16.

The conclusion which must be drawn from element rating of N264/N2H4-UDMH
(50-50) is that the unlike doublet is the superior element. In addition,
the triplet and the like doublet are good candidate elements. A four-on-
one element does not appear to offer any significant advantages. It must
be remembered that these evaluations were made based on analysis tech-
niques and data which were developed for, and with, circular orifices.

Noncircular orifices may greatly effect the rating and evaluation.

Only one element typc, the uniike doublet, was selected for further eval-
uation in the experimental portion of this program. This selection was
based upon the evaluation shown in Table 16 as well as the fact that it
is the most basic of all injector element types. The unlike doublet is

casy to manifold and simple to fabricate.




Seven orifice shapes were scelected for cold-flow experimental evaluation,

The shapes arce:

1, Circle

Square

T

4. Rectangle

4., Slot (rectangle with large aspect ratio)
5. Equilateral triangle

6. Isosceles triangle

7. Diamond

The self-atomizing spray orifice was also selected. llowever, it was not
classified as an independent noncircular orifice shape. It was uscd in

element testing and is discussed in the subsequent text.

It will be noted that the list of orifices includes all those shown in
Table 15, with the exception of the elliptical and star shapes. The

star was eliminated because of its poor rating in the evaluation. The
cllipse was eliminated because of its complex contour. It is difficult
to generate an accurate elliptical contour on the small scale required

for these orifices.
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4.0 EXPERIMENTAL DEFINITION_OF ORIFICI FLON AND
HLEMENT SPRAY CHARACTER1STICS

Cold-flow and hot-fire experimentation were conducted to determine the
hydraulic characteristics for single orifices, and the spray mixing,
atomization characteristics and operating characteristics for single
clement injectors. The scope of the experimental program was defined
from the analysis of the preliminary evaluation, which served to illas-
trate wherse additional technolopy were required, A total of 9 orifice
shapes were studied which included cireular, triangular, rectanpular,

and diamond shapes.  These shapes were then confipured into sceveral
unlike-doublet types (triangle-on-triangle, rectangle-on-rectangle,
triangle-on-rectangle, and circle-on-cirele). In addition, several types
of self-atomizing nozzles were also studied. The overal study required
409 orifice tests and 154 cold-flow element spray tests. Urifice CD’ snd
flip characteristics as a function of orifice L/D, entrance condition,
cross velocity, and backpressure were determined for the various shapes.
Also, 11 tests using NTO and A-50 propellants were conducted using single
orifices. Mixing and atomization characteristics were determined for the
elements. The overall cold-flow results were then used to predict hy-
draulic and performance characteristics. Hot-fire tests were then con-
ducted to determine operating characteristics. A complete summary of the
orifice and element cold-flow and element hot-fire tests is contained in
Appendix A. The results of these experiments and a description of the

experimental havdwarc are described below.
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4.1 FEXPERIMENTAL APPARATUS*
SINGLE ORIFICE DESIGNS

As a result of the preliminary evaluation, seven orifice shapes were
selected for evaluation. ‘The seven orifice shapes included four bhasic
geometric configurations: circle, rectangle, diamond, and triangle.
Perturbations in aspect ratio for the rectangle and triangle provided

the additional three shapes.

The hasic orifice shapes are shown in Fig. 3. Nominal dinensions and
aspect ratios for these shapes are also given., All orifices have the
same area, 0.0028 in.z, which is the arca of a circle 0.000 inches

in diameter. Certain of the shapes are not only aspect ratio variations
but are considered scparate shapes on their own merit. For example, the
rectangle is a basic shape as well as an aspect ratio variation of a
square. The hydraulic diameters, aspect ratios, and orifice lengths

for the various L/DH's as fabricated are shown in Table 17.

The orifices were fabricated from aluminum primarily to minimize material
and fabrication costs. The electrical dischargs machining (EDM) process
was used to fabricate the orifices. The EDM process functions by dis-
charging a capacitor bank across a narrow gap (0.001 inch) formed between
the work (anode) and the tool (cathode) to remove a minute piece of anode.
The tool and work are immersed in a dielectric fluid that provides con-
tinuous flushing of the part. Generally, the process is applicable to

all electrically conductive materials.

The initial seven orifice plates fabricated using the EDM process are

shown in Fig. 4 and 5 , 25X magnified. Inspection under both 50 and

*To maintain continuity of thought, the descriptions of the cold-flow
and hot-firing fucilities as well as the experimental procedures arc
presented in Appendix D rather than with the orifice and injector
designs.
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TABLE 17

ORIFICE TEST HARDWARE DATA
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e - - R -
Nominal Actual Arct, } Length, Hydraulic
Shape 1./D I./b in,” inch Diameter, inch
Circle Yo (1) 1.97 0,00289 0.120 0.061
4 3.93 0.00285 0.240 0,061
50 (1) 5.90 0.00278 | 0.300 0,00
6(2) h, 89 0.003517 0.359 0.061
20 20,75 0,00271 1,20 0.0579
Square A 1.8 G, 00309 0,100 0,0501
4 3.83 (,00290 0.212 0.0554
6(1) 5.91 0,00272 | 0,319 0.0540
6(2) 6.00 0.00310 | 0.321 0.0539
20 20,04 0.00281 1.063 0.0515
Rectangle 2 1.93 0.00286 0.099 0.0512
4 3.84 0.00286 | 0.199 0.0518
6(1) 5.64 0.00236 1§ 0.298 0.0528
6(2) 5.91 0.00352 | 0.318 0.0538
20 19.84 0.00289 | 0.994 0.0501
Slot 1.22 0.00382 | 0.0535 0.0438
4 2.84 0.00372 | 0.1205 0.0425
€{1) 4.69 0.,00334 | 0.1865 0.0398
6(2 5.49 0.00445 | 0.251 0.0457
20 18-92 0.00313 | 0.664 0.0351
Lquilateral 2 1,84 (0.00334 | 0.092 0.050
Iriangle 4 3.60 | 0.00328 | 0.185 0.0514
6(1) 5.22 0.00306 | 0,277 0.0531
6(2) 5.99 0.00330 | 0.278 0.0464
20 20,26 0.00304 0.924 0.9450
Isosceles 6 (1) 4,88 1,00329 0.210 0.043
Triangle
Piamond o(1) 5.14 (,00322 0.210 0.042
s,/0's of 2 and 4 were made from 6(L), 0(2) was made from 20,
L/D = 6(2) was rounded,




.

2

500 power magnification showed that the first three orifice shapes (Fip. )
wore within tolerance (#0.001 of the specified dimensions) on the exit side
of the orifice with approximately 0,001 enlarging taper on the entry side,
Small irrepgularities of approximately 0,002 maximum on the side walls and
0,002 corner radii were obscrved., Rounding of the hole edge was prevalent
on the exit side. Sectioning of a typical machined hole showed an overall

surface finish of 80 to 90 RMS,

Several clectrode materials and two designs were evaluated, LElectrodes

made of copper tungsten, silver tungsten, tellurium copper, and {ree machin:

ing brass were used.  Also, a stepped eclectrode to minimize hole taper was
investipated. In summary, orifice plates machined with nonstepped brass
clectrodes were found to be adequate,  The four shapes numbered -3, b, -7,

and -9 in Fig, 4 and 5 were produced using this type of clectrode,

The photo of Fig. 4 shows the electrical discharge machine (EDM) sctup
during the machining of the No. 9 high aspect ratio rectangular shape.

A voltage-sensitive stepping motor servo located at the top of the arbor
support is used for tool positioning. The low-voltage UDM machine used
during this program has a dielectric tank containing Shell 140 fluid and

is positioned on an adjustable crossfeed slide table.
SINGLE ELEMENT DESIGNS

Two major categories of eiement hardware were utilized: (1) spray nozzles,

and (2) impinging elements.

Spray Nozzles

The spray nozzle type injector clements utilized were available from a
commercial vendor. ‘The nozzles werc purchased from Spray Systems Incor-
porated. The nozzles represent off-the-shelf items and atfected a con-

siderable cost savings over in-house-fabricated parts. The three basic
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types of spray nozzles shown in Fig. 6 were cvaluated. As sSnowi, two
designs provided a swirling hollow-cone injection pattern while the other
produced a flat spray fan. One of the swirl designs (hydraulic) consis-
ted of a swirl chamber into which the liquid entered through a tangential
port and is then injected from the swirl chamber through a central orifice.
e liquid swirls within the swirl chamber around an air corc, This re-
ailts in the fluid heing injected into the engine combustion chamber i

the form of a hollow conical shect which is casily disintegrated into drop-
lets.  The aher swirl type (mechanicall contains a center bady with machined
helical passapes that impart a swirling flow pattern prior 1o fluid injee-
tion through the central orifice, hecavse the injection orifices of the
swirl-type nozzle are not full-lowing, low discharpe coefficients (C“ =

0.2 to 0.3%) result,

The third design, the spray fan nozzles, contain circular orifices drilled
<rom the back side of the injector face which intersect slots machined into
the faces. The interscctions form eliptical-shaped holes. The injected
liquid expends within the slots and produces a narrow fan-shaped sheect prior
to droplet breakup. ligher discharge coefficicents (CD = 0.7 to 0.8) are

achievable with this design.

A total of one mechaaical and four hydraulic swirl nozzles as well as five
self-atomizing spray fan nozzles were utilized. A complete summary of all
nozzles and pertinent parameters are listed in Table 18. Note that a range
in size from an equivalent orifice diameter of from 0.062 to 0.124 inch for
the swirl nozzles and from 0.018 to 0.072 1nch for the fan nozzles was con-

sidered in t<he overall study.

A fixture was designed to hold the spray rozzles for the mass and mixture
ratio distrubition studies. ‘'This fixturc (Fig. 7 ) allows the nozzles to
be positioned with respect to each other with variable spacing and impinge-
ment angle. ‘'he main body (No. AP-069-273) is a universal fixturec which
holds various orifices at a fixed spacing with a 60-degree included im-

pingement angle.
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a. Mechanical Swirl Type - \\\\\\\\\\W

Body

Swirl Chamber

Tangential Entry

- b. llydraulic
Swirl

Type

Qrifice

¢. Spray Fan Type

Figure 6. Model Injector Nozzle Configurations
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Unlike boublets

Orifices for three basic doublei-type clements were fabricated, ‘'The con-
figurations include (1) rectangle-on-rectangle, (2) triangle~on-triangle,
and (3) rectangle-on-triangle. In addition, a circular orifice unlike
doublet was also fabricated. ‘The various combinations cold-flow evaluated
are shown schematically in Table 19, and a summary of pertinent dimensions
for cach configuration is shown in Table 20, Note that the configurations
include three aspect ratio perturbations for each of the three noncircular
doublet types. The elements are designed for 30-pounds-force thrust per

clement level.,

All orifices for the unlike-doublet elements are fabricated using the

EDM process. Dhuring the initial phase of the single orifice characteri-
zation phase of the program, considerable difficulty was experienced in
the machining of the very thin LDM electrodes. Inproved techniques in
fabricating the tooling for the single clement hardware subscquently pro-
duced electrodes with tolerances held within 0.0002 inch., A time-pulsed
vacuum flushing techngiue was used luring the clectrical discharge machin-
ing of the element orifice holes. The combination of machining the elec-
trodes to very close tolerances, grinding the entrance and exit sides of
the orifice blanks, and the time-pulsed vacuum flushing technique »ro-
vided orifices with very little taper, closely controlled dimensions,

smooth finishes, and sharp orifice entrance and exit conditions.

Typical photographs of EDM fabricated ports for four noncircular orifices
are shown in Fig. 8 . The individual orifice inserts form an unlike-
doublet pair when installed in the cold-flow fixture shown in Fig. 9.
This apparatus was used for both the mixing and atomization cold-flow

studies of the noncircular single orifice clements.,
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TABLE 19
SUMMARY OF UNLIKE-DOUBLET ELEMENT DESIGANS
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Figure 9.  Model Injector Cold-Flow Apparatus
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4.1.4

THRUST CHAMBER AND INJECTOR DESTGN

A schematic of the Phase | chamber and injector design is shown in Fig.

1. The engine is designed for 100-psia chamber pressure and 30 pounds
of thrust. As noted, the chamber is uncooled and fabricated from copper,
Chamber sections were also fabricated to provide 1* variations of 30 and

60 anehes (the desipgn shown is for an I* of 15 inches),  inoaddition,

pressure taps are provided near the begiming of converpgence for peasuare
ment of the chamber S tatic

presoure, e injector wan Pno desipned anch

that an injector face pressiare wis obtained,

Four hot-fire injectors were designed and fabricated for evaluation,  The

pnjectors inehded three unlike doublets:  circular, rectangular, triangular,
and o oselfeatomizing fan nozele,  The speeifiv contignrations choosen were

determined trom the cold-flow element study.  The injector confipurations

woere.

[ ] fMHm@ﬁmf R F“
Angle, Fan Angle, /0
Shape Confipuration degroees degrees o’ TEHYD
Circular A 60 N.A. 1.138
Triangul ar it ol N.A. 1.109
Rectangular b o0 N.A. 1.130
Fan# 0.5 spacing N.A, 60 N.A.

An
of Fig. 1.

exploded view of the total assembly is shown in the upper photograph

The longest chamber extension spool is 7.9 inches in length.

The small tubes protruding from the nozzle scetion are thermocouples

(one is near the throat and the other two arce upstream

Also shown in Fig, 11 is a photograph ol an injector,

the inner circular portion is .14 inches in diameter,

(DRI
F Yo

0.0720

02

of the throat).

For size reference,
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Model Injector ‘Thrust Chamber Asscmbly

Single Element Ulrcular Unlike boublet

Figure 11, Model Injector Hardware
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4,2.

}

4.2 COLD-VLOW EVALUATION
SINGLE ORIFICE STUDY

The objective of the sinple orifice study was to obtain experimental data
required to improve on the evaluation criteria and techniques used for
the preliminary cvaluation of orifice shapes. To accomplish this objec-
tive, both cold-flow and hot- fire datn were generated with amall orifices
of varipus shapes,  These data, in terms cf the wlischarge coefficient!,
were correlated with the physical parameters of orifice design and oper-
ation., Dburing the procers of correlating these data, improved techniques
for predicting the discharge coefficient and evaluating potential orifice-

to-orifice differences were discovered.

A simplificd matrix showing the orifice and operational variables tested
during cold-flow experimentation is presented in Table 21. A total of
seven orifice shapes were investigated: (1) circle, (2) squarc, (3) rec-
tangle, (4) cquilateral triangle, (5) slot, (6) diamond, and (7) isosceles
triangle. All shapes were designed to have an area equal to that of an

0.06-inch-diameter circle.

The test program is shown in schematic form in Fig. 12. Note that the
testing was conducted in three steps: (1) Initial Characterization and
Screening, (2) Design and Operational Sensitivity, and (3) Fluid Pro-

perties Study.

For Step 1, seven shapes were fabricated with an L/D“ nominally equal
to 6.0, These orifices had sharp entrances. Hach orifice was cvaluatec
at 0, 50, and 100 psig backpressure over a pressure drop range from 15
to 60 psid. Gaseous nitrogen was used a¢ a pressurant for most of the
testing; however, two of the shapes were tested with helium. Manifold

cross velocity was set at zero and the water temperaturc was ambient,
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SEVEN ORIFICE SHAPES

C9rTLITIT

INITIAL CHARACTERIZATION AND SCREENING
CONSTANT VARIABLE MEASURE
L/ =6 AP ~15-65 PSID CD
. SHARP ENTRANCE BACKPRESSURE ~0, 50, 100
STEP 1 (RosS VELOCITY = 0 6N, PHOTO
| TEMPERATURE = AMBIENT  GHE (2 SHAPES ONLY)
FIVE ORIFICE SHAPES
@) —
DESIGN ALD OPERATIONAL SENSITIVITY B
CONSTANT VARIABLE MEASURE
AP = 20 PSID L/D =2, k4, 6, 20 Cp
step 2 | BNy BACKPRESSURE = CROSS VELOCITY =
100 FSIG 0, 5, 10, 20 FT/SEC PHUTO
| TENPERATURE = AMBIENT ENTRANCE, SHARP ROUND
THREE ORIFICE SHAPES
FLUID PROPERTIES
CONSTANT VARIABLE MEASURE
GNZ BACKPRESSURE = AP ~15-60 Cp
100 PSIG TEMPERATURE ~45-130 F
STEP 3 | CROSS VELOCITY =0
L/D = 6

SHARP ENTRANCE

Figure 1.

e e e - e

Single Orifice Cold-Flow Characterization Program
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Following Step 1, two of the shapes, the isosceles t-iangle and the diamond,
were eliminated from further study. This left five orifice shapes for
testing in Step 2. In Step 2, the orifice pressure drop was fixed at 20
psid, the backpressure fixed at 100 psig (GNZ)’ and ambient temperature
water cmployed, FRach orifice shape was tested at L/D's of 2, 4, 6, and
20 (sharp entrance) with cross velocities of 0, 5, 10, and 20 ft/scc.

e I./h = 6 configurations were axso tested with rounded entrances® at
cross velocities of 0, 65, 10, and 20 ft/scc. To test the effect of water
temperature on orifice coefficient, three of the shapes were sclected for
additional testing in Step 3 with water temperatures varied from 45 to
130 1. ‘The orifices were run over a pressure drop range from 15 to 60

psid,

he data and a detailed matrix of test conditions for cach run appear in
Appendix A, A discussion of the precision of the data is presented in

Appendix B,

The results are presented in graphical form, with appropriate discussion,
in sections which group tests together having common effects. These sec-
tions are (1) effect of pressure drop and backpressure, (2) effect of
cross velocity, (3) effect of entrance condition, and (4) effect of water
temperature. The effect of orifice L/D is not treated explicitly until
the section on recvaluation of orifice criteria. MHowever, the data for
various L/D's are presented as functions of cross velocity. (The effect

of L/D requires cross plots.)

Effect of Pressure Drop and Backpressure with

Gaseous Nitrogen Pressurant

For this study, the length-to-diameter ratio for all orifices was six.
All orifices had sharp cntrances and were tested with ambient temperature
water and zero manifold cross velocity. The experimental results for all

seven shapes are presented in Fig. 13.

*The radius of the rounded entrance was made equal to the orifice diameter
for the circular-orifice and equal to the orifice height for the noncircular
shapes.
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in Fig. 1%, orifice coefficient, C”, is plotted as a function of pressurc
drop across the orifice, AP, for backpressures of 0, 50, and 100 p=ia,
The data were taken with GN2 as the backpressurant., The data for each
shape are presented in two groups, open and closed symbols, Open symbols
are usrd to denote points which are assumed to be mupflipped". This dis-
tinction is not a clear one, and in many instances it is quite difficult

to choose points which are definitely "{1lipped',

[t i4 well known that the tendency for an orifice to flip is affected by
the backpressure into which the orifice is flowing, As the backpressure
is increased, the pressure drop at which hydraulic flip is first experienced
increases. Thus, the higher the backpressure, the less likely an orifice

is to flip at a given pressure drop.

It is ovident from the data in Fig. 13 that the circle was most affected
by hydraulic flip (or backpressure). ‘the circle shows the greatest dif-
ference in values of CD for flipped and unflipped conditions, Vor the
other shapes, the appearance of flip is not clear. For example, it is
doubtful whether or not hydraulic flip occurred for the diamond at all
over the range of variables tested. Similarly, the slot and the rectangle

produced results which are difficult to interpret.

Only two of the shapes represented in Fig. 13 show evidence of truc scp-
arated flow. They are the circle and the equilateral triangle. The other
shapes do produce what appears to be different levels of operation. llow-
ever, the valucs of the discharge coefficient at these '"other'" levels are
not indicative of separated flow. It may be that the shapes which did not
expericnce separation could be forced to separate at other operating con-
ditions than those tested under this program (for example, different
Reynolds No, or L/D), lowever, over the range of variables tested, ori-

fices other than the circle and equilateral triangle did resist separation.
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1t is interesting that an orvifice may "flip" from one operating level to
another and not experience simple flow separation or reattachment, This

is quite significant for injector orifice design, for the change of oper-
ating level is still accompanied by changes in the free-jet characteristics,
his could produce changes in mixing and atomization characteristics of

injector clements incorporating these orifices.

liffect of Cross Velocity, Sharp Entrances
Cross velocity was imposed on the orifices by a 0,34 by 0 34 in. 5q
piassage hehind the orifice. Orifices were oriented so that the cross

velocity vector was parallel to the largest axis of the orifice,

I'ive shapes were tested with cross velocity: (1) cirele, (2) square,

(3) rectangle, (4) equilateral triangle, and (5) slot.

Data for sharp entrance orifices is presented in Iig. 14 in which dis-
charge coefficient is plotted against cross velocity for each of the
length to diameter ratios studied. 'The values of 1/D quoted are nomi-

nal. All tests were conducted at a nominal pressure drop of 20 psid.

Iwo conclusions may be drawn from the cross velocity results: (1) dis-
charge coefficient decreases with cross velocity for all shapes, and
(2) cross velocity causes some of the orifices with small L/D's to both

flip and unflip.
Unstable flow (flip and unflip) is found with the circle at L/D = 2, the

triangle L/D = 4, the rectangle L/D = 2, and the square L/D = 2. The

slot did not show cvidence of instability.
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Lffect of Cross Veloeity, Reunded Fntrances
Orifices with 1L/h = 6.0 were tested with well-rounded entrances as well

as with sharp entrances, These orifices were tested at 20-psid pressure
drop with variable cross velocity. ‘The results of this test series are
shown in Fig., 154, Solid lines labeled "sharp'" are included for aach shape
to show the averape level ot the results for orifices of L/D ~ 6 wi th
sharp entrances, In contrast to the sharp entranced orifices, the ()“
values for the romded entrivices inereased with cross velocity, {(Discus-

vion of there offets are included below. )
Effect of Fluid Fomperature

To determine the effect 6f {fluid temperature on (:l)’ the circular, tri-
angular, and square orifices (sharp entrances, L/ o o) were tuested over
a significant pressure drop range with water temperatures of 45, 74, and
135 1 and backpressure = 100 psig (GNZ). These data are presented in
Fig. 15L. Within the precision of the experiment, no effect due to toem-
perature could be isolated. No attempt was made to determine the effect

of temperwture on orifice hydraulic flip characteristics.

Effect of Various Paramcters on Jet Appearance

One distinct trend in jet appearance was noted during the program. In-
creased agitation and early jet breakup were noted a- L/D was decreascd

as well as when cross velocities were imposed on the orifices. The most
disturbed jets werc observed from short orifices with high cross velocities.
Agitation was much reduced at a given set of operating conditions by round-

ing the entrance of an orifice.

To aid in interpretation of data, photographs at selected operating con-
ditions were tuken of the jets. The results of the photographic coverage
of the single orifice flow studies are presented in Fig. 16 through 19.

Each photograph shows the free liquid jet for a distunce of approximately

4 inches downstream or a free jet L/ of R0 for the circular orifices.
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Flow Characteristic of Noncircular Orifices With Variable

L/D” and (ross Velocity--Circle

Figure 16.
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I'low Characteristic of Noncircular Orifices With Variable

Figure 17,
1,/1)ll and Cross Velocity--Iquilateral Triangle
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Figures 16, 17, and 18 show the change in jet appearance produced by
changes in orifice L/D and manifold cross velocity for the circle,
cquilateral triangle, and the rectangular slot (aspect ratio = 8). 'he
backpressure was 100 psig and the orifice AP was 20 psid for all tests

represented in those figures. All orifices had sharp entrances.

Increased agitation and jet breakup are noted as cross velocity is in-
creased for any fixed value of 1/D, However, as L/D is increased, jet
stability is restored, Cross velocity has almost no effect on jet ap-

pearance at L/ = 20 for any of the three shapes shown ,

The "hrushy" appearance of the jets emanating from the shorter orifices
at all cross velocities indicate that these orifices are flowing 'full’
(i.e., not separated). This is attributed to the high backpressure (100
psig) and the low AP (20 psid).

The effect of backpressure upon jet appearance is shown in Fig. 19 for

the circle, square, and rectangle. For the tests represented, the orifice
AP was 50 psid, the L/D was 6 and cross velocity was set equal to zero.
All orifices had sharp entrances, LExamination of the various photographs
in Fig. 19 shows that all jets are quite similar jin appearance, regardless
of backpressure, except that from the circular orifice at a backpressure
of zero psig. All the other jets are "brushy" indicating that the orifice
cross section is flowing full, while the circular jet at Py = 0 is very
narrow, indicating separated flow or true hydraulic flip. This result

is very significant, It points out the fact that orifices can demonstrate
large changes of CD with backpressure, as shown in the orifice result
section, and still not exhibit true hydraulic flip. It must not, there-
fore, be concluded that an abrupt drop in the value of CD is proof that

the orifice has separated.

Comparison of the photograph of the circle with Py = 0 psig, AP = 50,
and L/D = 6 in Fig. 1o with that of the circle with Py = 100, AP = 20,
and L/D = 6 in Fig. 19 shows the difference in jet appearance between a

fully scparated and a fully attached flow condition.
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Discharge Coefficient Data Obtained With Actual Propellants

Discharge coefficient data were obtained with actual propellants. The
orifices tested were of circular cross section. One, tested with

N204, had a diameter of 0,0698 and an L/D of 8.81, while the other, tested
with UDMH~N2H4, had a diameter of 0.0616 and an L/ of 10.0. The tests
were conducted with zero cross velocity and ambient backpressure (i.c.,

0 psia). Results of these tests are shown in Fig. 20, These lines show
that the data obtained with actual propellants are predictable and, there-
fore, consistant with data obtained with water. It may be concluded that
the oxidizer orifice was flowing scparated over the entire Reynolds No.
range while the fuel orifice was in transition between attached and sep-
arated flow. The separation of the oxidizer flow at ambient backpressurc
is attributable to the high vapor pressure of the NIO (8 to 9 psia). High

vapor pressure causes hydraulic flip to occur at relatively low AP levels.

However, it may be noted that many of the data points for both sharp and
round entrances are of a CD level not predicted by the theory. These
points are found at lower values of Reynolds number. A probable cause for
these low CD values is heat transfer from the combustion chamber through
the injector face affecting nucleate boiling in the boundary layer at the
wall of the orifices. At the higher Reynolds numbers the cooling is suf-
ficient to prevent boiling and the orifices flow full. At low Reynolds
number, boiling is encountered and causes the flow to separate. It must
be remembered that low orifice Reynolds numbers are associated with low
chamber pressures. This fact amplifies the credibility of the boiling

hypothesis. The theories used are discussed in the following material.

4.2.2 CORRELATION OF ORIFICE DATA AND UPGRADING OF SINGLE
. ORIFICE EVALUATION CRITERIA AND TECHNIQUES

The objective of this section is to integrate the results of the separate
effects of various parameters on orifice coefficient into a meaningful
relationship and to mold these results into a form suitable for applica-

tion to injector orifice evaluation and design. The section is subdivided

into three parts.
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The first part, Orifice Coefficient Model, presents the development of a
combination unalytical and empirical model for the prediction of effects
of orifice shape, L/D, entrance condition, and Reynolds No, on the value
of the orifice coefficient. This model is suhsequently employed to cor-

relate the data,

In the sccond part of the discussion, Cross Velocity Model, is a model
developed to predict the changes to the value of CD effected by cross

velocity in the feed system.

Finally, in part 3, Application of Results to injector Orifice Design,
Sample Calculation, the results  of the models for orifice coefficient
are summarized in design charts for direct prediction of discharge cocef-
ficient as a function of L/D, Reynolds No., entrance condition, shape,
and cross velocity. Predictions ure valid only for orifices which are

full flowing (i.e., not flipned).

Orifice Coefficient Model

Regardless of the nlet conditions or the manner in which the boundary
layer develops at the entrance of an orifice, the discharge coefficient
of that orifice should approach, in an asymptotic fashion, the values of
CD predicted using pressure drops obtained from friction factor (pipe
flow) calculations as the length of the orifice is increased. Therefore,
a simple friction factor model should correlate well with CD results from
long orifices., On the other hand, boundary layer development theories

should correlate the data for very short orifices.

One approach to a unified description of the discharge characteristics
of an orifice would be to generate the two functional relationships for
CD; one relation for large L/D and one for small L/D., Oncc thesec two
relationships have been plotted, the solution for the intermediate L/D
orifices can be ohtained by constructing a smooth curve connecting the

two limiting solutions.
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In 1956, Rivas and Shapiro (Ref. 7) published the results of a theoretical
analysis of the discharge coefficients of rounded-entrance flowmeter ori-
fices. ‘Their work was limited to orifices of circular cross section, The
analysis of Rivas and Shapiro considers the development of a laminar houndary
layer at the entrance and along the length of well-rounded orifices., Rivas
and shapiro cast their boundary layer results into the form of an effective,
entrance friction factor and use this factor to evaluate the orifice coef-

ficient for short orvifices:

( . [ -l,_,.__.,._....., ( 4 )

£ J1+ T

whone

T = effective friction factor, nwi the same as standard friction
factor for fully developed flow

! . . . . e

Tl L/D + Leq/D = length to diameter ratio for the orifice,
length taken at start of cylindrical section plus an effec-
tive Leq/D to account for boundary layer losses in the
entrance scction

CD = orifice coefficient due to friction.

f

Nomenclature used by Shapiro and Rivas is explained more fully in Fig. 21,

~ L .
’QL

e T

EQ Boundary Layer

et L' -

Figure 21, Nomenclature of Rivas and Shapiro (Ref. 7)
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1 the contour at the entrance of a given orifice is not ideal and an

additional entrance loss is incurred, Rivas ! formiiation may be moditiced

in the following mamer tc incorporate this loss:

1
( o= e e T xs (
1 \/1 ' ,,.I-;
3 (: 4
).
o
whoere
(:l) s total orifice coetticient
Kl-‘ = entrance loss factor
(:l) » (:l) predicted by Reto 7 for wall frictional eitects only,
¢

The effective friction factor, f, as presented by Rivas and Shapiro, is

shown in Fig., 22,

23
22 |
21 /]
(g s i B
oo - —f
o L 2]
' ]7 THEORETICAL 4 / §
- ]6 b —— FOR nsv‘/ncvﬁ <103 — 3 4=
FOR ENTIAG INLET / &
15— —; |-
1h EXPERIMENTAL # —
x .
13 TR uuL- itk f[l
0% 0t w0 w02 o

LD
Rep

Effective Entrance Friction Factors (After Rivas

Figure 22,
and Shapiro, Ref. 7)

85

poy]




It is interesting to note that the correlating parameter is (L/D)/Re”.
A universal G, curve is presented in Ref, 7 and is reproduced below in

)]
Fig, 25,

l '0... lwhu.( DATA OF J, F.l QOWMIE SHITH
1 AND S, STEELE
0.8 e R
[ 1" LE - 0,74
a 0 .6} TroneTica cunvi Oy
g
oY T I N R
0.2 1~ - {‘r\—#—
0 AT nuuul 1 uunub
-3 -2 -1
10 10 10 10 10

VITo/ VRES

Fipore 2%, Universal Orifice Coefficient for Welt Rounded
Entrances (Af'ter Ref, 7))

This "universal curve is only universal if the fully developed fiow pro-
jeeted for a very long orifice is laminar, That is, the flow must approach
Poiscuille flow, for which T = %%-in long orifices. 1t is casily shown
that this curve will not be applicable to long orifices with projected

turbulent flows.,

In the high Reynolds number regimc;\/%é%~ceuses to be a universal parameter
because there is no longer a unique relationship between friction factor
and Reynolds number. Thus, different results are obtained depending on
whether length or Reynclds number is the variable. 1f both Reynolds num-

ber and L/D are varied, a complex relationship would develop.

Results of a sample calcnlation using this approach appear in Fig. 24.

Jour curves are presented. Cne is the "universal' curve, which should be
applicable to short orifices or orifices operating at low Reynolds numbers.
Another curve is for a fixed Reynolds number of 23,000 with L/D varied and
the final curve is for a fixed Reynolds number of 1000 with variable 1./D,
These latter curves were computed using standard friction factors, For
this plot, the characteristics dimension for the noncircular orifices is

the hydraulic diameter.
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Also plotted in Vig.24 arc the data from the well-rounded orifices (L/D +
) of the five shapes testaed at Vc S0, and data taken by Riebling at JPI,
(kef. 8) tor micro slots (L/D = i0.3, t - 0.00%, A = 33), ‘lThe theory of
Shapiro scems to fit all these data quite well exeept the slot which is not
shown. fowever, the slot was operated at a Reynolds number of 10,000 based
0 H“, Lut 20,000 hased on the thickness. 11 may be that the thickness
wias more important here than the hydraulic diameter. Riehling's data runs
{rom Reynoids No, 760 to 8500 based on t, or roughly 1520 to 17,000 bhased
on hydraulic diameter, i data correlates gquite well based on hydraulic

diameter,

Lo appears that the best procedure Cor pradicting ('.“ is to first deter-
pmoae the Revnolds number at which a piven orifice is to he operated, then
compute Shapiro's universal curve as well as o curve bascd on simple frice
tion for various L/D's.  1f the /D of the orifice places its value of
\/Eég to ile right of the intersection of the two curves, then use the
simple friction factor value; if the point is to the left, use Shapiro's

value,

A simple extension of the model developed for rounded entrances is used

ta correlate the data from sharp edged orifices. ‘'The flow field is broken
into two repions: (1) an entrance region in which the flow suffers a
stundard entrance loss (separated region), and (2) a full flcwing region
at the start of which the boundery layer begins to grow. The L/D in the

frictional caleulations must be reduced by the entrance length (L/D)e.

7f it is assumed that a standard entrance loss coefficient, K, is appro-
priate, the prelicted values of orifice cocfficient would be given by

Eq. 6 below,

e .
CD ?-\/*;"*; - ) r(]_‘- B ',-L-) ) (0)
' Ii "D e

3R




in the equation used to generate the curves in Fig., 25, Ky = 0,1 The

same three curves given in Fig. 24 are given in Fig. 25, only with KF =

0.5 and %-&.%4~ %3 . Recall that for the solid curves, Reynolds number
is tixed while 1./D is the variable,

The data for L/D = 6 and 20 orifices with sharp entrances arc alsao shown
in Fig. 25, Only L/D = 0 and 20 data were sclected for correlation in
Fig. 25, because of the unpredictable nature of the discharge character-
{otics of orifices with L/D <06, This uncertainty is cvident in the sum-
miry of C“ versus L/ presented in Fig, 20, 1o Fig,20, the values of

“D are plotted versus L/D (ncetual) for cach of the five shapes. The solid
curves on cach plot are the predicted functional relationships between Cn

and 1L/D with K, o+ 0.5 and 0.7. Hydraulic flip problems encountered with

I
orifices with 1L/h -0 render their charact eristics highly unpredictable,
For the noncirenlar orifice, it appears that a value of KF = 0,7 18

appropriate,

As shown in Fig. 26, the discharge cocfficients for orifices with L/b>6
arc well approximated by the orifice modcl. Values of CD for L/D = 20

fit quite well, The Reynolds numbers of each flow measurement correspond
closely to those of the curves nearest the points, For cxample, the slot
was run at Reynolds No. = 10,000, Its CD is well predicted by the simple
friction factor curve for Re = 10,000, The Reynolds numbers for the other
shapes lie between 15,000 and 206,000, 1: appears that they, too, are on
simple friction factor curves, From Fig. 26 it appears that the L/D~20
orifices were operated in the transition region between Shapiro's entrance
theory and simple friction factor theory. Had these orifices been tested
with larger L/D's, it is expected that their data would have followed the

simple friction factor curves.
On the graph for the circle in Fig. 26 additional correlations arc plotted

for both detached and attached flow. Briant's data for short orifices

(Ref, 9 ) and Acrojet's correlation for detached flow in short orifices
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(Ref. 10) are shown. Acrojet's correlation is only valid for orifices
with L/D ~ 3., One "flipped" point at L/D = 6 from this program scems to

provide a logical extension of Acrojet's correlation to L/D = 0.

Cross Velocity Model

The most interesting effect of imposition of cross velocity is the reduc-
tion of CD with cross velocity for sharp entrance orifices and the inerease

of CD with cross velocity for rounded entrance orifices.

A crude model can be postulated for the effect of cross velocity on ori-
fice coefficient employing qualitative reasoning, Suppose that the "true"
value of CD is really unchanged by the cross velocity, and only the appar-
ent CD varics with cross velocity because the actual AP across the orifice

in unknown,

The simplest description of the actual pressure drop would entail the
assumption that the upstream pressure is equal to the static pressurc in
the manifold plus the velocity head for the round orifice (i.e., stagna-
tion pressure) and less the velocity head for the sharp orifice. This

can be expressed in equation form as follows:

‘b, ov 2
— = 1 & = (7 )
o \ AP

where

CD = apparent CD computed directly from test data

A
CD = actual CD at zero cross velocity (a constant)
ZXPq = measured AP computed by subtracting downstream stagnation

pressure from upstrzam static pressure

a2




2
LV T = kinetic pressure in the cross channel upstream of the
orifice

The plus sign would be used with rounded entrances and the minus sign

with sharp entrances,

To checl this model, nll cross velocity data (C”) atr 1.,/ = 6 were normal-
ized by dividing cach U” valne by the C” found at 10 t/sec with an average
straight line fit for each shape, The parameter Cn/ﬂn]” wis computed for
hoth round and sharp data.  These parameters are plotted versus cross veloo-
ity in Fig. 27. Since C“/CDIO # 1 at VC = 0, an appropriate miltiplier

wins applied to lq. 7 to best fit 7?}\0”}th:l. The value of ((“)/<q,]();v‘i = ()

was then maltiplied by /1 t ‘,,pV(__"//\I‘S to produce the solid curve on cach
graph.  For such o crude analysis, it corrclates the data very well,  For
all the points in Fig. 27, APS was approximately equal to 20 psid.  Thus,
iq. 7 may be used to estimate the "apparent' dischorge coefficient as u
function of hoth cross velocity and level of AP for sharp and well-vounded
entrances. However, it must be emphasized that there are additional effects
for orifices which are not perpendicular to the manifold channel as well

as entrance conditions which are neither well rounded nor sharp. lLquation
7 is far from being all encompassing; it does, however, show roughly how
the sensitivity to cross velocity would vary with AP level. At very high

AP's, the effects of cruss velocity would damp out.

Improved Evaluation Criteria

Summaries of results of the orifice coefficient models which have been
discussed appear in Fig. 24, 25, and 26. Predicted values of orifice
coefficient are plotted as functions of orifice L/D, Reynolds number and
the parameter L/D/Re in Fig. 28 for round entrance orifices and Fig. 29
tor sharp entrances. The Reynolds number is based on the hydraulic diam-
eter, making these results applicable to orifices of arbitrary shape.

The effect of cross velocity on orifice coefficient is shown in Fig. 30.
Orifice coefficient, normalized with respect to its value at zero cross
velocity is plotted as a function of manifold kinetic pressure divided

by the static pressure drop across the orifice.
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Figure s0, Effect of Cross Velocity on Orifice Coefficient
(Normalized) for Ovifices Normal to Manifold Only
{Attached Flow)
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4.2.3

These functional relationships between orifice coefficient ! the physical
parameters involved provide tools upon which to base a reevaluation of ori-
fice shupes. Using the data in Fig, 28, 20, and 30, a wore realistic conm

parison may he made of circular and noncircular orifices.

A final comparison of the orifices was made with the assumption that the
orifices were of the same arca, Fig, 41, same L/, and were being operated
a1t the same flowrate. As a standard, the circle was assigned a Reynolds
No. of 20,000, ‘The results of this calculation are presented i Fig, Al
Discharge cocfficient is plotted as a fapction of shape factor, which is
the ratio of the digmeter of a circle to the hydranlic diameter of an
arbitrary shape with the same arca as tne cirele, The roesults of the
comparison show that the cirvele produces the highest C while the slot
produces the lowest,  However, the important conchusion from Fig, 31 must

be that the differcuces between the various lil) vialues are gquite small,
SINGLY ELEMENT STUDY

Mixing

Cold-flow experiments were conducted employing several nencircular cle-
ment shapes as well as the standard circular unlike doublet, The objec-
tive is to determine optimum design criteria sc that optimally designed
noncircular element mixing characteristics could be compared to an opti-
mally designed circular unlike-doublet clement. An additional objective
is to determine the sensi<ivity of mixing to variations in orifice L/D,

cross velocity, total injected momentum, and entrance condition.

In general, the parameters influsncing the mixing characteristics for

injector clemerts are:

) : L , ,
Noix = f(D’v’Dl/DZ’wT’Vl/VZ’U'B’D‘X’Y‘Vc' physical properties) (8
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where
b = oprifice diameter
v = 1injection velocity
0 = impingement angle
8 = fan cant angle between spray fans
%~ = orifice length to diameter ratio
X,Y = spacing between elements, or spray fans
QT = total flowrate level
VC = manifold cross velocity
1,2 = fuel and oxidizer

The particular importance of each of the above parameters on the mixing
characteristics depends largely upon the particular clement type. Rupe
(Ref. 2) evaluated the effect of V and D upon mixing for unlike doublets
and found that for optimum mixing the following equality must hold.

v 2D, = 0v,% D, (9)
or
DEF .
N = — = 0.5 10)
V1 By
1+ 5
PV, Dy

For Rupe's study, only single elements were utilized with large L/D's pro-
ducing fully developed turbulent flow at the orifice exits. Consequently,
he above equation applies to *the local mixing of a pair of uniformly turbu-
lent impinging unlike-doublet jets. Nurick and Clapp (Ref, 11 ) have shown
the importance of B, X, and Y on the mixing characteristics for multielement

iike-doublet injectors.
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Unlike-boublet Elements. Tor the unlike impinging jet clements, it was

assumed that the equation developed by Rupe of circular unlike doublets
would still apply. lowever, the characteristic dimension instead of being

diameter would by hydraulic diameter. Or

Ny (11)
1+ £
Y
Yo
where
i f Ve
) = =, dynamic pressure ratio (12}
PV -
o o
) = density
= iet velocity
Dg
(B—) = hydraulic diameter ratio of the orifices
o'H
o,f = oxidizer and fuel, respectively

For circular orifices, in terms of engine operating specifications, Eq.11

is:
N = L (13)
2p D \3
1+ (1._) _0_(..0_)
MR pf Df
where
MR = mixture ratio
Do/Df = orifice diameter rutio

Because MR and 0 are fixed for a specific propellant combination, the
only remaining variable for circular orifices which can be perturbated

to produce an optimum value of N is the diameter ratio.
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For noncircular orifices, an additional degree of freedom can be obtained

in Eq. 11. This is illustrated by rewriting Eq. 11 in the following form:

N - T (14)

] b~ A
(il (7
MR Af‘ I)f I ‘f‘

where
A - orifice aren

For noncircular orifices, the arca ratio of the orifices is not equal to
the hydraulice diameter ratio, Conscquently, both the arca ratio and hy-
draulic diameter can be varied independently to obtain an optimum value
of N. ‘'This equation is reformulated in Appendix C in terms of the aspect
ratios of the orifices. "The resulting equation for equal contact dimen-

sicn is of the following form:

N = f£(K, ARg, AR)) (15)
where
Kk = MR% o0
f o
AR* = aspect ratio

The specific objective of the unlike-doublet experimental evaluations is,
therefore, to determine, for noncircular orifices, the valve of N producing

optimum mixing and the corresponding aspect ratio for each element pattern.

*Sec Appendix C for a definition of Aspect Ratio.
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The optimum value of N was determined by conducting tests over a Tange of
mixture ratio for several differing aspect ratios with equal contact dimen-
sions for the noncircular orifice elements, Four basic clement configura-

tions were cvialuated., These were the following:

O 1 A Y e
Circular Rectangular Triangular Rectangular/Triangular

and the specific element dimensions were those listed in Table 20.

The mixing results for the various aspect ratio designs over a range of
UN" (i.c., MR) are shown in Fig. 32 (see Table 19). The data are pre-
sented in terms of Em and N for each aspect ratio element design. The

term Em is defined as:

Nv‘le-r) Now, R-T)
En = I‘ZT ZF(R-l) (e)
1 T 1 T

where
wi
- = mass fraction in ith tube
T
R = ratio of total oxidizer to total flow
ri - ratio of total oxidizer to total fiow in ith tube for ri< R
;i - ratio of total oxidizer to total flow in ith tube for ri> R

This expression was first defined by Rupe (Ref. 2). It represents the
sum of the mass weighted deviations of the mixture ratio from the overall
injected mixture ratio. In a sense, it is a special type of standard
deviation. Both hot-fire and cold-flow evaluations at Rocketdyne (Ref.
12, and 13) have shown that Em is an excellent measure of the uniformity

of the mass and mixture ratio distribution.

103




Suauatg I0123{U] JBITDITIUSY

TATIANT

1376000 IN1INQ YYTNINY [ ¥1/YVININYLIIN °p
N
. N- m.c MQO —co
i : 1 0S
1 NOiIVENO14NOD

!
¥ NOI1V¥N3I14NOD

o/

g My

06

N
60 L0 "0 £°0 1°0
3 — 09
@ NOILV¥ND14NOID
i

0L m
4 %
e

— 3 zo_h<m3a_mzou|l \ 06

a zo_h<¢3u_wzou.L

2 Ie[noat) pauSisag oriey 1dadsy [BISASS 10F A3 TWIOFTU[ BUIXT)y

13716700 NEIND YVTININVIYL °2

N £ 1°0
6°0 L0 $°0 ‘0 )
= T as
ﬂ NN | 1V¥N9 | 4NOD
L — i NOILYYM13dNO0D
_ ol 5™
NNW o
H zo_»<¢:a_uzou 06
1379005 INEINR MYINNED °®
N
6'0 L°0 50 £°0 1°0
oS
|
_ ol x
v zo.#<¢=u_uzou_
|
j | 06
uuw\pm 0 -aw
1

*ZS aIngvi

104

Yi




Note in Fig. 32 that the triangular, rectangular, and circular clements all
optimize at a value of N of 0,5, while the combination rectangle/triangle

clement resulted in a differing optimum for cach aspect ratio design. The
fact that the rectangular and triangular clements all optimize at a single

value considerably simplified the determination of the optimum designs.

As shown in Appendix € for the rectangular and triangular clements, the

optimum aspect ratios for NT0O/50-50 propellants at a MR = 1.6 are:

Rectangular lLlement Optimum

AR, = 2.3

1’.
AR 3.2
o

n

Triangular Lilement Optimum

ARf = 0.7

AR
0

f

1.0

These values are very close to configurations D (rectangle) and F (tri-
angle). The rectangle/triangle configuration was dropped from further
evaluation because (1) it did not appear to affect better mixing charac-
teristics than the rectangular pattern, and (2) imore configurations would

be required to determine the optimum aspect ratio.

Several other variables which can effect mixing (Eq. 8 ) were also studied.
These additional variables are manifold cross velocity (VC), orifice L/D,
entrance condition, and total momentum (i.e., flowrate). Manifold cross
velocity and L/D effects were studied utilizing configurations "A" (rircle),
"D" (rectangle), and "F" (triangle). These configurations represent the
designs which most nearly represent optimum aspect ratio configurations.

For the cross velocity study, the nominal orifice L/D's were about 5.0 to
6.0. The specific L/D for each, used in all but the variable L/D test,

are listed below.
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ORTFICE L/D's FOR '\/C LAPERIMENTS

Configuration (L/D)ox (L/D)fucl

A 4.43 5.17
D 5.63 6.18
I 5.80 6,87

Manifold cross velocity was varied from 0 to 20 ft/scc utilizing cach of
the above elements and the overall spray mixing uniformity determined. The
results arc presented in Fig. 33. These results, obtained over the above
range of VC, show that no substantial effect of cross velocity on mixing
was found. For instance, for the triangular element, over the entire
range of VC, mixing uniformity for the rectangular element varied only

by about 5 percent, decreasing with increasing cross velocity. The circu-
lar element appeared to be most sensitive, varying by 8 percent in Em.

It is important to note that these experiments were conducted at ambient
backpressure and at these conditions the orifice CD at zero cross velo-
city is on the order of 0.7 for the rectangle and triangle, and 0.6 for
the circle (oxidizer orifices). For the rectangular and triangular con-
figurations, these values represent jet flow which is attached, but the
jets tend to be somewhat bushy at the orifice exit. For the circular
orifices, this condition represents fully separated flow., It was shown

in the single orifice study that cross velocity can cause a separated
orifice to attach; however, the resulting jet tends to be bushy with

considerable breakup occurring near the orifice exit.

In additior. the jet direction at the exit is altered as was shown in both
the orifice study of this program and that of Ref. 10. Consequently, it
is difficult to intuitively judge whether this type of phenomena wiil in-
crease or decrease mixing. The results suggest that for the circle and

rectangle the overall effect was to decrease mixing uniformity.
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Figurc 33, Mixing Uniformity (Ep) as a Function of
Injector Design and Operating Variables
for Selected Circular and Noncircular
Unlike-Doublet Elements (Simulants:
Trichlorethylene/Water)
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A more surprising result was obtained at zero cross velocity for fuel L/D's
of from 5 to 10 and ambient backpressure, ‘The results arce shown in Fig. 33,
Note that for the circnlar element, wixing was considerably higher (~17
percent) for the short L/D than for that obtained at an L/D of 10.

The specific measured € 's for both the fuel and oxidizer orifices are

A
listed below,

C“'s Obtained During L/n Study

riéu;i;;rution (L/“ioxidizor (L(“)fup{ ('(:I))oxid'iy,vr((:l))hw]1
A 8.6 10, 0.69 (1,69
O 4.3 5.2 0.59 0.606
b 10.9 12. 0.71 0.76
(] 5.6 6.2 0.63 G.66
F 11.3 13.3 0.71 0.76
A 5.8 6.9 0.76 0.7

Inspection of the table shows that the circular orifice had the shortest
L/D's and produced fully separated flow (CD = 0.6) at the short L/D con-
dition. Also, the rectangular element at the short L/D condition (CD =
0.63) appears to be separated. Note that these two patterns showed an
effect of cross velocity on mixing uniformity while the triangle did not.
For zero cross velocity, both the triangular and rectangular elements pro-
duced a decrease in mixing uniformity with decreased L/D. For the circle,
however, fully separated flow resulted in about a 17 percent increase in
the mixing uniformity over that obtained for "quasi-aitached" flow. This
significant variation in Em illustrates that the circular clement mixing

uniformity is much more sensitive to L/D than that for noncircular orifices.
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Cold-flow mixing experiments were also conducted for sceveral manitold

and orifice entrance conditions. in addition to the sharp eniry desipn
discussed above (configuration A), the entrance was rounded,  Also, for
the sharp entrance condition the manif{old entrance port wae enlarged,
thereby reducing the manifold velocity entering to the orifice. lor casy
comparison, these results are presented in Fig. 34 along with the resnlts

obtained over the flowrate range of about 0,075 to 0.4 I1hm/see.

V. = 0 FT/SEC | l
" L/D ~ ‘OL ~ROUNDED ENTRANCE
e O i Sﬁ ' —SHARP ENTRANCE
. B : (LARGE MANIFOLD
(8
W I T ENTﬁX'ﬁORT)
CIRCULAR UNL IKE DOUBLE l |
(HOT-FIREJlNJECTOR) l “CONFIGUR?TION A - SHARP ENTRANCE
60 |

0 0.1 0.2 0.3 0.4 0.5
TOTAL FLOWRATE (W_ + W), LB/SEL

Figure 34, Mixing Characteristics for a Circular Unlike-Doublet Injector
Over a Range of Total Flowrate and Comparison With Various
Entrance Configurations

These results show that the circular element is extremely sensitive to
variations in the manifold configuration. Note that a 6 percent increcase
in Em occurred when the entry to the orifice was rounded. Also note that
a 3 percent increase in Em occurred when the manifold entry port was en-
larged. These results certainly emphasize that cxtreme caution must be
exercised in the design of the orifice marifold and orifice entry

configuration.

ﬁglf-Atomizing tiozzle Elements. In addition to the unlike impinging doublet

patterns, two types of self-atomizing nozzle elements werc evaluated; a
hydraulic swirl and a fan nozzle configiration. Both the hydraulic swirl

and fan element designs were described in Table 18.
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For the self-atomizing nozzle, five parameters were cevaluated: (1) fan
impingement angle, (2) spacing between funs, (3) relative fan width, (4)
total momentum, and (5) momentum ratio, ‘Total momentum was studied hy
variations in total flowrate, and momentum ratio was investigated by varia-

tions in mixtare ratio,

The hydraulie swirl element results are shown in Fig., 35. For the hy-
draulic swirl design, note that the fuel and oxidizer nozzles are scparated
by 0.5 inch and then the elements canted () toward cach other from 0

to 76 deprees,  As shown in Fig, 34, mixing is exceptionally low (Hm =

A% percent) over the entire range.  As g oresult, this clement was eliminated

from further study.,

The results obtained over a range of cant angle using two configurations
of the fan nozzle employing equal orifice size elements are also shown

in Fip, 35. 'The specific orifice dimensions for this design are 0.002
for both orifices. The mixing characteristics, for hoth a 1-inch and
0.5-iach spacing between the oxidizer and fuel nozzles, were evaluated
over a range of cant angle (B) from zero to 75 degrecs. For both config-
urati-ns, mixing improves with increasing § angle until about 50 to 60
degrees and then tends to slowly decrcase. The 1.0-inch spacing injector

element is about 4 percent higher in mixing uniformity.

In addition to equal sized orifices, the influence of relative fan width

on mixing was also studied. Variation in the relative fan width was accomp-
lished by using fan nozzles of differing sizes. The specific design
utilized a 0.062-inch fuel and a 0.072-inch oxidizer equivalent diameter
self-atomizing spray fan nozzle. For this specific design, experiments

were conducted over a range in mixture ratio and total flowrate. The

results are shown in Fig. 36. First, comparing the values of mixing
uniformity at « mixture ratio of 1.6 for the equal and unequal sized orifices
shows that changing the relative fan width from other than 1.0 resulted in

a substantial loss in mixing uniformity; about 13 percent in Em‘ This

result clearly demonstrates that the self-atomizing fan injector is extremely
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Figure 35. Mixing Uniformity (Ep) as a Function of Injector Design
Parameters for Several gelf-Atomizing Nozzle Injector
Elements Using liqual Nozzle Sizes

(Simulants: trichlorethylenc/water)

11




L& I N

CANT ANGLE = 60 DEGREES
SPACING = 0,5 INCH
60 —— W [ E—
v ‘-\
A -~

50 |— e

0.5 Ilo I.s 2.0
MIXTURE RATI10

EQUIVALENT | *
ORIFICE DIAMETER |

OXIDIZER | 0,072 INCH
70 FUEL 0.062 INCH

O~
60 /;j”””—_'——__—

“.E / MR = 1.6

50

o

0 0.1 0.2 0.3 0.4 0.5

TOTAL FLOWRATE, LB/SEC
*See Table 18

Figure 36, Mixing Characteristics for Self-Atonizing Fan
Injector Utilizing Unequal l'an Nozzie Sizes
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sensitive to the relative fan width. 1In addition, note .hat the mixture
ratio trend shows that Hm increases until a mixture ratio of about 1.6
and then tends to decrcase. This variation in mixing uniformity is about
cqual to that for the circular unlike doublet, llowever, note from the
plot of total flowrate versus En that at low values of total flowrate
there is insufficient momentum for the sprays to accomplish a high degree
of mixing uniformity. In fact, the overall drop in E_-over the range in
total flowrate from about 0.4 to 0.075 is 25 percent in “m’ The mixing
aniformity for this injector pattern is much more sensitive to total in-

jected womentum than {he cirenlar unlike doublet,

Comparison o Mixing Chnrpﬁlgyist{gi¥fur Gireular and Noncireular Elements,
Comparisons of the injectors are made for the optimum configuration for
cach injector element type. Tor the unlike doublet elements, the optimum

configurations were:

1. Circle--Configuration A
2. Triangle--Configuration F
3. Rectangle--Configuration D
and for the sclf-atomizing fan injector:
Relative Fan Width = 1.0
Spacing, inch = 1.0

Cant Angle, degrees = 60

The comparisons are made in terms of both the mixing uniformity (Em) and

the mixing limited * cfficiency (nc* mix). Values of Em and N, can be
found for each cold-flow experiment in Appendix A, Table A-3. The mixing
limited c* efficiency is obtained from input of the specific spray distri-
bution into a mixing limited combustion modcl. The model is based on a
streamtube analysis and requires knowledge of the mass and mixture ratio
disttibution throughout the spray field, A complete derivation of the
streamtube model can be found in Appendix J of Ref. 13, The general features
of the analysis are as follows: consider the rocket engine to be divided

into N-imaginary streamtubes; also consider that complete vaporization
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is accomplished in the combustion chamber for cach streamtube (bascd on
the flow conditions of that tube). The combustion gases of each stream-
tube then expand isentropically through the nozzle. It is assumed that
no intertube mixing, either thermal or chemical, occurs between adjacent
streamtubes, and pressure continuity is maintained at each transverse
station in the nozzle. Chamber pressure, throat area, contraction ratio,
and propellant distribution are specified. The static pressure at the
throat and the total propellant flowrate are determined by an iteration

Process.

The result of this derivation in terms of c* efficieney is:

100 © Ars
,dist = oF (Mpi) (C*i) A;T (17)
i

=
*

theo i

where
c*theo = theoretical shifting c*
MFi = mass fraction in ith streamtube
c*i = theoretical shifting c* based on flow conditions in ith tube
Ati = area of ith streamtube at the geometric nozzle throat
A* = area of ith streamtube at the sonic condition

From Eq. 17, the loss in c* efficiency caused by propellant maldistribu-
tion is determined by summing the mass weighted c*i associated with each
streamtube multiplied by an area correction factor. The Ati/A*i factor
is a correction to account for the shift in the location of the sonic

point resulting from changes in the specific heat ratio.

In Fig. 37a, the mixing uniformity (Em) is plotted as a function of the
mixing parameter N. For N = 0.5, these results for the unlike doublets
show that the pattern producing the most nonuniform spray pattern will
be the circular elcment (Em'~70 percent), then the triangular eclement
(Hm1~80 percent). The highest mixing uniformity was produced by the rec-

tangular clement (hm'~86 percent). All unlike doublet patterns scem to
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be equally sensitive to N for values less than 0.5 and the noncircular
patterns are more sensitive to variations in N for values greater than 0.5,
A1l unlike-doublet patterns produce cqually uniform sprays at a value

of N equal to 0.63. Because variations in N for cach specific design were
obtained by varying mixture ratio only and not hydraulic diameter, the fan
results can be presented on the same plot (1t should be remembered that

N may in itself not be a valid parameter for this clement). The fan in-
jector resuit shown in this figure is plotted at a value of N equal to

0.5 which corresponds to the mixture ratio of 1.6 for all designs. Note
that the fan design produces mixing uniformity between the circular designs

and the noncircuiar doitblet elements.

In Fig. 37b the same results are presented in terms of the predicted over-

all mixing c* efficiency (n_..). Note that identical trends for the unlike

doublet designs are shown fZ;Xnmix and Em as a function of N. However, the
magnitude of the differences is somewhat less. At a value of N = 0.5, the
triangular element should produce an increase of 5-percent c* mixing per-
formance because of improved spray uniformity over that obtained for the
circular element, while the rectangular element would result in about a 7-
percent increase in c¢* performance. The fan injector shows that the mixing

limited c* performance is about 3-percent greater than the circular design.

For convenience, the results shown in Fig. 38 are summarized in bar chart

form below.

10

I\l
.3

(7 Lement™c1reLe) » PERCENT

7NN

FAN JA

Iligurc 38, Comparison of Mixing lLimited ¢* Performance
Improvement by Noncircular Orifice Elements
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Atomi zation

The objective of the atomization study is to compare the atomization char-
acteristics obtained with circular and noncircular orifice elements designed
for optimum mixing. Therefore, atomization experiments were conducted

employing only the following unlike doublets:

1. Circle--Configuration A
2. Triangle-Confipuration F
3. Rectangle--Configuration D

Because little data were avallable for the self-atomizing nozzle designs,

several such nozzles were cvaluated.

Cold-flow tests were conducted utilizing noncircular and circular eclement
injectors to determine atomization characteristics over the range of operat-
ing conditions. A tctal of 89 experiments were conducted. A tabular sum-
mary of each experiment is included in Appendix A. Note that the dropsizes
are presented as the mass median dropsize (D) This droplet diameter is

the size in a given sample for which half the sample weight is made up of
droplets of large diameter and half the same weight is made up of droplets
of smaller diameter. The mass median diameter was chosen rather than some
other arbitrary statistical dropsize diameter (i.e., volume mean diameter,

DSO’ etc.) because the data were determined by sieving, which gives'ﬁ directly.

In general, dropsize in the absence of an imposed gas flow field is a func-

tion of:
D=f (D, V, D /D¢, V Ve physical properties) (18)

where

D = characteristic orifice dimension

V = injecter velocity

¢ = dynamic pressure ratio (pfvfz/pcvoz)

p = density

o = oxidizer

f = fuel

In a rocket engine, in addition to the above terms, considcration must be
given to the relative gas to droplet velocity which can cause secondary

atomization.
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nlike-houblet Elements.  For anlike impinging-doubict clements of fixed

impingement angle, cold-flow dropsize is proportional to:

b= f (b, V, Dl/Dz, V]/VZ’ ratio of physical propertics)
For fixed orifice sizes this reduces the variables to

DT (V'I/VI’_' v, ratio of physical propertices)

A prior study, Ref. 14, has indicated that the  paramerers should he

grouped in the following manner:
Do (9% V)

To determine the dependence of dropsize on these parameters for the unlike
circular doublet, atomization experiments were conducted over a range of
injection velocity and ¢. The atomization results obtained for the unlike-
doublet elements arc shown in Fig. 39 and 40 in terms of injection velocity,
and ¢. While considerably more data points were obtained than actually
shown in thesc charts (Table A-4 of Appendix A). sclected points at near
constant ¢ were chosen for presentation. Becausc data were obtained at
various values of ¢, a plot of the entirc data set would tend to be con-
fusing. Note that for ¢ of 0.46¢ and 1.1, the dependency ot dropsize on
velocity arc similar. Illowever, the level of dropsize is considerably
different. The entire set of data was input into a regression analysis
program of the form D = K¢"/V™ and the values of K, m, and n determined.

A plot of the results are shown in the lower plots of Fig. 39 and 40 for
the fuel and oxidizer, respectively. The cquations best describing the

results are:

0.41
nel: Dy = 4 (0~ :
Fuel: ]Jf = 1.53 x 10 098 (19)
v
f
. -0.32
o - , A ()
2% - ) S e -
Oxidizer: DO 2.1 x 10 v T (20)
0

T
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11t should be noted that the above equations are not general in terms of
diameter ratio or element size, but are specific to the actual elements
cvaluated, Inspection of the equat ion illustrates that the fuel dropsize
is almost totally dependent upon the oxidizer velocity while the oxidizer
dropsize is almost totally dep.ndent upon the fuel, That s, L. 19

reduces to

RS
1 as w107 -!'
. f)()
D, = - T (20
{ 0 2 ‘
V. 6 v 0.8
{ 0O

The velocity dependence for the fuel dropsize diameter is somewhat dit-
Fevent than that provionsly assamed in the preliminmy cvaluation, which
wis obtained Crom the Rely 13 rtudy. However, the Ref, 13 equation wis
penerated with only a minimm of data and could coneeivably he in error,
The oxidizer dropnize result in in ennential apreement with that riven

ill RM’. |.“),

The results for the noncireular unlike-doublet elements are presented in
Pip. 41, DBecause ol program limitations, data were generated only at

a constant value of ¢ for these patterns. Note, however, that the slope
of the lines in the high velocity regions are nearly identical to that
found for the unlike doublet. in addition, for a valuce of ¢ =1.0, the
dropsizes for the fuel and oxidizer for a specific clement were jdentical
at the same injection velocity. if the circular doublet oxidizer and fuel
dropsize diameters for ¢ = 1.0 are compared, the same trend is found.
Because of the similarity of these results, it is assumed that the depend-
ence of dropsize on ¢ for the noncircular elements is identical to that

found for the circular clements.

Self-Atomizing Nozzles. 'The cold-flow atomization results for the self-

atomizing nozzles arc presented in Fig. 42. Five spray fan types with
different orifice sizes were ¢ aluated over a 30- to 345-psi AP range,
d-pending upon the element size. ‘The largest size fested (cquivalent
orifice diameter = 0,072 inch) resulted in mass mean dropsize (D) from
265 to 435 microns over the AP range ovirluated.  The smallest nozzle
produced T values of nominally 100 microns. intermediate dropsizes were

measured for the remaining spray fan nozzles.
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The swirl-type nozzle atomization results are also shown in Fig, 4.,

The dropsizes varied from 150 to 315 microns for all five nozzles over the
entire AP range., The mechanical-type swirl nozzle produced dropsizes
slightly larger than that found for the hydraulic swirl nozzles. Note

that the dropsizes produced by the swirl nozzles tested were relatively
inscensitive to the physical orifice size.  The swirl nozzles do not appear
to have any significant advantage over that found for the fan-type nozzles,
and in addition, the swirl nozzle designs are considerably more complicated
in design than the simpler fan type,  Consequently, the swirl nozzles were

eliminated from further study.

Comparison of Atemization Characteristics for Cirenlar and Noncircular

urjfices. Comparison of dropsizes is done on the basis of cold-flow

measured wax dropsizes. Because atomization by all of the unl)ike-doublet
elements is dependent upon ¢, a comparison of thesc elements must be accom-
plished at a value of ¢ corresponding to that occurring at a mixture ratio of

1.6. For these designs, ¢ can be determined from rearrangement of Lq. 11.
d

o= [x- | a%” (22)

Recause all elements werce designed for N of 0.5, then

, at optimum design based on mixing uniformity.
I

D-‘CL
4 o

For the various elements, this ratio is

e ati /a
Configuration (do, f)”
Circle .14
Triangle 1.17
Rectangle 1.13
L. _ I U —

Note that the hydraulic diameters arce nearly cqual and therefore the com-

parison should be made at near identical values of ¢.
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Qualitative comparisons of wax dropsizes provide a relative comparison of
the v ttous elements dropsize characteristics. A comparison of the wax
dropsize cnaracteristics for the fuel is shown in Vip. 43 for all clements
at ecquivalent thrust per clement sizes, The resnlts are shown in terms

of the mass median deopsice as a function of injection ve locity.
1000

i : ' 4= 1.0 (UNLIKE DOIUBLETS)' 1117

—n '
ﬂREﬁTANGLE

‘TRIANGLE
l

MASS MES1AN DROPS1ZE, MICRON

100}~ = — ==

10 30 60 100 1000
INJECTAON VELOCITY, FT/SEC

igure 43, Comparison of Wax Dropsize Characteristics for Non-
circular and Circular Orifice Designs

Note that the circular unlike doublet produces dropsizes approximately

1.5 times smaller than noncircular designs. This result is different
than that originaily expected in that it was postulated that total con-
tact across the entire width of the jets would produce maximum momentum
interchange betwecen the jets and thereby produce minimum dropsizes. (The
circular design which had a diameter ratio of 1.14 while the noncircular
unlikq-doublet designs contact width ratios were 1.0.) It is obvious,
however, that the sheets produced by the rectangular and triangular designs
are considerably thicker than those for the circular design. This is
probably due to the fact that the jets thickness (perpendicular to the
contact dimension) for the noncircular patterns are greater than that for
the circular design. It would be expected therefore that had the rectang-
ular clements been designed such that the minimum side dimension were per-

pendicular to the contact side, then considerabiy smaller dropsizes would

have been produced.
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Compatibility

The propellant distributions along the chamber wall are primarily deter-
mined by the specific injector element and geometric design, and these
distributions to a large extent control the engine heat flux character-
istics, Consequently, analysis of the cold-flow data for all elements

was conducted to determine clemental local mass and mixture ratio contours.

The results are discussed below.

Unlike Doublet Llements. Contour plots of mass and mixture ratio for the

unlike doublets are presented in Fig. 44 through 47. The sensitivity of

fan orientation to misimpingement for the circular unlike doublet is shown

in Fig. 44 and 45, 1In rig., 44 the orifices are aligned such that, at
impingement, the orifice center lines misimpinge by 0.006 inch. The con-
tasr plot for a misimpingement of 0.002 inch in the other direction is pre-
sented in Fig. 45. Note that in both cases the fan is rotated toward the lar-
ger orifice and that even for a misimpingement of only 0,002 inch the fan has
been rotated about 45 degrees. This could result in significant propel-

lant wall impingement for elements positioned near the chamber wall. In
addition, note that the mass is grouped near the central portion of the

fan and quickly drops off near the edges. Interesting, however, is the

fact that the mixture ratio is high on the side opposite the oxidizer

orifice and low on the side opposite the fuel orifice. Rupe, Ref., 2,

has observed the same phenomena and suggests that the propellants pene-

trate through each other.

Contour plots for the rectangular and triangular elements are shown in
Fig. 46 and 47. These profiles are quite similar in shape, and in fact
arc similar to that of equal diameter circular doublets. Note here again
that the propellants appear to penetrate through each other creating a
mixturc ratio profile across the element opposite to that suggested by
the clement design. As for the circular elements, the mass is concen-
t1.1ed near the central portion of the fan and quickly drops off near

the edge.
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Figure 44,

MIXTURE RATIO

Contour Plots for Circular Unlike Dou
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Self-Atomizing Fan. The contour plot for a self-ntomizing fan o1 equal
sized nozzles canted 00 degrees toward cach other (included anple) is
shown in Fig. 48, The mass is again concentrated near the center of the
fan and drops off rapidly near the edge. As opposed 1o the unlike doublet
clements, the mixture ratio distribution for the fan injector is not
symmetric but has hi gh mixture ratio along the ends and low mixture ratio
along the edges.  These results compared to the unlike donblet dota sup-
pest that all afford ahout the same depree of uni formity of mixture ratio

nesr at least one odpe of the spray fan to provide clhimber will compat ibility.
Stability Analysin
otaby ity Ald iyl

A stability analysis was condueted for hoth the cirenlar and noneireudar
clements,  The objective was to rank the elements in teems of their Tkl

hood 1o be unstable when compared to the circular clement,

The Priem model was utilized for this analysis. The predicted zones of
engine operating conditions in which a tangential mode of hi gh-{reguency
instability could be initiated were found by cexamining the response of the
system to initial pressurce disturbances of various amplitudes. The bound-
aries of the instability regions depend primarily on (f, the burning rate
paramcter, and AV', the axial velocity difference between the combustion
gas and the liquid droplets divided by the local speed of sound, i.c.,

AV = (VZ - VLZ)/a.

The burning rate parameter, (f, is defined as

£-m ()

£

where
m = fraction of total propellant burned per unit length of combustor
R = radius of combustor (or annular clement)
¢ = combustor contraction ratio
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A stability map was obtained by first plotting the neatral stahility limit,
A) (the minimum reduced pressure disturbance amplitude required to initiate
sustained instability) for several dropsizes versus the burning rate parim-
eter, (17. Then the minimum disturbance for each input drapsize was
dotermined.  The minimum values were then plottad as a function of dropsize
and the results of this analysis are presented in Fig. 49, Note that the
larger the dropsize the higher the pressuare amplitudes can be without pro-
ducing instahility, The difforences shown in this fignre suggest that

the circular element which produces the smallest dropsizes will tend to

e more unstable than the noncirenlar clements,




NOTE: DROPSIZES ARE AT 100 FT/SEC INJECTION VELOCITY
1.0 4
) - S " SELF~AYOMIZING 7
FAN
— R . [ [ e e — s m— _1..\ e e s
TRIANGLE N\ —
RECTANGLE
Q.
< NCIRCLE
'-‘
=
- 0.1
>
=
o
; —
X
[
(%]
€= k4, Pc= 100, MR = 1.6
Do = 1.0 INCH
NT0/50-50
0.01
120 160 200 _ 2k 280 320
t’ox - DF

MASS MEDIAN DROP DIAMETER, MICRONS

Figure 49, Variation of the Stability Limit With Injected
Propellant Spray Drovlet Diameter

134




4,

3.

1

4.3 HOT-FIRE EVALUATION

Hot firing experiments were conducted to gain information concerning the
operational characteristics of single elements using the various orifice

types under actual engine conditions.

Based upon the results of cold-flow experimental studies, four injector
elements were selected for the hot-fire evaluations, The element types

chosen were:

1. Circle (Configuration A)*
2. Rectangle (Configuration D)
3. Triangle (Configuration F)

4, Self-Atomizing Fan Nozzle

All of the above configurations had orifice sizes identical to those
previously cold-flow evaluated. For the fan element, the orifice sizes
for the oxidizer and fuel were 0,072 and 0.062, respectively (Fig. 36
and Table 18). The injectors were fired in a combustion chamber with

contraction ratio, €. = 4.0 (Fig. 10).
SELF-ATOMIZING FAN ELEMENT

Hot-firing test results for the self-atomizing fan element are presented

in Fig., 50, 51, and 52, (See Appendix A for a complete tabular listing
of all hot-fire test results,) Shown in these figures is the influence
upon characteristic velocity efficiency of mixture ratio, characteristic

chamber length, and chamber pressure.

*Gee Table 19 tor definition of configurations.
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4.3.2

The first figure, Fig. 50, shows the variation of nc* with mixturce ratio
for chamber (characteristic) lengths of 30 and 60 inches. lor the tests
shown, chamber pressurc was approximately 100 psia (adjustments have been
made by minor intcrpolation to 100 psia as noted). Characteristic velocity
efficiency (at L* = 30 inches) falls some 16 percentage points as mixture
ratio is varied from 1.0 to 2.0, The same trend is suggested by the data

for L* = 60 inches.

The improvement in n. » with L* suggested in Fig. 50 is amplified in Fig. 5l
llere, nL* is shown as a function of L* for chamber pressure of 100 psia
and mixture ratio closc to 1.5. It may be noted that . * incrcases from
about 66 percent to slightly over 80 percent with an 1ncrease of L* from
15 to 60 inches. Extrapolation of these data to larger values of L*
suggests that the maximum efficiency obtainable for the single element 2t
Pc = 100, MR = 1,6 lies between 83 and 85 percent., This is commensurate

with the cold flow mixing limited efficiencies predicted for this injector.

The variation of n. * with chamber pressure is depicted in Fig. 52, for

L* = 30 inches and mixture ratio about 1,5, A striking improvement of
efficiency with increased chamber pressure is noted. This increase is
attributed mainly to improved mixing and atomization resulting from higher
injection velocities at elevated pressures rather than the absolute level
of pressure, In this engine, the chamber throat area remained fixed as
well as the injector orifice areas. Thus, increased pressure required

increased flowrates, and subsequently, higher injection vzlocities.
UNLIKE-DOUBLE ELEMENTS
Characteristic velocity efficiency as a function of mixture ratio, L*, and

Pc, respectively, for the three types of impinging g jet unlike doublets is
shown in Fig. 53, 54, and 55, These injectors were similar in design
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except for orifice shape, Orifice shapes tested were the circle, triangle,
and rectangle, (Note that the circle-on-circle injector was tested with
hoth sharp and rounded cntrances 1o the orifices.)

53 and 65 that the impinging

it is evident from the data shown in Fig.
jet anlike dounlets have produced performance results which are quite

di fferent. from those of the fan-type element. Rather than maximizing at
fopt inm't mixture rat io us suggested by cold thaw, efficiency is actually
lowent #t this mixture ratio,  lurther, as noted in Fig., H5 , performanee
for the impinging-type clements decreancs with inercasing chimber pressare,
in contrast 1o the fan elements, These contrary operational charaeterio-

ties are indicative of seactive stream sepirid jon or "hlowapart,"

Beeause hlowapart can alter the spray characteristics, prior to injector
design seleetion, the injectors and operating conditions were eritically
examined in terms of the potential for blowapart. Previous data (Refs Ib
and 10) had indicated that blowapart would occur for the clement sizes
being utilized in this study. Data available at that time suggested that
there wore two ways to avoid blowapuart: (1) by reducing the orifice sizes
to about 0.020 inch, or (2) by keeping the oxidizer temperature below its
boiling point, Because it was desirable to keep the thrust per clement
no smaller than 30 1bf/clement, the hot-fire facility was cquipped with

a temperature-conditioning system which would maintain the oxidizer tem-
perature below 40 F. Unfortunately, as the data demonstrate, temperature
conditioning of the propellants did not keep blowapart from occurring for

the unlike doublet elements,

Because all unlike impinging jet injectors, regardless of orifice shape,
were subject to blowapart, evidently, noncircular orifice unlike doublets
designed at N = 0.5 offer no significant improvement in operational char-
qeteristics for the prevention of blowapart. Although from Fig. 53, it

does appear that the rectangular orifices were less affected by blowapart
than the other orvifice shapes at the higher mixture ratios, Tt should be

noted, however, that experimental evidence suggests slight variation in
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aspect ratio for the noncircular unlike doublets may reduce or even elim-
inate hlowapart, This "off option'" design condition may result in a sig-
nificant improvement in performance because of the large suppression in

c* efficiency cansed hy blowapart,

Variations of c¢* efficiency with characteristic chamber length is shown
in Fig. 54 for P = 100 psin and MR = 1.5, As expected, efficiency
increases significantly with increased L* from 15 to o0 inches, The
efficiency for the rectangles increascs some 10 percentage points while
the trimmples increase 22 percentage points,  lHowever, at each 1%, the

overall level of performance is depressed by the bDlowapart phenomenon,
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1.4,1

A.4  COMPARISON OF ACTUAL AND PREDICTED
c* LEFICTENCY CHARACTERISTICS

The hot-fire results are compared with the cold-flow predicted c* effici-
ency in two ways, First, the cold-flow mixing results are compared with
hot-fire results at conditions where vaporization is nearly complete.
Secondly, overall performance predictions for the self-atomizing fan

nozzle are compared with those obtained in hot-fire experiments.

MIXING LIMITED e* LFFLCIENCY

Self-Atomizing Fan Flement

Unless vaporization has been completed, the level of c¢* efficicncy measured
in hot-fire testing is not representative of the mixing losses alone. The
most straightforward method of comparing the predicted levels of mixing
with hot-fire data is to comparc the cold-flow predictions with hot~fire
results obtained at a chamber length long enough that complete vaporiza-
tion has occurred. That is, the maximum level of c* efficiency obtained
with increasing chamber length is dependent upon the level of mixing

attained by the injector.

In Fig. 56, the cold-flow predictions for a mixture ratio of 1.1 and 1.6
at a chamber pressure of 100 psia are compared to those obtained in hot-
firing experiments. The results are presented in terms of c¢* efficiency

and chamber characteristic length (L*).

30 T T —— -
| e
80 —— e v
= I
w COLD-"LOW PREDICTED
& 79 MIXING LIMITED
o PERFORMANCE
L 3
=U 60 ."R-"l
S0
10 X 50 70 20
L*, INCHES

Figure 56. Comparison of Cold-Flow Predicted Mixing Limited c* Efficiency
With Actual lot-Fire Results; Self-Atomizing ian
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As shown in Pig. 50, excellent agreement is found between the cold-tflow
predicted mixing limited c* efficiency and the extrapolated values of the
hot-fire results. The zbility to predict the mixing limited c* efficiency
under conditions of nc reactive stream separation has been previously
demonstrated (c.g., Ref. 12 and 13). The above result combined with
previous data clearly illustrates the accuracy of the cold-flow mixing
technique and analytical model in predicting the level of mixing effici-

ency attainable in rocket engines.

Unlike Doublets

Presented in Fig. 57 are the results obtained with the unlike doublet
elements. It is obvious from the results that the mixing iimited per-
formance was not obtained even at an L* (extrapélated) of 30 inches.
These results clearly demonstrate that 'blowapart" significantly altered
the performance characteristics, and consequently, does not allow a com-

parison of the coid-flow and hot-fire mixing limited performance.

This result affects the ability of directly predicting hot-fire perform-
ance characteristics for the unlike doublet patterns. To date, blowapart
models have not been developed sufficiently to predict mixing and atomi-
zation levels occurring under this condition. If sufficient hot-fire
data had been obtained over a wide range of mixture ratios at large L*'s,
then at least the cold-flow mixing data combined with hot-fire data could
have been used to show the effect of blowapart on mixing. A few isolated
data points are available at an L* of 60 inches for off-optimum mixture
ratic; however, these data are insufficient to accurately extrapolate to
the mixing limited c* value. It ceems appropriate to mention that the
inability to predict c* efficiency when blowapart occurs has been recog-
mized by NASA and the Air Force and several studies are currently under
way to attempt to fill in this gap in technology. These efforts, however,
are not sufficiently completed for the results to be utilized in analysis

during this program.
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4.4,

2

PREDICTTON OF OVERALL c* PERFORMANCE CHARACTERISTICS

Self-Atomizing Fan

The overall c* efficiency within a rocket engine depends upon (1) the
mixing limited c* efficiency, and (2) the vaporization rate limited o*
efficiency. It has been found (Ref, 12 and 13) that these effects can

be combined as shown in Eq. 23 to calculate the overall predicted c*

efficiency.
nc*pred ® Nermix nc*vap (23)
Ne*mix is determined from the cold-flow mixing data and as verified in

the previous section is an excellent measurement of the hot~fire mixing

levels., Unfortunately, 1 is not determined in such a straightforward

c*vap
manner and requires some explanation.

Prediction of vaporization rate limited c¢* efficiency requires the deter-
mination of the propellant dropsizes actually occurring within the rocket
engine., The actual dropsize will differ from the dropsize obtained with
wax in still air because of the influence of physical properties and com-
bustion gas velocity. The latter parameter causes the primary dropsizes
to undergo aerodynamic breakup resulting in a reduction in the sprays
overall dropsize. Once the dropsize is determined, then the Rocketdyne

vaporization-rate-limited combustion model is used tc determine nc*vap'

Data have been obtained utilizing the self-atomizing fan and cone nozzles
using wax as well as normal liquids (Ref. 17 and 18)., The results of
Hasson and Mizrahi (Ref. 17) showed that dropsize is related to injector

size, AP, and physical properties in the following manner

~ o, ¥ \'/° 1/6
D = ¢ | —5—— (o, W)
c, o

and K = Ai/2 sin /2
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where
o= surface tension
WyooE viscosity
Cq ~ discharge coefficient
T liquid density
AP = pressurc drop
A. = arca of orifice

0 = impingement angle

Comparison of AP dependence on dropsize obtained utilizing Shell 270 wax
during this program with kd. 24 shows excellent agreement. The constant,

C', was determined from the data shown in Fig. 42,

Equation 24 was then utilized to determine the primary dropsizes for the
actual propellants utilized in the hot-fire study (NTO/50-50). The
results are shown in Fig. 58. It is interesting to note that the effect
of physical properties was to reduce the oxidizer dropsize by a factor of

1.8 while the fuel dropsize changed only by a factor of 1.1.

At injection velocities encountered during hot firing, the self-atomizing
fan produces rays of droplets, rather than the thin sheet of liquid which
eventually breaks down into ligaments and droplets and, therefore, the
dropsizes obtained from Eq. 24 represent the primary dropsizes occurring
within the rocket engine. In support of this, several photographs are
shown in Fig. 59 illustrating the various stages of droplet formation

characteristics as a function of AP (the fluid is water). Note that at

a AP of 3 psi, a teardrop sheet is formed with rays of droplets being torn

tangentially away from the edges of the fan. Then at 25 psi the sheet is
spread out over a much wider area than before and sheet breakup is occur-

ring. In the last photograph, AP 40 psi, the sheet has been totally
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destroyed and rays of droplets emanate from the injector as though they
were formed from a point source, Consequently, within the rocket engine,
it is reasonable to assume that droplets emanate from the injector,
enter into a combustion gas flowficld, are acted upon by the gas, and if

sufficient interaction occurs then secondary breakup results,

For the dropsize distributions and injection velocity ranges encountered
in the hot-fire study, it is assumed that droplet breakup will occur upon

injection for all conditions,

Secondary dropsizes may be caleulated from the theoretical equation which
was experimentally verified by Wolfe and Andersen (Ref, 19). ‘he

equiation is

Kk o>/? g1/2 13
5. | (25)
43 1/2 2 4
{ ) AV
Lo By g
where
-543 = mass mean diameter
UL =  V1Scosity
OL = liquid density
Og = gas density
0 = surface tension
d = initial dropsize
k = constant
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N = |v -V \
L8
Vl = droplet velocity
D = 1,52 i')‘“ (Ref. 4) (20)
b = mass median dropsize

Because breakup should be dnitiated near the injection point within the
rocket engine and also o relatively large engine contraction ratio was
used, it is reasonabic foi the conditions of this study to assume that

AV ~ VL

Colewlations wore made of the mass median dropsize () of the secondary
droplets using Fq. 26 and 20, The value of K found to hest it our data

is 1.07. 'The results arce shown in Fig. 00 for various chamber pressuves,

The dropsize characteristics shown in Fig, 00 were used to specify the
propellant dropsizes under hot-fire conditions. These dropsizes were

then input into the vaporization-rate-limited combustion model to deter-
mine nc*vap' The details of the combustion model are described in Ref, 20

The results of application of the model are shown in Fig. ol.

100 ,
COMBUSTION MODEL RESULTS
P. = 100 PSIA
MR = 1,6
o 80 NTO/A-50
- €c ™ 4.0
<
=
)
=~ 60 INCHES
60 i
#= 30 | NCHES
40 15 INCHES
0 100 200 300 Loo

MASS MEDIAN DROPSIZE, MICRONS

Figurc 61, Lffect of Dropsize on Vaporization ¢* Efficiency
for Several I*'s




Ihe value of "c*vup determined from Fig. 61 for given dropsize combi ned

with 1, were then combined as specified in Lg. 23 and the overall

cr*mix
predicted ¢* efficiency determined. The results of this analysis are
shown in Table 22, The actual c¢* efficiencies are specified in Append ix
The predicted values were then compared to that actually obtained during
hot firing. The comparison between predicted and actual c* efficiency

is shown in lig. 02,

Note that excellent comparison is shown hetween predicted and actual b
efficiency except for the L* of Th-inch data,  The wost probable reason
for this lack of comparigon at an LA of Ih inches is that there is not
s Cicient stay times for the droplets to complete their breakup,  No
explanation can be given for the Lack of correlation for the one  point
which is grouped near the TA = dh-ineh diata. (No predictions were
attemptoed for the unlike doublets s fince the independent effect of blow-

apart on mixing or at omization could not be determined.)

1t should be noted that the objective of Phase | is to develop injector
design criteria so that the various functional and fabrication factors
can be evaluated and a comparison between circular and noncircular cle-
ments made.  This requires performance predictions utilizing cold-flow
analysis techniques and verification by hot firing. Consequently the

primary tusk of Phase 1 is to develop injector criteria and not neces-

sarily to demonstrate high c* performance. As a result of this objective,

the hot~-fire results shown do not necessarily represent the maximum pos-
sible performance for single-element designs. For example, the unlike-
doublet clements c* performance levels were suppressed because of blow-
apart affects, while the self-atomizing fan injector actually hot fired
with not the "optimum" element design. In fact the maximum performance
levels that can be obtained with the single element designs, as shown

in the Mixing section of this report, is in the low to mid Y0's, For
the "optimum! design of the self-atomizing nozzle the maximum mixing

limited performance attainable is Maws about 93 nercent,
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TARLLE 22

PREDICTED OVERALL ¢* EFFTCTENCY FOR SELF-ATOMEZTNG AN INJECTOR

Rum Vo’ 1 Vf’ —41 ”n’ | “f’ w ”vnp’ W Mix? | ”prvd’ ”ucl, W
No. | ft/sec | ft/sec | | ow ) peveent | pereent | pereent) poreon
0 RS Aa#ﬂ(; 58 04 98, 4 84,5 8%.0 {24
29 45 06 140 140 82,0 R4.5 69,5 68,
A0 K3 N2 250 270 h8.,0 80,5 46,8 52.4
51 40 52 205 270 61.8 80,0 49,5 51.41
A2 12 105 44 10 a9, 0 R7,0 36,0 81.9
%4 A 1 LG 74 91,9 KR 81,4 42,0
A 12 #7 120 B 90,7 K1, 0 TO.8 7908
5 A0 R4 140 94 RB. 4 /K. 0 8.0 788
ME W ) 30 200 77.8 80,0 0.0 57.9
v 04 70 74 120 91,5 R1,0 74.0 W,
48 84 T, 3, A0 99, 4 B4 84,0 84,3
59 84 116 30 A5 09,9 BALL 80,4 8h.o4)
A0 59 84 74 9 85.0 85,5 7.2.0 00,0
4] H9 82 80) 08 85.0 855 72,0 62,4
42 4% 0l 115 140 94,0 83,0 78,5 79.8
4% 18 60 115 130 95.4 84.0 80.0 80..
44 42 85 130 80 90.5 88,0 85,0 87.0
o 200 > Pu > 50 “PSIA | /
2,0 > MR > 1.0 /
60 > L* >15 ~INCH
80 - e
/
2 -
60 /O S
(3 60 INCH L*
Ocy” O 30 INCH L*
/ @ 15 INCH L*
wll
ho 60 n 80 100
PRED

Figure 62, Comparison of Predicted and Actual c* Efficiency
for the Self-Atomizing Nozzle
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5.0 FINAL EVALUATION

in this scction, the experimental data and analytical techniques developed
during the program are employed to evaluate +he differences between cir-
cular and noncircular orifices and elements. The Final Lvaluation follows
the same format as the Preliminary gvaluntion; and in fact, is an upgrading

and improvement. of the Preliminary Lvaluation,

The objective is to determine if noncircular orifices and injector ele-

ments offer any advantages over their circular counterparts,
The method employed in determining the numerical values assigned to

evaluation criteria is identical to that used for the preliminary evalua-

tion,
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5.1 FINAL EVALUATION OF ORIFICE SHAPES

The final evaluation of orifice shapes is divided into two sections,

Functional and Fabrication.
FUNCTIONAL EVALUATION

Results obtained during this proygram indicate that the conclusions reached
by the Preliminary Functional Evaluation must be changed, Results of

the final functional evaluation appear in Table 23. The evaluation is
based upon the results of the single-orifice cold-flow study and the ana-
lytical methods developed during the correlation of the data from that
study. A brief discussion of the logic used for reevaluation is pre-
sented below. (See Preliminary Evaluation for Definition of the con-

siderations for each criterion.)

Orifice Coefficient, CD

In Table 23 then are two headings listed under the evaluation criterion,
CD‘ The first is "variation", and the second is "level', Variation
refers to the stability or repeatability of the value of CD for a given
range of operating conditions. Level refers to the relative magnitude of
the average value of CD among the various shapes. As shown, the rectangle
AR = 8 and the spray nozzle have the least variation of CD while the

circular orifice has the highest level of CD.

The analytical orifice model, verified by comparison with experimental

data, was used to generate the level cvaluation of C. for the various

D
shapes., Evaluation of the spray nozzle is based upon data taken from the
single element mixing and atomization tests. The relative position of
each of the seven shapcs was shown in Fig. 31, It is evident from the
figure that only a minor variation of CD level occurs between the various

shapes.
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Free Stream Stability

Judgement for this criteria was based upon qualitative analysis of photo-
graphs taken of the jets under various operating conditions. Photographs
of the free stream jets are reproduced in Fig. 16 through 19. Evaluation

of the jets free stream stability was based upon qualitative analysis of

these photographs as well as observation of the orifices during testing.
In the evaluation, the circular orifice ie given the highest rating for
stability. In seneral, jets produced by noncircular orifices tended to
become cirzular at low veiocities and break up much faster than a circular
jet at high velocities. The shapes which deviated most from the circuiar
jet, such as the slot, produced the least stable jets. Jet character-
istics of the slot orifice are shown in Fig. 1§. These jets hecome stri-
ated close to the injector face. At lower injection velocities the jets
aften recollect to form a single jet. At higher velocities and shorter

L/ values, the jet forms a spray as in the upper left-hand photo in Fig. 18.

Sensitivity to Temperature, Pressure, (ross Veloe 1ty,

amd AP Variation

Lxperimental evaluaticn showed that all orifices responded in a very sim-
PTar manner to temperature, cross velocity, and fluctuations ot . The
spray nolsle receives i rating which is slightly higher than the other
shapes nnder crass velocity, 11 was not demonst rated, hut it is assumed
that the sprav nos-le would be pelatively insensitive tooross veloeity,
Ihi< i die to the fact that the spray noccle s a0 componnd i fioe eon
riating of o large, ctraipht orifice at the ened ot which is o e bosed
spherival Jome. A slot ioont oin the dome produocing an orifice with o
CPoothal 1 shape of Tess ares than the main nritfice, The whient s prao
duced by the geometry ot the compound orctice shape and the spray iopre
duced s the resnlt of 1 thn sheet of Piopid breabing np.o Beease th.
seconfary orifice ino the spray fan edepent e shielded trons the proped lant
manitold (1.oe o, cross veloeityr by th pr‘ir\'!r‘}' arifaee, it axpoeted
that ihe Clow treld of the Fan o wonld not he opreat b et fectod booorand to bl

velbor ity
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Judgements concerning pressure drop and sensitivity to pressure level are
made based on the data presented in Fig. 13, showing the effects of AP on
CD for various backpressures. It is evident from these data that the circle
and triangle are more sensitive to AP level and backpressure than the other
shapes. The least affected of the shapes are the thin rectangular orifice
and the spray nozzle. No data have been presented for the spray nozzle;
however, data recorded during hot-fire studies showed that CD for the
nozzle is constant over a fairly broad range of AP. Typical values of
orifice coefficient were 0.750 *0.025 for the oxidizer fan and 0.820 +0.025
for the fuel fan for chamber pressures ranging from 50 to 190 psia. These
evaluations were made at a fixed L/D. At different L/D values, the char-
acteristics of the orifices would be quite different. Although L/D is

not one of the specific rating criteria, it is worth mentioning the rela-

tive sensitivity of the various shapes to L/D.

The data which were presented in Fig. 14, show the effect of L/D on CD

for the shapes over a cross velocity range. These data suggest that the
slot (fine rectang e) is lecast sensitive to L/D. (It must be remembered
that these data were obtained at a backpressure of 100 psig.). The square
orifice appears to be the most sensitive, showing tendencies to operate at

hoth tlipped conditions, depending on cross velocity.

Contamination
lhe contamination evaluation is essentially the same as the preliminary

v lnat bon.
FABETCANTTON EVALUATTON

fmiring the course of the program, no particular evidence was discovered
which would suggest that the Fabricacion results, presented in the
Preliminary Lvaluation, should be changed, This is due, in part, to the

highly qualitative nature At the Tabrication Evaluation,




On the initial stages of the program, it was found that the time required
to produce an orifice hole by the LDM process was significantly affected

by the shape of the orifice. This result was published and is reproduced
in Fig. 63, In Fig., 03 then EDM time is presented for several orifice

shapes relative to the time required to EDM a circle.,
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Figure 63, OUrifice LDM Machining Time Comparison

As the program progressed and the machinists gnined more cxperience with
amill noncircular orofices, the time differences between the shapes were

decreased until the times were equil.
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There were still significant differences in the fabrication of orifice
shapes. Tor example, tool wear was more 2 problem for shapes with five
corners formed by small, acute angles. Also, the electrodes for the
finer shaped orifices required more time to fabricate. It must be con-
cluded that the total cost of producing orifice holes is a complex
quantity and is not totally reflected in the DM time required. Such
factors as electrode fabrication costs, tool replacement costs, and

tolerances required must be considered.

A summary of the Fabrication Evaluation has been presented in Table 14
for the EDM fabrication technique only. The results were given in terms

of the average rating number for each shape.

5.1.3 SUMMARY OF ORIFICE EVALUATION

The results of the final evaluation of orifice shapes are presented in
Table 24. (For purposes of comparison, reference may be made to the
Preliminary Evaluation results which appear in Table 15). In Table 24,
the seven orifice shapes investigated during the program are evaluated
and rated with respect to a circle (produced by twist drilling) using

the same criteria as were used for preliminary evaluation.

lrom the functional point of view, the spray nozzle received the highest
rating with the rectangular shapes rated second. The lowest rating was

given to the cyuilateral triangle.

In contrust to its high rating for function, the spray nozzle received
the lowest rating for fabrication considerations. This is attributed to
the fact that it is not a simple orifice, but rather a composite of
shapes. The highest rating given for fabrication was received by the

cirele; it is still the least difficult shape to produce,

However, the ipoortant result of the eviluat ion is that the magnitude of
fhe JdiCferences hotween the ratings for allt shapes are small, indicating
that no particielar spape shonld he excluded trom application to injector
desaen o merels on fhe hasis of these evaluation criteria,
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TABLE 24

SUMMARY OF FINAL BEVALUATION OF ORIFICE SHAPES

Fabrication
Functional Average
Configuration Average (EDM Only)
(:::) 10 11.7
Circle (11.7)
10.7 10.8
(10.8)
Square
E::] 10.7 9.3
Rectangle (9.3)
ARZ = 8
/_\ 9.8 10.2
Equilateral (10.2)
Triangle
A 10.3 9.2
Isosceles (8.2)
Triangle
<> 10.4 9.3
Diamond (8.3)
I 13 7.7
Spray Nozzle (7.7)

Numbers in ( ) refer to values determined during
preliminary evaluation.
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5.2 FINAL EVALUATION OF ELEMENT TYPES

Final evaluation of element types is slightly different from the prelimi-
nary evaluation in that only uniike-dcublet clements (including self-
atomizing tan nozzle) are considered. The elements arc those unlike
doublets incorporating circular orifices, rectangular orifices, triangular
orifices, and spray nozzles of equal size. Results of the final evaluation
for the elements are presented in Table 25. Two evaluations arc shown:
one for large L*'s and one for small L*'s, The comparison is made at two
L*'s because the relative importance of mixing or atomization to c* per-
formance is dependent upon the completeness of the vaporization process.
Consequently, the importance of atomization depends upon chamber length
(i.e., L*)., If the rocket engine is sufficiently large that complete
combustion occurs, then overall c* performance would depend only on the
mixing levels attained. Therefore, meaningful comparison should include

the influence of L*.

At small L*'s, the resulting c* performance for the circular elements 1is
high~r than the noncircular injectors since the unlike doublet with cir-

cular orifices vields smaller dropsizes.

At large L*'s, the large chamber volume results in complete vaporization
and thus mixing limited performance is realized. The noncircular orifices
produce higher efficiencies than the circle here because of their superior

mixing characteristics,

Thec: results, along with qualitative judgments of the relative sensitivity
to tolerance sensitivity, wall compatibility, and combustion stability werc

employed to generate the evaluation presented in Table 5.
It must be remembered that the comparisons made in Table 25 are based on

the premise that “hlowapart' has nou taken place for the impinging-type

oloments.  For these conditions, the circular orifices prove to be superior
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to noncircular at small L*'s whereas the reverse is true at large L*'s,
The fan clement rates low over all L*'s with respect to the noncircular
orifices. However, had "blowapart" been included in the evaluation, the

fan element would have rated quite high as it was not subject to blowapart.,

it should be noted that } { i T -
higher combustion gas velo- * ! 1% MC?T&&L_L_1::=4,,, R
cities produced by lower con- E’z ////?///’i;;’/::::;//f//,“’
traction ratios would decrease é °"ﬂ”;/‘i/fi/:i > ; ST N
the drop sizes for the various Ei_z i . f ? '
elemencts. Thus, the mixing 24 | ' f f

limited levels of performance o } i | i E

WOUId be realized at lower - N “ CHARA({?ERISTICI‘:ENGTH, Li? INCHES60
values of L*, The perform- BN preorcren * LMt noncircuar = e circutan]
ance of the noncircular ele- Figure 64, Qualitative Effect of Reduced
sents st small Le's would be Contraction Ratio o7 e s
greatly improved. As an example for the Self-Atomizing Fan
for the self atomizing fan ele- Element

ment this effect is shown on a qualitative basis in Fig. 64, Qualitative
estimates of the effect of reduced contraction ratio are presented. At
lower contraction ratios, the benefits of noncircular orifices are ex-
tended to smaller L* values. This is due to the fact that the noncircular
clements exhibited mixing limited efficiencies which were higher than those
of the elements with circular orifices. It should be noted that similar

trends as that shown in Fig. (1 would be obtained for the other clements,
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6.0 SQEQLQE}QFS
Before generalized conclusions can be made, an assessment of the validity
of the overall program approach must be done, There are always possible
pitfalls associated with trying to shrink the scope of any program to
practical limits, For instance, during the preliminary evaluation it 1is
possible that the best orifice shape or element might be eliminated
be sause of the limited amount of data available, In addition, it is
possible that unknown complexities can seriously affect the ability to
proceed through the program such that each criterion can be rated and
subsequently each element or orifice accordingly ranked, If the program
is structured to allow enough feedback and iterations, then these pos-
sibilities are minimized, However, there is always the possibility that
at the end of the program sufficient data would not be available to know
specifically and predictably how to design an injector to operate opti-
mally. Because this particular program was structured to allow signifi-

cant feedback, the approach used is certainly acceptable,

In the cverall view, for liquid/liquid applications the rasults show that
the selection of noncircular or circular orifice designs would be based
solely on the specific application. For instance, if mixing were the
primary consideration, then noncircular injectors would be selected, 1In
additicn, for some propellant combinations such as FLOX/CH,, noncircular
unlike-doublet injector designs can be designed with reasonable orifice
dimensions, while circular element designs would be unrealistic, This
difficulty for circulur orifice designs can be overcone by utilizing a
four-on-onc pattern rather than the uniihke-doublet, however, with @
penalty in design complexity and in the ability to pack a lorger nmmber

of elements into the cruss~sectional area of the given injector, Clearly,
the availability of noncircular element designs provides the designer with
an exterded ¢apability and with more flexibility in his selection of ele-

nent types.




For the

made:

specific designs considered, the following conclusions can be

Orifice flow and spray characteristics are predictable for
noncircular orifices using identical techniques as those

for circular orifices,

Noncircular elements produce significantly better mixing than

a circular unlike doublet at equivalent design conditions

Circular unlike-doublet elements produce smaller dropsizes
than the specific noncircular elements evalua-ed., This
conclusion could be different if the elements were designed

to impinge in the following manner,

| Sm——]
rather than [:]
Noncircular element spray characteristics are less sensitive

to orifice flow characteristics than circular orifices,

Self-atomizi g fan elements are not subject to hlowapart
because they mix in the atomized state rather than from

.

mmpingement ot solid jets,

EM provides an ideal fabrication method for making noncireular

elenents,
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8.0 APPENDIX A

TABLES OF BEXPERIMENTAL DATA




TABLE A-]

TEST MATRIX AND DATA FOR SINGLE-ORTFTICE COLD-FLOW
EXPERIMENTS WT'TH WATER

SYMBOLS
np = Orifice AP, psaid
B = Rackpressure, psig
(I“ = Discharpge Coefficient
WO = Orifice Flowrate, 1hm/sec
) = I'low Factor /l\? V2g php = v'v/(il)
V(:] = Upstream Cross Velocity, ft/scc
VC;Avc = Average Cross Velocity, ft/sec
VC2 = Downstream Cross Velocity, ft/scc
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Geal)O)i
1644
() e 4150

Vi =-AVE

Dbl
40494
KoK
17045

VO=AVH

Ded’l4
40329
IIRNAR!
17159

VC-~AVE

4415
9174
18232
14 628K
NDed16

VE=AVIE

DedhHH
Ded61
Q996
Gal9H
IEXRRES

Vi

Hdatdirh)
f".o‘)‘ f)
1 Ha2600
(00

vy

0000
3e 90

17053

Vi

Q«000
38348
B 228

16671

vea

3886
Eebl1
17815
179501
0000

VCee

O« Q00
(Je QOO
41 40
Bela3
170694




1N

SN

o
273
214
275
276

RUN

AN

IxUN

2Ty
219
280
281

RUN

282
283
284
285

RUN

286
287
28%

RUN

289
290
291
292
293

RUN

294
295
296
297
298

m?

17400
1700
17.00
1700
1700
15. 60

bpP

17+ 60

by

1610
24670
35«10
4230

(V] o

53.50
53440
52.00
5430

94.30
5570
56.90

DP

12.00
24430
35.90
44.30
1340

bp

1560
25450
35.80
4320
35+ 40

P

1082400
l()f?-‘)O
10250
102450
10200
102450

s

10250

PR

102950
10250
99«90
9%+00

PB

1.00
5200
103.00
1.00

PB

3+00
4900
103.00

PB

103.00
102450
10250
10250
102.50

PB

99.00
9800
103.00
102.00
100.00

(Y

Qe 30770
Oe 673%<
066330
0853200
0-67141
0eb92n71

G

Oeb62O3H

cn

0»80459
0«7461%
Qe 74869
071265

Cv

0« 61664
QeT74449
075430
058524

(o))

O« 6044HK
075347
073695

Cb

0.72336
D«75550
0.73341
071266
Q0.73765

CcD

073350
e 74659
N«67852
072768
0.71520

Va3

Oe190)0
004212
Na04146
005201
0041977
Ne04149

ol

005321

W aT

Ne0bHA9
NeN6HARE
007761
0.08109

wWp3T

Q0+07580
0.09143
0.09141
007248

WDaT

0.07320
0+09241
0+09135

wWDaT

004211
0406259
0+07385
0.07972
0.04538

WDaT

004761
006196
006672
007861
006994

197

IRl

a6 H1
0D+06251
006251
006251
0 e(62H1
N 0HIRA

1

DeldB4a9h

L

07020
Ns0B696
010366
011379

9]

012293
Q»12281
012119
012384

)]

012109
012265
0+12396

b

0.05822
008285
0.10070
011186
D.06152

D

006491
0.08299
009834
0«10E802
009779

Vel

el
9.7702
18697
5078
9707
0«30

vl

1064

v

1130

«298
1 «HhA
1622

Vel

1 0464
| «848
1827

VC1

0.842
1.252
14477
1+594
0.908

vCi

0.952
i+239
1334
1572
1399

VL=

Zie 'yt
2280
1H2R2
4eHHH
98 PRE
ed4d

vE-NAVE

0e> 32

VEC~AVE

(Job()b
0649
Vetlo
el

VC=AVE

Q758
0914
Q0914
0725

VC-AVE

0.732
0+.924
0914

VC~AVE

0+421
0626
0739
0797
0454

VC=-AVE

0476
0« 620
0e«667
0.786
0699

viie

40487
et 09
17868
46035
R e 6
). 000

vee

)« 00

vie

0000
0000
0«000
0000

vie

0000
0.0G0
0.000
0000

vCe

0.000
0.000
0.000

vCa

0.000
0.000
0.000
0+090
0.000

ve2

0000
0.000
0«000
0.000
0.000




hUN

299
300
301
302

RUN

303
304
30h
306
301

KUN

RIVEY
309
310
311

RUM

312
313
314
315

RKUN

316
317
314
319

KUN

320
321
32
323

KUN

324
32%
326
327

PIE

43«10
43020
L4460
1290

2

1 6a 6O
P 3e3()
Hhe N0
A4w()1()
P he 30

Dy’

1 He 4()
3880
Hael )
14620

bpr

1330
£330
3280
46450

D

1320
23410
34+90
46620

uP

45430
356 80
24680
13+40

(V1

14+70
25 40
3330
Abe 40

14

10000
10000
10000
10100

P

10100
10«00
10700
10010
10100

P

1072« 00
10400
10300
10000

P

9750
QG e (0
99.50
10000

P

10000

9900
100.00
100.00

PH

10150
10050
10000

99.00

PH

100.00
10000
10200
102+00

Co

0712631
071307
072710
Oetsa "5 4

G

(e #3031
O« (OIS
(e '{ 34:40)
O 73410
e 13909

L)

(s 71033
Oe 72714
Qs 69991
Ja7H298

Cu

Ve 72226
072969
0e71168
0«74013

cu

N«71616
067933
073519
074080

cu

Ve 72013
Qs 73192
0e¢ 13385
070360

Cv

0 62350
071613
O«73546
Oe73474

W al

007311
O« 0200
006309
0NH5204

wWiat

(02909
Oa(}h4966
e NT620
O« 08H0 6
e NOHALE

wiidi

0« 06030
(e Q6H3PY
Qe 7Y
004673

Wi I-").r

004421
005910
006839
0 Q3468

WAT

004373
QeQo487
007299
005462

WDt

007965
007191
N«06006
004233

Wl
V046524
006314
Ve 7420

008706

198

9]

0«10066
O« 11499
O=0861H
Ne0DO1IKE

D)

e()IV16
e )3431
O«104877
Oe11LKEG
O e ()8 1R8D

12

De0ts4:2Y
e OUB6
Os11017
006182

]

0«06119
0.,08099
009609
0«11441

v

006106
OeQBUTt
00992K
011423

I

011061
De08184
006016

L

006708
NeOHE1LT
010095
011917

vCi

462
o« H40)
" 68

« 045

VC1

9 Rate
193
«H24
« 101

209

O

Vel

102206
1 e300
1 o547
)+935

vil

Q&84
1182
1368
1694

vCil

0875
16097
1« 460
1 .69

Vel

1593
1439
1201
0847

VGl

0+931
1 4263
1 e4¥b
147791

Ve -AVh.

0«731
0e20
0a631
05020

VE-AVE

NeS21
0997
() e 762
0OeitHl
e 46

VU-AVE

D603
Oeb83
U771
Oed6’

VE=AVE

0442
0591
Oebg
0«84

VE=-AViL

0437
Qed49
Q730
Q846

VC=AVE

Ue 197
Q120
0601
0423

Vi~AVE

Oedbb
0631
Us 742
Qe 76

Ve

0000
0000
(000
0«00

Ve

O =000
(1a0000)
0000
Ve 10))
N« 001

Vi

O« 00)0)
0100
0000
0000

Ve

0.000
0.000
0000
0000

vie

0000
0000
0.000
0.000

VG2

Q.00
0000
0000
0000

vea

0.000
0.000
0000
0000




199

JCUN bp P Cu Wi AT 1 vl VE-NVE vie

A ——— i+ 5 13 SO a—a 0066 SBASASASEvIS A+ 4wt leaasisiea
329 1450 10000 (e 70386 Oe046HK e NH661 40890 A4e421 3952
3430 1420 10050 O« 66683 O N4ADEY O«066A1 9 e2712 BeB13 edd4
331 1420 10050 069897 004696 N0«06661 9 W22 e 07 a4l
332 J4en() 10100 e 69H1Y O«046:41 Ne()G6EEL 9192 el Ze203
333 4190 10000 N72396 008197 ND«11323 1« 639 0320 000
334 4410 10050 O«70184 008153 NDe11616 | « 631 OeH1D 0000
339 Ade () 10100 O 1221 H O 0R417 Nel11656 1« 683 () e B 42 O =000
336 45430) S50« 030 O 701770 Ned4e 6] O«11773 1652 DaR26 0000
et b~y T Y e ACATARARS A EATAARANS H+1+0-1+6 L arATaSs L ARARAT] L ARARARA
33 A3t () e} 061070 007070 DellH77 1414 0707 0000
IUN (lad P N W It 1] Vil VE=NAVE Ve

339 1450 9950 (e BIDOY Dedrd De(37106 4945 443783 3501
340 14¢H0) 9900 Na73157 De)H19Y 0017106 4 e94d Ao 2D 34905
341 14¢00 99,00 QeT7d4l27 000264 007106 40945 40418 38162
342 1420 9850 0072053 0405120 DesQ7106 9329 Besl7 He300
343 14450 95400 0669528 004941 0e07106 18251 17757 171+263
RUN P PL ch W27 D vCi1 VC~AVE vC2

344 1450 9900 0488354 0.05530 0+:0625% 18384 17831 172778
340 14450 9850 0856883 005437 Qe0625% 94363 $e839 0292
346 1450 98¢50 090213 06000646 006258 17745 176181 16¢6106
34 14450 9500 0e86969 005443 006258 9.409 BeK6ED Ke321
RUN pp PB Ccb wbhdaT D VCi vC~AVE vee

344 1450 9750 Q076957 004925 ()« 06400 S« 0RO 4587 4095
349 1450 9600 076313 0.04884 006400 9436 K948 0499
350 14450 10100 Qe77188 004940 006400 Q4436 K942 & e 448
351 14450 10100 Q75031 004802 0206400 17¢665 17+185 164705
KRUN vr PB Ccb WDt () Vet VvC~-AVE vCa

3582 1450 10100 0663264 004879 007712 S« QRO 44592 441004
353 1450 10050 062776 Os04t41 NeQ7712 94436 8 e4952 o 468
354 14e50 10150 Oe 638358 004925 0e0Q7T71% V7479 169866 166494
359 15900 10050 Ne 65057 DeHINT DeYTH 13 1037 ND+5519 0000
ISUN D)o 1345} (Y WoJi b Vel Ve=AVi. vue

d96 16 6O 10000 Qe 861D NeO)H163 D 006906 1153 De916 0,000




INNIE

397
3508
359
360
361

RN

367
J63
364
360

IWUN

366
3671
368
369
370

INUN

371
372
373
374

RUN

375
376
3717
378

RUN

379
350
381
388
343
d4 4

by

1430
14950
1450
1450
1610

ni

1400
14+ 91()
F4eH0)
1490

DI

14en0
1450
1450
1450
15.20

i°

15.10
1450
1450
14450

brP

14450
14490
14450
1410

DP

1450
1439
1450
454 0
4390
45460

}2ui

10000
10000
10000
10000
10000

P

10050
10050
10000
10000

Ph

100450
10000
10000
10050
10000

PL

10050
10100
10050
101.00

P

10050
10200
102,00
103+00

PB

10000
9950
9950

10500
53+00

0«00

Cb

0 OB 44
0. 60000
097761
Oab629E4
G« 60873

ch

(Oaf4353
Oe 56HT1
OHet631H
DsEOLOK

Ghn

De79773
0+76021
e 63337
076370
Qe 83892

Cil

Q87981
NDe91776
089325
094364

cv

QeE5722
088153
NDe91237
D«87550

co

Qeb6T7183
Ds 66653
Qeb7984
Deb661bH1
Oe 52411
0e55511

WL9T

Oe04692
OeD4627
004454
004857
004946

Vi 3T

O 0O5hH51
e 05701
Oe 750
De0HYOI

Wl

(Ve (JA6D1
004435
0eQ39uY
NeDddnd
0e05D011

Woal

Ne0D145
Ve 05673
Qe0Q5716
0060383

WD IT

0.06091
006264
(106483
006134

WDl

006035
e 05987
002208
0«10560
008191
Q058542

200

V]

007711
OeQ7111
0.07711
O«
0«0R8125

b

e OHA0
NDeOAHOT
Oe3GOHOI
(VeN6LOA

b

NDe)B% 34
e 05834
005534
0e05K834
005973

L

0+06530
006399
006399
0.06399

D

007106
0.07106
007106
007007

D

008982
DeNEIEL
04962
O«159 64
Ne 15629
QelH92Y

VCi

5106
9eq06)
18114
e IO()
0e9RY

[VIOA |

1104
Y106
9 842

177795

Vil

$e133
De5HYS
177981
18008
1 Q02

Vit

1149
D134
9 eh 68
18008

VC1

$S.133
94590
16008
1227

Vil

4795
9084
9044
2112
1+63%
1768

VE~AVE

44637
He i
T s 669
44620
D495

—

Vi=AVvr.

(}e 592
409
“e 0
176199

Ve-AVr

e 68
9elb2
17582
176562
0501

VC-AVE

QebH75
4545
He 997
17404

VC=AVE

40524
R e969
17359
0+613

VC=AVE

40151
B 486
ten2d
1056
Oely
ey a

Ve

4167
BeD36
17223
46134
N«000

Vi

00006
3008
He300
166 607

Voo

40203
Se 708
176184
17117
(3« 0DQ0

vee

0000
3+95K
Bed25
16800

vie

3914
Ke342
16+711
0000

vee

3e54H
Tess87
Be0N0e
0000
0000
()G




RUN nP Pis Cp WbaT 3] Vet VC-AVE vVCee

3K5 1420 99,00 0+7174} 006377 008889 1275 0«638 0000
386 1450 955,00 070255 0.06310 0+.08982 44890 44259 3627
ag 14450 99.00 070035 006291 008982 4863 44234 3604
3H8 1450 97,50 010216 006307 0.08982 94353 Ba 722 #:091
3K9 1450 9%« 50 068416 006145 008982 17713 17098 16.484
390 1450 95500 070129 NeNAER9G  (e0HBIBL 40917 40287 3657
RUN bR PB Gb WhAT 1) Vel VC~AVIL vie

391 14450 99.00 0483697 005947 Q07105 40943 40349 3754
392 14450 99.00 083751 0.059%1 007103 94379 $Belt84 HelHY
393 1450 9Ke50 0+86535 006148 0+07105 1774553 16938 16+324
394 1430 99,00 0«%0830 0.05703 007056 1141 0570 0000
RUN ) of PB cp wbaT D vCil VC-AVE vee

395 13.60 102.00 0.85065 0405271 006197 14054 0527 0.000
3-6—13vEe—102+06 Sv00080—0~00660 CRaTA-sman 306 O~06 Sma-acacs
3917 12490 9850 084737 0.05115 0406035 1023 0512 0000
398 1450 98.00 0e¢86412 0.05529 006398 40943 44390 3+837
399 14450 9750 0488501 0.05663 0:06398 9378 8812 Be246
400 1450 9850 0490599 0.05797 006398 18003 17+424 16844
RUN DP PB cb WD2T D vC1 VC=AVE vCca

401 14450 98.50 081429 0.07314 0.08981 54050 44319 39588
402 14-50 98.50 082642 0.07422 008981 9485 Be743 B.000
403 14.30 99.00 0.86862 007747 008919 18,029 17254 164779
404 15.20 10000 079938 0+07351 0409196 14470 0735 0.000
RUN DP PB Cb WwpaT D VC1 VC=AVE vCca

405 16.20 100.00 0.80273 007621 0.09494 1524 0762 0.000
406 14650 99.00 0+81253 007298 0.+08982 50158 44428 3699
407 14450 100400 0.83233 007476 0408982 9619 geg72 Bel124
408 14.50 99.00 085801 0.07706 008982 18242 17471 16701
409 1450 99.00 0.81321 007304 0.08982 5.131 44401 3671

201




TABLYE A-2

TARLE OF DATA FOR ORTE1CE FLOW TESTS
WITH ACTUAL PROPELLANTS

AD, W ¢ Reynold
Test No. psid Ih/scec n No.
NTO Oxidizer-1117.3 0.0648 |0.640 48,000

(Ox1dizer)

e

Oxidizer-2 110, 0.0641 {0,656 48,400
Oxidizer-3 1 26.1 0.0797 10,641 00,000
Oxidizer-4 | 35,0 0.0023 10,041 69,500
Oxidizer-5 | 41.7 (0.1021 10,650 77,000
Oxidizer-6 | 27.0 0.0784 10.020 59,000

e e SR

5

UDMI/Noll, | Tuel -1 13.8 | 0.0430 |0.786 | 17,400

(Fuel) Fuel-2 34.5 | 0.0529 |0.602 | 21,100
Fuel-3 28.3 | 0.0606 |0.762 | 24,200
Fuel-4 41.6 | 0.0691 |0.717 | 27,600
Fucl-5 22.2 | 0.0545 {0.774 | 21,800

2
NOTE: A = 0.00382 in.
0oX

0.00298 in. 2

Afuel

202




TARLE A-3

TABLE OF DATA FOR MIXING DTSTRIBUTTON TESTS

SYMBOLS

MR - mixture ratio, wox/wf

1
N TN N A \
1 + ﬁi).)f.f. JA o D
2 D). AL
Pruer MR AR,
Now = predicted mixing |'mited c* efficiency
mix
VC = cross velocity, ft/scc
X = spray nozzle spacing, inches
4] = spray nozzle impingement angle, degrees
n ow. R-T, n o ow. R-T,
poW ®RerpopE RT)
E =10011- ) — —— - RS
m T o R E (R-1)
T \
where
Em = mixing index
Wi/WT = mass fraction in the ith tube
R = ratio of oxidizer mass to total oxidizer and
fuel mass to total oxidizer plus fucl mass
T, = ratio of oxidizer mass to total oxidizer and
fuel mass in an individual strcam tube for ri<
?l = ratio of oxidizer mass to total oxidizer and

fuel mass in an individual stream tube for ro

203

R

R




15

lement
Type

WT
0.1820
0,1780
0.1815
0.1813
0.1782
0.1815
0.18106
0.17065
0.1784
(.17063
0.1758
0.1784
0.1788
0.1785
0.1789
(.1748
0.1828
0.1776
0.1802
0.1787
0.1760
0.1828
0.1818
0.1786
0.1838
0.1793
0.1750
0.1810
0.1853

.00
.09
11
.13
.09
1.67
1.06
2.09
1

1

—

[3]

.65
.10
2.07
1.65
1.09
2.10

2,009

N
0.530
0.325
0,639
0,534
0,315
0,670
0.52h
0,300
0.020
0.4491
0.315
0.619
0.493
0.495
0.565
0.357
0.654

.323
0.624
0.589
0.3064
0.712
0.680
0.487
0.770
0.654
0.448
0.703
0.619
0,408
0.737

=
43

69,
84,
81.
78.
76.
70.
73.
65.
73.
70.
05.
68.
84.

64..

08.
80.
00.
04,
79.
01,

204

09

Nk

93,
80,

89.

T mix

75

e

16

06

31

. ‘2()
.35

48
98

.A8
. 37

56

.83

37

. 30

.51

49
74

.33

78

.64

0

|- - ——-—

R SE—————




Run

H‘;a
33
34
Ah
30
A7
38
34
A)
Al
42
a3
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Ilement

Type

Fan 2

Fan 2

Fan 2

Swirl

Swirl
I)

Fan 2
Fan 2

Fan 2

0.1795

\V,r

0.1753
0.1769
0.1710
0. 10681
0,1712
0.1713
0.1718
0,1719
0.1715
0.1539
(.1548
0.1704
0.1708
0.1765
0.1792
0.1796
0.1804
0.1773
0.1761
0.1795
0.1773
0.1761
0.1761
0.1761
0.1761
0.17061
0.1780
0.2127
0.4090

1.00

0.86
0.85
46

1

1

1.53
1.56
1.68
1.53
1.60
1.68
1.69
1.69
1.69
1.069
1.67
1,62
1.59

0.5256

0.324

0.240
0,294
0.290
0.402

0.532
0.461
0.489
0.513
0.510
0.510
0.516
0.575

0.514
0.505

B

m

”c* .
mix

69.14 90,55

Not

70,
07.

74

71.
71,
A7
.84

72

46.
74.
84,
79.
87.
66.
47,
.68
79,
.21
71.
75.
79.
76.
73.
79.
33.
73.
.02

04

81

69

Reduced

K
06

N

31

10
01
20

00
07
21

88

82
40
55
21
84
05

71

HN3.11
D0.67
022
89,80
9050
90,14
74.00
80.41
99.01
98.73
98.93
095.57
85.04
71.44
88.70
95.39
96.35
91.62
93.98
95.72
93,62
93.61
95.79
69.03
93.42
91.76

\Y

10

10
10

[N
. . .

o C

(92}

.5

60
60

20

20

20

*lilement 8006/8000




T P e 1 ' " T B
Run Li;ﬁ;“‘ Wy w MR N Pa ”C*mix Ve } . 1 v
62 A 0.0812 L.05 0.523 78.92 94,89
03 A 01,2507 1.66 0.520 69, 84 91.88
04 A Round®* | 0,2278 1.59 0,505 76,78 91.13
Oh Fan A*% | 0,086 .58 A1.17 71.10 0.5 6{)
60 Fan 4 0,2241 1,57 H9.85 | 84,068 0.5 | 60
67 I'an 4 0.4097 1,60 64,03 RGOLAR 0.5 ()
68 lan 4 0, 2250 1.00 55,93 89 .05 0.5 00
() I'an 4 0.2200 2.07 Sh.72 80,22 0.5 O0

*Rounded orifice entrance
% ement 8000/8008

200




TABLE A-2

AT T am——= T2
MTTING NCZoLIs

A FOr SELF-ATC

-
e

ZATION BA

TABRLE OF ATOMI

.o
[1¥] % n
= on O = [«
[ I — — ) n
T 0 1@
n 0O Q0 LD 1ty Qg
@ g O «
LT B S [ B ]
e g g 4
1y e M on o 2
a7 @ 0 e OO, (1 e M
4 a0 Oy § it (0 M
0 K| . f.. (1 ¢ e
I RIS B S PR ) i i
e f1 3 [T [ {1t W
I VT SRTR I VI A N N () L0
$t 1y 4ol g ) 4 - FORNT]
8] g e ) AU )|
{: {1 #1 1 e yoth g
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TABLE A-0

TABLE OF HOT-FTRE DATA

SYMBOLS

[* = characteristic chamber length, inches
l‘c = chumber pressure, psii
MR comixture ratio, w )/W{

. :

w~TAr = tota) floweate, 1h/sec
|

N o Rupe Factor - -0 v T
)
AW R YA
Dol ’ MR Py A{‘

N-c* = ¢* ¢officienc ereent
b
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11.0 APPENDIX B

ANALYSTS OF EXPERIMENTAL ERROR

When several measured variables are combined algebraically to yiceld an

cxperimental result, the standard deviation of the result, which takes

into account the propagation of the individual errors, is given by the

following equation (Ref Bo1):

J
Ay )
8 B-1
(\X<I { ( )
whore
§ = oestimate of standard deviation of the calenlated result

R =R (X,'s)
i

§. = estimate of the standard

If the individual measurements arce

pendent, the standard deviation is

Equation (B-1) is rather difficult

by normalizing with respect to the

where

X. = the ith variable required to compute the result

deviation of the ith variable

combined by addition, and arc inde-

given by:

(B-2)

to apply. An casier form can be obtained

dependent variable, R:

(B-1a)

iy o= exponent of Xi in the cquation R = R(Xi)

“Teforence Bo1:  Arkin, . and Colton, R. R., Statistical Methods, Barnes §&

Noble, Inc., New York.
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In Eq. B-la, the standard deviation of the dependent variable, expressed
as a percentage of the variable, is given as a function of the percentage
deviations of each indenendent variable,

THE ORIFICE CORFFICIENT

The equation required to compute an orifice coefficient from a set of

data is:
. W
€, = Am (B-3)
where
w = flowrate, 1h/scc
A = orifice area, in.2
p = pressure drop, lh/Ft3
AP = pressure drop, 1hm/ft2-de1ta

To estimate the standard deviation of a given orifice coefficient, Eq. B-3

is used to generate a specific equation of the form of Eq. B-la for
(SC /CD):

) 2
b s\ /s.\2 s\ S
S = .—pl + W + ..:.l_ ..p_ + .].‘. _,[}B.. (3-4)
¢, A - 7\ T \"ip

A list of the estimated, normalized standard deviations of each indepen-

dent variable is given in Table B-1.

TABLE B-1

ESTIMATED STANDARD DEVIATIONS FOR THE DEPENDENT
VARTABLES REQUIRED TO COMPUTE CD

Variable Xi (sxi/xi) x 100,
I percent

A 2.0

w 2.0

o) 0.5

AP 2.0
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The estimated deviations presented in Table B-1 for w and AP include con-
siderations of repeatability under dynamic test conditions as well as
static calibration of instrumentation. Substitution of the numbers in

Table B-1 into Eq. B-4 yieclds an estimated deviation for CD:

S~ x 100 = 3,01 percent

For an orifice cocfficient value of 0.75, this would produce the following

limits:

“D = 0,75 *0.0220

or

0.7274 « CD < 0.7726

CHARACTERISTIC VELOCITY

The equation uscd to compute the characteristic velocity for ¢ given test

from the measured independent variables is:

o = PC.At 5 (B-5)
Wi
where
Pc = chamber pressure, psia
At = throat area, in.
Wt = flowrate, 1bh/sec

It must be remembered that the total flowrate is composed of two scparate

flowrates; i.e.,

<.
it
=
+
=

(B-6)
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ar, in terms of mixture ratio
t 0 MR

Equation B-5 may be written:

Auilysis of standard deviation for L.

of such factors as: (1) daring o test, Tthe throat

cither o predictable or ampredictable manner, () ach

{(R-7)

(B-R)

B-Rois eatremcly complex heenuse
area miy chanpe in

{lowrnte s a

composite mensurement in itself, requiving o oveading of eyeles per second,

a flowmeter calihration,
maust he determined

flow in the converpent scection of the novzle,
is an extremely crude estimate
on known crror sources.  First,

be penerated:

2 g\ L2
g \ .
Ten MY (M
cr A ¢ We

Bquation B-2 is used to estimate 8, . Thig iy dictated b

Iiq. B-06.

5 -
s, = A v 52
v

t ox t

is then divided by w_:

L
—

218

From o static pressure by assamption of
Thervetore, what

of the standard deviation of

and o Chndd density, and ¢3) chamber pressure

isentropic
follows

¢* bhased only

an equation of the Torm of lig. B-la must

(B-9)

r knowledge of

(B-10)




or

a Seow N [Pl wl\
- L ,.V,f’;,’f Lax)p . f i'i (B-11)
t ¥ WT ¥ " vt

I £ it assumed that

(K1)

Then

"w1 “wm W\ o\ "w“, Dy

W \ W ! W Sy ' o (1-14)
v v !

1 0x 1 1 0X v oo MRYT

Subntituting this expressioe in g, B9, the deviation ol ¢f hecomes:

) 9 ) ‘
. 5, Y S0\ S0\
Sew P M o LaMR”
‘(-V*“ : .‘), + ,/\ - + w. A L Sy (R--1 1)
' ¢ 1 0X (1+MR) "

The estimated, normalized atandird Jdeviations for cach variable are listad

in Table B-2.

TABLE B-2

ESTIMATED STANDARD DEVIATLIONS FOR CTHE DEPENDENT
VARTABLES REQUIRED 10 COMPUTE c¢*

Variable, Xi bxi/Xi, percent
p 1
c
l\t 1
w 1.5
0Xx
-
Wenel 1.5

A sample calculation 1s presented with the assumption that MR = 1.0.

Under these conditions, from Eq. B-14 and Table -2

!

ok
-==- = 1.780 pereent .o
¢ minimum
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10,0 APPENDIX C
DETERMINATION OF DESTGN CRITERIA FOR OPTIMUM
MIXING FOR SEVERAL NONCIRCULAR BLEMENTS

The objective of this appendix is to develop the approach to determination
of the element design criteria for optimum spray mixing. The results of
the cold-flow mixing studies were presented in the text of this report.
The results presented in Fig, 32 for the unlike doublets of the impinging
type showed that mixture ratio aniformity optimizes around N = 0.5 for
noneircular and cirenlar orifices, ad thai the Tevel of mixing varies
with orifice aspect ratio as well ag with momentum ratio. N as defined

by Rupe is

N = (C-1)
where
N = momentum ratio parameter
Mf/Mo = fuel to oxidizer momentum ratio
(Do/”F)“ = oxidizer to fuel orifice hydraulic diameter ratio
Do,f = 4 x area/perimeter = hydraulic diameter

Because all of the injectors of a given geometry optimize at a value of

N of 0.5, Eq. C-1 can be written as

Mf Do
M—‘ X -[5*“ = 1.0 ((‘,—2)
0 f

For Optimum Mixing

g Ap Ve <”o S
SUNILI N (0 -3
- i (C-3)

or

|3
re
o—




where
p o= odensity
A = orifice arca
V = injection velocity

iy = hydraulic diameter

int roducing the concept of mixiure ratio and the cortinuity equation, the
peometric variables can he separated from propcllart physical variables.

Lquation C-3  becomes

A h 0N
L) (52) = o (£) - (C-4)
f f o

This cquation defines ua propellant combination paramcter K. The factor
K may be computed from the propellant density ratio anc optimum mixture
ratio. For N204/N2H4-UDMH (50-50), K = 1.62. Thus, the area and hydraulic
diameter ratio product for an element which will yieid high mixing uni-

formity is defined.

The orifices are designed such that the orifices in a given clement have

the same width. The orifice dimensions are defined as:

Kngiiling I g Il

~ b =Ly QWD

and ARO = b/w, I\Rf = a/w. l-_b_"{ r

where
AR = aspect ratio
o,f = refers to oxidizer and fuel, respectively.

Because the width (W) of the fuel and oxidizer orifice for a particular

clement arce cqual, then from simple geometric considerations of arca,

e
T
e




aspect ratio, and hydraulic diameter, expressions may be derived which
relate oxidizer and fuel orifice aspect ratio to the given propellant
combination. These expressions are presented below for rectangular and

triangular orifices.

Rectangles:

2 2
(AR - (AR )

P S I e T (C-5)
(ARf + 1) (/\R0 + 1)

Triangles:

2 2

) (AR) (AR ) )

K > = > (C-6)
(1 + VA{AARF + 1) (1 + véziARo + 1)

These functions are plotted for values of K of 1.0, 1.62, and 2.0 in
Fig. . In addition, the aspect ratios for the three elements tested
for each shape are also plotted in Fig.C-1. It may be seen that the
design points fall on the curve K = 1.62. Thus, each injector is opti-

mum for mixing for its own particular aspect ratio.

The mixing uniformity levels at N = 0.5 (from Fig. 32) for each element
design are plotted in the right-hand plots of I'ig. C-1 as functions of
the aspect ratio of the fuel orifice. It can be seen that there is an
nptimum fuel orifice aspect ratio for each shape, and due to the rela-
tionships of Eq. C-5 and C-6, there is also an optimum oxidizer orifice

aspect ratio. Note that the optimum values are shown in the left-hand

plots of Fig. C-1.

Overall, the cold flow mixing study has supplied cesign criteria for un-
like doublet elements for N,Ud/Nqnd‘UDMH (59-50) incorporating noncircular

orifices. These criteria desceribe requisite area ratios and aspect ratios

for optimum propellant mixing.
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11,0 APPENDIX D

Y PERIMENTAT, APPRATUS AND PROCEDURES

Experimental apparatus and test procedures for single-orifice cold-flow,
single-clement mixing, single-clement atomization, and clement hot firings

are described in the following pages.
STNGLE ORTETCE, COLD-VLOW TEST FACILTTY

The operational objectives of the single-orifice cold-flow test progrim,

as outlined prior to progriam jnitiation, were:

1. Measure small flowrates (less than 0.1 1bm/sec) through orificces

of various shape flowing into a pressurized atu.sphere (pressures
up to 100 psig).

2. Establish cross velocities in the feed manifold behind the ori-
fices and maintain them for sustained periods of time (cross

velocities up to 20 ft/sec).

3. Allow for photographic documentation of the free jets emanating

from the orifices.

4. Measure the pressure drop from the feed manifold to the chamber

into which the orifices were exhausting.
A diagram showing the experimental setup is presented in Fig. D-1,

A schematic diagram of the experimental apparatus designed to fulfill

the test objectives is shown in Fig.D-2. Major components of the appa-
ratus as noted are (1) main water supply tank (25 gallon capacity), pres-
surizing and fill equipment, (2) control venturis, for producing 5 ft/sec,
10 ft/sec, and 20 ft/sec cross velocity in the orifice feed manifold, (3)
orifice and manifold block (photographs of thesc components are shown

in Fig.h-3), (4) main pressurant chamber with transparcent section

to
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Figure D-1. Diagram of Single Orifice Test Hardware
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(shown in Fig.p-4), pressurization and pressure measurcment cquipment,
(5) selector valves slaved topether, (6) catch tank, and (7) collector

tank and valve.
EXPERIMENTAL PROCEDURE

For each test, the objective was to determine the discharge coefficient
of a particular orifice under specific operating conditions. Those param-

eters which are required to determine discharge coefficient are:

1. Orifice arca (A)
2. Flowrate through the orifice (W)
3. DPressvre drop across the orifice (AP)

4. Density of the fluid flowing (p)

Knowing these parameters, the orifice coefficient is computed using Eq. p-1

C. = — (D-1)

D AV2gp )

The prccedure employved to set desired operating conditions and to measure

requisite parameters is outlined in Table D-1,

Pressures, flowratc, and flow time were recorded on direct-inking graphic

recorders.
High-specd motion pictures and still microflash photographs were taken

during selected test runs. These photographs show the character of the

free jet from the orifice exit to a distance of about 3 inches downstream.
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TARLE D-1

SINGLE-ORIFLCE COLD-FLOW TEST PROCEDURE

Step No. item

1 Open pressurizing valve and set regulator to
desired backpressure

2 Pressurize water tank

3 Open one of three cavitating venturi valves (ench
yields a different cross velocity)

4 ot desired orifice AP hy opening control valve

D Switch selector valves to collector tubes
(starts timer)

O Switeh selector valves back to cateh tank after
desired time interval (stops timer)

7 Close venturi valve

8 Open collector isoiation valve (vents collector
tube to atmosphere)

9 Open collector valve (sample flows into a
graduated cylinder, the volume was recorded in
ce's)

ATOMIZATION

Cold Flow Facility

The wax flow facility used for the dropsize measurements is shown in
Fio.D-5 and D-6. The overall system consists of wax and water supply tanks
immersed in hot oil bath container and a particle collector which catches
the frozen wax particles. Instrumentation requirements of pressure, flow-
rate, and temperature are provided t r strain gauge transducers, turbine
flowmeters and iron constantan thermocouples, respectively. Each wax and

water tank has an independent pressurizing and vent system. Also, cach
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a. o Wax Plow Hysten

b. DParticle Collector

Figure hog, Wax Flow Faciltity
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product outline has three flowmeters, thermocouples, and hand shutoff
valves arranged in parallel so a wide range of flowrates can he obtained.
The hot oil bath, shown schematically in Fig.p-6, is heated by means of

a 30-kw thermostatically controlled heater. An clectrically operated

pump circulates the oil from the 0il bath container through the heater and
back again to ensurc uniform temperature. Also, hot oil is forced through
jacketed run lines and valves to ensure that the wax does not freeze in

the feed lines.

The particle collector (Fig.h-5) is an 18 by 50 foot cpoxy-coated wooden
platform which is located under a roofed structure. This shields the
colleetion arca from wind currents which might cause the smaller particles
to be Dlown away. When the impact surface is washed down, the slope of
the collector causes the wash water to be directed into a particle catch
pasin. The catch basin has scveral baffles to ensurc that none of the

wax particles arc washed overboard.

Experimental Procedure

The experimental procedure for droplet size measurement is as follows:

1. The proper injector configuration is installed on the wax facil-
ity in such an orientation that the wax spray created by the
orifices after freezing during its ballistic trajectory strikes

the particle collector.

2. The electrical oil heater and pump are turned on to bring the

propellant simulant tanks and run lines up to 210 F.

3. After all parts of the system are thoroughly heated and instru-

mentation requirements checked, the run tanks arc pressurized,

4, With the piston operated shutter in the up position, the test
is initiated by actuating the main pneumatic shutoff valves.

When the flowrates and injection pressures reach a steady

——




condition, the shutter is actuated and the wax particles are
allowed to spray onto the particle collector. The use of the
shutter minimizes the influence of start and stop transients

on the size distribution of the collected particles.

1

. The injector flow is continued for approximatcly 10 secends,
The shutter is then actuated to the up position and main
shutoff valves closed.

6. The tanks arce then vented and systems secured.

7. ‘The particles are then washed from the collector into the cateh

basin, where they are scooped from the surface of the water and

placed in a piastic bag for temporary storage,

article Sample Analysis

The following procedure is used for the analysis of the particles:

1. A 100-gram sample of wax particles is placed in a Buchner funnel

and subjected to suction for removal of water.

2. After the particles have becn partly dried by suction, they are
placed on a large tray in a vacuum chamber for a period of at

least 48 hours to ensure that the particles are completely dry.

3, After drying, a random 10-gram sample iz selected to be sieved.
A series of 23 standard testing sieves ranging in size from 5
to 2380 microns is available. For any particular sample, only
13 of the sieves are used; the particular sieve sizes used
depend on the anticipated size range of the particle sample.
The sicves arc vibrated on a Ro-TAP automatic sieve shaker for
30 minutes, during which time the shaking is stopped every 6
minutes and each sieve is struck sharply several times to help

release any particles which become wedged in the sicve screens.
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4. After the sieving operation is completed, the mass of particles
retained on each sieve is weighed on an electric balance, it
has been found that with considerable care in transferring the
wax from the sicves into the weighing pan, a total recovery of
97 to 99 percent of the mass originally introduced into the
sicves is possible. The photos shown 1n Fig. D-7 arc typical
of the uniformity of sizes of the soiid wax particles obtained

by the sieving operation.

5. ‘These data are then converted into the total fraction ot mass

having a particle size smaller than each of the sieve sizes,
MIXTNG

Cold ¥low Facility

The description of the cold-flow mixing facility is dividesd into two

distinct parts: (1) the flow system, and (2) the collection system.

Flow System., The basic components of the flow system are shown in Fig. D-8.

The system contains two high-pressure (1000-psia maximum rated pressure)
supply tanks. Lach are remotely pressurized. The propellant lines are
stainless-steel tubing. Pneumatic (Annin) valves are used for tank shut-

off and main valves.

Flow system instrumentation consists of four Taber "Teledyne' series-
bonded strain gage pressure transducers, and two Fischer-Porter turbine-
type volumetric flowmeters. Measurements of both propellant tank pres-
sures and propellant injection pressures are made. These measurements

are recorded on Dynalog direct-inking graphical recorders. The volumetric

flowmeter signals are recorded on a CEC multichannel oscillograph.

Cold-flow propellant similants are trichlorocthylene and water, which

simulate, the oxidizer (NTO) and fuel (Acrozene 50), respectively. These
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Fipure D=7, Photographs of Solidified Wax hroplets Using a
0, 003-Inch-hiameter Like-houblet Element
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simulants were chosen on the hasis of: (1) availability, heing cmployed
on related programs at Rocketdyne using the same facility, (2) casc of

handling, and (3) maintainanee the oxidizer/fuel immiscibility.

f;,”l,],‘,,“:r;_",i’l‘,,,H)fflf’)" The specific details of the collector are il Justrated

in Fip., D=9, As can be noted, the tubing slants outward from the collection
plane to a7 by 7 foot base. ‘The base is 1/2 -ineh aluminum plate and sepia-
rates the apper portion of the assembly from the Pyrex tube racks.  Beneath
the aluminum plate is aocnrt which houses the tube racks, The cart is mount ed
on whoels so that the entire tube matrix i easily vemoved from under the

collector and rolled to the measnrement stat ton.,

pxperimental Test P rocedures

The procedure for cach of the cold-flow tests are is follows: ‘The fucl
and oxidizer simulant tanks are pressurized to give the desired flowrates.
The main valves are opened and after the injection pressures beeome steady,
the shutter is opened for a selected time interval and then closced. ‘The
main valves arce then closed to conclude the test run. All tests are con-
ducted with the clements centered above the collector at a distance of
approximately 3 inches. This distance was chosen since prior analytical
and cxperimental data indicate that it represents a good approximation of

the primary propellant mixing region during combustion.

The data recorded for each test included oxidizer and fuecl simulant flow-
rates, injection pressures, flow duration, and thec volume of oxidizer and

fuel simulants in cach of the collection tubes.

The individual volumes are determined by a volumetrically calibrated metal
strip or graduated cylinders. The metal strip resembled a thin metal scale
with a scribe mark at 10-milliliter increments. This strip is inserted
into the test tube and the volume of oxidizer simulant and the volume of
fuel simulant read directly. For tubes containing insufficient liquid
quantitics for accurate measurement, the volumetric measurements are

obtained by usc of graduated cylinders.
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Figurc D=9, Injector Spray Collection System
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hata Analysis

The collector matrix data and the other recorded data are processed by
computer to produce the following output: mass of oxidizer simulant, nass
of fuel simuiant, mixture ratio, and mass fraction for eiach tube. "The
mixing factor (]im), predicted c* officiency (‘”(‘*,ditil)’ center of collected
mass (row and column), and percentape of the injected mass collected are

compted,

Hot-1ire Test Facility
The single clement hot f rings were conducted at 1 he Propalsion Rescaich
Aven (PRAY. A schematic vepresentation of the propelbant Food system is

shown i Fipg. D=10,

Roth the N204 and NZH4~UDMH (50=50) propellant tanks are rated for 3 gal-
lons capacity at 2000 psia. Each tank is pressurized with regulated gas-
cous nitrogen. ‘The oxidizer is temperaturc conditioned by flow through

specially designed heat cxchangers.  DPropellant flowrates are controiled
by cavitating venturi meters. Both propellant feed systems can be purged
with gascous nitrogen. All tests werc conducted remotely from the block-

house which allows a dircct veiw of the test hardware.

Instrumentation requirements are also shown in Fig.D-10. Redundant chamber
pressurc measurements were taken at the beg.uning of nozzle convergence.

All measurements were recorded by the Beckman Data Acquision System.

Data Analysis. The index of injector performance used in this program
is corrected c¢* cfficiency. This ¢* efficiency was computed from chamber
pressure only, as no thrust measurcments were made. Performance lossces
attributed to the presence of the thrust chamber are computed and correc-

tions for these losses are applied to the measured values of ¢*.
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Basic, corrected c* was compnted from Lqg.

where

: . L2
(PO)n“ = nozzle stapgnation pressure, Ihf/in,
paj

)

At = effective throat area, in,”

off ,
K. ~ conversion factor, 32,174 -t /10 -nee”
W1 = total weight flowrate, 1hm/sec
et = characteristic veloeity, ft/sec

Nozzle stagnation pressure Wits computed from the static pressure
measured at the start of nozzle contraction. The assumption is made
that the expansion from the point of measurement to the throat takes
place both isentropically and quasi-one dimensionally. The stagnation
and static pressures arc then related through the isentropic relation-

ships based on effective contraction ratio.

fffective throat arca is computed by correcting the pretest geometric
throat arca for boundary layer effects, deviations from one-dimensional
flow,

The effect of chamber heat loss and viscous drag on c* is incorporated

in the proper determination of the displacement thickness of the boundary
layer at the thuoat. Rocketdyne uses an intcgral momentum, turbulent
boundary layer computation which includes heat transfer from the boundary
layer to the chamber wall. The thickness of the displacement boundary

is a function of the heat transfer due to the distribution of gas density
through the boundary layer caused by temperature gradients. Thus, cor-
reetions for both heat loss and drag are included in the determination

of an effective throat arca.
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