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Abstract

This report presents the results of a study effort examining
time synchronization in an optical communication system., Consideration
is given primarily to time locking by means of a phase lock tracking
loop. Since photo-detection of an intensity modulated optical beam
produces a shot noise random process at its output, synchronization
analysis requires a study of phase locking with shot noise processes.

A statistical analysis of tracking shot noise is presented., Of particular
interest is the probability density of the tracking error, which indicates
the behavior of the loop during tracking, and therefore is directly
related to the ability to maintain accurate synchronization. The results
of the study also have application to ranging and doppler tracking using

optical systems,
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Chapter 1
INTRODUCTION

An important operation in communication systems is the maintenance
of synchronization between transmitter and receiver, This is generally
accomplished by transmitting continuously over a separate channel a
known periodic waveform, and having a subsystem of the receiver contin-
ually track the waveform, thereby providing timing information for the
entire receiver operation. The tracking is most typically accomplished
by a delay locked loop which tracks the instantaneous time delay of the
received synchronizing signal,

In an optical communication system, the synchronizing signal is
often transmitted as an intensity modulated optical (laser) beam, which
is photo-detected at the receiver. The subsequent timing operation is then
achieved by time locking the receiver delay locked loop to the photo-
detector output. Since photo-detection of an intensity modulated optical
beam produces a shot noise random process at its output, the analysis
of the synchronization subsystem requires careful study of the problem
of time locking with shot noise input functions. In this report we present
results of a study of the statistical analysis of tracking shot noise processes,
Of particular interest is the probability density of the tracking error, which
indicates the behavior of the loop during the tracking operation, and there-
fore is directly related to the ability to maintain accurate synchronization.
The results of the study also have application to ranging and doppler

tracking using optical systems.




1.1 The Photo-Detection Model

The overall block diagram of the sync subsystem is shown in
Figure 1. The optical beam is intensity (power) modulated with a
synchronizing signal. A point source photo-detection responds to the
received optical radiation by producing the output shot noise process 6,7)

N(O, t)

x(t) = 2 hit-t_ ) (1-1)
m=1 © m

where e is the electron charge, h{t) is the photo-electron waveshape in
the photo-detector, tm are the random location times of each photo-
electron and N(0, t) is the number of photo-electrons occurring during
the time interval (0,t). The random process N(0,t) is called the counting
process of the shot noise a.l;ld has a mean value given by [2,3,4]

£
N = J(;n(y) dy (1-2)

where
n(t) = Y P(t) = intensity of the counting process, or average
rate of photo-electron occurrences.
P(t) = instantaneous power in the received optical field,
Y = proportionality constant dependent upon the optical
carrier frequency, Planck's constant, and the detector

efficiency.

Note that the average rate of photo-electron occurrences is proportional
to P(t), the power modulation on the optical beam. This means that in
the case of optical synchronization, the intensity process n{t) in (1-2)
is directly proportional to the synchronizing signal that power modulates
the optical beam.

When the bandwidth of the photo-detector is large relative to
the bandwidth of the intensity n(t), the electron functions in (1-1) can be
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considered as delta functions. In addition, N(0,t) becomes a FPoisson
counting process [ 5,6,8], and the probability of j photo-electrons

occurring in an interval (0, t) is given by

NJ) -N

Prob[N(0,t) = j1 = T e (1-3)

For shot noise process governed by Poisson counting, the random location

times are independent, and have the probability density [ 5,9, 10]

Pt )= —2 (1-4)

where N is the average of N(0,t) in (1-3) and is given in (1-2). Thus,
the intensity process n{t), in addition to specifying the average rate of
electron occurrences, also defines the probability density of location
times of the electrons. Using (1-3) and (1-4) it can be shown (5, 6]
that the mean of the shot noise x{t) in (1-1) is
t
(mean x(t)] = [ §(t-y) n(y) dy = n(t) (1-5)
0
for wideband detectors. Hence, the mean of the photo-detector output

in Figure 1 corresponds to the synchronizing signal used at the transmitter.




1.2 Delay Liocked and Phase Locked Loops

A delay locked loop is a feedback tracking system used to time
lock a locally generated periodic signal to the received periodic
synchronizing signal. During each period, the two signals are time
compared, and differences in timing generate error voltages that are
fed back to control the timing of the local signal generator., The choice
of signals at the transmitter and receiver determine the sensitivity
of the error voltage to the timing difference. When the two signals
are exactly in step during each period, the error voltage is zero, and
the local signal remains time synchronized with the received sync
signal, When this occurs, the local signal generator is producing a
clean, time locked signal that can be used for timing in the remainder
of the receiver, Instantaneous error voltages due to input noise
represent random timing errors between the two signals, and therefore
appear as synchronization errors in the receiver operation.

When the synchronizing and local signal are taken as sinusoids,
the delay locked loop is called a phase lock loop (1] (since timing errors
can be directly related to phase errors in the sinusoids). In phase lock
loops, the signal generator is simply a voltage controlled oscillator
(VCO), and the timing difference is produced in a filtered frequency
mixer, as shown in Figure 2. The phase variation on the synchronizing
sinusoid is then the phase signal that is to be tracked by the loop.
For example, if the synchronizing signal were taken as sin[‘l)j ty el(t)] ,
then the loop must generate an error voltage that drives the local VCO
in accordance with el(t).

The loop filter in Figure 2 smooths the error voltage for control

of the VCO. The complexity of the loop, and of the associated analysis,
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is determined by the type of filtering used. For a first order loop, the
filter is removed and the mixer error signal feeds directly the VCO.

A second order loop is produced if the loop filter effectively produces
an integration. Higher order loops are generated by introducing more
filter integration.

The loop mixer simply 'beats'' together the input and VCO
sinusoid. Since the mixer is inherently bandlimited, only baseband
frequencies are produced at the mixer output, while harmonics of the
VCO center frequency are eliminated.

The error voltage in a phase lock loop is directly related to the
phase difference between the VCO and the loop input signal at each instant
of time. Hence, analytical measures of loop performance can be obtained
through derivation of the loop error equations. Though these equations
are generally nonlinear, the response of the loop to a ''clean' synchronizing
signal can usually be determined using basic nonlinear feedback analysis,
Typically, the loop ''pulls into'' lock and the steady state loop error is driven
to zero, or else the system is unstable and the loop ''falls out' of lock.

On the other hand, when the loop input is stochastic, the loop error responds
in a random manner. In this case one can only describe the error statis-
tically by its probability density. The derivation of this density, which

is generally non-stationary, is complicated by the non-linearity of the loop.
Often, we resort to a steady state density as an indication of the statistical
loop behavior. The steady state variance of the loop error is then a

direct indication of the phase error caused by the randomness of the

input.

In the past [1,11] the above analytical procedures have been
extensively applied to the case where the input randomness is due to
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additive Gaussian noise; i.e., the loop input is composed of the sum of
a clean synchronizing signal plus additive Gaussian noise. However,

in the optical model of Figure 1, the randomness at the loop input is due
to the shot noise nature of the photo-detector output. The remainder

of this report is devoted to an investigation of the loop phase error
when the phase lock loop in Figure 2 is forced by the input shot noise

process in (1-1),




Chapter 2

ERROR EQUATIONS FOR PHASE LOCK LOOPS

In this chapter we analytically investigate the ability of a phase

lock loop to lock to a synchronizing signal that has been optically
transmitted and photo-detected, Mathematically, the basic problem
is that of deterrhining the behavior of a phase lock loop when its input
is a shot noise process having the synchronizing signal as its intensity
process. In the following section, we derive the dynamical equations

that describe the evolution of the phase error for such a system.

2.1 Derivation of Loop Error Dynamics

Consider the system shown in Figure 2 where the loop
input function is the shot noise process at the wideband photo-detector

output, given by (1-1):
I%O,t)
x(t) = e S(t-t_) . (2-1)
m=1 m

Here, e is the electron charge, {tm} are the random location times,
8 (t) the electron functions and N(0,t) is the shot noise counting process

having intensity

n(t) = Af1+b sin[wst + el(t)]} (2-2)

The above is proportional to the transmitted intensity modulation and
represents the synchronizing signal. In (2-2), ‘DS is the synchronizing
frequency, b is the modulation index, el(t) is the phase (time delay)
variation on the synchronizing signal that is to be instantaneously tracked
by the loop and A is the average value of ns(t), Recall from (1-2) that

ns(t) can equivalently be interpreted as the rate of electron occurrences

-9-




in the photo-detector, so that A represents the average number of
electrons produced per sec,

The VCO output in Figure 2 is represented by

VCO output = k cos[uuot + 92(1:)] (2-3)

1

where kl is the VCO gain, UJO

its phase variation. The loop phase error is defined as the phase

is the VCO rest frequency, and ez(t)
difference between the synchronizing signal phase and the loop VCO
phase, and therefore is |
® = Lw B ~lw 0 = (W - 0 -0 -
t) = Lt S l(t)] L of Z(t)] @ -0t + 8, -9, ) . (2-4)
The loop mixer output is then

emgt) = x(t) Lvco output]

N(0, t)
= I cos[wot + Gz(t)] [H?:l e 5(t-tm)] (2-5)
and the loop filter output is
t
e (t) = J e (T)f(t-T)dT . (2-6)
0

The VCO output phase responds to the VCO input control voltage ef(‘c)

through the linear relation

as, (t)
= Ky eglt) (2-17)

with k2 a constant of proportionality., From (2-4) we have, upon

differentiating,
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d@(t)» 1 2
dt (ws'wo) A T T
del
= (ws _mo) S —k2 ef(t) . (2-8)

The term (¥ - UJO) is the difference between the input synchronizing
frequency and the VCO rest frequency and is called the frequency

"offset' of the loop. Substitution from (2-6) then yields

48w w4 ) - e kftf(t-T) coslw_ T 4+8 (1) —g (M)l
dt s O dt 0 s 1
N(0, T)
Ly (T -t_)ar (2-9)
m=1
where k = klkz » and can be interpreted as the total gain around the

loop. Equation (2-9) is then the stochastic integro-differential equation
that describes the behavior of the loop phase error in terms of the
input signal and loop parameters. Note that it is a non-linear equation
with ®(t) appearing on both sides of the equation. The input shot noise
and the phase variation of the transmitted synchronizing signal play

the role of 'forcing' functions in the generation of the error process,
Since the input shot noise contains random parameters, the solution
for ®(t) necessarily evolves as a stochastic process,

We ultimately will be interested in the statistical properties of
the phase error. We may however note that a sample expression for
the mean of &(t) in (2-9) can be generated, which may be useful in signal
design. If we average both sides of (2-9) and interchange averaging

and differentiation on the left, we see that
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r df

— . t
09 (t) SO “8‘%1"_1 —e k] f(t-T) -
o / N .
\E coslw m+8,-8(T)) & h(r-t )jdr (2-10)

where ?(t) is the mean of ®(t). The averaging in the integrand can

be carried out by using the conditional expectations:
[ 1= B4 1}
E - E@1Etm’N‘@ . (2-11)

The inner expectation involves only the average of the shot noise,

which is given in (1-5) as

N
Elzizléﬁ—tnl): n_(t) . (2-12)

Substitution into (2-11), allows us to rewrite the braces in (2-10) as

.
Eg sm[(wo— UJS )it +2 ]} + Eé[terms at ((i)O + UUS)] . (2-13)
The loop filtering in (2-9) eliminates the sum frequency term. Hence,
(2-10) becomes

373 r d® ‘

(2-14)

The above is interesting in that it shows that if the loop is tracking

frequency and phase fairly accurately (i. e., UUS = UJO and sin(®) =~®), then

(2-14) is approximately

8
3F (1) ~ 1 ¢ 5
< (t) = - ek f(t-T)F (1)dT . (2-15)

w
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This equation has the form of the deterministic tracking error produced

in the linear feedback loop shown in Figure 3, when forced by the input

91 (t). Note that the equivalent linear loop replaces the VCO by an
integrator, the mixer by a subtractor, and retains the same loop filter.
Hence, the loop error function in (2-9) has a mean value such that when
the loop is tracking well [i,e., 12 ()| << 1], the mean varies in time
according to the error function of the linear system in Figure 3, The
latter system can therefore be used to design loop filters and compute
mean error performance.

For a complete statistical analysis, however, we must return
to (2-9) for study. The complexity of the error process & (t) is exhibited
even if we consider a simplified special case. For example, consider
a first order loop in which the loop filter is removed. [ This effectively

replaces f(t) by a delta function in (2-6).] In this case, (2-9) becomes

@& _ - a9 - ‘

=L -+ = J —ek cos[(ﬂst + el(t)— a(t)]
N(O0, t) :
2y O(t-t_ ). (2-16)
m=1 m

Though simplified, (2-16) is still a non-linear differential equation
involving the random loop error process & (t). By integrating both sides
we note

N(0, )
3(t) = [ (0 - W)t + ) )] -eerrJl_ cos[wstm + Gl(tm)-@(tm)] . (2-17)

The second term represents a summation of random ‘'jumps'', the height
of the jumps dependent upon ®(t) itself. This identifies the process

®(t) in (2-16) as a discontinuous, or "jump', process in which the

-13-




N Fs)

alx

Flji)v—e_ 3



number of jumps are governed by the counting process N(0,t). Therefore,
even for this specialized case, the complexity of the error process is

apparent,
In the following section we derive an equation involving the
probability density of a general random process. Subsequently, we shall

apply the result to the error process generated in (2-9).

2.2 Probability Density Equations of Random Processes

Let ¥(t) be a scalar random process, and let p(@l,tl) represent
the probability density function (pdf) of the process at time tl in the variable
@1. Similarly, denote (¢ 1 |3 2,1:2) as the conditional pdf of 3¥{t) at time
t,, given that ¢ (tz) :@2 at time t,. The pdf is then always related to

the conditional pdf by

[e2]

P8, t)) =) p(g,t, 12, t,) p@,, t,) a8, . (2-18)

®

Note that the conditional density can be interpreted as a transitional
density in the sense that it "converts' the pdf at time t, to its new
density at time tl, When ty > tz, this transitional density essentially
indicates the manner in which the pdf propagates in time.

Equation (2-18) can be rewritten in a different form for

convenient interpretation and application. Define the conditional

characteristic function of the random increment 8¢ = @2— @1 as
w jm M) e e :
CA( )“ ooe P( ].’tl Z’tz)d 1 ° (2'19)

By inverse Fourier transform
-JUU(@I )

)
p(@l,tli@z,tz): Zlﬁf-f e 2 CpW) dw , (2-20)
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Substitution of (2-20) into (2-18) then yields

¢ - fm d fm R 2-21

Now it is well known that the characteristic function can be expanded

into moments as

o]

- 14n 49
CA('”) 1+i:1

il

nH(AQ) (2-22)
where
m, (88) = E§l[(§l- @Z)ii 3, ] 2-23)

is the i.111 conditional moment of 0% given ®(t,) = §,. [ Alternatively,

2) 2
mi(AQ) are the moments of the conditional pdf in (2-20). ] It follows

that
2 1 2 R -jw@.-3,) .
p(@l,tl): L ST il J p(@z,tz)&}zj mi(AQ)e 172 Gyt dw
=0 ' Y =
(2-24)
But -
1 @ -jud -3 ) . i@ _ju(s -3)
—_— 1 2 . 3] g 1 2
) e e () L
3 i
- (ﬂﬂ 6@, -2,) (2-25)

and (2-24) becomes
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® ) 3 A
p(él’tl) - i‘)io il J mi(A@) <" F@D P(@Z’tz) 6‘@1'%) déz
oY 3\
p@ 10 t5) te 5T (—- a—é—) mi(A@) p(@l,tz). (2-26)

The first term is the pdf at time t = tZ’ and the summation represents

the increment in this latter pdf to produce the pdf at t = tl' If we set

‘l:2 =t and tl =t + b t, then (2-26) becomes
@, t+0¢t)-pd ,t)= > L (- a->1m(adz) (2. ,t,) (2-27)
PCys PR T T 38,/ ™ P t) -

Dividing by 8t and passing to the limit as 8t~ 0 we obtain

d s 1 d N
R - n i (o) eeanl (2-28)
where
r el gl
K.@)= lim LE[(M}! LN (2-29)

At~ 0
Equation (2-28) is called the stochastic kinetic equation L17]1, or the
Smoluchowski-Komogorov equatibn [16]. When the coefficients Ki(é)
exist, this equation provides a relation that must be satisfied by the
pdf of the process & (t). Note that the equation is a partial differential
equation with variable coefficients, and involve all orders of derivatives,
The remarkable point is that no continuity conditions on @ (t) were
required, so that the equation is valid whether ®(t) is continuous or not.
In essence, the integral equation in (2-18) has been replaced by the
differential equation in (2-28). Furthermore, while one needs the
complete conditional pdf to carry out (2-18), only the moments of this

density are needed to derive (2-28).
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The principle usefulness of the Smoluchowski equation occurs
when only the first few coefficients Ki(@) are non-zero, In particular,
if K. =0, 1 = 3, the resulting equation is called the Fokker-Planck
equation, and has been extensively studied (1], The Fokker-Planck
equation will arise whenever the random process ¢ (t) is continuous,
while discontinuous processes generate all the coefficients in (2-28) Li7].
We would expect this latter condition to be true fo.r our process 2(t),
based updn our earlier discussion of the apparent jump nature of the
error function. KEquation (2-28) is a partial differential equation

of the type

—B—E%%—’—t)— = Ly [p(2, 1] (2-30)

where Lg is a differential operator in ®. The usual method for
solving this type of equation is by separation of variables, In this method

it is assumed that

p(%,t) = K(t) p(?) (2-31)
and a solution is desired that satisfies Equation (2-30) with the

appropriate initial conditions. Substitution into Equation (2-30) yields

1 dKe) . 1 Lyl p@)]. (2-32)

K(t) dt p(%)

Since the left side depends only on t, and the right side only on ¢ ,
they can be equal only if they equal a constant. Thus

AK(M) - ok

dt (2-33)

_17-



for some c if a solution is to be found by this method. Furthermore,
if § Ci} is a set of values of ¢ which satisfy the above, then p(?,t)

must be of the form

\ 'Ci(t)
p(®,t) = ?JBi(@)e (2-34)
1

where the {Biv(@)} are determined by appropriate initial conditions. Since
each term of the sum approaches zero as t goes to infinity for all c;
greater than zero, the steady state solution, p(?) (defined as the

limiting form of p(®,t) as t = ®), must be due to the value of c; = 0.

Therefore, from (2-33), the steady state solution satisfies

Lylp@®) =0. , - (2-35)

Thus, the steady state solution to (2-35) (if one exists) is the solution
to a differential equation obtained by setting the right hand side of

(2-30) equal to zero and replacing p(2,t) by p(d.

2.3 Probability Density Equations of Loop Tracking Errors

It has been shown that a general random process has a probability
density which satisfies the Kolmogorov partial differential equation. We have
seen that this equation may, however, involve an infinite number of
derivative terms. In this section we would like to derive the corresponding
pdf equation for the phase error process of a tracking loop, governed by
the dynamical equation in (2-9). To accomplish this, we must calculate
the sequence of moment coefficients Ki(@) given by (2-29). This in turn
requires determinations of the phase increment A% of ®(t) during the

interval (t, t + Ot),

-18-




Consider a first order phase lock loop tracking a synchronizing
signal with a constant delay, following wideband photo-detection, The

phase error &(t) then satisfies the differential equation (2-16), and has

the form:
5 N(0,t)
4% ek coslw t+ 6. —8(t)] - 2 S(t-t ) (2-36)
0 1 m
dt m=1

where 91 is the constant phase delay. Note that the forcing function
in (2-15) is zero, so that the steady state mean error is zero. The phase

variation A2 is obtained by integrating d? from ttot + &t. Thus, from

(2-16)

t 40t t + Ot
pes [ g8 = | ((%éi)dt
t

t+ Ot N(0, t)
~ - Y & (4.
= - ek‘l cos [‘DS t+ 91 @(t)] 2 (t tm) dt
t m=1
N (4t)
= —ek & coslw ¢ + 8- 8¢t )] (2-37)
m:O S m m

where N(At) is the number of electron occurrences in the interval
(t,t + Bt)., The above expresses the increment of the phase variation
during (t,t + Bt). Note that this variation is also a "Sump process’,
having randomly occurring "jumps'' of random heights, and that the
argument of the cosine function depends upon the process 2(t) itself
(which emphasizes the non-linearity of the loop dynamics),

Now, from Equation (2-29)

-19-




K ()= lim & By oty Lae)|2]

n Ot = 0
n
k)" N(bt)
= Altimo (—‘g-’?)—- Ey ¢ /o 2 1 cose'(tm) (2-38)
-— ? m m:

where 6' :[wot + 91—¢> ) and the expectation is conditioned on %. The

quantity in brackets becomes

N(4t) N(4t) N(AE)
2 2 2 cos 9'(tm ) cos e'(‘crn ) +++ cos 6'(t )

m1=1 m2=l mn:l 1 2 My
which is
N(At) 0 o N(At) N(At) ; '
53 cos e(tm)-i-z e B cosB(tm )...cose(tm)
1 n
m; #m, # """ #mn.

The expectation over just the second term above is

E 5y E { cos 6'(t ) o cose'(t )}
N/ an; tm/N,@ m,’ " m_

ml#mz#"' #mn

where Et /N, & is a conditional expectation given N and ¢. The

m ?
expectation over N(8t) simply becomes the average of the counting
process over (t,t + At). Since this expression does not involve those

terms where my=m, = ... =m, the above experession becomes

(“ﬁn_f\]') E )[cos e'(tm Ycos O'(t  )... cos e'(tm )]

(€t L, eee, t m, "

mp mj My 1

where from (1-2)
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_ t+ Ot
N = n(T)dT
t :
The conditional expectation of the term in the brackets requires
the n-dimensional joint probability density of the n random variables
{tm}. For Poisson shot noise processes this is obtained from (1-4)

as

1 n
P(t ) t y Tty tm ln) = ——Il m n(tm)
n m=1

Zl

Therefore, the conditional expectation over the { tm} is

t+ 0t ¢+ 0t

lcos®'¢t  )eer cos Ot )ln@_ )een(_ )ldt --. dt
m; m m, mn mj m
t t+t
mo
-
for t € ¢ £... 5¢ € (t+ A0t). As we take the limit as At goes to
ml mn

zero this expression behaves as

[cos el(tml) +es COS e'(tmn)] L n(tml). . n(tmn)] (At)n .

Therefore, taking the limit as At goes to zero the above expression
-1
behaves as (At)" " which goes to zero. Hence the second term resulting

from Equation (2-38) is zero and

N(At)
K_(2) = lim (—‘Ee;ilEN . 3 D cos™8'e )
n At~ 0 'm m=1 m
= lim (zek)” NE lcos™ 0'¢ )]
At~ 0 At tm/i’ m’'” "

The expectation of the bracketed term is

t+ At n n{t_ )
cos B'(t ) _m
t m N

dt
m
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and
K_(8) = (-ek)" cos T 0t) nit) . (2-39)

This equation represents the general nth conditional moment of the
increment of the phase error. Note that it is in terms of the feedback
signal and the intensity modulation, n(t). Since Equation (2-39) is
basically a product of sinusoids, Kn(‘f?) will contain sine waves at the
"beat" frequencies., Remembering that terms involving frequencies
of nwO, n 21, are eliminated by the mixer*, the general expressions

for Kn(@) become

—-Cn(ek)n Absin & n-odd
K (%) (2-40)
C__,(ek)*(a) n-even
where
n
1 -odd
c_ = I ) ?_gjd ) (2-41)

The series form of the pdf equation now becomes

Mathematically, we are implying that the expectation operation in
Equation (2-29) contains an additional time averaging operation,
caused by the filtering effects of the mixer. Thus, to be rigorous,
a time averaged version of Kn(@) is being computed.
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M = Ab L L a [sind p(8,t)] +

{n-odd)
n
*® C (ek) n
n'l 0 p(@’ t)
A Zg = - . (2-42)
n=
(n-even)

The solution to this equation is the pdf, p(?,t), of the phase error,

%, at each instant of time, t. Note that the equation is an infinite
order partial differential equation with coefficients that are functions
of the variable 3 The infinite number of derivative terms can be
directly attributed to the "jump''nature of the phase error process.,
The steady state solution of the pdf is given by (2-35) obtained by
setting the right side of (2-42) equal to zero. Thus, with p(?) denoting

the steady state pdf, we have

®  C_(ek)" .n ®  C_ (ek)* .n
0= Ab ____n___'___ 4 [sin ¢p(® )1+ A & n-l' d p(¢)
n=1 ne as”® n=2 n as™
{h-odd) (n-even)
(2 -44)

The steady state pdf can be determined by solving the above total
differential equation with the approprieate initial conditions. The
equation is still, however, of infinite order and the hope of obtaining

an exact solution is somewhat ambitious., Nevertheless, there is still
useable information that may be extracted from Equation (2-44)

without a complete solution. For example, we note that the coefficients
are periodic in ¢, implying that if p(?) is a solution to (2-44) then

p(® + 27) is also a solution, Hence, steady state pdf solutions are

periodic with period 2. For this reason we need only concentrate

-23-



on deriving a normalized solution over a single period, and ¢ will
therefore be constrained (-™T,T) in the subsequent analysis. For
convenience, we can rewrite (2-44) in a slightly different form by

first dividing through by the coefficient for n =2. This yields

2 3
d . d p(d 1 d .
0=0o = [ sind p(®) ]+ LPW 4 (=) = [sin®p(®)]
de d@z (2 ) d§>3

1 atpe, 1 a°

+
40" as* 1205 4@

5 Lsin? p(d)] (2-45)

where = 2b/ek. For a first order loop the gain k is directly

related to the loop noise bandwidth B, by 1]

L

B, = A&k (2-46)

Since it is desirous to operate the loop with a given bandwidth, the
loop gain k must be adjusted to achieve this value. Hence, k = 4BL/eA

and the @ parameter in (2-45) takes the form

o= —%’-— : (2-47)
The coefficient Ab can be interpreted as the average rate of electrons
of the intensity modulation by the synchronizing signal. In this light,
@ is then the average number of electrons produced in a 1/2BL time
period, i.e., in a time period corresponding to the reciprocal of the
designed carrier bandwidth., Hence ¢ can be considered an electron
function ''density'!, indicating the accumulation of electron occurrences
over a fixed time period. By relating electron occurrences to photons,

the density @ can also be interpreted in terms of received synchronizing
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energy, or in terms of signal to noise ratios. In particular, if we

multiply numerator and denominator by ezA, then

(eA)?

o= b
e A(ZBL)

(2-48)
2, .
The term (eA) 1is proportional to the average current power
2
in the synchronizing signal, while (e A) is the spectral level of the shot
noise power spectrum and (eZA)ZBL is proportional to the total shot

noise power in a 2B_ bandwidth, Hence, @ can also be considered

L
an indication of the signal-to-shot noise power ratio., As such, we
would expect performance to improve as @ increases. This would
mean the modulation index b should be as large as possible for best
operation. We shall find this conjecture is‘true, and therefore from
here on b will be given its maximum possible value (b = 1) in (2-47).
Note that the higher order coefficients in (2-45) decrease
with increasing @, This appears to indicate a diminishing importance
of the higher derivative terms in contributing to the solution as @
increases. This conjecture will be investigated in the next chapter,
and will be shown to have both a mathematical and physical inter-
pretation.
One last point is worthy of comment concerning (2-45).
Note that the only parameter effecting the equation, and therefore
the solution, is @, the electron (photon) density in a l/ZBL time
period. In particular, the synchronizing carrier frequency Ws
in (2-2) does not appear in the solution. Hence, it is meaningless
to cite values of numbers of electrons (photons) per cycle of synchron-

izing carrier frequency in discussing optical time locking. It is
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only the number per cycle of loop bandwidth that is significant.
Of course, the sync frequency is important in converting

phase errors in radians to timing errors in seconds,
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Chapter 3
PROBABILITY DENSITY SOLUTIONS

In Chapter 2 an infinite order differential equation was derived
for the steady state probability density of the loop phase error of a
first order tracking loop with shot noise inputs. The equation showed
that the coefficients of the resulting derivative terms in the equation
depended upon the electron function rate in the photo-detector, which
in turn depended upon the received radiation power. In this chapter
we investigate approximate solutions for the desired probability

density of the tracking error,

3.1 High Electron Density Solution

For the case where the function density @ in (2-47) is extremely
high, a first approximation to the solution of Eq. (2-45) can be obtained
by dropping all terms thaf have powers of 1/« as‘ coefficients. This
leads to the equation

I a® p(@)
0= cva-é-[mn@p(@)] + —5 (3-1)
dé
where p(?) is the steady state density and @ is the electron density
at the photo-detector output:
o= . (3-2)

ZBL

Equation (3-1) is just the steady state form of the Fokker-Planck

equation and can easily be solved. Integrating both sides yields

CO:Olsinép(@)+ ——:%—?— (3-3)
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where CO is an arbitrary constant. This equation can be solved over

the interval, -T £ ¥2 T \ith the two boundary conditions:

1) p(M) =p(-T) (periodicity)

n
2y | p@yadd =1,
-

The solution is

p(H)= = (3-4)

where IO is the imaginary Bessel function. Equation (3-4) is plotted
in Figure 4, for various @, Note that ‘;he probability density
approaches, for large @, a delta function at zero, while for @~ 0,

it approaches a uniform density over the phase error. interval,

The former case can be considered the limit of perfect tracking,
while the latter represents a completely random phase error; i.e.,
poor phase tracking. The ability to track is therefore directly related
to the value of the @ parameter.

It is of interest to note that the solution in (3-4) is the same
solution obtained for the first order loop when driven by a sinusocidal
signal plus additive while Gaussian noise 0,111, Thus, the error
differential equation due to shot noise inputs becomes identical to that
due to additive input Gaussian noise as the higher order coefficients
are eliminated. In essence, this serves as an apparent justification
for the truncation of Eq. (2-45) to (3-1) for large values of ¢ since
it has been shown L 3,5, 6] that a discrete poisson shot noise process

approaches a continuous Gaussian process as % 7 ®,  Thus, for
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@ >> 1, the shot noise error pdf is, to a first approximation, given by
the solution for additive Gaussian noise inputs.

The pdf in {3-4) has zero mean and variance given by

2 = (DY ()
of= T 44D 2 (3-5)

3 n=1 % I,(®)

where In(CY) is the nth order imaginary Bessel function. This

variance is shown as a function of ol in Figure 5. As the para-

meter @ approaches zero the variance approaches Trz/3 , the variance

of a uniformly distributed random variable over the interval,

(-T, ™). It may be seen that the tracking variance for the steady

state pdf of the phase error is approximately proportional to 1/

for large @, For @ below 5, the variance increases rapidly,

but the range of validity of the high density solution is questionable.

3.2 High Order Approximations

The density in (3~-4) is in theory valid only as @ 2 ®, 1t is
not obvious, however, how accurate this solution is for finite o,
In this section we investigate higher order truncations of the inifinite
order equation in (2-45), and the associated solutions, in order to
obtain better approximations to the true solution. After integrating
(2-45) once with respect to ¢ , expanding the derivatives of sin®p(®) ,

and collecting like derivatives of p(?), we have

C, = L F (&) L_p) . (3-6)
n=

Here GO is the constant of integration and the Fn(@ } functions are of the

form
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1 1 1
F.(H=sind@- 5= + - touel)
0 2 1200 1440°
Fl(@):1+cos@(%{—— 13+ 15—===)
30 240
1 1 5
F (%) =sin® -~ + )
2 20 N 1800
1
F3(§): 12 +cos? ( —5 - > et ) (3-7)
4o 3¢ 360
F )= sin®( —— - —2— 4...)
12a 480
1 1
F.(%) = ——+ cos?® ( —as)
5 3602 240°
Fé(@):siné(_LS_..,)
1440
etc,

Note that the functions, Fn(é) , decrease with @ (for ®*2 1 and n = 1)
and it is reasonable to assume thatsolutions to truncations involving
higher order terms of Equation (3-7) may yield higher order
approximations to the total solution of the finite-order differential
equation. The solution to the truncated equation involving terms up to
and including the jth derivative of p(%) will be called the jth-order
truncation solution. The function, Fn(@), in general involves terms
derived from all the odd order derivatives of order 2 n+l in Equation
(3-6) operating on sin? p(?). Therefore, when forming the jth btruncated
equation from Equation (3-6),the functions Fn(@) must also be
appropriately truncated. For example, the solution to the Fokker-Planck

equation treated previously may alsoc be called the first-order truncation
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solution to Equation (3-6). Since, for a given ¢ 2 1, the functions,
Fn(i’), decrease in magnitude rapidly with n it is reasonable to expect
that solutions (assuming they can be found) to increasingly higher-order
truncated equations would also reduce respectively the remainder,

when the higher-order truncation solutions are substituted for p(¥) in
Equation (3-6). This will be examined below as higher-order truncation
solutions are found.

A method exists for solving progressively higher-order
truncated versions of Equation (3-6). From Ince L14] , Boyce and
DiPrima [15] , and Coddington and Levinson [13] it is shown that
the method of Frobenius which assumes a series solution for p(2) of

the form

p(d)= ¥ 2L A ¥ A {0 (3-8)

n=0 DB 0

is applicable to any-order truncated version of Equation (3-6), even
(in theory) the total infinite-order solution. However, to solve exactly,
any nth-order truncated equation from Equation (3-6) it is necessary

to have n+l boundary conditions (recall C_ in Equation (3-6) is an

0
unknown constant of integration). In addition to the boundary conditions
previously introduced, additional boundary conditions must be specified
in order to solve the higher order differential equations.

For the non-offset case, the primary assumption that will be
imposed to evaluate the necessary boundary conditions is that the
solutions to (3-6) are symmetric about ® - 0. The solution is therefore

an even function about ® = 0, and between -T and T it can be expanded

in a Fourier series as an infinite sum of cosines,
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p(})= & a_cosn? ' (3-9)

where the an's are coefficients, From this expression it can be

seen that all odd order derivatives of p(?) are zeroat &= 0 and = +7 .
Furthermore, evaluation of the right side of (3-6) at % - 0, with this

zero condition for the odd derivatives, shows that CO is zero, In
addition to these initial conditions, we shall further impose the restriction
that all even order derivatives, evaluated at %= +7, will be zero

also. This results in the set of boundary conditions:

a” p(?)

=0 , foralln =1 . (3-10)
a"e

4T

These conditions, along with the two used in (3-4) will provide a
solution to any order truncation of (3-6). In the following sections, solutions

to second order and third order truncated equations will be determined.

3.3 Second-Order Truncation Solution

The second-order truncation of Equation (3-6) becomes

Szig@ p(®) + (1 + coés[@ ) p'(d) + (@ - Z-la—- ) sin® p(®) = 0, (3-11)

The point & = 0 is a regular singular point of Equation (3-11) and there-
fore by Theorem 4.3 of Boyce and DiPrima [15] a series solution
exists of the form given by Equation (3-8), in either of the intervals
~-p<®<0 or 0 < $ < p where P is some positive number. The
value of P is the radius of convergence of the series in Equation (3-8),
and is at least equal to the distance from the origin to the nearest zero

of sin®/2¢ , which is at ™. Hence, a series solution can be found for &
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in the range -Tto T for which the series converges.
By writing sin® and cos® in their series expansions, substituting
Equation (3-8) into Equation (3-11), and collecting like powers of
3, 'solutiqns for m and An can be found., Two solutions are found for
m, one being zero and the other nonzero, Only the zero value for m

yields a non-trivial results and the resulting values for An’ n even,

are
nt2  n-2 X 5
2 5 2 (r-1)r 2r
(-1) rZ_:IO (-1) [m‘)! + m-r)! ~ (n-l—r)!]Ar
A = (r-even) (3-12)
n n(x +1 4 n)
2

where B8 =2027-1, A=20, A, for n odd are all zero since the density
is symmetrical. Therefore, for given values of @, all the necessary
coefficients, An, can be calculated to solve for p(?) in its series
expansion., This was carried out on a digital computer for @ equal to
1.5, 3, 10,and 30, The right half of the sy*rﬁmetrical density

p(®) in (3-8) is plotted in Figures 6, 7, 8, and 9 for these values, along
with the solutions to the Fokker-Planck equation for the same @ . Note
that the truncated solution converges rather quickly to the high density
solution, and are practically equivalent for ¢ 2 3, In essence, this can
be conjectured as the range of validity of the high density solution.

The variance of the phase error, calculated from (3-8), is also shown
in Figure 10, along with the variance of the high density solution,
Equation (3-5), and that satisfying a linear relation in 1/@, Again, the
results indicate that for ®2 2, the relation in (3-5) is valid for the

second order truncation solution as well,
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3.4 Third-QOrder Truncation Solution

The third-order truncation of Equation (3-6) gives

cos?

sin?® p"(@) + (1 + e ) p'(3) + (¢- %& ) sin® p(&) = 0.

20

= pMe) +

4
(3-13)

To solve this equation the previous series method is also used.
However, ¢ = 0 is no longer a singular point for this equation, and

the series solution is simplified slightly to

p(8)= 2 A 3" A #0 . (3-14)

n=0 0

The four boundary conditions used here are
i) p(M) = p(-T)
ki
i) | p@)de=1
-T
iii) p'(@)|; =0

iv) p"@)l,; = o.

Boundary conditions i) and iii) imply all An (n-odd) are equal to
zero. Use of the same method to determine An (n-even) as was

used previously, yields the recurrence relation

n+2 n-4 r
- 2 . P ks
A.n - n(n_l) (1’1—2) [ (n Z) (n+ )\)] A.n_2+ ( l) o ( 1)
(r-even)
-r(r-1) 2r B
e T @D T mmeenT ) Ar (3-15)

forn2 4and A =20, 3 = 2052_1. Boundary condition iv) is used to
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determine A2° Substitution yields

-5
I

5 n-1)A T =0, (3-16)

n=2

Since all the An(n 2 2) can be written in terms of A, and AZ

0

Equation (3-16) can be written as

® N
" n-2 5 n-2 J _
[ LZ n(n-1)T Dn] A +[n§} nn-1) T B_JA,=0

n=

where Dn and Bn can be determined from Equation (3-15). Then

AZ is
En(n—l)ﬂn_z B_
A n-d A
= - N
n

AO is then determined by the normalizing boundary condition (ii),

J p@) =1
I

These computations were also accomplished with a digital computer
and the solutions for p(¢), 0 £ % €T, are plotted in Figures 6, 7,
and 8 for ® = 1,5, 3, and 10, respectively., For @ 21,5, the third

order truncation solution is almost identical to the second order

solution.
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3.5 Accuracy of the Truncation Solutions

The preceeding methods can be used to solve higher-order
truncations of Equation (3-6) but the derivation of the expressions
for An become increasingly more difficult and computer time and
size (memory) required increase quite rapidly. Therefore
truncation solutions of order higher than three were not attempted.
However, it would be of interest to obtain an indication of how well
the truncation solutions were approximating the true solution to
(2-45). In particular, it is desirable to justify the notion that each
succeedingly higher-order truncation solution was a better approxi-
mation to the total solution. This requires that the truncation solutions
be substituted into Equation (3-6), and the magnitude of the remainder
associated with the higher order neglected terms should be investigated.
With this objective the solutions obtained for the first-order
(Fokker-Planck) and second-order truncations were substituted into
Equation (3-6) and the magnitude of the maximum value of the remaining
terms were calculated on a computer. The fesults are plotte‘d in
Figure 11 for various values of @ . For example, when the first-
order solution was used, the largest remainder was due to the second-order
term, the néxt largest due to the third-order term, etc. In addition,
the magnitude of the third-order term, when the second-order solution
is used, is smaller than it was when the first-order solution was used.
It is clear from studying Figure 11 that succeedingly higher-order
truncation solutions result in smaller remainders, and therefore provide
a more accurate approximation to the total solution. Note also that
while Figure L1 plots the maximum magnitude of each term, the sign of

the remainder terms alternate., Hence, the remainder appears as an
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alternating series of decreasing terms and the magnitude of the
remainder for an nth-order solution is bounded by the magnitude

of the n+l remainder term. For example, for @ = 10, the remainder
for the Fokker-Planck solution is bounded by the second-order

value of 0.26, and the remainder for the second-order solution is
bounded by the third-order value of 0,086, down 67%.

From the data presented in Figures 6 through 11 it is
indicative that for the low function density case higher-order truncation
solutions to Equation (3-6) yield better approximations to the total
solﬁtion of the infinite-order equation. It is also quite clear that as
@ increases all the truncation solutions approach the first-order
(Fokker-~Planck) solution. In other words, the nth-order truncation

solution may be represented by

p(2) = py (8) + p. (8) (3-17)

where pl(&é) is the solution to the first-order (Fokker-Planck)
equation in (3-4) and pn (8 ,%) represents the difference between

the nth-order and first-order truncation. As @ gets very large

Lim p @) ~0 n>1
o — o n

and
lim p_(2) ~py () n>1

- @

The method of solution that has been presented here can reduce
this error to as small a number as desired, in theory, given enough
time and computer capacity. The third-order truncation solution
was the highest-order computed in this analysis and it is shown that
this solution is a good compromise in the tradeoff between accuracy

and complecity of solution for the range @ = 1,5,
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3,6 The VCO QOffset Case

It has been assumed that the carrier frequency of the optical
modulating signal, ws’ and the phase-locked-loop VCO rest frequency,
UOO, have been equal., When this is not the case the VCO offset,

(UJS— LUO), must be included in (2-37). This expression for 8¢ is

then modified to

NgAt) '
A% = w)_ub)At_ekli;lcos 9(3n)

tSt St+ At . (3-18)
m

The Kn(Q?) coefficients in the Smoluchowski series equation are

modified only through the first one which becomes

KI(Q) = (W - wo) - %eAK sind .

The effect of the VCO offset is such that p(?) is no longer symmetrical,
This means that the series method of finding solutions to truncations

of the infinite-order Smoluchowski equation now has the odd as well

as the even terms in the power series solution for p(¢ ). In addition,

the constant C, is no longer zero.

0
As an example of the treatment of the VCO offset case a
second-order truncation solution will be found. The pertinent

equation is a modified version of (3-11),

(3-19)

sind pn(@) + (1 + CC;S§) p' (@) + (Ol— l - 'Y) sind p(@) = C

20 2 0

where
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———s— (3-20)
is the new parameter due to the offset, For a specific value of v ,
(3-19) can be solved by the series method of the previous sections.

For example, with y= (. 707)% , the An coefficients in the series

solution become

NG +.35350% A

A, = 0 0
1 Ay 2
n+2n-2 T
2 2 3 2 [(x-1)r 2r B 1
X _ _ —
235350 A H-D) T 2g (DT Lo T Yoot T more 44
A _ (r-even)
(n?even) nlat A+1)
n+3 n-2 (r_t.l_){-
2 2 5 2 (r-1)r 2r 8 ]
A - 2 (- -
(3535 AL LD & D) @D T @on)! ~ @morItd Ay
A - (r-odd)
(n_oléd) n(n+ A +1)
where A= 2¢ and B= 20’2-1. The two unknown constants, C, and

AO ,can be evaluated by using the two boundary conditions

i) p(M) = p(-M

i
i) [ plg)de=1.
-1

This was accomplished on a digital computer for @ =1,5 and 3 and

~

the results are plotted in Figure 12 along with the first-order solution

for @ = 3, The obvious difference between this case and the non-offset
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case is that the peak of the probability density has now shifted
from the & = 0 center line,

The two solutions for @ =3 show approximately the same
relationship as in Figure 8 for the non-offset case,

Higher-order solutions can also be obtained as in previous
sections for the non-offset cases if additional boundary conditions
are imposed to evaluate all the unknown constants of integration.

The equivalent order offset solution, however, is obtained with more
difficulty and complexity than in the non-offset case because CO

is no longer zero.

-49-




Chapter 4
THERMAL NOISE AND PHOTOMULTIPLIERS EFFECTS
In the previous chapters a first order phase locked loop driven
by a shot noise process was considered, In this chapter we investigate
the effects of additive thermal noise and photomultiplier devices

preceeding the loop.

4.1 Additive Gaussian Thermal Noise

Liet r{t) represent a zero mean stationary Gaussian noise process

having a flat one-sided power spectral density of N, watts /hz., When r(t)

0

is added to the shot noise input process of the phase lock loop of Figure

(1-2), the output of the loop filter [previously (2-6)) is now

¢ rN*(O,'T)
e(t) = Xk, JEE-T) L e 5(T - T ) cos®(T) + r'(’T):idT (4-1)
0 m=1

where r'(t) is the 'low frequency'' equivalent noise process obtained
by mixing the input noise r(t) with the VCO process. It has been shown L)
that the new noise term is itself Gaussian, zero mean, with spectral

density given by N, ; (i.e., r'(t) is simply a "frequency shifted' version

0
of r(t)).

When the transmitted phase variation, el(t), is a constant, the phase
error derivative for the first-order loop has the form

- N(®) .
A ke | L Et-t ) cosOi(t) +x'(t) ] . (%-2)

If this equation is integrated from t to t + Ot, the incremental phase

error becomes

-50-




N(at) , t + At
£8 - ek 2 cos®'(t )-k [ r(T)ydT (4-3)
m=1 m ¢

The first term is identical to that previously derived in (2-37). The
second term accounts for the added effect of the thermal noise. The
coefficients of the Smoluchowski equation can now be recalculated for

A% of Equation (4-3). In particular, Kl(é) remains the same as before:

Kl 2)= -e j;k sind _ (4-4)

since the expected value of the Gaussian process is zero. The second

moment requires calculation of

- N(bt) t+ At =
E_ —ekn2—1’:1 cose'(tm)-k£ r'(T)dT | . (4-5)

The expectation of the square of the first term has previously been
calculated, the expectation of the cross term is zero, and the expectation

of the square of the second term is kzNo/Z. Therefore
k2 2 ]
K, () = = Le A+Nyl. (4-6)

For computing the higher amounts, An(é), define

N(At)

P=e & cosb'(t )
m=1 m
t+ At

G=J r'(7) dT .
t

Then,
)
ElP+GIl-EPa P lc+a PG4 PPTPG0 s )
n-1 n-2 -3
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Since the Poisson and Gaussian processes are independent, this

becomes

El P+l " = [EP™+a_ E(P" ) B(G) + an_ZE(Pn“Z) E(G%) 4+ +--1.

It has been shown [1] that for

lim ZIT"E(G):O n>2.
At O

The expectation of P ™ has already been calculated in (2-33) and

been found proportional to At. Thus

. 1 n-m m n<2
lim —— a E(P yEGT)=0 >
At 0 At n-2 1
and therefore,
. -k
Ko = tm e meh n>2 -1

which is the same as in the earlier section when no additive Gaussian
noise was present. Hence, the Smoluchowski series equation has been
modified only in the second term, KZ(&;}). The solution for the probability
density of the phase error again requires solution of (2-45) with the
appropriate K2 modification. It has already been shown that an excellent
approximate solution for the high @ case is the solution to the Fokker-

Planck equation. For the new KZ(@) term this becomes

o
e cosd

AL N )

P(?) = (4-8)

ol

with the parameter @ is redefined as
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L ea)?
& = 2 @ ’ (4_9)
BLEe A +N0]

|

Note that the parameter @ now takes on a slightly different meaning.
The bracketed denominator term is the sum of the spectral level

due to the shot noise and the spectral level of the additive Gaussian
noise, Hence, the denominator represents the total effective noise

in the ZBL loop bandwidth, due to both the shot noise and additive noise.
The numerator is the average power of the intensity process. Thus,

"® now plays the role of an operating signal-to-noise power ratio in the
tracking loop bandwidth. The depencence of p(®) in (4-8) on @ had been

shown earlier in Figure 4, and the results there are valid with above

interpretation of .,

Effect of Photomultiplication

In many optical systems photomultiplication is used at the photo-
detector to enhance the received signal, The objective of this section
is to investigate the effects of photomultiplication on the behavior of
the phase error in a first-order tracking system,

An ideal photomultiplication of gain G has the property that it
produces G electrons at the photodetector output for each photo-electron
at the input. If the electrons are considered identical this has the
effect of producing an equivalent electron pulse waveform whose magnitude
is G times the magnitude of a single electron pulse waveform. Effectively,
this increases the charge of a single electron by the gain G. The shot

noise current of Equation (2-1) may then be written as
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N(t)
x{t) = 2 (eG)8(t-t_). (4-10)
m:1 111

The pdf for the phase error in the high function density case is again

given by (3-4), where the signal to noise ratio parameter @ is now

% (eGA)2
o= > (4—11)
BL[(eG) A+ NOJ

and BL is now eGAk/4, The photomultiplication advantage is easily
seen when the additive noise term of power spectrum level Ng is
dominant., In this case an increase in the ¢ parameter can be achieved
by increasing the photomultiplication gain G.
In the practical fabrication of photomultipliers the gain itself is often
a random variable. In the following it is assumed that the photomultiplier
has a statistically variable gain which is a random variable with mean
G and mean square E}_Z— This means that each electron at the input

produces G electrons at the output, where G is a positive random variable,

The shot noise current now becomes

N(t)
x(t) = 2 eG_ 8(t-t_) (4-12)
m=1

where the {Gm} constitutes a set of random variables, independent,
and identically distributed over zero to infinity, The incremental change

in the process is now

N(At) , t+At -
A% - _ek 2 G__ cos® (tm)=kf (7)) dT
m=1 t
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and the first two moments become

B ek GA .
Kl(@)— - 5 sing

kZ 2

_ 2

Kz(é) = > Lek)” G2(A) + NOJ

The signal-to-noise ratio @ is modified to

%mEAf
o = TS 3 (4-12)
By le” GZA + N

Hence, the shot noise power spectrum is increased by the mean square
of the gain, while the signal power is increased by the square of the
mean gain,

In some analyses it is common to assume the random gain is
Gaussian with a mean G, and a standard deviation, or ''spread', given
as a fraction of the mean gain. That is,

G
0 —p—=_ sps
sz 0=p=1,

In this case the mean square gain is

o

) 0%p=1
4

Ezsz(1+

and Equation (2-41) becomes
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1 - 2
> {(eGA)
o =

2

2
2 = P
BLEe G (L + o)A+ NO]

Note that the @ parameter degrades as the "'spread' parameter P

increases,
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Chapter 5
SECOND-ORDER LOOP ANALYSIS AND
THE GENERAL TRACKING LOOPS

In this chapter the analysis of phase-locked-loops with shot
noise inputs is extended to loops of order greater than one, and to
the first-order loop where the input and feedback functions are not
necessarily sinusoidal (general tracking loops). For the second-order
loop a vector form of the Smoluchowski equation is used for the phase
error probability density, and solution can be approximated under
conditions similar to those of the first-order loop. For the general
tracking loop, a generalized Smoluchowski equation for the probability
density is used, and again can be solved by the numerical techniques

presented in Chapter 3.

5.1 The Two Dimensional Smoluchowski Equation

The Smoluchowski-Kolmogorov probability density equation
was derived in Chapter 2 for a general scalar random process
®(t). The same basic procedure can be repeated for a vector random
procesé, and a similar vector form of (2-28) will result, Specifically,

if we denote

at) = {8,(), &, ()] C(5-1)

as the two dimensional vector process having scalar random component

processes {éi(t)} , then the vector equivalent of (2-18) is
Pe . t)=[ P2, tle, t,)Pla,.t,)de, (5-2)

where gi = {Ql (ti)’ @Z(ti)} . Defining the two dimensional equivalent
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of the characteristic function in (2-19), and repeating the steps in

(2-20) through (2-28) will yield the equation

3P(%,1) min . min
-3 G2 I [K_ (@) P, 1) (5-3)
t m n min! aéfn aérzl mn — —
where
El (8™ (88 )]
Kmn@-) = Ale_rflo X . (5-4)

Equation (5-3) is just the two dimensional equivalent of the Smoluchowski
equation in (2-28). Note that evaluation of the coefficients { Kmn}
require all the statistical cross-moments of the joint variations A@l

and A <I>2 in the components of the process @ (t). In the following

section we apply (5-3) to a second order phase lock tracking loop.

5,2 Second Order Phase Lock Loops

A second order phase lock loop is one in which the loop filter
in Figure 2 introduces an integration. The basic form of such a

filter would be one having transfer function

F(s) = 222 = 1 ¢+ % (5-5)

where a represents a possible zero of transmission. The impulse

response corresponding to (5-5) is then
fit) = 8(t) + a

For a shot noise input, the general loop error dynamical equation in

(2-9) now becomes
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N(t) N(t)
de(t) . ~ek cos0'(t) 2 5(t—tm) ~aek U

cosO'@t ). (5-6)
dt m=l m=l m

We now see that the variation A% will contain a term in & [ as in (2-37)1
and a term involving an integral in §, due to the second term in (5-6).

It is therefore convenient to define the vector

y#) = {y,(6), v, (5-7)
where
dy(t)
i) = —g— (5-8)
and let
AT) = yot) + vy (t) .« (5-9)

That is, we consider the error process in (5-6) to be decomposed into
the sum of the components of a vector process y(t). The probability
density of 2(t) is then determined from the joint probability density Py, t)

by the relation

P t) = | [Py, t)]y dy, . (5-10)

0= %71

Substitution of (5-8) and (5-9) into (5-6) yields

dy(t) N{t) _
a +aek2Z cosO(y, t )+
dt m=1 m
dy, (t) N{t)
——d_lt—_—— + ek cosO'(y, t) 2 5(t—tm) =0 (6-11)

m=1
where the dependence of 8'(t) on y(t) is emphasized. The above may

be decomposed into the two equations
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dy , (t) N(t) _
+ aekmzél cos B'(y, tm) =0

a4t
dy, (t) N (t)
1 T
: g1 8(t - =
3t + ek’ cosU'(y,t) 2-1 {t tm) 0

where it is noted that the second equation is simply the derivative of
the first. The above two equations may therefore be represented by

the two first-order differential equations:

dy(t)

— = ) (5-12a)

dy (®) ()

A - ekcos8(F ) D Sty ‘ (5-12b)
m=

The ab_ove“-eqqa;tjons specify the dynamics of the vector process y(t)
corresponding to (5-9). It is therefore possible to determine the

- eq;):‘a,tign; for th;eA joint density Py, t) in (5-10) by using the two dimensional
Smoluchowski iﬁ (5-3). The increments of the vector components

given in (5-12) are

Ayq = vy (t)at (5-13a)
t+at N
by, = --ek,J cosfB'(y, T) 23 ¥(T -T_yar
t m=1 m
N(At)
= ~ekZ cosO(y t ) . (5-13b)
m=1

These increments are needed to calculate the joint moments, Kmn(yo, Yl)

given by Equation (5-4). The Kmn(yo, yl) are calculated to be
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Ko™ =y,

— kA .
Koy () = = =5 sinlyg + )
K (¥) = (ek)°(A)/2
02\Y/) = ¢
Kon(_y:) = (-ek)n cos™ O (;, t)n{t,%) n=z3
where again

n(t, 8) = A + Asin[wst + 9 (1))

All the other Kmn('i) moments not listed above are zero. In this

case the two-dimensional Smoluchowski series equation becomes

. - -~ kA . p—
3 ply) _ dp(¥) d & sin(y, +v,) pY)

73 2
2y
® n
-% 3 —
N ZZ n)! Sk @1l (5-14)
n<3 3 Y1

The above again represents an infinite order partial differential
equation for the joint density P(y) = P(y,t). Some simplicity is
afforded by considering only the steady state solution, but the resulting
equation is still difficult to solve explicitly without digital computation.,
For the case where the average intensity A is much greater
than the loop bandwidth BL(i. e., larg electron density) the approximate
steady state solution to (5-14) can be found by limiting the number of
terms involved. The corresponding steady state solution for ¥(t) from

(5-10) is then approximately,
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P~ — A>>B, (5-15)

where ¢ = A/ZBL, but BL now has the definition

_ eAk + 2a
BL = g . (5-16)

That is, the loop bandwidth B. 1is increased by the added zero in the

L
loop filter of (5-1). The high density solution for P(®) is therefore
identical to that of the first order loop case, with the adjustment in th
BL bandwidth., For higher-order loops an equivalent n-dimensional

vector process must be defined and an n-dimensional Smoluchowski

equation must be derived, increasing the complexity of the problem.

5.3 General Delay Tracking Loops

The objective of this section is to investigate the behavior
of a phase tracking system when the input intensity modulation signal
and loop feedback function are to a general periodic nature, but not
necessarily sinusoidal, Let the signal electron rate of Equation (2-2)
be represented by ns(t, Tl(t)) and the feedback function by y(t, 'Tz(t))
where Tl {t) and Tz(t) are their respective time delays., The differential
equation describing the loop operation for shot noise inputs, where

91 is again assumed constant, becomes

N{t)
S —eknjé1 Oe-t ) yit, T, (£) (5-17)

where T(t) = Tl (‘c)—’f2 (t) and N{t) is again a Poisson random variable

with intensity n_ (t, Tl (t)). The incremental delay error is
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N{(At)
AT = —ek L VIt To(t ) (5-18)

m=1

and the Kn('f) moments of the Smoluchowski series equation are now

. ¢ N(@y . |
K ()= lim G+ E_ -ekZ ylt Tt )] (5-19)
At =0 el

where the expectation is conditioned on T. Thus, Equation (5-19)

becomes

K _(2) = (k)" y"(t, T, (t)) n(t, 7)) (5-20)

where the over-bar represents time averaging inherent in the
loop mixer function. Hence, Kn(é) is of the same form as in

Equation (2-39), and would be identical to it if

= i T
n(t, 71) A+ Asin(Wyt +T,)

dn(t, 9)/36

"

y(t, T, (1)

H

cos (Wt + T, (t))

The third-order truncated Smoluchowski series equ.at’cionzl<

for a general input function becomes

q 2.2
e AR CIEEN R
3
.
Y20 nte ) e 0]+ @0° 25 [P T, nt 1) pir, 0]

oT

(5-21)

XA

rpI—Iere, attention is restricted again to only the first three terms of the
infinite series equation, accepting the results as only an approximate
solution.
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The steady state version of Equation (5-21) occurs when the left-hand

side is zero. Integrating the equation with respect to T gives

2

Co=eklR_(npm] +n =t %[Ryznml
2.
34 [ R ] 5-22
+ (ek) 1;;; an(wﬁ p(T) o )
where
Ro(M= yn
R > (M= an
yon o
R , (0=y°n
Y n

are correlation functions, Note that this equation corresponds to the
previously considered equation (2-45) with the sinusoidal functions

»replaced by the general time averaged correlation functions given

above,

5.4 An Example-~Early lLate Gate Tracking

In rader and pulse tracking systems a periodic pulse train is
locked to a locally generated periodic signal through a feedback tracking
system, similar to that in Figure 2. When the two signals are in time
lock, the local signal tracks the time variations in the arrival times
of the incoming periodic pulse train. In optical tracking systems the pulse
train is generated by a pulsed laser whose intensity is detected by a
photodetector at the receiver. The feedback signal in the tracking loop
is designed such that when it is multiplied with the detected pulse train
and integrated over some period the result is an error function that is

odd with respect to the time delay, This local signal is often designéd
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to be a periodic train of positive-negative pulses as in Figure 13,
The multiplication of the received pulse train by this particular
local signal is equivalent to ''gating in' the former signal by the
latter signal, Hence, the receiver is often called an '"early late gate
on ''split-gate' tracker.

Since the output of a photodetector is a shot noise process with
intensity nf(t, Tl), the analysis problem is an example of the application
of the general tracking theory of the previous section. By referring

to Figure 13 it is easily seen that
Y2 T, () = yit, T, ()
2 2

2, T, 1) = o, 7, ()]

and therefore

R (M= y& T,{) nt, T,) = Y3(t, To () nt, 7))

yn
= R, (1
yn
1 T
=1 Loy e ) a (5-23)
= _2
R = vt T,(0) nit, 7))

1 T

- Z?FT«f n(t, T, (t)) n(t, T;) dt + (a constant) . - (5-24)
0

Equation (5-22) now becomes

2 3 2
Co= kR MpMm+ S L IR (mpml+ B Lr r)pm)]

0 dTZ

(5-25)
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Feedback Signal
y (t, 6,(1))

Figure 13,
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= b - 2A+M
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Therefore, for the given input and feedback functions in Figure 13,

er differential equation

h

Equation {5-25) could be solved asa second-or
for the delay error density of an ""Early Late Gate' tracking system.
The solution would represent an approximate solution to the infinite
series Smoluchowski equation. A computer solution similar to that

used in Chapter 3 would be applicable to the solution of Equation (5-25).
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