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SUMMARY

Approximations to the computationally cumbersome Bayes estimate of the
parameter A in the exponential tolerance distribution F(d) = l-exp{-Ad), 4 > 0; are
developed for dichotomous response quantal assays. A gamma prior distribution
end a quadratic loss function for A and a binomial distribution of positives
at each dose d for fixed A are assumed. The first spproximation is for a
single~dose assay, is easily computed and has average risk only slightly
larger than the Bayes risk for small samples. The selection of d and n
are considered when this approximation is to be used as an estimate of A. The
second approximation is a modification of the first, is somewhat more
difficult to compute than the first and retains the relatively small average
risk of the first for small samples but, unlike the first, is a consistent
estimate of A. The third approximation is an extension of the first to an

L]
assay with several doses.
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1. INTRODUCTION

Approximations to the Bayes estimate are presented in this paper for s

dichotomous response quantal assay with exponential tolerance distribution
F(d) =1 - exp(-2d), 0 < A, & < =, (1.1)

where d is the dose and )\ the parameter to be estimated. Attention is focused
on single.dose experiments for the most part, although an extension to several
doses is suggested in Section 6. A single-dose experiment is reasonasble when
prior information is availasble (see Mantel (1967)). A table containing
optimum doses is provided. At the dose utilized, n subjects are exposed with
r of them responding positively. It is assumed that these n subjects react

independently so that, for given A, r is binomially distributed with expectation

nF(d), where F(d) is given by (1.1). Hence the likelihood of r is

1(n]r) = (B) o~ Mln-r) () -Adyr (1.2)



The loss function for A is assumed to be quadratic. The prior distribution of

A is taken to be gamma with probability density function

41 -8,

g(1) = rt (o+1)B ™ e ,A>0,a>=1,83>0 (1.3)

and with mean and variance

E(A) = (o+l)/B;

v(r) = E(A)/8,

respectively. This distribution is in the family of extended natural conjugate
priors, it has the desirable property that it does not depend on the design
parameter d, and it is the natural conjugate prior for the corresponding counting,

as opposed to quantal, response experiment based upon the same tolerance distribution.
The maximum likelihood estimate of A for a single-dose assay is developed by

Cochran (1950) and called the "most probable number”. Cochran also considers.

the selection of dose level.

In Section 2 formulas for a Bayes anslysis are presented for a single-dose
assay. The Bayes estimate X is difficult to compute, particularly if a digital
computer is not available. Bounds for the Bayes estimate are developed in
Section 3 which lead to an easily calculated approximation to the Bayes estimate
given in Section 4. A table of average risks for this estimate are displayed
and it is shown empirically that it nearly achieves the minimum (Bayes) risk for
small sample sizes. Average risks along with optimum dosages given in the same
teble can be used for designing an assay, that is, for selecting n and 4.

In Section 5 a slightly more cumbersome approximation to the Bayes estimate for

a single-dose assay is presented which retains the desirable small sample
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Properties of the first approximation but which, unlike the first, is a consistent
estimator of A. Then in Section 6 the first approximation is extended for use

with multiple-~dose assays.

2. BAYES RESULTS
Bayes results are presented here in order to display formulas used in
calculations tabled in Section 4 and to show the need for a simple approximation

to the Bayes estimate. Derivations for any number of doses are given by Petrasovits

(1970).

The Bayes estimate of A for a single-dose assay given the likelihood (1.2)

and the prior density (1.3) is

£ = [(o+1)/4] s(a+2)/S(0#1), (2.1)

where

r r _
sty) = § (-1)? (5) (n-r+y+e/a)™. (2.2)
3=0 3

The posterior probability density function for A is

R(A|r) = a®t 1 l(mr)e A AnTrB/A) () SM)T A8 &gy g s o,

the w-th posterior moment of A about the origin is

w
™ w(ot3) S(etwrl)/s(a+l),

W (r)
w j=1

the marginal distribution of r is

n(r) = a(* D% (Mg (gu1)



and the Bayes risk is
2 -1 2 ‘a+l“ T on2
B(a) = {a+2)(a+1)B “-d ~(a+l)“B z ()8 (a+2))fs(o4l).
r=0

Optimum dosages 4. which minimize the Bayes risk are given in Table 1 in

0
Section L4 for prior mean u =1 and for prior coefficients of varietion ranging
from 0.1 to 2.0 and for sample sizes n = 1, 5 and 10. Corresponding Bayes

risks evaluated at do, B(do), are alsp given 4n that table and can be used to
select n if an exact Bayes analysis is to be computed. Values of do and B(do)

for prior mean u # 1 can be obtained by multiplying corresponding entries in

Table 1 by u"l and u2, respectively.

3. BOUIDS FOR THE BAYES ESTIMATE
The Bayes estimate i for a single-dose assay has been found to lie in the
interval

g+u&l < < o+l . (3.1)

dn+ R a(n-r)+g

A derivation of these bounds for integral values of o is given in this section.

In extensive calculations (3.1) has also been found to hold for nonintegral
values of o. This analytical and empirical evidence is adequate for our purpose,
namely, to propose approximations to A in the interval given'by (3.1). These
approximations are presented in Section 4 and 5.
In order to see the rationale leading to (3.1), first define
T(n) = ] (ym-rse/a)” (), (3.2)
j=0
By induction, for integral values of y, it can be shown that
-2

S(y) = (yv=1)F § S(y-1-h) T(n), y=2,... . (3.3)
h=0
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Moreover, T(h) can be expressed as
T(h) = (n-r+8/4d)T(h+1)+U(h+1)
where
3 ~(n+2)
U(n+l) = | (J+n-r+B/d) < rT(h+1)

J=1

so that
T™(h) < (n+8/d)T(h+l).

From (2.1), (3.3) and (3.5),

o=~1
A= alerl)s(or2)/la | S(o-h)T(n)]
h=0
o1
> a{a+l)s(a+2)/[d(n+8/d) ) S(a-h)T(h+l)]
h=0

> a(ot+l)s(o+2)/{d(n+p/d)[(a+1)sS(o+2) - S(o+1)T(0)]}

since

-1
az S(a-h)T(h+l) § S(o+1-k)T(k) - s(a+1)T(0)
h=0 k=6

It

(a+1l)s(o+2) - S(a+1)T(0).
Using (2.1), (3.6) can be rearranged to give

A > [o/(dn+8)] + T(0)/a.

Next the numerator of A in (2.1) may be rewritten using (3.3) to obtain

(3.4)

(3.5)

(3.6)

(3.7)



A= § S(a+l~h)T(h)/[as(a+1)l = R + T(0)/d (3.8)
h=0

where

el ] S(asl-n)T(n)]/[as(es)].

h=1
From (3.3) and (3.4),
o-1
R= ) S(o-k)P(k+Ll)/[as(e+1)]
k=0
o-1 a—~1 -1
= (o/d) {(n-r+8/a) + [ |} S(o-n)U(n+1)]/[ ] S(o-h)T(n+1)]}
h=0 h=0
< of[d(n-r+B/a)]- (3.9)
Substitution of (3.9) into (3.8) yields
A < of/[d(n-r) + B] + T(0)/4. (3.10)

How by setting the index of summation in each term of (3.2) equal to its

upper and lower limits, it can easily be seen that
-1 -1
(r+1)(n+g/d) ~ < T(0) < (r+l)(n-r+8/d) .
This inequality, together with (3.7) and (3.10), yields (3.1).

L. SMALL SAMPLE APPROXIMATION TO THE BAYES ESTIMATE

Because of the form of the bounds (3.1) on the Bayes estimate i, congsideration

A

is given in this section to the family of approximations to A given by
A (D) = (r+a+1)[a(n-r) + Dr+g]™, 0 < D < a. (4.1)

Now ;l (D) is a continuous and monotonically decreasing function of D in
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{0,4] and equals the lower and upper bounds given by (3.1) for D = 4 and O,
* % ~ * ~
respectively. Therefore, for some unique D , where 0 <D <d, AM(D ) = A.
One reasongble procedure would be to select D to minimize the average risk

of il (D) given by
R(D) = E. _[i (D) - A)°
A, r" 71 >

where EA r denotes the expectation with respect to the joint distribution of
’

A and r. It can be shown that
0 .
R(D) = | (¥) X (D)s(a+2) + (wr2)(a+1)/6”
r=0
where S(y) is defined in (3.3). The function R(D) is continuous in D on the
interval [0,d] and attains a minimum on [0,d] at, say,D*. Numerical evidence
indicates that D* is unique and is an interior point of that interval.
Values of D* and corresponding R(D%) values have been computed for sample
sizes 1, 5 and 10 and for prior coefficients of
variation ranging from 0.1 to 1.0 in steps of 0.1 as well as 1.5 and 2.0. In
each of these calculations d has been taken equal to d,, the dose which minimizes
tiie Bayes risk.
Two important empirical relationships were found. In every instance
the ratio of D to d) was between 0.3 and 0.4 and the ratio of the Bayes
frinimum)risk at d, to R(D*) at d, was greater than or equal to 0.969. The
latter ratios show that il(D*) is a good alternative to the Bayes estimate
for small samples. It has the advantage of being easily calculated if appropriate
tables of D* are available. The former ratios indicate that the disadvantage of

*
requiring tables of D may be overcome by setting D equal to a constant proportion



e

e

[} \O @ -] [o XN}

.
=

1.5850

1.5593

1.5179
1.4626
1.3961
1.3215
1.2418
1.1602
1.0789
1.0000
0.6717
0.4586

Table 1.

.9999  0.9572  0.2937

.9998 0.7693 0.LokLk
.9991  0.4510 0.7615
.9985 0.2921 1.2481

]l Qe

Values of the optimum dose (d.), the average
risk (R) of A.at d = 4. and tge ratio (E) at
d. of the Bayes risk to R by prior coefficient
of variation (v) and sample size (n).

E d R E 4 R

.0000 1.5844  0.0097 0.9998 1.5838 0.009%
.0000  1.5524 0.0356 0.9995 1.5451 0.0321
.0000 1.4910 0.0712 0.9992 1.46T4  0.0590
.0000 1.k019 0.1111 0.9989 1.3577 0.0860
.0000 1.29h4  0.1533 0.9982 1.2320 0.1125
.0000 1.1792 0.197+ 0.9971 1.1021 0.1396

.0000 1.0651 0.2439 0.9957 0.982h 0.1682

(@)

9943  0.8722 0.1987

.9999 0.8583 0.3470 0.9928 0.7737 0.2318

.9915  0.6871  0.2677

o

(@}

0871 0.3969 0.4937
.9833 0.249Lk  0.8028

(@)

E

0.9993

(@}

.9981

l»]

-9968

(]

.9946
0.9912
0.9873
0.9830
0.9790
0.9753
0.9721
0.9610

0.9557



-11-

5. LARGE SAMPLE APPROXIMATION TO THE BAYES ESTIMATE
The estimate il proposed in Section U4 has been found to be an excellent

apporximation to the Bayes ‘estimate for sample sizes of 10 and less, which are the

A

sample sizes often used in assays. However, Al is not a consistent estimate of
A. An slternative family of estimates which could be used to construct estimates
which approximate A well for small samples and would be consistent is given by
- T -1 -1
A(D) = d § (jn-r+8/d)”" + ofd(n-r)+Dr+8]™", 0 < D < d. (5.1)
J=0
For small samples D could be set equal, for instance, to 0.35d as in Section 4.
The consistency of ig(D), which holds for all D in [0,d], is gained at the expense
of meking the approximation of ;\ computationally more difficult. Of some help
though is the fact that the sum in the first term on the right of (4.1), defined

as T(0) by equation (3.2), can be expressed as the difference of two digamma

functions. Thus alternative expressions for }\2(D) " are

XZ(D) d‘lT(o) + a[d(n-r)+Dr+s]'l, 0<D<d, (5.2)

&L w(1m+a/p)-v(n-r+a/B)] + a[d(n—r)+Dr+B]"l, 0 <D <4, (5.3)

where the digamma function V¥(x) = a[1nT(x)]/dx is tabled, for instance, by Abramowitz

and Stegun (1964) and I'(x) is the gamma function I'(x) =_[:>e—ttxdt.

The rationale for suggesting ig(D) is the same as that for il(D) in Section 4
except that ig(D) is based on the bounds for A given by (3.7) and (3.10) instead of
the wider interval derived from them and given by (3.1). This relationship between
il(D) and XE(D) shows that XQ(D) would perform well for small samples for suitably

selected D and is the reason for suggesting that D be taken equal to 0.35 as in
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the construction of ;‘l in Section 4. In the remainder of this section it will
be shown that, conditionally on A for any D in [0,d] as n + «,the estimate

).2(D) conwerges in probability to A, that is, that XE(D) is a consistent

estimator of A.
The sum T{0) in equation (5.2) can be expressed using the Maclgurin~Euler

summation formula given by Jordan (1947, pp. 261-2) to obtain

it

T(0) = 1n(l+n+B/d) -¥(n-r+8/d) + (n-r+g/d)™t + R,
where

R(n) = -2 H(1+n+8/d)"t = (12) L (14n+8/a) 2 + £(120) " (1+n+8/4)

0 <& <1,
But from Cramer (1946, p. 130) it follows that
-1 -1 ol -2
¥(x) = In(>+1)-2""(x+1) -fo Pl(z)(x+1+z) dz

where Pl( z) = [z]-=1/2 and [ z] denotes the greatest integer <z. Noting that

lPl( z)| < 1/2, (5.6) can be rewritten as
¥(x) = In(x+1) - (L+n)2 2 (1), 0] < 1.
Thus from (5.2), (5.4) and (5.7),

5,(0) = & {Ial(1/n) + 1 + (8/an)1/I(Wn) +1 ~(x/n) + (8/an)]}

(5.4)

-k

(5.5)

(5.6)

(5.7)

+

(na)™t ([1-(r/n) + (8/an)i™ + (1+n)27L[(1/n) + 1-(r/n) +8/(an)]}

+d°an + an'l[d(\l—r/n) + D(r/n) + B/n]—l,

(5.8)



13-

where ln‘ £ 1 and Rn is given by (5.5). WNoting that, as n-»~, l-r/n converges
in probability to exp(-Ad), it follows readily from (5.8) that ig(D) converges

in probability to A for fixed A and any D in [0,d].

6. EXTENSION TO SEVERAL DOSES
In this section a family of approximations to the Bayes estimete is proposed
for a k-dose assay with dose levels di when r; subjects respond positively and
independently in samples of size n;, i=1,2,..., k. The model described in
Section 1 is still assumed to hold at each dose level. The Bayes estimate may be

approximated by

X }f lf li I
A (D) = ( r., +a+ 1) d,(n,-r.) + D r.+8]1,
3 =1 * =1+ 7 i=1 *

0 <D < max di. (6.1)

This is the estimate, with D = 0.354,., that would be obtained if an experimenter were
to perform a seguence of k simple-dose assays at doses close to a stable optimum
d, determined from prior information using the approximate Bayes estimate il(0.35d0),

given by (4.1), after each assay. By a stable optimum d. is meant an optimum dose

0
which does not change appreciably when accumulated experimental information is used
after each successive single-dose assay to modify the prior distribution upon which

the optimum for the next assay is based. Since y was found in Section L4 to be

1
robust relative to the Bayes estimate for departures of d from do, another reasonable
approximation to i even when d_ is not entirely stable could be constructed by

0
substituting 0.353 for D in (6.1), where d is the mean of the k doses used in the

assay.
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