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Abstract  

This repor t  presents  the resul ts  of a study effort examining 

t ime synchronization in an  optical communication system. Consideration 

i s  given pr imar i ly  to t ime locking by means of a phase lock tracking 

loop. Since photo-detection of an intensity modulated optical beam 

produces a shot noise random process  at i ts  output, synchronization 

analysis requires  a study of phase locking with shot noise processes .  

A s ta t i s t ica l  analysis of tracking shot noise i s  presented. Of par t icular  

in t e re s t  i s  the  probability density of the tracking e r r o r ,  which indicates 

the behavior of the loop during tracking, and therefore  i s  direct ly  

related to the ability to  maintain accurate  synchronization. The resu l t s  

of the study a lso  have application to  ranging and doppler tracking using 

optical sys tems.  
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Chapter 1 

INTRODUCTION 

An important operation in communication systems is  the maintenance 

of synchronization between t ransmi t te r  and receiver.  This is generally 

accomplished by transmitting continuously over a separate  channel a 

known periodic waveform, and having a subsystem of the receiver  contin- 

ually t r ack  the waveform, thereby providing timing information for the 

ent i re  receiver  operation. The tracking is  most  typically accomplished 

by a delay locked loop which t racks  the instantaneous t ime delay of the 

received synchronizing signal. 

In an optical communication sys tem, the synchronizing signal i s  

often t ransmit ted a s  an intensity modulated optical ( l a se r )  beam, which 

i s  photo-detected a t  the receiver .  The subsequent timing operation i s  then 

achieved by t ime  locking the receiver  delay locked loop to  the photo- 

detector output. Since photo-detection of an intensity modulated optical 

beam produces a shot noise random process  a t  i ts  output, the analysis 

of the synchronization subsystem requires  careful  study of the problem 

of t ime locking with shot noise input functions. In this report  we present  

resul ts  of a study of the s tat is t ical  analysis of tracking shot noise processes .  

Of particular in te res t  i s  the probability density of the tracking e r r  o r ,  which 

indicates the behavior of the loop during the tracking operation, and the re  - 

fo re  is  direct ly  related to  the ability to  maintain accurate  synchronization. 

The results of the study a lso  have application to  ranging and doppler 

tracking using optical systems.  



1 - 1  The Photo -Detection Model 

The overall  block diagram of the sync subsystexl is  shown in 

Figure 1. The optical beam i s  intensity (power) modulated with a 

synchronizing signal, A point source  photo-detection responds to the 

received optical radiation by producing the output shot noise process  [6 ,71  

where e is  the electron charge, h ( t )  i s  the photo-electron waveshape in 

the photo -detector,  t a r e  the random location t imes of each photo - 
m 

electron and N(0, t )  i s  the number of photo-electrons occurring during 

the t ime interval  (0,  t). The random process  N(0, t )  is  called the counting 

process of the shot noise and has a mean value given by [z, 3 , 4 1  

where 

n ( t )  = Y P(t) = intensity of the counting process ,  or  average 

ra te  of photo-electron occurrences.  

P(t) = instantaneous power in the received optical field. 

Y = proportionality constant dependent upon the optical 

c a r r i e r  frequency, Planck's constant, and the detector 

efficiency. 

Note that the average ra te  of photo-electron occurrences i s  proportional 

to  P ( t ) ,  the power modulation on the optical beam. This means that in 

the case  of optical synchronization, the intensity process  n ( t )  in (1-2)  

i s  direct ly  proportional to  the synchronizing signal that power modulates 

the optical beam, 

When the bandwidth of the photo-detector is  large relative to 

the bandwidth of the intensity n ( t ) ,  the electron functions in (1 -1 ) can be 
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considered as  delta functions, In addition, N ( 0 ,  t )  becomes a Poisson 

counting process  6 5,  6 ,  81 , and the probability of j photo-electrons 

occurring in an interval  (8 ,  t)  is  given by 

For  shot noise process  governed by Poisson counting, the random location 

t imes  a r e  independent, and have the probability density [ 5,  9 ,  101 

where i s  the average of N(0 ,  t )  in (1 -3) and i s  given in (1 -2) .  Thus,  

the intensity process  n( t ) ,  in addition to  specifying the average r a t e  of 

electron occurrences ,  a l so  defines the probability density of location 

t imes  of the electrons.  Using (1-3) and (1-4) it can be shown [5,  61 

that the mean of the shot noise x( t )  in (1 -1) is  

[mean x( t ) ]  = f 6 (t-y) n(y)  dy = n( t )  
0 

for  wideband detectors .  Hence, the mean of the photo-detector output 

in Figure 1 corresponds to the synchronizing signal used at  the t ransmi t te r .  



A delay locked loop is a feedback tracking sys tem used to t ime 

lock a locally generated periodic signal to the received periodic 

synchronizing signal. During each period, the two signals a r e  t ime 

compared, and differences in timing generate e r r o r  voltages that a r e  

fed back to  control the timing of the local signal generator.  The choice 

of signals a t  the t ransmi t te r  and receiver  determine the sensitivity 

of the e r r o r  voltage to  the timing difference. When the two signals 

a r e  exactly in s tep during each period, the e r r o r  voltage is zero ,  and 

the local signal remains t ime synchronized with the received sync 

signal. When this  occurs ,  the local signal generator i s  producing a 

clean, t ime locked signal that can be used for timing in the remainder  

of the receiver .  Instantaneous e r r o r  voltages due to  input noise 

represent  random timing e r r o r s  between the two signals, and therefore 

appear a s  synchronization e r r o r s  in the receiver  operation. 

When the synchronizing and local signal a r e  taken a s  sinus oids , 

the delay locked loop i s  called a phase lock loop [l] (since timing e r r o r s  

can be directly related to  phase e r r o r s  in the sinusoids). In phase lock 

loops, the signal generator i s  simply a voltage controlled oscil lator 

(VCO), and the timing difference is produced in a fi l tered frequency 

mixer ,  as  shown in Figure 2. The phase variation on the synchronizing 

sinusoid i s  then the phase signal that is  t o  be tracked by the loop. 

F o r  example, i f  the s ynchr onieing signal were  taken as sin1 W. t + 0 (t)]  , 
J 

then the loop must  generate an e r r o r  voltage that drives the local VCO 

in accordance with e l  ( t) .  

The loop fi l ter in Figure 2 smooths the e r r o r  voltage for control 

of the VCO, The complexity of the loop, and of the associated analysis ,  





i s  determined by the type of filtering used. For  a f i r s t  o rde r  loop, the 

f i l ter  i s  r e m ~ v e d  and the mixer  e r r o r  signal feeds direct ly  the VCO. 

A second o rde r  loop is  produced i f  the loop fi l ter effectively produces 

an integration. Higher order  loops a r e  generated by introducing m o r e  

filte r integration. 

The loop mixer  simply "beats" together the input and VCO 

s inusoid. Since the mixer  i s  inherently bandlimited, only baseband 

frequencies a r e  produced a t  the mixer  output, while harmonics of the 

VCO center frequency a r e  eliminated. 

The e r r o r  voltage in a phase lock loop i s  direct ly  related t o  the 

phase difference between the VCO and the loop input signal a t  each instant 

of t ime. Hence, analytical measures  of loop performance can be obtained 

through derivation of the loop e r r o r  equations. Though these equations 

a r e  generally nonlinear, the response of the loop to a "clean" synchronizing 

signal can usually be determined using basic nonlinear feedback analysis.  

Typically, the loop "pulls into" lock and the steady s tate  loop e r r o r  i s  driven 

to  zero ,  o r  e l se  the sys t em i s  unstable and the loop "falls out" of lock. 

On the other hand, when the loop input i s  stochastic,  the loop e r r o r  responds 

in a random manner.  In this case  one can only descr ibe  the e r r o r  s ta t is  - 

t ically by i ts  probability density. The derivation of this density, which 

is generally non-stationary, i s  complicated by the non-linearity of the loop. 

Often, we r e s o r t  to  a steady s ta te  density a s  an indication of the s tat is t ical  

loop behavior, The steady s tate  var iance of the loop e r r o r  i s  then a 

d i rec t  indication of the phase e r r o r  caused by the randomness of the 

input. 

In the past 1 ,  13 1 the above analytical procedures have been 

extensively applied to  the case  where the input randomness is  due to  
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additive Gaussian noise; i. e . ,  the loop input i s  cornposed of the sum of 

a clean synchronizing signal plus additive Gaus s i a ~  nois e ; However, 

in the optical model of Figure 1, the randomnes s at  the loop input is due 

to the shot noise nature of the photo-detector output. The remainder 

of this report i s  devoted to an investigation of the loop phase e r r o r  

when the phase lock loop in Figure 2 i s  forced by the input shot noise 

process in (1 -1). 



Chapter 2 

ERROR EQUATIONS FOR PHASE LOCK LOOPS 

In this chapter we analytically investigate the ability of a phase 

lock loop to lock to  a synchronizing signal that has  been optically 

transmitted and photo-detected. Mathematically, the basic problem 

i s  that of determining the behavior of a phase lock loop when i ts  input 

i s  a shot noise process having the synchronizing signal a s  i ts  intensity 

process .  In the following section, we derive the dynamical equations 

that descr ibe  the evolution of the phase e r r o r  for  such a system. 

2.1 Derivation of Loop E r r o r  Dynamics 

cons ider  the sys tem shown in Figure 2 where the loop 

input function i s  the shot noise process  a t  the wideband photo-detector 

output, given by (1-1): 

N 0, t )  
x ( t )  = e & ( t - t m )  . (2-1) 

m =  1 

Here ,  e i s  the electron charge,  C t 3 a r e  the random location t i m e s ,  m 

6 ( t )  the electron functions and N(0,  t )  i s  the shot noise counting process  

having intensity 

The above i s  proportional to  the transmitted intensity modulation and 

represents  the synchronizing signal. In (2-2), rfi i s  the synchronizing 
S 

frequency, b is the modulation index, e l  (t) i s  the  phase (time delay) 

variation on the  synchronizing signal that i s  to be instantaneously t racked  

by the loop and A is the average value of ns(t) .  Recall f r o m  (1 - 2 )  that  

ns( t )  can equivalently be interpreted a s  the r a t e  of electron occurrences 



in the photo-detector, s o  that A represents  the average number of 

electrons produced per  sec ,  

The VCO output in Figure 2 is represented by 

VCO output = k l  cos [ m o t  t e2(t )I (2 - 3  

where k is  the VCO gain, (aO is the VCO res t  frequency, and O2(t) 
1 

i t s  phase variation. The loop phase e r r o r  is defined as  the phase 

difference between the synchronizing signal phase and the loop VCO 

phase, and therefore is 

@ (t) ' t" s t t Bl(t)l - -hot  t 0 2 ( t ) l  = (Ws-W0)t t e l  (t)-B2(t) . (2  -4)  

The loop mixer  output i s  then 

and the loop fi l ter output i s  

The VCO output phase responds to  the VCO input control voltage ef ( t )  

through the l inear  relation 

do2 (t) 

d t = k e ( t )  2 f 

with k a constant of proportionality. F r o m  (2-4) we have, upon 
2 

differentiating, 



The t e r m  ('N - w ) i s  the difference between the input synchronizing 0 

frequency and the VCO r e s t  frequency and is called the frequency 

"offset" of the loop. Substitution f rom (2-6) then yields 

where k = k k and can be interpreted a s  the total gain around the 
1 2  

loop. Equation (2-9) i s  then the stochastic integro-differential equation 

that describes the behavior of the loop phase e r r o r  in t e rms  of the 

input signal and loop parameters.  Note that it i s  a non-linear equation 

with @ (t) appearing on both sides of the equation. The input shot noise 

and the phase variation of the transmitted synchronizing signal play 

the role of "forcingtt functions in the generation of the e r r o r  process. 

Since the input shot noise contains random parameters ,  the solution 

fo r  * (t) necessari ly evolves a s  a stochastic process.  

We ultimately will be interested in the statistical properties of 

the phase e r ro r .  We may however note that a sample expression for 

the mean of 4 ( t )  in ( 2 - 9 )  can be generated, which may be useful in signal 

design. If we average both sides of (2-9) and interchange averaging 

and differentiation on the left, we see  that 



where 3 (t)  i s  the mean of @ (t). The averaging in the integrand can 

be car r ied  out by using the conditional expectations: 

The inner expectation involves only the average of the shot noise,  

which i s  given in (1 -5)  a s  

Substitution into ( 2 - l l ) ,  allows us t o  rewr i te  the braces  in (2-10) as 

sin[(wo- @J )t + @  I) t E m [  t e r m s  a t  (wo t )I . E @I. s s (2-13) 

The loop fi l tering i n  (2- 9) eliminates the s u m  frequency t e r m .  Hence, 

(2 -1 0)  becomes 

The above is  interesting in that it shows that i f  the loop i s  tracking 

frequency and phase fa i r ly  accurately (i. e. , = UJ and sin(cP) d P ) ,  then s 0 

(2-14) is approximately 

r dO1 
t 

- -  - -  a E d t e k j '  f ( t - ~ ) g ( T ' ) d ~  a 
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This equation has the fo rm of the deterministic tracking e r r o r  produced 

in the linear feedback loop shown in Figure 3 ,  when forced by the input 

O 1 ( t ) .  Note that the equivalent l inear  loop replaces the VCO by an 

integrator ,  the mixer  by a subtractor ,  and retains the same  loop fi l ter.  

Hence, the loop e r r o r  function in (2-9) has  a mean value such that when 

the loop i s  tracking well [. i ,  e. , I @ (t) ( << 11, the mean varies  in t ime 

according to the e r r o r  function of the l inear sys tem in Figure 3.  The 

lat ter  sys tem can therefore be used to  design loop f i l ters  and yompute 

mean e r r o r  performance. 

For  a complete s ta t is t ical  analysis ,  however, we must  re turn  

to  (2-9) for study. The complexity of the e r r o r  process @ (t) i s  exhibited 

even if  we consider a simplified special  case.  For  example, consider 

a f i r s t  o rder  loop in which the loop f i l ter  i s  removed. [ This effectively 

replaces f ( t )  by a delta function in (2-6). 1 In this case ,  (2-9) becomes 

- 
dip do - 
- = ; (W - ifi ) + 2 -ek cos [m t + e l  (t)- ip(t)l . dt L S  0 dt J s 

Though simplified, (2 -16) is  s t i l l  a non-linear differential equation 

involving the random loop e r r o r  process  $ (t). By integrating both sides 

we note 

The second t e r m  represents  a summation of random "jumps ", the height 

of the jumps dependent upon *(t)  itself. This identifies the process  

@(t) in (2-15) a s  a disconfinuous, or "jump", process in which the 





number of jumps a r e  governed by the counting process  N(0 ,  t ) .  Therefore,  

even for  this specialized case ,  the complexity of the e r r o r  process  i s  

apparent. 

In the following section we der ive  an  equation involving the 

probability density of a general  random process.  Subsequently, we shal l  

apply the resu l t  t o  the e r r o r  process  generated in (2-9). 

2.2 Probabili ty Density Equations of Random Processes  

Let  @(t) be a sca la r  random process ,  and le t  p(ml, t l )  represent  

the probability density function (pdf) of the process  a t  t ime t in the variable  
1 

m,. Similarly,  denote p ( m l ,  t l  1 @ t ) a s  the conditional pdf of +(t) a t  t ime 
2 '  2 

t l  , given that  @ (t2 ) = m a t  t ime t The pdf i s  then always related to  2 ' 

the conditional pdf by 

Note that the conditional density can be interpreted as  a transit ional 

density in the sense  that it "converts " the pdf a t  t ime t2 to  i ts  new 

density a t  t ime  t l .  When t l  > t2, this transit ional density essentially 

indicates the manner  in which the pdf propagates in time. 

Equation (2-18) can be rewritten in a different f o r m  for 

convenient interpretation and application. Define the conditional 

character is t ic  function of the random increment  A @  = iP - @ a s  2 1 

By inverse Four ier  t ransform 

I -j"(mI -+2) 
~ ( @ , , t , l + ~ . t ~ )  = 2 7  e cA(") dcs * 

- 



Substitution of (2-2 0) into (2 - 18) then yields 

Now it is well known that the characteris t ic  function can be expanded 

into moments as 

where 

is  the is conditional moment of given @ (t2) = m2.  [ Alternatively, 

rn.(A@) a r e  the moments of the conditional pdf in (2-20). 1 I t  follows 
1 

that 

But 

and (2-24) becomes 



The f i r  s t  t e r m  i s  the pdf a t  t ime t = t and the summation repres ents 2 ' 

the increment in this latter pdf to produce the pdf a t  t = t l .  If we se t  

t2  
= t and t = t + A t ,  then (2-26) becomes 

1 

Dividing by A t  and passing to the limit a s  A t ' 0 we obtain 

where 

r EC (A* $11 1 K . ( @ ) =  l im L 
1 A t -  0 A t  J 

Equation (2-28) is called the stochastic kinetic equation [17] , or the 

Smoluchowski-Komogorov equation [ 161. When the coefficients Ki(4 ) 

exist, this equation provides a relation that must be satisfied by the 

pdf of the process @ (t), Note that the equation i s  a partial differential 

equation with variable coefficients, and involve a l l  orders of derivatives. 

The remarkable point i s  that no continuity conditions on 4 (t)  were 

required, so that the equation is valid whether @(t) is  continuous o r  not. 

In essence, the integral equation in (2-18) has been replaced by the 

differential equation in (2 -28). f i r the r rnore ,  while one needs the 

complete conditional pdf to c a r ry  out (2 -1 8),  only the moments of this 

density a r e  needed to derive (2 -28). 



The principle usefulness of the Smoluchs-wslci equation occurs 

when only the f i r s t  few coefficients Ki (P ) a r e  non-zero, In par t icular ,  

i f  K .  = 0 ,  i ' 3, the resulting equation is  called the Fokker-Planck 
1 

equation, and has been extensively studied [I 1. The Fokker -Planck 

equation will a r i s e  whenever the random process  I (t) is  continuous, 

while discontinuous processes  generate a l l  the coefficients in (2 -28) 1.171 . 
We would expect this la t ter  condition to be t r u e  for  our process  h ( t ) ,  

based upon our ea r l i e r  discussion of the apparent jump nature of the 

e r r o r  function. Equation (2 -28) i s  a par t ia l  differential equation 

of the type 

where L.+ i s  a differential operator in @ . The usual method for  

solving this type of equation i s  by separation of variables.  In this  method 

it i s  assumed that 

P ( +  , t )  = K(t) P ( @ )  (2-31) 

and a solution i s  desired that sat isf ies  Equation (2-30) with the 

appropriate initial conditions. Substitution into Equation (2 -30) yields 

Since the left s ide depends only on t, and the right side only on Q , 

they can be equal only if  they equal a constant. Thus 



for  some c i f  a solution i s  to  be found by this method. Furthermore,  

i f  C c.1 is  a se t  of values of c which satisfy the above, then p(*,  t )  
1 

must be of the form 

where the [ B ~  (*)I  a r e  determined by appropriate initial conditions. Since 

each t e r m  of the sum approaches zero  as  t goes to infinity for al l  c 
i 

grea ter  than zero, the steady state solution, p{@) (defined as  the 

limiting fo rm of p(@,  t )  a s  t ' *), must be due to the value of ci = 0. 

Therefore, f rom (2-33), the steady state  solution satisfies 

Thus, the steady state solution to (2-35) (if one exists) is  the solution 

to  a differential equation obtained by setting the right hand side of 

(2-30) equal to  z e ro  and replacing p(@, t) by p(@). 

2.3 Probability Density Equations of Loop Tracking E r r o r s  

I t  has been shown that a general random process has a probability 

density which satisfies the Kolmogorov partial  differential equation. We have 

seen that this equation may, however, involve an infinite number of 

derivative terms.  In this section we would like to derive the corresponding 

pdf equation for  the phase e r r o r  process of a tracking loop, governed by 

the dynamical equation in (2 -9). To accomplish this, we must calculate 

the sequence of moment coefficients 15. ($1 given by (2-29). This in turn 
1 

requires determinations of the phase increment A@ of @ (t) during the 

interval (t, t -t- At). 



Consider a f i r s t  o rder  phase lock loop tracking a synchronizing 

signal with a constant delay, following wideband photo-detection, The 

phase e r r o r  @ ( t )  then sat isf ies  the differential  equation (2 -16) ,  and has  

the fo rm:  

where el is  the constant phase delay. Note that the forcing function 

in (2-1 5) i s  zero,  s o  that the  steady s tate  mean e r r o r  i s  zero.  The phase 

variation A@ i s  obtained by integrating d% f r o m  t t o  t + A t .  Thus, f r o m  

(2-16) 

t + A t  N(0, t) 
= - ekj' cos[(fl s t + @ l - @ ( t ) ] e C  6( t - t  ) d t  

m =  1 m 
t 
NAt)  

= -ek cos [ mstm + el - @ (tm)] ( 2  -37) 
m=O 

where  at) is  the number of electron occurrences in the interval 

(t,  t + At). The above expresses  the increment  of the phase variation 

during (t, t + At). Note that  this variation i s  a l so  a "jump process", 

having randomly occur  ring "jumps " of random heights,  and that the 

argument of the cosine function depends upon the process  @(t)  itself 

(which emphasizes the non-linearity of the loop dynamics).  

Now, f r o m  Equation (2 -2  9 )  



where 8 '  =EJJ t + 0 - @  1 and the expectation i s  conditioned on @. The 0 1 

quantity in brackets becomes 

N(At) N(At) N(At) 

C C C cos e f ( t m  ) cos O f ( t  ) * COS O 1 ( t m  ) 
m =1 m = I  m =1 1 2 n 

1 m2 n 

which i s  

~ ( h t )  N(At) N A t )  
C c0sn O ' ( t  m + C . . . C C O S  O 1 ( t  ). . . co, €I1(, ) 

ml m rn= 1 m =1 m =1 n 1 n 

m, # m Z  # . * .  # m  . n 

The expectation over just the second t e r m  above i s  

where E 
tm/N, @ 

i s  a conditional expectation given N and *. The 

expectation over N(At) simply becomes the average of the counting 

process over (t ,  t + A t ) .  Since this expression does not involve those 

t e r m s  where ml= m2 = . .. = m the above experession becomes 
n ' 

--n - 
(N -N) E t 1 [cos O1(t ) 0 ( t  ). . . cos e t ( t  )I 

@rnl mZ tm n ml m~ m n 

where f r o m  (1 - 2 )  



The conditional expectation of the t e r m  in the brackets requires 

the n-dimensional joint probability density of the n random variables 

I t  1. For  Poisson shot noise processes this i s  obtained f rom (1 -4) 
m 

a s  

Therefore, the conditional expectation over the [ t, I i s  

tcos e l ( t  1.. . cos Q1(t )I6n(t ) *  n(t  )I dt . * dt 
ml m ml m 

n n ml n m 
t t +tm 

n - 1 
for t t . . . t (t t At). As we take the limit a s  A t goes t o  

ml m n 
zero this expression behaves as  

Therefore, taking the limit as  A t  goes to zero the above expression 

n-1 
behaves as (At) which goes to zero. Hence the second t e r m  resulting 

f rom Equation (2 - 38) is zero and 

N(At) 
(-ekIn E - n K (@ ) = l im L; cos qt,) 

n a t - o  nt N, tm /@ m=l 

= lim (-ek)n - 
At NEt  / @  Ccosn Q1(t )I , 

At - 0 rn m 

The expectation of the bracketed t e r m  is 



(-ekln cos O1(t) n ( t )  . 

This equation represents  the general  nth conditional moment of the 

increment of the phase e r r o r .  Note that it is  in t e r m s  of the feedback 

signal and the  intensity modulation, n(t) .  Since Equation (2 -39) i s  

basically a product of sinus oids, Kn(@) will contain s ine  waves at the  

"beat" frequencies.  Remembering that t e r m s  involving frequencies 

of nW0, n 1 ,  a r e  eliminated by the mixer  "<, the general  expressions 

for K,(@) become 

where 

n - odd 
i -odd 

The se r i e s  f o r m  of the pdf equation now becomes 

-9, ,,- 
 ath he ma tic ally, we a r e  implying that the expectation operation in  
Equation (2 -29 )  contains an additional t ime averaging operation, 
caused by  the filtering effects of the mixer, Thus, to  be r igorous,  
a t ime averaged version of K,(@) is being computed, 



(n - odd) 

(n - even) 

The solution to  this equation is the pdf, P(@,  t) ,  of the phase e r r o r ,  

0, a t  each instant of t ime,  t. Note that  the equation i s  an infinite 

order  par t ia l  differential  equation with coefficients that a r e  functions 

of the var iable  @. The infinite number of derivative t e r m s  can be 

direct ly  attributed to  the lljump"nature of the phase e r r o r  process .  

The steady s ta te  solution of the pdf i s  given by (2-35) obtained by 

setting the r ight  s ide of (2 -42) equal to zero.  Thus, with p(@)  denoting 

the steady s t a t e  pdf, we have 

(n-odd) (n - even) 

(2 -44) 

The steady s ta te  pdf can be determined by solving the above total 

differential equation with the approprieate  initial conditions. The 

equation i s  s t i l l ,  however,  of infinite order  and the hope of obtaining 

an exact solution i s  somewhat ambitious. Nevertheless,  there  i s  s t i l l  

us  eable information that may  be extracted f r o m  Equation (2 -44) 

without a complete solution. For  example, we note that the coefficients 

a r e  periodic in 4, implying that if p (@) is a solution to (2-44) then 

p(@ -I 2n ) i s  a l so  a solution, Hence, steady s tate  pdf solutions a r e  

periodic with period 2n. For  this reason we need only concentrate 



on deriving a normalized solution over a single period, and @ will 

therefore be constrained ( - f T ,  f T )  in the subsequent analysis. Fo r  

convenience, we can rewri te  (2-44) in a slightly different f o r m  by 

f i r s t  dividing through by the coefficient fo r  n =2.  This yields 

2 
o = a [ sin* , (@)I  + -1 + d@ d 3  [sin@ p ( @ ) ~  d*2 (A) 

where a =  2b/ek. F o r  a f i r s t  order  loop the gain k is direct ly  

related to  the loop noise bandwidth B by [11 
L 

Since it is desirous to  operate the loop with a given bandwidth, the 

loop gain k must  be adjusted to  achieve this value. Hence, k = 4B /eA L 

and the a parameter  in (2-45) takes the f o r m  

The coefficient Ab can be  interpreted a s  the average r a t e  of electrons 

of the  intensity modulation by the synchronizing signal. In this light, 

a i s  then the average number of electrons produced in a 1 /2BL t ime  

period, i. e . ,  in a t ime  period corresponding to  the reciprocal  of the  

designed c a r r i e r  bandwidth. Hence a can be considered an electron 

function "density", indicating the accumulation of electron occurrences 

over a fixed t ime  period. By relating electron occurrences to photons, 

the density can a lso  be  interpreted in t e r m s  of received spehron iz ing  



energy, or in t e r m s  of signal to noise ratios.  In par t icular ,  i f  we 

2 
multiply numerator  and denominator by e A,  then 

L 
The t e r m  (eA) is  proportional to  the average cur rent  power 

2 
in the synchronizing signal, while (e A) i s  the spec t ra l  level of the shot 

2 
noise power spec t rum and (e  A)2B i s  proportional to  the total  shot L 

noise power in a 2B bandwidth. Hence, a can a lso  be considered 
L 

an indication of the signal-to-shot noise power ratio. As such, we 

would expect performance to  improve a s  a increases .  This would 

mean the modulation index b should be a s  large as possible for  best  

operation. We sha l l  find this conjecture i s  t r u e ,  and therefore f rom 

h e r e  on b will be given i t s  maximum possible value (b = 1) in (2 -47). 

Note that the higher order  coefficients in (2-45) decrease  

with increasing a .  This appears to indicate a diminishing importance 

of the higher derivative t e r m s  in contributing to the solution as  a 

increases .  This conjecture will be investigated in the next chapter,  

and will be shown to have both a mathematical and physical inter - 

pretation. 

One last  point i s  worthy of comment concerning (2-45). 

Note that the only parameter  effecting the equation, and therefore 

the solution, is a, the electron (photon) density in a 11233 t ime 
L 

period. In par t icular ,  the synchronizing c a r r i e r  frequency w 
s 

in (2-2) does - not appear in the solution. Hence, it i s  meaningless 

to  cite values of numbers  of electrons (photons) per  cycle of s p c h s o n -  

izing c a r r i e r  frequency in discussing optical t ime locking. It is 



only the number per  cycle of loop bandwidth that i s  significant. 

Of course ,  the sync frequency is important in converting 

phase e r r o r s  in radians to timing e r r o r s  in seconds. 



Chapter 3 

PROBABILITY DENSITY SOLUTIONS 

In Chapter 2 an infinite o rde r  differential equation was derived 

for  the steady s tate  probability density of the loop phase e r r o r  of a 

f i r s t  o rde r  tracking loop with shot noise inputs. The equation showed 

that the  coefficients of the resulting derivative t e r m s  in the equation 

depended upon the electron function r a t e  in the photo-detector, which 

in  turn  depended upon the received radiation power. In this chapter 

we investigate approximate solutions for  the des i red  probability 

density of the tracking e r r o r .  

3. 1 High Electron Density Solxtion 

F o r  the case  where the function density a in (2-47) is extremely 

high, a f i r s t  approximation to the solution of Eq. (2-45) can be obtained 

by dropping a l l  t e r m s  that have powers of 1 / a  a s  coefficients. This 

leads to the equation 

where p(*) i s  the steady s tate  density and a is the electron density 

a t  the photo-detector output: 

Equation (3-1) i s  just the steady s tate  form of the Fokker -Planck 

equation and can easily be solved. Integrating both sides yields 

Co = sin 9 p ( 9 )  + dp (@) 



where Co is an a rb i t r a ry  constant. This equation can be solved over  

the interval,  -n @ ", with the two boundary conditions : 

1) p )  = p - )  (periodicity) 

The solution is  

where P o  i s  the imaginary Besse l  function. Equation (3-4) is plotted 

in Figure 4, for various a .  Note that the probability density 

approaches,  for  large a , a delta function a t  zero,  while for  -+ 0, 

it approaches a uniform density over the phase e r r o r  interval,  

The fo rmer  case  can be considered the l imit  of perfect tracking, 

while the la t ter  represents  a completely random phase e r r o r ;  i. e . ,  

poor phase tracking. The ability to t rack  is  therefore direct ly  related 

to  the value of the a parameter .  

It is of in te res t  t o  note that the solution in (3-4) is the s a m e  

solution obtained for the f i r s t  o rder  loop when driven by a sinusoidal 

signal plus additive while Gaus s ian  nois e b , 1 1 1 . Thus, the e r r o r  

differential equation due to  shot noise inputs becomes identical to  that 

due to additive input Gaussian noise a s  the higher order  coefficients 

a r e  eliminated. In essence, this serves  a s  an apparent justification 

for  the truncation of Eq. (2-45) to  (3-1) for  large values of a since 

it has  been shown [ 3, 5 , 6 1  that a d iscre te  poisson shot noise process  

approaches a continuous Gaussian process a s  " ", Thus, for  
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a >> 1,  the shot noise e r r o r  pdf i s ,  t o  a f i r s t  approximation, given by 

the s oiuti on for additive Caus s ian nois e inputs. 

The pdf in (3-4) has  ze ro  mean and variance given by 

where I ( a )  i s  the  nth o rde r  imaginary Besse l  function. This n 
- 1 

variance is shown a s  a function of a in Figure 5. As the para-  

2 
mete r  a approaches zero  the variance approaches n 13 , the var iance 

of a uniformly distributed random variable  over the interval,  

( -  ) It m a y  be seen  that the tracking variance for  the steady 

s tate  pdf of the phase e r r o r  is  approximately proportional to  1 / a  

for  la rge  a .  F o r  below 5, the var iance increases  rapidly, 

but the range of validity of the high density solution i s  questionable. 

The density in ( 3  -4) i s  in theory valid only a s  a ' I t  i s  

not obvious, however,  how accurate  this solution i s  for  finite a. 

In this section we investigate higher o rde r  truncations of the inifinite 

order  equation in  (2-45), and the associated solutions, in order  to  

obtain bet ter  approximations to  the t r u e  solution. After integrating 

(2 -45) once with respec t  to  4 , expanding the derivatives of s in  4 (4) , 

and collecting l ike derivatives of p(4  ), we have 

Here  C o  is the constant of integration and the F ( @  ) functions a r e  of the 
n 

form 



Figure 5 .  



F ~ ( @ )  = sin @ ( a  - 

1 1 5 
~ ~ ( $ 1  = 7 -I- cosm ( - - t - 9 . )  

4a 3a - 36a5 

F ( m ) =  1 1 
5 ---I- cosm ( - - - 0  0 . )  

36a 24a5 

etc. 

Note that the functions, ( 9 )  , decrease  with a (for a 1 and n 1 )  

and it i s  r eas onable to a s  sume that s olutions to  truncations involving 

higher order  t e r m s  of Equation (3 -7) may yield higher order  

approximations to  the total  solution of the finite -order  differential 

equation. The solution to  the truncated equation involving t e r m s  up t o  

and including the jth derivative of p(@)  will be called the j th-order 

truncation solution. The function, F (@), in general  involves t e rms  
n 

derived f rom a l l  the odd order  derivatives of order  2 n t l  in Equation 

(3 -6) operating on sin@ (9 ). Therefore,  when forming the jth truncated 

equation f r o m  Equation (3 -6),the functions F ~ ( @ )  must  also be 

appropriately truncated. For  example, the solution to  the Fokker -Plamsck 

equation treated previously may  a lso  be called the f i rs t -order  truncation 



solution to Equation (3-6) .  Since, for a given a 1, the functions, 

F,(@), decrease in magnitude rapidly with n i t  is reasonable to expect 

that solutions (assuming they can be found) to increasingly higher -order 

truncated equations would also reduce respectively the remainder , 

when the higher-order  truncation solutions a r e  substituted for p(@ ) in 

Equation (3 -6). This will be examined below as higher -order  truncation 

solutions a r e  found. 

A method exists for solving progressively higher -order 

truncated versions of Equation (3 -6). F rom Ince El41 , Boyce and 

DiPrima El51 , and Coddington and Levins on [131 it i s  shown that 

the method of Frobenius which assumes a se r i es  solution for p(*) of 

the fo rm 

is  applicable t o  any-order truncated version of Equation (3-6), even 

(in theory) the total infinite -order solution. However, to  solve exactly, 

any nth-order truncated equation f rom Equation (3-6) it is necessary 

t o  have n+l  boundary conditions (recal l  C in Equation (3-6) i s  an 
0 

unknown constant of integration). In addition to the boundary conditions 

previously introduced, additional boundary conditions must  be specified 

in order  t o  solve the higher order  differential equations. 

For  the non-offset case, the pr imary assumption that will be 

imposed to evaluate the necessary boundary conditions is  that the 

solutions to (3-6) a r e  symmetric about 9 = 0. The solution is  therefore 

an even function about @ = 0,  and between -n and n it can be expanded 

in a Fourier se r i es  a s  an infinite sum of cosines, 



CO 

p(@ ) = G a cos n* 
n 

n=O 

where the a 's  a r e  coefficients. F r o m  this expression it can be 
n 

seen  that a l l  odd o rde r  derivatives of p(@) a r e  ze ro  a t  @ = 0 and 4 = - t n  . 
Fur the rmore ,  evaluation of the right s ide of (3 -6 )  a t  * = 0, with this 

ze ro  condition fo r  the odd derivat ives ,  shows that C o  i s  zero ,  In 

addition to  these init ial  conditions, we shal l  fur ther  impose the restr ic t ion 

that a l l  even order  der ivat ives ,  evaluated a t  @ = - + , will  be ze ro  

also.  This resul ts  in the s e t  of boundary conditions : 

These conditions, along ~ 5 t h  the two used in (3 -4) will  provide a 

solution to  any o rde r  truncation of (3-6). In the following sect ions,  solutions 

to  second order  and third o rde r  truncated equations will  be determined. 

3 .3  Second-Order Truncation Solution 

The second-order  truncation of Equation (3-6) becomes 

s in 
2a P"(@ + (1 

The point 4 = 0 i s  a regular  singular point of Equation (3-11) and the re -  

fo re  by Theorem 4 .3  of Boyce and DiPrirna 6151 a s e r i e s  solution 

exists of the f o r m  given by Equation (3-8), in either of the intervals  

- P <  @ < 0 o r  0 < @ < P where P i s  some positive number.  The 

value of P is  the radius of convergence of the s e r i e s  in Equation (3 -8),  

and i s  a t  lea-st equal to the distance from the origin to  the nea res t  ze ro  

of sinslm/2a , which is  a t  'T Hence,  a se r i e s  solution can be found f o r  4 



in the range -n to  for which the s e r i e s  converges. 

By writing s'li14 and cos4 -h their  s e r i e s  expansions, substituting 

Equation (3-8) into Equation (3 -1 l ) ,  and collecting like powers of 

@ ,  solutions for  m and A can be found, Two solutions a r e  found for 
n 

m ,  one being ze ro  and the other nonzero. Only the z e r o  value for  m 

yields a non-trivial  resu l t s  and the resulting values for  A n even, n ' 

a r e  

2 
where ? = 2Q' -1 , 1 = 201 . An, fo r  n odd a r e  a l l  ze ro  since the density 

i s  symmetr ical .  Therefore,  for  given values of a , a l l  the necessary  

coefficients, A can be calculated to  solve for  p(@) in i t s  s e r i e s  n ' 

expansion. This was car r ied  out on a digital computer for a equal to  

1.  5, 3, l0,and 30. The right half of the symmetr ica l  density 

p(@) in (3-8) i s  plotted in  Figures 6 ,  7 ,  8, and 9 for these,values,  along 

with the solutions to  the Fokker-Planck equation for  the s a m e  a , Note 

that the  truncated solution converges ra lher  quickly to  the high density 

solution, and a r e  practically equivalent for  a 3. In essence ,  this can 

be conjectured as  the range of validity of the high density solution. 

The variance of the phase e r r o r ,  calculated f r o m  (3-8), is  a lso shown 

in Figure 10, along with the variance of the high density solution, 

Equation (3-5) ,  and that satisfying a linear relation in 1 / a  . Again, the 

resul ts  indicate that for a 2 2 ,  the relation in (3 -5)  is  valid for the 

second order  truncation solution as  well. 
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3.4  Third -Order  Truncation Solution 

The th i rd-order  truncation of Equation (3 -6 )  gives 

To solve this equation the previous s e r i e s  method i s  a l so  used. 

However, @ = 0 i s  no longer a singular point for  this equation, and 

the se r i e s  solution i s  simplified slightly to 

The four boundary conditions used h e r e  a r e  

i i i )  p ' (@ ) I n  = 0 

iv)  P ' ' (@)ln  = 0. 

Boundary conditions i )  and i i i )  imply a l l  An (n-odd) a r e  equal to  

zero.  Use of the s a m e  method to  determine A (n-even) a s  was n 

used previously, yields the recurrence  relation 

c - r ( r - 1 )  - Z r  4- 
( n - r - l ) !  (n - r - I ) !  (n-r-3)!  ' , A }  r (3-15)  

f o r  n 2 4 and h = ZQ', 3 = ZQ'2-1.  Boundary condition iv) is used to 



determine A2, Substitution yields 

Since a l l  the An(n 2) can be written i n  t e r m s  of A and A2 
0 

Equation (3-16) can be written a s  

where Dn and B can be determined f r o m  Equation (3-15). Then 
n 

n 

A2 = A. 

A is then determined by the normalizing boundary condition (ii), 0 

These computations were  also accomplished with a digital computer 

and the solutions fo r  p(Q ), 0 Q , a r e  plotted in Figures  6 ,  7 ,  

and 8 for  a = 1 .  5, 3 ,  and 10, respectively.  For  a 2 1. 5, the third 

o rde r  truncation solution i s  a lmost  identical to the second order  

s olution. 



The preceeding methods can be used to solve higher=-or=der 

truncations of Equation (3 -6 )  but the derivation of the expressions 

for  An become increasingly m o r e  difficult and computer t ime and 

s i ze  (memory) required increase  quite rapidly. Therefore 

truncation solutions of order  higher than three  were  not attempted. 

However, it would be of in te res t  t o  obtain an indication of how well  

the truncation solutions were  approximating the t rue  solution to  

(2 -45). In particular,  it is  desirable  to justify the notion that each 

succeedingly higher-order  truncation solution was a better approxi- 

mation to  the total  solution. This requires  that the truncation solutions 

be  substituted into Equation (3  -6) ,  and the magnitude of the remainder  

a s s  ociated with the higher  order  neglected t e r m s  should be investigated. 

With this objective the solutions obtained for  the f i r s t -o rde r  

(Fokker-Planck) and second-order truncations were  substituted into 

Equation (3-6) and the magnitude of the maximum value of the remaining 

t e r m s  were  calculated on a computer. The resul ts  a r e  plotted in 

Figure 11 for various values of a . F o r  example, when the f i r s t -  

order  solution was used,  the la rges t  remainder was due to  the second-order 

t e r m ,  the next la rges t  due to  the third-order t e rm,  etc. In addition, 

the magnitude of the third-order  t e r m ,  when the second-order solution 

i s  used, i s  sma l l e r  than it was when the f i r s t -order  solution was used. 

It i s  c lear  f rom studying Figure 11 that succeedingly higher-order  

truncation solutions resul t  in smal le r  remainders ,  and therefore provide 

a m o r e  accurate  approximation to the total solution. Note a l so  that 

while Figure I 1  plots the maximum magnitude of each t e r m ,  the sign of 

the remainder t e r m s  alternate.  Hence, the remainder appears a s  an 
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alternating s e r i e s  of decreasing t e r m s  and the magnitude of the 

remainder  fo r  an nth-order  solution is  bounded by the magnitude 

of the n+1 remainder  te rm.  For  example, for  a = 10, the remainder  

for the Fokker -Planck solution is bounded by the  second-order 

value of 0.26, and the remainder  for  the s econd-order solution is 

bounded by the th i rd-order  value of 0.086, down 67%. 

F r o m  the  data presented in Figures  6 through 11 it i s  

indicative that f o r  the low function density case  higher-order  truncation 

solutions to Equation (3-6) yield bet ter  approximations to  the  total  

solution of the infinite-order equation. It i s  a l so  quite c l ea r  that a s  

a increas  es a l l  the truncation solutions approach the f i r s t -o rde r  

(Fokker -Planck) solution. In other words,  the nth-order  truncation 

solution may be represented by 

where pl (9) is the solution to  the f i r s t -o rde r  (Fokker-Planck)  

equation in (3 -4) and p" (@ , a ) represents  the difference between 
n 

the nth-order  and f i r s t -o rde r  truncation. As a gets ve ry  la rge  

and 

The method of solution that has  been presented h e r e  can reduce 

this e r r o r  to  a s  sma l l  a number a s  des i red ,  in theory, given enough 

t ime and computer capacity. The th i rd-order  truncation solution 

was the highest-order  computed in.this analysis and it is  shown that 

this solution i s  a good compromise in the tradeoff between accuracy  

and complecity of solution for the range a 1. 5. 



3.6 The VCO Offset Case  

I t  has  been assumed that the c a r r i e r  frequency of the optical 

modulating signal,  (fi and the phase-locked-loop VCO r e s t  frequency, 
s ' 

(J.I have been equal. When this  i s  not the case  the VCO offset, 
0' 

((fi - w ), must  be included in (2-37).  This expression for  A @  i s  
s 0 

then modified t o  

The K (@) coefficients in the Smoluchowski s e r i e s  equation a r e  n 

modified only through the f i r s t  one which becomes 

The effect of the VCO offset i s  such that p (@)  i s  no longer symmetr ical .  

This means that the s e r i e s  method of finding solutions to  truncations 

of the infinite-order Smoluchowski equation now has  the odd a s  well 

a s  the even t e r m s  in the  power s e r i e s  solution f o r  p(G ). In addition, 

the constant C is no longer zero.  0 

As an example of the t rea tment  of the VCO offset case  a 

second-order truncation solution will be found. The pertinent 

equation i s  a modified version of ( 3  -1 l ) ,  

1 - - y) sin* p(4) = Co 
2Q 

where 



i s  the new parameter due to the offset. For a specific value of Y , 

(3-19) can be solved by the series  method of the previous sections. 

For example, with y = (. 707)a , the A coefficients in the ser ies  
n 

solution become 

n t2  n-2 - r 
2r ? 

l* t ------- - 
r = O  ( n - r t l ) !  (n-r)! ( n - r - l ) !  r 

n t 3  n-2 - 
.3535XZ A (-1) C (-1) 2 r  

t --- - n-1 r=l  ( n - r t l ) !  (n-r)!  

- - 
n 

(n - odd) 

L 
where A =  2a and @ =  2a -1. The two unknown constants, C and 0 

A , can be evaluated by using the two boundary conditions 0 

This was accomplished on a digital computer for a = 1.5 and 3 and 
% 

the results a r e  plotted in Figure 12 along with the f i rs t-order  solution 

for = 3 *  The obvious difference between this case and the non-offset 



Figure 12. 



case is  that the peak of the probability density has now shifted 

frorn the 4? = 0 center lirie. 

The two solutions for a =3 show approximately the same 

relationship a s  in Figure 8 for the non-offset case. 

Higher -order solutions can also be obtained a s  in previous 

sections for the non-offs et cases i f  additional boundary conditions 

a r e  imposed to  evaluate a l l  the unknown constants of integration. 

The equivalent order offset solution, however, i s  obtained with more  

difficulty and complexity than in the non-offset case because Co  

i s  no longer zero. 



Chapter 4 

THERMAL NOISE AND PHOTOMULTIPLIERS EFFECTS 

In the previous chapters a f i r s t  order  phase locked loop driven 

by a shot noise process was considered. In this chapter we investigate 

the effects of additive thermal  noise and photomultiplier devices 

preceeding the loop. 

4.1 Additive Gaussian Thermal  Noise 

L,et r ( t )  represent  a zero  mean stationary Gaussian noise process  

having a flat one-sided power spec t ra l  density of N wattslhz.  When r ( t )  0 

i s  added to the shot noise input process  of the phase lock loop of Figure 

( 1 - Z ) ,  the output of the loop f i l ter  Cpreviously (2-611 is now 

where r ' ( t )  is the "low frequency" equivalent noise process obtained 

by mixing the input noise r ( t )  with the VCO process .  I t  has  been shown b1 

that the new noise t e r m  i s  itself Gaussian, ze ro  mean, with spec t ra l  

density given by No  ; ( i  e. , r l ( t )  is simply a "frequency shifted" version 

of r ( t ) ) .  

When the transmitted phase variation, Q1(t), is  a constant, the phase 

e r r o r  derivative for the f i r s t -o rde r  loop has the form 

If this equation is integrated f rom t to t + At, the incremental phase 

e r r o r  becomes 



The f i r s t  t e r m  i s  identical t o  that previously derived in (2-37). The 

gecond t e r m  accounts for  the added effect of the thermal  noise. The 

coefficients of the  Smoluchows ki equation can now be recalculated fo r  

A @  of Equation (4-3). In par t icular ,  Kl  (@) remains the s a m e  a s  before: 

since the expected value of the Gaussian process  is zero.  The second 

moment requires  calculation of 

The expectation of the square  of the f i r s t  t e r m  has  previously been 

calculated, the expectation of the c ross  t e r m  is  zero,  and the expectation 

L 
of the square of the second t e r m  i s  k N0/2 .  Therefore 

For  computing the higher amounts, An(@), define 

Then, 

E L  P $ ~l~ = E ( P ~ S  a 
pn - 1 Pn-2 2 Pn-3 3 

",-2 + ",-3 G  4- . @ . ) .  
n - l  



Since the Poisson and Gaussian processes  a r e  independent, this 

becomes 

It has  been shown r l j  that for 

1 
l i m  - ,, E(Gn) = 0 

At - 0 

n - m  The expectation of P has already been calculated in (2-33) and 

been found proportional to  At. Thus 

l im  
1 - a E ( P ~ - ~ )  E ( G ~ )  = 0 

At 4 0 A t  n -2  

and therefore,  

(-k)n E(Pn) K (I) = l i m  --- 
n At-'  0 A t  

which is the s a m e  a s  in the ear l ie r  section when no additive Gaussian 

nois e was present.  Hence, the Smoluchowski s e r i e s  equation has been 

modified only in the second t e r m ,  K2(().  The solution for the probability 

density of the  phase e r r o r  again requires  solution of (2-45) with the 

appropriate K modification. It has  already been shown that an excellent 2 

approximate solution for the high a case  i s  the solution to  the  Fokker-  

Planck equation. For  the new K2(@) t e r m  this becomes 

with the parameter  is redefined as 



Note that the parameter  now takes on a slightly different meaning. 

The bracketed denominator t e r m  is the s u m  of the spec t r a l  level  

due to  the shot noise - and the spec t r a l  level of the additive Gaussian 

noise. Hence, the denominator represents  the total  effective noise 

in  the 2B loop bandwidth, due to  both the shot noise and additive noise. 
L 

The numerator  i s  the average power of the intensity process .  Thus, 

0 now plays the role  of an operating signal-to-noise power rat io  in the 

tracking loop bandwidth. The depenzence of p(@) in  (4-8) on had been 

shown ea r l i e r  in Figure 4, and the resul ts  there  a r e  valid with above 

interpretation of a0 

Effect of Photomultiplication 

In many optical sys tems photomultiplication is  used a t  the photo- 

detector  to  enhance the received signal. The objective of this section 

is  t o  investigate the effects of photomultiplication on the behavior of 

the phase e r r o r  in  a f i r s t -o rde r  tracking system, 

An ideal  photomultiplication of gain G has  the property that it 

produces G electrons a t  the photodetector output for each photo-electron 

a t  the input. If the electrons a r e  considered identical this has  the 

effect of producing an equivalent electron pulse waveform whose magnitude 

i s  G t imes  the magnitude of a single electron pulse waveform. Effectively, 

this increases  the charge of a single electron by the gain G. The shot 

nois e cur rent  of Equation (2 -1) may  then be written a s  



The pdf for the phase e r r o r  in the high function density case is again 

given by (3-4), where the signal to noise ratio parameter is now 

and B~ i s  now e ~ ~ . k / 4 .  The photomultiplication advantage is easily 

seen when the additive noise t e r m  of power spectrum level No is 

dominant. In this case an increase in the a parameter can be achieved 

by increasing the photomultiplication gain G. 

In the practical fabrication of photomultipliers the gain itself i s  often 

a random variable. In the following it i s  assumed that the photomultiplier 

has a statistically variable gain which is a random variable with mean 

7 

- 
G and mean square ~ 2 .  This means that each electron a t  the input 

produces G electrons a t  the output, where G i s  a positive random variable. 

The shot noise current  now becomes 

where the C G  3 constitutes a s e t  of random variables, independent, m 

and identically distributed over zero to infinity. The incremental change 

in the process i s  now 



and the f irs t  two moments become 

k2 2 - 
K2 (4) = T [ (ek) G~ (A) t ~~1 . 

The signal-to-noise ratio i s  modified to  

with 

- 
- GAK B L -  e -  4 

Hence, the shot noise power spec t rum i s  increased by the mean square  

of the gain, while the signal power i s  increased by the square  of the 

mean gain. 

In some analyses it i s  common to assume the random gain i s  

Gaussian with a mean , and a standard deviation, or  "spread ", given 

a s  a fraction of the mean gain. That i s ,  

In this case the mean square gain i s  

and Equation (2 -41 ) becomes 



Note that the a parameter degrades as the "spread" parameter P 

increases. 



Chapter 5 

SECOND -ORDER LOOP ANALYSIS AND 

THE GENERAL TRACKING LOOPS 

In this chapter the analysis of phase-locked-loops with shot 

noise inputs i s  extended to loops of order  grea ter  than one, and to  

the f i r s t -order  loop where the input and feedback functions a r e  not 

necessar i ly  sinusoidal (general tracking loops). For  the second-order 

loop a vector f o r m  of the Smoluchowski equation i s  used for the phase 

e r r o r  probability density, and solution can be approximated under 

conditions s imi lar  to  those of the f i r s t -o rde r  loop. For  the general  

tracking loop, a generalized Smoluchowski equation for  the probability 

density i s  used,  and again can be solved by the numerical techniques 

presented in Chapter 3 .  

5.1 The Two Dimensional Smoluchowski Equation 

The Smoluchowski-Kolmogorov probability density equation 

was derived in Chapter 2 for  a general  s ca la r  random process 

@(t). The s a m e  basic procedure can be repeated for a vector random 

process ,  and a s imilar  vector fo rm of (2-28) will result. Specifically, 

i f  we denote 

a s  the two dimensional vector process having sca lar  random component 

processes  {mi(t)) , then the vector equivalent of (2-18) i s  

where @ . = (t i) ,  m2(ti)) . Defining the two dimensional equivalent 
-1 



of the character is t ic  function in (2-19), and repeating the s teps in 

(2 -20) through (2 -28) will yield the equation 

where 

I L 
K (g)= L i m  

A t  mn A t 4 0  

Equation (5-3)  is  just the two dimensional equivalent of the Smoluchowski 

equation in (2-28). Note that evaluation of the coefficients I Kmn1 

requi re  a l l  the s ta t is t ical  c r o s s  -moments of the joint variations A 4 

and A P 2  in the components of the process - 8 (t). In the following 

section we apply (5-3) to  a second order  phase lock tracking loop. 

5.2 Second Order  Phase  Lock Loops 

A second order  phase lock loop is  one in which the loop f i l ter  

in  Figure 2 introduces an integration. The basic fo rm of such a 

f i l ter  would be one having t ransfer  function 

s t a  - a F(s) = - - 1 + 9 
s (5-5) 

where a represents  a possible zero  of t ransmission.  The impulse 

response corresponding to (5-5) is  then 

For  a shot noise input, the general  loop e r r o r  dynamical equation in 

(2 - 9 )  now becomes 



We now see that the variation A1 will contain a t e rm in P C a s  in ( 2 - 3 7 ) l  

and a t e r m  involving an integral in 4 ,  due to  the second t e r m  in (5-6). 

I t  is  therefore convenient to  define the vector 

where 

and let 

That i s ,  we consider the e r r o r  process in (5-6) to be decomposed into 

the sum of the components of a vector process y(t). The probability 

density of Q(t) i s  then determined f rom the joint probability density P(y, t) 

by the relation 

Substitution of (5-8) and (5-9) into (5-6) yields 

dy0(t) N (t) 
a- 

dt 
+ aek cos of(?, tm) + 

m= 1 

where the dependence of @( t )  on T(t) is  emphasized, The above may 

be decomposed into the two equations 



dyO(t)  N (t) 
a + aek  2 cos @(y, tm) = 0 

m =  1 

where it i s  noted that the second equation i s  simply the derivative of 

the f i rs t .  The above two equations may therefore be represented by 

the two f i r s t -order  differential equations : 

The above equations specify the dynamics of the vector process  y ( t )  

corresponding to  (5-9). It i s  therefore possible to  determine the 

equation for  the joint density P(y, t )  in (5 - 10) by using the two dimensional 

Smoluchowski in (5 -3). The increments of the vector components 

given in (5 -12) a r e  

These increments a r e  needed to calculate the joint moments ,  K,,(Y~. y1) 

(y y ) a r e  calculated to be given by Equation (5-4). The Kmn 



where again 

All the other K-(?) moments not listed above a r e  zero. In this 

case the two-dimensional Smoluchowski ser ies  equation becomes 

The above again represents an infinite order partial  differential 

equation for the joint density P(y)  - P(y,  - t). Some simplicity i s  

afforded by considering only the steady state solution, but the resulting 

equation i s  s t i l l  difficult to solve explicitly without digital computation. 

For  the case where the average intensity A i s  much greater  

than the loop bandwidth B (i. e. , larg electron density) the approximate 
L 

steady state solution to (5-14) can be found by limiting the number of 

t e rms  involved. The corresponding steady state solution for + ( t )  from 

(5 - 1 0) is  then approximately, 
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where Q' = A / Z B ~ ,  but B now has  the definition 
L 

That i s ,  the loop bandwidth B i s  increased by the added zero in the L 

loop fi l ter of (5-1). The high density solution for P(@ ) is  therefore 

identical to  that of the f i r s t  order  loop case ,  with the adjustment in t h  

*L 
bandwidth. For  higher -order  loops an equivalent n-dimensional 

vector process must  be defined and an n-dimensional Smoluchowski 

equation must  be derived, increasing the complexity of the problem. 

5 .3  General Delay Tracking Loops 

The objective of this section is to investigate the behavior 

of a phase tracking sys t em when the input intensity modulation signal 

and loop feedback function a r e  to  a general  periodic nature,  but not 

necessar i ly  sinusoidal. Let  the signal electron ra te  of Equation (2-2) 

be represented by n (t, T1(t)) and the feedback function by y( t ,  T 2 ( t ) )  
s 

where (t) and 7 (t) a r e  their  respective t ime delays. The differential  
2 

equation describing the loop operation for shot noise inputs, where 

e l  i s  again assumed constant, becomes 

where T ( t )  = 7 (t)-T2(t) and N(t) is  again a Poisson random variable 
1 

with intensity ns (t, (t)). The incremental  delay e r r o r  is  



and the K (7) moments of the Smoluchowski s e r i e s  equation a r e  now n 

1 N(At) 1 
Kn(7) = l i m  - E : - e k x  y(tm, 72(tm)J 

A t  (5-19) 
At - 0  m =  1 

where the expectation i s  conditioned on 7. Thus, Equation (5 - 19) 

becomes 

where the over -bar  represents  t ime  averaging inherent in the 

loop mixer  function. Hence, Kn(@) is  of the s a m e  f o r m  a s  in 

Equation (2-39), and would be identical to i t  i f  

y(t ,  T 2 ( t ) )  = @)la0  

= cos ("0t + T2(t)) . 
.%, 

Th-e third -order  truncated Smoluchowski s e r i e s  equation". 

fo r  a genera l  input function becomes 

* -3. 

Here ,  attention is res t r ic ted  again to  only the f i r s t  t h ree  t e r m s  of the 
infinite s e r i e s  equation, accepting the resul ts  a s  only an approximate 
solution. 



The steady s tate  version of Equation (5 -21 ) occurs  when the left-hand 

side is  zero.  Integrating the e q ~ a t i o n  with respect  t o  7 gives 

where 

a r e  correlation functions. Note that this equation corresponds to the 

previously considered equation (2 -45) with the sinus oidal functions 

replaced by the general  t ime  averaged correlation functions given 

above. 

5 .4  An E x a m ~ l e - E a r l v  Late  Gate Tracking 

In r ade r  and pulse tracking systems a periodic pulse t r a in  i s  

locked to a locally generated periodic signal through a feedback tracking 

sys tem,  s imi lar  to that in Figure 2. When the two signals a r e  in t ime  

lock, the local signal t racks  the t ime  variations in the a r r i v a l  t imes 

of the incoming periodic pulse t ra in .  In optical tracking sys tems the pulse 

t r a in  i s  generated by a pulsed l a se r  whose intensity i s  detected by a 

photodetector a t  t he  receiver .  The feedback signal in the tracking loop 

i s  designed such that when it i s  multiplied with the detected pulse t r a in  

and integrated over some period the resul t  i.s an e r r o r  function that is 

odd with respec t  t o  the t ime delay. This local signal i s  often designed 
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to be a periodic t ra in  of positive-negative pulses a s  in Figure 13. 

The multiplication of the received pulse t r a in  by this particular 

local signal is  equivalent to "gating in" the fo rmer  signal by  the 

la t ter  signal. Hence, the receiver  i s  often called an "early late gate" 

on "split-gate" t racker .  

Since the  output of a photodetector i s  a shot noise process with 

intensity n( t ,  TI), the analysis problem is an example of the application 

of the general  tracking theory of the previous section. By referr ing 

to  Figure 13 it i s  easi ly  seen that 

and therefore 

5 
Ryn(T)= ~ ( t ,  72 ( t ) )  n( t ,  = y (t, 'T2(t))  n( t ,  'TI) 

- 1 
- 2 m {  n(t,  T 2 ( t ) )  n(t ,  Tl) d t  + (a constant) . 

Equation (5 -22) now becomes 





Therefore,  for  the given input and feedback functions in Figure 13, 

Equatiar, (5-25) could be solved a s  a secorid -or=der differential equation 

for  t h e  delay e r r o r  density of an "Early Late  Gate" tracking system. 

The solution would represent  an  approximate solution to  the infinite 

s e r j  es  Smoluchowski equation. A computer solution s imi lar  to that 

used in Chapter 3 would be applicable to the solution of Equation (5 -25). 
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