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1. INTRODUCTION

Recently, new radar techniques have provided a powerful tool

for the study of the dynamicsof the solar system. By bouncing off

signals from the surface of inferior planets, Range measuremenLs can

be made with an accuracy of a few kilometers. I With emitters or

transponders on artificial planets, orbiters or landers, Range and

Range Rate measurements can be made with an accuracy of a few meters

and of about 1 mm/sec respectively. 2 At this Foint, the general

relativistic corrections to the transmission and to the propagation

of electromagnetic signals and the corrections to the orbital motions

of the Earth and of the emitter (or transponder) become important.

The purpose of this study is to formulate within the frame of General

Relativity the relations between the various quantities measured in

tracking experiments: Range, Range Rate and time. These results will

be applied to simple cases where the differences between the General

Relativistic predictions and the classical predictions will be evaluated

in an invariant way. The separability of the general relativistic

corrections from possible alternate classical explanations will also

be discussed.

Emphasis will be on interplanetary experiments where the departure

from a spherically symmetric gravitational field are more amenable to a

relativistic treatment_. Near-earth satellites are subjected to perturbations

of the spherically symmetric field which are relatively larger. The

relativistic treatment of these perturbations has not been done yet. There

still is little reason to do it since these perturbations could not be

accounted for with a high enough accuracy to put relativistic corrections

into evidence. 3,4

ait-
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2. PROCEDURE

In order to analyse experiments carried within the solar system

it will be helpful to neglect at first the departures from a spherically

symmetric field as described by the generalized metric (§4). Thus, classical

perturbations such as the oblateness of the Sun and the field of other

planets will not be included in the initial relativistic treatment. Within

that frame however, it shall still be possible to discuss the separability

of the relativistic correction= from possible alternate classical effects

not included in the relativistic solution. Later on, relativistic treatment

of the many-body problem including Lense-Thirring type effects will be

considered.

After a few remarks (53), relativistic expressions of Range an4 Doppler

shift will be derived as functions of the (coordinate) time of travel

of the tracking data (95,6,7) and then, as functions of the positions and

the velocities of the stations (§9 and 10). Then the equations of motion

will be solved for elliptical motion of the stations in the spherically

symmetric field (511 - 15). 	 Using these soluticns, simple cases will

be considered where the relativistic corrections in tracking experiments

will be evaluated in an invariant way (independentendent of the choice of the

coordinate system) and discussed (516 - 19).

3. REMARKS

As usual, the four dimension.". line element between two events is

identified with the element of proper time elapsed along this line

element. It is also assumed that atomic clocks indicate proper time

along their trajectories as long as their instability and the dependence

of their operation on various factors (temperature, pressure, etc.) are
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taken into account. Proper time shall refer to earth proper time. Proper

time along other trajectories should be specified as such. Time shall

indicate coordinate time.

A distinction has to be made between the Doppler shift which refers

to the instantaneous value of a phenomenon and the Range Rate measurement

which is the average value of the Doppler shift over a period of time.

This period of time can be an appreciable fraction of an hour and in

such a case the Range Rate has to be related to the value of the Doppler

shift at a specific instant within the counting time. At this point,

expressions of the Range and Doppler shift have been derived only sin^e

these are adequate tools for the analysis of special simple cases.

The relation between the Range Rate and the Doppler Shift shall be derived

later.

I
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PART I - SPHERICAL SYrMTRY

4. GENERALIZED METRIC:

At first, the gravitational field to be described within the

frame of General Relativity will be a simplified model of the actual one.

Y	 The gravitational field of the planets and of the asteroids will be

neglected. Effects due to the rotation s and to a possible oblateness of the

Sun  are also neglected. Under these assumptions, the interplanetary

gravitational field has spherical symmetry.

Following Eddington
7
, Robertson$ and Schiff9 , the field will be

described by the generalized metric which is, within the context of a

curved spacetime, the most: general expression of a spherically symmetric

field. Iii isotropic coordinates, it reads:

	

2a GM	
GM

ds2 = 1 - 2 -+ 28s (	
)2 __I

 c2dt 2 - (1 + -Y do^l

c r	 c r
with	 (1)

dot = dr2 + r2d8 2 4- r2sin28 d^
	

= dx2 + dy2	2+ dz

as , as and Ys are dimensionless numbers, G is the gravitational constant,

M, the mass of the Sun and c, the speed of light. r,
1
8, ^ and x, y, z are

the polar and rectangular coordinates. t is the time. The origin is at

the center of gravity of the Sun and the orientation of the axis is fixed

with respect to the stars.

The relativistic corrections are to be evaluated to first order in

(GM/c 
2
r) only. It is well known to be ade q uate in such a case to retain

the following terms of the metric:

2	 2r- 2a	 281 2 2	 -	 2
ds	 c d^ = 1	 r + 2 J

 c 2
	 - (1 + r ) d0	 (2)

r

where a = a (GM/c 2 ), 8 = 8 (GM/c2 )
2
 and y = Y	 c2). dr is the

s	 s	 s

i element of proper time associated with do and dt.
i

me

M i



t	
.',.N	 f .^ Y t.

6

The coefficients a, a and Y will appear in the relativistic corrections

calculated later so that it s:iall be possible to relate these corrections to

the first or second order deviations of the metric from the flat space —

time geometry. The General Relativistic corrections will be obtained

by setting the coefficient as s as = Y s = 1. The corrections as predicted

by the Brans-Dicke theory10 will be obtained by setting Y - 0.88.

A) Range And Doppler In A Spherically Symmetric Field

5. TWO-WAY RANGE

The Range as measured from the Earth in a two-way experiment (Fig. 1)

will be defined as:

R - c(T 3 - T 1) - c A13T
	 (3)

where 
A13T 

is the time taken by the tracking signal to travel from the

Earth to tae transponder and back to Earth. The proper time T is

measured by a high accuracy time standard on Earth.

The Range can also be expressed in terms of wave length accumulated

along the path of the tracking signal.

T3
R^ = 
	
v dT = v 13T
	

(4)

^Tl

where v is the frequency of the emitter on Earth also measured by the

time standard on Earth. It is assumed that the frequency of the tracking

signal is perfectly monitored by the time standard and is thus considered

to be a constant.

From the definition (3) the Range can be related to the (coordinate)

time: rT3

R = c ^1 t

	

(d ')d 	 o 13t	 (S)

13	 jTl
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where &13t - t 3 - t 1 is the travel time of the tracking signal in units

	

of coordinate time.	 The term between the brackets is simply the time

average of the ratio (proper time/time) during the time of travel of the

tracking signal.

6. ONE-WAY DOPPLER

F:. 17he frequency of a sinusoidal tracking signal will be defined as the

number of wave crests being observed per unit of proper time (use of

amplitude zero crossings would be equivalent). On Figure 2, the propagation

of N wave crests is shown. The frequency of the signal at emission is

v1 - N/6T 1 and the apparent frequency of the signal at reception is

v12 ' N/6T 2 . 6T1 and 6T 2 are the intervals of proper time for the	 -

emission and the reception of the N wave crests. If the intervals of

(coordinate) time corresponding to 6T 1 and 6T 2 are 6 1 t and 6 2 t, then:
E
F	 6T1 6 2t 61t

V /v = (N/6T )(6T /N) = (—)(—)(—)	 (6)
12 1	 2	 1	 61t 6T 2 62t

f	 R
If Al2  and 012 t are the travel time of the first and last wave crests,

then the total time elapsed between the emission of the initial wave crest

and the reception of the last wave crest is

	

Z	 f
6 1t + 012t: 6 2

t + Al2t	
(7)

In a metric which does not vary with time, the travel time of the tracking

signal is a function of the position at emission (r1 ) and at reception (r2)

only. Then the travel time of the last wave crest can be expressed as a

development aroung the travel time of the first wave crest:

R	 f	 a(012t)	 i	 3U12t)

Al2 t	Al2t +
	 i	 r161t +	 r2•d2t	 ..	 (8)

	

ar t	 ar2
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where (2/ar) • r stands for	 (a/axi)xi with x1=x, x2 Y ' x 3 =z.	 For

i=1

61 t -+ 0 and 62t -► 0 (instantaneous frequency measurements), Eqs. 6 and

8 where the 6 are replaced by d lead to:

30120 *

V	 dT	
l	

a	 . r21
12 ° (tl )(dT2 )	 a(^12t)	

(9)

L1+	
a1 .r11

WT1/dt) and (dT 2 /dt) are the ratios proper time/time at emission and

at reception. The • indicates a derivative with respect to (coordinate)

time.

In actual one-way Doppler experiments, the signal received on Earth

(v12) is compared with the signal of a local oscillator. If the (proper)

frequency of this oscillator is v 2 , we then have:

r 3(o120 i l
v	 v	 dT	

Ll-	
ae2 

•r2
J*2 

' (V2 )(dtl)(dT2)	
a(Al2t) i	 (10)

`l+ a^•rI
If identical oscillators are used at emission and at reception (same

frequency when brought together at a same location), v 1 and v2 are

numerically equal.

7. TWO-WAY DOPPLER

In a two way Doppler experiment (Figure 3), a signal with frequency

v1 is emitted from the Earth, Its frequency as received at the transponder

is v12 . Assuming no frequency multiplication at the transponder, the

frequency of the signal remitted is again v 12 . At reception on Earth„ the

apparent frequency v 23 of that signal is compared with the frequency v3 of

the emitter at the moment of reception.

., r



V23	 V1 X12 V23

v 3 	 V3 '1	 v12

9

(11)

Of the two last factors, the first is given in Eq. 9, and the second is

the same factor where the indices 1 and 2 are replaced by 2 and 3. Thus:

3(Al20 i	
23 t)

	

,r2]	 l̂	 i •r3
v23	 (^l)(dtl)(dT )	

a(Ar2t) i
	

a(Ar3t) i
3	 3	 3	

1+	 ^2 ,rll	 L1+	
^3 •r2

arl	
art

(12)

where Al2t is the travel time from the Earth to the transducer, and A23t,

the travel time crom the transducer to the Earth (not equal if the motion

of the Earth during the time of travel of the signal is not neglected).

In order to obtait, explici t_ expressions for the Range and Doppler measure:uents

in terms of the position and velocity of the emitter aid recei-•rpr, expressions

for the time of travel of the signal and for the ratio (prop--. r time/time)

shall be derived next in terms of these quantities.

8. TRAVEL TIME OF TRACKING SIGNAL

In the geometric limit, electromagnetic sivtkah propagate along null

geodesics of the space time. In the present metric:, the condition

0 - c2 dt 2 [1 - 2= + ^] - [1 + i] do t	(13)

r

is thus satisfied for all infinitesimal intervals along the path cf the

tracking data. T: :ravel time is then given by integration of its

infinitesimal value along the actual, geodr.sic; r 	 (Figure 4):

*
t 2 - t i = Al2  =	 [1 + ^]da + 0a 2	(14)

r

* The notation Oa, 01 2 ....will be used to indicate that terns of urdar

(GM/c2r).(GM/rc2)2 ....... have been neglected.

I

1
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It can be shown 11 that a Fermat's principle of least time holds in

every static gravitational field (which is the case here) along the actual

path t. The first derivative of the integral for transverse displacements

of the path (along u in Figure 4) with end points fixed is thus zero and

terms of second order only are neglected if Eq. 14 is evaluated along the

*
straight line C joining the point of emission and the point of reception.

If the straight line C is chosen to lie within the e = 7/2 plane, then:

c412t =	 [1 + ^ ] d 	 (15)

Jc

and, after integration:

r2(r12+r2-r1 COS")
c012t = r12 + ( a+Y) 

Qn r1 
12

(r +r cosG^-r1)	
(16)

where r12 has the classical form:

r12 = [r12 + r2 2 - 2r Ir2 cosAf] 1/2	(17)

and A^ = ^2 - ^1 . The indices 1 [2] refers to the point of emission

[reception] at the time of emission [reception]. 
**

The travel time in a static metric should be independent of the

direction of propagation or symmetric with respect to r1 and r 2 . This

symmetry is evident when formula (16) is rewritten in the following form:

(r12
+r2-r1cosA^)(r

12
+r1-r2cosAQ

CAl2 t = r 1 2 + (a+Y) kn	
2

r 
1 

r 
2 

sin A^	
(18)

* These corrections of second order are neglected here since they are no

larger than 30 cm across the Earth orbit.

** Except for being expressed in terms of different angular variables, t%is

expression is equivalent to the one given by T. D. Moyer in Reference 12.
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9. PROPER TIME/TIME RATIO

As indicated in the remarks (Section 3), the proper time is identified

with the line element (within a factor c). We thus have

c2dT L = c2dt 2 [1 - 2 + 22] - [1 + 2r] dot	(19)

r

or
+2

d= [1 - _ - r2] 	 + Oa2	(20)

2c

where r2 is the classical expression of the velocity squared.*

10. EXPLICIT RANGE AND DOPPLLR FORMULA

From the expressions obtained in the preceding section, it is now

possible to write explicit formulas for Range and Doppler in terms of

the coordinate position and velocity of the emitter, transducer and rceeiver.

a ^	 '
From Eqs. (5), (16) [where cosA6 has been written as rl • r2 /r1r 2 ] and (20)

the value of the two-way Range is:

^r (r +r -r •r /r )(r +r -r • r /r )
^	 3 12 2 1 2 2	 23 3 2 3 3

R = c(- dt ) (r12+r23)
+(a+Y) ,2n

	

	 -. i	 _* 4.

Lr1(r12+r1•r2/r1-r1)(r23+r2•r3/r2-r2)

(21)

where

(It

mil
	

t

 - 
1 -	 (_ + r2 ) dt + Oat	(22)

t1	2c

is the average of the ratio (proper time/time) over the time .>f travel of the

tracking data.

The One-way Doppler is obtained by first deriving the expression for

the travel time (Eq. 16) with respect to time and replacing in Eq. 10

* It is assumed that r2 /c 2 is of order a/r since this is the case for the

orbits we are interested in (bound) orbits.
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a(Al2t)/ar by its calculated value. The result is:

► 2	 -► 	 -►
r	 r •r

1- a - 
1	 1- 12 2 _ (

CI+Y) G
V12 _ V1 	 r 	 2c2
	

cr12	
c3 12

v2	
v2	 1- a - X22 	 [1- 

X12 •1	

-

(23)
r2	

2c 2	cr12

where

G1

r2•[(r2/r12)r12-rl+(2+r12/r2)r2]-r1.[r2+(r2/r12)r121

	

2	 2 -► -*
[r2r12+r2 -rl•r2]

r.[r -(r /r )r -(2-r /r ) `1 1+ 
r .[r +(r /r )r ]

1 2	 1 12 12	 12 1 	 2	 1	 1 12 12	
(24)

2 -* -►
[r1r12-rI +rl•r2]

Similarly, the two-way Doppler formula follows from its value as given

in (Eq. 12):

i 2	 _+	 _	 -►	 A.

	

_ a _ r 	 r12 'r2_ (a+Y) 	 _ r23 •r3 _ ( 0'+y)

V23 	 V1	 1 r 
	

2c2	 1- cr 12 	 c3	
G12	 1	 cr23	 c3
	 G23

V3	 v3	

1- a -	 1- 
X12 • 1 	 1_ r23 •2

 ] [

r3	 2c2	cr12	 cr23	 (25)

where G23 is given by Eq. 24 where the indices 1 and 2 are replaced by

*
2 and 3 respectively.

The Range and Doppler formulas given above are to be used in conjunction

with formulas for positions, velocities and proper time expressed in terms of

the time, and derived within the context of the generalized mE.tric. These

* This result is similar to the one given by T. D. Moyer p. 18, ref. 13. In

our case, the field ^ used by Moyer reduces to a/r. No attempt has been made

to verify the identity of the quantities E 12 and G12 which are expressed in a

different way following the expression of the travel time ir terms of different

variables (as noted at the bottom of page 10).

n
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formulas will be derived next. From these formulas, it shall be possible

to obtain, for simple cases, Range and Doppler formula in terms of orbital

parameters and then in terms of measured quantities only (invariant formulation).

B) Free Orbital Motion In A Spherically Symmetric Field

11. FREE ORBITAL MOTION

In PART I, the effect of the gravitational fieldof the Sun is being

taken into account only. Thus the Earth, the planets, artificial planets

and satellites are considered to be test particles of negligible mass

travelling along geodesics of the metric when in free fall (no solar

radiation pressure, rocket thrust or others).

The easiest way to solve for the geodesics is by the Lagrangian method.

The Euler's eq>>acions are:

d (	 aL	 ) _ aL	 = 0	 (26)
dT 3(dxu/dT)	 axu

where u = 0, 1, 2, 3 and x0 = t and the Lagrangian is

L =	 dxu dxv	
(27)

guv dT dT

These equations are equivalent to the geodesic equations in their standard

form. From the definition of proper time (Eq. 2) we also have the condition

L - cte = 1	 (28)

It is convenient to use polar coordinates here. Within the metric guv as

defined in Eq. 2 , the equation for a is:

^1+ 21 2 d 2 6	 ^ 2 d6 d	 2
r ]r 2 - sin6cos6( dT

) + dT dT 
((1+ r )r ] = 0 (29)

dT



-	 yN,..
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This equation admits the solution 6 = cte = n/2. This solution will be

retained here without loss of generality since there is spherical symmetry.

The Euler's equations for ^ and t then are:

[1 - Lc + 22 	 ^] ( dt ) + Oa 3 = cte	 (30)

r

[1 + =	 A]r2(	 - Oa 3 = cte	 (31)

The condition L = .1 is the fourth equation and reads:

2a	 28 dt 2	 1	 2Y	 dr 2	 2 d^ 2	 3
[1- _ + 2](aT) - 2 

[1+ r ][( dT) + r (dT ) ] + Oa = 1	 (32)

r	 c

From Eqs. 30-32 the equation relating r and ^ can be obtained. After

integration and with a proper choice of constants of integration, the following

solution is obtained:

p

r a	 2Y	 S	
(33)

l+e cos {[1- 
P (2+ a - 2n]}CL

where p = a(l-e 2). e is the eccentricity and a, the semi-major axis of the

orbit.	 ,T is the angular position at the first passage at perihelion (which

is not fixed). a, a and ¢ n must be distinguished from their classical

counterparts appearing in the solution of the Newtonian equations of motion.

Their numerical values can be different.

Equation (33) is identical in form to the classical solution except for

the factor of (^-fi n) which contains a perihelion advance. It is easily

verified that the point at which r = 0 and is a minimum occurs every 27n



1J

[1+ 
P 

(2+ a - S2 )]	 radians where n is an integer. This corresponds

a=
to a perihelion advance of 	 (2Tra/p)(2+ a - B/a2 )	 radian per

revolution. The General Relativistic correction is obtained if the

coefficients a, VW and y are set equal to GM/c 2 . The perihelion advance is

then the familiar expression (67GM/c 2p). This angular quantity is an invariant.

With numerical values inserted, the displacement of the perihelion can be

given as	 27(aE /2 /a3/2
(l+e)) kms per year.	 aE is the semi-major axis of

Y

the orbit of the Earth.

13. VELOCITY ALONG THE ORBITAL PATH

The angular motion as a function of time along the orbit defined by

Eq. 33 follows from the equations of motion (30) and (31).

With the following change of variables:

f = [1-P ( 2+	 - s2 )][^- ^n 1 	 (34)
a

and the usual definition of the eccentric anomally u:

Tg(2)	 ((1+e)l1/2 Tg(2) 	( 35)

the integration of the equation of motion can be carried out. The result

is:

	

.	 2

	

f ̀ `	 u - [1- 2 a ] e sinu = ca [1- `̂2a5Y] (t-t n)	 (36)
a

where t o is the time at the first passage at perihelion 	 n). The

relation between	 n) and the time as given by Eqs. 34-36 exhibits two

relativiFtic corrections. A secular correction to Kepler's third law is

contained in Eq. 34 and in the factor of (t-t n) of Eq. 35. The other

is a short period correction appearing through the coefficient of (d-^^)

(since ^ is not directly proportional to time) and through the coefficient of

f



e sin u. These corrections will be considered in more details later.
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14. PROPER TIME/TIME RELATION ALONG THE ORBITAL PATH

The relation proper time/time is obtained through integration of

Eq. 30 with proper evaluation of the corresponding constants of integration

in terms of the adopted ones: p (or a) and e. The result is:

T-. T
11
	 [1+ 2a ] (t - t n ) -2 2Fcxa  

u + Oa2 	(37)
J^

vhere Tr is the proper time at the first passage at perihelion. Since the

coefficient of u is of the first order, u needs to be evaluated to 0th

order only. According to Eq. 36, this is the classical relation

Fa

u - e sinu =	 (t-t^) + Oa2(38)

15. CIRCULAR ORBIT IN THE GENERALIZED METRIC

For future reference, the equations describing the motion along circular

orbits are given here. They simply follow from the previous one (Eqs. 33, 34-

36 and 37) when the eccentricity a is set to zero:

r = a = cte	 (39)
f

 Fa
2a a+ 2 ( t - t o )	 (40)

a 

T-to = [1- -3jo ] [t-t o ]	 (41)

The indice o refers to an arbitrary point. Equation 40 contains the relativistic

correction to Kepler's third law which, in General Relativity (a = v Ir8- = y = GM/c2)

becomes *: ; =G^a [1-3GM/2c2a].

-----------------

* This result is in agreement with the one given in Reference 9.



17

C	 Relativistic Corrections For Specific Experiments

Various experiments where Range and Doppler measurements are made

by an observer on Earth will now be considered. Relativistic predictions

will be expressed in terms of observables only*. Comparison with classical

predictions will allow an invariant evaluation of the relativistic corrections.

Relations derived in the previous sections shall be used so that the same

assumptions hold: the field of the Sun is taken into account only and

effects due to its rotation or to a possible oblateness are

not taken into account in the evaluation of the relativistic corrections.

16. TIME DILATION EFFECTS

An experiment where time is indicated by a clock in orbit around the

Sun is compared with the time indicated by an identical clock on Earth

will now be considered. It is assumed that timing pulses are sent at

regular proper time intervals of the orbiting clock. The time of arrival

of these pulses on Earth, as indicated by the Earth based clock is measured.

It is also assumed that Range measurements are made at the time where the

pulses are emitted so that the travel time of these pulses can be evaluated.

The orbit of the experimental station is elliptical. Its inclination with

respect to the ecliptic is not specified. The eccentricity of the Earth is
---------------------------

* OLservable refers to quantities which are measured directly (like Range

and Doppler at definite value of Earth proper time) or to quantities which

are determined by another set of measurements than the one considered (period

of the Earth as determined by optical observations for example).

i^

M I

7
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neglected.

Since the orbit of theEarth is assumed to be circular, the rate

of a clock on Earth in terms of the coordinate time is given by Eq. 41.

The corresponding relation for the clock on the orbiting station is Eq. 37

(where the eccentricity is not assumed to be zero). Developing Eq. 37

with respect to the eccentricity and keeping the term of first order in

e only:

^s

T = Tp + 2 a(T-T n)(a - a )+ 2
p	 E

as e
--^—Rain F

a 
(T-T^) + ^ + cte.
 (42)

where T is the proper time of arrival on Earth of the timing pulse emitted

at orbiting station proper time Tp. 
R 
is the proper time of travel

of the timing pulse. The orbiting station is at perihelion at (Earth)

proper time T r . The indice p in e  and a  refers to the orbiting station.

For a = GM/c 2 (General Relativity value), the secula_ drift rate

(coefficient of T-T n ) is of order 10-8 . Such an effect could be observed

at the present time. However the accuracy in the measurement will be limited

by the very long term components of the drift and a possible offset of the

clock rate at launch. The observation of the short period terms would not

have these sources of errors.

The amplitude of the short period term is ti 0.1 eap aE sec. For

a highly eccentric orbit where e ti 0.5 and (a E/ap) ti 2, the amplitude of

this effect is , 0.07 sec. and its period is 4 months. If the range R

measured at the time of transmission of the timing pulses has an error of

the order of 50 meters, the resulting error in the measurement of the

effect is a negligible few parts in 10 6 . For observations lasting over a

few revolutions of the orbitin; station, the error due to the instability
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of the clocks would be reduced. The error in the determination of the

time of arrival of the pulses could also be reduced by repeated measurements.

Using equivalent figures of 10 -13 and two microsecond for these errors,

tha relativistic time dilatation could be measured to better than one part

in 105 . The latest laboratory measurements, to our knowledge, are accurate

to about 1%. Such an experiment could provide a more accurate measurement of

the time dilation effect than has now been obtained. It could not however

test for second order effects which would be about ti A	 time she first

order effect.

17. TWO-WAY RANGE MEASUREMENTS FOR CIRCULAR COPLANAR ORB

a) Synodic Period and Time of Inferior Conjunction Known in Units

of Earth Proper Time.

The experiment to be discussed now is one where tracking data sent

from Earth reaches a transducer in orbit around the Sur and is sent back

to Earth (Figure 5). It is assumed that the orbit of the transducer is

circular and contained in the ecliptic plane. It is also assumed that the

synodic period and the time at inferior conjunction are known in units

of observer (Earth) proper time. The eccentricity of the orbit of the Earth

and the effects of the field and of the rotation of the Earth on the

observer's position, velocity and proper time are neglected. The displacements

of the Earth and of the transponder during the time of travel of the tracking

data is also neglected for the purpose of simplification (r1=r3 in Eq. 21).

Since the travel. time of the tracking data as given in Eq. 16 is symmetric

with respect to the point of emission and the point of reception, the round

trip time of travel is simply twice the one way time of travel. Both

the synodic period and the ratio (Earth proper time rate/time rate) are
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constant with respect to time from Eqs. 40 and 41. The synodic period T
s

can be chosen as the unit of proper time on Earth and the inferior conjunction

as the origin of proper time. In such unit, the value of the Range is:

1
R - 2r+2R +0a2

1
8 is a first order term given by:

0	 0 0	 0
1	 aE [r+aE-aT cos(2 Tr T) ]

R - (a+y) Qn T—
aT [r+aEcos(2TrT)-aT]

Also,

r - [aE2+aT 2-2aE aT cos (2TrT)]1/2

r - [aE 2+aT2 -2 aEa
T 

cos (2TrT)]1/2

aE and a  are the semi-major axis of the orbits of the Earth and of

1
the transducer*. In R, the relativistic quantities r, aE and a  have been

0	 0	 0
replaced by their Newtonian (classical) ' values r, aE and a  since terms of

second order are neglected. In Eqs. 43 and 44, the Range is not exaressed

in terms of observables only since the radii aE and a  are not directly

measured.

In order to relate the Range R to observables only, it will be assumed

that aE and a  are to be determined from three measurements of the Range

itself Rl , R2 and R3 performed respectively at proper time T 1 , T 2 and T3'

aE and a  are then the solutions of:

I	 1
2r 2 + 2R2 - 2r1 - 2R1 = R2-R1

1	 1	 (46)
2r3 + 2R3 - 2r1 - 2R1 = R3-Rl

-------------------
*	 This result is identical with the one given in Reference 15.

** This is only an approximation to the real data analysis where the elements

of the orbits are determined by curve fitting using data distributed over the

whole orbits.

(43)

(44)

(45)
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1
where r  and R  are the functions of a  and a  given by Eqs. 44 and 45

when T= Ti . Since differences of range measurements are used in Eq. 46,

errors resulting from constant bias in the Range measurements (transducer

delay or other) are eliminated*. These equations can be used to evaluate

the radii by successive approximation.

0	 1
If a and a are zeroth and first order quantities in the following

definitions:

0	 1

	

a 
	 a  + a 

0	 1	
(47)

	

a 
	 a  + a 
	 4

0	 0
then, the zeroth order quantities a  and a T (Newtonian values of the

1
radii) satisfy Eq. (46) where the relativistic terms R  are neglected.

This is:

	

0	 0
2r 2 - 2r1 = R2-R1

	

0	 0	 (48)

2r3 - 2r 1 = R3-R1

0	 0	 1

	

a  and a 	 can be used to evaluate the first order term R  in the Range.

0	 1
If a  and a  are written in terms of a and a in Eq. 46 and if r is

0	 1
developed around the a :ip to the first order in the corrections a,

then the quantities of zeroth order in a cancel with the quantities

1
R2-R1 and R 3-R1 according to Eq. (48) and the first order terms a  and

1
a  obeys a simple set of equations which is immediately solved:

* Two range measurements would suffice to determine the radii. That case

is considered in Reference 15 and leadsto a simpler formulation of the

relativistic corrections.

s



r 	 0	 0	 0
)IN_1ar	 - 1 1	 ar	 ar(R'

	

3 1 	 - 0	 R
l	 ( 

2-Rl
l	

0 	 ( 0 
1

.a	 /	 1	 I 1()3- \	 11	 L aT 2	 aaT 1	 l aaT 	 aaT 1
aE ..	 a

^0	 0	 0
1 ) [	

0

R3-

	

R1	
ar	

a0	 - R2-R1, 1a o - ao
\^ -1	 aaE 2	 oaE 	L^aa 3	 aaE 1

a 7 -
T

	

ar	 ar	 \ _(ar	 ar	 ar	 at	 atar
2	 0 - o	

-[(3ao.,)2- 0
	 0 o

aaE	aaE 1 aaT 3 aaT 	 aaT	 aaE 3 aE

(49)

and where the derivatives are given by:

\	 0	 0
(-^0 I	 T)[aE,T - aT,E cos(27T

1
)]	 (50)

\ as	 i	 r
E,T	 i

The values of the radii as given by Eqs. 47-49 can now be inserted

in the expression for the Range (Eqs. 43-45). The zeroth order part of

the Range can be developed around the zeroth order value of the radii.

1	 0
In the first order term, R, a can be replaced by a since terms of second

order (a2 ) are neglected. The Range at some proper time T  thus becomes:

R^ = 2[aE2 + a T 2 - 2aEaTcos(2nT	 1/2+ 26 R	 (51)
R.

where the relativistic effect dR is:

00	 1	 1 1
d ZR = so aE + /	 I aT +

	

aaE 	\ -0)Z

i
^0 0 0 0
a
E 
[r +a a cos(27T )]

+ (a+y) Z 	 0^ 0
E
- 

T	 o	 (52)

aT [ r
I
+aEcos (21r T )_9 ]

0
where the derivatives of r are given by Eq. 50. This expression of the

Ranga is implicitely in terms of the ohservables. R 19 R2 , R3 and TR;

0	 10	
1	 0

r and a (thr c.ugh r and R) are related to the a, which are themselves

22
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related to the three measurements R P R 2 and R by Eq. 48. For given values

of R1 , R2 and R3 at proper time T1 , T2 and r 3 , the computed value of R  at

time Tf is independent of the choice of the coordinate system chosen

(isotropic coordinates).

The numerical value of the General Relativistic correction 261R

(where a = Ys = Y = G111c 2) is shown on Figure 6 for the case where the

radius of the transducer orbit is 0.8 A.U.. The three measurements Rl,

R2 and R3 are assumed to be made at T = 0, T = T
s
 /8 and T = s/4 (0^ = 0,

*

45° and 90°).	 The effect which is more important near superior conjunction

is essentially due to a modification of the optical length along the path

of the tracking data.**

18. TWO-WAY RANGE MEASUREMENTS FOR CIRCULAR COPLANAR ORBIT

b) Tne Time of Inferior Conjunction aad the Orbital Period of the

Earth and of the Transducer Known in Units of Earth Proper Time.

This is essentially the same problem as the ene treated in Section 17.

It is assumed however that both the Earth and the transducer period have been

determined in units of Earth proper time (by tracking data, opt-. ,.cal observations

or other means).*** These assumptions make it possible to look For the

relativistic corrections to the third Kepler law given in Eq. 40.

The expression of the Range in terms of the new observaules is easily

obtained by replaci _; in Eq. 43 the quantities a  and a  by their value in

terms of the orbital periods as given in Eq. 40. If this expression
i

is divided by the value of the Range at inferior conjunction to be denoted
----------------

* This result is analog to the one given in Reference 14 based on a

determination of the radii from two instead of three Range measurements.

** This effect was briefly discussed in Reference 17.

*** This problem is considered in References 15 and 16 where it is noted that

one could use the value of the orbital. periods as previously determined by

optical observations.
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by Ro , then:

4/3	 4/3	 2/3 2/3	 /2

R R	
[ 
TE +T 

4/3 
-2T E	 TT cos (2nT /7s)jl	

+2 dRo	 [ T 2/3 _ T 2/3]	 (53)

E	 T

with

0	 0 0 0	 0
aE	 E T[ r+a-acos(27T/ S)]	 0	 aE

6R = [ a+y ] Qn	 -	 Zn 0

aT Ir+a Ecos(2,r7/ g)-aT I	 ( aE a^	 aT

0	 0
_	 +a a

23/ 
^ E O T [1 - (cos2,rT /Ts)] 	 (54)

r

TE 
and TT are the orbital period of the Earth and of the transducer in

units of proper time. 
s l 

= T 
T 
1 - TEl (for inferior transducer orbit).

The quantities aand r in 6R have not been replaced by them value in

terms of the period for purpose of simplification. It is understood

however that they are to be computed from the 0th order approximation

of Eq. 40:

3/2
7 = 271 = 27 a	

(55)

The Range as given in Eq. 53 is thus expressed in terms of observables

only and is identical to the one obtained by I. I. Shapiro in Reference 15.

The first term in Eq. 53 is the classical expression of the Range in

terms of the orbital periods. The first component of the relativistic

correction (Eq. 54) is the analog of the corrections obtained in Section

17. It contains the important modification to the optical path due to the

gravitational field of the Sun. The value of this effect predicted by

General Relativity (a = /^ = y =GM/c 2 ) if the radius of the transducer

orbit is 0.8 A.U..is shown on Figure 6 (dotted curve). It is very similar

^v. .	 to the correction predicted for the experiment discussed in the previous

section. The second component of the relativistic correction (Eq. 54)

contains a contribution in $ resulting from the relativistic modification

i

W.,
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of Kepler's third law (Eq. 40). In General Relativity, its value is

k0
0 
T [1 - cos rT TT ] kms	 (56)

r I	 • s

66% of this effect is due to the term in a. Its value for a  = 0.8 is

shown on Figure 7. This effect does not exhibit the logarithmic dependence

which makes the effect previously discussed (Figure 6) separable from

classical effects. Within the specific case of circular coplanar orbits,

it still remains to be considered if the effect given Eq. 56 could be

distinguished from a classical effect due to a quadrupole moment of the

Sun (related to its oblateness)• That problem will now be considered.

19. CLASSICAL PRhDICTIONS FOR TWO-IN'AY RANGE MEASUREMENTS

[The time of inferior conjunction and the orbital period of the Earth

and of the transponder are assumed to be known. A solar quadrupole moment

is taken into accuunt.I

With the assumption that the Sun has a quadrupole moment, the potential

energy per unit mass of a test particle in the field of the Sun is classically:

J
V = - GM i + 2,0 (3 cos 2 e - 1)	 (57)

r	 2r2

where r, a and ^ are the polar coordinates. The ^ plane is normal to

the axis of the quadrupole moment and J 2 0 is the amplitude of the

quadrupole moment. The equations of motion derived from the corresponding

Lagrangian admit the solution e = 7/2 = constant. For this value of e,

the differential equations left can be written as:

d 2 (1/r) + 1 - GM +
 3 J2'OGM= 0

d ^	 r , h 2	 2	 h2r2

r2 y = h	 (58)
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For the special case where the orbits are circular, these equation are

solved for:

T	 = 1 a-0 .1 + 3J—^'*̂	 (59)_	 2n	
GM	 2a2

where a is the radius of the orbit and T, the orbital period (the ° have

been reintroduced to denote classical values).

The classical value of the Range for circular and coplanar orbits

(in the 6 = 7/2 plane)**:

R = 2[aE
2
 + aT2 - 2aEaTCos 

(TnT) ]
1/2	 (60)

S

can now be expressed in terms of the orbital periods T  and TT (and Ts).

Using Eq. 59:

[T 4/3+T 4/3_2T 2/3T 2/3 Cos( 
2,ri )]1/2

E	 T	 E	 T	 T
R = Ro

	
2/3_

T
 2/3	 s	 + 26R	 (61)

[
TTE	 T ]

where

OE
 2 0 2

	 (^7 )
126R = -2 J 0^ O	 1 +a0 0 	

-cos(62)
r	 2aEaT 	 s

and Ro is the value of the Range measured at inferior conjunction.

The classical effect given in Eq. 62 is identical in form with the

relativistic correction involving the factor S (second term in Eq. 54).

This implies that within the experimental situation ('?scussed in Sections

* (J2,0 /aE ) is assumed to be small and terms of second order in J 2,0 are

neglected.

** Here, the axis of rotation of the Sun is assumed to be parallel to the

axis of the quadrupole moment. Its angular deviation (^3°) from the normal to

the ecliptic is neglected.

1
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18 and 15, two-way Range measurements could not establish the value of

8 or testfor the relativistic correction to Kepler's third law (Eq. 40).

In order to separate the relativistic correction in 6 from an effect

due to a possible quadrupole moment of the Sun, an additional observable

has to be available. The residual variation in the inclination of the

orbit of Mercury as determined by optical observations will be used as

such. These variations set an upper limit to the amplitude of the quad-

rupole moment 19 such that

J220 < 50 meters	 (63)
a	 ti
E

The classical correction to the Range in that case is shown (dotted curve)

on Figure 7. It is significantly smaller than the relativistic effect shown

on the same figure but should still be taken into account in high precision

Range experiments.
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