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PREFACE 

In  the  investigation  reported  herein,  a  technique of quasi-optimum  con- 

trol,  developed  under NASA Contract NAS 2-2648 [ 1 ] and  further  studied 

under  Contract NAS 2-3636 [ 21 (both with  the Ames Research Center) i s  

applied  to  the  problem  of  controlling  the  motion  of  the  cab  in  a  moving-base 

simulator. The objective  of  the  design i s  to  provide  the  pi lot  with as rea- 

l istic  motion cues as possible within  the  confines of the  limited  motion  capa- 

bi l i t ies of the  simulator.  In  the  investigation  reported  only  the  longitudinal 

motion i s  considered;  the  method  employed,  however,  would  appear  to  be 

applicable  to  the  more  general  six-degree-of-freedom case and  further  in- 

vestigation  of  the  method i s  planned. 

The principal  contributors  to  the  moving-base  simulator  study  were 

Dr. Bernard Friedland  and  Dr.  Chong K. Ling.  In  addition  to  the  study  of 

the  motion-simulation  problem,  other  aspects  of  the  quasi-optimum  control 

technique  were  studied  during 1969. The results of  these  studies, to  which 

Dr.  Frederick E. Thau contributed,  will  be  reported  elsewhere, as appropriate 

The authors  are most grateful  for  the  insights  gained  in  several discussions 

w i th  Messrs. M. D. White, J.G. Douvi l l ier,  R.S. Bray, and  other members 

of  the Ames Research Center  Flight  and Systems Simulation Branch, and  for 

the  assistance of  Dr. E. C. Stewart, of  the  Theoretical  Guidance  and  Control 

Branch, who  served as Contract  Technical  Monitor. 
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1. INTRODUCTION 

A moving-base  simulator i s  a  device in  which  a  pilot manipulates  a set of  f l ight 

controls  and  the cab in  which he is  situated moves in  a manner which tends to  reproduce  the 

sensation of  motion  which  would be  experienced i n  the  aircraft  with the same control  inputs. 

To achieve  a  high-fidelity  simulation,  the  simulator  control system should  be  designed  to  keep 

the errors between  the "aircraft"  motion and  the  cab  motion as small as possible. 

The major  problem of  the  control system design i s  the  limited  motion  capability  of 

the  cab in  translation. For a  flight  simulation mission in  which the aircraft  would  undergo 

large excursions, the  cab  motion w i l l  necessarily  be  different from the  aircraft  motion  and  the 

motion  simulation w i l l  have  to be more or less unrealistic. 

Given the fact  of  limited  motion  in the  cab  the  basic  question  underlying the de- 

sign of  control system is:  what aspects of  motion must be reproduced with  high  fidelity  and 

what aspects of  motion  can  be  sacrificed  without  excessively  degrading the realism of  the  simu- 

lation.  It i s  generally  accepted  that one of the most important  factors  governing  the  realism 

of  a  simulation i s  the  kinesthetic  sensation  of  motion.  Many  experimental studies have  been 

performed  to  establish  the  connection  between  actual  motion  and  the  subjective  sensation  there- 

o f .   I t  i s  generally  believed,  for example, that  only  acceleration  and  its  derivatives (but not 

i t s  integrals)  are  significant,  that  there  are thresholds below  which the sensation of  motion is  

absent, that  there  exists an amplitude  dependent  delay time (latency-time)  between  motion 

and  perception  of  sensation  of  motion,  that  the sensation of  a  constant  acceleration tends to 

diminish  with  time as a  result  of  the  "adaptation" phenomenon. Although  mathematical 

models have  been proposed which  account  for some or a l l   o f  these  phenomena with  varying 

degrees of success, their  validity has been  questioned  by researchers in  various  disciplines. 

Whether because the  validity  of  the  kinesthetic sensor  models are  questioned,  or 

for  other reasons of  practical expedience, i t appears that  the  only  method  currently used for 

designing  motion  simulaton i s  empirical:  by  one means or  another  a  design i s  achieved, i t i s  

1 
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tested by an  experienced  pilot,  and his experience i s  used as the basis of  an  altered de- 

sign. Sooner or  later  a  control system i s  obtained  which performs in  some acceptable  manner. 

One method which i s  currently used to  maintain  the excursion of  the cab within 

the  allowable  limits  of  motion employs "acceleration  washout".  Specifically,  the  aircraft 

acceleration i s  passed through  a high-pass f i l ter  which attenuates  the  low-frequency com- 

ponents of  the  acceleration  (which  result  in  large excursions) while  permitting  the  high-fre- 

quency components to pass through with  negligible  attenuation. The cab i s  then  controlled  to 

follow this washed acceleration. This system i s  shown schematically i n  Fig. 1 - 1 .  The para- 

meters of this high-pass filter  (e.g.,  the  cutoff  frequency w and damping factor 5 of 

Fig. 1- 1) are  adjusted  to  maintain  the  cab excursions within  acceptable l imi ts .  

One  of the  shortcomings of this design  approach i s  the dif f iculty of relating  the 

parameters of  the high-pass  washout f i l ter  to the  transient response of the  cab.  Another 

possible  shortcoming of this  approach i s  that  the washout i s  linear. If the parameters of the 

system are  adjusted  to washout aircraft  accelerations  which  result  in excessive excursions, 

i t   w i l l  also washout aircraft  accelerations  which do not  result i n  excessive accelerations, 

although  there  would  uppear  to  be  no reason for so doing. It would appear preferable  to 

employ  a  nonlinear  control scheme i n  which, i f  the pi lot commands an excursion which i s  

within the  cab  motion  capability, this motion  would  be  followed  exactly. The desired 

situation i s  il lustrated  in Figure 1-2. For a  large  aircraft  excursion (a), exceeding  the mo- 

tion l imi t ,  the  corresponding  cab  excursion shown i n  (b) would be  desirable; on  the  other 

hand, for  a  small  aircraft  excursion (c) within the motion  capability  of the cab, the cab 

motion should follow  (c). 

I t  i s  generally  believed  that  the  empirical  solutions  to the  problem of  l imited mo- 

tion  lead  to designs which do not fully  exploit the available  motion  capabilities  of the sys- 

tem. In  other words, the washout  methods currently  employed  produce  unacceptable sensa- 

tions of  motion  for  a number of missions and i t  i s  felt  that the use of more sophisticated de- 

sign  techniques could  lead  to  an  increase i n  the number of missions for  which  acceptably 

realistic  motion sensations could be  achieved. 

2 
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Position I 
(a) Aircraft  motion 

Time 
Fig. 1-2 - Illustration of Nonlinear Cab Response 

This consideration was the  motivation  of  the study  described i n  this report i n  

which the  methodology of optimum  control  theory was applied  to the  problem. Attention 

was confined  primarily  to  the case in  which the  motion i s  restricted  to 2 degrees-of-freedom, 

pitch  and  vertical  displacement, such as might represent  an aircraft  landing  under  rather 

idealized circumstances. 

The  results achieved  indicate  that  the  approach  studied has considerable merit 

although i t  i s  certainly  not  without problems, one of the most significant  of  which i s  the  ab- 

sence of a  completely  rational standard of performance evaluation. Thus i t  would be  de- 

sirable  to  continue  the  investigation  to  extend  the results to  the more general case of six  de- 

gree-of-freedom  motion  and  to  endeavor  to  establish a more rational performance criterion. 

This report i s  organized as follows. The design  problem i s  first  formulated in  the 

framework of optimum control  theory i n  Section 2. A general  approximate  solution  to  the 

problem i s  then  derived i n  Section 3 through  the application of the  quasi-optimum  control 
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technique.  In  Section 4 the  result of Section 3 i s  applied  to  the  control of longitudinal 

motion  simulation  of  a  particular  aircraft.  Finally,  the results  are discussed and  a  possible 

future  effort i s  suggested i n  Section 5. 
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2. MATHEMATICAL PROBLEM FORMULATION 

2.1 Aircraft  and Cab  Dynamics 

The moving-base simulator of concern i n  this investigation w i l l  be o f  the  type 

currently i n  use at the Ames  Research Center for  which  the cab  motion i s  produced by a drive 

system in  which each  degree-of-freedom of the cab can  be  independently  controlled. To 

any  degree o f  accuracy desired, the  "aircraft" i s  represented by  a  computer with the  in- 

put  proportional  to  the  pilot's command signal  and  the  output  representing  the  aircraft mo- 

tion. lt i s  assumed that the  state  variables of the  aircraft,  which  are  modeled by the com- 

puter, are  available  for  the  control  of  the  cab  motion.  Although i t  w i l l  be ultimately  de- 

sirable  to  treat  a  six  degree-of-freedom  situation,  the present study i s  confined  to  a  two 

degree-of-freedom  situation in  which  only  pitch  and  vertical displacement  are  considered. 

The linearized  aircraft dynamics  can  be expressed as 

j ,  = A  x + B  6 
a a a   a a  

where  x i s  the  state  vector of  an  aircraft  with components {x 

senting  position, velocity,  acceleration,  pitch,  pitch rate, etc.,  and 6 i s  the  control 

surface deflection  or i t s  derivative depending  on  the situation. A and Ba are  matrices 

of appropriate dimensions representing the aircraft parameters associated with the  state 

variables  x  and input bo, respectively. 

. . . . ]  
a a ] '   X a 2 f  

repre- 

a 

a 

a 

Similarly,  the corresponding  cab  dynamics  are expressed as 

X 
C 

= A  x + Bcu 
c c  

where  u i s  the  control  input  to  be  generated  by  the  control system to be  designed  and 

x A and B are  the  cab  state vector  and  the parameter  matrices  corresponding to 

x A and Ba, respectively. 
C '  C  C 

a '  a 

The difference  between  the  aircraft state  and  the  cab  state i s  denoted by 

x = x   - x  
a c  
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and satisfies the  differential  equation 

i = A  - i  = A  X + B 6  - A  X - B  u 
a  c a a   a a   c c  c 

or i = A a x + ( A  - A ) x  + B  6 - B  u 
a c c   a a  c (2.4) 

This equation,  together with (2.2) comprise the  dynamic process for  which  the  control  law 

i s  to be  devised. 

In  particular,  the  longitudinal  and  pitch  motion  of  a  typical  aircraft  governed 

by the  following  dynamic  equations w i l l  be  considered: 

“ + a  9 - b  8 = c 6  Ya a a a a  a a  

6 + f  6 + e 8  - d  y = - 9 6  
a a a   a a   a a   a a  

where y i s  the  vertical  displacement  of  the  aircraft C. G. relative to earth, 8 i s  the 
a  a 

pitch angle,  and  a b c da , ea , fa ; ga  are assumed to  be  constant  coefficients 

related  to  the  aircraft  aerodynamic  parameters. 
a ’   a ’   a ’  

In  the  event  that  the  motion  of  a  point  not  at  the  aircraft C. G. is  to be  simulated, 

the  dynamics  are similar in  form to (2.5) except  that  the  vertical  acceleration i; contains 

a term proportional to 8 and  the  constant  coefficients  are  dependent on the moment arm 

4, from  the C.G. to  the  point  of  interest. 

a 

a 

Assuming that  each  degree-of-freedom of  the  cab  motion i s  separately  governed by 

a  linear  second-order  driving system, the  corresponding  cab  dynamics  can be approximated by 

-. + 2 5  0 i. +O1yc=u l  2 
YC 1 1 c  

S + 2 5  9 + O  e = u  
2 

C 2 2 c   2 c  2 

where %, ec are  the  displacement  and  the pitch corresponding  to y 8 respectively, 

m d  u  are  the command signals  to  each  respective  driving system, and 6 , w 1  , t2, o2 are 

constant  parameters. 

a ’  a u 1  

2 
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It i s  noted  that  the  dynamic  equations (2.5) and (2.6) can  always  be  rewritten in  

the  state  form of (2.1) and (2.2) by  properly  defining  the  state  variables as w i l l  be seen in 

the  sequel. 

2.2 Performance Criteria 

It i s  noted  that  the  primary  objective  of  the  control system i s  to  provide, in  accord- 

ance with the pilot's  input, command signals  to  the  simulator  drive motors i n  such a  way  that 

the  kinesthetic  sensation of motion  of  the  pilot  situated i n  the cab is  a  faithful  replica  of  what 

he would sense i f  he were flying  the  real  aircraft. This problem i s  complicated by the  fact 

that  the  relation  between  "how  the  pilot senses" and  "how  the  cab (or aircraft) moves" i s  non- 

linear  in nature due to  the  existence of "threshold"  and  "latency  time" phenomenon i n  the 

human  sensory  orgar:.  The threshold i s  known  to be the  minimum  amount  of  acceleration (or 

jerk)  that  can be sensed by  a  pilot,  while  the  latency  time i s  the  minimum  amount of (delay) 

time necessary for  a  pilot  to sense the  motion  after  the  vehicle has actually "moved"  beyond 

the  threshold. The latency-time i s  inversely  proportional to the  magnitude  of  acceleration 

(or jerk),  and follows  an  approximately  exponential  relation. Thus, for  a  realistic  design  of 

the  control system, a  design criterion (performance  index)  should be defined  to measure the 

error in  perception  of  motion  rather  than  the  motion  itself. 

I t  has been well  established  that the human perception  of  motion i s  due to  the acti-  

vation  of  "vestibular" system within the human body. The vestibular system  serves as the  prin- 

cipal  motion sensing center in  the human. The "input"  to this human  sensory  system i s  the  ex- 

ternal  force  acting  upon  the  head  and  the  "output" i s  the  subiective  perception  of  "motion". 

Therefore, the  subjective  perception  of  motion cues by  a  pilot can be interpreted  in terms of 

the quantitative state of the  kinesthetic sensory  system provided  the dynamics governing  the 

input-output  relation  of  the sensory  system are  known. 

I t  would  ultimately be desirable  to ut i l ize the  analytical  input-output  relation  of 

the vestibular system as an aid  to the  control system design. For the present study, however, 

an  ad-hoc  performance criterion was selected based on  the following considerations. 



Physiological  experiments  have  indicated  that  the  principal  kinesthetic cues are 

primarily those o f  translational  acceleration  and i t s  rates and  the  angular  velocity  and 

acceleration. Thus, the  simulation w i l l  be  regarded as realistic i f  the  differences of those 

quantities  between  the  aircraft  and  that  of  the  cab  are  kept  to  a  minimum  while  maintaining 

the cab  excursion within  certain  prespecified  limits. 

Thus, for this purpose, we  established  the following performance criterion 

T+ t T +t 
V = M(e , ‘6’ , eo , e e ) d s + c  L(y ) ds 

t Y Y  t 
C 

where  t i s  the  present time  and T i s  the  control  interval,  e  and ee are 

the  differences  between  the  position  and  the  pitch  angle,  respectively, 

o f  the simulator  and  that o f  the aircraft, M i s  a  quadratic form i n  the  error  rate  and  its 

derivatives,  and L(y ) i s  a  penalty  which i s  imposed for  large excursions y of the simu- 

lator cab  from  the neutral  position. With the  penalty  multiplier F reduced  to  zero,  the 

motion of the aircraft  and  simulator  can  be made identical,  and hence  the  cab wil l  generally 

exceed  the  motion  limits. By proper selection  of F and L(yc) i t  was felt  that  a  suitable 

compromise between low error rates and  derivatives  thereof  (acceleration,  ierk,  etc.)  and 

limited  motion  could be achieved  by  minimizing V. 

Y 

C  C 

In  particular,  the  following forms of M and L functions  were used i n  this inves- 

tigation: 

Linear acceleration  weighting: 

M = -(q..e 1 .. 2 + q i i i + q g e g )  .. 2 
1 2 Y Y  

Linear acceleration  and  ierk  weighting: 

1 .. 2 ... 2 - 2  
M = -( e + q...e + q bee + q i  ee  

.. 2 ) 
2 2 q 9 . y  y y 
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and 

"Hard I' l imiting: 

"Soft"  limiting: 

Li; IY, O - ycl 

L = (+) 2P 

2 

IY,l < yc 
(2.10) 

IY,l yc 

(2.11) 

where q.. , q... , q 6 ,  q i  are  constant weighting factors, and Y i s  a constant  represent- 

ing  the  physical  boundary  for cab excursion. The penalty  functions L1 and L are illus- 

trated i n  Fig. 2-1. 

Y Y  C 

2 

To facil i tate subsequent calculations,  the  performance  integral (2.7) can be re- 

writ ten  in terms of state  variables as 

- T+t T +t 
(2.12) 

where Q i s  a psitiv.e  semi-definite  matrix  with elements 9.. , q... , q b  , q e  etc. 
Y Y  

11 
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Fig. 2-1 

The Penalty Functions 
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3. APPLICATION OF QUASI-OPTIMUM CQNTROL TECHNIQUE 

The control  problem  to  be  treated consists of the aircraft dynamics (2.  l), the  cab 

dynamics (2.2), the  ''errortt dynamics (2.4) and  the  performance  index (2. 12), as re- 

written  below. 

Let 

then 

j ,  = A  x + B  6 
a a a   a a  (3.1) 

(3.2) j ,  = A  x + B  u 
C c c  c 

x = x   - x  
a C 

i = A X + (A - Ac)xc + Ba6, - Bcu 
a  a (3.3) 

T+t 
V = J [T (X' Q;C) + F  L(x ) ]  d l  

C (3.4) 
t 

the in i t ia l  time i s  taken as the present time  t  at  which  the  state  of  the  aircraft  and  cab 

are  given  by 

and  the  control  u i s  not  explicit ly constrained. 

I t  i s  noted  that  the  error  rate X i n  the  performance  index (3.4) contains velocity, 

acceleration  and possibly higher  derivative components. Hence  a  completely  realistic 

("one-to-one")  simulation i s  obtained i f  i t  i s  possible to  keep j ,  E 0 with 

B u = A X + (A - Ac) xc + Ba6a 
C a  a 

Assuming that (3.7) can  be  solved  for u, the  control  law  obtained i s  

u = K [ A x + ( A  - A ) x  + B  6 1  
a  a c  c a a  

and, from (3.2) and (3.7) 

x = A x  + A  x + B  6 
C a c  a a a  

(3.7) 

(3.8) . 

(3.9) 

with j ,  E 0, or  x = const. 

13 



Also, with c = 0, the  performance  index (3.4) becomes 

T-tt , 
t 

V =  2 (x'Qic)dT 

which,  together with (3 2) and (3.3), w i l l  result in  linear  control  law. Moreover,  since 

V s  0 is  the  absQlute  minimum  of (3. lo), and i s  achieved  by (3.7) i t  i s  clear  that  the  op- 

timum control  law  for c = 0 reduces  to (3 .8) .  

3 . 1  Application  of  Optimal  Control Theory 

To treat  the  problem with the dynamic process (3.2) and (3.3) and  the  performance 

criterion (3.4),  define  the  adjoint  vector 

where 
po  corresponds to the  performance 

PC 
corresponds to  the  cab  state 

p corresponds to  the  error  state 

P€ corresponds to  the multiplier E = const. 

p7 corresponds to  time 

(3.10) 

(3. 11) 

The Hamiltonian i s  thus 

1 
h = po [ T (X' QX) + c L(xC)] + p' [ A  X + B U ]  c c c  c 

(3.12) 
+ p' [ Aax + (A - Ac) xc + Bad,  - Bcu] + p7 

a 

14 



The corresponding adjoint equations, for t 7 T+t, are 

ah 
P o - -  - - = o  (3.13) 

- ah l a  aL 
P C  ax Po{" ax 

C  C axC 

[k' Qk] + €  -I - A' p - (Aa - A ) 'p  (3.14) - " "- 
c c  C 

- ah 4 a €  = - Po U X C )  (3. 16) 

- ah 
a r  

- - -  

PT " - (3. 17) 

From (3. 13) p E - 1 .  Also 
0 

" 

2 ax 
a (i'Qi) = (Aa - A  ) ' Q [ A a x +  (A - A ) X  + B 6 - B U] 

C 
C a c c   a a  c 

" ' a ( i ' Q A )  = A ' Q [ A   . + ( A   - A ) x  + B  6 - B  U] 
2 ax a  a  a c c   a a  c 

whence (3.14) - (3.16) become 

P C  = (Aa - A c ) ' Q [ A  a X + (A a - AC)xc + B 6 - B u] a a  c 

aL 
ax a 

+ E  - - (A - Ac)' P 
C 

(3. 18) 

p = A' Q[Aax + (A - A C ) x c + B  6 - B u l  - A ' p  (3. 19) 
a  a a a  c  a 

It i s  assumed that there  are no constraints  on  the  control  variable u. In this case 

the maximum principle  gives  the  control  law aH/au = 0, or, from (3.12)' 

15 



or 

B' Q[A X +  (A - Ac)xc 
a a 

+ B 6 - B  U]  = 
c a  a - P) 

PO 

Comparing this equation  with (3.7) i t  i s  observed that (3.7) satisfies (3.22) when 

when (pc - p) 0. More  generally, i f  B' Q B  i s  non-singular,  the  optimum  control 

law i s  given  by 
c c  

(PC - P) 
u = (B' QB 1" B/ {Q [A  x + (A - + B 6 1 - 3 

c c  C a  a  c a a  
PO 

(3.22) 

(3.23) 

The control system  based on this equation i s  shown i n  Fig. 3-1 

Consider  the differential  equation  for p - p; from (3. 18) and (3. 19) 
C 

P C  - P = -A; (PC - p ) - A ' Q [ A x - ( A a - A ) x  C a + B 6  - B  u ] + c  - ax 
a L  

c c a a  c 
(3.24) 

C 

Suppose < = 0, and (3.7) i s  satisfied. Then (3.24) becomes 

P C  - P = -A: (PC - P) (3.25) 

which is  a homogeneous equation.  Moreover, pc(T + t> = p(T + t> = 0 i f  the  terminal  state i s  not 

specified. Hence,  from (3.25) pc - p 0.  Thus i t  i s  evident  that  the  control  u  which 

satisfies (3.7) satisfies  the necessary condition  for  an  optimum  control. If E # 0, however, 

thkn (3.24) i s  not homogeneous and (3.23) does not  result in  an  optimum  control  law,  since 

- p f 0 ,  i n  general.  Since  p - p increases with the weighting  factor E multiplying 
PC C 

the  penalty L(x ), the contribution  to  u due to p - p may be attributed  in  part  to the 

desire  to  keep x within the  limits  of cab motion. Consequently,  the part  of  feedback  quan- 

t i ty  p - p  can  be  regarded as the "washout" input designed to  prevent  motion from ex- 

ceeding  the  motion l imi ts .  

C  C 

C 

C 

The calculation  of this feedback  term i s  the  main  objective  of this analysis. For 

this purpose i t  w i l l  be necessary to have  the complete set of canonical equations, which are 

obtained  by  substitution  of  the  optimum  control  law (3.23) into (3.2), (3.3), (3.18) and (3. 19) 

The  results can  be  arranged in  matrix form 
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X 
C 

X "- 
P C  

P 

A1 1 A12 i I B l l  -B1l  1 
I 

""""""-~"""""""" A21 A22 i - B 1 l  B1l  I 
c1 1 5 2  i -51 I 

! 
5 2  '22 i -Ai2 - 5 2  1 

X 
C 

X "- 
PC 

P 

+ 

where p,, has been  equated to -1 and 
v 

Al 1 = (1 - B B#)A + B B A 

A12 c  c  a 

% l  = (r - B B#)(A - A ) 

p22 = (I - B B#)A 

# 
c c  c c c a  

= B B A  # 

c c  a  c 

c c  a 

B l l  c  c  c  c 
= B ( B ' Q B  )-' B' 

C1 = (A - A ) 'Q[I - B B ](Aa - Ac) 
# 

a c  c c  

= (A - A ) 'Q[I  - BcBc]Aa # 

= A ' Q [ I  - B B ] A  

c12 a c  

'22 a c c  a 

# 

R = B B  # 
1 c c  

# 

Rg = (Aa - A ) 'Q[I  - B 8'1 

R2 = I -  c c  

R = A ' Q [ I  - B B # 1 
c c  

4 a  c c  

B 6 +  
a a  

(3.26) 
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and B # i s  a "pseudo inverse" of B with respect to  the  matrix Q, i .e. 
C  C 

B #  = (B' QB )"B' Q 
C c c  c 

where B# B =I 
c c  

Two features of (3.26) are  specially  noteworthy: 

(1) Owing  to  the presence of the  term c aL/ax , the equations are  nonlinear. This 

problem i s  overcome by use of the  quasi-optimum  control  technique in  which aL/ax wi l l   be 

computed  for c = 0 and B nonsingular. 

C 

C 

C 

(2) The pilot's  imput 6 appears as a  forcing  function.  Since  the  determination  of 
a 

p(t) - pc(t) a t  the  "present  time" t requires solving (3.26) for  future times (t 7 T+ t) i t  i s  

clear  that  a  knowledge  of 6 ( T )  i n  the  future  might  be necessary.  We w i l l  return  to this 

problem in  the  sequel. 
a 

"Z 3.2 General  Solution  of  the  "Simplified Problem" 

The "simplified problem''  for  the application  of  the quasi-optimum  control  technique 

i s  obtained from (3.26) by setting c = 0. I t  i s  readily demonstrated that the solution  to (3.26) 

can  be expressed as 

(3.27) 

where M satisfies  a  matrix  Riccati  equation  and y i s  a  linear  functional  of 6 (7)  for 

ti: T I- T + t .  The special  structure of the  matrices in  (3.26) permit  the use of  a  special  method 

of  solution. For this purpose, i t  i s  noted  that the contribution from p and  p  to  the  opti- 

mum control  law depends only  on 

a 

C 

z = p   - p  
C 

(3.28) 

From (3.27) i t  follows  that 
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-Z = N X + N x + q  (3.29) 
c c  

where Nc and N are  submatrices of M and q i s  a  subvector of y. We shall  obtain 

differential equations  for N N, and q. 
C’  

From (3.29) we  have 

(3.30) 

j ,  = A  x + A  x + B  z + R B 6  
C 1 1  c 12 1 1  1 a a  

- - Al l ~ c  + A12x - B (N X -t NX + q )  + R1 B,dcl 11 c  c 

and 

Whence (3.30) becomes 

-2 = N x +Nc[(Al l  - B1 Nc)xc + (A,2 - B1 N j x  - 
B l ~ q  1 a  a 

+ R  0 6 1  
c c  

+ N x  + + B1 lNc )~c  .+(A22 + B1 lN)x + B1 1q -t R2BabJ+ 4 

(3.31) 

Also  from (3.26): with E = 0 
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(3.32) 

Now 
# 

A,, - A12 = ( I  - B B )A  = Ac = - (%1 - p22) 
N 

c c  c 

Hence  (3.32) becomes 

i. = (C - Ci2)xC + (Cla - C22)~ - A ' z  + (R3 - R4)B 6 
N 

1 1  C a a  (3.33) 

= (Cll - Ci2)xC + (C12 - C2*)x .+ A ' [ N  X + NX +qI  + (R3 - R4)BcPa 

= (C1 - Ci2 .+ X'N )x + (CI2 - + X ' N ) x  + F q  + (R3 - R4)B2a 

N 

c c c  

c c c  c22 c C 

Adding  (3.31)  and  (3.33) results in  

0 = [A C + N  (A - BllNc) + N ( A 2 1  f BllNc) + C l l  - Ci2 + X ' N  ]x 

t- [ N   + N c ( A 1 2  - B1,N)  +N(%2 + B1,N) .+ C12 - C22 + Z i N j x  

+ [ ( N  - Nc)B1 + X ' l q  + (NcRl + NR2 + R - R4)B 6 + q 

c 11  c c c  

C 3 a a  

This must hold for a l l  x and x Hence we must have 
C 

Nc + NcAl -L N%l - N c B l  lNc + N B  N + C1 - Ci2 + A"N = 0 1 1  c c c  (3.34) 

N + NcA,2 + N%2 - NcBl N + NB1 N + C12 
N 

- c22 c 
+ A ' N  = 0 (3.35) 

4 + [ X '  + (N - Nc)B1  l]q + (NcR1 + NR2 + R3 - R )B 6 = 0 
C 4 a a  (3.36) 
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. . . . . . ". . .. . . . ". 

Subtract (3.35) from (3.34) to  obtain 

I4 C - N + Nc(Al - A12) + N(%l - %2) - (Nc - N)B1 (Nc - N) 

N 

+ C1 - Ci2 - C12 + C22 + A i (Nc  - N) = 0 

or, lett ing F = N - N 
C 

F +FX + X , F  - F B ~ ~ F  +cll 
C  C 

- C i2  - C12+ c22 = 0 

Now 

# 
c1 1 - 5 2  

5 2  - c12 

= - A ' Q [ I -  B B ](Aa - Ac) 
C c c  

= + A ' Q [ I  - B 6 ]Aa # 
C c c  

Hence (3.37) becomes 

-F = F X  +if F - FB F + A ' Q [ I  - B B#]A 
c c  1 1  C c c  c 

which i s  an  nxn  Riccati  equation. The solution F of this  equation  can  be sub: 

(3.34) or (3.35) to obtain  linear  equations  for N or N . In  particular, 
C 

-N = N A  + ( X f  - FB, l)N + C12 - C22 - F%2 

-N = N A + 6; - FB1 l)Nc + C1 - C i2  - F%l 
a C 

C c a  

(3.37) 

(3.38) 

jtituted  into 

(3.39) 

(3.40) 

If the terminal  state Exc(T + t), x(T + t)} i s  free  then  p (T + t) = p(T + t) = 0, 

N(T + t) = Nc(T + t) = F(T + t) = 0 is the  terminal  condition  which  should be used for  the 

backward  integration  of (3.38) and (3.39) or (3.40). 

C 

Also, from (3.36) 
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T+t 
q(t) = J (s, t){FB B#+ N - A' Q[I - B B # ] I  B 6 (s)ds 

t 
c c  C c c  a a  

where a' (s , t) is  the  state-transition  matrix  corresponding  to A - B1 F. 
'u 

C 

It i s  noted  that  the  matrix M and  the  function  y i n  (3.23, that  are  charac- 

terized  by N N and q , respectively, in  (3.29), are  time  varying  for  any  fixed 

terminal  time T as can  be seen from  the  solutions  of (3.38) - (3.41). Consequently, 

the  optimum  control  law  for  the  "simplified" system (wil l  be  referred  to as "simplified 

control") i s  also explici t ly time  dependent  for f ini te T . As this i s  somewhat undesirable 

from a practical  point  of  view, i n  subsequent applications  of  the  theory  developed  therein, 

i t   w i l l  be assumed that T +  so that F = N = N = 0 .  

c ,  

. .  
C 

Tbe block  diagram  for  the  simplified  control system i s  shown in  Fig. 3-2. 

(3.41) 
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3.3 Quasi-Optimum  Control Law Using  Hamilton-Jacobi  Equation 

Substitution of the optimum  control  law(3 23) into  the  Hamiltonian (3.12) results 

in the  following expression 

(3-42) 

Equating the Hamiltonian h to  zero  and  setting  p = - 1 results i n  the  Hamilton-Jacobi 0 
equation when the  following  identification i s  made: 

av 
p=-,, 

where 

v = v(x (T), x(T), 7) = optimum  value  of  performance  integral (3.4) 
C 

Following  the  procedure used i n  NASA CR-1099 ("Additional Studies of  Quasi- 

Optimum  Feedtxlck  Control  Techniques"), Part 1, Section 1.1, v i s  written as 

v = v + € w + o ( € )  2 (3.43) 
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Hence 

- av aw 2 
PC ax - € -  + O(€ ) 

C axC 

- - -  

av aw 2 
p=-,,- €- + O(€ ) ax 

av aw 2 
PT = -= - €- ar + O(€ ) 

Let 

av p = - -  
C ax 

C 

av 
ax p = - -  

av 
Pr = - -  a.; 

Then the  Hamilton-Jacobi  equation becomes: 

+P'(A x + A  x)  +P'(A21xc +%2x) +(P'R +P'R )BO +P7 
c 11 c 12 c 1  2 a a  

+ c {- L(xC) - (g - 3 Y B  ax 11 (P c - P) - (?)'(A1 lXC + A12X) 
C 

B 6  a  a - E} at + O(c 2 ) 
- 

2 0 
By ignoring  the terms of O(C ) and  equating  the  coefficients  of  and E individually 

(3.44) 

(3.45) 

to zero we obtain  two separate  equations: 
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0 = - - ( A  1 + A  x + R  B 6)'qA21xc  +A22x +R2B,6i+T(Pc 1 - P)'Bl1(PC - P) 2 2 l X c  22 2 a  a 

+ P'(Allxc C +A12x) + P'(A21xc  +A22x) + (PLRl + P'R2)B 6 + p7 (3.46) 
a a  

and 

0 = - L(xc) - (E 1 [Al lxc + A 1 2 x + B  (P - P)+R B 6 I 11 c l a a  
axC (3.47) 

- ( z J [ A z 1 x c + A  22 x - B  11 (P c - P ) + R  2 a a  B b ] - w  aw = o  

Now (3.46) i s  precisely  the  Hamilton-Jacobi  equation  for  the  simplified  problem  of  the 

previous  section.  Hence  the  solution to (3.46)t using (3-29)t i s  

P - P = -  ( N  X + N x  + q )  
C c c  

and (3.47) becomes 

(3.48) 

0 = - L(x 1 - [ (Al l  - B1 lNc)xc + (Al2 - B1 lN)x + R B 6 - B1 lql 
C 1 a a  

(3.49) 

N )X +(%2 + Bl1N)x +R2B 6 + Bl,q]--  aw 
c c  a a  ar 

The partial  differential  equation (3.49) can be  solved  by  characteristics, or, equivalently, 

(3.49) can  be  interpreted as the  partial  differential  equation  for  the  evaluation  of 

T+t 
W = L(x )dt 

t 
C 

for the closed-loop  simplified process 

ir = (Al1 - B N )X  +(Al2 - BllN)x + R  B 6 -Bllq 
C 11 c c 1 a a  

ic = (%1 + B N )x + ($2 + BllN)x + % B t a +  Bllq 
(3.51) 

11 c c 
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Letting 

aw z =" 
C 

C ax 
aw 
ax z = - -  

the  lladioint  equations''  for  the  new  minimization  problem (3.50) and (3.51) are: 

i = - (Al1 - B N )'z - (A21 + B N )'z+- aL 

axC 
C 1 1  c  c 1 1  c 

z = -  (Al2 - B1 lN) 'z  - (A22 + B1, N) 'z  
C 

The boundary condition i s  

z ( T + t )   = z ( T + t ) = O  
C 

Since  the  optimum  control  law depends on 

N 

PC 
- p = P  - P + r [ z  -21  

C C 

we need only  the  differential  equation  for 

p = z  - 2  
C 

Upon  subtraction  of (3.52) from (3.53, we obtain 

N aL 
= - (Ac - B,lF)'p+ 

C 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

Let Q(T + t I t)  be the  transition  matrix  corresponding  to -(Ac - B1 l F ) ' .  .Then  the  solution 

to (3.56) can  be written 

N 

But, by (3.54), p (T + t) = 0. Hence 
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where 9 i s  the  transition  matrix of the  adjoint system Ac- cv 

B1l F -  
In order to  evaluate (3.57) i t  i s  necessary first  to  integrate (3.51) for xc(s) , 

then  compute aL/ax (s), substitute this result  into (3.57) and  evaluate,  the  integral  which 

is a  nonlinear  functional of x ( -  ). 
C 

C 

With T +  03, as discussed in preceeding  subsection 

m 

In the calculation of p (t) discussed subsequently, i t   w i l l  be convenient  to  retain  the more 

general case of (3.57) with T = const., and, without loss of generality, t = 0 .  
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3.4 Extrapolation  of  Pilot's  Input 

It was noted a t  several  occasions i n  the  preceding sections the necessity of  ex- 

trapolating  the  pilot's  input 6 ( - ) into  the  future. This extrapolation problem i s  crucial 

in  the entire design  approach, because the  need  for  "washout"  feedback depends on  the 

future  pilot's  input. For example, i f  the  motion  limit has nearly  been approached, and  the 

pi lot continues  the same command, the l imi t   w i l l  be  reached;  on the  other hand, i f  the  pilot 

reverses the  control,  the  motion l imit may not be  reached. The pilot's  action,  of course, 

depends on  the  aircraft  motion he  desires and is  taken  (in  a  realistic  simulation)  independent 

of the  cab  motion, which ought to be  unknown to  the  pilot. Various methods of  extrapolating 

the  pilot's  action  are  conceivable;  the  following  have  been  studied. 

a 

(a) Taylor's series expansion o f  6 (7) about  the present value 6 (t) 
a  a 

(b) Exponential  approximation  by 

6 (7) = 6 (t) e 
-k (7 -t) 

a  a 

(3 .58)  

(3 .59)  

where k i s  determined empirically. 

(c) For each situation to be  simulated  (training  exercise)  determine  the  action  which 

would  or  ought  to be taken by an  experienced pilot  and program the  corresponding d (77, for 

the purpose of  determining  the washout  feedback only. 
a 

(d) Assume a  dynamic model for 6 (3, i .e .  that 6 (7) satisfies  a  known  differential 
a  a 

equation  with random excitation,  and use a  Kalman  filtering  technique  to  extrapolate 6 (T) 

into  the  future. 
a 

A combination of (c) and (d) can  also  be used by assuming that Sa@)= ba @)+ 6 (T) 
0 

where 6 (7) i s  the  nominal  action  and sa (T) i s  the  difference  between  the  pilot's  action 

and  the  ideal  action. 
a0  e 

Of these possible  candidates  for Sa( .  ) extrapolation, the exponential  approxima- 

tion (b) was found  to  give  favorable results and was used extensively i n  the  investigation. 
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4. PRACTICAL APPLICATION TO A LONGITUDINAL 

MOTION SIMULATION 

As an  application  of  the  general design technique  developed i n  the  preceding 

sections, we  considered  the  longitudinal  motion  of  a  present-day  transport  aircraft whose 

dynamic  equations at  C. G. were shown in  (2.5) and  repeated  below. 

.. 
ya = - a  >; + b  8 + C  6 

a a   a a   a a  (4. la )  

(4. lb) 

The corresponding  cab  dynamics  and the various forms of  the  performance  index as defined 

in  Section 2 are  rewritten as follows, 

2 *. = -25 0 y 
Y C  1  1 c - “ l y c + ‘ l  (4.20) 

e = - 2 5 ~  e - W  e + u  
2 

C 2 2 c   2 c  2 

T+t T+ t 
V = M(ey, ey, ee , ee)dT + €  L(y )dT  

t  t 
C 

- T+t T+t 

= - s ( k ’ Q x ) d r + c  [ L(x ) d r  
I 

2 t  
C 

t 

1 .. 2 . 2  2 M = - (q..e + q b e e  + q i  e e )  
1 .* 2 ...2 .2 M = - (q.. e + q... e + qe ee + q6 ee ) .* 2 

1 2 Y Y  

2  2 Y Y  Y Y  

0 lYc l  y 

C lYc l  y C = [ l yc -Y 1 

C 

1 

(4.2b) 

(4.3) 

(4.4) 

(4.5) 
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In  computer  simulations of  the  control systems  designed, the  numerical  values of 

the  aircraft parameters were assumed to be as follows: 

a =0 .70  

b = 160.0 

a 

a 

c ~ 7 . 0  
a 

d = 0.0034 
a 

e = 0.786 
a 

f =0.707 
a 

ga = 0.69 

i n  accordance wi th  data  received from Ames  Research Center. 

In  l ine  with the  general  theory of the  preceding  section, i t  i s  noted  that  different 

combinations of the cost function M and  the  penalty  function L result in  different con- 

trol laws u. The combinations (M L 1 ) /  (M1 / L2) and (M2, L2) were  studied i n  con- 

siderable  detail  while  the  combination (M L1) was relatively  unexplored  up  to  the  time 

of this report. 

1 '  

2 '  

The general design  procedure followed  entails  the steps outlined  below: 

(1) For any assumed  cost function MI obtain  the  "simplified"  control  law U 

with F = 0, using  the  theory of  Section 3.2. 

(2) Adjust  the parameters i n  MI so that  when U i s  applied  to the cab, the  cab 

motion  would  approximately  duplicate  the  motion  of  the  aircraft 

(3) With assumed  form of the "penalty  function" L, calculate the  "washout" 

(i. e.  the  quasi-optimum  correction  factor) p i n  accordance with the  theory of  Section 3.3.  

Then the  optimum  control  u i s  given  by 
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(4) Adjust c and  the parameters in  p , with U fixed, so that excessive motion 

due to U i s  washed out. 

(5) Adjust and those  parameters i n  U and p to  achieve  acceptable  accelera- 

tion  and  ierk  profiles  while  maintaining  the cab  excursion within physical  boundary. 

.It should  be  noted  that  since i t  i s  impossible in  practice  to  achieve a  one-to-one 

simulation of  actual  aircraft motion,  and  since  there does not  exist  an  objective  performance 

criterion  to assess the  relative  merit  and  acceptability  of a  resulting  control system, a  "good" 

result i s  distinguished from a  "bad"  result  only  on  the basis of  the  opinion  of those familiar 

with  motion simulators. For this reason the  results obtained i n  each case are  presented and 

discussed. 

In   a l l  the cases studied, the  angular  motion of  the  cab i s  controlled  to  follow  that 

of the aircraft  exactly  since no  constraint was imposed on  the  angular  motion. This i s  be- 

cause  (a) the  allowable  cab  angular  motion i s  large enough to accommodate  the  corresponding 

aircraft excursions and (b) no attempt i s  presently  being made to enhance motion  perception 

by  intentionally  altering  the cab  angular  motion from that  of the aircraft. Thus, i n  our sub- 

sequent discussion of  the results, attention  wi l l  be  focused on  the  higher  derivatives  of trans- 

lational motion, such as acceleration and/or jerk, and, i n  particular,  on such features as 

magnitude, phase and "onset" relations  between  the  cab  and  the  aircraft  acceleration and/or 

ierk. 
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4.1 Control System Design  Using Cost Function M Without Jerk Weighting  and  "Hard" 
Boundary  Penalty Function L 1 

1 

In  accordance  with  the  state  variable  notations used in  Section 2, let 

x =  
al 

Ya x = Y c  c 1  
x =  
a2 Ya 

x = e  
a3 . 
a4 

a 

x = e  
a 

then (4.1) and (4.2) are  rewritten as 

x = x  
al a2 
k = - a  x + b  x + c 6  
a2 a a2 " a 3  a a  

x = x  
a3 a4 

x C = Y c  
2 

x = e  
c3 . C 

x = e  
c4 C 

2 = d  x - e x - faxa - gada 
a4 a a2 a a3 4 

and 

x = x  
c 1  =2 

x = x  
c3 c4 

x = - 0  2 x 
C 4 c3 - 25202xc4 + 2 
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Defining  the  "error  state''  x as x = x - x  then  the  "error  dynamics"  are ob- 
a c r  

tained  from (4.8) and (4.9) 

x 1  - x2 
- 

2 
i c 2 = - a  x + b  x + W  x 

a 2   a 3   1 c  

x3 - x4 
- 

+ b x + caba - u1 
1 a c3 

(4.10) 

2 ic4 - - dax2 - e x 

- 6  
'a a - '2 

a 3 - L  x 4 + d a x c2 + (W2 - ea) xc3+ ( 2 5 , ~ ~ -  fc) xc4 

and with the cost function M (4.4), the  constant  weighting  matrix Q for  the  performance 1 
index takes the form 

Q =  

- 
0 

0 

0 

0 
k 

0 

9. * Y 
0 

0 

0 

0 

se 
0 

(4. 1 1) 

Thus, the  optimal  control  law (3.23) becomes 

u = - a x  + b x  + O X  2 + ( 2 t 1 ~ , - a a ) x   + b x   + c 6 + " ( p C - p 2 )  1 
1 a 2   a 3  1 c 1 c2 a c3 a a  9y 2 

(4. 12) 

u2 - - dax2 - eax3 - fax4 

where p I P, are  the  corresponding adjoint  variables as defined i n  Section 3. It was 

shown that  an  exact  solution  of  p  and  p from the  canonical  equations (3.26) i s  i n  

general  very  complicated  due to the presence of  nonlinear  "penalty"  function term 
C 

aL(xc) 

ax E- . An  approximate  solution  of  p  and  p  by  quasi-optimum  technique  yields 
C 

C 
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PC C (4. 13) - p = P - P + € P  

where P P are  the  corresponding  adjoint  variables of the  "simplified" system and p 

i s  the  quasi-optimum  correction  factor.  In  the  following, we shall  determine P , P andp 

and discuss the  approximation  techniques  employed. 

C I  

C 

I t  was shown in  Section 3 .2  that  a  solution  of  the  adjoint  variables P , P for  the 
C 

simplified system with c = 0 i s  given by 

-(PC - P) = N X + N X  + q(t) c c  
(4. 14) 

where  the  matrices N and N are  obtained by asymptotic  solutions  of (3.38) and (3 .39 ) ,  

where F and N are set to zero by letting T - +  03, 
C 

0 0  0 0 

0 

(4. 15) 

0 0  0 0 

0 0 

0 0  0 0 .=lo O 
C 
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with 

N44 = 

(4. 16) 

d 
N =  

a 
N44 

a 

and  the  time-dependent q(t) i s  obtained from (3.41) by integrating  backward  time 

(4. 18) 

I t  i s  seen  from (4. 18) that  the  determination  of q (t) a t  the "present time" t 4 
requires  the  knowledge  of 6 ( .  ) over  the  "future  time" T (t 7 T). Thus, in  order 

to  obtain  a  physically  realizable  controller, i t  i s  necessary to  devise some extrapolation 

scheme to  predict 6 ( ) i n  the  future. A prerequisite i n  the  choice  of  a  prediction 

technique i s  that  of  simplicity,  since  a  closed-form  solution i s  desired for purposes of im-  

plementation. Among the  possible  candidates mentioned i n  Section 3, the one that  appeared 

most attractive from  the viewpoint  of  simplicity i s  the  exponential form 

a 

a 

37 



6 (7) = 6,(t) e 
-k (T -t) 

a 
(4.19) 

where k is an  empirically-determined  constant. It w i l l  be seen i n  the sequel that  the 

approximation (4. 19) actually provides satisfactory performance and enables  the  feedback 

control  law to be mission-independent. 

Substitution of (4. 19) into (4 .18) and  complete  the  integration  yields 

r - 

and  with T-cD, we have 

' 4 '  ' a "' 

I t  i s  noted i n  Section 3.3 that  a  complete  solution  of  the  simplified system is  

necessary i n  order  to evaluate the  quasi-optimum correction  factor I) . The "simplified" 

control i s  obtained  by  substituting (4. 14) - (4.20) into (4. 12): 

U1 = -a 3 + b  X + b X  + c 6  
a a c3 a a  

42 N43 N44 42 
a s(j )X3 - (f a +-)X4 qe + (da - - Up = (d - - )X2 - (ea + 

(4.20) 

(4.21) 

2 N43 
N44 + J  qg S i  94 

+ ( u 2 - e  -- 
a s i  )'c3 + (25,U2 - fa - s(j 

- 6 -- 
'c4 'a a 
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Substituting (4 21) into (4.9), and using the  relation X = x - X to  eliminate 
a c  

the  error  state X ,  we obtain the  closed-loop  "simplified" system equations  for  the  cab. 

x = x  
c 1  c2 

c2 
X = - a  x + b  x + c 6  

a  a2  a  a3 a a  

x = x  
c3 c4 

>i; =-JT x N42 N43 
c4 

q e  qe c4 + (da - -.-) x - (e + -") x 
qe a2 a qe a3 

N44 44 - (fa + "+ xa - 9, 6 "  a 
qe 4 se 

Or,  in  view  of the aircraft dynamics (4.8), (4.22) can be rewritten as 

x = x  
c 1  c2 

x = x  
c2 a2 

x = x  
c3 C 

a 

N42 x = A  - J - w x  " 
c4 

X 
a 4 C 4 qij a2 

N44 94 
sg a 4 qe 
" x " 

It i s  seen from (4.23) that  the  simplified  control results 

of cab  dynamics and, for  the  translational  motion (X 

aircraft dynamics in  i t s  place. It can  be seen from 

(4.23) 

(4.22) 

i n  a  complete  "cancel  lation" 

particular, substitutes  the 

18) that  the  weighting  co- 

efficients qh and q6 appear i n  the expressions for  the terms N 42/q9 f N43/qe f N44/qg I 

q4/q; i n  terms of  their  ratio q *  /q" and  that a l l  these  terms  may vanish as qe/qe -' 0. Thus, 

i t  would appear  that,  since  there i s  no limitation  to the  angular  motion,  the  ratio qc,/q4 can 
e e  

-be  set to 0 to  allow  a  perfect  angular  motion (X , X ) simulation.  In  other words, the 
c3 c4 

simplified  control  law forces  the  cab to  "duplicate" the  motion of the  aircraft,  disregarding  the 
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physical  boundaries. I t   w i l l  be shown in  the  following  that the ''excessive"  cab  motion i s  

to be "washed out" by the  correction  factor I) derived in  accordance with the framework 

of  the  quasi-optimum  control  technique. 

In  Section 3.3 i t  was found  that  the  correction  factor p , which accounts  for  the 

difference  between  the  adjoint  variables (p - p) and (P - P) of the  exact  and  simplified 

systems respectively,  can be obtained  by  solving (3.56), which,  for  the present example, i s  
C C 

(4.24) 
P3 = 0 

P4 - - -P3 - Jge/se P4 

with p (T) = 0 . Thus solutions of  (4.24) requires  an  appropriate  choice of  the  "penalty" 

function L(X ) and  an expl ici t  time  solution  of X from (4.22) and (4.8). 
C  C 

I t  i s  immediately  clear from (4.24) and  the  boundary  conditions o(T) = 0 that, 

which i s  intuit ively obvious,  since, as noted in  the  beginning  of  Section 4, no l imitation was 

imposed on,  and, therefore, no washout i s  necessary for  angular  motion, hence 

P (t) = (4.26) 

Thus, substitution  of (4.26) and (4. 14) into (4. 13) and  subsequently into (4.  12) 

yields the  quasi-optimum  control  law. 
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2 E 
u - -a x + bax3 + w 1  xc + (2t1 w 1  - aa) xc2 'v 

a 2  
+ b x  + c b  + -  

1 
a c3 a  a qi; '2 

N42 N43 N42 
u2 qe 90 %I c2 

-N (d - -) x2 - (ea + -) x3 - (fa + + (da - -) X 
a (4.27) 

2 N43 N44 +a 44 
) x  

-gaba -sg + (a2 - ea. - - ) x + m2a2 - fa - 
qg =3 q(j. c4 

Or, using  x + x = x (4.27) i s  rewritten as 
c a '  

- 2  E 
u1 - w x + 2 { ~  x - a  x + b  x + c  6 + - 

Y c 1  1 1 c2 
a a2 a a3 a a  4- p2 

(4.28) 

N43 N44 44 
-(ea + -)xa - (fa + -)xa - 6 - -- 

qe 3 qe 4 'a a Sf j  

Substitution of the  quasi-optimum  control  law (4.28) into the  cab  dynamics (4.9) 

results i n  closed-loop  quasi-optimum  cab system equations. 

x = x  
c 1  . c 2  t 

c2  a2 4.. Y p2 

x = x  -/-x - -  

x = x  + - 
(4.29) 

x = x  
c3 

c4 a4 c4 q l j  a2 se a3 98 a4 sg 

C 4 
N42 N43 N44 q 4 (t) 

x " x " x -- 

The  system equation (4.29), together with the aircraft dynamics (4.8), w i l l  be  used 

extensively i n  the subsequent computer simulation study of assessing the effect  of the  quasi- 

optimum  wash-out p 2 '  

41 

I 



In the following  we  shall focus our attention  to  the  calculation  of  the washout o 
2' 

Calculation of  p, - For L1 (Xc) of (4.6), 

we have 

a L  
ax " 

- 

c 1  

Ix I" 
c 1  C 

Ix I2 Y 
c 1  C 

(4.30) 

In order to accommodate the  integration  of (4.24) with the highly  nonlinear term 

(4.30), we define  a  "cross-over"  time T , t T + t 5 T+ t , to  denote  the  time at  which the  cab 

position X reaches the  physical  boundary + Y and  let Tc denote  the cross-over time 

when X, 1= + Yc , and, T i  when X = -Y . The equations of (4.24) are  then  integrated 

from t  to Tc -C t and from T + t to T +- t , to yield 

C C + 
C 1  

- C 

C 1  C 

C 

r -  
P2(t) = i 

- ( T  - T  ) 1 2 +2 
2 C 

1 2 -2 
2 "(T - T c  1 

(4.31) 

In order  to  apply  the  feedback washout, (4.31), to  the  control (4.28), i t  i s  necessary 

to  evaluate T analytically. Tc can be obtained  by  first  solving (4.8)  and (4.23) for 

Xcl  (7) and  then  let Xc (T, ) = * Yc to  solve  for Tc and T, , however, this i s  rather com- 

plicated,  and  two  expedients  were  employed  to  evaluate Tc: 

C f + - 
1 
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(1) The differential equations (4.8) and (4.23) for  the  vertical  displacement was 

integrated  numerically  until  the displacement  exceeded  the  boundary. 

(2) A polynomial  approximation 

Xc (Tc) = y Xc T + Xc Tc + X 
.. 2 

1 1 1 c 1  
(4.32) 

was employed,  where is an  adiustable  parameter. In  other words T was found by 

solving  the  quadratic  equation (4.32) wi th  X (T,) =f Yc and  the least positive  root 

using  both + Y or - Y  was taken as the cross-over time. 

C 

C 1  

C C 

The resulting  trajectories  for  which  the cross-over time T was obtained from 
C 

on-line computer solution  of (4.8) and (4.23) are shown i n  Fig. 4-1, with square pulse 

input.  Fig. 4-2 and 4-3 show  some of the  resulting  trajectories  for  which  the cross-over 

time T was obtained from solving  the  approximate model (4.32) for various  values of 

Y with the same square  pulse input. Various  values of the  constant parameters q.. , qb, 

qg , E , k , Y , i, Y used i n  the  simulation are listed i n  Table 4-1. 

C 

Y 

C 

In  these figures, the  trajectories  labeled (a) differ from those of (b) i n  that 

heavier washout was applied  in (a) by  adjusting the constant weighting parameter F so  

that the cab  position  can  be  confined  to within * 10 ft  a t   a l l  times. The cab  motions are 

plotted  in  solid  line,  while  the corresponding aircraft motions are represented by dashed line. 

The error in  angular  motion  (e.g.  pitch,  pitch  rate) is zero i n   a l l  of those 

cases. As for  the  translational  motion, i t  i s  pointed  out by experienced personnel in  Ames 

that  the  major drawbacks that  are common to those trajectories  are the presence of iump 

phenomenon and  the  inadequate phase relationship i n  the acceleration  profiles.  Although 

no  further  investigation  of this washout technique was pursued, i t  i s  believed  that use of 

different cost functions M in  conjunction  with this penalty  function may give  better  re- 

sults and  worth  further  investigation. 
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T a b l e  4-1 

Paramete r s   Used   i n   Compute r   S imula t ion  of 
C o n t r o l   S c h e m e  (M 1 ' L 1 )  

Va lues   Used   i n   F i au res  t- 
Parameter !  F igure  4-3 

(a ) (b) 

10  10 

0 0 0 0 

i 
0.05 0 .06  0.04 0.04 I 0.052 

- I -  
0.0 0.0 0.05 1 0.01 

40 50 50 

20 23 10 I 10 20 
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4.2 Control System Design  Using Cost Function M1 Without Jerk Weighting  and  "Soft" 
Boundary Penalty  Function L2 

The quasi-optimum  control  law (4.28) derived in the  preceding  section  also  applies 

i n  this case because the simplified problems for these two cases are identical. Here we need 

only  calculate the  correction  factor 5 based on the  penalty  function L2. 

Calculations  of 02 :  

For 

we have 

aL2 - (2,6 -1) 
ax 2B x 

Y 28 c 1  
"- 

c 1  C 

In order to  solve p from (4.24) with aL/aXc given  by (4.33) i t  i s  necessary 2 1 
first  to  obtain the time  solution  of X, from  the closed-loop  simplified system (4.23). 

1 
To simplify the calculation, i t  i s  assumed that X i s  governed  by the following second 

order system 
c 1  

. .  -kg (7-t) 
X + k l X   = - k  6 e 

c 1  c 1  2 a  

where k I k 2  I k3 are  arbitrary constants, and t <_ 7 <_ T + t . 
Assuming that  the present time t = 0, the solution  of (4.34) yields 

k 2  1 k 2  - k 1 7  
6,1 - [ -  x - 6,l e xc (7) = [ xc  + - x - -  

1 1 kl c2 kl k, c2 k1&3 - k l )  

- k3T 

(4.33) 

(4.34) 

(4.35) 
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where 

Thus substitution of (4.35) into (4.33) and subsequently into (4.24) and  carrying  out 

the  integration  yields: 

For ,f = 1, 

P2 = 
2 c 1  

yC 

1(-1 T -  2 c2 

k l  
- [ ( T  + 

1 -klT 

k l  
-1 e - 1 -1 + 

kl $1) 3 

(4.37) 

Note  that  since Ci are  linear  in the  state  and  the  control variables, the  washout p 

i s  also  linear  for  fixed T as can be expected  for  a  quadratic performance index V. 
2 

3c ,  c; 1 -2klT 3 c  c; 1 -2k3T 
- I ( T  + --) e - "-1- I(T + -) e 

2k 1 2k 1 2k 1 2k 3 2k 3 

i 

3c;c2 

k 1  

1 -klT 

kl 
-) e - 1 -1 

k l  

3c;c3 1 -(2k, + k3) T 1 

2kl + k 3  2kl + k g  ) e  - 2kl + k g  - 1 

k g '  1 

(4.38) 

6C  C  C ' 1 -(k 1 +kg) T 
( (T+  

1 + -  - 
k l  + k 3  k l  + 

kl + k3  
) e  
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Here, the  washout p takes a  nonlinear  state  feedback  form as it should be. 2 
Typical  trajectories  generated by the  resulting  control laws for /3 = 1 and f i  = 2 are shown 

in  Figures 4-4, 4-5, 4-6 and Figures 4-7, 4-8, 4-9, respectively,  for various pi lot inputs 

and  for values listed i n  Table 4-2 of the parameters E ,  q.. , qd , qi , k .  kl, k k , T, Y . 

In these figures,  the  cab  motions are  drawn in  sol id lines, while  the corresponding aircraft 

motions  are  represented by dashed lines.  Note  that  the  weighting  coefficient qe has been 

set to 0 so that  the  angular  motion  of  the  cab becomes identical  to  that  of the aircraft's. 

(Refer to  the comment following  equation (4.23)). Therefore, only the aircraft's  angular 

motion  (pitch  and  pitch rate) i s  shown i n  the  figures. 

Y 2' 3 C 

I t  i s  seen  from  these figures  that  the  linear washout ( B  = 1) provides a smoother 

trajectory  while the  nonlinear washout ( f i= 2) provides  higher fidelity  of the onset of  accelera- 

t ion.  In  both cases, there is a  significant phase error i n  the sense that  the  cab  acceleration 

crosses zero a t  an earlier  time  than  the  actual  aircraft  acceleration. 

Because of  the  fact  that the washout component of P = 0 (4.25), and  that  q 4 4 '  
N42, N43, N44 depend only  on the parameters k , q e / q i  , i t  i s  seen from (4.28) that 

the  quasi-optimum pitch  control  u i s  dependent only  on k , qe/ qs . O n  the  other hand, 

because of  the assumption (4.34), the  quasi-optimum  translational  control  u (4.27) i s  seen 

to be dependent only on  the parameters E , q.. , k l  , k 2  , and k g .  Thus, we  conclude from 
Y 

the  dynamic  equations  of  the  cab (4.9) that the  translational (xc ) and  the  angular 

(xc3 , x ) motions of the cab  can  be  controlled  "separately"  by proper  choices of  the  two 

sets of parameters: ( E  , 9.. , k , k2 , k3) and (k, q i  /qg).  One  convenient  procedure 

which was followed  in this study i s :  pick  a proper set o f  values of (k, q *  / q - )  so that the 

angular  cab  motion  follows  that  of  aircraft  closely;  fix these values and then adjust  the set 

( E  , q.., k ,  , k2,  k ) t i l l  the  translational  motion i s  acceptable. 

2 

1 

1 xc2 

c4 

Y 

8 8  

Y 3 
A complete  block  diagram  of  the  implementation  of  the  control  law  by means of  an 

analog computer i s  shown in  Fig. 4-10. For preliminary studies, instrumentation o f  the  cab 

state  variables may not be feasible.  In  this case an  "open-loop"  implementation  can  be 

achieved (at the expense o f  the  benefits of feedback)  by realizing  a  "model"  of the cab i n  

the  analog computer, and using  the  state of the  model i n  place  of  the  state  of  the  cab. The 

implementation is  shown i n  Fig. 4-1 1 .  
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Table 4-2 

Parameters Used in Computer  Simulation of 
Control Scheme (M 1 L2) 
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4.3 Control System Design  Using Cost Function M with Jerk  Weighting  and  "Soft" 2 
Boundary Penalty  Function L 2 

Although  several  different  formulations  can  be  conceived  to  include  ierk  error i n  the 

performance  index,  the following form i s  used since the general  theory  developed in  Section 3 

can  be directly  applied  without any  modification. 

Differentiating (4. la)  and  (4.2a) with respect  to  time T I and let the  state'variables 

x  x be defined as follows: 
a '  c 

Xal   =Ya 

Xa2 = Ya 

a3 'a 

a4  a c4  c 

a5  a c5  c 

a6  a = '1 

x =  
c l  yc 

c2 yc 

c3 yc 

x =  
.. 

x =  
.. 

x =  

x = e  
x = e  
x = 6 (t) 

x = e  
x = e  

the  dynamic  equations (4.1) and (4.2) become 

x = x  
a1  a2 

a2 a3 

a3 

a4  a5 

a5  a  a2 

a6  a 

x = x  

ic = - aa  xa3 + ba xa5 + ca 6a 

x = x  

= d X - eaXa4 - fa Xa5 - ga Xa6 

2 = f ,  

and 

x = x  
c l   c 2  

ic = x  
c2  c3 

2 = - 2 5  0 x 
c3 1 1 c3 1 c2 

c4  c5 

c5 2 2 c 5   2 c 4  2 

2 
-u, x + b l  

x = x  
2 2 = - 2 5  w x -w x + u  

x c6 =ul 

and  with x = x - x the  error  dynamics  are  obtained from (4.39) and (4.40). 
a c '  

(4.39) 

(4.40) 
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x1  - x2 - 

Note  that the  control  vector u. and  the  input i n  this case take  the form 

pilot  input = 6 (t) 
a 

and, with the cost function M of (4.3), the  constant weighting  matrix Q i s  given by 2 

To 0 0 

0 9.. 0 

0 0 q... 
Y 

Q =  Y 1 0 0  

0 0  

0 0  

0 

0 

0 

q e  
0 

0 
9 4’ 
0 

(4.42) 

Thus, the  optimal  control  law (3.23) becomes 

2 1 
1 1 1 c3  a  c5  a 3 a 5 a a  4.. . G 1  = O  xc2 - (aa - 25 W ) X  + b x - a  x + b x + c 6 +-  (pc3 - p3) 

Y (4.43) 
- 2 1 

+ - (Pc5 - P5) ‘2 - da xc2 
- (ea - w ) x  - (f - 2$,u2)xc5 - gaxcb + dux2 - e  x - \ x 5 -  gax6 2 c4 a a 4  9 9 ’  

where p, p  are  the corresponding adjoint  variables as defined in  Section 3. I t  was shown 

that  the  optimum values of p - p  can be approximated by the simplified  solution P - P and 

the  quasi-optimum  correction P as 

C 

C C 
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where N N 
C I  

N =  

N =  
C 

where: 

and q are  obtained  from'asymptotic solutions of (3.38) I (3.39) and (3.41) I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 

0 0 0 

N32 N33 N34 
0 0 0 

52 N53 N54 
0 0 0 

0 0 

0 0 

N32  (N33 y y +- 
0 0 

N52 53 
0 0 

0 0 

0 0 

N35 N36 

N55 56 

0 0 

0 0 

0 

0 

N34 
0 

N35 
0 N3! 0 

0 0 

(4.45) 

0 
O I  

N35 - 
- 

J q. ./q... + a 
Y Y  a 

b a 

e 
a + J T +  

Y Y  a >- 
e 

a 

N34 - - N35 
- 

Y Y  

N33 + J K +  Y Y  f) N35 

d 
a 

(4.46) 
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d 
- - a 

N32 N35 
Y Y  

'a N55 

e 

N54 - - N55 
a - 

G& 

(4.47) 
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(4.48) 

As noted i n  Section 4. 1, integration  of (4.48) requires  the knowledge of the input  rate 

6 i n  the  future.  Again using the  exponential  approximation 
a 

6 (7)  = 6 (t) e 
a a 

-k(T - t) 

6 ( 7 )  = - k  6 (t) e 
-k(T - t) 

a  a 

(4.48) yields 

(4.49) 

(4.50) 

c N  

k +- 
a 53' .56 [ 8 0 - (J*+ k )  T 

q5(t) = - e 

As T + a, (4.50) further reduces to 

Ca(N33 y y 
+ G) + N36 

a-  = 6 -' 3 k + J x  a 

Y Y  
(4.51) 

'a N53 + N56 
n =  

Thus, from (d.43) and (4.44), the simplified  control U, and U2, with = 0,  

are  written as 
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U, = (a, 2 --)xc2+ N32 (2 (,a, - aa - N33 + 9 N34 N35 
q...  q... l X c 3  - q... 'c4 + (bel - ' c 5  

Y Y Y Y 

- -  N36 - -  N32 N33 N34 N35 N36 

Y Y Y Y Y Y 
q... 'C6 q... X 2 - ( a a + - ) X 3 -  q... - X 4 + ( b a - - ) X 5 -  9 -- q ... - q... '6 

+ c $ - -  93 
a a q... 

Y (4.52) 

Substitution of (4.52) into (4.40) , and using the relation  X = x - X to elim- 
a c  

inate the error state X ,  we obtain the  closed-loop  "simplified" system equations for the 

cab, 

X c l  = xc2 

xc2 - xc3 
- 

N32 N33 N34  N35 

Y Y Y Y 
xc3 =-/=x - - 

y y  c3 q... x a2 - ('a + ~ ) ~ a 3  q... 'a4 + 'a - -1 q... Xa5 
- -  

N36 * 93 
q... a6 a  a q... 

Y Y 

- -  x + c 6  " 

(4.53) 

' c 6  = " 1  
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Or,  in  view  of the aircraft dynamics (4.39), (4.53) can  be rewritten as 

N32 N33 N34 
xc3 

=;( -/-x 
a3 y y c3 q... a2 q,.. a3 q... a4 

Y 

" x " X "  X 

Y Y 

N35 36 93 
" 

q... a5 q-. a6 q... 
Y Y Y 

x - -  x " 

N53 N54 
q i  a3 q;; a4 xc5  a5 

X "  x " X 

" N55 N56 95 
X "  X "  qg a5 q 8  a6 q e  

Xc6 = u, 
It can be  seen from (4.46) and (4.48) that  the  weighting  coefficients 9.. and q... 

N32 N33 N34 N35 N36 '3 
Y  Y 

appear in  the terms -, -,  -, -,  -, - only  in the  form of q...  q ... 
Y Y 

q...  q ... 
Y 

q ... 
Y  Y 

q ... 
Y 

qy/qv and  that a l l  these terms can  be made to any  small  value  by  letting q../9...' 0 .  

N52 N53  N54 N55 N56 '5 
Similarly,  the terms - - - - -, - depend solely on the 

ratio q *  /q- and  can a l l  be made to  any small value desired by letting q *  /q- be  small. 

Thus, i t  i s  clear from  the closed-loop  simplified system (4.54) that  the  simplified  control 

essentially cancels out  the  original cab  dynamics  and  substitutes i n  its  place  a dynamics 

that  can  be made close to  that  of  aircraft dynamics by adjusting  the  two  ratios q../q... and 
Y Y  

q i / q e .  It would appear, intuitively,  that since  there i s  no constraint  on  the  angular 

motion (X X ) , the ratio q i / q i  can  be chosen to  be 0 so that the angular  motion 

of the cab duplicates  that  of  the  aircraft  exactly. 

Y Y  

qlj q(j ' s i  se qlj   qe  

e e   e e  

e4 c5 
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The quasi-optimum  correction  factor p i s  obtained  by  solving (3.56) which in 

the present case  becomes 

aL P 1  = -  
1 

2 
P 2  = -P1 - W , P 6  

(4.55) 

P4 = 0 

P5 = -P4+ G J i p 5  

with p (T) = 0. 

Obviously, (4.55) gives p4 = p  =p6-  0, which i s  wel l  expected  since, as noted in the 5 
beginning  of  Section 4, no limitation was imposed  on,  and, therefore, no washout would be  ne- 

cessary for  the  angular  motion.  Hence 

(4.56) 

Thus, the  quasi-optimum  control  law i s  obtained  by  substituting (4.56) and (4.44) 

into (4.43), 
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Ul = ( w ,  2 -- N32 +(2( ~3 - a  - N33 +mx " N34 N35 
q... ) xc2  1 1 a c3 q... xc4 + 'a - c) 'c5 qy Y Y Y 

- -  36 N32 N33 N34 N35 N36 
x -- x2 - (aa + -1 x3 - - x4 + (ba - - ) x5  -- q... c6 q... 

Y Y 9." q... q... q... x6 
Y Y Y Y 

* 93 E + c 6  - -  + -  
a a q... q... p3 

Y Y 
(4.57l 

N52 N53 2 N54 N55 + 
u2 = (da - $xc2 - - q e  xc3+  (a2 - e  a -- qe )xc4+ ( 2 p 2  - f,- 

e qg 
xc5 

or, using x + x = x , (4.57) i s  rewritten as 
c a  

2 N32  N33 . = UJ x + ( 2 t 1 w 1 -  J-)xc3 - - 

q... Xa4 + 'a - 7 ) 'a5 

u1 1 c2 q... a 2 x - (aa + -1 x 

Y 
q... a3 
Y 

- -  N34 N35 N36 43 - -  
q... a6 a a q... C p 3  x + c 6 - -  + 

Y Y Y Y Y 

(4.58) 
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Substitution o f  the  quasi-optimum  control  law ( 4.58) into  the cab  dynamics 

(4.40) results i n  closed-loop  quasi-optimum system  equations, 

k = x  

k = x  

c l  c2 

c2 c3 

N32 N33 N34 

Y Y Y 
j ,  = i  - J T x  ” 

c3  a3 qy qy  c3 q... a2 q... a3 q... a4  x - -  x - -  X 

- -  N35 N36 43 E 
q... a5 q... a6 c’ q... ’3 x ” x -  

Y Y Y Y 

x = x  
c4  c5 

i = A  - q g x c 5 - -  N52 x ” 53 N54 
c5  a5 qe a2 q e  a3 qe a4 

x - -  X 

“ N55 56 45 
x ” x ” 

qe  a5 qe  a6 qe 

The system equation (4.59) together with the aircraft dynamics (4.39) w i l l  be used 

extensively in  the subsequent computer simulation study on the  effect of the  quasi-optimum 

wash-out p 3 ’  

The washout P i s  calculated as follows: 3 

Calculation  of p - For 3 

(4.59) 

and 

2B 
L 2 c  ( X  ) =  (+) 
aL2 - 2B (28-1) 
”- 

1 Y 28 x c l  
C 

B L  1 

(4.60) 
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i t  was noted in  the  preceding  section  that  the  main difficulty  of  solving p from (4.55) 

with  the  "forcing" term given by (4.60) i s  the  necessity of first  solving X from  the 

closed-loop  simplified system (4.53) and (4.39). Obviously, many approximation schemes 

can  be  conceived  to  obtain X in  sufficiently simple forms so that subsequent integration 

of (4.55) can be facilitated.  After several  trials,  and with the  experience  accumulated  up 

to this point, we  used the following argument  to  achieve  the  desired  simplification. 

3 

c l  

c l  

I t  i s  observed that  since, i n  this  design  procedure,  the  parameters q.., q... I . qe I 

Y Y  
q;i are  to be so adjusted  that  the  simplified system approximately  duplicates  the  motion  of 

the  aircraft, we should  have at  any  instant T , 
... 
XC1(T) x 

a1 (7) 

Again,  using  the  exponential  approximation  of  the X we let x be  governed  by 

-k (7-t) 

... 
a1 c l  

.. 3 
X c 1 ( r ) +  k lXcl(T) = k 
... . e  

2 'a3 

where k I k 2 /  k3 are  to be chosen empirically,  t I T s T + t  and = x 4 ... 
a3  a1 

Assuming that  the present time  t = 0, the  solution i f  (4.61) results in  

-k T -k 
X c l ( ~ ) = C 1 + C  T + C  e + c 4 e  3 

2 3 

where 

(4.61) 

(4.62) 

66 



xc3  k2 c = x  +- 
2  c2  k l  

+ -  A 
k l   kg  a3 

c =  L 

4  2 a3 X 

kg&, - k3) 

X = - a  x a3 a a3 + baxa5 a  a 
+ c  6 

Thus, substitution of (4.62) into (4.59) and subsequently into (4.55) yields: 

For @ = 1 ,  

where 

3 
23 

2 
23 - 
2 

23 
L 

(4.63) 

(4.64) 

(4.65) 

T = empirically chosen value of terminal t i m e .  
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Typical  trajectories  generated  by  the  control (4.58) wi th "washout" p (4.64) 
3 '  

are shown in  Figures 4-12, 4-13 and 4-14 for values listed  in Table 4-3 of the parameters 

qy I 9.- I qe I qe , , k , k l  , k2 , kg, T and Y . In these figures, the  cab  motions 
Y C 

are  drawn in  solid lines, while  the corresponding aircraft motions are represented by dashed 

lines.  Note  that  the  weighting  coefficient q has been set to 0 so that  the  angular  motion 

of the  cab becomes identical  to  that  of  aircraft's (refer to  the comment following  equation 

(4.54)). Therefore, only the aircraft's angular  motion  (pitch and pitch rate) i s  shown in  the 

figures. 

e 

The procedure followed in adjusting the parameters  was: first  select  a set of 

(q.. , q... , qe , qg, k )  so that  the  motion  of  simplified system approximates that of  aircraft 

motion,  then  adjust (C , T,  Yc , k , k 2 ,  k ) to  obtain good acceleration  and jerk 

profile for  the  quasi-optimum  cab  motion,  and f inal ly readjust (q ... , k 2 ,  c ) to  confine 

cab  displacement within  boundary. 

Y Y  

3 

Y 

I t  i s  seen  from  Figures 4-12, 4-13 and 4-14 that  the  acceleration  and jerk  pro- 

files i n  this case  show excellent phase relations  between  the  cab  and  aircraft motions 

as compared to  the previous cases in  which jerk weighting was not used. The improvements 

i n  the phase relations,  however,  also  result i n  deteriorated  "onset"  and  attenuation  of the 

general  magnitudes of  the  accelerations.  Examination of the  numerical values  Table 4-3 

used in  generating these trajectories  and  the  structure of the washout P i n  (4.64) indicates 

that the washout i s  dominated  by  the term j ,  . Thus i t  would appear that a nonlinear 

washout with ,8 > 1 in (4.58) could  provide the  desired compromise between phase, "onset" 

and  magnitude  relations. 

3 

a3 

An  exact  derivation of P with B 1 i s  rather  complicated. Thus, i n  order  to see 3 
the possible effect  of  nonlinear washout we simply let 

(4.66) 

For /3 = 1.25, the  resulting  trajectories  are shown in  Fig. 4-15. It i s  apparent 

from the  figure  that the phase and  "onset"  relations  for  this case  show further improvements 

over  that of the  preceding case, for  which the washout  takes a  linear form, but the mag- 

nitude  relations  for  the  acceleration  and  the  ierk appear somewhat irregular. The numerical 

data  for  the  adjustable parameters in this case i s  tabulated i n  the second column of Table 4-2. 
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It should be noted that,  strictly  speaking,  (4.66) is not a valid  approximation, since 

i t  does not provide acceptable  trajectories for pilot's input other  than  that shown i n  Figure 

4-15. However, i t  does provide an  evidence  that a reasonable compromise  among the per- 

tinent factors governing the realism of motion simulation  can be achieved by a nonlinear 

washout that may result from a proper choice of . A complete block diagram of the im- 

plementation of the control law  by  means of an analog computer is shown i n  Figure 4-16  for 

closed-loop control a n d  in  Figure 4-17 for an  open-loop  control. * 

*It has  been  subsequently  established  that due t o  a numerical  integration  in- 

accuracy,   the   resul ts  on page 70 are s l igh t ly   in   e r ror   whi le   those  on page 

7 1  a r e  somewhat more in  error.   Fortunately  the  shapes of the   j e rk  and 

acceleration  curves,  which a r e  of greatest  importance  in  motion  sensing,  are 

c lose  to   those  given  but   the   veloci t ies  do not go to   zero  as i s  required  in  

order   for   the  cab  displacement to   reach  a constant  value. Thus fu r the r  ad- 

justment of the   f ree  parameters would be required t o  s a t i s f y   t h i s  requirement. 
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Table 4-3 

Parameters Used in  Computer  Simulation of 
Control Scheme (M 2 L2) 

Values Used. in. Pigures 
Figs. 4. 12 fig. 4.15 

Parameters to 4.14 I I p =  1.0 I P =  1.25 
I I 

q ... 1 5000 I 8000 
Y 

I 0.0 1 0.0 

€ 

k 1 1000.0 1 3.0 

T I 100.0 I ~ - 
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4.4 Summarv and Discussion of  Simulation Results 

The results achieved i n  the  simulation studies described  above demonstrate the 

capability  of  the quasi-optimum control  technique  to  maintain the  cab within the allowable 

motion  limits. The nature of  the  motion  within these limits, however, can  have virtually 

limitless  variety, depending on  the parameters selected. 

For  purposes o f  comparison the  motion  time-histories  for the single  trapezoidal 

pulse input  with  different washout schemes (Figures 4-4, 4-7, 4-12, 4-15) are  reproduced 

side-by-side i n  Fig. 4-18 (a - d). Also shown as Fig. 4-18e is  the set of time histories 

obtained  by the use of the conventional high-pass filter  technique described i n  Section 1. 

The differences  between use of jerk weighting  and no  use thereof  can be seen by 

comparison of  Fig. 4-180 with  Fig. 4- 18c and  Fig. 4- 18b with  Fig. 4-18d. The  cases 

with  ierk  weighting demonstrate good phase fidelity  at  the expense of  highly  attenuated 

magnitudes of cab acceleration  and  ierk,  and vice-versa for the cases without  ierk 

weighting. 

O n  the  other hand, the differences  that  result from using a  linear washout (p = 1) 

and  a  nonlinear washout [fl > 1) can  be seen by comparing Fig. 4-180 with  Fig. 4-18b and 

Fig. 4-18c with  Fig. 4-18d. The nonlinear washout i n  general provides a  better phase and 

"onset" (i .e .  high rates of change) relationships  with somewhat distorted  magnitude relation. 

Fig. 4-18e shows the translational  trajectories  resulting from a control system using 

a  conventional  frequency-domain design technique in  which the  cab i s  driven by a position 

servo  whose  command signal i s  in turn generated by  a high-pass filter  with  aircraft  acceleration 

as an input. The cab  motion i n  this scheme i s  governed  by  the second-order system 

.. 2 .. 
YC 

+ 25 aic + yc = yo (4.67) 

where 6 and w are constant parameters and  the aircraft  acceleration y i s  taken 

directly from the aircraft dynamics.  Adjustment of the  damping 5 results i n  varied magnitude 

relations  and the  adjustment of  the cut-off frequency w results i n  varied phase relations. 

For 5 = 0 .7  and W = 1 .O, the high-pass fi l ter provides the  limited cab excursion as shown in  

Fig. 4-18e. The one particular  feature  of this washout  scheme i s  that the  cab i s  returned  to 

a 
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the  starting  position  at  the end of transient. The price  paid  for this advantage i s  the spurious 

overshoots i n  the acceleation  and  jerk  time-histories  and  a  fairly  low  fidelity  of phase re- 

lationships. 

A comment concerning  realization i s  i n  order. Since a  digital computer was 

employed i n  performing these simulations,  and  the objective was to establish  the capability  of 

the  technique, no effort was made to  simplify the control laws obtained  by these techniques. 

If a  large-scale digital computer  were used to  control  the  physical  simulator  there  probably 

would be  no need to  simplify  the  resulting expressions. If the  control laws were  to be rea- 

lized  by means of a  digital computer of limited  capability or by means of  an  analog com- 

puter, however, i t  would  be  highly  desirable to simplify the  results.  Examination of  each 

of the terms in  the expressions for  the  control laws ought  to  reveal  that some are negligible 

with respect to the others, and  can be omitted  without  sacrificing  performance. By this 

means i t  would appear  possible to  achieve  control laws which can be implemented by  small- 

scale digital or analog computers. 
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4.5 Comparison with Conventional  "Washout"  Circuits 

Although considerations of modern control  theory  were  dominant i n  the  development 

of the control laws described  above,  the  resulting  controls  are  not  entirely  different from those 

obtained by cqnventional washout techniques. In  the  latter,  the washout c i rcui t   i t  interposed 

between the aircraft ("command") acceleration  and  the  acceleration  input to the  cab drive system 

I t  i s  assumed that  the servo for  the  cab i s  capable  of  producing a cab motion  for  which  the  accel- 

eration i s  identical to the  output  of  the washout circuit .  Consequently,  the  comparison between 

the  contrql laws developed in  this study and  conventional washout schemes can be  made by 

means of the differential equations  1-elating  the  cab acceleration  (with the  quasi-optimum  c3n- 

trol  law  in use) to the aircraft  acceleration  and ppssibly other  variables. 

The  forms of the  "quasi-optimum fi l ter" for the (M, , L 2 )  case can  be derived by 

first  substituting  the  numerical  data i n  Table 4 . 2  into (4.36) to  yield 

c1 = yc - 10yc + 356 
CI 

C = - l O y  + 32.326 
2 

3 0 

(4.68) 
C 0 

C = -1.7086 

Substitution of (4.68) into (4.37) and  subsequently into the  closed-loop system equation (4.29) 

results in  the linear (M 
1 ' 

"f i l ter" equation 

' .  + 2 . 3  y + 0 .072 y = < + 7 .547ba yc C C 

Since these equations  are linear, (4.69) can  be expressed by means of transfer 

functions. FOI- the vertical channel 

9 
L . .  S y (s) = I Y (s) -I 7.547 A (s) 1 

C 
s 2  + 2 . 3 s  + 0.072 

0 0 

(4.69) 

. .  
where Y (s) , Y (s), and A (s) are  the  Laplace transforms of y and 6 , respectively 

. .  . .  
C 0 a c ,  yc,, 0 
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The block  diagram  equivalent of this relation i s  given  in  Fig. 4-19. This control  law  can 

be  interpreted as a high-pass filter  (with  a  natural frequency OJ of 0.268 rad/sec and  a 

damping factor 6 of 4.29) operating on the sum of the aircraft  acceleration  and  a  con- 

stant times the aircraft  elevator  deflection. The principal  difference  between the f i l ter  

of  Fig. 4-19 and  the  conventional washout circuit i s  the additional  direct  input  signal  from 

the  elevator  deflection. It would thus appear that  the f lexibi l i ty  of this additional  input 

permits  one to  achieve somewhat superior  performance. 

It i s  noted  that no washout i s  employed  for  pitch  motion because i t  i s  not needed 

for  maintaining  the  pitch  angle  between  physical  limits. 

To obtain the nonlinear (M 1 L2)p=2 
"f i l ter" equation, i t  i s  noted from (4.68) 

and (4.38) that terms including C can  be dropped without  significant  effect. Thus from 3 
(4.68), (4.38) and (4.29) we have 

.. = . '  + 0.0002 (0.08 C1  3 - 8.97 C2 3 + 4.9438  C,C2 2 - 1 .OW7 C1C2)  2  (4.70) 
Y, 'a 

e = e  
c a  

with C1 , C 2 ,  C given by (4.68). Owing to the nonlinearities in  (4.70), this system cannot 

be  represented  by means of transfers. I t  can  be  realized, however,  through the use of non- 

linear  analog  devices  (multipliers). The block diagram of the realization i s  given  in  Fig. 4-20 

3 

For the linear (M2 I L 2 ) p 1  case, the  quasi-optimum fl iter i s  

obtained  by using  the  data in Table 4-2 to (4.46), (4.51), (4.63), (4.64), and (4.65), 

= 0.014 
Y Y  

N3,/qr = 0.0044 

N3,/qr = 0.0065 

N34/qy = -1 .0225 

N35/qr = 0.0184 

N36/qy = -0.8976 

qdqy = -0.00075 

(4.71) 
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C = y  - 1 O O Y  - 367.5ya 
1 c  C 

2 c  C 

C = 100 y + 368.4ya 
3 C 

C =-0.92'j; 
4 a 

c = j f  + l 0 j i  + 35 ya 

(4.72) 
Dl = -121  152.0 

D2 = -8896833.0 

D3 = -874.4 

D = -0.1241 
4 

p3 = - 6 . 0 5 8 ~  - 444.89 - 3847.0j; - 13359.4'i; 
C C  C a 

Substitution of (4.71), (4.72)  and (4.73) into the  closed-loop system equation 

(4.59) results i n  the "f i l ter" equation 

'** + 0.2308y + 0.0267y + 0.00036y 
Y C  C C C 

= 0.2 ya - 0.0065 i; - 0.0044 9, - 0 . 0 1 8 4 ~ ~  

+ 1.0225 e + 0.00075ij + 0. 8976ba 

a 

a a 

Fig. 4-21 shows the block  diagram  for  mechanizing  the system (4.74). 

The approximate  nonlinear (M 2'  L2)/3=l. 25 "filter"  equation i s  obtained  by 

substituting (4.66) into (4.59), 

YC "' + 0 . 0 1 1 2 y c = ' i ; a - 0 . 1 4 2 ( ~ ) 1 ~ 5 - 0 . 0 0 4 8 ~  a a - 0 . 0 0 3 3 9  a 

(4.73) 

(4.74) 

(4.75) 
- 0.0108e + 0.75798 + 0.66596 + 0 . ~ 1 5 2 6  

a  a a a 

(j = ( j  
c a  

Although i t  would not be practical to express the nonlinear "f i l ter" equation  (4.75) 

in block diagrams  such as shown in  Fig. 4-21, their  mechanization  by means of  either  digital 

computer or analog computer presents no particular  difficulties. 
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5. CONCLUSIONS  AND  RECOMMENDATIONS 

The results of this investigation demonstrate that  the quasi-optimum control  tech- 

nique i s  potentially  applicable  to the  design of  motion simulators with  limited  motion  capability. 

In  particular, i t  was shown that i n  the restricted case of  two degrees-of-freedom, i t  i s  possi- 

ble  to  maintain  the  cab  within  limits of f 10 ft. and  achieve  acceleration  time  histories  which 

may be  preferable  to those achieved by use of conventional washout techniques. 

The landing maneuver exemplifies  the problem with  which  all  control techniques 

must contend. In this case the aircraft  vertical  velocity starts at zero  and goes to  a  non-zero 

value, i .e .  the integral  of  the  acceleration i s  non-zero. The cab,  however, must ultimately 

reach  a velocity  of zero  and  hence  the  integral  of i t s  acceleration must  be zero. Hence  the 

control  law  for the cab must approximate  a  physical quantity  with  a non-zero  integral  by 

another quantity whose integral i s  zero. This limitation i s  inherent i n   a l l  techniques. The 

real  question thus devolves  from  the definition  of the  approximation  criterion.  It i s  demon- 

strated, we  believe,  that the  quasi-optimum control  technique i s  capable of  achieving  the 

desired approximation  once i t  i s  defined. 

I t  i s  generally  agreed  that the approximation should maintain reasonable fidelity 

of amplitude, phase, and onset of  acceleration. Since  the  improvement in  f idel i ty  of one of these 

factors generally reduces the fidelity  of one or both  of the others,  however, i t  would be de- 

sirable to  have a  quantitative measure of the relative importance  of these. 

Two methods of shedding light on  this dif f icult  problem  are feasible. The first  meth- 

od  would  be  to  experimentally appraise  the  importance of these factors by  performing simu- 

lations  with  control schemes designed to emphasize specific  factors. The quasi-optimum  con- 

trol technique  described  can be efficiently used to  "tailor" the contr9l  law  to the feature  to 

be emphasized. In  particular,  the  control laws described in  Section 4 would seem to be good 

candidates for  init ial experiments. 

The second method would employ a model of the human vestibular system and 

neural  processing. Such a model would  take  into  account  the  experimentally  determined 



dynamic  characteristics  and such nonlinear phenomena as threshold  and  latency  time. The 

performance criterion  would be based on the difference  between  the  output  of the  model 

sensing the aircraft  acceleration  and the  model sensing the cab acceleration,  rather  than 

upon acceleration errors and  the derivatives  thereof. 

It i s  recqmmended that  both approaches be  pursued in  subsequent  studies, as i t  

i s  expected  that  their results w i l l  be  complementary. 

As a possible preliminary  to the experimental  and  analytical studies,  just de- 

scribed, i t  might be desirable  to pursue the studies described i n  Section 4 to  greater  depth 

by considering a  larger  variety  of test inputs and  a  larger  variety  of  penalty  functions L(x ) 

i n  combination with the  two quadratic  weighting  matrices. 
C 

Since the  technique considered was restricted  to the case of two degrees-of-free- 

dom i t  must be extended to the more general  six degree-of-freedom case before i t  can be 

employed in  a  realistic  application.  It i s  believed  that the  extension to  six degrees-of-free- 

dom w i l l  introduce few technical  difficulties and recommend that the extension  be performed. 

In summary, our conclusions are 

0 The quasi-optimum control  technique i s  potentially  of considerable value i n  

the design of  control systems for moving-base simulators. 

0 Additional  effort i s  required i n  establishing performance criteria and in  ex- 

tending the  analysis to  six degrees-of-freedom. 

In  view  of  the  latter conclusion, the following  additional  effort i s  recommended: 

0 More  exhaustive study of  the two  degree-of -freedom case. 

0 Experimental assessment of  control laws for  two degree-of-freedom case by 

means of  actual  flight  simulation  at the Ames  Research Center. 

0 Analytical development of performance criterion through use of model of  kines- 

thetic sensor and  data processing. 

0 Extension of analysis  and simulation  to  general case of  six degrees-of-freedom. 
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