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Abstract

In recent years, an important development in the organi-
zation of computer memories has been the use of a storage
hierarchy on the nanosecond/microsecond level and more speci-
fically of a very high-speed semiconductor memory as a buffer
to the main memory of the computer system. This report
describes a memory-buffer organization and its operation
similar to that implemented in the IBM System/360 model 85.
The Computer Design Language is employed to describe the
details of the functional organization and of the sequential

operation of the buffer in a concise and precise manner.
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CDL Description of a Memory Buffer Organization

by Yaohan Chu*

Storage hierarchy in the form of a relatively fast but relatively
small main memory such as a magnetic-core memory and a relatively slow
but relatively large mass storage such as a magnetic drum or disk storage
has been employed ever since the large-scale digital computer system was
first built. The basic idea behind such a storage hierarchy is to have the
mass storage provide the necessary storage capacity and the memory give the
desired processing speed. Such a storage hierarchy is at a microsecond/
millisecond level.

An important development in memory organization during the last several
years is to extend the above idea of storage hierarchy to a nanosecond/
microsecond level. This idea in the embryonic form was implemented in a
number of computers [1], [3], [4] by using registers or even a very small-
capacity memory. It was proposed by Bloom, etc. [2] in 1962 and Lee [5]
in 1963 as a "'look-aside memory"” and by Wilkes [7] in 1965 as a slave
memory. It was first implemented as a memory buffer in the IBM System/360
model 85 coﬁputer [11] where the buffer is called the '"cache" and is trans-
parent to the programmer.

This report describes, by the Computer Design Language or CDL [14],

a memory buffer organization and operation similar to that implemented in

the IBM System/360 model 85,

*Computer Science Center, University of Maryland, College Park, Md. 20742,
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1. Memory buffering

Conventionally, the main memory of a computer system is refer-
enced by the CPU, one memory word at a time; the processing in the CPU
is limited by the speed of the main memory. This limitation has become
more critical as the capacity of the main memory becomes larger and
larger and the speed faster and faster.

If a small-capacity memory which is one order of magnitude faster
than the main memory is used as a buffer, as shown in Figure 1, the
processing in the CPU could be greatly speeded up because the number of
main memory references can be sharply reduced due to the following.
reasons:

(a) The transfer from the main memory to the buffer memory can be made
a block (i.e., several words) at a time. If the main memory has a
multiple-way interleaving, the block of words can be transferred in
one main-memory cycle time.

(b) The block transfer may prefetch the desired words into the buffer
memory and make them available to the CPU because there is a great
probability that the other words of a referenced block would be soon
needed.

(c) The words in the buffer memory may be used several times due to
iterative loops and‘subroutines in a program, thus greatly reducing

the need for memory references from the main memory.



2., Organization

2.1 Memories

In this description the main memory and the buffer memory are chosen
with the characteristics shown in Table 1. The main memory has a cycle time
of one migrosecond, a data transfer width (i.e., word length) of 128 bits,
and a capacity of 64K (where K represents a multiplier of 1,024) 128-bit
words; it is four-way interleaved. The buffer memory has a cycle time of
80 nanoseconds, a data transfer width of 128 bits, and a capacity of 1,024
words. Both memories are divided into four-word blocks; thus, there are
16K blocks in the main memory and 256 blocks in the buffer memory. Every
16 contiguous blocks form a page; thus, there are 1K pages in the main
memory and 16 pages in the buffer memory. Data transfer between the main
memory and the buffer memory is one block at a time; data transfer between
the buffer memory and the CPU is one word at a time. The main memory re-
quires a l6fbit address, while the buffer memorv a 10-bit address; their
formats are shown in Figure 2. The main memory address consists of a 10-bit
page address, a 4-bhit block address, and a 2-bit word address. The buffer
memory address format is identical except that the page address is 4-bit.

For the organization to be described here, it is assumed that the
first page of the main memory does not exist; thus, page address 0 of the
main memory should not occur.

2.2 Registers P, Q, and V

As mentioned, both the main memory and the buffer memory are divided
into pages. During operation, 16 of the 1,023 pages of the main memory are
stored in the 16 pages of the buffer memory. These 16 pages are tagged by
their main-memory page addresses in an array of 16 page-address registers.
This arrangement of page mapping and page-address tagging is illustrated

in Figure 3.



Table 1

Characteristis of the main memory and the puffer memory

Characteristics

main memory

buffer memory

memory cycle time
data transfer width

data units

memory capacity*ﬁ

interleaving

address register

1 microsecond

128 bits or 1 word

{a) 128 bits per word

(b) 4 words per block

(c) 16 blocks per page
(a) 64K words

(b) 16K blocks, or

(¢) 1K pages

L~way

16 bits

0.08 microseconds®
128 bits or 1 word

(a) 128 bits per word
(b) 4 words per block
(c) 16 blocks per page
(a) 1,024 words,

(b) 256 blocks, or

(¢) 16 pages

none

10 bits

*CPU cycle time is also 0.08 microsecond

**K represents a multiple of 1,024




Main Memory

Buffer memory page 1
page 4 page 2
page 1 page 3
page 1023 page 4

3 \

i |

; |

i i

! '

t

3

page 1021 ]
page 2 page 1021
16 pages page 1022
page 1023
1023 pages

Fig. 3 Mapping between the pages in the main memory and

those in the buffer memory



-7 -

As also mentioned, each page in the main memory and buffer memory
is divided into 16 blocks. The 16 blocks in a page of the buffer memory are
illustrated in Figure 4 where each block is further divided into four words
(not shown). Associated with each page of the buffer memory are, as also
shown in Figure 4, a register which holds a 10-bit page address of the main
memory, a 16-bit block validity register whose 16 bits store the status
(1 means valid) of the 16 blocks of the page, a register which holds a
4-bit page address of the buffer memory. Since there are 16 pages in the
buffer memory, there is an array of 16 page-address registers P, an array
of 16 validity registers V, and an array of 16 page-address registers Q.
Thus, one validity register, one main-memory page address register, and
one buffer-memory page address register are associated with one page of the
buffer memory.

As mentioned above, associated with each page of the buffer memory
is a pair of registers P and Q. The P register stores the main-memory page
address of the page in the buffer memory; the Q register stores the buffer-
memory page address where this page in the buffer memory is stored. This
is illustrated in the diagram in Figure 5. Note that the numbers shown in
the buffer memory are main-memory page addresses; they should be the pages
themselves addressed by these page addresses. Furthermore, these pages in
the buffer memory may have partially been stored in the buffer memory as
will be further described.

2.3 Activity list

The array of page-address registers P are made to perform three
functions. The first function, as mentioned, is to store the page addresses

of those 16 pages in the main memory that are (partially or completely) in
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the buffer memory. The second function is to make array P work as an
associative memory so that, given a page address, simultaneous comparisons
with the addresses in array P are made; those matched are indicated in the
associated match register M. The third function is to store an activity
list; the page address which is the most recent referenced by the CPU is
placed at the top of the list, while the page address whose éage in the
buffer memory is next to be replaced is stored at the bottom of the list.

2.4 Configuration description

The above-described configuration is shown in the block diagram in
Figure 6. Main memory MM is associated with address register MAR, buffer
register MBR, and read and write control registers READ and WRITE. Buffer
memory BM is associated with address register BAR, buffer register BBR,
and read and write control register RB and WB. The effective address, the
data word, and the read-write command all from the CPU are stored in regis-
ters S, DATA and RW, respectively. In addition, register C serves as a
counter, and register B is used to control the buffer access sequence as
will be further described. This configuration is now described by the

following CDL statements.
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/

RW S(0-15) DATA(0-127)
MAR(0-15) BAR(0-9)
v
READ
Main Memory Buffer Memory
MM(0-65535,0-127) BM(0-1023,0-127)

WRITE {
—

MBR(0-127)

b

BBR(0~-127)

Array-register

Q(0-15,0-3)

Array-register

P(0-15,0-9)

c(0-1)

M(0-15)

Array-register

V(0-15,0-15)

Fig. 6 A configuration of memory buffering
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comment , configuration of buffer-memory access sequence €D

comment , buffer control registers

Array-register, P(0-15,0-9) $main-memory page-address array-register
Q(0-15,0-3), $buffer—memory page~address array-register

V(0-15,0-15), $Block validity array-register

Register, M(0-15), S$mat ch rggister for P arraf—register
c(0-1), $counter
B; Sbuffer—access control register
Fncoder, N(0-3)=M, " $encode match register

comment , CPU registers
Register, S(0-15), $CPU effective address register
DATA(0-127), $CPU data register
RW, $CPY read-write command register
subregister, S(PA, BA,WA)=5(0-9,10-13,14-15),

comment , main and buffer memory and their associated registers

Register, MAR(0-15), Smain-memory address register
MBR(0-127), $main-memory buffer register
READ, Smain-memory read command

WRITE, Smain~memory write command
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BAR(0-9), $buffer-memory address register
BBR(0-127), $buffer-memory buffer register
RB, Sbuffer~memory read command

WB, $buffer-memory write command

Memory,  MM(MAR)=MM(1-65535,0-127),
BM(BAR)=BM(0-1023,0127),
Block, UPDATE(IF (M(1)=l) THEN (P(0-1,)&-—-cir P(0-1,),Q(0-1,)<—-cir Q(0-1,),
V(0-1,)€--cir V(0-1,)),
IF (M(2)=1) THEN (P(0-2,)¢--cir P(0-2,),Q(0-2,)¢——cir Q(0-2,),

V(0-2 :)‘{_—Cir V(0-2,)) 5

IF (M(15)=1) THEN (P(0-15,)&--cir P(0-15,),Q(0-15,)&--cir Q(0-15,),
v(o—ls,)es—cir v(0-15,)),
Operator, J(0-15)<--K(0-15,) match L
Register, L(0-9),

Array-register, K(0-15,0-9),

/begin/ J(0)€-~(K(0,0)0L(0))*(R(0,1)OL(I)) *.vuvuvnnn *#(K(0,9)6L(9)),
J(1)&—-(K(1,0)0L(0))*X(1,1)6L(1))*.ccvunnn. *#(K(1,9)0L(9)),
J(15)%~~(K(15,8)0L(0)*(K(15,1)0L(1))*....... *#(K(15,9)6L(9)),

end of operator
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The above encoder encodes the contents of match register M into
a buffer-memory page address. The above UPDATE micro-operations update
the activity list as will be further described. The above operator match
is defined in order to perform the match between the given main-memory

page address and those 16 addresses in the P registers.
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3. Buffer Access

3.1 Access sequence

The sequence for accessing a word from the buffer memory is described
in the flow chart of Figure 7. When the CPU requests a memory reference,
the effective address is transferred to the main memory. The array of regis-
ters P is then searched for the effective page address.

For a read operation, if the page is active, the page address is put
on the top of the activity list; if the page is not active, remove the page
address at the bottom of the activity list, put the new page address at the
top, and reset the associated validity register to 0 to indicate that none
of the 16 blocks of the page in the buffer memoxy has been loaded from the
main memory. In either case, the validity bit associated with the effective
block address is tested. If the validity bit is 1, the block is iﬁ the
buffer memory; and the word is next read out of the buffer memory. If the
validity bit is 0, the block (not the page) is next loaded from the main
memory into the buffer memory and duvring the loading the first word from the
main memory is also transferred to the CPU.

For a write operation, the word is always written into the main memory;
this is known as “'storage through”. If the page is active, the word is also
written into the buffer memory and the activity list is updated. The
purpose of writing into both memories is due to the fact that the input-
outpui channels also communicate with the main memory.

3.2 Sequence chart

The sequential operations in accessing the buffer memory are organized
as a sequence, called the buffer-access sequence, which is controlled

by register B. The buffer—access sequence is shown in the sequence chart of
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Figure 8. It is assumed that the effective address, the data word if
there is one, and the read-write command are initially placed by the CPU
in registers S, DATA and RW, respectively. It has been assumed that
main-memory page address 0 &oes not occur.

As shown in Figure 8 when register B is set to 1, the buffer—access
sequence is activated. The effective address in register S is trans-
ferred to the main-memory address register MAR. The P registers are now
searched for the effective page address in subregister S(PA); those matched
are marked in match register M. At this point further operations depend on
whether a read or a write operation is requested by the CPU.

If it is a write operation, ‘the data word in the DATA register is
stored into the main memory and, if match register M does not contain 0, the
activity list is updated by placing the matched page address on the top of
the list as will be further described, and the data word is also stored into
the buffer memory. Registers B and M are next reset to 0. The sequence is
now completed.

If it is a read operation, match register M is tested to determine
whether the page is active. If the page is not active, both arrays of regis-
ters P and V are right-shifted and the array of registers Q is circularly
right-shifted. The manner in which the P registers are shifted puts the
effective page address on the top of the activity list and removes the page
address at the bottom of the list; this is illustrated in the diagram of
Figure 9(a). The manner in which the Q registers are shifted makes the
address of the newly available buffer memory page attached to the effective
page address now at the top of the activity list. The manner in which the

V registers are shifted rests to 0 those block validity bits associated with
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the effective page address. If the page is active, the UPDATE micro-
operations as defined by the block statement in statements (1) are

carried out. These micro-operations move the matched page address to

the top of the activity list and move the intervening page addresses

"down one position; this ié illustrated in the diagram of Figure 9(b).
(These are also the micro-operations that are required to updéte the
activity list during a write operation if register M does not contain 0.)
While the page addresses in the P registers are being moved, the validity
bits in registers V and the buffer-memory page addresses in registers Q are
similarly moved. The manner of handling the activity list as illustrated
in the diagramé of Figure 9 makes the least active page address drift down
to the bottom of the list and eventually be displaced if that page address
has been longest without being referenced.

After the activity list is updated as a result of the request being a
read operation, the validity bit specified by the block address in subregister
S(BA) is tested. Since the exact validity bit depends on the particular block
address, this validity bit is addressed by the following symbolic subscript,

V(0,S(BA)).
The above manner of addressing this particular validity bit is equivalent to
the description by the following 16 conditional micro-statements,
IF (S(BA)=0) THEN (V(0,0)cvsvccccccccssssls
IF (S(BA)=1) THEN (V(0,1)sevcecacacosnnas)s
IF (S(BA)=15) THEN (V(0,15))csecvccanscasny

which are too lengthy to be desired. If the validity bit is 1, the block of
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effective address register S

Array-register P

0 S(PA) 9
N\“———new page address
\ -
J top
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(a) put the new page address at the top of the activity list

top N
¥
N
N i: Array-register P
matched pagg address i
i é
| i
' j
\ 4
bottom

(b) put the matched page address at the top of the activity list

Fig. 9 Two ways of updating the activity list
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words is in the buffer memory and the particular word in the buffer memory
is read out into the DATA register. The buffer memory address is formed

by using the contents of register Q(0) as the page address and the contents
subregister S(BA,WA) as the block address and the word address. If the
validity bit is 0, the block of words is not in the buffer memory; this
block of words is now loaded into the memory and the validity bit is set

to 1. During the loading counter C is used to count the number of words,
and the first word from the main memory is also transferred to the CPU in
order to reduce the access time. Registers B and M are next reset to 0.

The sequence is now completed.
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3.3 Sequence Description

The buffer-access sequence in Fig. 8 is now described by the
following procedural statements.

comment, buffer-memory access sequence begins here (2
/W/ IF (B=0) THEN (GOTO W);
comment, transfer effective address to address registers

MAR(r-S;
comment, page search in array-register P

M(0-15)€——P (0-15,) match S(PA);
comment, determine read or write

IF (RW=1) THEN (GOTO Y);
comment, micro-operations for a read operation
/u/ IF (M=0) THEN (S(PA)-P¢--shr S(PA)-P, Q€—~cir Q, V&--—shr V)

ELSE (DO UPDATE) ;

tomment, test block validity bit

IF (V(0,S(BA)=1) THEN (GOTO X) ELSE (V(0,S(BA))<4—1, C<€--0);
comment, load the block to the buffer memory

/R/ READ4~-1, C<€--~countup C;
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MBR4--MM(MAR), BAR€--Q(0,)-S(BA,WA);
BBR€--MBR, WB<--1;
BM(BAR)€--BBR- , IF (C=1) THEN (DATA<--BBR);
IF (C=0) THEN (BAR(8-9)<--countup BAR(8-9),.
MAR(14-15)€~-countup MAR(14-15), GOTO R)
ELSE(GOTO Z);
comment , read the word form the buffer memory
/X/ BAR<--Q(0,)-S(BA,WA);
RB€--1;
BBR<4--BM(BAR) ;
DATA<--BBR, GOTO Z;
comment, micro-operations for a write operation
/Y/ IF (M#0) THEN (DO UPDATE) ;
MBR{--DATA, IF (M#0) THEN (BBR{--DATA);
WRITE<--1, IF (M#0) THEN (WB€&—-1);
MM(MAR) €—-MBR, IF (M#0) THEN (BM(BAR)<--BBR);
/z/ B<--0, M<¢-0, GOTO W;

END
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