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BSTRACT

In the study of linear lumped systems, system stability

can often be determined by application of Nyquist's Criterion over

a finite band of real. frequencies. In the study of linear distrib-

uted systems, this may not be the case since such systems may

have an infinity of singularities. The memorandum derives condi-

tions under which the stability of distributed systems can be

determined by Nyquist's Criterion over ., finite band of frequencies,

and applies these .results to a simple system related to Saturn V

POGO stability.
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I INTRODUCTION

Open-loop Nyquist plots are widely used in the
stability analysis of lumped-parameter (i.e., described by
ordinary differential equations) feedback systems. Part
of the reason for the acceptance of this teci;rique is its
practical convenience. It is easy to measure gain over a
finite band of frequencies. It is desirable to is 3e a
similar technique when distributed (i.e., described by
partial differential equations) elements are added.

The first difficulty encountered is that the
frequency domain characterization of distributed systems
results in an infinite number of poles or zeros. Hence it
is no longer clear that any test over a finite frequency

!	 band will suffice to determine stability.

Another difficulty is that, although the
characteristic equation of the system can be put into the
form of a mixed polynomial in powers of the frequency
variable and exponentials of the frequency variable, and
although there exist techniques for determining the sta-
bility of such polynomials (to be described here), the
usual case is that one is concerned with the ratio of such
polynomials, for which no criteria exist. In the practical
case, one would like to measure the open-loop gain and
make conclusions concerning stability of the closed loop
syst.--m. In this memorandum we derive conditions under which
this can be done. We limit our examples to those systems
which have as their only distributed element lossless
transmission amines.

The memorandum consists of three parts. In the
first part, the Pontryagin Criterion is presented and an
attempt made to extend it to the open-loop type of analysis.
Although certain interesting results are obtained, it is
shown that open-loop results of the Pontryagin type are not
feasible. In the second part, we prove Michailov's Criterion.
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Although this has been proved previously by others, the proof
required assumptions which are not met in our class of problems.
This criterion is then extended to the open-loop type of
analysis. Finally, we consider, in some detail, an example
of a lumped-distributed system showing the applicability of
these results. This example (in fact the entire memorandum) is
strongly mo!7.ivated by Bellcomm's POGO analysis to determine
structural stability of the Saturn V [1].

Pontryagin's Criterion

Let h(z,t) be a polynomial with complex coefficients
in the two complex variables z and t. Pontryagin [2] has
developed necessary and sufficient conditions that the function

H(z) = h(z,e z ) Have zeros with only negative real parts. We
will show later that such polynomials are related to the closed-
loop characteristic equation of the class of systems under dis-
cussion. We now present one of Pontryagin's main results. Let
r and s be the degrees of the polynomial h(z,t) with respect to
z and t. Then the principal term of h(z,t) is the term contain-

ng the product z r t s . Pontryagin showed that if h(z,t) does not
contain the principal term then H(z) has an infinity of zeros
with arbitrarily large positive real parts.

Let p ( • ) and q ( • ) be real-valued functions of a real
variable. We say that the zeros of these two functions alternate
if: (1) They have no common zeros, (2) they have only simple
zeros and (3) between every two zeros of one of these functions
there exists at least one zero of the other. The result of [2]
which will be used in the present study is:

Pontryagin's Theorem

Let h(z,t) be a polynomial with the principal term and
H (iy) = F (y) + iG (y) where F (y) and G (y) take on real values
wherever y is real. If all zeros of the function H(z) have nega-
tive real parts then all zeros of F (y) and G (y) are real, alter-
nate and

G' (y)F(y) - F' (y)G(y) > 0
	

(1)

where superscript prime denotes the derivative. In order that all
zeros of H(z) have negative real parts, it is sufficient that all.
zeros of F(y)  and (3(y)  are real and alternate and that
G' (y) F (y ) - F' (y) G (y ) be positive for some y.

i
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To simplify the discussion we introduce the following
notation. If the complex variable z has real part x and imaginary
part y (i.e., z=x+j.y), and p is a map in the complex plane, then
we define the Pontryagin operator P by

P (p (z) ) = P (p (iy) ) _ [Re (p (iy) ) dy Im(p (iy)) ]

[Im(p (iy) ) dy Re (p (iy) ) ]	 (2)

In view of (2), condition (1) becomes

P(p(iy) )	 0	 (3)

All the results stated in this section are easily
proved, and the proofs are collected in Appendix A. To provide
an appealing characterization of the Pontryagin criterion, we

note that if p (iv) = I p (iy) I ei e 
(y) , then

P (p (iy) ) = I  (iy) 12 dy e (y)
	 (4)

Thus, if p(z) has no purely imaginary zeros, the criterion simply
states that a graph of p(iy) rotates ever counter-clockwise with
increasing y.

pc,jntrvaain's Criterion A pp lied to Open-Loop Analysis

In order to apply this criterion to open-loop analysis
we will need to know the effect of the Pontryagin operator on the
product of a scalar and a function, the product of t^!o functions,
the reciprocal of a function, etc. Some of the pertinent results
are listed next. Here a is a complex number and p(z), q(z)
denote functions.

t
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P(ap(z)) _ jai 2P(p(z))
	

(5)

P(a) = 0	 (6)

P( P( iy ) q ( iy ) ) = I q ( iy ) 1 2P ( p ( iy )) + IP(iy)1 2 P(q(iy))	 (7)

(8)
I q (ly)

P (P ( z )/q ( z )) =	 1
	

FT
	 [ I q (iy) 

12 
P (p (z)) - I P (iy) 1 1 P (q (z)) 1

Iq(iY)

Interpretation of these results is instructive.
Equation (5) says that if p(iy) has increasing angle so does
any scalar multiple.	 (6) says that a scalar has constant angle.
(7) shows that if both p(z) and q(z) have only left half plane
zeros, so does their product.	 (8) demonstrates that if q(z)
has increasing angle, its reci(.rocal has decreasing angle. 	 (9)
is, of course, the one of interest in open-loop analysis. In
its present form it is not too illuminating. However, it is
clear that, from (9), we can conclude that

if P (p (z)) > 0	 and	 P (p (z)/q (z)) _< 0,	 or if	 P (p (z)) ? 0
(10)

and	 P (p (z)/q (z)) < 0,	 then	 P (q (z)) > 0 .

(10) explains the observation that stable, minimum-
phase transfer functions have a Nyquist plot which tends to
.rotate clockwise about the origin. (An important special case,
when p(z) is constant, is discussed in Example one.) In fact,
(10) can be strengthened to

(9)
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I
P(q(iy)) ^ 0 if and only if P(p(iy)) > lq(iy) l 2 P(p(iy)/q;iy))	 (11)

IIf we accept for the moment that stability and
existence of roots only in the left half_ plane are synonomous,
then (10) provides sufficient conditions for stability and (11)

I provides necessary and sufficient conditions for stability.
However, they require knowledge of not only the open-loop gain
(p/q) but also the numerator (p), and this information is often

1	 not available. In the same vein, one can obtain necessary and
sufficient conditions for closed-loop stability as

P (q (z)+p (z) ) .. 0	 if and only if

P(l+p(iy)/q(iy))	 Iq(iY)+p(i.y) 2 P(1/q(iy))	 (12)

Here we require knowledge of q(z) which is usually not available.
From (12) a sufficient condition for closed-loop stability can
be derived for open-loop stable systems (i.e., P (q (z) ) > 0) .

P(q(z)) > 0 and P(l+p(iy)/q(iy)) > 0 implies P(q(z)+p(z)) > 0 	 (13)

1

The difficulty with this is that it i5 seldom true,	 in practice,
that P(l+p(iy)/q(iy)) 	 >	 0.	 However,	 the	 following result shows
it highly unlikely that criteria of the Pontryagin type wil_'	 be
found for open-loop systems. 	 (Since it is important and easily
derived, we include the derivation here, rather than in the
Appendix.)

i - ^')	2	 P( 12 ( î ,) 	 +	 p (1 ' )	 2	P 0	 =	 P(1)	 =	 P(	 (i	 )	 (q	 iy) ) 	 _	 q((
i	 lq(iy)l

q	
iy
	

)	 (i	 )	 q (i	 )  P^It	 Y1	 P(	 Y	 P 	 Y Y

Now consider a minimum--phase, stable open-loop system 	 (i.e., both
Oz)	 and q(z)	 have only left half plane zeros`.	 The reciprocal
is also a stable, minimum-phase gain. 	 13ut	 (14)	 tells us that if
one of these satisfies the Pontryagin Criterion, the other must
fail to satisfy that criterion. 	 Therefore, let us turn our atten-
tion to another criterion.

(14)

1
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m n w.z
G(z) _	

aij z
i e 1	 0

i=1 )=0

r
F

(15)

m	 n	 -riz
F (z)	 Z L aij zi e

i=1 j=0

(16)

M

Ialn1 - Z lain]
i=2

r
r (17)

1
I'

Michailov Criterion

As a starting point we consider an equation of the
form

where a 
6i 

are complex and w 

1

. are real. If any of the w 
1
. 

were
1

negative, we could multiply G(z)  oy e t, ^ k( z , where (j)k is the

most negative of the w's. This would not .:hange the zeros of
G(z) , so we assume 0 = w  - w 2 - ...	 in. Dividing by
w Z

e m and letting am-i+l,j	 aij, we transform (15) into

G
r
C

where r  = w m - w m-i+l * 0 for i=2, 3, ... ,m and r 1 =0. To relate

this to the Pontryagin criterion, note that if the w  a-_ rational

(which can always be assumed in a practical situation) then a
suitable scaling of the z variable will make G(z) of (15) into
a polynomial like 11W of the Pontryagin criterion.

Before continuing, it should be noted that a proof of the
Michailov criterion for exponential polynomials has been presented
in the literature ;3]. However, this proof assumed that

As will be seen by the example to be considered later, in the
class of systems we are considering, (17) is almost never satis-

1	 fied. Hence a proof is required which is free of this assumption.
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However we do use the assumption that aln # 0. That this is no

loss of generalit can be seen by the following considerations.
It is clear that Trm I ! lr i l i = 2,...,m. Then multiplying (16)

r z
by e m (which does not change the zeros) puts (16) into the
Pontryagin form. If 

aln 
is zero, the principal term is missing

and we are finished with the stabilitv studv. To aid in the sub-
sequent developement, let us rewrite (16) as

n

F(z) _ Z z a Q j (e - z )	 (18)

j=0

m
-z	 a.

where Q j (e ) 	 aije 1	 or as

i=1

k-1

F (z) = z 
k 

F k (z) + Z z i Q j (e - z)(19)

j =0

where k is an integer between zero and n and

n

	

Fk (z) _	
zj-kQj (e - z)

j̀ = k

We now prove the following theo,em:

Theorem 1

If there exists a non-negative integer k--,n such that
F  (z) of (19) has at most :3  finite number of zeros on Re -'J ' 0,

then F(z) of (19) has at most a finite number of zeros on
Re (z) > 0.

M

M
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Proof

Choose a r,-al number R' > 1 such that, Re (z) > 0 and
F  tz) = 0 implies I z I - R'.	 Define the set fi

e = { zlRe(z) - 0	 and	 I z I > RO)

Let

D  = inf IFk (z)I > 0
Z L 0

and

M

Mk =	 sup	 E 
Jai 

I
j =O .... ,k-1 i=1

If M = U, then F(z) = F(z) and the theorem is trivially true.

If 14k	0, then for all zce the following inequalities hold.

k-1

F (z) I	 I z 
k F k W1 	 Z I z j o j ( e -Z ) I

j =0

	

k-1	 m	 -r.z

I zk I Dk -	 Izil	 IaijI le	
i

	

j =0	 i=1

	

k-1	 m

2 Dk Iz k I - Z	 I zj 1	 Iaijl

	

j =0	 i=1
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k-1

I F ( z )I ' Dk 1Zlk - Mk 7 IZ^I

j=0

k	 z k - 1
Dk 1zI	 - Mk	

iz	 -

> Izlk(Ck (Izl-1) - Mk J + Mk
z - 1

IzI - 1	 l [ D k I Z' - (Dk +Mk ) l+ M)

which is positive for IzI > 1 + Mk/Dk = Rk . Hence the magnitude

of all zeros of F(z) must be bounded by R, the larger of the numbers
R' and R

k'
The theorem follows at once by noting that F(z) is

analytic and that an analytic function has at most a finite nun,-
ber of zeros in any finite region.

Corollary 1:

If there exists a non-negative integer k _ n such that

F  (z) of (19) has no zeros on Re(z) 2 0, then F(z) of (19) has at

most a finite number of zeros on Re(z) > 0.

Corollary 2:

If Qn (e-z ) of (18) has no zeros on Re (z) ? 0 then F (z)

of (18) has at most a finite number of zeros on Re(z) > 0.

Corollary 2 follows since Q n (e - z ) = Fn (z) .

1
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We now wish to derive an expression for the number of
rhp zeros of F(z). We choose a contour r varying along the
.maginary axis from -y to y ( cRll this portion w) where y > R 
of Theorem 1 and close it by a contour C outside tric semi-circle
of radius R of Theorem 1. Let

F (z) _ (1 + ', (z) I z k F k (z)

where

k-1

0 ( z ) _ Z
j=0

z (j-k) 4 ( e - z)
F (z)

We choose contour C (and increase y, if necessary) so that

1 ^ (z) j < 1 along C. Let. N be the number of zeros of F(z)
inside r and let

A 
	 (F (z) )

be the net change in arg(F(z)) along F. Then N, the number of
zeros of F(z) enclosed by r (assuming counter-clockwise travz-1)
is given by

N = 2L Or (F ;z) ) = 2Tr A w (F (z) ) } 2Tr A C (F (z) )
Y

4
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if F(z) has no zeros on F. Since 1 + ,(z) does not wind around
the origin (its real part being always positive), we have thus
proven

Theorem 2:

The number of zeros of F(z) with positive real part is

G
N = 2 -2	 G-w (F (z) ) + 

2c 
(Fk (z))

2n
1
 [arg (1+^ (iy) ) — arch (1+^ ( — iy)) ]

assuming that F(z) has no purely imaginary zeros and where
-W (F(z)) is the net change in argl'(z) along the imaginary axis

from -iy to +iy.

Theorem 2 is the desired statement of Michailov's
criterion. To obtain tighter results, let us now assume that

Q (e - z ) has no zeros on Re(z) : 0 (I.P., Corollary 2). Further,

let the r  be rational and the a lj be real. By virtue of

rational r i , Qk (e - z ) is periodic in y, for fixed x. Let this

period be P. By virtue of real a il , replacing z by its conjugate

results in Qk (e -z ) being replaced by its conjugate. Hence we

need only consider the semi-infinite strip defined by x>0 and
Pty? O.

Michailo,7's criterion can be simplified if it can L-

shown that Qn (e
-ry
") does not wind around the origin as z varies

over a suitable C. We now consider this possibility. For
z = x + iy

m
-r.x

Q n (e -L ) _	 ajne 3	 (cos r l y - isin r .y)
j=1

m

	

	 m
-r.x

aln +	 ajne 3 cosrjy

j=2	 j=2

Re [ Q .,, ' - i Im[Qn]

{I

-r. x
a jne 3	 in rly
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If either Re[Qn ] or IM [Qn ] does not vanish along C, then Qn

cannot wind around the origin. We now derive sufficient
conditions for this. Let

r k =

	

	 min	 rj
j=2,...,m

Then

	

rkx	 r xe	
Re[Q] = e k +a

	

In	
n

M
7" a.	 -(r.-rk)x

-Jn e J	 cos r . y
aln	 J

J

r 
k 
x

ea	
Re [Qn]r1T

m
> rkx 
	

a'n
Ct 1 I1

J=2

Hence IRe[Qn ]; > 0 for x > r 
	

In a	 where
k

M
J

a =
alnj

J=2

Thus we need only consider a rectangle defined by 0 < x < lna

-

r k

0 < y < P. (Note chat any contour C will work if (i51 which is

the case if Assumption (17) is used.) Q  (e - Z ) does not wind

around the origin for any contour with x > lna , since Re[Qn]
k

m	 -r•x	
lna

does not change sign. If E a.
	

0 for 0	 x < rk

J 

1

then Re[Qn ] does not change sign for y any integer multiple of

P, and 0	 x < l r `^	 A suitable contour could then consist
k
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of a horizontal line it y = KP from x = 0 to x = lna , where K
k

is an integer large enough so that KP > R of Theorem 1. The
rest of the contour in the first quadrant could be semi-circular.
The contour is completed in the fourth quadrant by the mirror
image of the first quadrant. Since Re[Qn I ^ 0 along this con-

tour, Qn[e -z] does not wind around the origin.	 (Note that

a jn 1 0, j = 1,...,m is sufficient to satisfy the conditions

of this paragraph.) Furthermore, since R[Q n ] is even in y,

AC(Qn(e-z)) = v along the contour chosen.

This result can be extended to include the case where
Re[Qn ] has simple zeros on y = KP. In this case, use semi-

circular indentations around such points, in the direction to
have Im[Qn ]	 0, in both first and fourth quadrants. 	 (Hence the

contour ceases to be symmetrical about the real axis.) Thus,

along the deformed horizontal lines, the graph of Q n (e - z)

remains in the upper half plane. Along the semi-circular por-
tion it remains in. either the right- or left-half plane. !fence

n.) encircicments of the origin are possible Zne a-ain A C [ Qn ( e -z ) ] = 0.

We now assume that o C [Qn (e -z )] - 0 and write the
Vichailov criterion as

N = 2 - n 
-w/2 (F (z) ) +	 arg (1+^ (iy) )

	
(20)

where 
A_w/2 

is that part- of the imaginary axis from 0 to iy.

Thus N = 0 iff

6 -w/2 (F (z) ) = 2r + arg (1+^ (iy) )
	

(21)

We remark that arg (1+^ (iy) ) can be .made close to zero for y
sufficiently large.
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Michailov's Crit _rion Applied to Open-Loop Analysis

'Th,. Michailov Criterion, as well as its predecessor th,.
Pontryagin Criterion, settle the problem of finding rhp zeros of

polynomials in z and e z . In many engineering applications, however,
this polynomial is not directly available, but a related ratio of
such polynomials can b; found. In the study of feedback systems,
for example, an open-loop gain can be measured and it is desired
to find the poles of the closed-loop gain. These latter poles
are the zeros of the polynomial which results from adding the two
polynomials whose ratio is the open loop gain. Stability has
been determined for non-distributed systems by co> > nting encircle-
ments of the open-loop gain along the imaginary axis. What we
propose to do next is to provide a similar criterion for the dis-
tributed parameter problem. Thus let F(z) = D(z) + N(z). Then

A (D(z) + N(z)) _ L [D(z) 1 + N(z) ]
P	 r	 D TZj

= D i .ID(z)
1
 + n r 1 + p(Z^	 (22)

Let the contour i' be composed of a portion of the
imaginary axis w and another (possibly semi-circular) contour
C, such that r encloses all zeros of D(z)  + N (z) . Then

A r (D(z)+N (z) ) = 4 r (D(z) ) + Aw 1 + D ( z)	 + ° C1 	 4. N (Z)	 (23)

It is the term A  1 + 
N (z) D(z) which is usually available

for determining stability. We ask, when does
N(z)^

L w 1 + D(z) 	= L r, (D (z ) + N(z))?".  The answer is that this happens

exactly whet

0 = A I' (D (z) ) 11	 N (z)
+DC I- +D( z (24)
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To develop a mote practical criterion let us rewrite this
expression using n  to be the highest power of z in F(z), and

N F to be the numb,-r of zeros of F(z)  inside r. Then

0 = A I, (D (z) ) + A C (D (z) + N (z) ) - A C (D (z) )	 (25)

0 = 27N  + nD+Nn
	

nDn	 (26)

where we have neglected those terms which become small for large
Z. In most practical applications, the open loop gain is
bounded at infinity, that is to say n  `- n D . Hence nDi ^ nD.

Since n D+N	 nD requires lim 
11 (

iw) - -1, we conclude that counting
wow

encirclements of the open loop gain is a valid method for
determining loop stable (i.e., N D = 0) and whose open--loop gain
is bounded but does not approach -1 for large frequencies
(i.e., np+N - n D )	 This includes the case, usually found in

practice, that the open-loop gain approaches zero for large
frequencies.

Example Based on the POGO Study

The system to be analyzed was chosen to be as simple
as possible and yet retain most of the features of the nOGO
stability model [1]. Thus, for simplicity, we consider only
one distributed parar^leter element. This is assumed to be a
lossless, uniform transmission line. The partial differential
equations of the line are linearized and Laplace Transformed in
the usual manner [1]. The resulting equations can be expressed
as



(:c)bh ks

A =

1- sinh ks
z 

-ZC sinh ks

cosh ks

:3

(28)
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I	
where X i are 2-vectors whose first component P i is transformed

pressure and second component W  is transformed flow. The sub-

scripts 1 and 2 denote input and output, respectively. I is the
2 x 2 identity matrix and A is the matrix

where k, Z  are rQal positive numbers and s is the complex

Laplace variable. In the derivation of these equations k is
shown to be the ratio of the length of the transmission line
to the wavespeed of sound in the line. 

z  
is the character-

istic impedance of the line.

The particular configuration to be considered here
allows the inr.ut pressure P 1 to depend on output pressure P2

through external feedback. (In the POGO study this feedback
mechanism was clue to "Pos Aos" forces exciting the structure
causing acceleration of fluid in the fuel tanks which generated
pressure variations at the input to the line.) Thus we have

P 1 = G(s)P 2	(29)

The output flow W 2 is also assumed to depend on output

pressure P 2 . (In the POGO model this was due not only to the

fluid load on the line (e.g., pump, discharge system, engine)
but also due to the change in output flow caused by pump
motion resulting from Pos Aos force.) Thus we write

J

W 2 = Y(s)P 2	(30)
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The system equations can be written in matrix form as

cosh ks -ZC sinn ks -1 0 P1 0

-	 sinh ks
i

cosh ks	 1 0 —1 IC4W1

---- ------------------------ t---- - ----- -- -- (31)
-1 0	 i

i
G(s) 0 P2 0

0 0	 ; Y(s) -1.0
W2

0

or, using the indicated partitioning

A	 -I	 X_	 0
(32)

C	 D	 X2	 0

where

	

[-1 0	 G(s) 0

C = 	 D =
0	 i)	 Y(s)	 -1

For simplicity we will refer to this matrix as M(s), i.e.,

A -I -

M (S) _	 ( 33)

C	 U

Hence the form of the system equations to be considered is

M(s)X(s) = 0	 (34)

where
X1

X(s) =

	

	 (34)

L. 
X2

h
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The following assumptions concerning G(s) and Y(s)
are made:

Al.	 G(s)  an:3 Y(s)  are
real ct,ef f icients

A2. lim G(s)  = k 1 whe
S -i ao

A3. lim Y (s) = lim sC
5 -* W 	 s-*m

each the ratio of two polynomials having
with no singularities on Re(s) > 0.

re k l is real and lk j : 1..

where C is non-negative real.

Assumption Al requires G and Y to be stable transfer
functions. Assumption A2 insists that the feedback gain at
infinity ne less than unity. Assumption A3 is physically
appealing (and was satisfied in the POGO stability analysis).

General Eigenvalue Analysis

Let G(s) denote the determinant of M(s). From (33)
and a well-known identity it follows that

A (s) = det (M(s) ) = det (D-CA -1 (-I) )det (A)	 (35)

which is easily computed to be

(s ) = cosh ks - G(S)  + Z cY (s) Binh ks	 (36)

The solutions of o(s) = 0 are the system eigenvalues
and are the natural modes of the system. Naturally it is
desirable tc determine these eigenvalues. However, this is a
nonlinear eigenvalue problem involving a transcendental equation.
Thus even in the simple model considered here, analytical solu-
tions are usually not available and recourse to numerical methods
is required. Before applying the Michailov criterion, let us
"get a feel" for the system pecularities by means of some analysis.

As a preliminary, we simplify the notation as follows.
Let

1
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(i = vf---l)S - a + 1w

x = ka

y = kw

Z C ReY (s) = f 2 (X, Y)

Z
C

ImY (s) = 9 2 (x, Y)

ReG(s) = f l (x, Y)

Itr,G(s) = g l (x, y)

Since z^ (s) = 0 exactly when Rev (s) and ImA (s) ar-e both zero for
some s, the following two conditions are of interest.

Imo(s) = 0 if and only if

tank x [sing + g2(x,y) cosy] + f 2 (x,y)sin y = gl(x,Y)
	

(37)
cosh x

Reo(s) = 0, if and only if

fl (x, Y)
cos y[1 + f 2 (x,y)tanh x] - 9 2 (x,y)sin y = cosh x	 (38)

The problem is simplified somewhat by the following
assertions:

Assertion 1: Complex solutions of o(s) = 0 appear as conjugate
............

F
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Proof

From Al, the inverse transforms of G and Y are real
time functions. As Ais well-known, this requires

f i (x,y) = fi(x,-y)

and
	

i = (1,2)

g i (x,y) _ -gi(x,-y)

Under these conditions equations (37) and (38) are unchanged
when y is replaced by -y. Thus, ( x l , y l ) satisfies (37) and

(38) if and only if (x l ,-y l ) does. The proof is complete since

A(s)  = 0 if and only if (37)  and (38)  are satisfied.

Assertion 2: o(s) = 0 has a purely real solution (x,0) if and
only

cosh x + f ^ (x, 0 ) sinh x = f 1 (x, 0 )
	

(39)

Proof

Al implies that 9 2 (x,0) = 0 = g l (x,0). Then, for y=0,

(37) is trivial and (38) becomes the equation of the assertion.

Assertion 3: A(s) = 0 hat- a purely imaginary solution (O,y) if
and only if both of the following are satisfied

f 2 (0 y)sin y = g l (0 ,y)

cos y = f l (O,y) + 9 2 (O,y)sin y

Proof

Obvious.

(40a)

(40b)

IV

i

0

0



sin y[f 2 (x,y) + tanh x] + 9 2 (x,y)cos y tanh x = 0 (4 la)

M

4

T

,r
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During the POGO study, it was noted the G(s) had little
effect on system stability. For this reason the following theorem
is of interest.

Theorem 3

T'et f l (x,y) = 0 = g l (x,y). Let R denote the set of 311

positive, finite real numbers. If dxER, VyER, f,, (x,y) 	 -tanh x
then t(s) = 0 has no solution with cER.

Proof

The case f-)r y<0 need not be considered in view of
Assertion 1. The case y=0 requires (by (39))

1+ f 2 (x, 0 )tank x= 0

which is impossible by hypothesis. Equations (37) and (38), are
now

i

i

cos y [l } f 2 (x,y) tanh x] - 92 (x,y) sin y = 0
	

(4 lb)

Since xER implies If 2 (x,y)l < - by Al and since Itanh xI < 1,

both ( f 2 (x , y ) + tanh x) and (1 + f 2 (x , y) tanh x) are bounded on

xER. Furthermore, they are positive on xER by hypothesis.
Solving (41a) and (41b) for sin y and cos y, respectively, yields

-g

2

 (x,y)cos y tanh x
sin y = f x,y + tanh x	

(42a)
2

9 2 (x,y)sin y
cos y = 1 + f 2 (x,y)tanh x	

(42b)
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Simultaneous solution gives the condition

- 
[g

2 (x,y) ] 2 cos y t.anh x

cos y = (1 + ` x,y tanh x f 2 x,y + tarih x]	
(43)

Since cos y = 0 cannot be a solution to (42a) and (42b), (43)
requires

[1 + f2 (x,y) tanh x] (f2 (x,y) + tanh x] _ -[g 2  (x,y) ] 2tanh x 	(44)

Since the left hand side of (44) is positive, there are no
solutions on xER. The proof is completed by noting that QER
exactly when xER.

Corollary

r
If G(s)  = 0 and Y(s)  is the admittance of a passive,

lumped, linear, time-invariant system, then n(s) has no zeros on
a>0.

Proof

It is well known that such a Y(s) is a positive real
function. The restrictions of the theorem admit positive real
functions.

A remark on the E-LE m and corollary is in order. If
one accepts for the moment that o(s) having no right-half-plane
roots is sufficient for system stability, then the corollary
states the intuitively obvious proposition that a line, terminated
in a passive load is stable. The theorem provides the further
information treat, loosely speaking, the real part of the load
can be negative, as long as it is not too negative, and the
system wi)1 still be stable.

The location of eigenvalues outside of a large circle
is considered next. By the assumptions we see that
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lim G(s)	 _ -k l + lim(cosh ks + sC'L C sinh ksj (45)
s-.^ s^^

or,	 in our simpler notation, with z = x + iy

lim	 G(z) _ -k^	 + lim[cosh z + C l z sinh z) (46)
z-► ^ z^^

where C 1 = ZCC/k. The following theorem cl.assifa_es the zeros

of	 (46).

Theorem 4

Let C l , k l be real numbers with C l L 0 and ^k l ^ `_	 1.

Let z be a complex variable and consider

f(z)	 = cosh z + C l z sinhz - k l = 0 X47)

Then	 f(z) has only imaginary zeros.

Proof

Express (47)	 in real a^^d imaginary parts. For
z = x + iy this becomes

cosh x	 (cosy - C lysin y)	 + C 1 x sinh x cosy - k l = 0 (48)

sinh x	 (sing + C lycos y)	 + C l x cosh x siny = 0 (49)
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Multiply (48) by sinh x cos y and (49) by cosh x sin y, add
the results, and with some trigonometric manipulation. the
following identity is obtained:

sinh 2x + C l x[cosh tic - cos 2yJ = [k l cos y] sinh x	 (50)

The left hand terms have the same sign (that of x); thus,

sinh 2x^ + (C l x^^cosh 2x - cos t y^ _ ^k l ^^cos y^^sinh x^	 (51)

and a necessary condition for (51) tc be satisfied in

sinh 2x) ` sinh x^	 (52)

This can happen only when x = 0.

Corollary

If C 1 > 0 and k l >_ then (47) has a single positive real
solution.

Proof

y = 0 implies that (49) is trivially satisfied and that
(48) becomes

cosh x + C 1 x sinh x - k l = 0	 (^3)

Thi=^ is a concave function of x, is positive for large ^x^ and is
negative at x = 0. Hence (53) has a single positive real solution.

This thzorem and corollary are interesting from a root
locus point of view. It is iiitt?itive that a lossless line, ter-
minated in a lossless load, will have all its eigenvalues purely
imaginary. It i g somewhat surprising to note that this remains
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G(s) = DG s (54)
NY (s )

Z c Y (s) = DY s
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the case as feedback is applied, up to the point where the two
smallest roots meet at the origin, and then break-away along
the real axis. No matter how large the feedback becomes, no
more real roots are generated.

F^aving thus discovered some of the unusual properties
of this particular lumped-c:istributed system, let us row proceed

^3	 to consider a stability analysis using Michailov's criterion.

f:
	 First let us pit (36) in polynomial form. Let

i

Then (36) can be written as

^(s) [DG(s)DY(s)] _ [D G (s)DY (s)]cosh ks - I^'G(s)DY(s) + D G (s)N Y (s)sinh ks

(55)

By Al , DG (s) and D Y (s) have no right h^^f plane zeros . Thus

^ (s) has right half plane zeros exactly when ^ (s) [ D G (s) D Y (s) ]

has right half plane zeros. Thus (55) is the desired poly:ZOmial
form.

Next let us consider suitable open- and closed-loop
expressions. Assuming that G(s) "closes the loop" we solve
(27) f.or P 2 (s) /P l (s) using (30)	 The result is the "line transfer

function".

..	
P2 (s) __
	 1

P1 s	 cosh ks + Z CY(s) sinh ks	 (56)

Hence the "loop gain", G O (s) , is simply G (s) times (56) , or

1
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__	 G(^)	 _	 DY(s)NG(s)

GO (s )	 ^•osh ks + Z G Y (s) Binh ks	 DY (G) D G (s) cosh ks + CG (s) N Y (s) sink ks

(57)

I^et us digress for a paragraph to relate these expressions
to classical feedback theory of lumped systems.	 If we let
[: (s )	 =	 4 0 (s )	 - G (s )	 we have	 said	 that

G(s)	
^ 0

 (s)-^ (s) ^ (s)G	 (s)	 =	 -	 =	 1	 -	 (58)
0	 ^O	 s )	 ^0	 s	 DO (	 )

where ^	 (s)	 = cosh ks + Z Y(s)sinh ks,	 or0	 C

Note that equation	 (59)	 is identical to a formula from
classical feedback theory of non-distributed systems, as originally
derived by Bode	 [4^.	 In his terms, G^(s) 	 is the return ratio and

1 - G^ (s )	 the return di f f er. Pn^^e .	 Thus	 ( 59 )	 suggests that the
analysis of distributed feedback systems may have much in common
with non-d^.str^:buted systems.	 That this is true in general can
be seen by noting that the Bode Theory is concerned with a matrix
of functions of the complex variables.	 Most of the manipulations
involve Cramer's rule, determinant identities, e^.c.	 and would
also apply to	 ( 31) .	 ^ience such notic,ns as nul l return differences ,
sensitivity ^.nd Blackman's egt^.ations will be meaningful in mixed,'
lumped and distributed parameter systems, in so far as the lumped
portion is concerned.

Returning now to the present problem, let us transform
these expressions so as tc:: fit the form of Micliailov^s criterion.

Thus, multiplying (55) by 2e
-ks gives

1
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F(s) = 2e -ks
G(s) [D^(s)D^l(s)] = D^(s) [D Y (s) + NY(s))

-2NG(^)U}.(s)o-ks + p G (s) [D Y (s) - N Y (s)]e -2ks	 (60)

or

2

F(s) _ ^	 R i (s)e -iks	 (61)
i=0

From Assumption A2 we conclude that degD G (s)_ degiUG(s).

From A3 we conclude that degN Y (s)	 degDY(s). From this fact we

see that the principal term is present and that the assumption (17)
used in previous proofs of Michailov's criterion is not met. In
fact one can readily convince oneself that this will be the case
whenever lossless transmission lines are involved, since all
exponential terms will involve hyperbolic functions.

Furthermore, even if the inequality of (17) is replaced
by an equality, many practical problems will still not meet this
criterion. For example, it can be shown that [4J in the case of
lossless fluid flow in a cylindrical pipe, (:.7), even with
equality, is violated if the fluid velocity is a significant
fraction of the propagation speed of waves in the fluid.

Using the notation of (61) , the opeii^-loop gain (57) can
be expressed as

R (s) e-ks
G O (s) =	 1	 -2ks	 (62)

R O (^) + R2 (s)e

whose norm becomes small for large, right half plane values of
s. Hance it is valid to count encirclements of the open-loop
gain about the point +1 if the line and lts termination is stable.
As can be seen from (56) and (57), this latter condition guarantees
stability of the open-loop gain.



Let

n

i=0

E

T
I
1
1
1
I

n

j =o
(64)

P

)^
L
k=0

Pr
L
^.=o

ais
i

bjs^

kcks

d^s^"

G(s)

Z C Y (s )

bn # 0

cp ^ 0

BELLCOMM, INC.	 - 28 -

i
i

F^
Example 1

Assume that D G (s) = 1, N G (s) = k l , D Y (s) = 1,

N Y (s) = sC l + g. This corresponds to terminating the line in

a capacitance C l and shunt conductance g ^ 0. The open-loop

gain for s = jw k^ecomes

kl

GO (^w)	 cos w - wC: l sin w + ig sin kw (63)

which is real only when sin kw is zero. This implies that cos kw
is ±1. Thus if ^k l ^ < 1, G O (jw) cannot encircle the +1 point.

'i'his result is in agreement with Theorem 4, to which this problem
corresponds if g = 0^ It is intuitive that adding losses to a
lossless sytem wil]_ enhance stability.

`Po show the necessity of the open-loop stable requirement,
note that g can be either positive or ne gative. r^rom (6) and
(9) of the Po„tryagin criterion, we see that (63) is then stable
or unstable, respectively, and that fo g ^k l ^ < 1 the closed-loop

system is stable or unstable, respectively. However, in either
case there are no encirclements of the critical point key the
open loop gain.

Example 2
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Using ( 54 ) an-i (64) , (60 ) becomes

F(s) = s n+p {bn (dp + cp ) - 2andpe-ks + bn(dP _ cp)e-2ks}

+ sn+p-1([(dP-1 + cp-1 )bn + bn-1 (dp + cp)

_ 2[an-ld + and 1]e-ks
P	 P-

+ 
[bn (dp-1 _ 

cp_1 ) + bn-1 (dp - cp) ^ e -2ks }

n+p-2

	

+ ^ sm{ ^	 bj(di + c i ) - 2e-ks ^	 a]dl

m=0	 j+i=m	 j+i=,n

	

+ e-2ks ^	 b] (dl _ cl) }

j+i=m

(65)

4^

;^

a

In this example we find conditions on (64) which are physically
plausible, such that the corollaries of Theorem 1 apply. First

cue investigate the zeros of the eoeff_icient of s n+p in (65) .
(This coefficient corresponds to Q n (e -z ) in Corollary 2.) For

simplicity let e k`' = z. This maps the left-half s-plane into
the unit circle ir. the z plane.

If dp = cp , then the coefficient of s
n+p 

has zeros

whenever b rl cp = ancp z -l . If an were zero, the coefficient in

question- would become constant, which satisfies the conditions
of Corollary 2. If a n is not zero then the condition under

discussion simplifies to z -1 = bn/an . A1'_ solutions of this

will satisfy ^z^ < 1 if ^a n ^ < ^bn ^. Hence all zeros of the



< 1

d +c^^
d -c
P P

(67a)

7'
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coefficient of s
n+p 

in (65) will lie in the left half plane if
^an ^	 (bn^. This is intuitively appealing since this requires

that G(s) have less than unity gain at large frequtr,cies (as
required by Assumption A2).

On the other hand, if dp # cP , then the zeros of

interest are solutions of

2	 2a d	 d +c
(z -1 ) - 

b rid _
c (z -1 ) + dp-cp = 0

n P P	 P P
(66)

It is well-^.nc^wn [6 ] t.hat solutions of (66 ) (for z -1 ) have
magnitude less than unity if and only if the following three
conditions are met.

d +c	 2d	 2a d
1 + ^^ _ ^_ , n

d p - cp	 dp - cp	 b l,^ dp-cp) (67b)

r
2d	 2and

d -c— ^ bn^dp-cP )
P P

(67c)

Thus conditions (67) are NAS for ^z^	 1. Condition (67a) requires
t1^at d p and c p have opposite sign. Since this corresponds to

terminating the line in a negative conductance at high frequencies
(i.e., lim Y(s)	 0), we reject this case. If both d p and cp are

g ^ o0

non-zero, and have the same sign, (67a) is violated. If dp ^ 0,

(67b) and (67c) together require ^a n ^ < ^b n ^ as before. The

remaining possibility is that d p = 0. This is a reasonable

physical assumption; in fact, it is required by Assumption A3.
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The coefficient in question new becomes b n cp (1 - e -2ks ) which

has an infinity of purely imaginary zeros, and this example no
linger satisfies Corollary 2:,

To see if it satisfies Corollary 1, rewrite (65) as

F (s ) = s n+p 1 { (sb nc + bn-l c + bnc 1 ) (1 - e -2ks ) _ 2and le-ks
P	 P	 P-	 P'

+ b d	 (1 + e -2ks ) }	 (68)
n p-1

n+p-2
+ ^	 sm{	

^.	
[b . (di + c i ) _ 2e -ks a .di + e -2k5 bj (di _ 

c i ) J }
J	 J

in= 0	 j + i = m

We complete this example by finding conditions under which the

coefficient of 
sn+p-1 in (68) satisfies the conditions of

Corollary 1. This coefficient can be written as

b c
ks -^ + b n _ 1 c + b nc 1 + bnd 1 - 2and le-ks

P	 P-	 P-	 P-

u c
- e-2ks (ks ^ + b n _ lc + bnc 1 - b^,^d 1 )	 (69)

	P 	 P-	 P-

Let w = ks. Then (69) becomes

b c	 kb	 kc	 kd

k
^ [w + bn-1 + cp_1 + cP _ 1 ] - 2and le-w

	

n	
P	

p	 p-

	

-b c	 kb	 kc	 kd

k^ 
[w 

+ bn-1 +
	 p-1 _ cp-1]^,-2w	 (70)

n	 p	 P
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1
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Zeros of (70) are given by the solutions of (71)

(w + a) + Y e
-w 

- ( w + 6)e^^w _ 0	 (^l)

where

	bn	 cp	 cp

S = k ( bn-1 + cp-1 - dp-1)^—	 c	 c	n 	 P	 P

Y = - 2 
k an p l

bn cp

2d
We assume that a > Q since u - B = --^ k which is positive by
Assumption A3,	 p

It is also reasonable t.o assume a > 0, since b	 /bn-^ n
must exceed zero for the denomin^^tor of G (s ) to be strictly

tiur^aitz l , and since cp_ 1/cp less than zero would imply zeros of

Y(s) in the right half plane. These considerations also imply
that ^ r ^ > ^ s ^ .	 1)s i.ng these assumptions ( i . e . , a	 ^ , a > 0 ,
lal > ^S ^) it follows that

^w + a^ ' ^w + gl

lA well-known necessarx condition for a polynomial to be
Hurwitz is that all coefficients have the same sign (see, for
example, [6] , p. 281) .

1
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^3
	 for Fe (w) .: 0. Evaluating the magnitude cf (71) cn Re (w)	 0

yields

w+,,+ Ye-w - (w+^)e
-2w

I t Iw+al - IY
IIe-wI _ 

Iw +,^f'^e
- 2w

w+al — I a I — I w+ai

If lim G(s) = 0, thee, a n = 0 and y = 0. This means that (71) ,
s •^

anc^ hence (70) and (69) ha^3e no zeros in the right half plane
a.nd thus Corollary 1 is applicable to this problem.

Co.iclusion^

It has been G'iown that the time-honored technique of
^.	 determining the existence of unstable poles of a closed-loop

gain by counting encirclements of the critical point of the
open-loop gain along a f_.nite segment of the imaginary axis
remains valid for a large class of distrik^uted parameter systems
of practical importance in particular Bellcomm's POGO m^d^l,
sinr:e the open-loop gain approached zero for large frequencies.

^^;	 Trie analysis reinforces die previously published opinion [3]
I	 that the Pontryagin criterion is "unsatisfactory except as a

theoretical result", i.e., it is not dirE^ctly applicable to
existing practical pr^^,lems. Existing l:.mitations of the

^,.	 Michailov criterion k;::,;e been removed so as to include physical
systems cf loss less transmission lines.
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APPENDIX A

In this appendix we prove the various results noted ir.
that ^^art of the memorandum devoted to the Pontryagin criterion.
For convenience we use the same equation numbers here as in the
main text

(4)	 P(P(iY)) = IP( iY) I 2 ^y '3 p (Y)

Proof

iU (y)
P( i Y) = IP( iy ) Ie	 P	 = IF^(iy) I [cos^ p (y)+isinU p (y) I

P(^^(iy)) = IP( iy ) IcosUp(y) dy Ip(iy) Isinf p(y)

- I p (iy) I sine p (y) dY I p (iy) I cosU p (y)

{Ip(?.y) I 2 [cosU p (y)l 2 + Ip(iy) I`[sinep(y)l2} dY ep (Y)

d
+ I p (iy) I cos© p (y) sinU p (y) dy I p (iy) (

sin g (	 d I P ( iY) I- Ip(iy) I	
P 

y)cosep(y)	
Y

= Ip(iy) I2 
dy 

gp (y)

(6)	 P (a) = 0

^^
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Pro^^ f

	

P(a) _ ^u^2 
vy 

v	 G

(7)	 ^'(p(iy)q(iy)) _ ^q(iy) ^ 2 P(p(iy)) + (P(iy) ^ 2 P(q(iy) )

Proof

L^:t ^^ (iy) = p r + ii i and q (iy) = qi + iq i anti let

superscript ^^rime denote 
dw	 Then

p (iy) q (iy) _ ^ rqr - E'igi + i (^^rqi +pigr )

anu

P(p(iy)q(iy)) = (p y -p•q•) (p q.+p,q )' - (P q •^P• q ) (^' q -p•q•) ,r r i i	 r i L r	 r i i t	 r r i i

_ (pryr -p i g i )(^^r 'g i +gr q i '+p i 'gr +p i gr ')

prg i +p i g r )(p r 'g r+prg r^ p i^ gi pigi^)

Pr2(grgi^ g i gr ^) + p i t(g rg i ^ uigr')

+ qr 2 ( prg i ' - p i p r ') + q i ^ ( prg i ' -p ip,_' )

+ pr gr (p r 'g i +p^q r ') - pigi(pigi'+pi'gr)
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^^rq i (P r ^ qr P i q i ^)	 Pigr (p rg r ^ p i ^ ^^i )

(p r 2 +p i t ) (g rg i ' -g ig r ') + (q r 2 +q i 2 ) (^ r ^^ i ' -p i p r ' )

	

P (iy) 1 2 P (q (iy)) + i q (iy) ( 2 	^ (p (iy) )

(5)	 i'(ap(z)) _ ^cxI 2 P(p(z) )

Proof

From (7 )

P (,xp (z)) = I a 12P (P ( z )) + I P (iY) 
12^ (^z)

The desired result follows from (6) .

^8)	 1'(1/q(z)) _ -1'(q(z))/Iq(iy) I4

f	
Proof.

`.^ Using the notation q(iy) = q r + iq i as before we have

^r-iqi
P( 1/q (z)) = P

IqI^

q r 	 -qi ^	 -qi	 cir

11 2 	'^I`	 Iql`	 Igl2

^^	 qr	 _ `^r `^i	 1_	 (-q )	 ,,-
{r,	 Ig	 1	 iq l^ 	 Iql`

g ig r	 1	 ^^	 qi
q

I g I 2 ^I^tI 2	 IgI4	 r
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- ^^ (g rg i^	 gigr^)Iql

(9) P(p(z)/Q(z)) - f Iq(iy) I 2 1'(P(z)) - (p(iy) I z p (q( z)) ]/Iq(i y) I4

Proof

By (7 )

2
P(p(z)/q(z)) = I q( l y j I	 P (P( z )) + Ip(iy) I 2 P(1/q(z))

By (3 )

2
^'(p(7) /q (z)) =	 1	 2 1'(p(z)) - ^1 ^) ^4	 P(q(z) )

I q (iy) I	 Iq ( i Y) I

which leads tc^ (9) .

(1^) 1'(q(z) + p(z)) > 0 if and only if P(1+p(iy)/q(iy)) >

I q ( iY) + p (iy) 1 2 P (1/q (iy) )

I> roof

P(q(^) +p(z)) = P[q(z) (1+p (z) /q(z)^

2
= I l + ^(^-	 P(9(z)) + I q (iY) i 2 P(1+p( z) /q(z) )

q (iy)

1.i

t r.

^Y

^-

^.

C
f
1
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^;

`Therefore

^^'	 1	 Iq(iY)+p(iy) I2

1 n(q(z)+p(z) = P(1+^^(z)/q(z)) +	 4	
P(q(z) )

Ia ( 1 Y) I	 Iq (ly) I

= P(1+p(z)/q(z)) ^ Iq(iy) + p(iy) ^ 2 p(i /q)

^	 trom (8). The desired result is an immediate consequence or this

expression.

^.

^ (.

1
1
1
f

L
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