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ABSTRACT

Th-is paper studies forced almost periodic oscillations

in a nonlinear systern of two 	 1terra integral equations. It is a

a
	 soquel paper to an curlier paper nn the same topic. Earlier re-

sults are improved In two way	 First it Is shown that the

oscillatory solution is Lya.punov stable under small perturbations

in the coefficients of the equation. Secondly it is shown that

whenever the coefficients are qua,siperiodic and analytic, the almost

periodic oscillation is in the surie class.

A.hi,S. Subject Classification; Primary 451, and 4530

Key Words: Almost periodic ) Volterra integral equations, stability,

quasiperiodic.



I t,Uj0S'1'1,;'ffODIC BEHAVIOR OY SOLU'TION'S OP A

NONLINEAR VOLTERBA SYSTV-1. II

R. K. Miller

I. Introduction.

In this paper we continue the study of forced oscilla-

tions in a nonlinear system of Volterra integral equation.,, of the

form

t

( 1 . 1 )	 xl ( t ) - fl ( t ) - f al(t-s)gl(S,xl(s),x2(s))ds
0

t
O a2(t-s)g2(sgx1(s),x2(,;))ds,

t
x2(t) -!-- f2 ( t ) - f a2(t-s)(;l(s,xl(s)1x2(s))ds

0
t

f a,, (t-s)g2(s1xi(s)1x2(J))ds.
0

In an earlier paper [11 sufficient conditions were given so that

the solutions x1 (t) and x2 (t) tend to certain almost periodic

limiting functions P l (t) and P2 (t) as t -+ co. In this paper

we shall im prove the previous results in two ways. Firstly, it

will be shown that this oscillatory behavior is stable under small

perturbations in the functions f i and g^, That is the solution

of the perturbed problem is oscillatory and is near the solution

r

`l

_-



2

of the unperturbed problem.

conditions in order that the

are analytic in t.

We shall follow th,

results froca that paper. In

vector form

Seconds:,,) we give rather weak sufficient'

limiting functions Pl (t) and P,(t)

notation in [1] and shall freely use

Particular we rewrite (1.1) in the

t
(^)	 x(t) = f(t) _ j A(t- s)G(s,x(s))ds

0

where A(c) is the appropriate matrix and x,f and G are two

dimensional column victors. The vector norm will be

x^

I X l = max ( I x I, l xl	 n I), i f x	 x
C	 2

The symbol Q will always denote the s pecial matrix

(1.2)	 Q _ 
2 -112	 1	 1

1	 -1 )

Note that Q = Q 1 and that	 N/2. For any N > 0 the re-

solvent of NQA(t)Q will be denoted by RN (t). Using RN (t), the

variation of constants formula and the change of variables

x = Qy + f(t) one car rewrite system (E) in the equivalent form

r!
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t

0

where 
Gr1

(t,s•) :.: ^tG (t,^2y+ f (t) ) rr- l.

Sys^,cra (1.1) arise:, in a nr^t;ural_ wny from thA initial -

boundary valve p,^obl^.m

(1.3)	 ut ` uxx

u(O,x) - F(x)
	

(U < x < ^r),

.r

and

u Y (t,G) = gl(t,u(t,0),u(t^^r) ), ux (t,'rr) _

-^2(t,u(t^0)^u(t,^)),

for fyll t > 0. In particular, we nave in mind boundary con-

ditions motivated by C. C. T,in's theor;^ of superflutdity (see [^]

°" [^])^

(l.. li )	 gl(t^xl) = Bl (xl- cl sin klt) 3 ^ ^(t^x2 ) -

= B2 (x2-c2 sin k2t)3.

As an application of the res^llts prove: here and in [1) we shall

prove the follo;ling r :salt.

,m^, _ _
	 -	 --	 -	 -_ -

^^. .



T^ieorem 1. Consider the ^robl«r^ (1.3 -^+) wlth ^'0 E C2 [O^ir]. Z

^;ivF^n any B > 0 thf:re exi ats E > 0 such that 3 f (A i -33^ < E^__. _._.

for i^ 1 2 anti. if F F C? [U T^ ] Frith
w ^ ^w

^^^ 0 mr,.•1	 Ux

then the boitndax•y functions	 u(t^0) and	 u(t,^r) tend asyrcpt^^tice.11;^

as t -a o^	 to a]rtost periodic	 1 ilciit3.nE fu ticti.ons P^ (t)	 And	 ' 2 (t) .y	 ^...^-

Z^ne functions	 u(t,^),	 u(t,^r)^	 Pl (t) nd	 F2 (t) a ll very coa-

ti nuously with	 ^'^ B^ ^ B2 ^ C 1	 and C2 .	 2-lvreover,	 each	 Pi (t)	 has

the form 	 Pi (t) = F'i (klt^ k2 t)	 where
Pi (8 1' 82) is real an^.l.yti_c

in (© 1,82 )	 and is	 2^►'-periodic	 iri e ach of its two variab le s.

P'



5

I7. t irturb^ation Results.

Assume; that Lhe coefficient functions f,C^ arod A ii ►

(E) s:^,tisfy file fol.t^w in^ hyhoth;:ses:

(A1) a^ (t) ^ 1 -^- ? Fn=l ^'x 1J (- r^2t) ' a^(t) - 1 + 2 ^1'ri-1^ ].)nPxl,(-n^t)

and

``^ fit)

	
a^ (t) ^

^(t) :^

^2 (t)

	
al(t)

(A2) f (^.) is continuous and bounded on 0 ^ t < ^.

:; I	 (A3) G(t,x) is continuous in (t a x) for all t ? 0, ^x^ < ^^

,^" I	 G i5 locally Lipschitz continuous in x A'ld G(t,0) ^ 0.
,,

(ASE) The function G (t, x l , x2 ) has the . ^ec ial form

e(t^xl)

G (t, xl , x2 ) _

g(t,x2)

where g(t,y) is an odd nondecreasing function of y which is

bounded in t E (-^, «^) uniformly for y on any comeact :.upset

.^/+
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'die fol.].owing hypotheses are rf:lated to (11^•)

(A^) Tt^erf exi sti T osi.tive numbers T1 and K such thfit if

y^ ^ K thra ^ y-urn (t r y) ^ < K uniformly for. all t E (-^, ^^) .

Here y ^ R^ i r a two di.mens ional coJ_tunn vector and G N i ::

the fur:eLion def'iiied below (^^fJ).

(AFB ) Theme ex7st posi.t;ive tnunber^ N, K O ar^d Kl sucJl that if

Y ^ ^ K, then ^ y-C N (t, 5') i ^ I:0 < Kl uniformly for a.11

The proof of Ler•̂ ma 3 in [ 1] is actL^.ally a E^,roof of the

following stronger result.

.E.

^^
LerunK 1. 3uppo^r G s atisfies (A3) an^1 (A^^) and b ?

sup (^ f (^) ^ : t ? 0} . Then for any M > V ^ b and ''or any e ir.

the j.nt-erval 0 < e < b there exists a nlunber rJ > 0 such that

(Aj) is true Wlth K = M + ^. Moreover, if L is a, constant such

that

^	 L ? sup (^G(t^y)^ . -^ < t < ^^ ^x^`• 5M }^

then ii depends only on the Hampers N,^^ and L.

Using Lemma. 1 we now rroveo

Lomma 2_. Suppose G satisfies (A3) and (A1+). Then G satisfies



(A^ 1 wh^^i •r^ N ctnd K .: K	 t+.re the :z^.mb^i • s obtp i reed in '^c^ramn 1.^.._.._	 ...._.	 1	 ^	 ____^

t^oove.
____.__

Proof. Let K =^ Kl and N be given by Lemrrla ] .

We must shag that there exirti,s a rnunr,er K O < K 1 such

^.	 that (A6) iFi t2•u^^. Fir a contradictiuri we supposE there is no

such K0. Tl,^:n for each pcsitivc integer n there exists, tiumUers

yn and to such thet

Yn - GN (t n ^Yn ) I ^ K - 1^n.

BV ^uss'Lly twtln^ a suLaequence we rosy assume that y n -^ y0^

GN (t rl , yn ) -i g0 and f(tn ) -^ f0 as n -+ ^. Note that ^y0 ^ s K.

Define xn ^: ^.Yn + f ( gin ) so the.t xn -► x0 = Qy0 + f0.

Write x0 end Y = NQuO ir, terms of their components

x0 _ col(xOl,xr2 ),	 r = NQgO = col(Yl,YL ) .

Def^_ne

U	 if z - 0

g'^ (z) _	 ^ rl '	 i f z = ^ x01_ I	 .

Y2 ^	 i f z ^- ^ x02

r
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^xten3 g*(^)

extend ^" as

Z ^ 0 bncl .l^t
col (g^ (xl )^ ^;

N^ZEO .

linearly btt^^r^cn the I^oints

n constant or the reraaininG

F^ (-^) ^ -g" ( •r,) when z <

"(x,^)) Tor all xl and x2

0^ ^xp11	 and IY021,

Dart of thf^ hal f ling

0. Define G * (xl^x2 ) r

Nate that G*(x0) _

The function G * define3 ire this way sa^,^sfies (A3) and

(/1^+) and has th^^ same urger bound h a g the function G in

Lcrrunas 1 and 2. Since	 ^ y0 1 ^ K, Lt ► en Lewna 1 imp] ies that

I YO - 
QG* 

(Q v̂o+ro )r^-1 l < K.

Ori the other hf^nd it follows by tt:e construction of G* and the

choice of y0 and g0 that

IYO - QG^(Qy0+f0 ) N 1 ^ = Iy0 - QG* (x0 ) N 11

' y0 - 60 I ? K .

This contradiction completes the proof. Q.E.D.

Theorem 2. Suite se (Al_4) arz true and b = sup (i r'(t) I : t ? 0} .

^,	 Consider the perturbation problem

t
`	 (^)	 x(t) = F(t) - I A(t-^) (^( J ,x(^)) T P(s,x(s)) }as,

0

^:^

"^

^;
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..r

wh
..^ P is continuous in (t,x).	 i •n^n for• Hny	 E > 0	 the

exiatg f^ n^^1b^r•	S > 0 such that ^ f

sup ( ^ ? (t , x )^ • t ? 0, ^Q(x-^'(t))^ ^ V•' b i ^ E;) < S

then the solution X(t) of (P'F) exists for atl t -^ 0 and

sat:ist'ics the inequality

Pruuf. Define II(t,x) 	 G(t,x) + P(t;,x) and let IN(t,y) =

QtI(t,Qy { F(t))N 1 . Given Kl = v^ b + ^ chocsc N an3 KU

using Lerruna 2. Choose fi < N(Kl -KO ) I Qj 1 so that

QP(t^^2Y - ^ ' (t ) )N l ^ ^ ^ Qj bT^-]. < Kl - K0.

If ^y^	 K1 then by the choice of o one has

^hN1(t,Y)^ s 
I GN (t ^Y)I + ^Q-°( t^Q,Y - F(t))N-ll

2'hus :i(t,Y) satisfies (A'^) 3nd (A5). Now apply Theorerl ^+ of

[1], Q.E.D.
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r

Z`^icorcin ;,	 ;:os^th _coefficients 1'^A c_	 G	 f (^,) sa.t

(A 1 - 4 ). D'^ ^^ f^^ s s^tp (^ f(i,) ^ ^ t ? 0} . Su^ that g{v!•n

a_riy A > 0 thE^re e_x3st: a pcsitiv^, cunt{nuous,^i+nc:rc:.lsin^ flu^..tion

Cx(u) such that

Cs(t,U+x) _ ^(t,x)}/u ^ a (I L^I)	 (lUl ' A)

vniforml_y for all t ? 0 and all x such that ^Q(x-f(t))^ s

^^

f	 + 
1+ .^^	 Then ^;ive ri F^cry ^ > 0 there exists a positive riuniber----- — -

b such ttitit whcrrever..^	 _^_.

i) F (t) is any conti.nlzous function : ati sfyinE; !^ f-^'^^

suP (^f(^.) - F(t)o t ' 0} < S^

ii) P(t,x) is sny continuous i^unction satisfyinG

sup	 {IP(t,x)I ; t ? 0, IQ(x	 - f ( t ))^	 ^-	 Vcilfll	 t	 1+} < 8,

and

iii) X(t) is the uriiaue solution of^^^

then	 ^ x (t)	 - X (t) ^ s ^	 for al_l t ? 0.

Proof. Define y(t) = x(t) - X(t)^ ^(t) = f(±) - F(t) and

H(t^y) = G(t,y+X(t)) - G(t,X (t)) . Then one has

t
y(t) _ ^(t) _ f A(t_s){H(s,y(s)) - P(s,x(s))}ds

0

or a;,rrstolic^lly
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1Pt Y =^ Qy^ ^.IJ 	NC^Ia end f{I^(,L^Y) _^ Q^{(t^aY)I1 1 so th^.t

(? • 1 )	 Y = (^ + ^^' (Y - xN (Y) + QI'(x)) Iv 1 ) - _-I,^Y•

If ^;N is the reso.Lvent of ^' that is

then any equation of the form Y = S - A NA Y ma.y be written in the

equivalent forri Y = S - ^ 1^5. Applying this to (2.]) and using

the rel_atien (2^2) one cari calculate

^d^AT1*(Y - --1V (Y) {^ QP(X)N 1 ^ ^

(^.3)	 Y - ^ - - ^T1#^ + - ^V*(Y - ^1 (Y) + QP(X)N 1}

pr

t
( 2 .3')	 Y(t) _ ^( t ) - @ f ^(t- s)^(s)ds

0

t	 _
f HN(t-s){Y(s) _ ^^,J(s^Y(s)) + QP(s^X(s)N 1}ds.
0

^:

- --^---- -----	 - •IEEE



Mj (t,x) _ (g(t,x j +Xj (^)) - g(t,X j (t))}^xj (j ^ 1,2).

12

Define SO = ((ti,x): t Z 0, IQ(x - F(t)))	 fIIFII + 1}

and let sl = ((t,x): t ^ o, IQ (x - f(t))I ^ f ilf il + 4}. If
li^ll = II f_FII < 1., and i f (t, x) E so then	 .

I Q(x - f ( t )) I f I Q(x - ^' (t)) I i I ^I II f -FII

^2iIFIl + 1 + ^•1 ^ ^(IIfII + 1) + 1 ^-

x/211 fll + ^ .

Therefore, SO L S, if Ilcpll < 1. By 'I'tieorem 2 tYiere exists a

number SO > 0 such that if I T' (t, x) I < ^0 or, SO then X (t )

exists for s.11 t ? 0 and (t,X(t)) e S0.

Write N(t,x) in the fot^n H(t,x) _= col (P41x1,M2rc)

where

Then Y - T-iN (t,Y) can be mitten in the form

M 1+M2

1	 ^]V

Y - FiN (t,Y) = A(t,Y)Y, A =
Ml-M2

.^:

M1-ML

^N

Ml+M2
1 _ .^_

If M(t,x) = col (MI (t,xl ), Mc (t,x2 )) and if IM(t,QYI < rT then

the norm of the matrix A is
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E,^ _ 1 - ^ M(t,QY) ^ ^N = max (1-6'.l^I^', 1-I vi2^N} . ^'or any number

K > 0 if ^Y^ s K^2, then since (A^ < 1 one has ^AY) ^ K^ 2 . If

K^2	 ^ Y ^ s K, then either ^ Y1+Y2 ^ or ( Y 1-Y2 ^ ^ K^2. Therefor•e^

the i^ypotheses of the theorem imply that ^M(t^QY)I ? o:(K^2) > 0

for some function cx(u). This means that

Y-^( t , Y ) 1 1 — a (K/2 ) /N	 ^K/2 s ^ Y^ s K) .

Consequently for any given ^ > 0, if K = ^^ ^ then there exist

positive numbers N and KO such that if ^Y^ s ^^ ^ then
^Y - HN (t,Y)^ ^ KO < ^^ ^2. The number 8 in the conclusion of the
present theorem will be chosen so that 8 s min {50 1} acid such that

4^^f - F;^ + 2^ P(t^x) IN 1 s oS s e _ ^,^ KO for all (t a x) E Sl . For

this choice of 8 we shall show t:^at ^y(t) ^ _ ^ x(t) - X(t) ^	 ^

for all t ? 0. Equivalently since Q = Q 1 and ^Q^ _ ^^

then we may show that ^ Y(t) ^ _ ^ Q(x(t) - X(t)) ^ s ^^^.

Let W = (z E C[0^^) o ^ z(t) ^ s ^^^ far all t ? 0}

and let TZ be the map defined by the right hand side of (2.3)^

thst is

t
Tz(t) = c^ (t) _ Q f ^(t- s)Q(s)ds +

0

t	 _

f RN (t s){Z(s) - ^1(s,Z(s)) - Qr(s,X(s))N 1 }ds.
0

..^ -	 •= •^



1^

t

IIy Lerntna 1 of [ 1] the matr. ix KN t L1 (0, «^) cnJ. f I ^ZN (t- s) i d s < 1.
0

for alt ^: 2 0. t'^ierafore, i f z f W,

t

0

N V ^ nlax P ^; x	 RN t-s ds ^+	 hN t-s KOd^
S1	 0	 0

s P V^ ^I^D^I + ^/^ tax I F(i.,h) I N 1 + y,0
S1

^^6s+ KO = e% ^.

Tflis shows that Tz E W if z E W. If the space C[0,^) is given

the topology of uniform convergence on bounded subsets of [0,^),

then it becomes a locally convex linear tc;^oloSical space with the

additional property that T: C[0,«^) -^ C[0,^) is a. coronletely con-

tinuous ma,n. Since W is a. closed bounded convex subset of

C[0,^) and T tnana W into itself then the Scha^^ r fixed point

theorem applies. This means that (2 0 30 h:^.s at least ene sol^:tion

Y(t) such that i i(t) I	 S^V G for all t ? G, But the function

H(t,Y) is locally ^,ipschitz continuous ir_ Y so that the solution

of (2.3^) is unique that is Y(t) = Q(x(t) - hit)). Q.E.D.
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III. Quasi-Periodic Fut,etiuris.

L!^t kl,k ,̂ , ...,ktn be positive constants r:hich are

linearly ind^:r^^endcnt over the integers. Let k denote the vector

k = ( kl , k2^ ..., k^) with m z 1.

Definition. A function ^ (t) wi.11 be called quasi^^eriodic with

fundarnentaL f'r'equencies Y, if and only if' there exists e. function
_____

m (p) = m ( gl, ©2 , . ^ ., ©rn ) continuous in 8 and reriodic ir. each

variable 8. of period 27r such that
J

cp(t) = 4(kt) = ^D(klt^k2t^...,kmt)^ 	 -^ < L < ^.

E_;ch quasiperiodic is easily seen to be almost periodic.

If m = 1 su tha.t k = kl then the quasiperiodic function is

actually periodic.

According to the results, in [1] if x Qy + f(t) then

for ary N > 0 the function y(t) solves (E N ) . Conditions are

given which guarantee that y(t) tends asymptotically to an almost

periodic function p(t) where

t

(3^ 1 )	 P(t) = f ^(t-s)^P(s) - GN(s^p(s)))ds^ -^o < t < ^^
_^

T'ne unction p is ±he unique solution of (j.l) if N is

sufficiently large.
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The uim iii ^iiis section i^ to give sufficient con^iitioiis

in order that p(t) = P(^:t) is q^zr^.si^:eriodie rind P( p ) is analytic

^.n p . Assiune:

(A"j) G(t^x) = Y(^a^x) and f(t) = cp(kt) are quasiperio^.iic in t
with fun^ir^mente.l- frequencies k. P^oreover^ Y(O^x) and y(0) are

real analytic ft^r^^:ti.ons of	 (6,x) and p respectively in regions

(3.2)	 U(^G ) = ((O^x): ^7ni 6 j ^, ^lm x i ^ < S^j, .^o < Re x l ^ Re Oj < o0

for 1 ^ j ^ m and i = 1^2}

and

(3.3)	 D(8^) -- (0: ^ Im Oj ^ < b0^ _^ < Re 8
j
 < ^ for 1 s j s m}.

Unc?er t^iis assumption it foll.o^rrs t^lat the function

_,
YN (kt ,Y) = QY'(kt^Q„Y + ^(kt))N

is also quasiperodic and anal^►tic in U(8^). If the solution of

(3 ,1) wa.s quas ipErodic ^ say p (t) = P (kt) . then (3.1) co^_ald be

rewritten as

t
?(Kt) = i t^.(t-s){P(ks) _ YN(ks^P(ks)i}ds

_^

Gf R11 (s) (P(kt-ks) - rTJ("t-ks^P(kt-ks))}dso



1'j

Since k = (^:1^ k2^ ..., kn	 is a vcc ^^^r of .^ ire ..^_z • ly indc;^ ^,n^i^_:^t

fregtiericj es ar11 F^(E^) is continuovu in 0^ then tYri..s is equivalent

to the equation

(^.^^)	 P(0) ^ f0 I2N (s) (F(0-ks) - r^1(4—k:;,F(0-k ;} } }ds.

Converscly^ if P(G) is any continuous solution of (3.^) such that

P(0) is 2;^_periodic in each variable 0^, then p(t) ^ p(kt)

will solve (3.1). Th^refore^ our proble.^n is reduced to finding an

analytic an3 periodic solution of (j.l^).

For any S > 0 the symbols D(8) or U(8) will denote

regions defined in the manner of (3.2) and (3.3). Using this no-

tation we now prove the f'ollowin^;

Ti:20rem 4. 3unpose (!'►1..,) a.Zd (A6 -7) are true. Ther. tY^ere exists

a 5 > 0 such that (3,4) has a solution P(8) which is real

analytic in © E D(S) ar.d 2;r_per;oaic in each variable 0^. 	 '

Prc^i. Let N, KO and K1 be the number:: given by (Ao). For any

8 in the interval 0 < 5 < 80 let ,}(S) denote the set of a

functions 7(B) real analytic in 8 E D(s) and 21r-periodic in each

variable 8.. If .^(8) is given the tocolog,^ of uniform con-
,

vergence on compact subsets of D(8), ther_ this family beccx^es s

lccally con ^•;.x linear topologica.'.. apace over the real numbers.

Define
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S u ('L ^ .^(&): ^L(0)^ ^ K1 for al.l 0 c D(5)}

where K1 is the constant in (A6). T'ien S is a closed convex

nonempty and com^^act subset of ^(fi). Since (AE) is true for

G (t, x)	 r(kt^:c) and since k =- ( kl , k2 , , . ^, ^cm) is a vector• with

linearly independent components, tht:n

I Y - Y(e ^Y) I ^ KO < K^ if ^ y^ s Kl ,	 (g,Y) E ^(8)

and (8,y) is real. By continuity there exists a number fi with

0 < 5 < SO such that

Y - r( e , y ) I ^ Kl	 if ^ yl s Kl 	srid (O,Y) E U(s)

where (6,y) is now allowed to be complex. This is tre 3pproprizte S.

For any Z E S define

TZ(6) = Of i^(s){Z(8-ks) - YN (0-1:s,Z(6-ks))}ds, © E D(8).

By Lemma 1 of [1) the matrix RN (t) E Ll (0,^) with f ^B^(t)^dt s 1.
0

This meats that TZ(6) is well defined, T7. E t(8) and

^TZ(e)^ s 0 ^^(s)^Klds s K.l.

i

- ---	 - — —	 ---	 --	 _	 ;..
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In pai• t.icular Z' map:; S into S cont.'.nuously.. By the Schnuder	 ^ .

fixed point theorotn T has a fixed point. ^.E.I).

i
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J. Outline of the Proof of 'i'heorert 1.

7'}^e re^ults jn sCCtion 2 of [1] show that (1.3)	 is

equivalent to (t^.)	 with	 xl (t)	 n	 u('.:,0) end	 x^(t) ^ u(t;,'►r),	 with

°°	 2	 °^f^ (t) = F'0/2 + ^; F'n exp(-r, t), f^(t) = F^2+ ^; F' n (_1) nexp (-n?t)
n=1	 k=1

erid with

7r
Fn	 (2^7r) f F'(r.) cos nxdx.

0

It is easy to prove that

the uni`'orm norcu over 0

C 2 [O,^r]. The res7xlts ^.n

x2 (t) vary continuously

as f anti g vary.

fl(t) and f2 (t) vary continuously in

t < ^o as F varies in the norm of

section 2 above show that x l (t) and

(again in the uniform norm over 0 s t < ^o)

The results in section 6 of [1] are sufficient to see

that xl (t) and x2 (t) are asymptotic to almost periodic functions

pl (t) and p2 (t) such that p i t) = col (p^(t),p2(t)) solves

(3.1). If k i and k2 are linearly indeaPnd^nt, then Theorem 4

above implies that p(t,) is anal;^ic and quasiperiodic with

fundamental fz^equencies k l and k2 . Finally, note that since

p(t) - x(t) ^ -^ 0 as t -+ ^ wtiera p(t) is almost periodic and

x(t) varies continuously with f and g, then p(t) varies con-

tenuously (in the uniform norm over -^o < t < ^) :rith f and g.
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kl ana k.^ are linearly dependent over the inteEers^ there theL

:^me conclusion follo^.,rs but ^ritiYi F ^t) a periodic f'unctior..

,^
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