41.88 9

113913

FZ A - 450 - **3**

15 SEPTEMBER 1970

CASE FILE COPY STUDY OF GRYOGENIC FLUID MIXING TECHNIQUES

Final Report

70

C R

(JULY 1969-JULY 1970)

Volume III - Computer Procedure for the Prediction of **Stratification in Supercritical Oxygen Tanks**

> GENERAL DYNAMICS **Fort Worth Division**

Fort Worth Division

FZA-450-3 **15 September 1970**

STUDY OF CRYOGENIC FLUID MIXING TECHNIQUES

FINAL REPORT

(July **1969** - July **1970)**

Volume 111: Computer Procedure for the Prediction of Stratification in Supercritical Oxygen Tanks

L. J. Poth

Prepared for the George C. Marshall Space Flight Center National Aeronautics and Space Administration Huntsville, Alabama

Under

Contract NO. *NAS8-24882*

Approved by:

R Von Hook

J, R. Van Hook

Approved by:

 A . Stevens

Project Manager **Aerothermodynamics Group**, Engineer

FOREWORD

This document is Volume **111** of the final report on NASA Contract NAS8-24882, "Study of Cryogenic Propellant Stratification Reduction Techniques ." The study was performed by the Fort Worth Division of General Dynamics Corporation for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. The program was conducted under the technical direction of **Mr.** T. W. Winstead of the MSFC Astronautics Laboratory. His assistance in the performance of this study is gratefully acknowledged.

The final reports consists of three volumes:

- Volume I. Large-Scale Experimental Mixing Investigations and Liquid-Oxygen Mixer Design
- Volume **11.** Large-Scale Mixing Data
- Volume **111.** Computer Procedure for the Prediction of Stratification in Supercritical Oxygen Tanks

Volume I contains a presentation of the large-scale experimental investigation and liquid-oxygen mixer design study together with a summary of the important findings of the study. Volume **I1** contains a presentation of the experimental data utilized in this study. Volume **111** describes the computer procedure developed during the study for the prediction of stratification development in supercritical oxygen tanks.

Ford Worth Division

TABLE OF CONTENTS

GENERAL DYNAMICS *Fort Worth Division* SECTION 1

INTRODUCTION AND SUMMARY

The computer procedure described herein was developed and used during this study to predict the thermodynamic state of supercritical oxygen. This procedure, designated as General Dynamics Procedure **SW6,** is used to predict the transient pressure, density, temperature, and mass of supercritical oxygen stored under a "zero-gravity" environment in a spherical tank. Both temperature-stratified and -mixed cases have been analyzed. In the stratified case, only radial variations in the thermodynamic state are considered. The fluid is withdrawn from the center region of the tank. Environmental heating occurs at the outer tank wall. An internal electrical heater is used to control the fluid pressure in the tank,

For the mixed case (thermodynamic equilibrium), the thermodynamic state of the stored oxygen is established by overall mass and energy conservation along with an appropriate equation of state. In a similar manner, the thermodynamic state of the radially stratified case is defined by the laws of spacial conservation of mass, and energy, along with an equa-

l

tion of state. These governing equations have been solved in an approximate fashion by the use of a finite-element, numerical solution. Although the results are valid for a compressible fluid, the stable time increment used is ordersof-magnitude greater than that usually required for the finitedifference solution of compressible flow. The large time step that can be used for this solution is a direct consequence of an assumption that the pressure is uniform throughout tank. Typically, the fluid behavior during a mission of **10** hours can be analyzed by the use of a few minutes of computer time.

The description of the computer program includes such information as typical error diagnosis, sample problem input and output data, and the computer program listing.

'

The equations solved by the computer program described herein are similar to those solved by Kamat (Reference 1) although the numerical procedure used differed appreciably from that of Kamat.

GENERAL DYNAMICS *Fort Worth Division* SECTION₂

PROGRAM DESCRIPTION

In this section, the program applications, the governing equations, which were numerically integrated, along with the appropriate boundary conditions are described. In addition, the finite-difference approximations resulting from the governing equations and the corresponding numerical procedure are discus sed .

2.1 PROGRAM APPLICATION

Computer program SW6 was written to predict the transient thermodynamic state (i.e., pressure, density, temperature) of a single-phase cryogen stored in a spherical tank under a zerogravity environment with simultaneous **environmental/electrical** heating and fluid withdrawal (including venting). **A** sketch of the supercritical storage tank is shown below

Environmental and Electrical Heating

Supercritical Storage Tank

Energy due to the environment or electrical heaters is assumed to be added at the outer tank boundaries. Mass withdrawal is assumed to take place at the center of the tank. The mass withdrawal rate due to venting is included if the tank pressure rises above a specified vent pressure.

Temperature, internal energy, enthalpy, and density gradients are assumed to exist only in the radial direction. The velocities developed in the tank due to heating and mass outflow are also considered to occur in the radial direction only.

The predictions of this program include:

- 1. Tank pressure history
- 2. Radial temperature distribution as a function of time
- **3.** Radial density distribution as a function of time
- *4.* Radial velocity distribution as a function of time
- 5. Stored mass history
- *6.* Mass flow-rate history.

Other quantities that can be easily obtained from the computer output include :

- 7. Vented mass as a function of time
- 8. Electrical heater duty cycle, power requirements history, and total accumulated electrical heater power requirements
- 9. Mixer duty cycle
- 10. Energy added to the tank by the mixer operation.

Fort Worth Division

The program has the capability of plotting the first six items mentioned as a function of time and the second and third items as a function of radial position in the tank.

Some of the other capabilities and options of the program include

- 1. An option to use one of two different finitedifference equations of energy and mass
- 2. An option to use one of three different methods of defining the velocity at the boundary of each node ,
- **3.** An option to consider either an ideal gas with constant specific heats or a real fluid, with variable properties defined by thermodynamic tables.

Limitations of the program include:

- 1. One-dimensional (radial) property variations (temperature, density, and velocity)
- **2.** Mass withdrawal at the tank center region
- **3.** Heating at the tank wall.

2.2 GOVERNING EQUATIONS

The governing equations used *as* the basis for this program include the one-dimensional compressible form of the

- *o* continuity,
- *o* energy,
- *o* r-momentum, and
- *o* thermodynamic state equations or thermodynamic tables.

Fort Worth Division

The continuity equation is

$$
\frac{\partial(\rho)}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho u r^2) = 0
$$

where **2** is the density

u is the radial velocity

r is the radial coordinate

t is the time.

The energy equation is

$$
\frac{\partial}{\partial t} (\rho e) = -\frac{1}{r^2} \frac{\partial}{\partial r} (\rho h u r^2) + \frac{1}{r^2} \frac{\partial}{\partial r} (\kappa r^2 \frac{\partial T}{\partial r})
$$

where e is the specific internal energy

h is the specific enthalpy

T is the temperature

k is the thermal conductivity.

The r momentum equation is

$$
\rho \left[\frac{\partial u}{\partial t} + \frac{u \partial u}{\partial r} \right] = \frac{4}{3} \mu \left[\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} - \frac{2u}{r^2} \right] - \frac{\partial p}{\partial r}
$$

where μ is the dynamic viscosity

P is the pressure.

In addition to the above equations, an equation of state or thermodynamic property table relating the internal energy and enthalpy to two independent properties (i.e., *p* and P) is required. The equation of state is

 $\overline{}$

Fort Worth Division

$$
\rho = P/ZRT
$$

where Z is the compressibility

R is the gas constant.

For very low compressible flow (Mach number on the order of 10^{-7}), convective and viscous terms of the momentum equation can be neglected as can be shown by an order-of-magnitude analysis. The momentum equation reduces to

$$
\rho \frac{\partial u}{\partial t} + \frac{\partial P}{\partial r} = 0
$$

The above equation is coupled with the continuity equation to form a wave equation. Any sizeable pressure fluctuation propagates at the speed of sound and equalizes the tank pressure. Consequently, the pressure gradients are essentially zero. For the long storage times in which this prediction is applicable, the momentum equation reduces to a quasi-steady condition in which

$$
\frac{\partial P}{\partial r} = 0
$$

This condition along with the continuity and energy equations and thermodynamic property tables serve as the basis for the numerical solution.

2 a 3 BOUNDARY CONDITIONS

The boundary conditions associated with this solution establishes the energy and mass fluxes across the inner and outer tank boundaries. On the inner surface three boundary conditions are applied:

1. The velocity, $u(r_1, t)$, is

$$
u(r_1, t) = \dot{m}_0 / 4\pi r_1^2 \rho_1(r_1, t)
$$

where \dot{m}_0 is the mass utilization or venting rate

 r_1 is the inner radius

 P_1 is the outflow density

2. The heat transfer by conduction, q_1 , is assumed to be zero; hence,

$$
\frac{\partial \mathbf{T}}{\partial \mathbf{r}} \left(\mathbf{r}_1, \mathbf{t} \right) = 0
$$

3. The energy transfer, E' , by convection at (r_1,t) is

$$
E' = h(r_1, t)u(r_1, t) \rho(r_1, t) 4\pi r_1^2
$$

Three boundary conditions are also applied to the outer tank surface at (r_t, t) :

- 1. The velocity, $u(r_t,t)$, is zero
- 2. The heat transfer by conduction is

$$
u(r_t, t)
$$
, is zero
sfer by conduction is
 $Q = 4\pi r_t^2 \frac{k \partial T}{\partial r} (r_t, t)$

where Q is the total electrical and/or environmental heating, k is the thermal conductivity.

Thus the transient behavior of the fluid in the tank is completely defined by (1) the equations of continuity, energy and momentum (uniform pressure within the fluid at a given time) and equation of state (thermodynamic tables), **(2)** the initial conditions in terms of density and pressure, and **(3)** the boundary conditions defined in terms of the mass flow at the tank center and heat transfer at the tank walls.

2.4 **FINITE-DIFFERENCE EQUATIONS**

The finite-difference equations derived in this subsection satisfy energy and mass conservation on a finite-size element. As a result, the form of the difference equations differs somewhat from those that are conventionally obtained from use of a Taylor series-type expansion of the governing equations ,

2.4.1 Cell Description

In order to facilitate the derivation of the finite element equations, a description of the cells and the corresponding mass and energy storage in each cell along with energy and mass flow across the cell boundaries is presented, In the description of the elemental cells, the cell geometry and flow areas are also defined. **A** description of three means of defining the cell boundary velocities is presented, Finally, conservation of mass and energy is applied to establish the finite element equations, Finally, conservant

2.4.1.1

The cell geometry used in the finite-element solution is shown in the sketch below. The element or cell is described in spherical coordinates for a unit solid angle or steradian. The energy and mass flow is assumed to take place in the radial direction only. The inner tank boundary consists of the spherical surface of radius R1. The last cell, **n,** is bounded on the outer edge by a spherical surface which consists of the tank wall. The first cell, of thickness $\Delta R/2$, is bounded by the subset of the series of \overline{R} or \overline{R} or \overline{R} or \overline{R} or \over outer spherical surface of radius $R = \overline{R}_1$. The interior cells, 2 to n-1, are of thickness **AR** and each cell, i, is bounded on the inner spherical surface by \overline{R}_{i-1} and on the outer surface by \overline{R}_{i} .

Cell 2

11

 λ

Cell Flow Area

The cell flow area per unit solid angle is defined at the inner radius, R_1 , and the outer tank radius, R_n , for the first and last cells, respectively. The outer boundary area of the first cell is defined at \overline{R}_1 and the inner boundary of the last cell is defined at \overline{R}_{n-1} as shown below.

First Cell Last Cell The inner and outer flow area at the first cell boundaries

are

$$
\overline{A}_1 = R_1^2 \quad \text{and } \overline{A}_1 = \overline{R}_1^2
$$

respectively. The inner and outer flow areas at the boundaries of the last cell are

$$
\overline{A}_{n-1} = \overline{R}_{n-1}^2 \text{ and } \overline{A}_n = R_n^2
$$

respectively.

For an interior cell, sketched below, the inner area is

*⁸*given by

$$
\overline{A}_{i-1} = \overline{R}_{i-1}^2
$$

and the outer area by

$$
\overline{A}_{i} = \overline{R}_{i}
$$

where

$$
\overline{R}_{i} = R_{i} + \Delta R/2
$$

Cell Volume

The volume per unit solid angle *(4n* steradians for the sphere) of the first cell is given by

$$
VOL(1) = \frac{1}{3} (\overline{R}_1^3 - R_1^3)
$$

Fort Worth Division

and for the last cell by

$$
VOL(n) = \frac{1}{3} (R_{n-1}^3 - R_n^3)
$$

The volume of each interior cell is **also** defined per steradian as

$$
VOL(i) = \frac{1}{3} (\overline{R}_{i}^{3} - \overline{R}_{i-1}^{3})
$$

where

$$
\overline{\mathbf{R}}_{i} = \mathbf{R}_{i} + \Delta \mathbf{R}/2
$$

The tank volume, V_t , is given by

$$
V_{t} = \frac{4 \pi}{3} (R_{n}^{3} - R_{1}^{3})
$$

It can be easily shown from the above equations that the summation of the cell volumes equals the tank volume since each **-3** Ri cancels in the summation.

Another representation of the cell volumes and areas is used as an option in the computer procedure, The volume representation, however, does not sum to the exact tank volume. Hence this option, which is derived from the finite-difference equation, is not recommended.

Fort Worth Division

2.4.1,2 Velocities at Cell Boundaries

The velocity is defined at each cell boundary, For the first and last cells the velocities are shown in the sketch at the appropriate boundaries

The velocity at the inner boundary of the first cell is

$$
v_1 = \dot{m}_0 / (4 \pi R_1^2 \rho_1)
$$

where \dot{m}_{0} , the mass flow rate into the tank and ρ_{1} , the inflow density, are computer input quantities representing either the utilization rate (negative \dot{m}_0) and/or the vent rate (also negative \dot{m}_0).

The velocity at the outer boundary of the first cell is established by one of three options:

1. The arithmetric average between cell 1 and 2

$$
\overline{\mathbf{v}}_1 = (\mathbf{v}_1 + \mathbf{v}_2)/2
$$

2. The area-weighted arithmetric average,

$$
\overline{v}_1 = (R_1^2 v_1 + R_2^2 v_2)/2 (\overline{R}_1)^2
$$
 or

3. ^Acomputer iteration process by which the boundary velocity is varied in such a manner that the pressure between the cells adjacent to the boundary is converged to within a specified pressure difference,

The velocity of the inner boundary of the last cell is given by a similar set of options:

1.
$$
\overline{v}_{n-1} = (v_{n-1} + v_n)/2
$$

2. $\overline{v}_{n-1} = (\overline{R}_{n-1}^2 v_{n-1} + R_{n}^2 v_n)/2 \overline{R}_{n-1}^2$

3. A pressure relaxing iteration process.

The velocity at the outer boundary of the last cell is assumed equal to zero.

The velocity of the inner boundaries of the interior cells is similarly given by

1. $\overline{V}_{i-1} = (V_{i-1} + V_i)/2$ 2. $\overline{v}_{i-1} = (\overline{R}_{i-1}^2 v_{i-1} + R_i^2 v_i)/2(\overline{R}_{i-1}^2)$ **3. A** pressure iteration process.

The velocity at the outer boundary of the interior cells is given by

1. $\overline{v}_i = (v_i + v_{i+1})/2$ 2. $\overline{v}_{i} = (v_{i} R_{i}^{2} + v_{i+1} R_{i+1}^{2})/2 R_{i}^{2}$

3. A pressure iteration process.

 $2.4.1.3$ Cell Mass

The cell mass, M_i, of the two boundary and the interior cells is given by

$$
M_{i} = VOL(i) \rho_{i}
$$

where P_i is the density of the i<u>th</u> cell and VOL(i) is the cell volume.

The tank mass, M_t, may be calculated by

$$
M_{t} = \sum_{i=1}^{n} \text{vol}(i) \rho_{i}
$$

or by

$$
M_{\mathbf{t}} = V_{\mathbf{t}} \rho_{m}
$$

where V_t is the tank volume, and

 P_m is the mean density

The new mean density, ρ_m , is calculated after one time step, Δt , by

Fort Worth Division

$$
\rho_{\rm m} = (M_{\rm t} + \mathring{m} \Delta t)/V_{\rm t}
$$

or by

$$
\rho_{\rm m} = \sum_{i=1}^{\rm n} \left(\begin{array}{c} \rho_{i} \text{vol}(i) \end{array} \right) / \text{V}_{\rm t}
$$

2.4.1.4 Cell Energy

The energy, E_i , stored in the ith cell is given by

 $E_i = VOL(i)$ ρ_i e_i

' where

 e_i is the specific internal energy.

The specific internal energy, calculated initially by the computer procedure, is based on thermodynamic tables of temperature and enthalpy as dependent variables and pressure and density as independent variables. **For** an initial pressure and density, the enthalpy, h_i , at each cell is calculated. The internal energy, e_i , is then calculated by the equation

$$
e_{\mathbf{i}} = h_{\mathbf{i}} - P_{\mathbf{i}} / P_{\mathbf{i}}
$$

Thereafter, a new value of the specific internal energy, e_i , of each cell is calculated by the use of the finite-element fom of the energy equation.

The total internal energy, E_t , is given by

Fort Worth Division

$$
E_t = \sum_{i=1}^n \text{VOL}(i) \rho_i e_i
$$

and also by

$$
E_{t} = V_{t} \rho_{m} e_{m}
$$

where ρ_m and e_m are mean quantities.

The new mean internal energy, e_{m}^{r} , is given by

$$
e_{m} = (E_{t} + \hat{m} h_{1} \Delta t) / \rho_{m} V_{t}
$$

where h_1 is the enthalpy of the first cell.

2.4.1,5 Boundary **Mass** Flow Rate

The mass flow rate across both cell boundaries is defined by use of a convention to ensure **mass** conservation and numerical stability.

For the inner boundary of the ith cell shown below,

Fort Worth Division

the mass flow rate per solid angle for $\overline{v}_{i-1} > 0$ is

$$
\overline{\mathbf{m}}_{i-1} = (\rho_{i-1}) \overline{\mathbf{v}}_{i-1} \overline{\mathbf{A}}_{i-1}
$$

 $\frac{1}{\sqrt{2}}$ For $\texttt{V}_{\texttt{i-1}}$ < $\texttt{0,}$ the mass flow rate per solid angle is

$$
\overline{m}_{i-1} = (\rho_i) \overline{v}_{i-1} \overline{A}_{i-1}
$$

Note that the density used is evaluated at the "tail" side of the velocity arrow, as illustrated in the above and below sketches.

- For the outer cell boundaries, the mass flow rate, $\mathring{\mathfrak{m}}_{\mathbf{i}}$, is shown below for \overline{v}_{i} > 0

Fort Worth Division

and is given by

.
" $\dot{m}_{i} = \rho_{i}$ ¹ For \overline{v}_{i} < 0, the mass flow rate, \dot{m}_{i} , is given by \overline{V}_i \overline{A}_i

$$
\overline{\dot{m}}_i = \rho_{i+1} \overline{v}_i \overline{A}_i
$$

The mass flow rate across the inner boundary of the first cell is

$$
\hat{m}_1 = \hat{m}_0 / 4 \pi
$$

where \dot{m} is the total mass flow rate into the tank.
The mass flow rate across the n<u>th</u> cell outer boundary (i.e., the tank wall) is zero.

2.4.1.6 Boundary Energy Flow

The flow of energy across the cell boundaries is in the form of convection and the conduction. The convection of energy across the inner boundary of the first cell is given by

 $\dot{E}_1 = V_1 A_1$ ($\rho_1 h_1$) for $V_1 < 0$,

where h_1 is the specific enthalpy of the first cell.

The convection of energy across the outer boundary of the first cell is given by

$$
\overline{\dot{E}}_1 = \overline{v}_1 \ \overline{A}_1 \ (\rho_1 \ h_1) \ \text{for } \overline{v}_1 > 0
$$

and

Fort Worth Division

$$
\overline{\dot{E}}_1 = \overline{v}_1 \ \overline{A}_1 \ (\rho_2 \ h_2) \ \text{for } \overline{v}_1 < 0
$$

as illustrated **in** the sketch below;

Here again, the thermodynamic properties, ρ h, being convected are evaluated at the cell upstream or at the "tail" of the velocity vector.

The energy convected across the outer boundary of the last cell is zero because of the presence of the tank wall. The energy convected across the inner boundary of the last cell **is** given by

$$
\bar{E}_{n-1} = \bar{V}_{n-1} \bar{A}_{n-1} (\rho_{n-1} h_{n-1})
$$

for $\overline{V}_{n-1} > 0$ and

$$
\mathbf{E}_{n-1} = \overline{\mathbf{V}}_{n-1} \overline{\mathbf{A}}_{n-1} \ (\mathbf{P}_n \mathbf{h}_n)
$$

for \bar{v}_{n-1} < 0.

Similar equations for the convective energy across the inner boundary or each interior cell may be expressed as

$$
\vec{E}_{i-1} = V_{i-1} A_{i-1} (\rho_{i-1} h_i)
$$

for $\overline{V}_{i-}1 > 0$.

The sketch below shows the inner boundary for each interior cell, i:

For the outer boundary of each interior cell, the conductive energy flow is

$$
\overline{\dot{E}}_i = \overline{V}_i \overline{A}_i \left(\rho_i h_i \right)
$$

for $\overline{V}_i > 0$ and
 $\overline{\dot{E}}_i = \overline{V}_i \overline{A}_i \left(\rho_{i+1} h_{i+1} \right)$

for \overline{V}_i < 0.

In addition to the convective energy flow across each cell boundary, heat transfer by thermal conduction is present. rate of energy conducted from the first cell across the boundary
of the exerce radius \overline{P} is at the average radius, $\overline{\texttt{R}}_1$ is The

$$
\overline{Q}_1 = -K \overline{A}_1 (T_2 - T_1) / \Delta R
$$

where K is the thermal conductivity. \blacksquare

In this analysis, the energy conducted across the inner tank boundary is assumed to be zero. The rate of energy conducted into the last cell is

$$
\overline{Q}_{n-1} = -K \overline{A}_{n-1} (T_n - T_{n-1}) / \Delta R.
$$

The rate of energy added to the last cell takes into account the rate of energy added along the tank boundaries by environmental and/or electrical heater sources. In a similar manner, the energy crossing the inner boundary of cell i is

$$
\overline{Q}_{i-1} = -K \overline{A}_{i-1} (T_i - T_{i-1}) / \Delta R
$$

and the energy crossing the outer boundary of cell is

$$
\overline{Q}_{i} = -K \overline{A}_{i} (T_{i+1} - T_{i}) / \Delta R
$$

2.4.2 Conservation of Mass

The finite-element description of the cell properties given

in Subsection *2.4.1* serve as the basis for the development of the conservation characteristics in space and time. For any cell, i, the change in the amount of mass stored is equal to the summation of the mass rate of flow at the boundaries multiplied by the time interval, In mathematical form, the conservation of mass for the interior cells is written as

$$
\rho_i \text{VOL}(i) - \rho_i \text{VOL}(i) = \Delta t \left(\overrightarrow{m}_i - \overrightarrow{m}_{i-1} \right)
$$

For the first and last cells, similar equations may be written ., as

$$
\rho_1 \text{ VOL}(i) - \rho_1 \text{ VOL}(i) = \Delta t \left(\overline{\dot{m}}_1 - \overline{\dot{m}}_2 \right)
$$

and

$$
\rho_{n} \text{VOL}(n) - \rho_{n} \text{VOL}(n) = \Delta t \tilde{m}_{n-1}
$$

The primed densities are at the time, $t + \Delta t$.

The new density may be determined, giving for the ith cell

$$
\rho_{i} = \rho_{i} + \Delta t \left(\overline{\hat{m}}_{i} - \overline{\hat{m}}_{i+1} \right) / \text{VOL}(i)
$$

The mass flow rate across the boundaries have been defined previously for boundary velocities greater than and less than zero. In a similar manner, the densities at the new time, $t + \Delta t$, for the first and last cells are

$$
\rho_1 = \rho_1 + \Delta t \left(\dot{m}_1 - \dot{m}_1 \right) / \text{VOL(i)}
$$

Fort Worth Division

and

$$
\rho_n = \rho_n + \Delta t \, (\vec{m}_{n-1}) / \text{VOL}(n)
$$

The three above equations are used in the computer solution.

2.4.3 Conservation of Energy

The finite element form of the energy equation which is used in the computer solution for the internal energy and temperature of each cell is based upon the basic cell characteris-*²*tics previously derived. The change in energy of the ith *7* interior cell is equal to the net energy convected and conducted across the cell boundaries and is given by

$$
(\rho_i^{\dagger} e_{i}^{\dagger} - \rho_i e_i) \text{Vol}(i) = \Delta t (\overline{\hat{E}}_{i-1} - \overline{\hat{E}}_{i}) + \Delta t (\overline{Q}_{i-1} - \overline{Q}_{i})
$$

where $\mathbf{\hat{E}_i}$ and $\overline{Q_i}$ are the energies convected and conducted are set the houndary of $P = \overline{P_i}$ similar expressions can be across the boundary at $R = \overline{R}_i$. Similar expressions can be written for energy conservation for the first and last cells.

The new specific internal energy at the time $t + \Delta t$ for the ith interior cell is

$$
e'_{i} = \rho_{i} e_{i} / \rho'_{i} + \Delta t (\bar{E}_{i-1} - \bar{E}_{i}) / \rho'_{i} \text{VOL}(i) + \Delta t (Q_{i-1} - Q_{i}) / \rho'_{i} \text{VOL}(i)
$$

The specific internal energies at the time $t + \Delta t$ for the first and last cells are, respectively,

$$
e'_{1} = \rho_{1}e_{1} / \rho_{1}^{\prime} + \Delta t (\overline{\dot{E}}_{1-1} - \overline{\dot{E}}_{1} + \overline{Q}_{1-1} - \overline{Q}_{1}) / \rho_{1}^{\prime} \text{VOL}(i)
$$

and

$$
e_{n}^{\prime} = \rho_{n} e_{n} / \rho_{n}^{\prime} + \Delta t (\bar{E}_{n-1} + \bar{Q}_{i-1} - Q_{i}) / \rho_{n}^{\prime} \text{VOL}(i)
$$

The new internal energy along with the new density at each cell defines the thermodynamic state of each cell. **A** thermodynamic table is nominally used (pressure and density as independent variables and temperature and enthalpy as dependent variables) along with an iteraction procedure to establish the pressure and temperature of each cell. The computer procedure possesses an option which permits the specific heat at constant volume to be used to calculate the new temperature for the case of an ideal gas. The ideal gas equation (corrected by use of a constant compressibility factor) is then used in this option to calculate a new pressure at each cell.

Once the new temperature and pressure is calculated at each cell an iteration process is initiated to relax the pressure gradients in the tank to zero or a very small value before the calculations for the next time step (t+2 Δ t) are initiated. In order to relax the nonuniformities in the tank pressure, cell boundary flow is assumed as described in Subsection *2.4.5.*

2.4.4 Thermodynamic Tables/Equation of State

The thermodynamic tables provide a relation between any two thermodynamic variables (i.e., p and ρ) and any remaining

variable, e,T, or h. The equation of state as used in this program calculates the compressibility factor, $Z(\rho P)$, by

$$
Z(\rho, P) = P/\rho RT
$$

where $T = T(\rho, P)$ is found by interpolating tabular values of a thermodynamic table. The compressibility factor in this program is used for the ideal gas case and is not varied with time.

2 . 5 STABILITY CONSIDERATIONS

A conventional stability criterion is used to establish the time increment. There is a characteristic stable time for each cell which is given by

$$
\Delta t_{\text{si}} = \left[\frac{2 a}{\Delta R^2} + \left| \frac{V_{\text{i}}}{\Delta R} \right| \right]^{-1}
$$

where

a is the thermal diffusivity

 V_i is the node velocity

 Δ R is the distance between cells.

The stable time increment used is the minimum value of Δt_{si} as calculated for each cell. The actual time step used is some fraction, TF, of the minimum stable time step,

$$
\Delta t = TF \text{ (Minimum } \Delta t_{si})
$$

2.6 **NUMERICAL** PROCEDURE

The numerical procedure utilizes a forward marching technique in time to obtain the thermodynamic state history of the supercritical oxygen. The program consists of data input, problem initialization, new state calculations and a printout/ plotting procedure.

After the data is read in the initialization technique includes

- 1. the calculation of the volume of the tank and of each cell ,
- 2. the determination of the initial temperature, internal energy, enthalpy, and mass of the tank as a whole and of each cell, and
- **³**'. the initialization of the velocity distribution.

The new state calculations include

- *4.* the calculation of the new densities at each cell by the use of the continuity equation,
- *5.* the calculation of the new specific internal energy at each cell by the use of the energy equation,
- **6.** the determination of the pressure and temperature of each cell by use of thermodynamic tables of the new densities and internal energies and
- 7. the relaxation of any pressure non-uniformities by allowing for mass flow in the direction opposite to the pressure gradient.

Steps *4* through 7 are repeated as often as necessary to reduce any pressure difference to less than a specified input value.

The results are printed out and the time is updated.

Various checks may be performed with the optional outputs from this program. internal energy is evaluated in three ways to insure accurate predictions. It has been established that mass and energy is conserved at each cell in the tank and in the whole tank. In The stored mass in the tank and total addition it has been established as described in the method of solution that the tabular thermodynamic state is satisfied at each node for the stratified case and for the complete tank in the case of thermal equilibrium,

The computer procedure consists of one main program and four subroutines . The subroutines include

> DATCHK INTERP NEWQUA SIMPLT sc102

DATCHK checks the input data for errors and inconsistencies. The principle check is made on input data for the plot option.

INTERP uses the thermodynamic table to calculate values of the temperature and enthalpy from input values of density and pressure.

NEWQUA calculates the values of the pressure, velocity, temperature, internal energy, density, at a new time step from the old values,
SIMPLT permits a group of 8 curves to be plotted on the one graph,

SC102 permits each curve on a graph to be plotted by the use of the "scores package" for the Stromberg Carlson 4020 plotter ,

2.7 OPTIONAL CONDITIONS

Various options in the computer procedure include

1. ideal gas assumption

- 2. conventional form of the finite difference equations
- **3.** method by which velocity at boundaries are evaluated

4. plotting option

The use of these options are described in Section **3.**

The option using the conventional form of the finite difference equation is not recommended since exact mass and energy conservation is not achieved, even though the finite difference equations are written in "conservative form" as described by Torrance in Reference **2.**

Linear average of the velocity across the boundary is not recommended.

Fort Worth Division '

SECTION 3

INPUT DATA

The input data consist of thermodynamic property library data, physical property data and control numbers.

3.1 LIBRARY DATA

The library data consist, **of** densities, temperatures, enthalpies, and pressures. **J1** values of temperature, enthalpy, and pressure are read in for each density. In all, **I1** values of density are read in. The library data are as follows:

 $\ddot{}$

```
I1, J1
\rho(1)T(1,1), H(1,1), P(1,1), T(1,2), H(1,2), P(1,2)T(1,3), H(1,3), P(1,3), T(1,4), H(1,4), P(1,4)T(1, J1), H(1, J1), P(1, J1)(2)T(2,1), H(2,1), P(2,1), T(2,2), H(2,2), P(2,2)T(2,11), H(2,11), P(2,11)\pmb{\mathfrak{f}}\pmb{\mathfrak{f}}\bullet\pmb{\mathfrak{f}}\rho(11)T(11,1), H(11,1), P(11,1), T(11,2), H(11,2), P(11,2)\mathbf{r}T(11, J1), H(11, J1), P(11, J1)
```
where

 $T(I,J)$ is a library table temperature, ^{0}R

 $H(I,J)$ is a library table enthalpy, Btu/lb

P(I,J) is a library table pressure, psia

The two indices, I1 and **J1,** are read in on the first card and have a field width of five spaces (215) and must be right-adjus ted.

The second library card is used to read in the first two sets of temperatures, enthalpies and pressures with a 6E10.0 format statement. The first temperature, including decimal, occupies the first 10 spaces, the first enthalpy occupies the next 10 spaces, etc., up to 60 spaces. The additional sets of T, **H,** P for the first density are read in on subsequent cards.

3.2 PROBLEM DATA

The problem data consist of the appropriate physical quantities for the problem along with required control numbers. Each problem data card is discussed below.

First Card Six values of the problem data are read in with a field width of 10 spaces (columns):

where Qe is the environment heating, Btu/sec \dot{m}_0 is the main flow into the tank, lb/sec **AR** is the radial distance between nodes, ft *AI?* is the pressure difference, Psi, to which two adjacent cells are relaxed P_{max} is the maximum tank pressure, psi R_1 is the radius at the center of the tank (inner tank boundary), ft Second Card Six values are read in with a 10 space field width: 10 20 **30** *40* 50 60 R_M *p* k **TF** t where R_M is the tank radius, ft μ is the dynamic viscosity, $1b_m/ft$ sec k is the thermal conductivity, $Btu/{}^{0}R\textrm{-}sec\textrm{-}ft$ TF is the fraction of the stable time step t is the initial time increment, sec ρ is the initial density, $1b_m/ft^3$ Third Card Six values are read in: 10 **I?** where **P** is the initial pressure, psia $\rm R_{\tilde{G}}$ is the gas constant, $\rm 1b_{\rm m}$ ft/ $\rm ^OR$ $\rm 1b_{\rm m}$ $\mathbf{c}_{\mathbf{p}}$ is the specific heat at constant pressure, Btu/lb ^OR 20 30 *40* 50 60 R_G c_p c_V t_i m $f \quad \dot{\ }$

 $\bar{\alpha}$

 c_v is the specific heat at constant volume, Btu/1b- o_R

 t_i is the initial time, seconds

 \dot{m}_{v} is the initial vent rate, lbs/sec (negative for outflow)

Fourth Card The six values read in are

10 20 **30** *40* 50 60 Q_h Q_m P_{vo} P_{vc} P_{ho} P_{h} where Q_h is the electrical heating in Btu/sec Q_m is the heat added to the tank by mixer operation in Btu/sec P_{VO} is the pressure in psia at which the vent valve is open P_{VC} is the pressure in psia at which the vent valve is closed Pho **is** the pressure in psia at which the heater is turned on Phf is the pressure in psia at which the heater is turned off Fifth Card The four values read in are

where DT_{mo} is the temperature difference in the tank at which the mixer is turned on

> DT_{mf} is the temperature difference in the tank at which the mixer is turned off

Fort Worth Division

CT is the max computer time in one hundreds of a second PC is a fraction increase in the pressure used for **r** derivatives obtained from the thermodynamic tables Sixth Card 5 10 15 20 25 30 35 40 45 50 55 60 IM NCOUT NC2 NC7 IDM NTIMEM IMIX IHET IVENT NC3 NC4 NC6 where IM is the number of cells NCOUT is a control number, if equal to 1 uses average velocities across cell boundaries NC2 is a control number, if equal to 1 uses constant density at all nodes NC7 is a control number, if equal to 1 uses the exact cell volumes. IDM is the maximum number of pressure iterations per time step NTIMEM is the maximum number of time steps IMIX is set equal to 1 for initial mixing, 0 for no initial mixing IHET is initially set to 1 for the heater on, 0 for heater off IVENT is initially set to 1 for venting, 0 for nonventing NC3 is a control number, if equal to 1, the initial densities are read in. NC4 is a control number, if equal to 1 uses a constant specific heat and compressibility NC6 is a control number, if equal to 1 uses boundary velocities rather than velocities at the center of the cell

7th Card The variables using a field width of 5 spaces each **(2215)** 5 10 15 20 25 30 35 *40 45* 50 55 60 **NE'I NWO NW1 NW2 NW3** *NW4* NPC1 INPRINNTT W5 where NFI is a control number, if $= 1$, plots each curve of graph I on separate graph NWO is a control number, if = 1, writes calculated values of specific heat NWl is a control number, if $= 1$, writes the mass flux across each cell boundary NW2 is a control number, if $= 1$, writes the specific heat and compressibility NW3 is a control number, if $= 1$, writes the mass flux across each boundary *NW4* is a control number, if $= 1$, writes the output of Subroutine Interp (Thermodynamic Table Interpolation subroutine) NPC1 is a control number, if = 1, plots the results INPRIN is the number of time steps between printing NTT is the number of pair of points of the drain history NW5 is a control number, which when set equal to 1, writes the input of quantities to Subroutine Simplt. Card **8** through 15 These cards are for plotting the results 5 10 15 20 25 30 35 *40* **=I(** 1 **KYI(1) NUS(1)** NGR(1) NCC(1) JN(1) JTN(1) **KYI(2)** NUS(2) NGR(2) NCC(2) JN(2) JTN(2) $\text{KXI}(2)$ **^II r** *1 1* **^I** *1* \mathbf{r} $\pmb{\mathfrak{g}}$ $\pmb{\ast}$ $\pmb{\P}$ $\pmb{\mathfrak{f}}$ Ţ $\pmb{\mathfrak{g}}$ \bullet $\pmb{\S}$ $\pmb{\mathfrak{g}}$ $\pmb{\mathbb{I}}$ $\pmb{\mathfrak{f}}$ $\pmb{\mathfrak{f}}$ \pmb{v} $\text{KXI}(8)$ **KYI(8) NUS(\$) NGR(8)** NCC(8) JN(8) **JTN(8)**

- where $KXI(I) = 0$ for a linear abcissa scale and 1 for a logarithmic scale
	- KYI(1) = 0 for **a** linear ordinate and 1 for a logarithmic ordinate scale
	- $NVS(I) = 1$ for point plots, 2 for points connected with straight line
	- $NGR(I) = is the graph number to be plotted$
	- $NCC(I)$ = the number of curves on each plot
	- $JN(I)$ = the cell number to be plotted on the curves
	- $JTN(I)$ = the time steps to be plotted.

Card 16 through 19 History of mass flow into the tank can be specified by these cards. The field width is 10 spaces, with *6* quantities per card as shown below:

Fort Worth Division

SECTION *4*

ERR'OR **DIAGNOSIS**

The **two** means of diagnosing input data and program errors are

1, Error messages and

2. Optional printout

The error messages are self-explanatory. For example, in Subroutine Newqua, if the absolute value of the pressure difference between **two** adjacent cells is not less than a specified input value, the following message is printed out:

Iterations did not converge in IDM steps'. **¹**

IDM is the maximum number of iterations specified by the input data.

For the Subroutine Interp, if the value of either a given pressure or density cannot be found in the thermodynamic table, the following message is printed:

'Enthalpy is outside of density library data' or

'Enthalpy is outside of pressure library data'.

Almost all pertinent intermediate data may be obtained by the use of the proper input data control numbers described in Section **3,**

Fort Worth Division

SECTION₅

PROBLEM TIMING

A typical SW6 computer run will calculate the transient thermodynamic state of supercritical oxygen for a period of real time of about 10 hours using about 1 minute of computer time with a distance between nodes of 0.1 ft and an outflow velocity of 10^{-1} ft/hour. Generally the computer time will increase as the inverse of the square of the distance between nodes and as the outflow velocity is increased.

 $\mathcal{L}_{\mathbf{z}}$

Fort Worth Division

SECTION *6*

SAMPLE PROBLEM

6.1 PROBLEM DESCRIPTION

The following sample problem consists of environmental heating, mass withdrawal and electrical heating of supercritical oxygen stored in a low gravity space environment. The pressure history, temperature and density distributions are predicted. A sketch of the tank is shown below:

Environmental and Electrical Heating

Some of the most pertinent parameters are

- 1. Environment heating, $Q_{\rho} = 0.0$ Btu/sec
- 2. Withdrawal rate, \dot{m}_0 = 1.0 pounds/hr
- **3.** Distance between nodes, R = 0.1 Ft
- *4.* Minimum Radius, $R_1 = 0.1$ Ft
- 5. Maximum Radius, $R_m = 1$. ft
- $6.$ Initial density, ρ = 55 lb/ft 3

Fort Worth Division

7. Initial Pressure, P = **870 psia 8 ^e Electrical Heater Power,** Ph **=O. 166 Btu/sec 9.** Vent Valves open pressure, $P_{vo} = 2500$ psia 10. Vent valve close pressure, $P_{\text{vc}} = 2400$ psia **11. Heater on pressure, Pho** = **860 psia 12. Heater off pressure, pho** = **1000 psia**

Fort Worth Division

6.2 LIBRARY DATA

The sample library data is shown below.

Fort Worth Division

 $10.0*06$

 \sim

Fort Worth Division

Fort Worth Division

6.3 PROBLEM DATA

 10 20 30 40 50 60 $Q_e = 0.0$ $\dot{m}_0 = -.27 \times 10^{-3} R = 0.1$ $P = 0.01$ $P_{max} = 3000$. $R_1 = 0.1$

2nd Card:

20 30 40 50 60 10 $R_m = 1.0$ $\mu = 1x10^{-6}$ $k=1x10^{-5}$ TF=.25 $t=10^{-3}$ $\rho = 55$.

" 3rd Card:

4th Card:

5th Card:

 10 20 30 40 60 50 DT_{mO}=500. DT_{mf}=400. CT=6000. PC=.05

The first five data cards are shown below:

The 8th through 15th problem data cards are shown below

Fort Worth Division

The 16th through 19th problem data cards are shown below:

Fort Worth Division

6.4 PROBLEM **OUTPUT**

Typical **problem** data output is shown on the next page.

Fort Worth Division

SECTION₇

PROGRAM LISTING

The program listing is shown on the following pages.

G LtVEL **1,** MOD 3 MAIN **3953** DATE = 70239 13/22/34 *C***** SMOUTI IS **THk** DRAIN RATE *1)* POUNDS/SEL SW6M002 C**** DELTAR IS THE DISTANCE BETWEEN NODES , FT C**** PYMl **IS** THE PRESSURE DIFFERENCE BETWEEN ADJACENT MUOESFOH CONVERGESW6MG04 C4*** NCE ,PSI **SW6MOO** 5 C**** TM IS THE MAX TANK PRESSURE **C****** RADPIN **IS** THE PINfMUM TANK RADIUS *9* FT Sh6M007 $C****$ RADMAX IS THE TANK RADIUS , FT C**** VIDY IS THE DYNAMIC VISCOSITY **SWOM0D9** *C***** CON0 **IS** THE THERMAL CONDUCTIVITY E BTU/HR-FT-UEG **F** SH6MOlO *C***** IF IS THE FRACTION OF THE STABLE TIME STEP USED **SW6MOLL**
C**** DELT IS THE INITIAL TIME STEP (SHOULD BE SMALL SAY 0.1 SEC) SW6MOL2 C**** OELT 15 THt iNiITIAL **TIM€** STEP (SHOULD BE SMALL SAY 0.1 SEC **J** SW6MOlL C**** RHOI IS THE INITIAL DENSITY , POUNDS/FT CUBE **SWBMOL3** C**** PKESI **IS** THE INITIAL PRESSURE *9* PSI Sk6M014 C**** GASCON IS THE GAS CONSTANT C**** SPHTP IS THE SPECIFIC HEAT (CON PRESS) BTU/POUNDS- DEG F SW6M016
C**** SPHTV IS THE SPECIFIC HEAT (CON VOL) BTU/POUNDS- DEG F SW6M017 **C****** SPHTV **IS THf** SPECIFIC HEAT (CON VOL **1** dTU/PaJNDS- DE6 **F** SWbM017 C**** TIME1 **IS** THE INITIAC TIME ,SEC SW6MOlB C**** SMVENT IS THE VENT RATE , POUNDS/SEC SWBMOL9
C**** QHEATR IS THE HEATING RATE OF THE HEATER, BTU/HR SWbMO20 SM6M021 C**** PVENTU IS THE PRESSURE AT WHICH VENT VALVE OPENS *.PSI SW6M022 C**** PVENTC IS THE PRESSURE AT WHICH VENT VALVE CLOSES, PSI SW6M023
C**** PHETON IS THE PRESSURE AT WHICH HEATER IS TURNED ON SW6M024 C**** PHFTUN **IS** THE PRtSSURE AT HHICH HEATER **IS** TURNED ON Sh6M024 *C**e-*t* PHElOF **IS** THE PRESSURE AT **WHfLH** HFATER **IS** TURNFO (3FF Sk6M 02 *5* C**** DIMIXN IS THE TEMP DIFFERENCE AT WHICH MIXER IS TURNED ON SW6M026 C**** DIMIXF- IS THE TEMP DIFFERENCE AT WHICH MLXER IS TURNED OFF SW6M027 *C*4*** **CUMFM IS** THE MAX COMPUTER TIME IN ONE HUNDREGS *Of* A SECONO SW6M028 *C*4*** PC **IS** A FACTflK USUALLY MUCH L€SS THAN **1** FOR SPtCIFIC HEAT CALCJL. SNbY029 *C***** IM **IS TtiE** NUMBER **OF** NODES Slu6M030 **C****** NCOhT EO **1** LSE AVERAGE VELOCITY ACROSS CELL BOUNGAKIES [LINEAR) SW6YG31 C**** NC2 EQ 1 DENSITY OF ALL NODES REMAIN CONSTANT **SW6M032** C**** IF NC3 EQ 1 READ IN INITIAL DENSITY AND MIXED DENSITY C**** NC4 EQ 1 USE CONSTANT SPECIFIC HEAT AND COMPRESSIBILITY SW6M034
C**** NC6 EQ 1 USE VELITI AT THE CELL BOUNDARIES **C**** NC6 EQ 1 USE VEL(I) AN THE CELL BOUNDARIES SW6M 635 6 SW6M 035 6 SW6M 035 6 SW6M 036 C**** NC7 EQ; 1 USE EXACT EQUATION FOR VOLUME ELEMENTS** C**** IOM IS MAXIMUM NUMBER OF ITERATIONS IN SUBROUTINE NEWQUA SW6M037 C**** NJIMEM IS THE MAXIMUIM NUMBER OF TIME STEPS **SW6M 038** SW6M 038
C**** IMIX IF IMIX = 1 , MIXER ON $C****$ IMIX IF IMIX = 1 \rightarrow MIKER ON C*4** IHET **IF** = 1 **v** HEATER ON SW 6MO40 C**** IVENT IF = 1 **e** VENT VALVE OPEN SW6M041 C**** NFI **If** = **L** 4 PLOT EACH CURVE **OF** GRAPH 1 UN SEPAKATE FRAME SW6MO42 C**** NWO IF = **1** *9* HRITE RESULTS **OF** SUB* INTERP FOR SPECIFIC HEAT- NODE2SW6M043 *C***** NWA IF = **1** *9* WRITE **SMASl** *9* SMAS2 **e** SMAS3 ETC S W6M 044 C**** NW2 IF = 1 **,** WRITE SPHTVV(1), ZCOMP(1) sse, SPHTVV(IMM)eee, SW6M046
C**** NW3 EQ 1 WRITE MASS FLUX CFLL BOUNDARIES C**** NW3 EQ 1 WRITE MASS FLUX CELL BOUNDARIES *C***** 1'444 kQ **1** WRITt INTERP OkITPUT - FRq TP1 **pTP2** ETC SW6M047 C**** IF NW5 FQ 1 WRITE INPUTS TO SUBROUTINE SIMPLT **Cs***** NPCl kCJ1 PIOT QESULTS SWbM049 *C***** IYPRIN **IS** TH€ NUMBER OF TIME *SrtPS* HETHEEN PRINiING SW6M050 C**** NTT IS THE NUMBER OF PAIR OF POINTS OF DRAIN HISTORY SW6M051 C**** KYItK) **IS** 0 FOR LINEAR ORD SCALE9 **I** FOR LOG *SWbYO53 C***4* QHFATR **15 TdE** HEATING KATk **OF** THE HfATERt BTWHK *SWbYozo C***** **UMOTUR 15** THE MOTOR HEAT DISSIPATION BTU/HR **5** W 6M **C332 C**4* KXI(K1** IS 0 FOR KTH GRAPH LINEAR SCALt, l*FOR LUG SCALE OF X COOR SW6M052

C**** NVS(K) IS I FOR POINT PLOT , 2 FOR LINE PLOT FOR GRAPH **SW6M054** C**** NGRI(K) IS GRAPH NO., 1 FOR FIRST, 2 FOR SECOND ETC FOR PLOTTING **SW6M055** C**** NCCI(K) IS THE NUMBER OF CURVES ON THE KTH GRAPH Sw6M056 C**** JN(K) IS THE NODE NUMBER TO BE PLOTTED ON THE KTH CURVE
C**** JTN(K) IS THE TIME STEP TO BE PLOTTED, WHEN JTN=NTIME **SW6M057 SW6M058** C**** SMT(I) IS THE DRAIN RATE , POUNDS/HOUR **SW6M059** C**** IIMI(I) IS THE TIME IN HOURS **SW6M060** C**** READ IN INITIAL DENSITY AND PRESSURE **SW6M061** C**** SMAS1 IS THE AVER DENSITY TIMES TANK VOLUME **SW6M062** C**** SMAS2 IS THE DENSITY TIMES THE VOLUME ELEMENTS **SW6M063** C**** SMAS3 IS THE INITIAL MASS MINUS MASS OUT **SW6M064** C**** ENOUTT IS THE TOTAL ENERGY OUT **Sw6M065** C**** ENINT IS THE TOTAL ENERGY IN **SW6M066** C**** ENENTI IS THE AVER INTERNAL ENERGY TIMES DENSITY TIMES TANK VOLUMESW6M067 C**** ENENT2 IS THE INTERNAL ENERGY TIMES DENSITY TIMES VOLUME ELEMENTS SW6M068 C**** ENENT3 IS THE INITIAL TOTAL INTERNAL ENERGY PLUS ENG. IN MINUS ENGSW6M069 $C***$ 001 **SW6M070** COMMON/PROP/ENTHT(30,30),TEMT(30,30), PREST(30,30), RHOT(30), **SW6M071** IIIMAX, JIMAX **SW6M072** DIMENSION TIT(108), ABSA(108), ORD(108), LABLCU(320) **SW6M0731** DIMENSION X(200,2), Y(200,8,8), NVS(8), NCS(8), NGRI(8), KXI(8)SW6M0742 1 , KYI (8) , JN (8) , NCCI (8) , JTN (8) , NPI (8) **SW6M0753** DIMENSION SMI(50), TIMI(50) **Sw6M0764** COMMON/CONTR/NW3,NW4 SW6M0775 DIMENSION PRESSP(100), TEMPNP(100), TEMPNO(100), PRESSU(100) SW6M078 TANK PRESSURE HISTORY
ILSTORY , FIGURE +FIGURE SW6M0791 DATA TIT/*FIGURE I TANK TEMPERATURE HISTORY TANK DENSITYSW6M0802 TANK VELOCITY HISTORY 2 HISTORY FIGURE SW6M0813 X^+ ***SW6M0824** $,$ F 1 GURE STORAGE MASS HISTORY $, **FIGURE**$ HISW6M0835 4STORY OF MASS FLOW
5ICATION PFIGURE FIGURE TEMPERATURE STRATIFSW6M0846 DENSITY STRATIFICATION , SW6M0857 \mathbf{v} and \mathbf{v} **SW6M0868** 6 DIMENSION ENTHLP(100), ENTHLOC100) SW6MOR7 STORAGE TIME, HOURS DATA ABSA/' **SW6M0881** 1 STORAGE TIME, HOURS STOR:AGE TIMESW6M0892 STORAGE TIME, HOURS 2.40 URS Sw6M0903 3.1 ± 1.1 STORAGE TIME, HOURS **SSW6M0914** 4TORAGE TIME, HOURS RADIAL DISTANCE, FSW6M0925 **SEET** RADIAL DISTANCE, FEET , SW6M0936 \bullet \bullet 6. **SW6M0947** DIMENSION A011001 **SW6M095** DATA ORD/' PRESSURE, PSIA **SW6M0961 ITEMPERATURE, DEGREES F** DENSITY, POUNDSSW6M0972 VELOCITY, FT/HOUR 2/CUBIC FT **SW6M0983** \bullet X^* , **'SW6M0994** STORAGE MASS, POUNDS $3 \cdot$ FLOWSW6M1005 4 RATE , PUUNDS/ HOUR TEMPERATURE , DEGREES SW6M1016 DENSITY, POUNDS/ CUBIC FT. 5 R Sw6M1027 \bullet Sw6M1038 DIMENSION XAR(200), YAR(200), PRESSR(4,200), TIMER(2001, IS(12) **SW6M104** DATA LABLOU/'NODE , STRATIFIED NSw6M1052 \bullet

 $DATE = 70239$

 $19/22/34$

MAIN

V G LEVEL 1, MOD 3

V G LEVEL 1, MOD 3 DO 80 I=1, IMM $RHO(I) = RHON(I)$ $\mathsf{TEMP}(\mathbf{I}) = \mathsf{TEMPN}(\mathbf{I})$ $ENTHLY(1) = ENTHLN(1)$ $ENVOL$ (I) = $ENVOLN$ (I) SUMP = SUMP + PRESS(I) 80 CONTINUE $00 \t{53} I=1,8$ -33 IF(JTN(I).EQ. NTIMES) K52 = K52 +1 $X(NTIME, 1) = TIME/3600.$ $D0$ 315 Kl= 1.8 IFIKI.NE. NGRI(K1))GO TO 315 $NGR = NGKI(KI)$ $NCC = NCCI (K1)$ 00 316 J=1, NCC $NK = JM(J)$ IF (J.EQ.NCC)NK = IMM IF(NK.EQ.0)GO TO 321 $IF(MGR.EQ, 1) YINTIME, J, NGR1 = PRESS(NK)$ IF (NGR.EQ.2) YINTIME, J , NGR) = TEMPINK) IF(NGR.FQ.3) YINTIME, J., NGR) = RHOINKI IF(NGR.EQ.4) YINTIME,J ,NGR) = VEL(NK)*3600. 321 CONTINUE $K5 = 0$ $NK1 = JIN(J)$ IF(NGR.1.T.7) GC TO 317 IFINKI.NE. NIIMES) GO TO 317 $100 - 314 - J2 = 1 + 1M$ IF (NGR.EQ.7) Y(J2, J , NGR) = TEMP(J2) 314 IF (NGR.FQ.8) Y(J2, J , NGR) = RHO(J2) 317 CONTINUE 316 CONTINUE IF(NGR.FQ.5) Y(NTIME,1,5) = SMAS1 IF(NGR.FQ.6) Y(NTIME,1,6) = 4*3.1416*SMFLUX(1)*3600. 315 CONTINUE NP = NTIME CALL STATUS(IS) $COMP2 = IS(B)$. $C\cap MP = COMP2 - COMP1$ $NNN = 0$ $NNH = C$ IF(COMP.GE.COMPM)NNN=1

IF(COMP .GE. COMPM) NTIMES = NTIMEM

CALL STATUS(IS) $COMPI = IS(8)$

 $CUMP = COMP/100$

WRITE(6.116) COMP

WRITE(6,115)

IF(NPC1.NE.1) GO TO 371

IF (NIIME.GE.200.OR .NTIMES.GE.NTIMEM)NNH=1 IF(NNN.EQ.O.AND. NNH.EQ.O IGO TO 105

115 FORMAT(1H , COMPUTER TIME AT START OF PLOT, IN SECONDS.)

MAIN $DATE = 70239$ 19/22/34

Sw6M337 **SW6M338** SW6M339 **SW6M340** SW6M341 **SW6M342** SW6M343 SW6M3431 SW6M3432 **SW6M3444 SW6M3456 SW6M3468** $SMOM347$ **SW6M3482** SW6M3494 **SW6M3506** SW6M3517 Sw6M3528 SW6M3530 SW6M3542 **SWAM3554** SW6M3566 SW6M3578 **SW6M3589** Sw6M3590 SW6M3601 SwoM3612 SW6M3626 **SW6M3637 Sw6M3648 SW6M3659** Sw6M3660 Sw6M3673 SW6M3684 SW6M3692 SW6M3709 **SW6M371 SW6M372 SW6M373 SW6M374 SW6M3751** $SW6M376$ Sw6M3762 **SW6M377** Sw6M378 **SW6M379 SW6M380** Sw6M3812 Sw6M382 **SW6M383** Sw6M384 Sw6M385

 $\mathcal{A}^{\mathcal{A}}$

SUBROUTINE DATCHK(KXI, KYI, NVS, NGRT, NCCI, JN, JIN, ERR, IM, NTIMSW60001 IFM (NPCT) SWADON? DIMENSION KXITA), KYITA), NVS(3), NGPITA), NGCITA), SWADOCA SW6POC5 1 JN(8), JTN(8) $FPP = P$ SWADO1 $00 - 10 - K = 1.8$ C is ℓ IF(KXI(K), FO. O. OR, KXI (K), FO. 1) GE TO 12 **SWED016** WPITELE ,131 SHADOJI 13 FORMATCIH , KXICK) IS NOT 0 OR 1 THEREFORE KXICK) IS REINC SSWEDCIB IFT FOUAL TO O T 1 SWANG19 $KYI(K) = 0$ $SWADO2C$ 12 IF(KYI(K).EO.C.OR. KYI(K).FO.1) GO TO 10 $SwFDD21$ $WPITE(E, 141)$ SWED022 14 FORMAT(1H, *KYT(K) IS NOT 0 OP 1 THEREFORE KYT(K) IS PETVO **SWAP123** ISET FOUAL TO 0 +) SWED024 10 CONTINUE $SWFPC25$ $20 K = 1.4 R$ SWADCRO TEENVSEK), EQ. 1.0R. NVSEK), FQ.2 1 GC TO 20 SWEDC₂₁ SWADORZ WRITE($f = 21$) 31 FORMATETH , INVSEK) IS NOT O OP 1 THERFFORE NVSEK) IS REING SSWEDORR $SNAD224$ 1^F T 7^G UA+ TC 1^G 1) Swebcas. $NVS(K) = 1$ 20 CONTINUE SWEDC36 $MTI = 0$ SWEDC40 22 $x = 1$, 9 SWADO41 TE(NGRI(K), FO.K.) GD TO 30 SWAD042 $NCTT = NCTT + 1$ **SW60043** 30 CENTINUE $SWECCA4$ $$w \in 0045$ IFINCTE.NE.91 GO TO 34 IF(NºCl.FO.1) NOCl = 0 SWADC46 WRITE(-6 , 351 SWEDDAY 25 FORMATELH , IND GRAPHS WILL BE PLOTTED BECAUSE NONE OF THE VERT S SWAD048 IARE BETWEEN 1 AND R .) SWEDDAG **SWAPPED 34 CENTINUE** $NJJ = C$ SWEDCER $IMM = IM+1$ SWADC694 $70.47 K=1,8$ SHADC 7C IFE INEK) JE JAMICO TO 44 SWEDC71 \bullet JN(K) = [M] SW60072 $, 42)$ WRITE (6) Swenc73 43 FORMATCIH , "JN(K) IS GREATER THAN IM.... JN(K) = IM ') SWADOJA 44 TELJNIKI, GE .0 1 GO TO 46. SWANC75 $JM(K) = 1$ SW6P076 W PITE($6,47$) SWED077 47 FERMATCIH , * JNEKS IS LESS THAN 1, JNEKS = 1 * 3 SW6DC78 46. IFT. IN(K).NE.0.1.GO TO 40. $SAP079$ $NJJ = NJJ + 1$ SWADCRO 40 CONTINUE SWADCRI $N_1 J K = 9 - N J.$ **SWADCP2** $DP = 50 - K = 1, 4$ SWADORR SO JE(NCCI(K).ST. NJK) NCCI(K) = NJK SNAPCR4 $MCCI(5)=1$ SWEDORS $MCGI(E) = 1$ $\mathsf{SWFPCP6}$ SWAPORT $AD = 72$ $K = 1, 8$ 70 IF(ITH(K).GT. NTIMEM) JTN(K) = 0 SWEDCRR $NJTM = 0$ $5W50099$

l.

```
DO 72 K=1, 9<br>IECJIN(K1,NE,C1 50 TO 72
  NJTN = 1 + NJTN72 CENTINUE
   NJTNT = 9 - NJTNIFINITNT.LT.NCCI(7)) NCCI(7) = NJTNT
   IFINJINT.LT.NCCIIA) NCCIIA) = NJINT
   RETURN
   END
```
 $\bar{\star}$ \sim

 ~ 30

SWAD090 SW6DC91 SW60092 **SWANDER** SW600C4 SW6DCS5 **SW60096 SW60099** SWED100

SUBROUTINE INTERP (IND , PRESS , PHO , ENTHEN , TEMPN, NAODES) SWATCOL DIMENSION PRESS(100), RHO(100), ENTHIN(100), TEMPN(100), SWATOC2 IIEAST(IOO), JEAST(100) SWETHER COMMON/CONTR/NW3, NW4 SWETCC4 DIMENSION JEDUND(2) SWATOC5 DATA NET/17 **SW6TCO6** COMMON /PROP/ ENTHT(30,30), TEMT(20,30), PREST(30,301, RHOT(30), SWATCCZ ITIMAX, JIMAX SWETCHER DATA ILAST/100*1/, JIAST/100*1/ SWETCCG C**** IF IND FOUALS 4 ONLY ONE PASS IS MADE WITH I FO IM+1(AVE PPESS). SWETOIO 50 CONTINUE SWATCIL 20 120 J = 1, NNODES SWAT012 $TP1 = 1.0$ $SWAT013$ $TP2 = 1.9$ $SWATCI4$ $FP = 1.2$ $SW67915$ $11 = 11 \land 51(1)$ $SW6T016$ $JI = J[AST(I)]$ SWETCIA $ICPIIT = 1$ SKATC18 IF(IND.NE, 4) GP TO 130 $SWFT119$ $I = NNTDFS + 1$ $SWET120$ 133 CONTINUE $SATE1221$ TE(240(1) .NE. RHOT(11)) ON TO 118 SWATC22 $H AST(H) = H$ SWGT023 $ep = c_0$ SWAT024 $TP2 = 9.0$ **SWAT025** on thinks $SWATC26$ 113 IF(PHO(I) .LT. RHOT([1)] SO TO 140 SWATO27 IF (PHOCL) .SE. RHBTIII+I)) GD TC 125 SW6TO28 $TLAST(I) = 11$ SWATO29 $FR = (9H011) - RH011111/I(RH01(11+1)) - PH01(111)$ $SW6TO30$ TEC II LUT. 1.08 . TILST. TIMAX) OF THEROS **SW6T031** GC $ID = 230$ SW6TC32 125 $11 = 11 + 1$ SWATCAR GP TD 130 $SW67074$ 142 $11 = 11 -1$ **SWETCZE** TEC IL JET. 1.08 . IL.GT. ILMAX E GO TO 300 SWATORE GP TO $I3O$ SW6T037 SWETCAR 330 WP ITE (6, 310) 310' EDPMATE FOL, FENTHALPY IS OUTSIDE OF DENSITY LIBRARY CATAL). $SWETO29$ 1.60 th 120 **SW6T040** 230 CONTINUE SWET041 202 IF(PRESS(T), NE, PREST(T1, J1))GO TO 218 SWETC42 $JLAST(I) = J1$ SWATC43 ϕ^{\star} $JFOMM(ITQUI) = J1$ SWET044 IFLER .FQ. 0 1 GD TO 650 $S \triangle F T C 45$ IF(ICOUT.FO.1) TP1=0.0 SW6T046 TEL ICOUT $E_0 = 2$) 69.19.430 $SWAT047$ $ICPI = 2$ SWATCAR. $11 = 11 + 1$ SWET049 $GP = TP = 230$ SWETOFO. $639.792 = 0.0$ SW6T051 $C = T$ $SMSTOF2$ $f50$ TP1 = 0.0 SWSTOF3 $T P 2 = P \cdot 2$ SWET0F4 GC 10 39 SW6T055 212 IF(PPESS(I) .LT. PREST(II, JI)) GD TO 240 SWETCEG


```
SURPOUTINE SIMPLICKY, KY, Y , Y , V , NP, NCC, NV, LNGP
                                                    .NP, MCC, NV , NGP
                                                                             SWACOCI
     1, 111SW6COC12
C**** KX IS O FOR LINEAR IN X , I FOR LOG
                                                                              SWACCC2
C**** KY IS O FOR LINFAR IN Y , I FOR LOG
                                                                             SWAC OC3
                            200,2 ABSCISSA
C**** X IS SUBSCRIPTED
                                                                              SWECCAC**** Y IS SUBSCRIPTED 200,8,8 ORDINATE
                                                                             SWACOC5
C**** NP IS NUMBER OF POINTS FOR EACH CURVES
                                                                             SWECDON
C**** NCS IS CURVE SYMBOLS
                                                                              SWACCCT
C**** NVS IS 2 FOR LINE PIOTTING
                                                                             R O O HC**** NGR IS THE GRAPH NUMBER
                                                                             SW6COC9
C#*** NCC IS THE NUMBER OF CURVES
                                                                             SWAC010
C**** TIT IS SPAPH TITLE 12 LOCATIONS (108 TCTAL) A GRAPHS +1BLANK
                                                                             SW6C011
C**** ABSA IS ABSCISSA TITLE 12 LOCATIONS(48 CHAR) BGRAPHS I BLANK 1) RSW6C012
C**** LABLOU IS THE CURVE LABLES (PRINTED ON SEPARATE PASE ) 200H/R/CUR SW6C014
                                                                              SWACC15
C****
C*****SWEC016
                                                                             SW6C017
C ****
                                                                             SWEEC18
C ****
C****
                                                                             910388
                                                                             S_Wf(C)2QC****
                                                                             S ASCO21f ****
C****
                                                                             SWAC022
      DIMENSION X1200,21, Y1200,8,8)
                                                 , NCS(0, 1, 0), NGFI(0, 1)SWACCAC
                                        JIN(8) , NCP(8)
                                                                             SWET944, JN(R) ,\mathbf{1}SW6CC4R
r.
                                                                             Swecce2
      NEMETOM
                     TIT(108), ABSA(198), GRD(108), LAPLCU(320)
                                                                             S W6C053IF (NW5.NF.1) GD TO 2
\mathbf{r}SWEECEB
      WPJTE(6,105) ((X(I, J),[=1, NP), J=1, 2)
                                                                             SMEC582WRITE(6,195)(((Y(I,J,K),I=L,NP),J=1,8),K=1,8)
                                                                             SWACCEB6
                                                                             SWATOERFWEITE(6,108)
                                       (1.3M(11,1=1,9), 1.3M(1),1=1,9)WEITE(6,109) (TIT(I), I=1,109)
                                                                             SWAFCERR
                                                                             Swend592
      WRITE(A, 109) (ABSA(I), I=1, 108)
      WRITE(6,109) (080(I), I=1,108)
                                                                             SWEEC594
      WRITE(6.109) (LABLOUIT), I=1.108)
                                                                             SWETG596105 FORMATCIH , BE14.7 )
                                                                             S W A C R A Q 2103 FDRMAT(1H + 2415)
                                                                             S W A C R C 4ICO FORMATEIH + 27A4
                                                                             SW6FC606
    , WRITE(6,3) X(1,1), X(NP+1), Y(1,1,1) + Y(NP+1+1 ), AP, NCC, NV ,
                                                                             SWAC 607
                                                                             SWAC 608<br>SW6C 61
     INCP , NET, JN(1) , JTV(1), IMM , JN(NCC)
    2 FCPMAT(1H , 4F14.7, 915)
                                                                             SWEEPER
    2 CENTINUE
      MN = 1 + (NGR - 1) *12
                                                                             SWECCZO
      N X 11 = 390SW6CC71
      N X 12 = 340SW6CC72
      K = 1SWACC73
      IFANGR*EQ*7*OR*NGR*FQ*R1K1 = ?SWACC74
      VU = V(1, 1, \text{NGP}) *1.01
                                                                             SWACCBI
                                                                             SWACCB2
      V_1 = V(1,1,1,100) * 0.0SWECCAR
      X(1) = X(1, K1) * 1.015660984X1 = X(1, K1) * S9SWECTPSDP = 20 J=1, MCC
      00 - 20 = 1 + NPSWACCST
                                                                             S WFCC92\mathbf{f}SWACCOR
      TE(J.NE.1) GO TO 21
```

```
76
```

```
SWFCFC4IF(XLI, K1).GT, XUI) XUI = X(II, K1)SWECCSS
   TF(X[1,K]). LF. XL) XL =X(I,K)21 IFC Y(I, J, NGR).GE. YU) YU = YfI, J, NGR)
                                                                             SW6C105
20 IF( Y(1, J, NGR).LT. YL) YL = Y(1, J, NGR)SWEET 10
                                                                             SW6C120
   NCS(1) = 42NCS(2) = 63SW6C121
   NCS(3) = 14SW6C122
   NCS(4) = 44SW6C123
  NCS(5) = 38SW6C124
   NCS(6) = 55SW6C125
   NCS(7) = 19SW6C126
   NCS(9) = 24SWFC127V(P(1) = 0SW6C120V(P(2) = 3)SW6C121MCP(3) = 5SWAC132NCP(4) = 6SWECT<sub>23</sub>
   NCP(5) = 1SW6C134
                                                                            SW6C135
  N(P(A)) = 2N(PI) = 11SWCF126NCP(8) = 10SW6C137
   K2 = 1SW6C138
   IF(NGR, FO, 7, OR, NGR, FQ, 8)K2=2SW6C139SWET140SW6C141
   CALL BIGV
                                                                            SWEET 50
  CALL REITEV
                                                                            SW6C151
   CALL FRAMEV( 3)
                                                                            SW6C152
   DP = 49 J=1, NCC
                                                                            SW6C170
   IFINGRALT.5) NLC = 1
                                                                            SWAF171
   IFINEC.IT.5.AND.J.FO. NCCINEC =6
                                                                            SW6C1712
   IF(NGR.EO.7.OR. NGR.EQ.8) NLC =16
                                                                            SWAC1714
                                                                            SWAC172
   NY11 = 800 - 40*JNCD1 = NCD(J)SW6C173
   90.49 K=1.3SWEC174
   CALL POINTV(NX1?, NY11, NCP1, ANY)
                                                                            SW6C175
  CALL PRINTV(20 , LABLOU(NLC) , NX11 , NY11 )<br>TE(NGR.FO.7.OR. NGR.E0.8) GD TO 42
                                                                            SW6C176
                                                                            SW6C1762
   \sqrt{X^2} = \sqrt{X^2 + 40}SW6F1772
 \cdot Y JN = JN(j)
                                                                            SW6C1773
 . IFFU.FO.NCC.)XJN =IMM
                                                                            SW6C1774
   CALL LABLV(XJN, NX2, NY11, 4, 4, 2, 21
                                                                            SWEC1776
   50 - 10 - 41SW6C1778
42 \text{ J}1 = \text{J}11(1)SW6C178
   \sqrt{X^2} = N \times 11SW6C1782
   yx = x(JL, 1)SWAC1784
   CALL LAREVEXX + NX3 + NY11 + 7 + 2 + 4 1
                                                                            SW6C1786
41 CENTIMUE
                                                                            SWEC1788
40 CONTINUE
                                                                            SW6C179
   J = NGPSWAC 1792
   DC 70 J=1 , MCC
                                                                            SW6C180
   IF(J,E0-.1) NF= 1
                                                                            SW6C181
   IF(J.MF. 1) MF = 2SW6C182
   IFINEI.FO.1.AND.NGR.EQ.11NF=1
                                                                            SWAC1825
                                                                            SWAC183
   IF(J.MF. 1) MN = 97NC = MC S(J)SW6C185
                                                                            SW6C186
70 CALL SE102 (KX, KY,X(1,K2),Y(1,J,I),NP,1, NV ,1, NC ,TIT(NN) ,
```
 $\sqrt{ }$

 \mathbf{r}

GENERAL DYNAMICS *Fort Worth Division*

REFERENCES

- 1. Kamat, D. V. and Abraham W. H., "Pressure Collapse in Oxygen Storage Under Zero-g" <u>Journal of Spacecraft</u> Vol. 2, **No, 2, February 1968.**
- **2. Torrance, K. E. "Comparison of Finite-Difference Computations of- Natural Convection", J. Research of the National Bureau of Standards-B. Mathematical Sciences, 72B,281.**

GENERAL DYNAMICS **Fort Worth Division**

P. O. Box 748 Fort Worth, Texas 76101

 \mathcal{A}