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AB STPACT' 

The proble;n of determination of best behavior strategies for a 

decision, maker in a two-persong zero-sum, finite extended decision 

pirocess is cansiderrd. 

In 	 i.his problem, best strategies are defined to be those strat

egtes wl.d.ch tuximLze a p LeLver's expected return against all possible 

sltratege, that can be enployed by the other player, and the decision 

pirocess isi thus considered as a two-person, zero-sim, finite extended 

Tt is noted that most two-person, zero-sum, fSnite extended 

games aztdle in, sett n:q vehich: 

(L) 	 tiefine the maxium amount of infornation on trevIous 

aill.ernatvu 'nhoJlce- that each player can gather from move 

to0 moves but 

(i) 	 do not define ho much of this information actualiy will 

.aeptaiered, or how much of the actually gathered infor

majtAtn Vill The remembered from move to move. 

Deffiing any speeEiLeatLion of (Ii) for a player as an information 

aolecl~tu.- sthemev nd defining the ompleiit-y of a strategy as the 
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number of numbers that must be stored in a ocmltter to implement it, 

it is cler that both the effectiveness and the omplexity of a 

strategy depend upon the player t s infonnation colLection scheme in 

a critical manmero. 

In the report then, techniques are developed for finding best 

behoior strategies on arbitrary information collection schemes& These 

tenladqveu meke it possible to search in any given game for strategies 

which are minasly complex but acceptably effeaive 

A dmoctoreatieat medical game is "searehe&' using these techniques, 

an, beha rior strabegies are found for the doctor which are more than 

90% as effective but less than 10% as complec as -the beat strategy 

cIct resltas -when the dotor gathers and retalns all the information 

defned to be avUlaNe to hIn 

A pursmit and e asion game is also stied and best behavior 

sthategles are deterlLaed for the ] wrser and the evader when both 

plyurBs gather mad rLtain oil the i.formation defined to be available 

to eatdh of bhem. 
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CHAPTYER 2
 

IttRODUTION
 

.1 General Problemi 

We at-e interestedl in the determination of best strategies for a 

iecisoa =hr, in decision processes which axe described as follwas 

irt,. the aiternativa choices in the processes are made by 

three parties: 

a,'adcisiona maker, oar protsaoist; 

(ii) a. second jma'y; and 

(Iii) rtne., operating under kno m stablatics, 

Seccm4 the processes are extende F in that each party may make 

move then one dec:sion as the process imfrldso 

Third, the lyoesses are finitey iA that each party may make 

wily a finibe ntmber oL declisions or maues, and at each decision is 

poreaMed t th any a Ulnite number atf alternatives, 

itClby, tbhe processes rill be considered to involve only two 

peflcmR, in thet natium B vll be roved frn active ccxsiertion by 

eansider.mg the piro1fs to the protagonast in tents of exKpcted 

xeumsnder lttw"s, komuatsatistics, 

M c w sid(a Ionsn, we ill consider beat strategles as those 

obieh awNmlee the polbae onists minimin expected returnegainst all 

rosidble decision ntrategies that can be employed b~y tate mecon& party. 

http:eansider.mg
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These strategies have the appealing property that they neither require 

nor 	imply an estimate of the second party's intentions[; they only take 

into 	account his snabiliLies. 

In order to tind such ma -mm strategies for the protagonist, we 

shall. pose the problem as a game in which the second party is considered 

to 	lose whatever retarn the probagonist wins. Specifically, we will 

label. the second party as the antagonist. and re will treat the decision 

processes as finiLe, b o-person, zero-me extended gates. 

1.2 	 Information Gatbse1ln1[ 

Ve will assne that as pLay progresses, each player can become 

aware of sane of bhe alteniat Lve choices bbet he amd thenther parties 

,beVe 	 made. t Spec If allyl, me wila assume -that the settings in which 

our extended games arise: 

(i) 	 define the imixdma amount of previous information about 

alternabEve choice that each player cajgathe2 ) but 

(ii) 	 do not dtfine how much of the tbeoretically available
 

ini'OrZLtion each player jiflgajther, and
 

(iMi) do not define how much of the actually gathered infonmaiion 

each 	pL7.er ill recall from move to move. 

f we 	 call ?uoq specification of faeors (ii) and (ili) above, a 

specificabion of thab players information collection schaee we can 

restate our interests as fo lUs. We wish to consider the problem 

tGames in which each. )layr, at each move, knowrs sll prervious alterna
tive choices by all parUies mAe euonly knawn as games with P2rfect 
infornation. Such gmaes can be solved by techniques which are far 
mpir 	-MiFn those a Lch we will develop here, 
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of zoLeo-bion of a decision strategy for the protagentdt in WrO partS: 

(I1) the £eltio of an ifrtomati1an c622ection scheme for 

the protatoniat, and 

(1i.) the dptv=Lnat~n of a t&ar-u1in strategy for the protagonist 

giVeAn t1M Saelected 1nfonioM coflectio aeCLeMe, 

1.3 	 Oonsiderat t a in selectiun of' an infozaticO Collection 

Scltm frthe titS!nl~
 

Sumpose Iva uaqt the fcfllowtng UM.-Mclature:
 

(i) 	 Ay inf:uation olleatim solimne In which aM piece of 

informatio that is colle ted at any move is recalled at 

each siftecquent moves illi be called a Rrfectarecefl1 

infopca onC llectiom chae ; and 

(.11) 	 WW r zfelct-eca1l Schem thieja aoflectn every%Piece 

of itfoumtiO= defined as aildlable by the sottings in 

*ich m gamse arises., rl be ealled a ego eta 

infoamation Callection schemu 

Using thWa- tuinclatwep we can dea~dlbe zhe cmsiierations 

luvdvadIn selection of an infonticm collection scheme for the 

B&ckefintimnj amia otvabsgj for aL jarn is a cua~te Sel, of 

iniirunct Iorw tefl g the 1pLajrer how to chooe altenatives in every 

nkbtio ti that he ean eneOcxter in the cumrse of a gwie 0 But 1rhat 

defltis a, sitabrn fw~ theo irr-~i1 the ntu-as Thab can be 
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bakea n b the various collections of pieces of information on 

pgrevious a3lbeun ve choices that he is defined to know under hie 

informatica colleetion scheme. 

ifrg the nmber of situations a strategy ust allow for as a 

measure of Wt1 cplexity, ve can mate the follrio rn statements. 

() Mb mre information on previous alternative choices that 

a iplayer knows at each movea the more ctzplex his strategies 

viLI be. 

(it) The sore comlex a player's strategies are, the more 

expejrvive they re to store and implement. 

AUi 	of Which .iwas, with respect to aoLr e and in entaio costs 

of his strategy, the less information a player knows at each move, 

the bUeter ofr he is going to be. 

On the aher hamd for saw given information collection scheme 

for the epponent, the minim= expaect d ret=u guEumiteed by a player's 

ax-min strategies is a usitg its co1eea uen. the player is 

~iommaitin coletion scheme. This information coliceebion. scheme, 

hcpnver, lead'i bo the most cctqxiate4 strategies, 

in I±Iiat ct the above considerations, we will establish the 

follring ratiaole for selecbion et the player's infonmation collec

tion schemkI3 t 

(i) 	 1altM that ire av-) taking the protagoniet's part (hence the 

labt1) e will conservitivel y assign to the antagonist a 

cmDplOte infornation collection scheme, and 

(il) 	 we idl L select for the protagonist an infonat Eon collection 

schme lead. to the slmlest pass UIle zwa-min or new34yVhihl 
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mxx-min strategy guaranteeing a miniimm expected retum 

,aicA is eeceptably closet to that guaranteed by a 

ecmraete tntormation tolleetion scheme. 

There are three basic types of strategies that can be employed by 

ths p310ra's:

(5) 	 the psetratM> Whih is a list of Instrictions tahing 

thle 	pilayer whLch Alternative to choose in qrjy s I-ation be 

way encounter in a play of the game; 

(ii) 	 the nixe ste which in a prtobablity distribution over 

the set of al possible pure strategies whieh the player uses 

to rand,1y select a pure strategy When he begim a play of 

tbe ganq; and 
(III the behavior which is a coflectim of probability 

distributions, one disbribution for each, situation the pla;er

cam encounter each distribution describing how the player 

should randlcuy choose an alternative in that situation. 

The tVixt two of these strate%7 types are relativelr well kmcno 

and gerxenl techniqttes have been developed for finding a pure strategy 

'tich mWafrec over a player's set or pure strategies its mixdfnm 

ratu= and for finding a vdxed straegy thieh maimizes over a player's 

set of izxd strategies its minfmr return. The third strateM is not 

so miU, Thcuz4 and zo general techniques have been developed for fin-

Sng a beh vi strategyr wideh maximizes over a 91ayerts set of behavior 

strsatee 1±s minfrurn retur.. 
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We shall show below, however, that in all but the most trivial 

of extended games with less than perfect information, the determination 

and use of the best of a player's pure or mixed strategies is not 

practical. 

We will, therefore, restrict our attention to the problem of
 

determination of a best behavior strategy for the protagonist, and we 

vrill develop some computational techniques for this purpose. 

1.5 Organization of the Argument 

In approaching the general problem we have outlined above, we will 

organize our argument as follows. 

(i) We will develop a formal technique of description for general 

.extended games similar to that developed by Von Neumann' and later 

refined by Kuhn 2 . 

(2) We will formally define the concepts of a pure, a mixed, and 

a behavior strategy; and we will show why attempts to find and imple

ment pure or mixed strategy solutions in extended games are usually 

impractical. 

(3) Restricoing ourselves to behavior strategies then, we will 

formally state the general problem that we wish to solve: find a 

minimally complex, acceptably good, behavior strategy for the pro

tagonist. 

(4) we will discuss the difficulties involved in generating a 

complete solution to the problem, and we will outline a heuristic 

technique for obtaining a partial solution. 
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(5) In order to obtain even a partial solution, however, we will 

need a method for finding max-min or nearly max-min behavior strategies 

for any given information collection scheme for the protagonist. We 

will split this problem into two parts. considering separately the 

special case where The protagonist employs a perfect-recall information 

collection scheme, and the more general case Ahere the protagonist may 

employ any information collection scheme. 

(6) We will develop an algorithm for determination of max-min 

behavior strategies for The perfect-recall information collection 

scheme case. 

(7) 	 For the vrbitrar information collection scheme case, we will 

show that for every Zinite two-person, zero-smn extended game in 

which one player has N moves and the other player has Mmoves, there 

is an associated (N + M)-person non-cooperative game with solution 

strategies of a neir type corresponding to behavior strategies in the 

original game: 

(i) 	 which meet a sat of necessary conditions for mex-min 

behavior strategies, end which 

(ii) 	 if zhe players' total senitivityt to forgotten informa

tion is less than E , will guarantee each player a minimm 

expected return within E of the minimua expected return it 

can guarantee iiself by playing a max-min mixed strategy 

tTo be defined later; roig ly, a measure of the influence of the 
forgotten information on the expected returna 
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(8) We will develop a heuristic algorithm for generating solutions 

in the associated game, or equivalently, for determining behavior 

strategies which meet a set of necessary conditions for max-min behavior 

strategies in games in which the players may employ arbitrary informa

tion 	schemes. 

(9) We will demonstrate the use of the "perfect-recall" algorithm 

by solving several pursuit-evasion games. 

(1o) Finally, we will employ the general algorithm in a search 

for a minimally complex, acceptably good, behavior strategy for the 

doctor in an example doctor-patient medical decision process. In 

this example, we will first find a behavior strategy X on the doctor's 

complete information collection scheme, We will then carry out a 

search for a minimally complex, acceptably good, behavior strategy 

for 	the doctor; and the search will result in a behavior strategy X* 

uhich is more than 90% as effective as X, but less than 10%as complex. 

1.6 	 Contributions 

The contributions made in this report are: 

(i) 	 the development of an algorithm for determination of max

min behavior strategies in two-person, zero-sum, finite 

extended games in which both players employ perfect-recall 

information collection schemes; 

(ii) a demonstration of a relationship between solutions in an 

associated game and max-min behavior strategies in the 

original game; and 
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(iii) 	 the development of a heuristic algorichm for determination 

of behavior strategies which meet a set of necessary condi

tions for max-min behavior strategies in games in which the 

players emloy arbitrary information collection schemes. 

These contributions are of value in that they provide, for rela

tively complicated, finite, two-person, exvended decision processes, 

a means for determination of behavior strategies for the decision maker 

which 	are: 

(I) relatively simple to store and implement, and 

(i) 	come acceptably close to maximizing the decision maker's 

minimum expected return against all possible strategies 

which can be employed by the other person. 
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CHAPTER 2
 

DESCRIPTIONS OF FINITE EXTEDED GAMES 

2.1 	 Introduction 

In this chapter we will carry out the first of several arguments 

which will lead us to a precise formulation of the problem that we 

wish to consider, Specifically, 

(i) we will give a formal definition of a finite extended game 

which is slightly broader than that given by Von Neumanni
 

and gu2; 

(ii) we will develop a form of presentation for the rules specify

ing a finite extended game which will allow considerable 

insight into the strategic properties of such a game; and, 

in the process of this develonent, 

(iii) we will define and examine the concept of an information 

collection scheme. 

2.2 	 Notation and Conventions 

In this and the following chapters, we will indicate that a 

function or variable is associated with the protagonist, the antagonist,
 

or nature by superscripting it with p, a, or n, respectively. 

Further, we will establish most of our definitions and notation
 

with 	respect to the protagonist onlywhenever the corresponding 
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definition or notation for the antagonist is clear. When the corres

ponding definition or notation is not clear, we iill give it in a 

separate statement, or we will indicate in square brackets the changes 

that must be made to the protagonist's statement to make it true of 

the 	antagonist.
 

2.3 	 Word Usale t 

In common usage the words game, play (as a noun), party, move, 

and choice, have more or less ambiguous meanings. From this point on, 

we will use these words only in the follidng formal ways. 

(i) A 	game is the totality of rules that describe it. 

(ii) 	 A play is a particular instance of how a game is played 

from beginning to end. 

(iii) 	 Any player or nature is a party in the game. 

(iv) A move is the occassion of a choice between various alterna

tives to be made by one of the parties under conditions which 

are precisely described by the rules of the game. 

(v) A choice is an alternative chosen in a specific instance. 

2.4 	 Definitions of Finite Ehtended Games 

As mentioned above, a game Js the totality of rules which describe 

it. The strategic interest of a game, however, lies in what is not 

directly described by the rules. 

tIn the verbal portions of the text, square brackets will be employed
 
only for this purpose.
 

ttf. reference 1, page 49.
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In the definition of a finite extended game that was given by 

Von Neumann 1 and later refined by Kuhn2 , the rules of the game include 

a rule precisely defining the information on previous choices that 

each player will know at each of its moves. The only things not 

described in the rules of the game are the strategies under which the 

players make their decisions at each of their moves.
 

We wish to leave to each player the additional problem of deciding, 

within the limits of that it can know about previous choices at each 

of its moves, thich pieces of information it actually should know at 

each move in order to play acceptably well. Therefore, we shall state 

our definition of a finite extended game accordingly. 

Definition 1: A finite extended game is a collection of four 

rules: 

(1) a 	rule describing all possible plays in the game; 

(ii) 	 a rule describing the manner in which nature chooses an 

alternative at each of her moves (a statistical description 

for nature); 

(iii) a rule describing the payoffs to each player for each possible
 

play; and
 

(iv) 	 a rule describing the maximum amount of information on alter

native choices by all parties, that each player can gather 

at each of the moves in the game. 

2.5 	 An Example of a Finite Extended Game 

An example of a finite extended game is described below. The 

four rules of definition 1 are completely (though perhaps not 
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explicitly) specified by the given verbal description of the game. 

Consider a simple card game between two players, X and 0, the
 

former consisting of two persons, Ul and CY, who are not allowed to 

cammunicate, The game is playeh as follows. 

(i) 	 al chooses a card from one of two well-shuffled decks of 

cards--a deck A which has twice as many red cards as black 

cards, or a deck B which has twice as many black cards as 

red cards. 

(ii) 	 The card chosen by al is given to 0, and p is then asked to 

guess which deck the card came from. 

(iii) 	 a2 is then asked to guess which deck B's card came from. 

a 2 is not allowed to know a 's choice or to see 3's card, 

but is allowed to know O's guess, provided that a had planned 

in advance to use this information in its strategy. 

(iv) A payoff is then given to each player under the following 

rule. If both guess right, a vans Sl from 0; if neither 

one guesses right, a wins to from 0; if only a2 is right, 

axwins t3 from p; and if only p is right, a wins -$3 from 1. 

An interpretation of how this game is played is given by the 

flow diagram of figure 1. 

In the next few sections, we will develop a form of presentation 

for the rules describing any finite extended game. This form of 

developed by Kuhn ,presentation, which is very similar to the one 

allows considerable insight into the strategic properties of finite
 

extended games. In the process of developing this form, we will
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define and examine the concept of an information collection scheme.
 

As we proceed, we will use this form to describe the example finite 

extended gone given above. 

2.6 	 ules Describing All Possible Plays: Game Trees 

Let us consider any two moves as distinct if each one arises with
 

a different string of alternative choices by the parties. With this 

convention, the rule describing all possible plays in a finite extended 

game can be easily expressed in the form of a finite tree, usually 

tree.ttknown as a game 

Definition 2: For a given finite extended game r, a game tree K 

is a finite tree such that: 

Mi the nodes of K are in one-co-one correspondence with the 

moves of r; 

(ii) 	 one node, called the distinguished node, 0, represents the 

first or starting move of the game; 

(iii) 	 the branches of K represent the alternatives at each move 

in r, with the conventions that: 

(a) the i branches of 0 are indexed 1,...,i, in counter

clockwise order, starting with any branch; 

(b) for any node X with j branches, except for 0, the 

branches are indexed 1, ,..,j in counterclockwise order 

starting with the branch followLng that branch which 

does not represent an alternative at the move corres

ponding to X, and 

tA connected graph without loops.
 

ttReference 2- referenee '. nane h4 tnrl Al shrp_.
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(c) 	 the ith branch at any node X represents the ith 

alternative of the move corresponding to X. 

In figure 2 we eszablish an indexing of alternatives and show 

a corresponding game tree for the example game of section 2.5. 

In figure 2 we have indicated the terminating branches, i.e., 

those which correspond to choices which do not lead to further moves, 

by ending them with squares. 

Note that in a game tree K, drawn for a game r with a given 

indexing of alternatives, there is a one-to-one correspondence between 

the possible plays in r and the unicursal lines from 0 through termin

ating branches. In view of this one-to-one correspondence and those
 

between moves and nodes, and alternatives and branches, we will use 

the 	same name for each element in r and its correspondent in K 

2,7 Rules Describing Nature 

The second rule required in the description of a finite extended
 

game is a rule describing the manner in which nature chooses an alter

native at each of her moves. This is given by specifying a probability 

distribution over nature's alternatives at each of her moves. Such 

distributions are easily indicated in a game-tree diagram. We simply 

label each alternative at each of nature's moves with the probability 

that it wll be selected if the given move arises. 

Note that if all such distributions differ at each of nature's 

moves, then at every move, every previous alternative choice can be 

said to "condition" or influence nature's decision. On the other hand, 

if a particular previous choice does not influence nature's decision 
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a's "lt"move O's moves-
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FIGURE 2 	 AN ALTERNATIVE INDEXING AND A GAME TREE FOR 
THE EXAMPLE GAME 
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at some move, then at every move with the same alternatives and a 

choice history which is identical except for the non-influential 

choice, the probability distributions over nature's alternatives must 

be the same. 

,In figure 3, the game tree for the example-given in section 2.5
 

is appropriately labeled to indicate how nature chooses an alternative 

at each of her moves. Note that nature's decision at each of her moves
 

is conditioned by the choice made by C2. 

2.8 	 Rules Describing Payoffs 

The third rule required in-the description of a finite extended 

game is a rule describing the paypffs to each player for each possible 

play. This rule will be denoted by the function hi(W), indicating the 

payoff to the ith player when play w has been realized. 

In a game-tree diagram, we can indicate the payoffs to each of 

the 	N players when play W is realized by listing the vector H(w) 

fhi(W)j, i=l, ... ,N at the terminating branch of W. 1 In figure 3, the 

payoffs to the players in the example game of section 2.5 are indicated 

in this manner. However, in any two-person, zero-sum, finite extended 

we will hereafter list only the payoffs to the player who is 

considered to,Se the protagonist. 

2.9 	Rules.Describing Maximum Gatherable Information 

The fourth rule required in the description of a finite extended 

game ib a rule describing the maximum amount of information on alter

native choices that each player can gather at each move. 
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In order to explain the technique which we shall use to present
 

this rule, we must first define the concept of an information collec

tion 	scheme and develop some of the properties of this concept. 

2.9.1 	 Information Collection Schemes and Induced Move Partitions 

We begin by giving formal definitions for the concepts of an 

information collection scheme and an information set. 

Definition 3: An information collection scheme for a player is 

a rule R, defining for each move X at which the player is required to 

choose an alternative, the portion of the alternative choice history 

establishing X which is known to that player. 

Definition 4: Any set of pieces of information that can be 

known by a player at any of its moves and which consists of: 

(i) a 	list of alternatives available at that move, and
 

(ii) the pieces of information on previous alternative choices
 

which the player knows at that move under its given informa

tion 	collection scheme R, 

will be called an information set. 

Clearly, in any finite extended game, there are only a finite 

number of information sets possible for a player under any given 

information collection scheme R. Further, we can state the following 

property.
 

Property 1: An information collection scheme R for a given 

player induces a unique partitioning of that player's moves into a 

minimum number of sets, each of which contains only moves that the 

player cannot distinguish from one another. 
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Proof: Consider the partitioning of a player's moves which is 

defined by collecting into a single set of moves, every move corres

ponding to a given information set. Since, by definition 4, a single
 

information set corresponds to each move, the property follows easily. f 
Definition 5: The partitioning of a player's moves into the
 

minimum number of sets, each of which contains only moves which are 

indistinguishable under a given information collection scheme R, will 

be called the player's information partition under B and will be 

denoted by IN(R).
 

In view of the one-to-one correspondence between the information
 

sets 	that are possible for a player under an information collection 

scheme R and the sets of indistinguishable moves of its information 

partition under R, we will use the same name to refer to a set of 

moves of the player's information partition under R or its corres

ponding information set. 

Consider the following examples of information partitions. 

(i) 	 If a player employs an information collection scheme R 

such that it has perfect information on the previous alter

native choices at each of its moves, then its information 

partition under R consists of sets, each containing a 

single move; and on the other extreme, 

(ii) 	 if a player employs an information collection scheme R 

such that it has no information on the previous alterna

tive choices at each of its moves, then its information 

partition under R consists of the minimum possible number 

of sets of moves with identical lists of alternatives. 
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2.9.2 Equivalence of Information Collection Schemes 

In section 1.3 we stated that a strategy is a complete set of 

instructions telling its player how to choose an alternative in every 

situation that he can encounter in the course of a game. From the 

arguments given above, it is clear that a situation is simply an 

information set. It follows then that the effectiveness of a strategy
 

for a player depends upon its information collection rule only through 

the information partition defined by that rule. 

Definition 6: Any two information collection schemes R and R' 

will be considered equivalent if the information partitions under R 

identical.and R' are 

In view of this definition, we will henceforth consider any set 

of equivalent information collection schemes as a single information 

scheme. Note that by means of definition 5, definition 6, and 

property 1, we have established a one-to-one correspondence between 

each information collection scheme possible for a player and the 

information partition induced by that scheme. 

/ 

2.9.3 The Complete Information Collection Scheme 

By definition 3, the number of information collection schemes
 

possible for a player is finite. Correspondingly, the number of 

possible information partitions is also finite. After stating a 

few required definitions, we will establish a property of a player's 

set of all possible information partitions. 

Definition 7: The rank r(X) of a move X is the number of 

alternative choices made by all parties in establishing X. 
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Definition 8: Let X and Y be any two moves for a given player 

which fall on any ccmon play W. Then, a perfect-recall information 

collection scheme for this player'is any inforation collection scheme 

R such that. r(X) > r(Y) implies that R defines as known to that 

player at X, any information on previous alternative choices known at 

Y and the given player's choice at Y. 

Definition 9: For a given player, the compleTe information col

lection scheme in r is the perfect-recall information collection scheme 

R, under which the player collects at each move every piece of informa

tion on alternative choices that is defined to be gatherable at that 

move by the rules defining r. 

Denoting a player's complete information collection scheme as C, 

we can show that the set of all information partitions possible for a 

player has the following property. 

ope2xt 2: A player's information partition under any informa

tion collection scheme R can be formed as appropriate unions of the 

sets of that player's information partition under C. 

Proof: Property 2 is not true only if: 

(i) some information set under information collection scheme 

R includes some but not all of the moves contained in a
 

single information set under information collection 

scheme C; 

but (i)is true only if: 

(ii)information possessed under R allows the player to
 

distinguish between moves which are not distinguishable 

under C. 



But (ii) is false since the amount of information known to a player 

at each of his moves is a maximum under collection scheme C. 

We return now to our main line of argument. 

2.9.4 Rules Describing Maximum Gatherable Information 

In view of the one-to-one correspondence between each information 

collection scheme and the information partition under that scheme, it 

is obvious that we can represent any information collection scheme by 

indicating in a game-tree diagram the sets of the corresponding parti

tion. Therefore, we will present the rule describing the maximun 

amount of information on alternative choices that a player cbn gather 

at each move by indicating in a game-tree diagram the sets of the 

player's information partition under its pompete information collec

tion scheme. 

In figure 4A we employ this technique to present this "maximum 

information rule" for the example game of section 2.5. In figure 4B 

we show the move partitions which correspond to the information 

collection schemes in which 0 does not look at its card, and X2 does 

not examine O's guess as to which deck O's card came from. Recalling 

property 2 of the preceding subsection, note that the sets of the 

information partitions of figure 4B can be formed as unions of the 

sets of the information partitions of figure 4A.
 

In the above sections we have defined the concept of a finite 

extended game, and we have shown that the four rules describing 

2.10 
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CARD AND a2 DOES NOT EXAMINE R's GUESS. 
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such 	a game can be presented by: 

(i) 	 assuming an indexing of the player&l alternatives and 

constructing a corresponding finite tree to indicate 

which choice combinations or plays are possible (rule 1);
 

(ii) 	 labeling the alternatives of nature's moves to indicate 

the probability with which each alternative is selected 

when the given move arises (rule 2);
 

(iii) labeling each possible play'W with a vector H(W) to indicate 

the payoffs to each player when that play arises (rule 3); and 

(iv) partitioning each player's moves into sets, each of which
 
I 

contains only moves which are indistinguishable when the
 

player is ploying its complete information collection 

scheme, to indicate the maximum amount of "distinguishability" 

that a player can achieve, or equivalently, the maximum 

amount of alternative choice information that it can gather 

at each move. 

In figure 5 we present a complete description in this form of 

the example game of section 2.5. In the example game we are taking 

the a player to be the protagonist. 

Or a scalar indicating the protagonist's payoff in the two-person, 
Zero-sum case. 
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2 Give j9 a black cord 2 Guess deck B 

FIGURE 5. A COMPLETE DESCRIPTION OF THE EXAMPLE GAME. 
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CHAPTER 3
 

STRATEGIES IN TWO-PERSON, ZERO-SUM,
 

FINITE EXTDDED GAMES
 

3.1 	Introduction
 

In this chapter we will carry out the second of several arguments 

which will lead us to a precise formulation of the problem that we 

wish to consider. Specifically, 

(i) 	 we will examine the general concept of a strategy, and we 

will 	define a measure of strategy effectiveness;
 

(ii)we will give formal definitions for the concepts of a 

pure, a mixed, and a behavior strategy; 

(iii) we will compare these three strategy types with respect to 

their effectiveness and the difficulties involved in their
 

determination and implementation; and, in the process of 

this comparison, 

(iv) 	 we wll show why behavior strategies provide the only 

practical means of solution to many two-person, zero-sum, 

finite extended games. 

3.2 	 General Concept of a Strategy 

A strategy is by definition a rule telling its player how to 

choose an alternative in any situation that he can encounter in the 

course of a game. 
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In chapter 2 we defined the concepts of an information set and
 

an information collection scheme, and we noted that:
 

(i) the information collection scheme employed by a player
 

defines the set of information sets which he can encounter
 

in the course of a game, and
 

(i) 	the defined information sets are the situations for which
 

the player's strategy must give instructions.
 

In order to define a strategy then, we must first define the
 

information collection scheme upon which it is based. In this chapter
 

we will state our definitions of the various types of strategies
 

assuming a given information collection scheme. We will defer until
 

the next chapter the question of how to choose an information collec

tion scheme upon which to base a strategy.
 

3.3 	Tyes of Strategies
 

We will consider strategies of three types:
 

(i) pure strategies, which are deterministic rules for selection
 

of an alternative in each situation that the player can
 

encounter;
 

(ii) mixed strategies which are rules for random selection of
 

a deterministic rule (pure strategy), to be chosen when
 

play begins and employed until a play has been completed;
 

and
 

(iii) behavior strategies, which are rules for random selection
 

of an alternative at each move encountered in any play of
 

the game.
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The use of randomized strategies may be justified by one or both 

of the following two arguments. 

(i) 	 In some cases, randomized strategies can be found which 

have greater effectiveness than any deterministic strategy ; 

and 

(ii) 	even in cases where deterministic strategies exist which 

are as effective as the most effective of randomized strategies, 

randomized strategies of maximm effectiveness are usually 

easier to find than equally effective deterministic strategies. 

3.4 	 Bases of Comparison of Strategy Types 

We will compare the strategy types mentioned above by asking the 

following three questions about each one. 

i)	What difficulties are encountered in the determination of
 

a most effective strategy of the given type?
 

(ii) What difficulties are encountered in the implementation of 

a most effective strategy of the given type? 

(iii) How does the effectiveness of the most effective strategy
 

of the given type compare with the maximum effectiveness 

achievable over all strategy types? 

3.4.1 Difficulty of Implementation
 

In implementation of a strategy, our concern is with the total 

amount of computer memory required to store the following three types 

of 	information:
 

tSee Appendix A, Note 1 for comments on a comnon game with this 
property. 
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(i) 	 information collected on previous alternative choices made 

by the parties as the game progresses; 

(i) 	 information indicating how an alternative is to be selected 

in any information set that can arise (the strategy rule 

itself); and
 

(iii) information on how to combine the information of types (.) 

and (ii) to produce alternative choices in a given play of 

the game. 

In making comparisons of strategy types with respect to computer 

storage required in their implementation, we will assume that the 

amount of type (iii) information is essentially the same for all three 

strategy types and/or small with respect to the storage requirement 

posed by information of type (ii). Further, as we proceed with the 

examination of the various strategy types, it will become obvious 

that the storage required for information of type (ii) is vastly 

greater than that required for information of type (i) in all but the 

most trivial of games. 

Therefore, we wifl oly be concerned with the relative amounts 

of computer storage required to store the strategy rules themselves. 

3.4.2 Strategy Effectiveness 

Our 	general objective is to find for the protagonist the simplest
 

possible strategy which will maximize its minimum expected return 

against all possible strategies that can be employed by the antagonist. 

The appealing aspect of a strategy with this property is that it 
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implies no asslrmtions concerning the antagonist's intentions; it is 

detemined only by the players' catabilitie. 

If *v wish to retain this feature in the protagonist's strategies 

vbiie taking into acocnt the antagonist's freedom to choose its infor

mation collection schee, e mut consider the strategies that can be 

em(4C0yed by the antagonist for soible information coelletion 

scheme that he can use. We therefore state our definition of strategy 
effectieness, or sjaity as 11048. 

Definition 10t: The quality Q(Xp) of any strategy Xp for the 

pi-&ch is based on an infonnation collection scheme R, is 

defined by: 

Q(Ag) min HCxP%Ya~t)
a Ra 

Where: 

(i) the mignfization indicated is over all antagonist strategies 

Yt -ehch can be constructed on an information collection 

nchese Rt and over the finite set of all Ra which are 

possible for the axtagoni. under the rules of r; and 

(n-) 	 nr@, 9;?, R&) is the eiepected payoff to the irotagcnist 

then X9 ononI -ud Ca R' are amployed, 

The zalivy Q(YY, p) of eny strategy X on bhas the following 

P . If 0 a is the cmllete informntion collection scheme 

for the antagonist, then: 

tSee Appendix A., Note 2 for z=mrents on defintIons 10, 21 and 12 
as they would be stated for the antagonist. 
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QCXphRp) = rn H(xP, Rp;Y% Ca) 
ya
 

Proof: By property 2, the sets of the antagonist's information 

partition under any informetion collection scheme la can be formed 

as unions of the sets of the antagonist's information partition under 

C It follows that any antagonist strategy that can be constructed 

aon Ra can algo be constructed on and, therefore, that: 

min 1 (XP,R;Y% Ra ) a mn R(X, R;Pt Ca) for any Ra. I 

Finally, note that by means of definition 10 above, we can state 

our general objective in the following simple form. We are interested 

in finding for the protagonist, a simplest possible strategy which 

has the maximm possible (or acceptably close to the mximurn possible) 

quality.
 

3.5 Solution Strategies 

In the course of our arguments, we will be interested in strategies 

for the protagonist which satisfy one or more of the following defini

tions.
 

Definition 11: Any strategy X * on an information collection 

scheme Rp is an E-R solution if:
 

Q(Xp R ) max Q(XX,I) - E
 

xp
 

where the maximization over Xp is over all possible strategies which 

Rp . can be constructed on information collection scheme 
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Definition 12: Any strategy Xp * on an information collection 

scheme RP* is an E-solution if: 

Q(XI RP ') > max QCXP R) 

xp, RP 

where the maximization indicated is over all protagonist strategies
 

Xp pwhich can be constructed on an information collection scheme R and 

over the finite set of all RP which are possible for the protagonist 

under the rules of r. 

Finally, strategies which satisfy definitions 11 and 12 for E = 0 

will simply be qalled R-solutions and solutions, respectively. 

In the remaining sections of this chapter, we will formally define 

and examine each of the three strategy types mentioned in section 3.3 

above. As we proceed, we will employ the following example to illus

trate our arguments. 

3.6 An Rple Game 

Consider the following simplified wheat-market game in which a 

single wheat-futures trader is considered as the protagonist, and the 

remainder of the wheat market is considered to consist of two parts: 

() a part for which the protagonist has a statistical descrip

tion, which will be considered as nature; and 

tWe will describe this game using terms taken from the commodity 
market, but since the terms used are only alternative labels, an 
understanding of their technical meanings will not be required here. 
However for interest's sake, the terms used are defined in Appendix 
A, Note 3. 



35
 

(ii) a part for which the protagonist does not have a statistical
 

description, which will be considered as the antagonist.
 

The game as played as follows. 

(4) To start the game, the antagonist chooses a market trend m 

from the set M = [rising market, falling market, stagnant 

market]. 

(ii) The trAder ncw begins a series of N days of trading, each 

of vhich proceeds as follows. 

(a) At the begirnning of the jth day, the trader chooses 

a "market position," q(j), from the set Q = flong-5000 

bushels, short-5000 bushels, no position]. 

(b) During the jth day, nature selects a "market change," 

c(j), frn the set C = (up I cent per bushel, down I 

cent per bu±hel, no change]p under a probability distri

hution =P'kc(j)fm; e(k), k=l,...,J-l). 

(iii) Av the and of the Nth day, the game is terminatedI and the 

Lxader is paid an amount h(c(i); q(i), i=,...,N) which 

incorporates his total gains, losses, and the commissions 

he has had to pay to his broker. t 

(iv) At the end of each day, the trader can record (gather) his
 

o-n ,tarket position and nature's market change. (The
 

iSee section 1.1; we are considering the "unknown" portion of the
 

wheat market as the "second party."
 

"The broker, here considered as part of the market, vins a- commision
 

-with every change in the trader's market positon.
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antagonist gathers no information since it chooses an 

alternative only at the starting move.) 

The initial few moves of the game tree for any "wheat-market" 

game with N > 2 are shown in figure 6. Note that under its complete 

information collection scheme, each of the trader's information sets 

consist of three moves.
 

3.7 Pure Strategies 

Definition 13: A pure strategy for the protagonist, based on 

an information collection scheme R, is anjy function aPp which maps 

each information set I p E IP(R p ) into an alternative of I P . 

It is possible for two pure strategies oP4 on Rp and 2 on Rp 
il 

to be equivalent in the sense that the probability distribution P(W) 

for the plays t E K is identical under either pure strategy, for any 

given strategy Xa on Ra for the antagonist. We take this possibility 

into account in the definitions given below. In making these defini

tions, we assume that the probability of any alternative at any of 

is positive.tnature's moves 

PDefinition 14: An information set I P C Ip(R ) is realizable 

under a strateey Xp on Rp if there is some strategy Xa on Ra for the 

antagonist such that the probability that I p occurs is positive. 

For an illustration of the concept of realizability, consider
 

the wheat-market game with N = 2 and a protagonist who is employing 

tWe can always construct a simplified equivalent game in which this 
assumption holds. 



37
 

I Antaonimst's 

Rising market In move 
2 .Stagnant market 

+- Trader's 
s moves 

Falling Market 

Nature's 

, % %( -- Trader's 

2 nd moves 

Antagonist's move Nature's moves 
Alternative Name Alternative Name 

I Rising market I Up - I cent per bushel2 Falling market 2 Down- I cent per bushel3 Stagnant market 3 No change 

Trader's moves 

Alternative Name 
I Long - 5000 bushels 
2 Short - 5000 bushels 
3 No position 

FIGURE 6 GAME TREE FOR THE WHEAT-MARKET GAME 
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its complete information collection scheme C9. Referring to the 

description of this game which is given 3n figure 6, note that if the 

protagonist employs a strategy aPP t choosespure on which alternative 

I at the information set labeled A, then only the information sets 

CP . labeled A, B, C and D are realizable under aPP on 

RPDefinition 15: Any two pure strategies ap? on and a?- on 

are !qivalent if for every information set I p E IP(R p ) which is 

Rp Rp ,realizable under ap on or al on the same alternative Is 

chosen under either a en or on RP.12 

In view of this definition, we will henceforth consider any set 

of euivalent pure strategies-as if it were a single pure strategy. 

In table I ie shoy, for the vheat-market game with N = 2, a pure 

strategy for the protagonist, based on its complete information collec

tion scheme0 Note that as a consequence of definition 15, the pure 

strategy showm lists only alternative choices for realizable informs

tion sets. 

3-7.1 ImPlentation of Pure Stratgies 

In order to implement a pure strategy, its player must store a 

complete list of pairs,, each of which consists of a realizable infor

mation set and the alternative to be chosen when that information set 

occurs. This information can be conveniently stored as a vector with 
-'

integer components, the first few digits of each component giving the 

alternative to be chosen when the information set represented by the 

remaining digits of that caonponent is realized. We will refer to any 
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pure strategy represented in this way as a pure strategy in coded form. 

In table 1, ie show the example pure strategy mentioned above, in a 

coded form. 

Clearly, the complexity of a pure strategy for a player depends 

upon the number of information sets which are realizable under it, 

and this mmber in turn depends upon the ro.es of the game and the 

information collection scheme he employs. In the wheat-market game 

with arbitrary finite N and a protagonist who is employing its cam

plete information collection scheme, the number of information sets 

which are realizable for the protagonist under any pure strategy is 

given by: 

N-1
 
3 (3.1) 

i=0
 

Obviously, a pure strategy for the protagonist who is employing his 

complete information collection scheme in the wheat-market game, 

becomes quite complex for relatively small N. However, as we shall 

see below, for any given N and information collection scheme R, a 

pure strategy is the simplest of the strategy types to implement. 

3.7.2 Effectiveness of Pure Strategies 

Recall definitions 11 and 12 which established the various types 

of strategy solutions for a game. In terms of these definitions we 

can make the following statements on the effectiveness of pure 

strategies.
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Table 1: An Example Pure Strategy for the Trader, Using a Complete
 
Information Collection Scheme, in the Wheat-Market Game 
With N = 2 

Example Pure Strategy 

Information Set Almernative to Choose 

A no information long on 1st day 

B long on 1st day, mkt. up ist day long on 2nd day 

C long on lt day, mkt. down Ist day short on 2nd day 

D long on ist day, no change long on 2nd day 

Coded Form K to Coded Form 

A 1 0 0 (i) alternatives indexed as in figure 6 

3 2.1 1(ii). left integer is alternative to 
choose 

C 21 2 
(iii) next two integers are observed, 

D 1 1 3 	 choices in order of occurrence; 
i.e., trader's choice on 1st day, 
and nature's choice on Ist day 

(iv) "0"mesas no information collected
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(i) 	 If a player can know at any move in the game, every previous 

alternative choice made and employs his complete information 

collection schemet, then he has a pure strategy solutionol 

(ii) 	 In any other case, a pure strategy R-solution (or -R

solution for some given G) may not exist.
 

(iii) The only way to tell whether or not a pure strategy R-solution 

(or -R-solution) exists for any given game and info ation 

collection schema R (except for case (i)), is through the 

success or failure of an exhaustive attempt to find sch a 

strategy. 

3,73 Determination of Pure Stra ey, -Solutions or E-R-Solutions 

Denote by ("), the finite set of all possible pure strategies 

for the protagonist when it is employing an information collection 

scheme 

For any given game r and information collection scheme RP for 

the protagonistp the only way to find a pure strategy -R-solution, 

if one exists, is to carry out a brute force search of C(hP). it is 

this fact which usually makes determination of a pure strategy E-R

solution impractical even when such a strategy exists, tor even in 

relatively simple games in which the protagonist employs an information
 

collection scheme RP under which he has relatively little information 

at each move on previous alternative choices, C(i) can contain an 

enormous number of pure strategies. 

'in such a situation, the protagonist is said to have "perfeat 

information."
 

ttReference 41Page 123. 
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For example, in the wheat-market game of section 3.6 above, for 

general N and a complete information collection scheme Rp* for the
 

protagonist, the number of pure strategies in C(Rp*) is given by: 

N-i 3i 
11 (3.2) 

i=o
 

In this game with N = 4, the protagonist has a maximum of only 6 pieces 

of alternative choice information on hand in any information set, yet, 

in this case, p = 34o = 10175o.
 

3.8 Mixed Strategies
 

We will consider here and in the next section, two types of 

randcmized strategies. Wfith the introduction of randomized strategies,
 

not Just nature alone, but all of the parties in the gamb can be
 

'"sources of randonizationo" Note, hoiiever, that our definition of 

strategy qulity has already been stated in terms of the expected
 

return to the protagonist, and therefore need not be changed.
 

Definition 1: A mestae for the protagonist based on an 

p
information collection scheme RP is a probability distribution aM

on the finite set C(RP) of all pure strategies for the protagonist 

vhich are based upon information collection scheme RP. 

The protagonist uses a mixed strategy to randomly select at the 

start of any play of the game, a pure strategy to be used until a 

play has been completed. 

Note that any 2nrate mixed strategy on an information collec

tion scheme R, i.e., a mixed sirategy aMD) assigning probability 1.0 

te will indicate degenerate mixed and behavior strategies with the 
extra letter D frog now on. 



to a siAgle pure atrategy aP on R, is equivalent to oP on R. Vk, 

va can ay that the set of el possible pnied strategies on R "contans" 

the set of all possible pnw stra-unies on I 

3,8, 1 ete fML~ Srt e 

Zn order to irzlement a mixed strategy 1t4 a pUlayer must store 

two pieces of infometiof: 

(1) the positbive acmanents of e4 atd 

(ii) a lisa of all r re strategies assigned positive prcbability 

under oi4. 

This 	can be done co rvanictly by stori-g information (i) as a vector V, 

and 	indovnation (ii) ar an array K in the of0l ding manner. 

(i)Let the colm-t of H be the pue strategies assigned 

positive probability under aM, and 

(ii) 	 let the J1th cma4nent of V be zhe probability that the 

pure sTraegy represented by the JtX calmn in M will be 

seleete& =der wM 

We wiL refer to any mixed strateg, represented in this way as 

a mixed at in oodcd form. In tWble 2 ve show for the wheat

= game dth X = 2, an example mixed strategy in coded for.4 for 

the 'n agoniga when he emloy&his npiete infonmation collection 

scheze4 

Rote that the canpexiy of a mixed strategy in coded form 

depends ipon two factors: 

(i) the nieixer of yare strategLes 'ohich are assigned positive 

probability and 
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p * Table 2-	 An tample Mixed Strategy M in Coded Fori for the 
Trader Using Its Canplete Information Collection Scheme, 
in the Wheat-Market Game With N = 2 

Coded Form 

100 200 300 (1) 	 an array M, whese columns are the 

111 121 321 	 pure strategies given positive 

probability under aNP* 

212 222 222
 

113 223 223 (1i) 	a vector V, whose components are 
the positive components of ci, 

.300 .525 .175 	 with the jth component being the 

probability that the pure strategy 

represented by the jth column in 
M will be selected for use 
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(ii) 	 the complexities of these individual pure strategies. 

It is possible then, that in cases where the number of pure 

strategies in C(R) is enormous, any mixed strategy which has maximum 

quality among the mixed strategies may have a coded form which is 

exceedingly complex. For example, in the wheat-market game with N = 4, 

and a complete information collection scheme for the protagonist: 

(i) 	 the number of information sets which are realizable under 

any gi7en pure strategy for the protagonist is given by 

equation (3.1) as 37, and 

(i) 	 zhe number of possible pure strategies for the protagonist 

is given by equation (3.2) as 340 = 1017"5. 

In this case then, the coded form of any mixed strategy which 

has maximum quality among zhe mixed strategies may consist of a 

vector of real numbers of dimension 1017.5 and a rectangular array 

of dimension 37 x 1017-5 with integer componentsa. The storage require

ment of such an amount of information is, of course, well beyond the 

capacity of any present-day computer. 

3.8.2 Effectiveness of Mixed Strategies 

Recalling again our definitions of the various types of strategy 

solutions for a game, we can make the following statement on the 

effectiveness of mixed strategies.
 

(i) For any given information collection scheme RP for the 

protagonist, a mixed strategy R-solution always exists, 

and thus, 



(ii) for any given game, a mixed strategy solution must exist. 

These facts follow directly from Von Neumann's minimax theorem.t 

3.8.3 	 Determination of Mixed Strategy R-Solutions or E-R-Solutions 
Numerous methods have been developed for determination of mixed 

strategy R-solutions or C-R-solutions in two-person zero-sum, finite 

games. %% However, only one of these methods can be practically applied 

in situations which involve games and information collection schemes 

ihich give rise to more than perhaps 103 pure strategies for either 

player. This method. called the "method of fictitious play, " is 

described in section 5.4. 

This method, howaer, has an inherent drawback. Rpecifically, 

it involves the generation of a sequence of increasingly complicated 

mixed strategies which converges for infinitely many iterations to a 

mixed strategy R-solution. Since, hovever, only finitely many itera-

Tions can be carried out, the method, in practice, yields only mixed 

strategy E-R-solutions, and for E*s of practical interest, often 

requires so many iterations that the mixed strategy E-R-solutions it 

generates are too complicated to implement, even in cases where 

relatively simple mixed strategy E-R-solutions may exist. 

3.9 	 Behavior Strategies 

The second type of randcmized strategy that we will consider is 

defined as follows. 

tReference 1, section 17.
 

ttReference 2, Appendix 8; reference 4, pages 159-193; reference 6.
 



lefinitiog 16: A behavior strate for the protagonist, based 
on am information colection scheme R i any function which 

maps each information set 1P e p ) into a probabIlity distributionGP(R

on the alternatives of Ip. 

Note the conceptual difference between a mixed strategy and a 

behavior strategy, a mixed strategy involves a single randomization 

by its player at the beginning of any play, while a behavior strategy 

involves randomization at each of its player's moves on any play.t 

Note also that any degenerate behavior strategy oBD on an infor

mation collection scheme R, ie., a behavior straregy which chooses 

some alterYnative tdth probability lo0 at every informaton set in 

IP(R), is equivalent to a pure strategy. In fact, for every pure 

strategy oP on R, there is an equivalent degenerate behavior strategy 

aBD on R; so the set of all possible behavior strategies on R can 

be said to "contain" the set of all possible pure strategies on H. 

In table 3 1e show for the wheat-markeb game with F = 2, an 

example behavior strategy for the protagonist, based on his complete 

information collection scheme. 

3.9.1 l-lenztaticn of Behavior Strategies 

In order to implement a behavior strategy, its player must store 

a eomplete list of pairs, each of which consist of a realizable 

information set and the probability distribution under which an 

alternative is chosen vhen that information set occrs. This 

Note that naTure is considered to employ a behavior sTrategy. 
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Table 3: 	 An campl e Behavior Strategy for the Trader, Using a
 
Complete Informa-tion Collection Scheme, in the Wheat-

Market Gome With N = 2
 

EIcple 3ebavior Strateg 

Information set Probabili Distribut ion on Alternatives 

no information 	 long-. 50; short-.50; no position-.00 

long on da ; mk-. up day I " .90 t .o00 I .10 

" inkb. dun. dv 1 50 .40 	 .10 

; no change day 1 " 90 000 	 .10 

short a day kt. up day 1 .40 " .50 " .10 

; mktb. dwno day 1 " .00 " *90 	 .i0 

; no chnge day I I .00 i .90 	 010 

Coded ?orm 

00 31 32 J3 21 22 23 (i) 	 a vector V, whose campo
nents each are the observed 
choices of a realizable
 

.50 .90 .50 .90 .40 o00 .00 information set in order 
of occurrence 

.50 .00 .40 .00 .50 .90 .90 
(ii) an array M, whose oapo

.CO .10 .10 .10 .10 .10 .10 nents Mjk are each the
 

probability of selecting 
alternative j when in the 
kth information set 

http:position-.00
http:short-.50


information can be corneniently stored in the form of a vector V and 

an 	array M as follows:
 

(i) 	 let the components of V be descriptions of the information 

sets which can arise under @Bp , and 

(ii) let the coliumns of M be the probability distributions for 

selection of alternatives in each information set with 

the jth column in M corresponding to the jth component of V. 

We will refer to any behavior strategy represented in this way as a 

behavior strategy in coded form. In table 3 we show the example 

behavior strategy mentioned above in coded form. 

Note that the complexity of a behavior strategy in coded form 

depends upon tvo factors: 

(i) 	 the number of information sets which can arise, and 

"(ii)the number of alternatives in each information set. 

Howevar, in most of the game and information collection scheme combin

ations that we -ish to consider, the most complicated of behavior 

strategies in coded form is at most only slightly more complicated 

than the simplest of pure strategies in coded form, and may be vastly 

less complicated than the simplest of mixed strategy R-solutions in
 

coded form. 

For example, in the wheat-market game with N -- 4 and a complete 

information collection scheme for the protagonist, the most complex 

of behavior strategies can be represented by a vector of dimension 820 

ote that under some behavior strategies, every information set in 
Ip(P) will be realizable; and in the vheat-market game, the total 

N-l 21 
nu~dber of information sets is given by: E 3
 

i=O
 



50
 

whose components are integers, and a rectangular array of dimension 

820 X 3 whose cmvonents are real numDers. For this case: 

(i) 	 bhe most complicated of pure strategies can be represented 

as a vector of dimension 40, vlaose ecmponents are integers 

and as we stated in section 3.8., 

(ii) 	 the simplest of mixed strategy R-solutions may have a 

coded form representation involving more than 1019 real 

nmbers. 

3.9.2 	 hffetivtness of Behavior Strategies 

In reference 2, Kuhn has established several results which 

directly iply that: 

(i) 	 it is not necessarily true that a behavior strategy R-solution 

or 	E-R-solution will exist in every game on every informa-

RPtion 	collection scheme for bhe protagonist, r but 

(i) 	 a behavior strategy R-solution vill exist in any game on 

every perfect-recall information collection scheme EP for 

the protagonist 

From (ii) Ve can state the folluing propexby. 

&oe , 4: in any game, at least one information collection 

scheme R exists upon ithich the protagonist can constret a behavior 

strategy solution. 

Proof: By (ii) above, a behavior strategy R-solution CBp * must 

exist on the protagonist ' s complete information collection scheme p,
 

which by definition implies that:
 

tSee Appendix A, Note 4 for an example.
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QCOP*. C11>2 max 0(l R 

But any strategy constructable on any information collection scheme 

P for the protagonist must also be constructable, on C? and, therefore: 

Q(ep*tcY) t' max Q(XYY ) >max Q(xP,' RP
 
Xp xp, R
 

By definition, then, t is a solution, so F is an information 

collection scheme upon which the protagonist can construct a behavior 

strategy soiution, 

In Chapter 6 -we fll generalize o the above results by demon

strating that there are games in which behavior strategy R-solutions 

'and e-R-solutions will exist for other than perfect-recall information 

collection schemes for the protagonist. 

3.9.3 Determination of Behavior SttategM R-Solutions or E-R-SoIuntions 

At present, no techniquest have been developed for determining 

behavior strategy R-solutions and E-R-solutions, even where such 

solutions do exist. However, 

(i) 	 in Chapter 5 we will develop an algorithm for determination 

of behavior strategy E-R-solutions in games in which the 

protagonist employs a perfect-recall information collection 

scheme; and 

(ii) 	 in Chapter 6 ue will develop a heuristic algorithm for 

determination of behavior strategy 6-R-solutions (when 

tWe 	 rule out games hich are sirmle enough for algebraic techniques. 
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such solutions exist) in gmas in which the protagonist 

employs information colflection schemes vhich are more 

general than perfect-recall information collection schemes. 

Note that by property 4, the algorithm mentioned in statement 

(ii) above provides a method for determination of a behavior strategy 

solution for the protagonist in any game, 

3-10 	 Runmma 

We have compared the three basic types of strategies which can 

be employed in games of the type that we wish to consider and have 

argued that in such games

(1) 	 pure strategy R-solutions and E-R-solutions, while easy to 

implement, may no exist, or when they do exist, may be 

impossible to determine for practical reasons, 

(ii) 	 mixed strategy R-solutions and, therefore, mixed strategy 

C-R--olutions alwaYs exist, but the only feasible technique 

for determining them is likely to lead to (or there may 

only exist), mixed strategy E-R-solutions which are far 

too comlex to implement; 

(iii) 	 behavior strategy R-solutions and E-R-solutions are not 

much more difficult than pure strategies to implement, and 

in every game there are information collection schemes fl 

for The nrotagonist, upon which behavior strategy solutions 

and E-solutions ill exist; and finally, 

(iv) 	 methods can be established for determining at least one 

behavior strategy "-solution in any game. 
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Prom these facts we draw the conclusion that in many games of

the type that we wish to consider, behavior strategies offer the only 

feasible means of solution. 
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CHAPTER 4 

FOtIAL PROBLE4 STATMST ANZD 

CONTRIBUTIONS TO THE SOLUTION OF THE PROBLE 

4.0 	 Introduction 

In previous chapters ve have: 

(i) defined the concept of an information collection scheme;
 

(i) considered the questions of determination, implementation 

and effectiveness of various types of strategies that can 

be based on a given information collection scheme; and 

(iii) 	 concluded that in many problems of the sort thab We twish 

to consider, only behavior strategies offer a feasible 

means of solution. 

Frm this point on then, we ill restrict our attention to 

the consideration of behavior strategies for the protagonist; further 

we shall raise the question that we have so far suppressed: how do 

we select an informtion collection scheme for the protagonist? 

4.1 	 Formal Problem Statement 

When considering a given behavior strategy for possible use in 

his decision processy the protagonist has two questions. 

(i) What is the MuaLity of the given behavior strategy? 
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(ii) How difficult is the given behavior strategy to store and 

implement? 

In compating behavior strategies, some rationale for combining 

the answers to these questions must be assumed. We will assume here: 

(i)that the protagonist has a hard lower limit on the quality 

of any behavior strategy that he vill employ; specifically, 

that the behavior strategy must be an E-solution for some 

prescribed E; and 

(ii) that within this limitp the behavior strategy employed 

should have the mi= possible complexity. 

These assmaptions imply the follwing formal problem statement. for 

a given E > Q, find for the prozagonist, a behavior strategy E

solution of minim= possible complexity. 

4. Approach to a Solution of the Problem 

At the present point, any complete search for a minimally complex 

behavior straegy e-solution in any non-trivial game is out of reach 

for the following reasons: 
/ 

(i) 	 for a gien information collection scheme I;, the techniques 

that we will develop, at best, find only a behavior strategy 

E-R solution, not necessarily a minimally complex behavior 

strategy C-R--olution; and 

w 

conceivably must be examined is likely to be enormous even 

in a relatively simple problem. 

(i) 	 the nmber of information collection schemes which 



EPHowever, note that amy information collection scheme establishes 

an 	upper bound on the ccoplexity of any behavior strategy based upon 

it. For example, in the vheat-market game with N = 2, the most complex 

of behavior strategies on the protagonist's complete information collec

tion scheme has a coded form consisting of a vector -ith a total of 10 

components and a rectangular array with a total of 30 coponents 

This observation suggests a parti search organized in the 

following manner: 

(i) 	 rather than search for the simplest possible behavior 

strategy E-aolution on any given information collection 

scheme 4 we wil simply test RP to see if a behavior 

strategy E-solution can be constructed on it; and 

(ii) rather than search over all possible information collection 

schemes Rp , we wil examine an information collection 

scheme only if it looks "promising"; i.e6, if an informa

tion collection scheme P is to be examined, then 

RP(a) 	 should establish a bound on the complexity of any 

behavior strategy generated upon it which is substan

tially below the complexity of any behavior strategy 

E-solution previously generated in the search; and yet 

RP(b) should seem likely to provide sufficient information 

9pso that a behavior strategy E-solution on will 

exist& 

For example, in the wheat-market game with fairly high N, 

intuition suggests that "very old information" may be of little 
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value to the trader. Thus, in looking for a simple behavior strategy 

e-solttion for the brader, we might try the information collection 

scheme r-*, Uhich on the last day of trading does not recall the 

market change and trader rosition realized on the first day. In 

going, from the protagonist' s comolete information collection scheme 

to informatioiA coflection scheme R a considerable reduction in 

the inxinmr compexity of the protagonist t s behavior strategy -solution 

is realized (if a behavior strategy E-solution can be generated on 

R-*). Speeifically, for N = 4, the coded form of the most complex 

behavior ctrateay on CP is represented by a total of 7380 real numbers 

while the coded form of the most complex behavior strategy on R* is 

represented by only 1204 real nnmbers. 

4.3 	 Contributions to the Solution of the Problem 

In the next tvo chapters ve vil-develop the means to carry out 

a partial search of the kind mentioned above. Specifically, 

(i) 	 vie i Li develop an algorithm for construction of behavior 

strategy E-R-solutons in cases ithere the protagonist 

employs a %yperfect-recall information collection scheme; 

and.
 

(ii) 	 we wil devalop a heuristic algorithm for construction of 

behavior straegy E-R-soltions in cases in which the 

prategoniat employs information collection schemes which 

are more general than perfect-recall information collection 

schemes. 
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Then, in the final two chapters we ill employ these algorithms: 

(i) 	 to find behavior strategy E-solutions on the protag6nist's 

complete information collection scheme in several pursuit

evasion decision processes; and 

(ii) 	 to carry out a search for a simple behavior strategy E

solution fot'the doctor in a medical decision process. 
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CHAPTER 5 

flETElfTION OP BEHAVIOR STRATEGZ E-R-SOLUTIONS 

ON PERFECT-RECALL BfTION COLLECTION SCH§4PINFOM 

5.0 	Introduction
 

In this chapter we will restrict ourselves to the consideration 

of perfect-recall information collection schemes for the protagonist. 

For this case we will show that an algorithm for determination of 

behavior strategy ECR-solutions can be obtained by combining:
 

(I)a transformation mapping any mixed strategy on a perfect

recall information collection scheme R, into an equivalent 

behavior strategy on R; 

(ii) 	 the technique for finding mixed strategy E-R-solutions in 

finite two-person, zero-sum games, called "fictitious play", 

and 

(iii) the technique of dynamic programming°
 

5.1 	 Preliminaries 

Before beginning our arguments, we will state formally several
 

assumptions, and we will develop expressions for the expected payoff 

to the protagonist when:
 

(i)the players each employ a mixed strategy, and when
 

(ii) 	 the players each employ a behavior strategy. 
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5.1.1 	 Assumptions 

In order to facilitate the writing of simple payoff expressions, 

we make the following non-restrietive assumptions. 

Assumtion i: Any two plays Wand W' in a game tree K for a 

game r, contain the same nu er of moves. 

ALsmtion 2: Any two moves X C W and X' E WO belong to the 

same party if r(X) = r(X'). 

These assumptions are not restrictive, since any game tree K 

can be altered to satisfy them by the insertion of insignificantt 

extra moves. 

Assumption 3: Any two moves X E W and X' C W' contained in the 

-same information set are of the same rank. 

This assurmption is not restrictive if we are considering only 

perfect-recall information collection schemes* In this case, each 

player knows at any move that has been realized, how many choices he 

has previously made, and thus, by Assumption 2, the rank of the 

realized move. 

5O1o2 An ERpression for the Protagonist's Return When Mixed 

Strategies Are nI.yoyed 

Let us assume arbitrary orderings for the members of the sets 

Cp(Rp ) and CP(R), and let us denote as: 

() 4' and of. , the probabilities assugned to pure strategies 

0P ECP(RP ) and aPI' E CP(R a by mixed strategies c ty' on 

RP and ab on Rl, respectively; and as 

A move is insignificant if identical play structures and payoffs 
result for any alternative chosen at that moveo 



(ii) 	 n(# 3 ) and n(Ra), the total nmibers of pUre strategies in 

cP( and CP(ea), respectively. 

Using 	this notationj ye can express the expected return to the pro-

Ratagonist when ot? on RP and on1 are employed, as follows: 

n(iP) n(na) 

H(~ P~aiSa) 3 Z a~p~R;dP B'a (5.2), 

kl 	j=l
 

Note 	that this expression is linear in the components of the protag

onist's [antagoniatts] mixed strauego. Thus, for any given mixed 

strategy for the antagonist [protagonist], a degenerate mixed strategy 

Aa ] WMP 	on R [a can always be foun. which maximizes [minimizes) 

*the protagonist t s expected return. 

5.1.3 	 An Expression for the Protagonist's Return When Behavior
 

Strt egies Are Layed
_P 

For 	e pl .iy let us denota 

(i) by EP(k), Ea(k), or EP(k), the 	alternative choice on W that 

ts established by the protagonist, 	 the antagonist, or nature, 

respectively, at that party's kth move on 1; and 

(ii) 	 by I)(k), I&(k), or nk), the informiation set containing 

the prctagonist' s, the antagonist's, or nature's kth move 

on W; 	 and 

(iii) 	by N, A4 and L, the total number of moves on W for the 

protago ist, the antagonist, or nature, respectively. 

Degenerate mixed and degenerate behavior strategies are introduced
 
in sections 3.8 and 3-9, respectively.
 



Further, we shall asste for each i=lo.!?MiL, an arbitrary 

ordering of the information sets vhich contain moves of rank ik,and 

we will denote by (k), lak):V and the ith possiblet(kX, infor

mation set for the protagcnist;, the attegonist, and nature, at that 

party's kth moves, under these assumed orderings. 

Proceedirgp the expected return to the protagonist when OBP on 

RP an& 7a on Ra are en.-loyed is first uintten as: 

=~B.0ieaZ bW)pow) (5.3) 
WEK
 

where p(V) is mhe -probaility distribut on defining the probabilities 

of the plays W C K, when aBP on Rp and Ba on Ra are employed, and 

i(W) is the proragonist's payoff when W is realized 

By (iii) abovm, we can ospand (5M3) to obtain: 

o5
 

where Q is tte Oet of all choice sequencac which congtitute plays 

in X. Noting ,that the use of behavior strategies means that the 

players make conditionally independent choices at every move, we 
can arpl- Bayes rule to (5o4) to obtain: 

C
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Since there are finitely moM choices and finitely many information 

sets, we can construct from bl(#(i),i=lN; t(j),J=l,M; E(k),k=l,L) 

a function g(P(±), IP(i),i=l,N; e(j), Ia(j),J=lj,M; (k), t(k), 

k=l, L) such that H(BP, IZ;aB, R) can be written in the foflowing form t 

H(OB Pl BaO e ) , X Z p(9(1) ipmi)) ...
I (() ) #O(jji: 1 

p((P))O rI(w) Z) I( 

( I (1)I) Yo PjI())I() 
la(b) ea(M)IIa(14)i 

L"(1) 1) In)I(L) Hn(L) f3-'(L) 

P(e(L) In(L)j) o 9(T,(J), (J), =l.,N; e(k), a(k),k=2, ; 

s ntC e) tJ, L)] (5.6) 

where the notation E means summation over the set of alternatives 
XI! 

X that are a-vailable in information set Y.
 

1See Appendix A, Note 5 for an example or this construction.
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Carrying out the summtions of the term enclosed by brackets in 

(5.6) (using the behavior strategies given for nature in the rules of 

the game), we can denote the result as d(EP(J),IP(j),J=lN; ta(k), 

k-iy~jand rewritea () (5.6) as: 

,P(a)1 ( ) 2P) 2 )*("(() 

la(l) Lp(l) Ila(,), ja(M) e(M)Ija(Hll
 

p(t(q)I(N)f(I) ,P(a(l)Ia(l)i) .o p((M)rIa(M)t) d(F'(J,, 

P(J), j=i,N; e(k),a(k),k=-!M) o(57) 

Having completed the preliminary arguments, we will now begn 

the development ofour algorithm by stating the theorem and transforma

tion upon which the algorithm depends, 

5.2 Kuhn's Transformation and Theorem 

In reference 2, Kuhn gives the following transformation mapping 

any mixed strategy cK on R into an associated behavior strategy 6B 

on R. 

Transformation (Kun) The behavior strategy ;B on R which is 

associated with a mixed straegy eM on R, is defined by the following 

transformation: 

Vx1) oti] [3abM ] (5.8) 

DVD
 



where:
 

(i)P(il) is the probability that the player of the associated
 

behavior strategy elects alternative v when information 

set I E IP(R) is realized, 

(ii)D is the set of all pure strategies oPi for the given player
 

under which information set I is realizable, and
 

(iiW) D is the subset of D consisting of all pure strategies
 

under which I is reallzable and v is chosen.
 

To interpret this trasfozmmzion, suppose that the protagonist 

employs a mixed strategy d on RP in a game 7, and imagine that an 

observer watches many occurrences or r and collects statistics on 

.the 	 relative frecuencies of selection of each alternative in any 

given information set IP E If the observer watches "long 

enough," it will accumulate relative frequencies of selection for 

each alternative which are identical to the corresponding probabilities 

of selection defining the behavior strategy @ p on # vhich is asso

ei&ted with oYon PP. 

In reference 3, Kuhn employs the transformation given above to
 

prove am interes-ing theorem which., in terms of our definitions and
 

nomenlature, can be stated an follows . 

TheoremC0Mm: In any finite extended game in which the players 

each empioy a perfect-recall information collection scheme, the 

payoff to each player is identical under any set of mixed strategies 

or the corresponding set of associated behavior strategies. 
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The significance of thir theorem in the case of a two-person, 

zero-aum finite extended game is indicated by the following corollary. 

Coronlary I If 	 R is a perfect recall information collection 

RPscheme, and if on is the behavior strategy associated with a 

mixed strategy E-R-solution aMW on RP then ;B P * on Rp is a behavior 

strategy iE-R-solution. 

5.3 	 Use of the Transformation 

In view of the above theorem and transformation, an obvious way 

to obtain behavior atrate&y E-R-solutions when R is a perfect-recall 

information collection scheme, is to construct a mixed strategy E-R

solution on R and transform it into an equivalent behavior strategy 

C-B-nolution. 

However, in problems of the sort that we wish to consider, the 

method of fictitious play is the only °feasible technique for generating 

mixed strategy 6-R-solutions, and this technique tends to generate
 

mixed strategy e-R-solutions which are so conlex that the implied 

intermedxato steps of Storing these strategies will not be feasible. 

In the following sections, horever, we will show that there is 

a second way to employ Kuhn's transformation in conjunction with the 

method of fictitious play to generate behavior strategy E-R-solutions 

while avoiding the above-mentioned storage problem 

t The 	proof is given in Appendix Lo 
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5.4 The Method of Fictitious Playt 

The method of fictitious play (or equivulenly, the fictitious 

play algorithm) vas first suggested by Bronn.7 The idea upon which 

the eigorl:tm is based is both Ptraightforwrd and intuitively 

apCg9L Itg Specifically, if we wish to find a mixed strategy E-R

solution for the protaganiat on an infomation collection scheme Ri 

we emu assign to the antagonist its complete information collection 

scheme C, and have the playeers engage in a series of fictitious 

p3.yu (or repetis) of the game as follmym: 

(i) 	 at the ftint rspetititn of the game, eaeh player chooses 

an arbitrary pure stragy gpp on liP or aPa on cp andi 

(iA) 	 at Mibseuent repetitions, each player chooses a pure 

strate&y on his given information collection scheme which 

maximizes his expected returpn, assuming a mixed strategy 

for the oivent, which veiaght each of the opponent's 

previoualy used pue strategies in proportion to the 

nutber of tirms it has been use4 and then 

(iii) as the number of rVetitions becomes large, the expected 

return to the protagonist at each repetition should 

approach (and eventunI3r surpass) the rdnim expected 

return that it can guarantee itself by employing a mixed 

RP. straegy E-R-solution on 

method and its properties sdfl be described in terms of our 

definitions and notation. 

"Sea Appendix 4 Note 6, for observations on the intuitive appeal 

of the method. 
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In reference 8, Robinson proves that statement (iii),is indeed 

true, Note that since the initial pure strategies chosen by the 

players are arbitrary, and since there may be many pure strategies 

which maximize or minimize a player's return a&any given repetition, 

the sequences of mixed strategies generated by the fictitious play 

algorithm are certainly not unique. The convergence of the method 

depends only on the fact tha the mixed strategies of the sequences 

are relaTed in the manner described above, 

To describe the fictitious play algorithm formally then, we 

will state the following theorem which cmbines Robinson's result 

with a pair of recursive equations describing the manner in which 

the mixed strategies generated in a sequence of fictitious play 

repetitions are related. 

Theoemrow-Rdinzn~iDenote by2 

(i) 	 aM.(j) on RP [o'#(j) on Cal the mixed strategy that is 

generated for the protagonist [antagonist] at the Jth 

repetition of the fictitious play algorith~m and by 

(i) 	 Aa H(aP(9 nP-at(j),Co)[min H(W(), RP ptca)] any 

U? a 

pure strateg t which maximizes [nimizea] H(aP1, RP; 

Then any pair of mixed strategy sequences (c#(i) on RP , 

P(2) on ,..) and (Oa'(!) on Ca, c(2) on c,...) which satisfies 

the 	following pair of recursive equations: 

tInsection 5.1.2 we argued that pure strategies exist which maximize 

[minimize] this e;pression. 
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(i)~j) a~~t)=ax H p9,a,),Oa)] 

aynin H, #(j),lR;p,%pCa)l 530 

(where the "plus" in -hese expressions has the obvious operational
 

meanng),t=mt have the following properties- for any given E >,0, 

there exists an integer J such that for all J > J, 

(L)H(#(j),R?;o, 0Ca) > max B(C4;'(j),c) - E for 

any mixed strategy ca on C, and 

(ui) E(O1P.,?P;Vm(j),Ca) -e min~ik)E;ea + E for 

any mixed stravegr WM'on, P 

The sigifxicanee of this theorem Is indicated by the following 

Corollary. 

_________ If (ai# l) on 9, aMP( on ,. 

on e, CM(2) on . iis any pair of mixed strategy sequences 

genera+ed t a fiettions lay a 6oritlm , then for any G > 0. there 

RP
exists an integer J such that for all 3 > X, aM#(J) on Is an 

E-R-solution, 

5.5 Use of the Transformation (Coatinued) 

In practlce, for games and Vs of the sort that we wish to 

consider, the mixed strategies generated by the fictitious play 

The proof is given in Appendix B. 

"Represent the mximizing [minimizing] pure strategy as a degenerate 

mixed strategy and add. 
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algorithm became too complex to store long before sufficiently many 

repetitions have been carried out to generate a mixed strategy &-R

soltion for the protagonist. As mentioned in section 5.3, this 

means that the obvious route to a behavior strategy E-3-solution, 

ie.., find a ztxed strategy -R-solution and transform it, is not 

feasible, 

This problem can be avoided, hcenrver, by transforming the ficti

tious play algorithm itself so that it generates a sequence of behavior 

strategies w-hich converges to a behavior strategy E-R-solutionj rather 

than a sequence of mixed strategies irhich converges to a mixed strategy 

E-R-solution. Denoting Kuhn's transformation as T, this transformation 

.of the fictitious plaj algorithm is acc mplished by replacing equations 

(5,9) and (5.10), respectively) by equations (5-l1) and (5-12) shown 

,SpxH(app 
t 

0) o(r) = x a(j),ca)]] (51)[(J)oP(J)+T[I Dlu9,i 

(ii) oBa(j+1) = t)[(j)OflBa(J) [amnIn Y(aHpj),1~pO#,"a)]] (5.12) 

-here Lhe Indicated transformations of the pure stma7egies are 

tThe derivation of equations (.l) end (5 12) from equations (5.9)
and (5.10) is given in Apenx 4 Note 7. 

t-,:_ sc=cases. simpler expressions for H(c RP;B(J), Ca) and 

H(tBP(j), ;ot Ca) may be used which reduce the amount of computa

tion required in each repetition; see Appendix A, Note 8. 
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accctliahed by empsloing equation (5, 8) iAn considering the pure 

strategies as degenerate mixed strategies and where the "pls"in 

each of these expressions means addition of the probability distribu

tions at each information set of IP(r-,) or lp(,e). 

With this replacement, however, we have not yet achieved a 

practical means for finding behavior sbrater &-R-solutions in games 

of the sort that xwe -ish to consider. One more difficulty remains, 

and we consider it belowo 

5#6 Dynamic ProEra n and rictitius P,v 

In implementing the fictitious play algorithm, note that at each 

repetition we mst determine pure strategies a* on R and aPa* on 

'Ca , respectively, satisWfing expressions (5.13) and (5-14) below

H1(ar,-A'aBawle,) nr &? 1 
1 ;(),a (5.13) 

R(ap( ), g rra*,a) m 1(09(j);R Ca)i;cP% 
aa 

Recall, however, that in section 3*7.3 we comented that in games of 

the sort that we wish to consider, the nmber of pure strategies for 

each player can be enormouso Obvionly then, the determination of 

pure strategies satisfying (5.13) and (5.14) by means of brute force 

searches of the players' pure strategy sets is not feasible. 

tThe protagonist in the wheat-market game with N 4 has 1017 '5 

pure strategies when erploying its complete information scheme. 
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Continuing our arguments with the maximization problem (the 

minimization problem follows easily), note that any degenerate behavior 

strategy BDP* on 9 which satisfiest 

"ap 

also satisfied expression (5.13).i Thus, we may consider the maximi

zation-problem as a seareh for a solution aBD* of (5.15). 

Using expression (57), we can rewrite (5.15) as: 

E-oBDptlY;0Ea(A)Ca) = max [ z X.6 

I p(E9(1-)IiP(l)i) ... P(gLi(pm~Qi) [ X 

II( P?1f(1l0 * 

t0.) f a i(~INN) t(n) IIa4), 

p((M) jja(M)i) d(()-() 1 ~~) ~) =,Mf (5.16) 

where the antagonist's probability distrib tions are specified by 

FB'(J) on Cab Carrying out the summations of the inner bracketed 

terms in (5.16) and indicating the result as 
P0'a(J)), and expanding dB -o indicate the collections of distributions 

tRecall that the set of sll behavior strategies on any information 
collection scheme RP contains a degenerate behavior strategy equiva
lent to any pure strategy on RP. 
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'secifiedfor each rank at which the protagonist has moves, we can 

rewrite (5.16) ar: 

n&) 3tRP;aea~j),Ra) flaX max 
p(P).(i) jxP(1 )) p(j( 2 ) 11 P(2)) 

p(  ZP j X( ) () .. ip() 

I(jP(2) 3I P(() i[1 ()i()) 0*( 

Now, if ? is a pretrc informstion collection scheme, 

then 1P(j) coMletely specifies 9(k) and I(k) for k=1, -I. This 

inplies that a different probability distribution is chosen for every 

realizable combination of values for EP(k),IP(k),k=Ij-1, which, in 

turn, allows us to rewrite equation (5.27) as: 

ZeBamr ,B( ), 0a - 3' max 

P(. P(-i)) [ m.)I((-)j 
Ip(2) p(P(2()jiz(2)j ) ():() 

Ip(11) v(EP(N')l '(N)i ) g(jj)jP(jj).I
 



p () lI(?O). e(NuPCw);cBa(a))J .. ] (5.18) 

camnining the right side of equation (5.18), we see that it can 

be maximized sequentialjy, starting with the probability distributions 

p(FP(XIj- ())and working backwards to the distributions p(i)I 
IP(1)). This technique of backwards sequential maximization is ec

10,11monly known as dynamic pREzMIn, 

Note that this sequential maximization can be accoiplished with 

the choice of a degenerate probability distribution at each Informa

tion set, thus producing a degenerate behavior strategy which maximizes 

H( , k Ba(jo), Ca) or HG(,, ca(J), Ca). 1 

In light of these observations, and noting that T(oBD) = dBD 

for any degenerate behavior strategy D, we vill change the form of 

our algorithm once more. Specifically, in the final forvm, of the 

algorithix Insbead of equations (5.11) and (51-2), we will employ 

equations (5.19) and (520) given below: 

aBp(J+L) ( 9[(J)a&(j) + eanax H(oaBp.. R.WB~i).Ca)] (5-19) 

afl4) - (l()~() min HGBI(j),flP;aepa] (5.20) 
dBa
 

where the max and min operations will be accomplished using dynamic 

progr&maing. 

In order to see the sort of computational advantage to be gained 

by using the dynamic programming technique to find a pure strategy 

tRecaln that this was our original aim; see equation (5.13)° 
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inaidmizing R a9,P a(j),Ca), rather than a brute force search, 

consider again the vteat-mket game with N = 4 and a protagonist who 

emP1oys his complete information collec Lion scheme. In this game: 

(i) using a brute force search to find a maximizing pure 

strategy requires comparison of the values taken by 

H(0 .pP RP-;u(j), Ca ) over i017 5 possible pure strategies, 

or 1 0 rr0 5 scalar comparisons, but 

(ii) using the dynamic progamming technique to find a maxi

mizing pure strategy requires comparisons of values for 

3 alternatives each, in 820 information sets, or 2460(103"5) 

scalar comparisons. 

Clearly thex, the use of the dynamic programmg techniye to carry 

out the maximization and minim:zation operations required in fictitious 

play is essential in problems of the sort that we wish to consider. 

5.7 nylw 

Our objective in this chapter was to construct an algorithm for 

determination of behavior strategy E-R-solutionS when the protagonist 

employs a perfect-recall information collection scheme. In the 

preceeding sections we have shatm that such an algorithm can be 

constructed by combining Kuhn's transfoxmiatiom the method of ficti

tious play, and the technique of dynamic programming. 

We sumiarize the elgoriti obtained, then, in the following 

theorem. 



Theorem 1: Let 11 be any Paz-feet recall Iinformation cofleotion 

acheme for the protagonist, let ea be te eoqplete information collec

ticm scheme for the antagonist, and let the pair of behavior strategy 

OP( 2 ) 6 (,a(,) ~(2)&equeneea (cP(i) on i, on R( a.) o0,cD on 

o j04Satisfy the reUrSiVe eXpraioags* 

W( -u )() anw9rR;CrBO-(J),R )
 

GB?
 

CBD 

(a)ew e (l) 3 () 0 + are botwatitrary ThV"en the 
whre qBp(I) ca Rp Ba (l) 0. a, are both seolt. aryo Then the 

acquze (aftI) ca BE5 uB on *, h~aa the property thati 

for am C > 0, them exists an integer J such that for any j > 3, 

o'z(a) on PPis a beha-vior strategy &-adhjltion, 

In the flows diagram of figure 7, -e indicate an i'plementation 

of this algorithE, ihih we will henceforth refer to as the 

raSn.fciisDl gxt 
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set J=l (Note that cBP(j) and 

Ba(j) can be stored 
Choose E > O 3

destructively) 

Choose'a'BP(1) on Rp and 

OBa(l) on Ca arbitrarily
 

Determine a degenerate behavior
 

Rp
strategy aBDp on maxivizing 

ycB, Rp;,Ba(, Ca), using
 

dynamic programinng 

Determine a degenerate behavior
 

strategy CBDa on Ca mi imizing


RP;cffa,e), using
 

dynamic progranming
 

If(afBp(j), 

+ aBD ] 1()
)=. [(,,)a 


+f( 1) =BD&)
 

BDa, ca)- H(BP(J+I), RP; No
WHacB?, RP; CBa(j+i), c) 

FIGURE Z FLOW DIAGRAM -FOR THE PERFECT-RECALL
 
FICTITIOUS PLAY ALGORITHM.
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CHAPTI 6
 

DETERN TION OF BDMAVIOR STATEfGY E-R-SOLUTIONS
 

ON RELATIVELY GD A fFOMATION COLLECTION SCHMS
 

6.0 	 Introduction 

The determination of a behavior strategy E-R-solution for the 

protagonist on a general information collection scheme is usually a 

much more difficult oroblem than the corresponding problem with a 

perfect-recall information collection scheme. This difference in 

difficulty is due to two factorst
 

(i) 	 a behavior strategy E-R-solution does not necessarfly exist 

on every information collection scheme that the protagonist 

can employ; and 

(ii) 	 the behavior strategy that is associated with a given 

mixed strategy E-R-solution on a general information 

collection scheme 9 , is not necessarily of maxnum quality 

.
in the set of behavior strategies possible on Rp


In this chapter we will develop an approach to the problem of 

determining a behavior strategy E-R-solution on a given information 

collection scheme which can be applied for relatively general infor-

Rp . mation collection schemes 
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Our 	arguments will proceed as follows: 

(i 	 We will describe an ,n-person. non-cooperative game rO 

which can be defined for any given tvo-person, zero-sum 

finite extended game with a given information collection 

schme Rp for the protagonist. 

(ii) 	 We -- ll define the concept of an entity-behavior equilibrium 

point in rO an- we il! shog that a behamvior strategy on 

RP is 	 of maximum quality in the set of behavior strategies 

possible on E? 2f iL it corresponds to an entity-behavior 

equilibrium point in r'o. 

(iii) We will show that in order for a behavior strategy on Rp , 

which corresponds to an entity-behavior equJlibrium point 

in r', to be an R-solutionj it is sufficient but not 

fecesaar for RP to be a perfect-rec,11 information collec

tion 	scheme. 

(iv) 	 On the basis of these arguments, we will conclude that 

behavior straiegies on Rp , 'hich creon to entity

behavior equilibriun points in r', are growisi!g candidates 

for behavior strategy E-R-solutions in r; and we will 

describe a form of the ficaitious play algorithm which 

can 	be used to generate such behavior strategies. 

6.1 	Preliminaries 

Before beginning our arguments, we nill define the class of 

imperfect-recall information collection schemes that we intend to 
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consider, and e wflU develop a convenient form of expression for 

the expected return to the protagonist when both players employ behavior 

strategies. 

6.1a1 Imprfect-Recall Information Collection Schemes to be Considered 

We vid again make Asstions 1, 2 and 3, which w~re stated in 

the previas chapter in section 5.1e1- Note, however, that if we are 

no longer limited to perfect-recall information collection schemes, 

thenAssumption 3 is reszrctie . Specifically, in making this 

assumption we are sayng: 

(i) thaz the protagonist has perfect-recall of the number of
 

choices that it has previously made, or equivalently,
 

(ii) that th6 protagonist knaos 'he Tr of' the move that has
 

been realized whenever he it to choose an alternative. 

In this chapmer then., e vil. only consider information collection 

schemes -nich induce information partitions which satisfy Assumption 

3.T We will refer to such information collection schemes as admissible 

in!ormation colledtion schemes. 

6.1.2 An kcression for the Expeted Return to the Protagonist 

Employing the notation of section 541.3 and assuming for each 

k1t,, N*14fL an arbitrary ordering for the information sets containing 

moves of rank k, yewdefine partitioned vectors P for k=l,N, and 

Y 	 for kl,1M as follows. 

p k be(a) Let the £th component of 	 given by: 

A alightly mor general assunmtion can be made; see Appendix A,-

Note 9.
 



£p = (pk -lpk where Z j + E np and 

is the total number of alternatives of information 

set IP(k)m: and 

(b) 	 let the .4th cmponent of Ykbe given by: yk=p(t~k) =if 

i-I aa 
la~)wereI =j +E nasnd n is the total number of' 

alternatives of lnformation set ta(k)m. 

I figure 8 we show haw 6uch vectors can be defined in the example 

game of section 2.4t when each player is employing its complete infor

matlon collection scheme. 

(XPI ) aNote that the set of vectors , . .. ,x constitutes 

strategy for the protagonist with the mth partition of X13k 
behavior 

being a probability distribution on the alternatives of information 

set 9(). 

Continuings denote by 7 the inner product operation defined by 

the following example of its use, 

Ci"Jyk Ai1,k =A V VV 7 	A 

N 
N 7,- AxXP P ... Vxp. 

and let II X 
i=l
 

Referring to expression (5.7) of section 5.1, we can construct 

an N + f-dimensional array F from the function d(IP(J),l(j), =I,N; 

E(k),Ia(k),k=l,M) such that, by employing the notation given above, 

tThe "card" game. 
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(i) Information sets A, B, C, D, E shown in figure 5 

(ii) Assumed orderings 	on information sets at each ra
 

are as follows: IP(i= A; 1) = B a(1) 2 C; 

"(2), - D; 1P(g)2 = 

X92 1P(fA) ; ?Pa(zfB) XP 9;P( D) 

P(21A) 	 p(2?IB) ;P(2 D) 

Pa(lic) PP(iE) 

Pa(21T) E(CTO) 

FIGURE 8. BEHAVIOR STRATEGY VECTORS. 
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we ean rewrite expression (5°7) in the following simple form: 
14 

Note that for a particular game r, the stracture of this expression is 

determined by the information collection schemes employed by the players. 

In the following sections we will define a particular (N + M)

person, non-cooperative game that is suggested by the structure of 

expression (Gl), and ye will sho; that behavior strategies which 

correspond to equilibriu strategies in the defined non-cooperative 

game are promising candidates for E-Rsolutions in the original game. 

6.2 	 The Associated lo-Cooprative Game 

Definition 18: The associated non-cooprative game r' for a 

given two-person, zero-mm finite extended game r with a given 

information collection scheme - for the protagonist, is the (N + M)

person non-cooerativet game defined by*, 

(i) 	 assignig to the antagonist its c=nplece information
 

Ca .
 collection scheme 

(ii) 	 considering each rank of player moves in r -o be under
 

the control of a separate and independent etit, and
 

(iMi) 	 considering the payoff to each entity to be identical to 

that of the player whose moves the entity is controlling. 

t 
The 	game we *tishto consider is completely described in cuhis 

-
12

definition; it is also a non-cooperative game as defined by Nash * 
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DenotiiN the entity controlling the kth moves of the protagonist
 
[antagonist] as 'the kP-entity rka-entity), we define the concept of
 

an entity-behaVor strategy as follows. 

fDefinition 19: An entit-behavior strategy for the k-entity 

[k -entity] is any function which maps each information set IP(k)j 

[la(k),] into a probability distribution on the alternatives of that 

information set.
 

Note that the set of all possible entity-bebavior strategies for 

the kp-entity [k-entity] corresponds to the set of all possible values 

for the vector Xpk [yak]. In view of This correspondence, we can 

refer to the vector xPk [Yak2 as an entity-behavior strategy for zhe 

kP-entity [ka-entity, and we can consider any behavior strategy 

(Xp , i=, N) (Yai i=l, M)] as a collection of entity-behavior strategies 

for the entities associated with the protagonist 	[antagonist].
 

We will consider the associated non-cooperative game to be playec 

in the following manner: 

(i) each entity kP, for k=l,N, [k for k=, Mi, employing its 

behavior 	strategy Xp k fYT, simultaneously chooses an 

" i-,, r ]under 

(ii) for the ccpz- Ret of choices thus tic erwined, the 

expected return to . c i-s computed and awarded 

positively to each protagonist entity and negatively to 

each antagonist entity. 



Yfrafl4nnote that in ae associated (V + M)-"<porion, non-

Cooperative C=m., the concept of iafozttco gathering has no ezplicit 

meaning since each enityW acts w.,97 one. 

16.3 	 A Mcear7 Ottdition for Bhavio*r StaegP,?o 

of Mzdn uaIt 

We v6i11 begina this section by defining the concepts of an eayfli

brium poinrt in behavior strategies and an eqailibflum point in entity

behavior atrategies. We vin then show that In order for a behavior 

strategy o 9 to haw m n quiyalty in the set of behavior 

strategies possible in e it is necaXy ror &g on 19' to correapond 

to an enrity-bl ior equilibrium Point in the associated non-cperative 

eatirdtioa 20: A pair of behavior strategies (XPt=i, ), 

(Y trliwM) in a g=e r, with infcmatiox collection schms ror 

the protagonist an for the antagcmist,, in a )Lsyr-bebavior 

N J	 N) 

'D, ,inition 21: A net of entity-behavior strategies (X*t ,1;r2 
in an associated (n + M)sperson, nn-ecooperative gmne l, 

is a~n 	 entitv behaflcr eouillorium Dotrt if: 
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ji+lXpi = 


(x') v F<

9N M 

min XpJ A-1 Y~k ,yV T *ak) VF(6)K2V 
YaAl =1~ ~ n~(62 

for i=1, N and A=i, M.t 

We complete this section by stating the following two theorems. 

Theorem 2: t For any associated game ro , there exists at least 

one entity-behavior equilibrium oint, 

pTheorem 3: A behavior strategy aB' on RP is of maximum quality 

in the set of all vossible behavior strategies aBY on RP ony if it 

corresponds to an entity behavior equilibrium point of the associated 

.non-cooperative game ri 

p PProof: A behavior si.rategy cB on R is of maximum possible 

quality on RP only if it corresponds to sacme player-behavior equlli-

Rpbrium point based on and the antagonist's complete information 

collection scheme Ca; bu further, any player-behavior equilibrium 

RPpoint based on and C' must correspond to an entity-behavior 

equilibrium point of the associated non-cooperative game. j 
Suppose, ther, that we have found an entiTy-behavior equilibrium 

point in the associated non-cooperative game I" corresponding to a 

tA total of M,, expressions of the form of 6.2. 

tThe proof of this theorem is given in Appendix B. 
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given Infornation teilection scheme Ii ad a given tvo-peraoa zero

=4n finitA wtene& game r. By theorem 3, the eorrea-por-ding behavior 

straftar OR' 42 a? Mtt aatdsfY the Bet of Lneojaitien describedi by 

ezpausio (6.2)t &A these ineomylities awe neees conditions for 

a bahavior suraegy of maxima quality in 'the net of behavior atret

egios pssible in A - on is* are these necessaryThe obvious yse 

conditions also siiient? The next sectin gives a pmtial answer 

to -thi queatici 

6,A A .iffioio2t but Rot Nieasadry Condition for Batit--ehavior 

Eid Points to Coneapon& to Behavior Strat R-Solutions 

In this section we will defIns the eeqpbt of recall-easitiyi" 

-an& we Will . Wothis conept, 'tw shag that: in order for a behavior 

strategy dBP on RP to be aa R-solution in a game r, given that It 

corre sonds to anetit-b aior eti 4 ibriam poinm in the associated 

non-cooperattve g e 4r, it is nffi cient but not5 neM aa that RP 

be a peeo~.afl information collection ochee. 

6,4,1 The Coneq&~Of Recall amdnsit 

Deoting by X((Xftbl±i-ff; tjl )f()),the exoacted return 

to the protagoniat as a functioa of the behavior strategies employed 

by the pleyer4s given that informtion set I(k)} has been realized, 

we damfe the ecaftqu of recal-Sensitivity an folloms. 

DeftnitIo ZZ. Te reC02-senaitivity Of the r" onist abuom 

a ie9± of behavioLcr stratog 2e (x4%9':±=2S) on4 a? and (zJ-l,M4) 

on na, in Lb.0 vhlere: 



(a) rs= glbp and
 

k=2
 

(b) [8P2, 3, ,8pN} is a set of real nitibers defined as 

foflors: 

(Xpii=,N; YaJ,j=,M) = 2a [max ... waxXP'%ip(k) )_?1 XP(k-'-) 

6 Pi-,_.. , , 7 *ajj= ,M)jIp(k)),2.°, k *Pkl *PI.))a 

min ... min H((XP-xPZ..,XPk, X (k ),...,XN; y*a, 
xp(k-1)XPI 

J= ,M)IIp(k))], rfor k=2,N. 

The recall-sensitivity of the protagonist has the following 

property. 

Prqprty 5 : The recall-sensitivity of the protagonist about any 

Rp RPpair of behavior strategies (Xpi, i=lN) on and (YJ,J=lM) on , 

is zero if Rp is a perfect-recall information collection scheme. 

-The concept of recall-sensitivity can be interpreted as follws. 

First, note that the protagonist's expected return, given that 

it has realized a particular information set !P(k) r is dependent 

upon the functions XP i=k-l to the extent that these functions 

establish a probability distribution on the alternative choices he 

knew in the pst but cannot recall. To see this, we wifl denote 

tThe proof is given in Appendix B. 



the information that has been forgotten by the protagonist when 

Ik)Zhas beent realized, as FrP(k)1 , and we will tipress -a((xP't 

:i=l,l; It 1A~-,)JIP(k) i) as foflovs: 

a((~ I 	 Nay1 ±~±i Y~J=lM)fI:0?(k)) 


wtre summation ovdr It(k)A means summation over al possible values 

that 	can be taken on by this forgotten information. 

Now, for some perfEect-recall information collection scheme lp, 

P3."--,;Y'J1,~I~)eF~), is the conditional expected 

return when the information seat represented by (Ip(k)g IP(k)AI is 

realized. Therefore, by definition 22 and property 4, This conditional 

expected return cannot depend upon the functions t , i=1,k-i. Frther, 

by causality, P(Fp(k)lIIP(k)z). is not dependent upon any of the 

frinctionz 3p .ik f 
p i With these observations, we can see that 'spk(x , i=l, g;Y , 

J=,M) is simply a bound on the effect of forgotten information on 

the protagonist's conditional expected return at Jt; kh deciai 

when (x*i,iI, N) on RP and (Y*aJ, j=I,M) an Pa are employed. Thus, 

the recall-sensitivity of the protagonist about (x it1, i) on? 

and (Y *aJ=, M) on Ra is a measure of the total effect of nmootten 

information on the protagonist's expected r-turD



90
 

Examining expression (6.3), we can also see that under either 

of the following conditions, the logs of information lip(k)2A Vill 

contribute little to 8Vk(x ti=,N; Y*aj=l,M). 

(i)H((XP, X*P1 i- ,klN;ai,14)IIp(k),rev(k),) is not 

for 	any given function -Ykstrongly dependent upon IFP(k) 2 

and any given information set lp(k)j, or 

(2)P(I#(k)IP(k)) is not strongly dependent upon the 

functions XP i1 , i--l, k-. 

6.4.2 	 A Sufficient but Not Necessar Condition for 
Behavior Strattg,&m R-Soluti ons 

By employing the concept of recali-sensitivity, we can obtain 

the theorems and corollaries given belotw 

Theorem If a pair of behavior strategies, aB~p on lip and 

on , in a two-person, zero-sum finite extended game r is such 

that , 

(a) 	 it corresponds to an entity-behavior equilibrium point in 

the associated non-cooperative game V', and 

(b) 	 the recall-sensitivity of the protagonist about this pair 

of behavi-or strategies is less than E, then: 
*Q(oB~ it) A min H(oB*p RpaB% Ct) = H(B , Rp;B Ca) _ 

aBa 
max 	H(CBh,RVSBt Ca) < H(cB ,RP;Ea Ca) + E 

ah p 

'Tine proof of Theorem 4 is given in Appendix B. 
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From this theorem we can obtain the fofling corollary which 

states a safficier- condition for a be- Lor strategy whioh corrosponds 

to an ant 4 ty-behavior eqT!iib-iii. aoint :m r* to be an -R-solution 

in r. 
Coron-:ar + V w' - strategy OB on iP, in a given pai_ of 

behavior strategies Vhich co- -d, uo an entity-bebp"-tw eqyl 4 brium 

point in r, in an E-R-soluticin fl r :± -. .'n "avjty Of ti

protagonist about this air of .eha-ior strategies is less than 

Vote that the suff-Pient condition of corollary 1 is given in 

terms of the r ecall-sensitirity of the protagoi'at about a siven pair 

of behavior strategies, a quantity vaaL is no, easily evaluated in 

probiems of the sort that we vish -o consider. 

Hwever, corollary 2 given below, which establishes a more 

restrictive but simler sufTicient condiion, follows directly from 

corolary I and proex-ty 4, 

-C : A behavior strategy CB on Rwhich corresponds 

to an entity-behavior equilibrium point in rd, is an R-aolution in r 

if t is a perfet-recal information collect±on scheme. 

'The corollary given above raises a question. Specifically in 

p
this coron-y, is the condition "R is a perfect-recall information 

coflectkn scheme" also a n condition? We can see that the 

ansmer to this question is "no" by considering The foflowing example. 

lFhcanze: In figure 9 ve describe a tvo-person, zero-sm. finite 

extended game r. In this game, note that the moves of ranks I and 3 

The proof of Corolary I 18 given in Appendix B. 
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Rank I ' 

A Protagonistis 
move 

Rank 2- - -l Antagonist'smoves 

AnPrtagonist's 

c G Protagjonist's 
Rnk 3- moves 

hF GU9 2XM 3 h4 hE 6 17 hG 

FIGURE 9 AN EXAMPLE GAME. 
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are protagonist moves while the moves of rank 2 are antagonist moves. 

Consider then the inperfect-recall information collection scheme 

rP * under which the protagonist forgets at any move of rank 3, the 

choice that he has made at his move of rank I. The information parri

tion induced by RP * can be fomed from the sets of the information 

partition indaced by the protagcniav's complete information collection 

scheme, and is given by P( *) fA, C U1 DU G) where A, A E 

and G are the information sets labeled in figure 9. 

Now, tq inestigate the recall-sensiti-.ity of the protagonist, we 

must examine the protagonist's expected returns when information sets 

C U E and D U G are realized. The first of these returns can be 

expressed as 

H (#tIPXP-2 ;tbC) 3 l Z p(14) (6.4)I R E(UXP
'%Jc- E O Cw UE 

where C U E indicates sumnation over all plays W containing a 

move thich is a member of infoz-sation set C U Z and 0wc U E indicates 

smntion over the set of all partial plays leading from 0 to a move 

in C U . Contimdng ve can expand (6.4) to obtain: 

T,((V^P 2,x )jC U E) - p(IA) p(IfB) t[p(C U 9)b 

p(2 [ ~hh) )h5 + p((C U R)h6 )U E + p(2fA) p(lD) p(lf C U 

+P(lfB) [p(iIA) + p(2fA)] =zp(l{A) [p(1ICUEB)h1 + p(21CUB0i2 1 

+ p(afA) [p( ICUSE)h5 + P(2tIC U E)163 -(6.5) 



Eamning equation (6.5),we see that if h1 =h 5 and b ON where 

and p are a itrary constants, then ((XP U ) is not 

dependent Von XIX 

The protagonist's expected return tnen infortation set D U G is 

realized can be expressed as: 

' =H((Xf- t t;Y tD U G) p(lfA) p(2fB) IP(1D U a)h3 + 

p(21D UG)h4 + p(2jA) p(2fB) [p(1tnU G)b7 + p1Di u G)h8 

p(21B) fp(ljA) + p(21A)3 - p(lIA) Ep(IlD U G)h3 + p(2DU G)h 41 

+ P(2 A) fp(IID U G)h 7 + p(2ID U G)h8 l (6.6) 

amliwg(6.6)., we see that if h3 - Ph7 and h = Ph8 where p and p, 

are arbitrary con-stants.. then H((X,r 2;Yal)D U G) is al so not 

dei~endent upon X1 

Therefore., by definition 22., if h1 =azh5 
2 0h13 =O 

and 4 for arbitrary constants p, and p, the protagonist8 

has a recal-sensitivity of value zero about asy pair of behavior 
P P * a . strategies OB on R and *B a on C By corollary 1, then, for the 

given gmne and the given information collection scheme *, awy 

behavior strategy caBP on - which corresponds to an entity-behavior 

equilibrtim point in the associated game r', is an R-solution. 

It is also easy to show that for the given gaae and the given 

-Infbimati-v collection scheme RP , if h5 - C1' =11, 

bh +
3 E3 a h = 8 +4- E4 then t ie recall-sensitivity of the 

protagonist about arY -Pir of behav-ior strategies is bounded by 
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mex(E .ey %) 

strategy oBP on ? - 'Ihich corresponds U an entity-behavior equilibrium 

point in rl is an e -R-solution. 

Cabining corollary 2 vith the observtions made in this example, 

we obtain the following theorae. 

m E2 In this care, by corollary I., any behavior 

BpM-soremjq_ In order for a behavior strategy on RP co be an 

R-solution in a game r. gi-mn that oBP on RP corresondsa to an entity

behavior equilibriim point in the associated non-cooperative game r' 1; 

it is ffioient bnt not necessary that 3 be a perfect-recall informa

tion collection scheme 

6.5 	 Constrution Of bhit eh or Eqilibrium Points 

In the preceding two sections ve have shorn that if -w can 

generaie an entity-behavior equilibium point ( iKl ; y-aI 

J=I,M) in the associated game ff, then for a given game r and a given 

intformation collection scheme e the behavior strategy (2_P', i-l,N) 

on RP: 

() a!u-4a meets a set of necessary conditions for a behavior 

strategy of maximun quality in the sez of behavior strategies 

possible on 

(ii) 	 is an R-slution if ±is a. perfect-recall information 

collection scheme, and 

(iii) may be an A-soluion (or E-R-solution) in oases where RP 

is not a perfect-recall information collection scheme. 



This raises an obvious question. "Given a particular associated 

non-cooperative game ri, how an we find entity-behavior equilibrium 

points for r'9" 

In the following subsection-we wil give an answer to this 

question by describlng an algorithm that has been employed by the 

author to generate entity-behavior equilibrium points in a number of 

associated non-cooperative games. We will call this algorithm the 

"extended fictitious play algorikbm" because of its similarity to the 

BrowniRobinson fictitious play algorithm described in section 5.4. 

6.5.1 The Ectended Fictitious P1A Algorithm 

Extended fictitious 'play in an associated non-cooperatie game ro 

is analogont to fictliioua play in a game _t Specifically, in extended 

fictitious playre carry out a series of fictitious plays (or repeti

tions) 	of r, in the follbwing manner:t 

' °(i) at the first repetition-of,r', each entity chooses an 

arbitrary degenerate behavior strategy, and 

'(if) 	at inbsequent repetitions of ro; each entity chooses a 

degenerate behavior strategy wbhich maximizes its return, 

assming for each of the other batities the entity-behavior 

strategy that can be fonied by summing (and appropriately 

normalizing) the degcnerate behavior strategies previously 

employed by that other entity, 

with the ezjiectation that, as the number of repetitions becmes large, 

the set of entity-behavior strategies, which at any given repetition 

twe described in section 6.2, the manner in vhich an associated
 

game r,is considered to be played.
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are aasumed for each entity by the other entities, -will appr6ach an 

entity-behavior equilibrir point in r'. 
In order to describe the aligoritm formally, we establish the 

following notation Denote: 

(i) 	 by XPk(j) [Ya(j)] the eunity-behavior strategy that is 

produced at the jth Iteration of the extended fictitious 

play algoritbm5 for the "?-entity[ktentty), 

(ii) 	 by ia" XP' [ m Yi ], a vector partiTioned in the same 

manner as ) 1 i [700- but having an 0.0 comonanms except 

for a single 1.0 entry in each partition in a position 

corresponding to a raximm [minim=m] element of X-P:[7 a l 

in that p1rtizion,f and 

(iii) 	 by IT ?P, the product ! V V *°. V X V 
A=il 

x v,.o v + 

Using this notationr, we cah formally describe the extended 

fictitious play algorithm by stating the following set of recursive 

equations which indicate the mamer in -which the entity-behavior 

strategies generated by the algorithm are related. 

Tn 	the case of several maz-iwm [rnimd elements in a given 
partiton the choice of which one is to correspond to the 1.0 entry 
is arbitrary, for exs=Le, mav C 5 .5 .2 .8i =[i.0 0.0 1 0.0 
0.0 	1.] or [oo0 3.0 0.0 0.0 0.o! 

"Note that this product yields a vector. 
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Y-0+1 (t ),yak~j) +r14( ffxPA) VAn O4 V F 

for 	il,N and k lM,where X"(o) for i=1,11 and Ya(0) for 7--3M 

are 	arbitrary degenerate entity-behavior strategies. 

,,I the flov diagram of figure 10 we indicate an implementation 

of the extended fictitious play algorithm. The convergenee of the 

algorithm is considered in the subsection below. 

6.5.2 	 Convergnce of the ktended Fictitious PlAy Algoritm 

In any application of the extended fictitious play algorithm, 

(i) 	 ve are interested in the quality of the behavior strategy 

ag on Rip which corresponds to any entity-behavior equili

bri= point that may be generated4 but 

(i) 	 since only a f.nite nmber of iterations can be made, only 

an approximation to an entity-behavior equilibrium point 

vill be goneratid. 

Looking back to section 6.4.21 we see that theorem 4 establishes 

Rpthe quality of any behavior strategy Op on which corresponds to 

an entity-behavior equilibrium point. 

In ,light of these observations then, we will appropriately 

restate theorem 4 for the case of apprcmdnate entity-behavior equili

brit poartq, and we will then coment on the convergence of the 

algorithm in verms of this restatementa 
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start 

Set J=0 (Note that Xpi(j),i=I,N 

1,M can becstored
Choose E> 0 and Y (3),k 
destructively)
 

IChoose xPi (0), 1-1.11 ahd 

C a (c)4, m Y )l, 

for i=l,N 1=i £4 

IA (1 xP ( ( ())D IiN 

ICornute_____A vi H aA(J)ys
 

for k=l,M A,1
 

compute 91 (Jt-i) = [k x) mryx v](Sh-) + 
for i-1,Nj 

for k1,M Ia 1 ( 

N" 14M No 

X [(vV. -. ]...[... 1m,,, 1 .m.vWI-

Qes 

FIGURE 10. FLOW DIAGRAM FOR THE EXTENDED 
FICTITIOUS PLAY ALGORITHM. 
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Theorem 41 (restated): Consider a given two-person, zero-am 

finite extended game P pith a given information collection scheme 1, 

and the associated non-cooperative game r". Then, if a set of entity

behavior strategies CX7~li i , N Y j,H) in r' is such that

x ) v *aA ) 7 P 

M a uc*a-ae
N Nfor i- lN and J=14 then the behavior strategies ~ 

1=1 

Considering convergence of the ertended fictitious play algoritm 
thef , the athor has eptoyed this algorithm to obtain approxiate 

t~jfly minor modifications to the proof of theorem 4 are required to 
establish thin restatement. 

ttShgpley (reference 13) has given a class of games for 'which the 
mehodei ficotous pclay if not converge, however, this class of 

games cennot be transformed into a clans of games of the type that 
we are considering. 
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entity-behavior eqizfllbrim points in a number of associated non

cooperative games and i- each ease convergence was observed in the 

forloving Sense. 

For B 0.05, an integer j ! 200 coud alwaya be found uch that 

for(z±Ji= 4 ;a( ilu) 

CyN)ad C'J r-ec it? • 

a y~w Vre eP]a~U t~ 

A-3 

In the fafllding section we sumarife our resnlta and consider 

a practical qestion involved in their use. 

69Summary and Cloring &rguments 

In the proaecng sections we have develop-e34 for two.person, 

zern-wam finite-extnmdd games, a herxris algorithhm for generating 

approxitations to behsvior strategies oB# on R Asnich: 

,(i) g Meet a et 'of neoeshary conditions for a behavior 
t 

strategy of manm quality in the set of behavior 

tarategies whibh are possible on k, 'and which 

(U)> are B-solutions or E-E..olutions if but not only if IP 

is a perfe-i-recafl infornation collection scheme* 

We argue., theno that -the algorithm can be said to produce 

piraing eanridaten for behavior strategy e-P-solutons on an 

Information cllection scheme. 
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RPHowever, if is an imperfect-recall information collection 

scheme, andthe algorithm is thus producing behavior strategies which 

are only kno - to be promising candidates, any candidate that is 

produced must be verified. But verification requires knowledge of 

the quality of anR-solution on RP, and in games of the sort that we 

wish to consider, there are no vractical techniques for determining 

the quality of an R-solution when RP is an iaperfect-recall informa

tion collection scheme, 

Al. Is not lost however, for recall that our prnary interest 

is in E-solutions n R9, not in E-R-solttona on . In fact, we 

set out to develop an algorithm for generating E-R-soluions only 

because we know that in order to be an E-solntion on RP, a behavior 

stratey must first be an E-R-solution on?. 

In light of these ccmments then. -we note that:

(i) 	 the extended fictitious play algorithm generates promising 

candidates for EC-solutious on RP, and, consequently, 

(ii) 	 what we are primarily interested in knowing is whether or' 

not a behavior strategy produced by rhe algorithm in an 

-solution on it 
The verification implied by (ii) above, howevdr, only requires 

knowledge of the quality of a solution in r, and this can be deter

mined by appropiiate enployment of either the extende> fictitious 

play algorithm or the perfect-recall fictitious play algorithm of 

the previous chapter. 
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CHAPTER 7 

A FVRSMfl AMD trASION GAME 

WITH M StUREMqT UNCiTAJf 

7.0 	 Sintroduction 

In this chapter we will consider a purmdit and evasion process 

in finite discrete time and in a finite discrete state space. 

We will asumme that the prmanr and the evader are each able to 

gather yrfect measurements of their, own states and uncertain measure

1menta of their m states, with the amount of incertainty 

dpedent upon the states of both pursuer and evader. 

At each of the pursuer's decision times in the process, the 

pursuer either terminates the process or chooses a state 'to occupy 
r
 

at the next time instant. At each of the evader's decision times, 

the evader detects hether or not the pursuit has been previously>' 

tenmihated; and if it has not been, the evader chooses a state to 

occupy at the nexu-time instant. 

Finafl,, when the firsuer terminates the process, which he must 

do at or before some time tf, the pursuer wins and the evader loses 

a pajoff which is determined by the state histories that have been 

realie by the plaeris at the tne of termination. 



7.0.1 	 ObJectives 

In considering this problems our oJecftives will be 

() to give a enontrtion of the ue of the perfect-reeall 

fictitious play algorithm, 

(ii) to give an example of a type of problem which may be much 

more easily bolved in behavior btrategies than in mixed 

strategies., and 

(iii) to demonstrate (by shasidg that a most plausible simple 

method for generating "aUboptimal" strategies leads to 

strategies of ralative3Zy poor quality) that the effort 

involved in determination of an C-solution may be well 

justified 

In meeting these objectives, we wil fin tbehivior strategy 

C-solutinn for the pursuer and the evader then each is emils'ngits 

eaMAete infozntion Collection scheme. We will consider the problem 

of finda1g minimally clex behavior strategy E-soluions in the 

axanie 6f the next chapter. 

7.1 	 General Description of the Pruit-EBmsion Process 

We give belov a formanl description of the pursuit and evasion 

process that we are going to consider. In this descriptin and in 

the remainder of the chapter, we will consider the piiquerr aS the 

ZZ2deoistin 	the process and the evader as the !~~t
 

To begir, we establish the following notation.
 

(1) Denote by S the state space of n points in which the 
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process is considered to take place, and assign to the 

'points: of S an. arbitrary ordering. 

(ii) Denote by t., i=0,12,.. the discrete time instants at 

which measurements are nade, and decisions are made and 

t executed. 

(M) 	 tenote by a(tj, b(t9, z(t), and w(ti), respectively, the 

pursuer's state at time tV the evader's state at ti, 'he 

tursuerc xeamrament at ti of the evader's state at ti, 

and the evader's measarement at t1 of the punsuer's state 

at ti. 

(iv) Denote by T(t), the set of temination alternativs open 

to the pursuer at t. -nds set will consist, of the alter

natives- tenmitats the pursit, and/or continue the pursuit, 

which -i"l be denoted, respecti7ely, by the integers I and 0. 

(v) Denote by r(ti) E T(ti), the pursuer's termination decision 

at time ti . 

The pursuit and 'evasion process that we vili copsider, then, is 

fo=0afly desdribed by the fPolowing assmptions. 

AMRMtion A: The movement canabfl-t of the pursuer in S is 

defined by a set-function SP(a(t),(tl), ... ,a(ti)) which maps the 

history at ti of pmst states occupied by the purser., into a subset 

of S cowiiatimg ot the states that can be occupied by the pursuer 

at t i+I The moveanent cpaility of the evader in S is similarly 

"defined 	by the set function b(t ) ). and the 

pursuer ad evader each hnotr both functions. 



A-S=WU B.0The Mgez~hi of the set T is dependent only 

q,= ttae~p andi in kawm to bfth pitrsuer an& evader. Further, the 

ptwrser Must te~dnate the pnult at or before sme time tf; i.e., 

T(%) (1). 

MmmtO a MTe pursuer and evader each have 2rfect Measure

msntn of their om ztaes Their masurents of their opponent' e 

aftaesz~(ti) an& v(t) &4-e random~ variabler. ta~dng-vvluea in S uinder 

probablity distrlbutionL6 t(z(ti) ta(t1 ),b(ti)) and -#(w(t1 ) a(t) , 

b~te V h are dependent up= the jawrsnr and evaer states at 

the tiMe of tn2Seuftt, and tich art !mownm to both pursuer and 

evar. 

distributions at))and t(b(t)d) Vidch are kntnto both pursuer 

and eader, 

Assmt4o £t % e r de IL wich the pursuer and evader 

if be assumed to operate at each time imataat t i is as follow t 

tL) the pu mrsr and evader each receive an uncertain measurement 

tof its Vpmrt a ctrrent state; 

(ii) 	 ca the basis of the 1f-rormatioa it possesses, the purster 

deelides Vnether or not to terminate the pursuit; 

(iii) 	the evadjr receives the ifzormetion that the pursuer has 

or has not tftvSdated the pursuit; 

(iv) 	an the basis of the infowmtion it possesses, the pursuer 

ealects er oecrtiss an accessible next state in S; 
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(v) 	 on the basis of the information it possesses, but without 

knviedge of the yuruers movekent decision, the evader 

selects and ccuvples an accessible nenxt state in S. 

: Upon termination of the process, a payoff h(a(t) 

b(ti), i= J) is anrde osi±tively to the pursuer and negatively to 

thevar, aere t is th time of tenntAnation. 

n figure fl Vn auma.Ize the above snmi=tions in a flow 

diagram showing her tkis purzt and tvasioa game is to be played 

te both pursuer mud evader e4loy their ccmplete information collec

tion schemes. 

7.2Inerreatix of the Pairsuit end Evaaioj C-wie 

In this section e vii interpret the nrmait and evasion game 

in termo the method of description that was developed for two

person, zero- cns4 finite ezctend& games in Chapter 2. 

To bag-+* nave that the four rules of our definition of a finite 

extended game am specified by the asamptions given in the previous 

section. In particular, 

(i) 	 the set of all possible plays is specified by Assumptions 

A and B, 

(±1) 	 the mamnar in which nature chooses an alternative at each 

of her =0aas is specified by AsmWFtions C and t 

(iii) 	 the payoffs to eaeh player for each possible Play ar
 

sjeeifi& by Asmtm~tion F, and
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FIGURE 1I. METHOD 0F PLAY OF 'PURSUIT AND EVASION GAME
WHEN BOTH PLAYERS EMPLOY THEIR COMPLETE 
INFORMATION COLLECTION SCHEMES, 
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(iv) 	 the maximm Wount of Information tbat each player can 

gather is spaciffied by asa=ptions C and .. 

After establishing the follaruing notatioA and conventions, we 

Vill describe a specific pursuit and evasion gam in ters of a game

tree diapim. 

7.2.donentifisandsiotation
 

Let us asamwe the foflmdnM inein faltermatives.
 

irst, at ai4r move where the pursaer is making a termination 

decisionj let the alter Ive "terminate the parauit" be alterative 

1 and the alternative "continue the pursuit" be alternative 2. 

Next, at any move where the pursuer or the evader is choosihg a 

next state, asume in accordance with the ordering of Sp at ordering 

on the statea of the relavant accessible state set, and let the ith 

,state of the accessible state set Vnder this orderng be the ith 

alternative at the given move 

For example, siose that in a given pursuit and evasion game, 

the pursuer is mking a "next-atate" decision at a move ifnere its 

accessible state set is (2,h) E S -[ 1,2,3, 41. In this case -e 

would let state 2 be Alternative 1 and state 4 be alternative 2. 

?ifafly, at any nove where nature is choosing an alternative. 

we will assign, in a nanner similar to that used zo assign indetings 

at moes where The players are choosing next states, an indexing to 

the measurements with positive prdbability4 
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7or e&sn*le, MWmOSO that in a given Pamit and evasion game, 

nature t4 selecting a nament sk(t 1 ) &ta move Vam-re~~i 

a(t:i)sb(t)) giver pwitive probability oIly to ntate 2 and 1 in -

S = fl.23,41. Y this case we Votd let state 2 be alternative I 

and state 4s be alternative 2. 

Ile will adopt th*sfofltning convention in labeling infortmtion 

sets, 

Recall that in Chapther 2 wte denoted a player'sa information set 

at any moves as the string of alter-amtivecoce areetr the 

portion 4nieh is knom to that _lkyar of the alternative choice 

isatey defining that move. Noting then that, under the given Index-

Ing of alternatives, the string of past measarements and decisions 

kn~m to a plaer at wxy given move corresponds to the player' a 

Informxtion set at thaz move, we will sdoptk the convenient convention 

of describing informtion sets in tems of their carresponding 

weasiraenkand decision strings. 

Fdrther, let ug denote 

(i)by1(i an %apoieyttp, he pursuerts and 

evader's iWfo tion sets at time t i but prior to the 

terminatIon decisiou of the pursuers and 

(ii) byT I(t,) and At4) reapectively, the pursuer's and the 

evader's informtion sets at time t 1 but after the temtna

tion decision of the pursuer. 



For 	 rme 

and 

Havirg ectablished these eonvetions and notation, let us 

doezr"ibe a simple pursuit end nva io gae in terms of a gene-tree 

diagram. 

7.22 	 A Game-ree Diaam for a Pursuit atd )Vasion Game 

Consider Vv.n-pzmit r n game deseri bed as fo 1ows: 

Ci) tostges: t_13vt , T(tQ) = '0,1"%T(t1 .)= 

(411) state space o'two cletos: S [1.23 

4±11) yuiraaer momaet aybity ?() SP( 2) -(1.,2) 

(iv) evader zreetepbi:S&(1) a12;s(,) (a 

(v) Itial ta e &atribntionn- -(a(t 0 )) V'(bQ) (.5 .5) 

(vi) 	maamu-ement statistics defttd in zerie 4 below. 

(ViI) 	payoffs described as foflovrn: 

(a) 	 if th purwAit terminates with the pursuer cmd the 

ev"er in tha sftm state, the pursaer vimn and the 

evader loses a payoff of 2.0 if the time of terminatIon 

txern that both the pursuer and the evader are employing their 
complete information Collection sehemes. 



Table 4: HameetSaitc 

z(t) orV(t),a(t),b(t) t) )(w(t)fa(t),b(t)) 

1,1,1 0.90 0.55 

1,1,2 0.10 0.90 

1,241 0.55 0.45 

42,2 0.45 0.10 

2,1,1 0.10 0.45 

2,1,2 0.90 0.10 

2,201 O. 5 0.55 

2,22 0a55 0.90 

is top and a payoff of o0 if the time of termination 

is - and 

(b) if the pursuit terminates vith the prsuer and the evader 

in different stazes, the pursuer -in and the evader 

loses a payoff of 0.0 regardless of dhe time of termina 

In figure 12 ie show a game-tree diagram for the pursuit and 

evasion gme described directly abome, and in figure 13 we give a 

detailed describyion of a single play. 

In these f0igcgsr in order to clearly indicate the member'ships 

of the playerst information sets, wAe have indicazed at each move the 

corresponding obse-rved tesurement and decision hin-tories of the 

players. Specifically, at each move,
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pursuer's observatons/evader's 
observations, with an observat
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one ofthe connectedvertices w~hen its / 

21202IO observed history is 
(i) pursuer only 

knows othat itds in 
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FIGURE 12. GAME TREE FOR 2-STAGE AND 2-STATE
 

PURSUIT AND EVASION GAME.
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II / - Pursuer Chooses 
/Next Slam ate 

Pursuer Decides Not 
to Terminate ((t O) O)

(09) 1a55 

Nfure Chooses 
z(t)011 w(to)Il" (AlternotivPwbnbd~tse) ,e . - (Play is token from Figure 12
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FIGURE 13. DETAIL OF A PLAY IN EXAMPLE PURSUIT AND 
EVASION GAME. 
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(1) 	 the Pmrsuer's Measurement &nd decision history (Information 

st) is indict& by the string of Integers to the left of 

the slash, and the evader's mearnirmmet and decision history 

is bidicto by the string of integers to the right of the 

slash, Vith 

(ui) the mrwbers. in each string indicating, f-rm~ lef-t to right,. 

the pleye-t measnnnts and decidionz in the order in 

ttieb they !yak g~a 

For exaq!e,%he mve wich it ciremsribed by a hexagon in 

figre IS is lbeled with the stringa 132/220 indicating that a;t 

this more: 

(i) 	 the 3pmaer has observed (ak't0 2(t 0 ) rT 0 ) A(ti 

tlA~,2]and 

(Ui) the evader ba.s observyed fb(t),wf(t 0 ), r(t)3 ( 2,2,01. 

te that togather, the tw'o strings at ally moe completely speciky 

the alternative ehoice history defining ihaz m-e. 

-Yvote 	also that in the figures 

(a) 	 a single alternatve is indicated at each vertex or move 

vhere the evader's -Anissible state set is e(2) = (21, 

(i) 	 nature's selection of initial states for the players has 

been ca binid into a single zova, and 

(iii) 	matnre'n selectom of meadrvets for the players has 

been ec btined into a single nave for each given pair of 

initial states. 
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Finally, note that the pursuit ad evasion game that M haved 

described meets Anssmptions I and 3 of Chapter 5o but not Assmtion 

.2. Yas fa'Ure is not significant, h-ever., since AsSuwtion 2 is 

not restrictive and as made in Chapter 5 only to allow the writing 

of simple general expressions for the pzotagonist's expected payoff. 

7.3 	 Parsuil" 4Md EvaidT Gamces Studied 

The fTLlo-ing example pursuit and evasion games were studied. 

(1) 	three etages:6 t E-ftdtl t21 ; Tv(t) =T(t1 ) =(0.,11; 

T(tZ ) a (3. 

(W) 	two States: S _[1,2 

(iii) 	puriuer movemnent capability: EPNa(t 0,)) aS"(a(t 0 )$ a(tj) a S 

(iv) evader nm eant capability* S(b(t0)) S for any i( ; 

s&(bt S if 1 )0 X(% bet 0 ) -b(t

b(tl) tais 

(v) 	 initial-state distributions: t(a(t 0 )) a(1.0 0.0); 

P(b(to)) (oo i.o) 

(vi) 	meawa ement statistics as defined in table 4
 

(vii) 	payoff described as follows: 

(a) if the parsait terminates with the pursuer and the 

erador In he Ramse state, the pursuer vins and the 

evader loses a ayoff of 2.0 if the time is t o, 

1.3 	it the time is 11 and 1.0 if the timd rs t2; and 
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(b) 	 if the pursuit terminates with the putrsuer and the 

evader in different states, the pursuer wins and the 

evader loses a payoff of 0.0 regardless of the time 

of tentMaation. 

t 	 e 2 tThe number of stages, movement capabilities of the 

~ayers> and tbe payoffs in exainle 2 are the same as in example 1. 

We list the differences bel,1 

(M three states'., 5 (1P2,3 

(ii)initial state distributions: tfaft0) (i.a 0.0 0.0); 

t(b(t)) = (o 0.0 1.0) 

(iii) measgment statistics defined as in table 5. 

The use of the perfect-recall fictitious play algorithm in the 

generation of behavior strategy E-solutions in these examples is 

discussed below. 

7.4 	 Apvlicazon of the Perfeot-fecell Fictitious Play Algorithm 

To apply the perfect-reell fictitious play algorithm, e rLtsau 

(i) 	 e;Tress the pursuer's (protagonist's) expected rezurn as a 

function of the behavior strategies employed by the players; 

an emp-loyig this expression, 

(i) 	 implenant on a digital campner, the flow diagram shown 

in figure 7. 

In Appendix A, Note 10, we conment on bow the nubers were chosen 

in this example. 
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Table 5: Measurement Statistics
 

z(t) or w(t),a(t),b(t) p(z(t)ja(t),b(t)) p~w~t)fr-(t),b(t))
 

1,1 I o.6o 0.6o 

,1,2 0.20 0,90 

1,1,3 0.20 0.50 

1,2,1 O0 020 

,2,2 0.05 0.05 

1,2,3 0.05 0.25 

1,3,1 0.50 0*20 

1,3,2 025 0.05 

1,3,3 0.25 0.25 
2lll 0.20 0.20 

2,1,2 0.60 0.05 
2,1,3. 0.20 0.25
 
2,2,1 0.05 O.60
 
2,-2, 2 0.90 0.90
 

2, 2, 3 0.05 0.50
 

2,3,3. 025 0.20
 
2,3,2 050 0.05
 

23,3 0.25 0.25 

3,1,1 0.20 0.20 

3,1,2 0.20 0o05 

3,1,3 0.60 0,25 
3,2F 0.05 0.20
 

3,2,2 0-05 
 0.05
 

3,2,3 0.90 
 0.25
 

3,3,1 0.25 
 0.60
 

3,3,2 0.25 0,90
 

3,3,3 0.50 0.50
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74.i 	An iR=asion for the Praser's Ecected Return 

lith the cwoon payoff expressions given above, we can write a 

single ezr2ression for the purauer's expected payoff Uhich is valid for 

both of the exanples. In narticaar denoting by pand a, respectively, 

the pirmuir'a and the evader's -ccnpete information collection schames, 

we can take advantage of the simple structure of our examples to write: 

H(OeP,C?;oaj Ca) 4 2. 0 x P(a(to = b(t), (t)= 1) + 

1 5 x Y(a( l) -b(t. 1 X, r(t 0 ) -0, -rtl) =1) + 1.0 x P(a(t 2 ) 

b(t3 ), I(t) = t(t) = 0) 	 (7.1) 

%&ere the probsaflities of the three events with non-zero payoffs are 

defined by the players' and nature?'a behavior strategies. 

If we dneote by u(,.) an indicator fumetion having value 1.0 

where its argmenta aee identic , ad 0.0 otherw-ie, we can expand 

eXPression (7-1) to write, 

C 	 A0(lDCPUEaax 	 [.0 u(a(t),b(&)Y 

a(t 0 ), z((tb(,,'w(t0 ) 

PP(%), (to), :(la4.ob ( 0)),+ Pr(t )=01a ),z(t,)) 

ZB~*jj. 5 a(t9),b(tj)) PP- _)I 

a(tQ z0t)b(1)w(N 

aOt), s(t0D), TNt.1)a(t 1 Z(tj + ?(p(t -I)ja~t)z(t 0 ) )" 
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where:
 

(iL) A = 	 t(zt) ja(t0 ) b ft 0 ) ?f-(t0 )&a(t 0 )b (t0 ) 

i0(wto Pn(b~to0))
 

--i) B 	 )a(t1 ),b(t,)) -I 	 (I() ia(),b(tl)) 

(iil) a = 2 )a(t), )=o, z(t), o)oI(a(t (t),r(t 	 (t), )(t 

(ii 	 P(a()() b(t)=O 1X1?(t), w(t z(tl)± ~O)
 

* (iv) the indicatea cams are ever the states of S, 

and t1bNt0 )) M-, nature'n behavior strategies,, 

(vi) the 	probabiliies supor criyted by "p" and "a", respectively, 

Sare Ci efs of the Puaners and evader's behavior strategies 

tth t ose elements restricted to taking values consistent 

-iththe oveent and termiation capabilities of the 

playjers 	 (for exaple, in a state space of 3 staves, if 

=1(2(2); then £(t0 ), 2 , z(t 1 _) 0=r,P(3j11, 0, o) 

1, Zt 0 1)01 2S kl(t 1 ), 0) -0 for any pair of meaaprersnta 

z-(t0 ) and zt 1 )); and 



(vii) the sets of aerible tpon Ihih the probabilities 

mentioned in (vi) are eonditioned. correspond to the 

players information sezs in n'(CP) and IP(c). 

Rate that, in spite of its comlexity, equation 7.2 is much simpler 

than the xpreassion that would have res-ulted if we had ignorad the 

stracture 	of the gaae and had attempted to express the expected 

retru to'the prosagnlist in the form of eqution 5.18. 

7-IL,2 Generation of BehrdorRateV E-Solttions for 
the Ptrsuer end the Evader 

Using expression (T.2) for -he pursuer t s expected raturn, the 

perfect-recall fictitious pley algorithm was programed on a digital 

cappurtxer at. behavior strategy e-solutions were determined for both 

thd pursuar and the avadar. 

Note that since -- are considering the eapected payoff vhen 

both players are eQ! ying their complete inromation ccle.ction 

schems, a behavior ntrate ' -solutiom is generated for both players 

at the saje time. 

IA both -_a~tls, the vale of C that was selected was 0.02. 

•The qualities of the behavior strategiers found for the players axe 

given in table 6 belot. 

Table 6: 	 Qualities of Behavior Stratey &--Sol ions Found for 
Pursuer and M-der 

EKcamp1 Eae 
aliWy of pursuer's E-=olutionx .845 .661 

Quality of evader'I C-solution: .864 .681 
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In ~te 7 -,e sh the bebsvior stratecr E-solntionc determined 

1%for the mursatr and the evader in exa~re The "nr1" indication 

in thin -able Means tmat vnder the given strategies for the piayers 

and nattre, the informtion set corresponding to the given measurement 

and decisioa history is not realiabie, 

7. 4.3 Obsard OUMGence latee 

fthe ecowntation of btehweisr attzateV E-soluticois for the playrers 

mea of the perfect-recall fictitiocia play algorithm was carried 

cut on an 1W 709k digital cotn1-,er. 

Fo:: eamh tmnwle marsuit Aid cvasio game, a general program was 

ivtten 6a aecioda-te aititrar; initial acamte distributions,. arbitrary 

m=asureent st itics. and arbitrary movement capabilities for the 

playorso ioraver, the programs were altered slighly to take advantage 

of the sftvle iaitial state distributions specified in exeaples I and 

2 abov e Saaifioafly, alternative prObabilit distribution's were 

not dnenmtded oM infonmtin sets that could not be realized under 

the given initial state distributions. 

In table 8 te sma-ize the relevant Information with respect 

to observed corver gece rates of the algorift for the examples con

sidorcd 1n this table tLe "'rsm~barof vvriabiles to be daterminedt 

is the tetal wmbear of probability distribution co; onents in th1i pair 

of behavior scracigies to be dete mned for the players. This number 

does not tae into account the movemnnt limitations of the players 

T7he t-aanions for examnle 2 are too eonp4lz o include here. 
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Table 7: BDebvior Strategy e-Solutioiw for Exonple I 

Prsver Aruer Pursuer Ekvader Bvaer 
Observed Ten~Iation -Movenent Observed m~ovemnent 
Histox-e Decision Deci~gion History Decision 

r(t=o )(t 1)=0) 

31 11000 0M6oo )l nr 

12 
a 21 

i.300 0605 
1n_ 

12 
21 

r 
0.1430 

22 nr nr 22 0-430 

n3.1 0.00o r i1 nr 

U1012 1.000 o.483 I1012 nr 

11021 0000 M-r 3.021 nr 

11022 0.000 nr 110 nr 

12011 0.000 nr 32011 n

1201 i.000 0.479 22012 nr 

32021 00000 nr 12021 nr 

12022 0.000 nr 12022 fr 

21011 r nr 21011 1.000 

21012 nr nr 21012 iCO0 

21021 air wi 21021 0,447 

21022 nr ur 21022 0o.447 

2201n nr nr 22011 1.000 

22012 Dr nr 22012 1.000 

22021 nr W 22021 0,17 

22622 nr nr 22022 O, "7 
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or the fact that the components in ao distribution must sm to 1.0 

since the programs (as written) do not obtain any aavantage froa these 

facts. 

Table 8: 	 aaserved Convergence Rates for Perfect-Reeall 
rictitious Play Algorithm1 

Hnnaber of elternative probabflity
distributions to be determined 28 90 

Number of variables to be 

dete ined 56 24o 

Nwber of iterations 200 295 

Tital tine (in iecanda) 46 436 

7. 5 A Plausible Method for Generating "God" Behavior PLtrategies1 
for the Plafers 

KnAing the qualities of Esolutions for th, pursuer and the 

evader, n are in a position to evaluate plausible heuristic techniques 

that iight be proposed for generating "good" behavior strategies for 

the playerso The followlng particularly plausible technique was 

examined for each of our examples, 

Frst, bahavior stratey E-solutions wme cmted for each 

player in the Pursuit and evesion gone exeM1es which are obtained 

from exanpies I and 2 by assuming that each player has perfect 

rmea=sener of its %Vonent s states. Obviously. determination of 

these strategies is m ch easier than the determination of behavior 

stratey -sdlutiona in the original games. 
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Than, the "decision operations" for the pursuer and the evader 

into two parts:were s 


(i) a filtering operation in which the pursuer or the evader 

canputes from its measurements, the staze history most 

likely to have been realized by its opponent (assnming 

that the opponen has perfect measure-ents and is employ

i g its perfect meamsuement strategy comylted above); and 

(ii) a decision operaticn in which the pursuer or the evader 

employs its computed perfecT measurement strategy, Treating 

The opponent's most likely state history as if it were the 

opponent's acTual state history. 

Finally, the behavior strategies defined by the above separation 

were determined, and the qualities of zhese 'separation strategies" 

were calculated, 

In table 9 below, we give the qualities of these separation 

strategies an4d for purposes of comparison, the qualities of the 

behavior strategy E-solutions previously dezermined. 

Table 9: Qualities of "Separation" Behavior Strategies and 

Behavior Strategy -Solutlons 

Exar~ Tcampe 21 

Quality of evader separation strategy 1.12 .90 

Quality of evader E-solution o.864 O.68i 

Quality of Dursuer E-solution 0o854 o.661
 

Quality of pursuer separation strategy o.16 
 .56 
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From these results we can see that the losses risked by employ

ment of separation strategies of this type are quite substantial for 

both pnrsuer and the evader. t In these examples, then, the effort 

involved in determination of behavior strategy E-soltrions for the 

players seems well jiistfiedo 

tSee Appendix A, Note 11 for coments on the sizes of these quality 
ditterences 
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CaPT-ER 8 

A MODIICAL DECISION PROCES 

8. 0 	 Introduction 

In this chapter we ll consider a finite medical decision process
 

informally described as follovs. 

A doctor encounters & patient Vhose general condition is rapidly 

deteriorating with the spread of a disease but whose relative condi

tion 	varies within a range from "relatively weak" to "relatively 

strong." 

A surgical operation exists which can arrest the advance of 

the disease, but its effectiveness 

(i)as a function of the patient's condition and the treatment 

being administered by the doctor at the time of the 

operation, and 

(i) 	 is diminished as time goes on (and the disease spreads), 

reaching zero a. some tire t, (when the spread of the 

disease can no longer be halted)0 

The doctorts control over the situation is through his choice 

of a time for the operation, and his choices of preoperative treat

ments for the patient. In -prticular: 



(W) if the doctor adrinisters treatment that is a rrtte 

for the relative condition of the patxent, the paoient's 

relative condition changes in a random but 

known fashion; and 

(ii) if the doctor administers zreatmexn that is jE&raiate 

for the relative condition of the patient, the patient's 

relative conltion charges in a random but rnknown fashion. 

The doctor's information on the patient's relative conditions 

as bhe process unfolds is uncertain in that the doctor does not 

know the actual relative conditions of the patient; he only has 

diagnoses which are statistically related to the patient's actual 

'relative condbl ions0 

Finally, the process is terminated when the doctor decides 

to operate, and at that time he is considered to receive a pqoff 

which is: 

(i) given in term of an expeted extension of the patientz's
 

lifetime, and 

(ii) 	 described by a lcrwno function of the total time elased 

in preoperative treatment and the patient's relative con

dition and the treatment he is receiving at The time of 

the oieration, 

8o.i Z2 ives 

We will consider belon, a formal version of the medical decision 

rmeess described above. In considering this process, omr pecific 



objective will be -o determine for the doctor a simplest possible 

treatment and operation behavior strategy which comes acceptably 

close to raximizing the doctor's minimtm expected return against all 

possible unknow probability distributions under ,ehich the patient's 

relative condition may be changing when the doctor administers 

inappropriate -reament* 

In order to find such strategies, we vaii1 pose the problem as 

a two-person zero-sm game by considering that, in situations in 

which the doctor administers inapprropriate treatment; the patient 

'is under the cot-trol of a ldev-fl Whose interests are diametrically 

oppos d to those of the doctor. 

Our s/aificdbectie then, wirli be to determine for the 

doctor a behavior strategy -solut aon in this doctor (protagonist)

devill (an-agonist) gama. 

Our Sob ectives in considering this problem w-il be 

Ci) 	 to give a demonstration of the %iseof the extended ficti

tious play algorithm,, 

(ii) 	 to give an example of a search (a very productive one, 

as it haIppens) for a simplest possible behavior strategy 

E-Zolion, and 

(iMI) to give an example of a problem which can be solved 

practically in terms of behavior strategies but which is 

far too complex to solve in terms of mixed strategies. 



8,i. Formal Deser tion of the Dloctor-Devil Game 

- In this section we vlM describe zhe formal version of the doctor

devil game that ra are going to consider, In this formal version we 

will make the payoff function reflect the changes in the patient's 

general condition and we will concer-n ourselves only with the patient's 

relative conditions. For convenience then, we will henceforth drop 

the word. relative. 

The game that we will consider, thej is described by the 

folloving set of ass-a tions. 

A-tion A: The set T of treatments T that can be &Ainastered 

by the doctor, and the set C of conditions e thaz can be realiaed by 

the patient are both finite sets wvith their membirs in one-to-one 

rj 0corresponeence, a, paired with 

Assumption B- The game terminates with the doctor's decision 

to operate, h±ch must be made at or before some time tf. 

A 2on C: The treatment and operative decisions made by 

the doctor, and the condition changes made by the patient occur at 
discrete times t i E t 

As M.tion D* The patient is partiaZly controlled by the 

doctor and partially controlled by the devil as follows: 

(I~) if t(ti) T ,(t,. ) ck and j = k., then nature selects 

the patient's condition at ti+ under a known probability 

distribution t1(c(t± 1)f'ck), but 

.'tj is considered taprctriate treatment" for c 
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(iii 	if r(ti) -%, c(t 1 ) ftc and. j I, then the devil can 

select any condition c C as the patient's condition at 

t ii
 

ti n 	E: If the game terminates at tire tk2 the doctor-Asuu-


wins and the devil loses a payoff h(c(tltQl) which is given in 

terms of an eipected extension of the ratient's lifetime. 

AssumtionF: At the end of each subinterval (to,t) (t 1 ,t 2 ), 

, (tf.,2 tf 1 ),the doctor receives a diagnosis, d(tj) C C, of the 

patient's condition during that subinterv-a. This diagnosis is 

Selected b nature .nder a known probability distribution PA{d(t 

r(t.)bc(tj).
 

Asaspton G: The information that the doctor can gather as 

the game progresses consists of the diagnoses he makes (receives), 

and the treatment and operation decisions that he makes. 

Assumption H: The information that the devil can gather as the 

game progresses consists of the 'conditions assumed by the patient,
 

and the treatment and operation decisions made by the doctor.
 

Assumption I The temporal order in which the doctor and the
 

patient (devil or nature) will be assumed to operate at each time
 

instant ti is as follows:
 

(i) 	 the doctor "receives" an uncertain diagnosis of the 

patient's condition, 

(iU)on the basis of the string of past diagnoses and treatments
 

that he recalls, the doctor decides whether or not to
 

-operate;, 
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(iii) the devil receives the inforation that the doctor has 

decided (decided not) to operate,,
 

(iv) if the doctor has decided not to operate and has not 

applied appropriate treatment over the past time interval, 
then he zon the basis of the observation history 

it 	 possesses, chooses a next condition for the patient, 

(v) 	 if the doctor has decided not to operate and has applied 

appropriate treatment over the past time interval, then 

nature chooses a next condition for the patient , and 

finally, 

(vi) 	on the basis of the string of past diagnoses and treatments 

it recels, but without knowledge of the patient's next 

conditicn, the doctor chooses a treatment to administer to 

the patient over the nest time interval. 

The manner in ihich the doctor-devil game described above is 

played is swanarized in the flaw diagram of figure 14. In this 

diagram we have assumed for the antagonIst, a comrplete information 

collection scheme, 

8.2 	 Inte retation of the Doctor-Devil Game 

Note that the four rules of our definition of a finite extended 

game are specified by the assumotions given above, In particular, 

(i) 	 the set of all possible plays is specified by Assumptions 

A, B, D and I; 

(ii) the manner in which nature chooses an alternative at each 



Devil chooses Initial patient condition. 

Bottor chooses initial patient tratmenht. 

Ct.) .c 

t(t 1 ,) 

,, ,w , , ( (tQ, T()1 

Devilr coses atiagneois.to (t) 

Doctor~~~Doto oboesttna1 dn ecfe 

Doctor mkes operation decizlon kowing rcf dD 
portion of CTt ),d( )t)vdt) 

I 

ff-ui

operate 
o t 4n 

hct)Tt) 

'ei 

cNoturepctiont condliondtio 

knowing tc(tjt),T(t) tt} 

IDoetor ehoosesn trtct ~~ 1kndn reale 

Hastnre chooss a digis. d.(t, ) E 0 

Under od (tl),(t) ,T(t2), t)} ((e,( ) 

FIGURE 14 METHOD OF PLAY OF DOCTOR -DEVIL GAME WHEN 

THE DEVIL IS EMPLOYING ITS COM1PLETE 
INFORMATION COLLECTION SCHEME: 



of her =mve is specified by AgAsiption 2) and F; 

(III) 	the payoffs to eaebl playewr far t eszch Pc-sable play a 

rpeifiea by Asvzngtioa !A ad 

(IV) the =LMzti &"M+nt e ifatton that each Player can 

ga-ther is qalcfied by awTzetio 4 . and H. 

The intexprotation of this gam e 4 can be tantAed out 'by 

asini n &1alteriza IntAr n anda stnxi ta a 

dorn for the pursut and 6vazcion gms of &A~tor T.% 
Furthar,p in lutt tMm -we game -mrevwi m&n adolt t 

cozwentiow 	of referrfrg to frf&ivtion 8tts by the correttnng 

ttrgs of dbamwtin ft-_ fte playrsa, and we -AUfl denote by: 

(t) 	 ?(t) ana xt nPnetivay, thea awotartsa a the 

dovi1's intomv~icn Sets at time t, burt prior to the 

operation decision of the doftorv and by 

(fly ip(t4 ) ad 1 a(tj1 , ret~peCtvseI. the Eotior' a and the 

devflvc inforration sets at tmis t, 'but after the termina

tion &4±nicn of the purmir, 

For oxr Aianoboth the doctor and the delrl employ thefr 

awlate w oxatcai cOnection =chemse, 

[fT(t ), (tt),i34 2; no oraticn tbira 

= t~t~,rtQ±iz42~no coeration tbz'r, 

awd 

{'~t, 4t) 1 S42;no c-Mxati tur t2) 

Ia(~) 	 cperation tbnt t2 ]£ot	 1),~t1X-~l2; no 
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8.3 	The Doctor-Devil Game Studied 

The fofloming extrpLe doetor-devil game was studied. 

(i)Tbe sets of possible patient conditions and treatments 

are given by C =[a, c.] and T 

(ii) The game lasts for no more than 15 daYs, wVbich is con

sider a to consist of 5 three day periods. 

(iii) The probability distributions under which the patient's 

conditions change hen appropriate treatmentb is administered 

b d e 	 ) = twhen c(ti) = e for J = I or 

2) are consat vith timne, These distributions are given in 

table 10 belorrt 

Table 	10: Probability Distributions for Patien's Condition 

Changes Under Proper Treatnent 

O~t.c(t 9 c2 

t(c(t _)jc(t%) - (ti) -- ) 0,70 	 030 

,n= 	 ) 1 0.70 0.30 

(iv) 	 The peycffs to the doctor upon his decision to operate 

are given in terms of expected expreasions of the patiemt's 

lifetime in days. Thece payoffs are described by the 

coflection) of rles A(i) 	= (i)k h(r(t.) = T 
c(ti) 	= - )) listed in table 11 below. 
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Table -1:Thpeted Lifetime Bbtension Fayoff Matrices 

A(l) 1800 A(2) - 1620 16) A3) 1300  130 
_720o 4 	 650 485)\ 520 390) 

A(,) = 910 90) A() = (5,0 55) 
(360 270 	 \ai./ i6o 

(v) 	Th" diagnoseb received by 'uhl doctor at the end of each 

three day perio&-are chosen by nabure =nder probability 

distributions which are constant with time. These distri

butions are given in table 12 below, (Note that d(t 1 ) = 

and d(t±) = d are complemetary events.) 

Table 12: Probability Distributions for Diagnoses 

j 1 1 2 2 

k 1 2 1 2 

?(a(t1 ) = doI(tj) 8o .30 .70 20 

- 'jIo(t 1) c. 

8.4ii Apication ,of.the, Etended Fictitious fLayj Algorithm 

To apply the extended fictitious play algoritbh$ vm carry out 

the. follwUg three steps. 

Ste 1: We assign to the antagonist, its complete information 

collection scheme Ca and to the protagonist, the information 

collection scheme Rp that we wish to examine. 
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Pe2 We identify the entities of the associated game and we 

develop for these entities, the _ayoff expressions which are denoted 

in figae 10 by the vectors t for i=1, Y and Vk for k=I M. 

In the associated game r § for the doctor-devil game and any 

admissible information collection scheme R, he entities are: 

i)	1P, A , 7 and 9, who choose treatments for the 

patient for he Zst, 2un4 . and the 5th -ime periods, 

respectively 

(ii) 	 2P, 4P, 6p and 8P, vho decide whether or not to operate 

at the end of the 'st, 2nd, 3rd and kth time periods., 

respectively, and 

1',~ 2 .A3 a and 5% who choose (When nature does not) 

patient condlitions for the Ist, 2nd .o, and 5th time 

perl-oda, respectively. 

In teble 13 me list: 

(i) the entities or an associazed game and their f=ctions3, 

and
 

(ii) 	 the general deswription and the number of inforination 

sets that each entity controls when the doctor eMlnoys 

ihs col"ete information collection scheme. 

In vtriting the entity payoff e-9ressions Vi for i=,N and
 

for k=1,14 it should be noted that:
 

(i) 	 we do not carry out the laborious zask of determining 

the array F and forming these expressions as indicated 

in figure 10, but instead. 



Table 13: Information Set Struobure for the Ccmplete-Information Collection Scheme 

Entity Mitity mction 

la choose a(s) 
2 choose r(t 1 ) 

P operate at tf 

2a choose c(t2 ) 

choose "(t2) 

4P operate at t3?r(t 

3a choose c(t 3 ) 

5? choose r(t 3 ) 

operate at t4 ? 

4s choose c(t 4 ) 

7p choose r(t 4 ) 

8p operate at t5? 

5a choose c(t5) 

9 choose r(t5) 

Information set description 


IP(k), Ia(k) 


f0 


'to) 


[(tl),d(t1 )1 


C (L),c(t3); no operation thnt t) 


f (tl),d(tl); no operation tira.t2) 


1),d(ti), i=1,2; no operation thru t2 3 
[C(ti), (t1 ), i=l,Z no operation thru t3 

fr(%,d(t1 ), i=1, 2; no operation thru t31 

f(tX.d,(t), =11,3; no operation thru t 3 


fT(ti)pc(t 1 ), 1=1, 3; no operation thru t4 


[T(tj),d(ti), '=1,3; no operation thru t 4 

fr(tQ, d(ti), i=1,4; no operation thru t 5 } 

t(tL), c(ti), i=l,r; no operation thru t5L, 

Cr(t),d(ti), i=l,4; no operation thru t 5 

Case 
I 

11o0 of 
inf. sets 
"fcontrolled" 

1
 

1
 

4
 

2
 

4
 

16 

8 co 

16
 

64
 

32 

64
 

256 

256 

256 

Total number of entities- 14; 9 for doctor, 5 for devil 
Total number of controlled inf. sets: 852; 681 for doctor, 171 for devil 
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(ii) 	 we take advantage of the structure of -he game to write 

peyoff ezpresslons which have less eleganr& fors than 

the expreasiong of figure 10, but fieh lend themselves 

to more efficient ccwnpation.t 

Ste= : We im±ltent on a digitual cacanter,- he flow diagram 

of figure l0. 

-8. 5 A Search for a 8t±lest Behavior S rate E-Solution for 

the Doctor 

For the examle do=or-devil game described abocve we chose the 

follo-ring objective: find a simlest possible treatment an& opera

tion behavier atrstegy E-solution for the doctor, for an = 1O v 

where v is the quality of a solu!on. 

Mqoyitg the extended fictitious play algorithm and evaluatimg 

the qualities of behavior strategies it produces by meaans of Theorem 

10 (sectioni 6.5-2), m proceed a followai 

() 	 First we establish The qnlity of a behavior strategy 

soluion fte the doctor by generating an entity

behavior equillbr-im point in the associated game corres

pondiug to the doctor's comlete information collection 

Schee. 

(ii) Then v. test othvr admissiblett information collection 

schemes for the doctor which might produce si4ple behavlor 

tAs we did in the wisuit and. ension games of the last chapter. 

'Defined in section 6.1.3. 



140
 

strategy E-salutions, by generating entitybehavior 

equillbzmt points in the corresponding associated games 

and coaring the qualities of behavior strategies thus 

obtained with the quality of a solution. 

8.5.1 Information Collection Schemes Considered 

In carrying out 1crr search for a simplest behavior strategy 

6-solution, we exemined a total of 8 information collection schemes 

for the doctor (including his complete Infomation colleetion schnme). 

In 	 table 14 we give the results of our search, speclfically, 

(i) 	 we describe the information collection schemes examined 

by liting the information that is forgotten by the 

doctor under each scheme (in each scheme considere4 the 

doctor gathers every available piece of informati6n), 

(ii) we list the qualities of the treatment and operation 

behavior strategies that were generated on eseh information 

collection sheme, na 

(iii) 	 for'each strategy generated we list the total number of 

information sets reslizable (or an upper bond on this 

,nmber), as an indication of the calexity of this 

strategy* 

8o.52 Ccziatiuon of the Behavior Strategies Generated 

Comparing the strategies generated on each information collec

tion schem, we see that; 

1Sesection 4o,2. 
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Table i: 	 S'omzarg of Results of Search for a Simplest Behavior 
Stra egy &-BOlution 

Thmber of Quality of 
informazion Re4alizable Sehavior 
Colleetion MShom=On strategy 
Scheme ITfoztabion Forgotsen Sets (in days) 

cemp info 	 colt sebene (none) 675 +0o45 

+0 

3 	 W.- t.. forget t.hi±,+19 i95.X 
.	 +0
 

4 at t forget (t.),a(ti0i',z 	 99 885+0
5 	 88-10 

at tj forget -r(t ),d( l) 

5at t forget -?(t.t 37 +0. 
5 d i-38 

at t2 forget tl 

6 at %- forget ) d(.),dti, ! 3 33 706'5 	 (Max)(13
 
at t- forget t(tj)Ya(td),±=1, 2 

at t- forget T(t, (t,
3 	 . 

1) d(t
7 at t- forget, v,(t 4 ),i1-l,3 53 W0 
-8345 

at -jforget vr(t1 ), d(tb),,1 2 

8at t- forget r(t 4 )s a(G),b1-, 4 51+20 
5 51ax 7217 

at t forget r(t 1 ), d(t 1 ), 1=1,2 

alit Of Solutionz 89 g dars 
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(i) 	 the strategies generated for schemec 1, 2, 3, 4, 5 a-d 7 

- Ere aL E-solations for 5 = 0.10 v, and that, 

(ii) 	 under the particular E-solzion generated for information 

cOfleotlon scheme 7, only 53 information sets are 

realizable, 

In finding "strategy 7" theno vhich is listed in table 15, ve 

have fotnd a behavior Itrategy -solution which is less than 8% as 

c~lex as the behavior strategy E-soluticn generated on the doctort's 

comaplete information collection scheme. 

in fIgure 15 ve show for each information coflection scheme 

exsmined. a plac Of the Amount of infontlon recaaled by the doctor 

at the bogining of each time internl, Comparing information 

collection schems 6, 7 &nd 8 in this fgure, it would seem that the 

iniln amonmt of "informttion recal" that the doctor requires for 

construction of a behavior strategy C-sol~ntion is not non-decreasing. 

This resaui seeed surprising, but Upon examination of the 

strategy generated for information collection scheme 7, we found 

that the -probability of an operation before time t 4 Is quite high 

(> .90). This makes the occurrence of inf1oration sets corresponding 

to times % and t5 "frare events," which in turn makes the expected 

payoff to the doctor insensitive to crude play in these later 

situations. 



IP (t r2 .40
 

,I 1 82 . 2Note that fopercate, don't operate] are 

p 2P popertej-~tdti 1.jprtet),(t9)) .94 2.01 
1

.19 .04 
co~emaryents,
the game uinder abudy. 

as are Ca,!col i 

3 pPp(t(b 2 r~ t)d(t 1 )) .93 .26 .a26.9 

S(t1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
T(t ) 1 1 1 2 2 2 1 1 2. 2 
(tj 1 2 1 2' 1 2 1 2 2 2 2 1 2 

4P P(oPeratefT(t),d(ti) iml,2) .99, -53 .99 .05 .97 .01 .93 .01 .99 .11.99 .99 .99 -o6 .99 .n 
9p P(1(.2)=0 Ii(t.)d(ti),=2 I 0 .35 .93 .09 .ll .99 .41 .99 .97 .10 .97 -0 .53 .97 .01 -97 

2 2 a : 3441days of' expected patient 

lifetime extension (compared wibh 890t 5 
6 P p(operabelr(t 3),d(t3 )) .99 .99 .99 .08 

7P p(r(t)X 1 !(t),d(t 3 )) .99 .02 .73 .99 for behavior strategy generated for com

plete information collecalon scheme). 

r(t) i tL 2 r
t 4) 1. 2 1. 2 

8 P p(operatefr(t4 ),d(t)) .94 .01 .99 .99 

9P oP(1f(t5)tde(tro),d(t4)) 1e B93 Soti 

Table 15: Treatment and Operation Behavior Strategy for Information Collection scheme 7 
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Information Colection 
SchemeNmbr 2 3 4 5 6 7 8 

Quality of Generated +0 '0 +0 ' 0 +0 + 0 
Theotment and Opetion 890 891 M 885 891 706 88 727 
Behavior Strategy -46 -4 -43 -10 -38 -13 2- i7 

latest 4 diagrwoses a 
and treatments 

informaotion collection /complete inration 
scheme nutmbefe collection scheme 

latest 3 diagno ee/0
ad treatments ,Q 2 

1-57 a -. \5\latest 2 diagnoses /
and troatmentf 

18,8 78-0 
and 1" ment_ zero lnformation 

/ collection fin 

1-8 8 

FIGURE 15. INFORMATION K4N0N BY DOCTOR FOR INFORMATION 
COLLECTION SCHEMES I THRU 8. 
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8. 6 ceead CEMMtrptxe Or the ThctndOd Filtitous Play Algodtvu 

1A ciu studies of the doezor-devil problem., the estended 

fictitiuo play algaoritk= %w Imlemaated an a CDc 6500 digital 

eonmter. Mae rartiaular program that vase Trtten w-s aoistncted 

in a atafficientar general fczm to Wa107 stu , of all Possrble wftdss

able ±;toxra~icn aa-,;hotion sdhemae with a Rsnzm of mo4ficaicn 

eqolre- in ehtgilng frm scheme to chsme, As a conweeq3tne vejry-

Iit ble chpawgo in the amwimt of calcultioa par ±tcsraMticnt of the 

a3goritbt -resulte'sti's goSange infrori'ation oOLeetim Shenen. 

it is not ur riai therfore, that conergene of the algoritbno 

in thea zaise Azticatedz in seation 6.5.z (ftor 8 -0aO, tookf arprozi-

Mtal tie Eae arno~xt Of tim f or etery informa'tion ccifleedon 

IU table 36. w stmw e the re!eenwt inforation with revpect 

to the observ'a eorivergence of the exte d fictiti s play algoritm 

in the dea ar-derl glaa with the doctor empluyifg its catwlete 

tatosatioe~'n 'c~eca scheme. In this teble, the wz-ber of Variaibles 

to be ds-texntiea is the tot-al n±iniber of pz'cbflity distr-ibution 

cwpon-am s in the ai f beb-vior stnateGies determined for boh 

playe rs. is lDber does not take :to acwm the fact thst 

these atzonets =Mat puwat6.0 arr thin alteratvem of each 

tnfo Uabix et, 2ince the progrier (as vritten) does not take 

advte. of tbis fat. 
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TIbue 16. Cbserwod cmwivexe for the cO,4ete itferaation 
o-fletiva Schtme case (8& 9.03) 

K'ier of aC~teratigt probtbflIty 

a~ftW-ibatfOOZ to be8 deatez~ned 852 

fter of vewiaflen to -be det~rm-- 1704 

tler cfenda 200 

Tttatme(i econds) 2000 

3h this evia~ter

(i) tre 'o~f of the- ezteyxded fictitioushwo the =,-ae 

plor augaitxr mid 

90i lim ciu~1est boehaviorbaioer'ied cut a. searoh tar-a 

straTerj E-SOIUMto that hrs restAted in a behavior

strateg? E-Cgiztsbea whe Is loss than 8% a oupleir as 

the bOlwmVtor 6trata3r soition'that wea generted ona the 

dototls *--t ete infarrat.Loa ooflee-tix aeh=ae. 

Plnflwri the tro~biTelo gezrtins a 1,ehaVior stratear 

42Setim SliJsiifietd In, this~ problft? We argue, as foflom, that it 

lif. 

MOst el, the 4cox-cn That "' hmcw awnm fairly eongarntlve, 

adif face& tt mPreflgi Sach a-S Posed by Our Owmx~1O, we auspeet 

that the? mtght be0 tstmxtd to 8tvpiY treatment 2 arer rariod I and 

operate &atthe-first u1pnrtity, tma aohiwvin a mninm expeeted 



return of 5h0 dfrs extension and avoiding the poaibflty of getting 

an expeted retnr of 02i180i~ dayrs o*mo 

By apply-ag the stu~le treafmanent and cperation behavior strategy, 
a 

given ill figure 1.5% hntoever, the dcrtor can raise hisa mini= wxevtpected 

return to 856 days exteaicn. Tis3 represents a 54o im~rovement over 

the %omsemrvtive policy" nertim4 above. 

Raefer to AM1 ift tble lIe 
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APPflIX A 

NOTES 

1. 	 A e atiai 

Games can easfly be consructed snh that for some inforMation 

C6 leetion sZ eme for the protagoniat randuize4 strategies exist 

which gnarahtee the protagonist a greater minim= expected retbin 

than any punre strategy on the same iiformat±n collection scheme. 

For an exneaile of a "real life" game ' ith this property see 

reference 1, pages 186-219 "hee Von Neman shora that poker is 

such a games and specifiealsj, that maxinafly effective strategies 

in poker call for a randomization in betting which is commaonlzy called 

bluffing0 

2. 	 Quafltr and Solution Strtzeg Definitions for the Antagonist 

If in a given game we wish to retain a givtn labeling for the 

protagonist and the antagonist, we can define strategy quality for 

the antagonist as fllaw. 

Dfinitiont The gl Q(y a) of any -trategyY&for the 

antagonist which is based on an ilm±orwation collection scheme e is 

defined by: 

S i [4H(XP9 ,R&J
 
ipRP
 



Using this definition, the definitions of an E-R-solution and an 

C-solution for the antagonist are analogous to the corresponding 

aefinitions for the protagonist., 

36 Definition of Terms Used in the WheatrMarket Game 

On the Chicago Mercantile kochange, iz is ossiblo to buy and 

sell 	contracts for future delivery of wheat.
 

The size of a contract is fixed at 5000 bushels; the date of 

deliverj of any contract is fixed; and util the date of delivery, 

only a small deposit is required to carry out a purchase or sale. 

A trader in w0ea-fPatures contracts can realize profits or 

losses by carrying out transactions of the following sorts. 

(1) 	 He can j a wheat contract, and "cancel" his purchase 

at or before the delivary date by selling a wheat contract 

with the same delivery date. This is called taking a 

"loI w"sitiorn and the trader realizes a profit (loss) 

if the value of a contract for delivery rises (falls) while 

he is long. 

(ii) He can sel a vheat contzact, and. "cancel" his purchase 

at or before the delivery date by bvring a wheat contract 

'i t h the same delivery date. This is called taking a 

"shotposition" and the trader realizes a p :jft (loss) 

if the value of a contract for deliverv falls (rises) 

while he is short.
 



4 A Gaze With an Information Collection Scheme Upon Which a 

Behavior Strat rSoluzion fDoes Not Ekist 

Consider the game shrmn in figure 16 and the information 

Pcollection scheme 9 in vhich the protagonist fails to reca'l at any 

of his 2nd moves, the choice he has made at his first nove 

The infomation partition for this information collection scheme 

P )is given by IP(E A, C U D3. In table 17 below, we list the 

protagonist's pure strategies on R ad The antagoniat's pare atrat

egies on its complete information collection scheme, In the listed 

strategies, the first integer in each entry indicates -the alternative 

to be chosen when the information set indicated by the letters in 

.that entr is realized. 

-Table 17: Pure Strategies in Coded Form 

I CUI DU D CU

) pOP fi2 A (PljB1) cpp= (23B) 

Using the notation established in section 5i. 2, we can write 

the expected returnto the protagonist when mixed strategie&64: on 

RP and ON?-on Ca are employed, as: 

H oi4ThR( eC. o 0 + a + ACOP0)) 0 + aO * 

+'e4e4 0+c4 5 + al 1o+cniP -o). (A4.1) 
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0 A Protagonst's 

I 2 -.... - - / \ 
Antagonist's 

ltMoves... 

/ D 
- _Protagonist Ic 

2nd. moves 

0 +10 0 +109 +5 +5 0 +a0 93- -Terminaion0 

FIGURE 16, A GAME WITH 
UPON WHICH 
NOT EXIST. 

AN INFORMATION cOLLECTtON SCHEME 
A BEHAVIOR STRATEGY R-SOLUTION DOES 

0 
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If va ea:z ne expression (A4QI), we find that the Mixed strategy 

C on RP defined UY d P=' = 0- 5 hcit aXtiMm qtzlity in the Set 

of all possible mtced strategies on II. The qTamlity of This stratea 

(and thoVrefore the Tatlity of an R-solubioa on 9P) is 7o 5. 

If the players ewploy behavior strategies aBP on 9 ad Ba Of 

C', mraeptivly, the pretegoist's expected reram I gilvex by: 

H(P4 n) - Q0+ p(21a U nY~EaOa) ~[K) [rclfD) {rcdwC 

icNi+ r(atB) [Pc3Aou D)- 0f- p(2jku D)- 5] +p(21A)fpl) 

[pca1ta u :). 5 + p(2{c u b~ + v(21n) EPlrc) 10 + 

Poaro). 0]](1,a2 

wAere the probabilities indicated are Oeflned by the given behavior 

ifwe examine enxression (A ) ve) find that the behavior 

strategy 62P~ on I? defined boy p(1IIA) - p~ttc U D) -0.5 -has maximumn 

quality in the net of all possible behavior strategies on . 

The quialit of this behavior strategy, however is on2 3.75, 

and therefoe a behavior strategy R-solution on RP does not exist. 

5. Constructionroa PW.Ih(±,j.~ ~)ajll 

This frAction can be constracted by listing for each play 

W e X, the corroaponinJ string of alternative choices and infota

tiol sets under the playersf given information collection schemes. 
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Then for each listed atring, the ft ,ntion g taker the value of 

the -rotagonist's pMoff when the cwerehonding p1sy V is realized. 

Feor exarp1e, in the game sho'tn in £±gure 16, when the playrs are 

both emiploying their corn lte Informtion ccoietJon schemes, g is 

defined as shown in table 18 belwN 

Table 18- Definition of g for Gawn of P1gr- 16 When Both Flayers 

&ploy Their Complete ITfa-mation Collection Schemes 

9(ZjA,t4C U D;- 13,B) a (4, U D- 1,H) 5 

g(lA2,oC u f; ,B) =10 g(2;,A,2,0 U D; 1,3) =0 

g0y.,,1,.C U Dl; 2%,B) 0 g(ZALC LI D; 2,B) 10 

g(14A,2,C U D; P-,B) =5 g(20, 2 ,C U D; 2,3p) =0 

6.'IstuitieAea of the Method of rictitioua Play 

We quote Brown in reference 7 

"A very siple Iterative method for approidmaing to solutIons 

(R-solutions in mixed strategies) of discrete zero-ma gaMes-

This method is related to sans partictilar systems of differ

ential eqytiona whose steady ate soltios eorrespond to 

aolutions of a game.... Trhe terati-e msthod in qwstion can 

be loosely charaterized by the fact that ft rests on the 

traditional statisticians p'l-alfopt of basing future decisions 

on the relevant past histoz74 Vimsualize two statiatiians, 

perhaps ignorant of minimaz theory, playi-g many _PIa- (engaging 

in Mazq repetitlons) of the 8s- discrete 2eroxum gams One 
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might nitural expect a statistician to keep track of the 

opp nuent' a past plays (chosen pure strateglee) and, in the 

gogance of a move wchiaticatA-d caleuation, perhaps to hi:ose 

at each play (repatition) the optinol puire strategy againat 

the m=xtue represented by all the ocnaent's ast plays 

(choen Pure stratesies). 

t heri tion of Behavior _ioDo St epr Fitt i 1ar ]i 

Starting t Adh Mreeated balmsequation (5.9) y 

-wam aW4I Xuhn-'s trangfontion (T) to othn sides of (A.1) to 

obtain. 

hL '~ r4 BD(J) + T uFpz,99() a) 

Partherp since the protagcnta expecizeA netvrn ie identiea1l for all 

pre~ stt&eg ea v- on ? mPalter av mixead st~atemr a'on 0 o t 

esmalatbed bdiiavior strategr', T(dt =n 
6?-9 

c') = oi on e, e canl 
(A7.a)

write 

(A7.2) as: 

(09)4[iP() + T 'ana 11(c#R;((J' o)1-] 
a s(AM.3) 

The derivmtitn of eqution (5-12) frm~ (5.10), can be carried out 

in the gm anemer0 
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In cazrayfrg out rGeeitiona o± t4he ktitis play algortb on 

a dieWtarpmater using equat!.ta (5.1.1) an4 (5.ia0 directly, many 

mflttplicatio Oerations may be required zo generate H(tp-"'; 

avte, hoiw'evar, tiett@a 

=nd 

mailMaxz oi max? n 2e:,_0wP, (82&I)[8 E(o#,RP;cBa(dXCa)! m%%eihie ;gopp i), ~~isa) Us 

tare @9P(1) [cti]is the pura strategy selected for the pra~ag-

Onist [antagonist) at the ith iteamtion of the elgor-Ithm. Using 

theze erpressionsz, e can -abftitute addtion openraticns for Miny 

of the miultiplication operations requited if (5.n) and (5.1-2) are 

used directlyo 5is leedi to a fater inplementation of the algort!hm 

since a digital computer perfoms additicn operatian much mere 

rapidfly than wmftip3.icat ion oarations. 

9, A Lless Restrictive Asswnptton 

As imtion 3 can be re-placed by any other atsumgtion which 

aflnc the ergenats foloint definition 18 to be made, A nini

nm3ly -strietive aastoton aflcing theae arguonts is sta-ed 

beiW, 

3 

http:equat!.ta
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Assattion: No information sat cttxsmore than one mve 

on the Bane plar. 

Thig assuiption is identical to vhaz made by uiha ir .ference 2 

With this zinmption., definition 18 Mvny be atated a- foflcnst 

Defiaition 1G (restated) A. The f-euee m 

V for a given two-pers on, zero-amm, finitte endeed gem-e C vitlh a 

given Ifnrtion collection schme P for the zroteagonwit, is the 

(Ni + Mf)ipersoa non-cooperative r"u defied Vb7

(i.) 	 asigning to the antagonist its cac1ete inforzation 

eoaletion schem C 

(ii),	coasidering every Wtzat an set in !{11) fIINCa)] to 

be under dhe control of a sze rate Gad inependt entity 

#sth that 

(a) 	the entity controls infonration s2et corneapo-ing 

to only one player, and 

(b) 	 the probability of occurrence Of exactly one of the 

- entity's information sets is 1.0 in ay repetition 

of the game for any strategies -p1zyed by the 

entities; and 

_(iMY c6nsidering the payoff to each entity to be identzice to 

that of the player tzbose navea tihn entity is controling% 

The argments subsequent to defiaition 18 in the text can be 

earted to Identical conclusacns uizing deffnition l. (reatted) 

given above. 
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We =played assumtion 3 in the text bece it is onlY slightly 

gore restrictive than the essrntacr gi-aa above, b-et it mwkes the 

argt~ents fofloriug derinitiot x-B 1=5&i~veta to wqxtdin 

0 O wheStatistca Descri tion for aitre in the Second Pursuit
 
and Evasion Game &hcmle
 

If tge examne table 5, e cen see that in state 0 the players
 

c=~ obtaInmeur&et of their o point states vhidh sxe nneh 

better than the -masurements obtainable in abtes I an 3 ( the 

p-mres and the evader's initial ates, rasnec-iv-1y). 

T-is forcea the arsuer to ntre a compraaiae bmtet: 

M neleet-ion of a state a(tp 0 efffect i=Adiaze Captere, or 

-(ii) selection of a nero state aft1 ) to gtin a godt. naasu rle t 

which --ri" be useful in achievI-mg a later captlu-re. 

In amlning tie soluabions gonema-te for this prtbln3 the 

effect of choosing these measueent gtiistics waa clearly _visible 

Speeifically the pursuer1'r solution tekes him to 5tate 2 at t 1 with 

relatively high prbabiltty (0 .53).v thargh the evmder t s solutien 

takes ht- to tate 2 at t ! with relativelyr lw pr b iflity (0.25). 

fl. Differences fa Qualities of Soluions sri S tion ante ie 

We eanjectnue that the large difffe-zences between the quolities 

of tte generated sdolu:ons and the qlities of the generated 

sepneati strategies are due to the evrong dependence of the 

tmeasremnt statisics upon The I lers states, 



In cases where such dependence is present, use of a separation 

sbrategy of this tpe may be particularly dangerous, for such a 

strategy does not place a value upon a state on the basis of the 

information that ma be gained (or lost) by entering it. 
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Letrp v9n m~vRe m 4 l--oltztt of rl, amd let 0 be the qulity 

v n O1eUtifonM -ni= 	 The. sine 

(t) 	 a degevertte mixed ctrategy e f n (a puestrategy) 

can al~vz 'be f smd V*ich minal-es lok? Mn;C' ca),J 

(t) M 1n is an a-s-Enuitt1 on 

ft, fornow that.± ther--ez not exist a degenerate zixe4 atratbegy 

c? on C such that 

Hcrp ansse -Ghat the bebaviar strateoa a'On Rit w'hich ig assoeiated. 

wiThP on =e~t a S-ii..Solutlcan Tien since 

()a degene-rate betawtor nrte n on0 'apesvategy 

can alvn&a be C*%nd which mi' eaE&t s a)t 

and 

(it) 53r ci is not an C-so2.ution, 

it fal~m's that: thene ness a degenerate babavior strategy aBD? 

ts argMvont i gtft 5q4. 

"ar=ment In 0etti 5-6
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on C such that 

B& the pure strategy co=rzondIng to aRDP 18 ea Ivalea. to 

somam degmnente mixe& stratea d~a n Ca.&d father, T(owla*) 

*D * where T is Kuh's t -nformation (expncsion 2.8 In section 5.2). 

By Zn-Ahna Theorem tbh o(geation 5i): 

Wi this Contradicts Our tmaption thet n !P ti t a behaVior 

gtrategy '4-acanbuIon on 

2., Pmrp of Coroar 2 (Section 5.4) 
f

By Von Nermmgsa Inni-x theorem M-t defizit ion 13, for any 

gamz r a axnd infolatioa collection tcceaaA? there exi ata Pr 

t±'2fed "trteegies 6W* PP ead v'Otx C' -.11th ftat: 

gaf v 4xx H(a t e,te., H(04tpI):Qa) 

fer Ma other pair of mf1r7 ttg ol. and on Ca 

SBt since an R-colUttf On RPalways eMigts i -the sat oe &f 

-poaaible mixed atrategiet oi# on RP, ah"' on IPin (32.1) tmnt -be 

an XA-eolutiom Denoting the quality ef a IR-c4'tion or-R A f, 

tie dan therefore write f-ro (32.1): 

treference I, section 17. 



1
 

~b~-fr~ith~~ 

there a±ltt e J 

A(fwI 

bizs~ heoe~ nodtion 5. 4) 

h thA-t A-r 01! j > . 

e2'" - ox H(c4#N;&,t(a) 

for mwy E 0 

(32-3) 

' SXIa ( GO)ac3 Cat -r (32.4 

for al-

zd ~it0.lw- 0 A) + alcaiflaX?)+ 

(.aa>5 

IM t4O pre hore 2, V-- eatablih +;he foclal deft i 

tims d not M-~ 
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Definition Ml AMW enftitY-belW4--r tt t [%I' 3rze 

cWSfrto of' oniy zeros and a single 160Oi e&ch ftartiticn -. =l be 

Sce there azre tinite3gv im±vy i fn~ait ale-~ternativs, 

thee refiniter Znawi entitynre &aYtwi5ez We Sh&Uf a~sdgn 

aitraTy orderivg to each entity's of - sttegie 

WA denute for ttt k -entity k-= N[,$. 

kal the Mit e tty-pure stmate at&Ixr Iq 

)thetot--1 mlmJber of' eniy-u rtegtaa as a Jm t 

()the set off All entity-prn~e ~ta~ in aSP 134ES 

Rifibition :9 tPar entity A ftkeM-1, 8mwy -l' 

rrobfbility distrS5bt ion over G; tst , 'fbegelled a ntiy 

eat5 winJ be danote-I Mn 

the probability Ye-l'We sbaa &-r M4ieIA I to 

the etiutrw stratey x t - an fl Er 
We ni'efl strzztt detinit~n B3,- ?A' arW ba5 ba,30r Tcr ti6 k 

ehtifttea only, lhi eorresponding detfcStifmg for th t4tbiie 

Deiio L For aex entity nised stnte Xrt i=1,othe 

tviorscata~edetit badvior state i thae entit7=bc-bvicr aratea 

API 

k-1 



tht ~oitA~i~i~~rt~ . thea entrity-±Rllxed stntegy 

dettli~d W:~ 

ccc ~ ~(Z3.Ia 2) 

vhaere the imei o1f rl (or &)is the com~mr-~t cor-reapnding 

Ctnnive in 'timto + tia zt - 1;tItion er tamadtzg to the 4th 

An &a r~ C*tndevn-ae at, detbzlion5 fl E an entity

bbhnopr atrtoM g =aetes ='rA1r eczuatlt (PS3.2) an enttt-'ct 

pvr~tegy tC-eb in tint aensz'atss. nr e tl= in E.I the origimd 

~~ti~3 A natoff entity-dxe4 gtrategtea tpC,3 

MA I iz zafted an eebti r7-x~zd otrategy e=i!Lrtnx =oin-.if 

-;W brooee With the 'PrOe-J of MhO--= P2by Vtatuing "Dn 

proving tba foll~tnr Im ltwm1&~a. 



Le I : Me expected re-ur - r wv given set of entity-

Wifred strategies (xtM szLN YKaI krdoM) ig eTard to the expeczed 

retrn irAer the cerrespodlmg set of ag-gocit entlty-behavior 

strategies Vzri, i; f'a, 1, M. 

Prt2Ot: Umfr (ntti, ; flT ,M) the expected return 

(rO. J (B3.3)(ne' rv)vr 

;&are C iz the set of all poasfrle tt-teger aeraences k 5 2 ,..3 

fo i ~P__nd for 

jtsl9li Exesaion (33., hoaever, ca be wriyvten s f 

moat p %t ms ng&tpt aesic (B3.4) is haasted etity

babavior st=Lev for the origin!..' vt%~hieh 

Scabevied by 
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doearnaoi to it. Tmt, we cmn rerrz (03.4) as: 

klxe4 stratevr gotiriln point.* thfn the etorreapomdfr wat of 

ansoiated ett~t~io is Mn entitg-hahavt6r etquflibrimatatftie, 

pZOfrxpw ai i &tJbl is an entity-mdxed 

-tilet eulibvlii. By defLritian B5, tavfoe &w k-d.4N and 

~~~s -min4~t~44M (B3.61 

fw* appof thave ezuiats anr snob that: 

ticre ~r -, Ofis4the net or aaoene&etity'baVior,-uc~ 

cbmtg~r crrtponi~g to the gives otity-biw4 strategy eqnfli

bOrlua poizS. 
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AwLytig l~m I. and 4efiz~tin 14;, we can write -rm eqamticn 

~zn1oB38, ~econtmdieb-s d-tzo 0B3-6) so -ose 

r4ax ts.a.pv-y1* pM7 

~ ~ jscLMX~ 03-9) 

$-rnflr axgwjm tdl etabl thia ms~m isult f or k=4 N 

aAfor azry41 thalt: 

Zia bY~dtfiitit0A fh i-g 3i' that %t =,M sAm 

To tam~lee ti rootP of M~eoran t, e now note that ittkN,) 

entity nmci-ocperatin ge r' ith the asbiMeas e-Viayir* entity

mixed strat~giv Is an 4't-poa~ t~~~prtv at gais-" az 
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defined by Nash. 1 2  For such games, Nash gives the following theorem. 

Theorem : Every finite (n-person non-cooperative) game 

has an equilibrium point (in mixed strategies). 

The proof of Theorem 2 of section 6.3 follows directly from 

Nash's theorem and Lemr& 2 above. 

4.0 Proof of Property 5 	(section 6.4 1) 

Suppose 	that the protagonist is employing a perfect-recall 

RP . information colledtion scheme 

From expression (5.5) we can write for any information set 

11"(k),)e 
H((Xp'±i=lN;Yatj=1,M)IP(k)) F(Z ()(()IP()) 

( ( ( ))L )Iz 	 zI ( p(()z()E))..(l)If())° 

CkP (k)A 

p9kZ))p(i(2) 13?(2)),.. 	 (F(k)IP(k)) ((B()jIf())pCEa(2)j 

P(e(Lk) If( ](B4.1) 
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where

(i)%IjJ(k)A indicates summation over all plays Wwhich 

contain a move in fp(k)e 

(ii) %Ijp(k)Aindicates summation over all partial plays leading 

to a move in lp(k), 

(iii) ML is the number of moves for the antagonist on any
 

partial play leading to a move in IY(k)e and
 

(iv) Lk is the number of moves for nature on any partial play
 

leading to a move in IP(k)z.
 

Nov, if RP is a perfect-recall informaion collection scheme, 

then IP(k)A specifies 9(1), ?( 1 ) for i=l,k-lt so we can reuite 

(B4.l) as follows. 

H((XPtIi=lpN;Y~at;J=lyM)II?(k)) =[kl P(ntIY(n))] 

[ Zp(Ep(k)IIP(k))..p(I#NN)rI[P(N))p(Ea(l)!Ia(l))...

C JI(k)A
 

... l))in(t)) 

p(EP(n)JII(n))] 

(e() IIa(M))( )I())l) p( - h( (i)) 

ror every information set containing any move on any partial play 

leading to a move in I(k)A. 
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Now, noting that all terms defined by (XpD..°,xP(k-l)) cancel out, 

we can write: 

H((YJP i=l,N;J,J=,1) fIP(k),) - H((Xt p % i--,k-l;X", 2k,N; 

tYa, J1,M)II(k)) 0 for any (X =i, ;X* , i=l, k-i; 

But similar arguments can be carried out for any information set 

IP(k)A for k=2,N. By definition thenp 8k--0 for k-2, N and thus the 

recall sensitivity of the protagonist about any pair of behavior 

RP
strategies (Xp, i=I,N) on R" and (Yaj,J=IM) on Ra is zero if is 

a perfect-recall information collection scheme. 

5&0 Proof of Theorem 4 (Section 6.4,2) 

-Suppose that the pair of behavior strategies (X i, 1=2, N) on Rp 

and (Y *aj1 J=,M) on Ga corresponds to an entity-behavior equilibriun 

point. Taking the prtagonist's part, we can then write: 

marx, =l., )1l;XPNY%%j=1,) wax [ Z H((X P,i=i,1i-i; 
x_. I.(N)
 

C (I i=1,N;, ajj=, 14) (B5.1) 
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whor P(POO;C~t =1,I1-2X~;'~,J~t, M)is the iprobablit 

that information get IP(H) . ccura, as a fnetmion of the behavior 

strategies a~ydI by the player . 

By the definition of roeflsanaitivity, atan uvite: 

) jxPp , for aui AN)A 

and all ?(B 5 .2) 

Combining (5-1) and (s-2t) and aotfrg that since X4 Is a 

ftnetiom on XP(W) the nmtation and naximization oravions can be 

interohange4 we obtairn 

3?(N) xI-

Now, H(Y t1N; aJ=1,flR) can also be expressed ani a a~n aver 

g()ad by cam-11-16ypCXP(~k); xv*zt is not 

dependent 'uon (Xi%i--k N) or (Yata=21, where isi the mmrber ofj) 

mxvea for the cntagonict on &V partial play leading to a mve in 

P(k)-, so (B5.3) can be rriritten as: 
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ylxpN
 

IT ai 8W/ (n5,4)) 

and the inner bracketed tIcrda In (55.4) is poitive orzero so weet
 

write frtn (B5.'s):
 

tIU,7if (B5e5) by p(IP(n)A; =~;~ £tn~ a1nd.
 

wmingr over vacti.
 

~~- 1_Snay Z aOtil W j=1,M ) 

lp(N)~ ~ ~ )((P(TI (56 

Nor,, reversing the ttiaonand sti Utio opations in (B5.6) 

Gmir h8 to effemc o this ineaity oe ftra7i henn"l it, Further-,, 

by the definition of racafl-sensitivity, vm hat:
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Cxa (B5.7) 

Ooblnfrg (35.6) and (B. ve 6otaing 

s p for &tw (x %p±-I4N-1) (B5.8) 

Stnrtirg rith the esea on co p to (P5.1 but for mx mzf

tion oar wie can zeat the abqve arguments so cttain.n 

i) BNf' for aw (S =1N-aX (05-9) 

By Bfiilar argmaonts.. n- can obtain for A=-2, that: 

maxra"x~ ~ ~ ~ ~4 - -I, .(4±1A~:sH(XPt1kfy,;t=1My 

1±=2l,A-1;XAijY i j-4) eor arq9,11 At 3.0 

Nou, combining the exprepslon. co.-raspon&Ihg to ec-pression (B5.1) 

burt for maxtnfratlon ovrer Xl, with exp-resadon (B5.10D) Per 6=2,p ve 

obtain: 

mar H)&%?;x~t c344 Kp(i'X~~gNY~~, ±=2, 
9192p~ 
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H~ar,)+ bp2 4 m H(tXt7 xIV 4 3 + 0; *Di .4 

Now.. emifing (35.11) and (B510) for h-S, Ule obtain: 

Za. arM H 9 14XvH l" 

i1,N;!~a, j~±1,) + a 4 8pla 

cemibfrg for t4. 1 ,v e finaly obalh 

Va= .,, maz E(~i-i, rayIj=I! ) HXDi, 
9 9' 

N 
Ysj 4)+ Z 0-'.3 

1-2 

Babt the muntion tena is the protagcnist's recaf-aenamitivity about 

(x'-1=, N) oM IPAnd (Y8, 3=1, Y.) ani e. Denoting this tenn as E 

we can iurita frain (B5.13): 

~ H~,w~ 0 ) E(3~ ?o % &)+ E(B5.34) 

Nov, etablishing an aa1ouen detli:t ioa for -.he recalli-aenitfrtty 

of the antagonist,. we can carryv one for the a-agonist, arguments of' 

the rime type an thsne givetn bove for the proteagonitut, obtaining: 

min z(vigtRwsd. 0a) > H(a3"",#a1ft a)-(35o15) 
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where p is the reca -senittivty of the sntagonigt About 
iE-1N) on P an& on ell. 

Finafl$' then noting that the antagoni s iplr~oying a perfect

recall ifrfOXtftion collectin sahene and thus that a is zero b7 

property 5, and notlfg'that the left band side of (B5.15) is the 

qualitr Of OBPon ARV,emcecmbine- (35.14) and (W515) to obtain' 

Q(0POIV - ia R(OB 0 l;a- 3 0e) R-HB%;od'hae) 

Oa 

S max H(CP,R 	 1?; 0 1OW3* a~) S 	H(UB34 t~x" 'Bt + (B5-16) 

6.o roof of cEmisy 1 6.i.aSeion 

Let 0 be the quality of an R-olntion. Let 0g-xp on R and 

ai' on Cab a pair of behavior strategies 
(i) which eorrepon dn to an entit7-behavior eq iilibritn point 

in the associated non- oopermive gme r9, and 

(i) 	 about which the protagonist hasaaracall-sensitivity which 

in less than e 

r= 	Theorm 4, then? 'no have.

mm~~ 0 ~ ~ ~~ 3 a( +~ (B6.1),p ~)CQ&x~%o) 

Pr Von Nmmn' mimax theorma (e pression B2.1) we hav: 

< M E(OBPIP;BhCA) (B6.2) 

UB? 
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CctAbining (B61) and (B62) and noting the dofin±iou ot m R1-ao~etion5 

we obtain: 

0 - E~c 0(B6-3) 

Bdeflnftior4 then, o3"I an Iia 
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