$A D-712408$

PURDUE UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING

ON BEHAVIOR STRATEGY SOLUTTONS
IN FINTTE EXTENDED DECISION PROCESSES
V. A. Utgoff
R. I. Kashyap

TR-EE 70-24
June, 1970

School of Electrical Engineering
Purdue University
Lafayette, Indiana 47907

This work was partially supported by NASA under Grant NGR 15-005-021. by NSF under Grant GK-1970, and by the AFOSR under Grant 69-1776.

PRECEDING PAGE BLANK NOT FILMEN

TABLE OF COAmEATIS

Page
IJST OF TABLES vii
IIST OF FIGUBES jx
ABSTRACI $x 1$
GZAETM I - XNTRODUCTION 1

1. 2. General Problem 1.
J. 2 Infonmetion Cathering 2
1. 3 Considerations in Selection of an Information Collection Scheme sow the Protagonist 3
I. 4 Ihyes of itretegies 5
3.5 Orginization of the Argment 6
3.6 Conicmibutions 8
GHAFTER 2 - DESCRUFHIOUS OF FTHITE EXTHKDHD GAMES 10
2.I. Incroduction 10
2.2 Hotrition ana Conventions 10
2.3 Hozd Usage 11
2.4 Definitions of Finite Extmaded Gomes 13.
2.5 An Sxample of a Finite Ertonded Gome 12
2.6 Rules Describing All Possible Phays* Gems Trees 15
2.7 Fixies Describing Natuxe 16
2.8 Fules Descmibing Peyofes 18
2.9 Ruiles Describing Maximun Getherable Information 18
2.9.1. Information Collection Schemes and Incurcea Move Partitions 20
2.9.2 Equivalence of Informetion Collection Schemes 22
2.9.3 The Couplete Information Collection Scheme
22
22
2.9 .4 kules Deacribing Kifximun Gatherable Information 24
2.10 Sumenary ch
CHAFTER 3 - SIRAHECKESS IN THO-PWRSOA, ZEMO-SUH, 28
3.1 Introduction 28
3.2 General Concept of a Sirrategy 28
3.3 Types of strategies 29
Page
304:Bases of Comparison of Strategy Types 30
3o4. 1 Dificualify of Implementation 30
30 4.2 Strategy Effectiveness 3.
3.5 Solution Strategies 33
3.6 An Examele Geme 34
3.7 Pure strategies 36
3.7.1 Tmplementstion of Pure Strategies 38
307.2 minactiveness of Pure Strategies 39
3.7.3 Determination of Pure Strategy Rusolutions ow 6 -Rmsolutions 41
3.8 Mixed strategies 42
3.8.1 Impiamentation of Mixed Surategies 43
2. 8.2 Rffectiveness of Hixed strategies 45
3.8 .3 Deternination of Mixed serategy R- Soluzions on E-R-Solutions 46
3.9 Behavior Strategies 46
3.9.1 Implenentation of Behrvior stratagies 47
3.9.2 Tryectiveness of Behavior Strategies 50
3.9.3 Detersnination of Rehavioz Strategy R-Solutions or E-R-Solutiona 51
3.10 Sumaxy 52
CHAETER $4-$ FORTAL RROBL TO THE SOEUTION OF THE PRCBLEM 54
4.0 Introauceion 54
4.1 Formal Probilem Statanent 54
4.2 An Apprach to a Solution of the Problem 55
4.3 Contribations to the Solution of the Problem 57
CHAFTER 5 - DETERMINATION OR BEHAVIOR STRATETYY E-R-SOLUTIONS ON ERRPECT-RECAIS IHFORMAMON COLEECTONS SCHEMES 59
5.0 Introduction 59
50.2 Rrelimineries 59
50101 Asstumizions 60
5.3.2 An 到pression for the Protagonist's Return Then Mixed Strategies Are Haployed 60
5.2.3 An Expression for the Protationist's Return When Beharior Stxategies Are Employed 61
5.2 Kuhn's Transtormation and Theorem 64
5.3 Use of the Tratistomstion 66
5.4 The wethod of Fictitious Play 67
5.5 Use of the Trenaformation (Concimed) 69
5.6 Dyneraic Programing and Fictitious Play 71
5.7 Sumany 75

Page

CHAPTER 6 - DEIERMIHATTON OE BEHAVIOR SMRATEGY E-R-SOLUTIOXS OS Rasamy SOUM, 78
6.0 Irreroduetion 78
6.1 Eraliminaries 79
6.1.1 Trnerfact-Recril Information Collection Schtmes to be Considered 80
6.1.2 An Expression Tor the Expected Return to the Protagonist 80
6.2 The Associated Nor-Cocperative Game 83
6.3 A Neceasary Condibion for Bohavior strategies, OB on R^{p} of Rascimun quality 85
6.4 A suxatcient but Not Fecessary Condition for Entity- Behavior Bauilibrium Points to Cormespond to Boharior Strategy R-Solutions 87
6.4. 2 the Concept of Recall Sensitivity 87
6. 4.2 A sufficient but Not Mecessaxy Condition for Behnytion Strategy R-Solutions 90
6.5 Construction of Entity-Behavior Equilibrivm Points 95
6.5.1 The Extended Fictitious play Algorithm 96
6.5.2 Convergence of the firtended Fictitious May Algorithm 98
6.6 Sumary and Closing Argunems 101
CHAPIISR 7 - A FURSUTI ARD EVASIOR GARE WITH KEASURHMENT UMCERTATNTY 103
7.0 Introauction 103
7.0.1 objectives 104
7.1. General Description of the Pursuit-Evesion Process 104
7.2 Interpretation of the Pursuit and Evasion Game 107
7.2.J. Conventions and Notation 109
7.2.2 A Game-Tree Datgrem for a Pursuit and Evarion Ganne 111
7.3 Prursuit and Fvasion Games Studied 116
7.4 Application on the perfect-Recoll Fictitious Play Algoritim 117
7.4.1 An Axpression for the purguer's Expected Return 219
7.4.2 Generation of Behavior Strategy E-Solutions for the Pursuer and the Evader 121
7.4 .3 Observed Convergence Rates
7.5 A Plausible Hethoi Por Genereting "Good" Behavior Strategies for the players 224

Page

CHAPTMR 8 - A MEDICAI DECISION PROCESS 127
8.0 Introduction 127
8.0.3 0bjectives 128
8.1. Formel Description of the Doctor-Devin Game 130
8.2 Interpretation of the Doctor-Devil Game 132
8. 3 The Doctor-Devil Game Studied 135
8. 4 Applicetion of the Extended Fictitious Play
Algorithm 136
8.5 A Search for a Simplest Bheavior Strategy E- Solution for the Doctor 139
8. 5.1 Information Collection Schemes Consfdered 140
8.5.2 Comparison of the Behavior Strategies Generated 140
8.6 Onsexved Comrergence of the natended Fictitious Elay Algoxitim 145
8.7 Stamaxy and Conclustons 146
EIST OF REPRRMACES 148
APPEMDTX $A=$ MOTY 151
APPREDEX E \sim PRCOFPS 162

1. An Bxarple Pure Strategy for the Trader Using a
Complete information Collection Sckeme, in the Wheat
Maxket Garte $\begin{aligned} & \\ & \text { ith } \\ & \mathrm{N}=2\end{aligned}$ 40
2. An Example Mixed Strategy $\circ \mathrm{M}^{\mathrm{p}^{*}}$, in Coded Form, for the Treader Using Its Coximlete Information Collection Scheme, fit the Thest-hariket Game latith $N=2$ 45
3. An Example Behevior Strategy for the Irader, Using a Complete Information Collection Scheme, inl the Wheet- Nariket Game With $\mathrm{N}=2$ 48
4. Neasurcment stâiatics 112
5. Measurement Statistics 218
6. Qualities of Behavior strategy \in.-Solutions for the Pursuer and the Evarex 121
7. Behavior Strategy E-Solutions for Exampie 1 123
8. Observed Convergence Rates for Perfect-Recall Fictitious Elay Algorithm 124
9. Qualities of "Separatfon" Behavior Strategien and Behavior strategy E-Solutions 125
10. Prabability Distributions for Patient's Condition Chenges Under Proper Treatment 135
11. Expected Lifetine Extension Payoff Matrices 136
12. Probabllity Distributions for Diagnoses 136
13. Infomation set structure for the Compate Information Colleclion Scheme Case 138
14. Sumaxy of Results of Search for at Simplest Behavior Strategy E-Solution 2412
mable Page
15. Theatment and Operabion Behavior Strabegr for Information Collectrina Scheme "? 243
16. Onserved Gonvergence for the Completse Infomation Collustrun Behenemdase ($B=0.05$) 146
1'7. Pure strutegies in Coded Foma ± 53
17. Dethiation of g sor Gate of Figure Ji5 When Bath Fleyexts 156

Ix

LISTM OF ETGUHES
Fhgure Page
2. An Erample of a Finite brbenated tivare 14
 Juxumple ferte 17
 the Eiblumle Gence 19
 Tnformation Etor the Exturple Hame 25
(b) Move Partition for Informatian coulecticm Schemes in the dikample grme Wheh Comespond to: p Does Mot hook 25
5o A Comule Descriptiun of the Example Gause 27
 37
 77
8, Hulumanar Strategy Ventows 82
9. An Examplo Clame 92
 99
No Mithoce of play of Fursuit and Emosion Cona When Both Schumbes 108
 Glame 113
 124
 133

Fhigumer Page

ABSTRAC'

The problen af detemmation of best behavior strategies for a decision maker, in thompersong zexomsum, finite extended decision process tas crastanard.

In whis problem, best mtrategles axe defined to be those strat-
 ghtantegien fint can be employed by the other plaver, and the dacision

It ds noted that most two-person, zeromsums ffnite extended games ande Lu setting which:
(a) def ane the maxiram amount of anformation on Devious alidernativu chojem that each player can gather from move fo move, but
(ix) do mat define hou much of this Infomatom antualiy will he qutyerealg or hou much of the actually gathered informaturn witl he remembered from move to move.

Quefulm any spectifuntion of (1i) for a player as an information

number of mubers thsit must be stored in a comparter to inplement ft, it fis cljeas that both the effectivness and the complewity of a strathegy depend upon the playerts information collection seheme in a criticial memer.

Int the report theng techniques axe developer for finding best behsuiozs stretegies on aritirary intormation collection schenes. These teckulquas meise it possible to search in ary given game for strategies whinh axe minamally complex bat acecptobly expech live.
A. ioctoreqatient medicai game is "seaxched" using these techniques, and, bewaior strategias are found for the doctor which are more then 90% as expective ant less than 10% as compler as the beat strategy whin wernits wine the doctor gathers and metains dil the information definad to be aveilethe bo hiln.

A prursuitt end arvasion grame is aiso stuxied and best behavior strabegies ame deverghined for the pursuer and the evader when both playurs gather and metain sini the information dertined to be availatale to anch or wheme

CEEAPYMER I
TNTRODUCPTON

2. \% Gemare I Probem

We nute imtemestad in the determination of best mtratogtes for a
 Plumb the atternetiva choicen in the processes are made by thaxee penrejes:
(E) a dectsing makex, oux protagozist;
(5is) a secend parity; mad
(15it) shature, rpewating mader homon stablstics.
secoudy tur processes are extenda, in that each parthy may make wow the one dectision as the process wafoldso

Thy id, the processes arce findte, in thet each party may make
 giresemstad wath onlar \& tinite manoer of altematives.

Flually, the processes will be conaidexed to fnyolve only two
 candidating tine payons to the protegonist sin texms of expected

 prossibilo dechsicn ntwategies that cax bu erployed by the aecond party.

These strategles have the appeainng property that they neither require nor fmply an estiante of the second party's intentions; they only take into account his ceprabilities.

In order to ennd suchs $18, k$ min strategies for the protagonist, we shall pose the problem as a glame in which the second party is considered to lose whatever return tixe protaronist rins. Specifically, we will label the second party as the antagonisty and we will treat the decision proctises as finite, bwo-jexson, zero-sum extended games.

t. 2 Intoxmation Gatarijug

We will astwe that as play progressen, each player can become mans of scan of the alternative choices thet he mat the ofiner parties - heve mede. ${ }^{+}$spectrlenily, we will assume that the settings in which oux catended games sraise:
(i) define the mpximam anount of previous information about altemative chotce that each payyex cam gatinex but
(ii) do not dertoe how mun of the thecretieally arallable information each player inill gather, and
(1is) do not altine how much of the acturilly gethercd infornation each playex will recall from move to nove.

If we call ang sjpecitication of fachors (in) and (1ii) atoove, a speciptcabion of that players information collection scheme, we can yestate our interests as follwas. We wish to consider the problem

[^0]
(1) the selfertion of an intormation colyaction seheme for the yrodagoxist, ant
 given than andected incomethan collection schent.

Schtrate for fine motaronigt

Suppose we cuidut twe follewing taxamachturo:

 Information collection schamag and

 information eryiection schevata

 Frotageralist as fotmourw

balk on an the various coliections of pieces of information on previous altarative choices that he is derined to know under his informetata colieesion schene.

Taktigy the manar of situabions a strategy mast allow for as a measuar of ing compexity, we can mate hite folloring statements.
 a pativer bnows at each move, the more ctarglex his strategies

(A点) tha nome campax playex"s strategies are, the moxe expansive they ere to stove and inglement.
 or his wivaiterys, the less information a plaper knous at each move,

O the ather hand for any givem information collertion scheme

 Honnever, Jeadn to the nogt complicated sitrategiest.
 folloring rationale for selection of the phayer a infomation collec-

 Iabelly we will coaservadyriy assagn to the antagonist a comatere turomation collection schene, and
(I3) we will selbet for the protagonist an furomat Lon collection

yammain strategy guaranteeing a minlum expectea retumn
 complicte information collection scheme.

2. 4 留quas of strategtes

Theres ate thrue basic types of strategies that can be employed by the muxmarsit
 the player which alternative to choose in ary sthation he maty oncounter in a play of the game:
(in) 4He mixed stratery misch is a probebinity distribution over the see of all posstivia prace strategten whick the player uses to mandouly select a pure strateey then he begizas a phay of the game ant
 atatributions, one aistribution for and aiturtion the player chn emonuter, each distritbution describlag how the player

 and genemal tectmiques have beem develcyed for finding a puxe merategy Whicia mackuizet over a player"s set of puxe strategies its minhum

 so whel. wown and to generol sechniques have bers developed fos findm fing turnayicu strowemy which maximizes over a pulayer"s set of behevior

We shall show below, however, that in all but the most trivial of extended games with less than perfect information, the determination and use of the best of a player's pure or mixed strategies is not practical.

We will, therefore, restrict our attention to the problem of determination of a best behavzor strategy for the protagonist, and we rill develop some computational technaques for this puxpose.

1.5 Organization of the Argument

In approaching the general problem we have outlined above, we will organize our argument as follows.
(1) We vill develop a formal technique of description for generel extended gemes similar to that developea by Von Newann and later refined by $K u h n^{2}$.
(2) We will formally define the concepts of a pure, a mixed, and a behavior strategy; and we will show why attempts to find and implement pure or mixed strategy solutions in extended games are usually impractical.
(3) Restriceing ourselves to behavior strategies then, we will formally state the general problem that we wish to solve: find a minimally couplex, acceptably good, behavior strategy for the prom tagonist.
(4) We will discuss the difficulties involved in generating a complete solution to the problem, and we will outline a heuristic technique for obtaining a partial solution.
(5) In order to obtain even a partion salution, however, we will need a methoi for finding maxmin or nearly max-min behavior strategies for any given information collection scheme for the protagonist. We will split this problem into two parts, considering separately the special case were the protagonist amploys a perfect-recall information collection scheme, and the more general case where the protagonist may employ any information collection scheme.
(6) We will devalop an aigoritm for determination of max-min beharior strubegies for the perfectracall Informetion collection scheme case.
(7) For the erbitray infomation collection scheme case, we will show that for every Pinite twomerson, zeromsuil, extended game in which one player has N moves and the other player has M moves, there is an gesocigten (H + M)-person, non-cocpersitive game with solution strategies of a nem type corresponding to beharior strategies in the original game:
(1) which ueet a set of necessary conditions for massmin behavion strategtes, and which
(is) if the pleyers' totel gensitivity ${ }^{\circ}$ to forgotten infornation is less than \in, will gasrantee each player a minimm expectea ratum within ϵ on the minimun expected return it can guarantee inself by playing a max-min mixed strategy.

[^1](8) We will develop a heuristic algorithm for generating solutions in the associated game, or equavalently, for determining behavior strategies which meet a set of necessery conditions for max-min behevior strategies in games in which the players may employ arbitrary information schemes.
(9) We will demonstrate the use of the "perfect-recall" algorithm by solving several pursuit-evasion games.
(10) Finally, we will employ the general algoritim in a search for a minimally complex, acceptably good, behavior strategy for the doctor in an example doctor-patient medical decision process. In this example, we will first find a behavior strategy X on the doctor's complete information collection scheme. We will then carry out a search for a minimally complex, acceptably good, behavior strategy for the doctors and the search will result in a behavior strategy X^{*} which is more than 90% as effective as X, but iess than 10% as complex.

1. 6 Contributions

The contributions made in this report are:
(i) the development of an algorithm for determination of maxmin oehavior strategies in two-person, zero-sum, finite extended games in which both players employ perfect-recall information collection schemes;
(ii) a demonstration of a relationship between solutions in an associated gane and max-min behavior strategies in the original game; and
(iii) the development of a heuristic algorichm for determination of behavior strategies which meet a set of necessary conditions for max-min behavior strategies in games in which the players employ arbitrary information collection schemes. These contributions are of value in that they provide, for relatively complicated, finite, two-person, extended decision processes, a means for determination of behavior strategies for the decision maker which are:
(1) relatively simple to store and implement, and
(ii) come acceptably close to maximizing the decision maker's minimum expected retum aganst all possible strategies which can be employed by the other person.

CHAPTER 2
DESCRIPIIONS OF FINITE EXTENDED GAMES

2.1 Introduction

In this chapter we will carry out the first of several arguments which will lead us to a precise formulation of the problem that we wish to consider. Specifically,
(土) we will give a formal definition of a ininite extended game which is slightly broader than that given by Von Neumann and Kuhn ${ }^{2}$;
(ii) We rill develop a form of presentation for the miles specifying a finite extended game which will allow considergble insight into the strategic properties of such a game; and, in the process of this develoment,
(1ii) we will define and examine the concept of an information collection scheme.

2.2 Motation and Conventions

In this and the folloring chapters, we will indicate that a function or variable is associsted wath the protagonist, the antagonist, or neture by superscripting it wath p, a, or n, respectively.

Further, we will establish most of our definitions and notation with respect to the protagonist only, whenever the corresponding
definition or notation for the antagonst is clear. When the corresponding definition or notation is not clear, we rill give it in a separate statement, or we will indicate in square brackets ${ }^{\dagger}$ the changes that must be made to the protagonist's statement to make it true of the antagonist.

2.3 Word Usage ${ }^{\text {tit }}$

In cormon usage the words game, play (as a noun), party, move, and choice, have more or less ambiguovs meanings. From this point on, we will use these words only in the folloring formel ways.
(i) A game is the totality of mules that describe it.
(ii) A play is a particular instance of how a game is played from beginning to end.
(iii) Any player or nature is a party in the game.
(iv) A move is the occassion of a choice between various alternatuves to be made by one of the parties under conditions which are precisely described by the rules or the game.
(v) A choice is on alternative chosen an a specific anstance.

2.4 Defimztions of Finite Extended Gemes

As mentioned above, a game is the totality of rules which describe it. The strotegac interest of a game, however, laes in what is not directly described by the rules.

[^2]In the definition of a finite extended game that was given by Von Nemman ${ }^{1}$ and later refined by Kuhn^{2}, the rvles of the game include a rule precisely defining the information on previous choices that each player will know at each of ats moves. The only things not described in the mules of the game are the strategies under which the players make their decisions at each of their moves.

We wish to leave to each player the additional problem of deciding, Within the limits of that $2 t$ can know about previous choices at each of its moves, which pieces of information it actually should know 8 , t each move in order to play acceptably well. Therefore, we shall state our definition of a finite extended game accordingly.

Definition 1: A finite extended game is a collection of four rules:
(1) a rule describing all possible plays in the game;
(ii) a rule describing the manner in which nature chooses an alternative at each of her moves (a statistical description for nature):
(iii) a rule describing the payoffs to each player for each possible play; and
(iv) a rule describing the maximum amount of anformation on alternative choices by all parties, that each player can gather at each of the moves in the game.

2.5 An Exemple of a Finite Extended Game

An example of a finite extended game is described below. The four rules of definition 1 are completely (though perhaps not
explicitly) specified by the given verbal description of the game. Consider a simple card game between two players, α and β, the former consisting of two persons, α, and $\alpha 2$, who are not allowed to conmunicate. The game is played as follows.
(i) al chooses a card from one of two well-shuffled decks of cards-a deck A which has twnee as many red cards as blsck cards, or a deck B which hes twice as many black cerds as red cards.
(ii) The card chosen by αl is given to β, and β is then asked to guess which deck the card came from
(iii) $\alpha 2$ is then asked to guess which deck B° s card came from. $\alpha 2$ is not allowed to know $\alpha 1$'s choice or to see β 's card, but is allowed to know β^{\prime} s guess, provided that α had planned in advance to use this information in its strategy.
(iv) A payoff is then gaven to each player under the following rule. If both guess right, α wns $\$ 1$ from β; if neither one guesses right, α wins $\$ 0$ from β; if oniy $\alpha 2$ is right, α wins $\$ 3$ from β; and af only β is right, α wins - $\$ 3$ from β. An interpretation of how this game is played is given by the flow diagram of figure 1.

In the next few sections, we will develop a form of presentation for the rules describing any finite extended geme. This form of presentation, whach is very similar to the one developed by Kuhn ${ }^{2}$, allows considerable insight into the strategic properties of finite extended games. In the process of developing this form, we wall

FIGURE 1. AN EXAMPLE OF A FINITE EXTENDED GAME.
define and examine the concept of an anformation collection scheme. As we proceed, we will use this form to describe the example finite extended game given above.

2. 6 Rules Describing All Possible Pleys: Game trees

Let us consider my two moves as distinct if each one arises with a different strang of alternative choices by the parmies. With thas convention, the rule describing all possible plays in a finite extended game can be easily expressed in the form of a finite tree, ${ }^{\dagger}$ usuajly known as a game tree. ${ }^{\dagger \dagger}$

Defintion 2: For a given finite extended game Γ, a game tree K is a finite tree such that:
(i) the nodes of K are in one-vo-one correspondence with the moves of T;
(ix) one node, called the distinguished node, 0 , represents the first or staring move of the game;
(iii) the branches of K represent the alternatives at each move in Γ, with the conventions thet:
(a) the i branches of 0 are indexed $1, \ldots, i$, in counterclockwise order, startang with any branch;
(b) for any node X with J branches, except for 0 , the branches are indexed $I, \ldots \ldots, j$ in counterclockwise order starting with the branch followng that branch which does not represent an alternacive at the move corresponding to X, and
${ }^{\dagger}$ A conmected graph whthout loops.
†TReference 2: reference 2. nase 41: and el sewhere.
(c) the ith branch at any node X represents the ith alternative of the move corresponding to X.

In figure 2 we esrablish an indexing of altematives and show a corresponding gane tree for the examie game of section 2.5 .

In figure 2 we have indicated the terminating branches, i.e., those which correspond to choxces which do not lead to further moves, by ending them with squares.

Note that in a game tree K, drawn for a game I with a given indexing of alternatives, there is a one-tomone correspondence between the possible plays in Γ and the unicursal lines from 0 through terminating branches. In view of this onewtomone correspondence and those between moves and nodes, and altematives and branches, we will use the same name for each element in Γ and its correspondent in K_{0}

2.7 Rules Describing Nature

The second rule required in the description of a finite extended game is a rule describing the manner in which nature chooses an alternative at each of her moves. This is given by specifying a probability distribution over nature's altematives at each of her moves. Such distributions are easily indicated in a game-tree diagram. We simply label each altemative at each of nature's moves with the probability that it will be selected if the given move arises.

Note that if all such distributions differ at each of nature's moves, then at every move, every previous alternative chozee can be said to "condition" or influence nature's decision. On the other hand, if a particular previous choice does not influence nature's decision

Nature's moves
$a^{\prime} s^{\text {"2nd" moves }}$
Alternative Name

1	Guess deck A
2	Guess deck B

FIGURE 2 AN ALTERNATIVE INDEXING AND A GAME TREE FOR THE EXAMPLE GANE
at some move, then at every move with the same alternatives and a choice history which is identical except for the non-influential choice, the probability distributions over nature's alternatives must be the some.
\therefore In figure 3, the game tree for the example-given in section 2.5 is appropriately labeled to indicate how nature chooses an alternative at each of her moves. Note that nature's decision at each of her moves is conditioned by the choice made by $\alpha \beth$.

2. 8 Rules Describing Payoffs

The third mile required in the description of a finite extended game is a rule describing the payoffs to each player for each possible play. This rule will be denoted by the function $h_{i}(W)$, indicating the payoff to the ith player when play W has been realized:

In a game-tree diagram, we can indicate the payoffs to each of the N players when play, W is realized by listang the vector $H(W){ }^{\prime}=$ $\left\{h_{i}(H), i=1, \ldots, N\right\}$ at the terminating branch of W. in figure 3 , the payoffs to the players in the example game of section 2.5 are indicated In this manner. However, in any two-person, zero-sum, finite extended game;'; ' ${ }^{\prime}$ will hereafter list only the payoffs to the player who is considered to , be the protagonist.

2.9 Rules Describing Maximum Gatherable Information

The fourth rule required in the description of a finite extended game is a rule describing the maximum amount of information on alternative choices that each player can gather at each move.
(Alternarive Indexing ${ }_{\text {Given in Figure } 2 .}$)

FIGURE 3. STATISTICAL DESCRIPTION FOR NATURE AND PAYOFF RULE FOR THE EXAGAPLE GAME.

In order to explain the technique which we shail use to present this rule, we must first defane the concept of an information collection scheme and develop some of the properties of this concept.

2.9.1 Information Collectaon Schemes and Induced Move Partitions

We begin by glving formal definitions for the concepts of an information collection scheme and an information set.

Definition 3: An anformation collection scheme for a player is a rule R, defining for each move X at which the player is required to choose an alternative, the portion of the alternative choice history establishang X which is known to that player.

Definition 4: Any set of pieces of information that can be known by a player at any of its moves and which consists of:
(i) a list of alternatives available at that move, and
(ii) the pieces of anformation on previous alternative choices which the player knows at that move under its given information collection scheme R,
will be called an information set.
Clearly, in any finite extended game, there are only a finite number of information sets possible for a player under any given information collection scheme R. Further, we can state the following property.

Property 1: An information collection scheme R for a given player induces a unique partationing of that player's moves into a minimum number of sets, each of which contains only moves that the player cannot distinguzsh from one another.

Proof: Consider the partitioning of a player's moves which is defined by collecting into a single set of moves, every move corresponding to a given information set. Since, by definition 4, a single information set corresponds to each move, the property follows easily. \mid

Definition 5: The partitzoning of a player's moves into the minimum nunber of sets, each of which contanns only moves which are indistinguishable under a given information collection scheme R, will be called the player's information partition under R and will be denoted by $\operatorname{IP}(R)$.

In view of the one-to-one correspondence between the information sets that are possible for a player under an information collection scheme R and the sets of indistinguishable moves of ats information partition under R, we will use the same name to refer to a set of moves of the player's information partition under R or its corresponding information set.

Consider the following examples of information partations.
(i) If a player employs an information collection scheme R such that it has perfect information on the previous alter. native choices at each of its moves, then its informacion partition under R consists of sets, each containing a single move; and on the other extreme,
(ii) if a player employs an informetion collection scheme R such that it has no information on the previous alternative choices at each of its moves, then its information partition under R consists of the minimum possible number of sets of moves with identical lists of altematives.

2.9.2 Equivalence of Information Collection Schemes

In section 1.3 we stated that a strategy is a complete set of instructions telling its playex how to choose an alternative in every situation that he can encounter in the course of a game. From the arguments given above, it is clear that a situation is simply an information set. It follows then that the effectiveness of a strategy for a player depends upon its information collection role only through the information partition defined by that rule.

Definition 6: Any two informetion collection schemes R and R^{\prime} will be considered equivalent if the information partitions under R and R^{\prime} are identical.

In view of this definition, we will henceforth consider any set of equivalent information collection schemes as a single information scheme. Note that by means of definition 5, definition 6, and property 1, we have established a one-to-one correspondence between each information collection scheme possible for a player and the information partition induced by that scheme.

2.9.3 The Complete Information Collection Scheme

By definition 3, the number of information collection schemes possible for a player is finite. Correspondingly, the number of possible information partitions is also finite. After stating a few required definitions, we will establish a property of a playex's set of all possible information partitions.

Definition 7: The rank $r(X)$ of a move X is the number of aiternative choices made by all parties in establishing X.

Definition 8: Let X and Y be any two moves for a given playex which fall on any common play W. Then, a perfect-recall information collection scheme for this player is any information collection scheme R such that: $r(X)>r(Y)$ implies that R defnenes as known to that player et X, any information on previous alternative choices known at Y and the given player's choice at Y.

Derinition 9: For a given player, the compleqe information collection scheme in Γ is the perfect-recall information collection scheme R, under which the player collects at each move every piece of information on aIternative choices that is defined to be gatherable at that move by the rules defining Γ.

Denoting a player's complete information collection scheme as C, We can show that the set of all information pertitions possible for a player has the following property.

Froperty 2: A player's information partition under any information collection scheme R can be formed as appropriate unions of the sets or that player's information partition under C.

Proof: Property 2 is not true only if:
(土) some information set under information collection scheme R includes some but not all of the moves contained in a single information set under information collection scheme C ;
but (i) is true only if:
(ii) anformation possessed under R aillows the player to distinguish between moves which are not distinguishable under C.

But (ii) is false since the amount of information known to a player at each of his moves is a maximum under collection scheme C.

We return now to owr main line of argument.

2.9.4 Rules Describing Maximum Gatherable Information

In view of the one-tome correspondence between each information collection scheme and the information partition under that scheme, it is obvious that we can represent any information collection scheme by indicating in a game-tree diagram the sets of the corresponding partition. Therefore, we whll present the mule describing the maximum amount of information on alternative choices that a player can gather at each move by indicating in a game-tree diagram the sets of the player's information partition under its complete information collection scheme.

In figure 4 A we employ this technique to present this "maximum information rule" for the example game of section 2.5. In figure $4 B$ we show the move partitions which correspond to the information collection schemes in which β does not look at its card, and $\alpha 2$ does not examine β^{\prime} s guess as to which deck β^{\prime} s card came from. Recealiang property 2 of the preceding subsection, note that the sets of the information partations of figure 4 B can be formed as unions of the sets of the information partitions of figure 4A.

2.10 Suxmary

In the above sections we have defined the concept of a finite extended game, and we have shown that the four rules describing

FIGURE 4(a) MOVE PARTITION DEFINing MAXIMUM GATHERAbLE CHOICE INFORMATION FOR THE EXAMPLE GAME

FIGURE 4(b) MOVE PARTITION FOR INFORMATION COLLECTION SCHEMES IN THE EXAMPLE GAME WHICH CORRESPOND TO. β DOES NOT LOOK AT ITS CARD AND a 2 DOES NOT EXAMINE β 's GUESS.
such a game can be presented by:
(i) assuming an indexing of the players' alternatives and constructing a corresponding finite tree to indicate which choice combinations or plays are possible (rule I);
(ii) labeling the alternatives of nature's moves to indicate the probability with which each alternative is selected when the given move arises (rule 2);
(iii) labeling each possible play' W with a vector ${ }^{\dagger} H(W)$ to indicate the payoffs to each player when that play arises (rule 3); and
(iv) partitioning each player's moves into sets, each of which contains only moves which are indistinguishable when the player is employing its complete information collection scheme, to indicate the maximum amount of "distinguishability" that a player can achzeve, or equivalently, the maximum amount of alternative choice information that it can gather at each move.

In figure 5 we present a complete description in this form of the example game of section 2.5. In the example game we are taking the α player to be the protagonist.

[^3]

FIGURE 5. A COMPLETE DESCRIPTION OF THE EXAMPLE GAME.

CHAPTIER 3

SIRATEGIES IN TWO-PERSON, ZERO-SUM, FINITE EXTENDED GAMES

3.1 Introduction

In this chapter we will carry out the second of several arguments which will lead us to a precase formulation of the problem that we wish to consider. Specifically,
(i) we will examine the general concept of a strategy, and we will define a measure of strategy effectiveness;
(ii) we will give formal definitions for the concepts of a pure, a mixed, and a behavior strategy;
(ili) we will compare these three strategy types with respect to their effectiveness and the difficulties involved in their determination and implementation; and, in the process of this comparison,
(iv) we whil show why behavior strategies provide the only practical means of solution to many two-person, zero-sum, finite extended games.

3.2 General Concept of a Strategy

A strategy is by definition a mule tellang ins player how to choose an alternative in any situation that he can encounter in the course of a game.

In chapter 2 we defined the concepts of an information set and an information collection scheme, and we noted that:
(2) the information collection scheme employed by a player defines the set of information sets which he can encounter in the course of a game, and
(ai) the defaned information sets are the situations for which the player ${ }^{\text { }}$ s strategy must give instructions.

In order to define a strategy then, we must first define the informatzon collection scheme upon which it is based. In this chapter we will state our definitions of the various types of strategies assuming a gzven information collection scheme. We will defer until the next chapter the question of how to choose an information collection scheme upon which to base a strategy.

3.3 Types of Strategies

We wijl consider strategies of three types:
(i) pure strategzes, which are deterministic rules for selection of an alternative in each situation that the player can encounter;
(ii) mixed strategies, which are rules for random selection of a deteministic rule (pure strategy), to be chosen when play begins and employed until a play has been completed; and
(iij) behavior strategies, which are rules for random selection of an alternative at each move encountered in any play of the game.

The use of randomzed strategies may be justified by one or both of the following two arguments.
(1) In some cases, randomized strategies can be found which have greater effectiveness than any deterministic strategy ${ }^{\dagger}$; and
(ii) even in cases where deterministic strategies exist which are as effective as the most effective of randomized strategies, randomized strategies of maximm effectaveness are usually easier to find than equally effective deterministac strategies.

3.4 Bases of Comparison of Strategy Types

We will compare the strategy types mentioned above by asking the following three questions about each one.
(i) What difficuluzes are encountered in the determination of a most effective strategy of the given type?
(12) What difficulties are encountered in the implementation of a most effectuve strategy of the given type?
(iii) How does the effectiveness of the most effecrive strategy of the given type compare with the maximum effectiveness achievable over all strategy types?

3.4.1 Difficulty of Implementation

In amplementation of a strategy, our concern is with the total amount of computer memory required to store the following three types of information:

[^4](i) information collected on previous alternative chozces made by the parties as the game progresses;
(i1) information indicating how an altemative is to be selected in any information set that can arise (the strategy rule itself); end
(iia) information on how to combine the information of types (1) and (ii) to produce altemative choices in a given play of the game.

In making comparisons of strategy types whth respect to computer storage required in their implementation, we will assume that the amount of type (iii) information is essentially the same for all three strategy types and/or small with respect to the storage requirement posed by information of type (11). Fuxther, as we proceed with the examination of the varzous strategy types, it will becone obvious that the storage required for information of type (ii) is vestly greater than that requared for information of type (i) in all but the most trivial of games.

Therefore, we will only be concerned with the relative amounts of computer storage required to store the strategy rules themselves.

3.4.2 Strategy Effectiveness

Our general objective is to find for the protagonist the simplest possible strategy which will maximize its minimum expected return apainst all possible strategres that can be employed by the antagonist. The appeaing aspect of a strategy with this property is that it
 detcranind onty by the gheyars carabilities.

 Whtion collection shane, te rust considex the strategias tiot can be employed by the antegomist for any posetbie informetion collection
 efrectiveness, of quatity as followa

 あるftnca dy:

(1) The minkuinetion faciceted is ower all magronist gtrotegies y^{2} wich ent be contructed an informesion collection
 possible for the sucugonisw under the rules of $\Gamma ;$ and

 procerty.

Fropercy it If $0^{\text {a }}$ ie the complete inforisebion collection scherne for the axtaycrimg thesso

[^5]$$
Q\left(X^{p}, R^{p}\right)=\operatorname{man}_{Y^{a}} H\left(X^{p}, R^{p} ; Y^{a}, C^{a}\right)
$$

Proof: By property 2, the sets of the antagonast's information pariftion under any informetion collection scheme R^{a} can be formed as unions of the sets of the antagonist's information partition under $c^{\text {a }}$. It follows that any antagonist strategy that can be constructed on R^{a} can also be constructed on C^{a} and, therefore, that:

$$
\min _{Y^{a}} H\left(X^{p}, R^{p} ; Y^{a}, R^{a}\right) \geq \operatorname{man}_{y^{a}} H\left(X^{p}, R^{p} ; y^{a}, C^{a}\right) \text { for any } R^{a}
$$

Finally, note that by means of definition 10 above, we can state our general objective in the following sjuple form. We are interested in finding for the protagonist, a smplest possible strategy which has the maximum possible (or acceptably close to the maximum possible) quality.

3.5 Solution Strategies

In the course of our arguments, we will be interested in strategies for the protagonist which satisfy one or more of the following definitions.

Definition 11: Any strategy $X^{p^{*}}$ on an information collection scheme R^{p} is an EuR solution if:

$$
Q\left(x^{p^{*}}, R^{p}\right) \geq \max _{X^{p}} Q\left(X^{p}, R^{p}\right)-\epsilon
$$

where the maximazation over X^{p} is over all possible strategies which can be constructed on information collection scheme R^{p}.

Definition 12: Any strategy $\mathrm{X}^{\mathrm{p}^{*}}$ on an information collection scheme $R^{p *}$ is an E-solution if:

$$
Q\left(X^{p^{*}}, R^{p^{*}}\right) \geq \max _{X^{p}, R^{p}}^{p} Q\left(X^{p}, R^{p}\right)-\epsilon
$$

Where the maximization indicated is over all protagonist strategies X^{p} which can be constructed on an information collection scheme R^{0} and over the finite set of all R^{p} which are possible for the protagonist under the rules of Γ.

Finally, strategies which satisfy definitions 11 and 12 for $\epsilon=0$ will sumply be called R-solutions and solutions, respectively.

In the remaining sections of this chapter, we will formally define and examine each of the three strategy types mentioned in section 3.3 above. As we proceed, we will employ the following example to lllustrate our arguments.

3.6 An Example Game

Consider the following simplyfied weat-market game ${ }^{\dagger}$ in which a single wheat-futures trader is considered as the protagonist, and the remainder of the wheat market 2.5 consjdered to consist of two pars:
(2) a part for which the protagonist has a statistical description, which will be considered as nature; and

[^6](ii) a part for which the protagonst does not have a statistical description, which will be considered as the antagonist. ${ }^{\dagger}$ The game as played as follows.
(a) To start the game, the antagonist chooses a mariset trend m from the set $M=$ \{rising market, falling market, stagnant marixet $\}$
(ii) The trader now begins a series of N days of trading, each of which proceeds as follows.
\because
(a) At the begiminf of the fth day, the trader chooses a "mariset position," $q(j)$, from the set $Q=\{$ long-5000 buskels, short-5000 bushels, no position].
(b) Brring the juh day, nature selects a "market change," $c(j)$, from the set $C=\{$ up 1 cent per bushel, down 1 ceat per bus hel, no change \}, under a probability distribution $=\mathrm{p}^{\mathrm{n}}(\mathrm{c}(\mathrm{j}) \mid \mathrm{m} ; \mathrm{c}(\mathrm{k}), \mathrm{k}=1, \ldots, \mathrm{j}-1)$.
(iii) Av the and of the Nth day, the game is terminated and the wrader is pazd an amount $h(c(i) ; q(i), i=1, \ldots$, , $)$ which incorporates his iotal gains, losses, and the comissions he has had to pay to his brotere ${ }^{\text {if }}$
(iv) At the and of each day, the trader cen record (gather) his own ctarket position and nature's market change. (The

[^7]antagonist gathers no infoxmation since it chooses an alternative only at the starting move.)

The initial few moves of the game tree for any "wheat-market" game with $\mathrm{N} \geq 2$ are shown in Piguxe 6. Wote that under its complete information collection scheme, each of the brader's information sets consist of three moves.

3.7 Pure Strategies

Derinition 13: A pure strategy for the protagonist, based on an information collection scheme R^{p}, is angy function σP^{p} which maps each information set $I^{p} \in X P\left(\mathbb{R}^{p}\right)$ into an altemative of I^{p}.

It is possible for two pure strategies or P_{1}^{p} on R^{p} and σP_{2}^{p} on R^{p} 'to be equivalent in the sense that the probability distribution $P(W)$ for the plays $W \in K$ is identical under either pure strategy, for any given strategy X^{a} on R^{a} for the antagonist. We take this possibilaty into account in the definitions given below. In making these definitions, we assume that the probability of any aiternative at any of neture's moves is positive. ${ }^{\dagger}$

Definition 14: An information set $I^{p} \in I P\left(R^{p}\right)$ is realuzabie under a strategy X^{p} on R^{p} if there is some strategy X^{a} on R^{a} for the antagonist such that the probsbility that I^{p} occurs is posative.

For an illustration of the concept of realizability, consider the wheat-market geme with $N=2$ and a protagonist who is employing

[^8]

Àntagonist's move
Alternaitue
$\begin{array}{ll}1 & \text { Rising market } \\ 2 & \text { Falling market } \\ 3 & \text { Stagnant market }\end{array}$

Noture's moves
Alternative Name
Up - I cent per bushel Down-I cent per bushel No change

Trader's moves
Alternotive
1
2
3 Name
Long - 5000 bushels Short - 5000 bushelz No position

FIGURE 6 GAAE TREE FOR THE WHEATOFARKET GAME
its complete infomation collection scheme c^{p}. Referring to the description of this game which is given an figure 6, note that if the protagonisi employs a pure strategy op on C^{p} which chooses alternative I at the information set labeled A, then only the information sets labeled A, B, C and D are realizable under op on C^{p}.

Definition 15: Any two pure strategies σP_{1}^{p} on R^{p} and of P_{2}^{p} on R^{p} are equivalent if for every information set $I^{p} \in I P\left(R^{p}\right)$ which $2 s$ realizable under σP_{1}^{p} on R^{p} or σP_{2}^{p} on R^{p}, the same alternative is chosen moder either σP_{1}^{p} on R^{p} or σP_{2}^{p} on R^{p}.

In view of this definition, we will henceforth consider any set of equivalent pare strategies-as if it were a single pure strategy.

In table 1 we show, for the wheat-market game with iN $=2$, a pure strategy for the protagonist, based on its complete information collection scheme. Note that as a consequence of definition 15, the pure strategy shom lists only altemative choices for realizable infomastion sets.

3.7.1 Inplementation of Pure Strategies

In order to implement a pure sirategy, its player must store a complete list of pairs, each of which consists of a realizable infor1 mation set and the alternative to be chosen when that information set occurs. This information can be conveniently stored as a vector with integer componencs', the first few digits of each component giving the alternative to be chosen when the information set represented by the remaining digits of that component is realized. We will refer to any
pure stretegy represented in this way as a pure strategy in coded form. In table l, we show the example pure strategy mentioned above, in a coded form.

Clearly, the complexity of a pure strategy for a player depends upon the munber of information sets which are realizable under it, and this number in turn depends upon the roles of the game and the information collection scheme he employs. In the wheat-market game With arbutraxy finite N and a protagonist who $1 s$ employing its complete information collection scheme, the maber of informexion sets which are realizable for the protagonist under any pure strategy is given by:

$$
\begin{equation*}
\eta=\sum_{i=0}^{N-1} 3^{i} \tag{3.1}
\end{equation*}
$$

Obviously, a puxe strategy for the protagonist who is employing his complete information collection scheme in the wheat-mariset gane, becones quite complex for relatively mall N. However, as we shall see below, for ary given N and information collection scheme R , a pure strategy is the simplest of the strategy types to implement.

3.7.2 Effectiveness of Pure Strategies

Recall definitions 11 and 12 thich established the various types of strategy solutions for a gane。 In terns of these definitions we can make the following statements on the effectiveness of pure strategles.

Table 1: An Erample Pure Strategy for the Trader, Using a Complete Informetion Coliection Scheme, in the WheatMariset Game With $\mathrm{N}=2$

Irample Pure Strategy

Information set
A no information
B long on 1st day, mat. up 1st day
C long on list day, mkt. dom 1st day
D long on 2 st day, no change

Alcernative to Choose
long on 1st day
long on 2 nd day
short on 2nd day
long on 2nd day

Coded Form

Key to Coded Form

(i) alternetives indexed as in figure 6
(ii) Ieit integer is altemative to choose
(iii) next two integers are obseyved choices in order of occuirence; $i_{0} e_{0}$, trader's choice on lst day, and nature's choice on 2st day
(iv) "0" means no information collected
(i) If a playex can know at any move in the game, every previous altemative choice made and employs his complete information collection scheme ${ }^{t}$, then he has a pure strategy solution. ${ }^{t}{ }^{t}$
(ii) In any other case, a pure strategy R-solution (or $\in \mathrm{ER}$ solution for some given 6) may not exist.
(1ii) The only way to tell whether or not a pure stretegy R-solution (or E-R-solution) exists for any given game and infomation collection scheme R (except for case (i)), is through the success or fallure of an exhaustive attempt to find such a strategy.

3.7.3 Detexmination of Pure Stratery R-Solutions or E-R-Solutions

Denote by $C\left(\mathrm{R}^{\circ}\right)$, the finite set of all possible pure strategies for the protagonist when it is employing an infomation collection scheme R^{p}.

For any given game Γ and information collection scheme R^{p} for the protagoniat, the only way to find a pure stravegy E-R-solution, if one exists, is to carry out a brute force search of $C\left(\mathrm{R}^{\mathrm{P}}\right)$. It is this fact which usuatiy makes determination of a pure strategy E-Rsolution impractical even then such a strategy exists, for even in relatively simple gemes in which the protagonist employs an anformation collection sciseme R^{9} under which he hes relatively little information at each move on previcus anternabive choices, $C\left(R^{p}\right)$ can contain an enomous number of pure strategles.

[^9]For example, in the wheat-market game of section 3.6 above, for general N and a complete information collection scheme $R^{p^{*}}$ for the protagonist, the mumber of pure strategies in $C\left(R^{p^{*}}\right)$ is given by:

$$
\begin{equation*}
\mu=\prod_{i=0}^{N-1} 3^{3^{i}} \tag{3.2}
\end{equation*}
$$

In this game trith $N=4$, the protagonist has a maximum of only 6 pieces of aftermexive choice anformation on hand in any information set, yet, in this case, $\mu=3^{40}=10^{17.5}$.

3.8 Mixed Strategies

We will consider here and in the next aection, two types of randomized atrategies. With the intuoduction of randomized strategies, not just nature alone, but all of the parties in the game can be "sources of randonization." Note, horrver, that our defintition of strategy, quality has meready been stated in terms of the expected seturn to the protagonist, and thererore need not be changed.

Definition 15: A mixed strazegy fos the protagonist based on an information collection scheme frin p is a probability aistribution om on the finite set $C\left(R^{P}\right)$ of all pure strategies for the protagonist which are basea upon informetion collection scheme R^{p}.

The protagonist uses a mixed strategy to randomly select at the start of any play of the game, a pure strategy to be used until a play has been completed.

Note that any degenerate mixed strategy on an informetion collection scheme R_{2} i。 e_{0}, a mixed strategry $0 \mathrm{MD}^{\dagger}$ assigning probability 1.0 We wil indicate degenerate mixed and benavior strategies with the exire letter D from now on.

 the set of aly poswible guxe stzaumgies on Ro

 two giaces of infoxmeion:
(i) the Fositive menononts of olt axd
 undew fifo

(2) Let the columas of hbe the mate surutegies asaigned yositixw probmbility uncer gM, and
(ij) let the foth exterent of V be the wobability that the
 selected mader giso
 a mase
 the protagonist vian he wroloys his complete informetion collection zehenes.

Hote that the complextry of a mirnit mbrategy in coded form

(i) the number of mure atrategieg maich ary asaigned positive grebobilizeys and

Table 2: An Etaraple Mired Strategy or ${ }^{\text {pre }}$, in Coded Form, for the Treder Using Tts Complete Information Collection Scheme, in the Wheat-hariket gare With $N=2$

Coded Form

$\left(\begin{array}{ccc}100 & 200 & 300 \\ 111 & 121 & 321 \\ 212 & 222 & 222 \\ 113 & 223 & 223 \\ \hdashline .300 & .525 & .175\end{array}\right)$
(i) an amray M, whese columns are the pure strategies given positive probability under oMi ${ }^{p *}$
(ii) \& vector V, whose components are the positive components of $\sigma \mathrm{M}^{\mathrm{p}}$, With the fth component being the probability that the pure strategy represented by the fth colum in M will be selected for use
(ii) the complexities of these individual pure strategies. It is possible then, that in cases where the number of pure strategies in $C(R)$ is enormeus, any mixed strategy which has maximm quality anong the mixed strategies may have a coded form which is exceedingly complex. For example, in the wheatmarket game with $N=4$, and a complete information collection scheme for the protagonist:
(i) the muiber of information sets which are realizable under any given gure strategy for the protagonist is given by equation" (3.1) as 37, and
(ii) the momber of possible pure strategies for the protagomist is given by equation (3.2) as $3^{40}=10^{17.5}$.

In this case then, the codex form of any mixed strategy which has maximum quality among the mixed strategies may consist of a vector of real numbers of dimension $10^{17.5}$ and a rectanguiar array of dinengion $37 \times 10^{17.5}$ with integer components. The storage requirenent of such an amount of information is, of course, well beyond the espacity of any present-day computer.

3.8.2 Effectiveness of Mixed Strategies

Recalling again our definitions of the various types of strategy solutions for a geme, we can make the fallowing statement on the effectiveness of mired atrategies.
(i) For any given information collection scheme R^{p} for the protagonist, a mixed strategy R-solution always exists, and thus,
(ii) for ary given game, a mixed sirategy solution must exist. These facts follow directly Prom Von Newnan's minimox theoremo ${ }^{\dagger}$

3.8.3 Deteminetion of Mixed Strategy R-Solutions or $\in \sim$ R-Solutions
 Numerous methods have been developed for determination of mixed

 strategy R-solutions or E-R-solutions in two-person, zeromsum, finite games. ${ }^{\text {tt }}$ Howevar, only one of these methods can be practically applied in situations waich involve games and information collection schemes which give rise to more than Eernaps 10^{3} pure strategies for eithex player. This method, called the "method of fictitious play," is described in section 5. 4.This method, however, has an inherent drawback. Specifically, it involves the generation of a sequence of increasingly complicated mixed strategies which converges for infinitely many iterations to a mixed strategy R-solution. Since, hovever, only finitely many iterarions can be carried out, the method, in practice, yields only mixted strategy $\in-R-s o l u t i o n s$, and for E^{\prime} s of practical interest, often requires so many iterations thet the mixed strategy E-Rasolutions it generates are too complicated to tmplement, even in cases where relatively simple mixed strategy \in-R-solutions may exist.

3.9 Behryior Strategies

The second type of randomized strategy that we will consider is defined as follows.

```
* Reference 1, section 27.
THererence 2, Appendix 8; reference 4, pages 159-193; reference 6.
```

Derinition 16: A behavior strategy for the protagonist, based on an informetion collection schome F^{p}, at any function o B^{p} whach maps each information set $\mathcal{I}^{p} \in \operatorname{IP}\left(R^{p}\right)$ into a probablitity distribution on the altemativea of x^{2}.

Hote the concaptual difference between a mired strategy and a behavior stratogy: \& mixed strategy involves a single randomization by its player at the beginming of any play, while a behavior strategy involves ramdonization at each or its player's moves on any play.*

Note also thai any degenerate benavicy strategy obD on an infoxmation collection scheme R , i.e., a behavior strauegy which chooses some albernative with probabllity 1.0 at every anformation set in IP(R), is equivalent to a pure strategy. In fact, for every pure strategy op on R, there is an equivalent degenarate behavior strategy OBD on R, so the set of all possible behevior strategies on R can be said to "costain" the set of all possible pure strategies on R .

It table 3 the show for the what-maxtet game with $=2$, an exmple bensvior stretegy for the protagomists besed on his complete finformarion collection schene.

3.9.1 Impgensubation of Behavior Strategies

In order co implement a benavior strategy, its player must store a complete list of pairgy each of which consist of a realizeble infomation set and the probability distribution under which an alternative is choser when that information set occurs. This

[^10]Table 3: An Examie Behavior Stretegy for the Trader, Using a Complete Infomation Collection Scheme, in the Wheatm Narket Game With $\#=2$

Exemple Behavior Strategy

Informetion Set
no tnformetion
long on dsy 1; met. up day 1

	"	\% mito dumodey 1
	"	; no change day 1
short	on day	1; mitu. up day 1
	s	; mkt. dwn day 1
s	"	; no change day

Probability Distribution on Altematives
Long- 50% short.-. 50; no position-. 00

$"$.90	$"$.00	$"$.10
$"$.50	n	.40	$"$.10
$"$.90	7	.00	$"$.10
$"$.40	$"$.50	$"$.10
$"$.00	$"$.90	$"$.10
$"$.00	$"$.90	n	.10

Coded Form

$$
\left(\begin{array}{ccccccc}
00 & 11 & 12 & 13 & 21 & 22 & 23 \\
\hdashline .50 & .90 & .50 & .90 & .40 & .00 & .00 \\
.50 & .00 & .40 & .00 & .50 & .90 & .90 \\
.00 & .10 & .10 & .10 & .10 & .10 & .10
\end{array}\right)
$$

(i) a vector V, whose components each are the observed choices of a realizable informetion set in order of occurrence
(ii) an array, whose conponents $\mathrm{m}_{3 k}$ are each the probability of selecting alternative f when in the Eth information set
information can be corrvaniently stored in the form of a vector V and an arxay M as follows:
(i) let the components of V be descriptions of the information sets which can arise under aB ${ }^{P}$, and
(ii) let the colums of M be the probability distributions for selection of altematives in each information set with the jth colum in M corresponaing to the fth component of V. We win rerex to any behavior strategy represented in this way as a behaviox strategy in coded form. In teble 3 we show the example behavior strategy mantioned above in coded form.

Hote that the complexiny of a behaviox stravegy in coded form depends upon tro factors:
(i) the number of informetion sets which can arise, and
(ii) the number of alternatives in each information set。 However, in most of the game and information collection scheme combinations that we wish to consider, the most complicated of behavior strategieg in coded form is at most only alightly more complicated than the simplest of pure streiegies in coded fom, and may be vastly Iess complicated than the strplest of nixed strategy R-solutions in coded form.

For example, in the wheat-mazket game with $N=4$ and a complete information collection scheme for the protagonist, the most complex of behevior strategies can be represented by a vector of aimension 820^{\dagger}

[^11]whose components are integers, and a rectungulat exray of dinension 820×3 whose components are real numbers. For this case:
(i) the most complicabed of pure strotegies can be represented as a vector of dimeasion 40, mose components are integers. and as we stated in section 3.8.1,
(ii) the simplest of mixed strategy R-solutions may have a coded form representation involving more than 10^{19} real numbers.

3.9.2 ghactivemess of Behaytor Strategies

In reference 2 , Kuhn hes established several resulits which airectiy imply that:
(1) it is not necescarily true that a behaviow strategy R-solution or E-R-solution mill exist in every geme on Every information collection scheme R^{p} tor he protagonist, but
(ii) a behavior streiegy R-solution will exist in any game on every perpect-recall informetion collection schene \mathbb{R}^{p} for the protagonist.

From (ii) we can state the folloring property.
property 4: In any gane, at least one information collection scheme R^{p} existe upon which the protagonist can construch a behavion strategy molution.

Proof: By (ii) sbove, a bebarior strategy R-solution ob ${ }^{\text {p }}$ must exist on the protagontat's complete information collection scheme C^{p}, which by deffaition implies thet:

[^12]$$
Q\left(\cos ^{\mathrm{p}^{n}}, \mathrm{C}^{p}\right) \geq \frac{\max }{\mathrm{X}^{p}} \mathrm{Q}\left(\mathrm{X}^{\mathrm{p}}, \mathrm{c}^{p}\right)
$$

But any strategy constructoible on any information collection scheme Hor the protagonist must also be constructable, on c^{p} and, therefore:

$$
Q\left(O B^{p^{4}}, C^{p}\right) \geq \underset{x^{p}}{\max ^{p}} Q\left(X^{p}, C^{p}\right) \geq \max _{x^{p}, R^{p}}^{p} Q\left(X^{p}, n^{p}\right)
$$

By deflntition, then, $00^{1 /}$ is a solution, so c^{p} is an anformation collection scheme upon which the protagonist can construct a behavior swrategy soiution.

In Chaper 6 we rijn generalize oi the above results by demonm strating that there are games in which behevior strategy R-solutions and E-R-solutions will exist for other then perfect-recall information collection sehemes for the protagonist.
3.9.3 Determination of Behevior Strategy R-Solutions or E-R-Sotutions At present, no techmiques ${ }^{\dagger}$ heve been developed for detemining behavior strategy R-solutions and $\in-\mathrm{R}-$ solutions; even there such solutions do exist. However,
(i) in Chapter 5 we will develop an algorith for determination of behavior atrategy E-R-solutions in games in mich the protagonist empleys a perfectorecall informetion collection scheme; and
(ii) in Chapter 6 we will develop a heuristic algorithm for determination of beharior strategy \in-R-solutions (when

[^13]such solutions exiat) in games in wich the protagonist employs infomation collection sciemes which are more general than perfect-recall impormation collection schemes. Hote that by property 4 , the algorishm mentioned in statement (ii) above provides a method for determination of a behavior strategy solution for the protagonist in any gome.

3.10 Sunmexy

We have compared the three basic types of strategies mich can be employed in gemes of the type that we wish to consides and have axgueat that in auch games:
(i) wure strategy R-solutions and \in-R-solutions, while easy to irplement, may not exist, or men they do exist, may be impossible to aetermine for practical reasons:
(ii) mized strategy R-solutions and; therefore, mixed strategy E-R-solutions alvays exist, but the only feasible bechnique for determining them is limely to lead to (or there may only exist), mired strategy E-R-solutions which are far too complex to implement;
(iii) behavior strebegy R-solutions and E-R-solutions are not much more difficult than pura strategles to ixaplement, and In every game there are information collection schemss R^{p} for the protagonist, upon which behavior strategy solucions and E-solutions will exist; and finglyy,
(iv) methods can be gstablished for determining at least one behavior strategy f-solution in any game.

Fron these facts we draw the conclusion that in many games of the type that we wish to consider, behavior strategies offer the only reasible means of solution.

CHARTER 4
 FORTAL PROBLEM STATEGENE AND
 CONREIBUMORS TO THE SOLUTION OF THE PROBLEAS

4.0 Introauction

In previous chapters we kave:
(i) derined the concept of an infomation collection scheme;
(ii) considered the questions of detemination, implementation and effectiveness of varloud types of strategies that can be based on a given informetion collection scheme; and
(iiia) concluded that in maxy problems of the sort that we trish to consider, oniy behevior strategies offer a feasible meens of solution.

From this point on shen, we will restrict our attention to the consideration of behavior strategies for the protagonist; further, we shall raise the question that we have so far suppressed: hor do re select an informstion collection scheme for the protagonist?

4.1 Formal Problem Statement

When considering a given behavior strategy for possible use in his deciaion process, the protagonist has two queations.
(i) What is the quality of the given behavior strategy?
(ii) How dipficult is the given behevior strategy to store and inplement?

In comparing behavior strategies, sore rationale for conbzing the answers to these questions yusi be assumed. We will assume here:
(1) that the protagonist has a hard lower limit on the quality of any behavior strategy that he will employ; speciricelly, that the behavior strategy must be an E-solution for some prescribed e; and
(ii) that within this inatit, the behavior surategy mployed shoule heve the mivimun posstble complexity. These assumptions irmily the following formal problem statement for a given $\in \geq 0$, find for the protagonist, a behavior strategy Esolution of minimun possible complexity.

4.2 An Approsch to a Solution of the Problem

At the present point, any complete search for a minmally complex behavion zrrategy easolution in any nonatrivial game is out of reach - for the following reasons:
(i) for a given information collection scheme R^{P}, the techniques that we will develop, et best, find onily a bonavior strategy E-R solution, not necescarily a minimily compiex behevior strategy E-R-solution; and
(ii) the number of infomation collection schemes R^{p} which conceivably must be examined is likely to be enomous even in a relatively sumple problem.

However, note that any information collection scheme $\mathrm{R}^{\text {p }}$ establishes an upper bound on the complexity of any behavior strategy yased upon
 of behavior strategies on the protagonist's complete information collection scheme has a coded form consisting of a vector with a total of 10 components and a rectengular array with a total of 30 components.

This observation suggests a partitil search organized in the following manner:
(i) rather than search for the simplest possible behavior strategy E-solution on any given information collection scheme R^{p}, we will simply test R^{p} to see if a behsvior strategy E-solution can be constructed on it; and
(ii) rather than search over ell possible information coltection schenes F^{p}, we will examine an information collection scheme only if it looks "promising"; i.es, if an informam tion collection scheme R^{P} is to be examined, then
(a) R^{p} should establish a bound on the complexity of any behavior strategy generated upon it which is substantially below the complexity of azy betevior strategy E-soluwion previousiy gonersted in the search; and yet
(b) $\mathrm{R}^{\mathfrak{p}}$ should sesm likely to provide aufficient information so that a behavior stretegy E-solution on R^{p} will exist.

For example, in the wheat-market game with fairly high N , intuition suggests that "very old inpormation" may be of little
value to the trader. Thus, in looking for a simple bohavior strategy E-solution for the brader, we might try the infomation collection scheme $\mathrm{R}^{\text {pt }}$, which on the last ady of trading does not recall the martect change and trader position realized on the fixst day. In going, from the protagonist's complete infoxmation collection scheme 0^{3} to informetion collecition scheme R^{p}, a considerable reauction in the maximur compexity of the protagonisw's behevior strategy \in-solution is realized (ir a behavior strategy e-solvtion can be generated on $\mathrm{P}^{\mathrm{g}^{*}}$). Specifically, for $\mathrm{H}=4$, the coded form of the most complex behavior ctrategy on C^{2} is represented by a totel of 7380 real numbers thile the coced form of the most complex behavior surategy on $\mathrm{R}^{\mathrm{p}^{*}}$ is represented by only 1204 reel nimbers.

4.3 Contributions to the Solution of the Problem

In the next tro chapters te will devolop the means to carry out a partial search of the kind mentioned above. Specifically,
(1) we will develop 23 aigorith for construction of behavior stratagy E~R-solutions in cases there the protagonist Employa axy periect-recall information collection scheme; and
(is) we will deralog a heuristic algorition for construction of behavior strucegy erposolutions in cases in which the protagonist employs infomezion collection schentes which are more general than periect-recall information collection schenes.

Then, in the finel two chapters we trill employ these elgorithms:
(i) to find behavior strategy $\in-$ solutions on the protagondst's complete information collection scheme in several pursuitevasion decision processes; and
(ii) to carry out a search for a simple behavior strategy Esolution Porkthe doctor in a medical decision process.

CHAPPRER 5

DEPPRMITATION OF BFHAVIOR STRATEXY E-R-SOLUTIONS ON PERFECT-RECALL TNFORMATION COLLECTION SCHEMES

5.0 Introduction

In this chapter we whll restrict ourselves to the consideration of perfect-recall information collection schemes for the protagonist. For this case we will show that an algorithe fox detemination of bahavior strategy Esk-solutions can be obtained by combintng:
(i) a trangfomation mapping any mixed strategy on perfectm recejl information collection scheme R, into an equivalent behevior strategy on R;
(if) the technique $10=$ finding mixed stzategy E-R-solutions in finive twowerson, zeromsun ganss, callea "ifotitious play"; and
(ixi) the technique of dynamic progroming.

5.1 Prelimingries

Hefore beginning our argunents, we will state formelly several
ssaumptions, and we will develop expressions for the expected payoff to the protegonist then:
(1) the players exch employ a mixed strategy, and when
(土i) the players each employ a behavior atrategy.

5.1.1 Assumetions

In order to facilitate the writing of simple payoff expressions, wa make the following nonwestrictive assumptions.

Assumption 1: Any two plays W and W^{\prime} in a gane tree K for a geme r, contain the same number of moves.

Assurgtion 2: Any two moves $X \in W$ and $X^{\prime \prime} \in W^{\prime}$ belong to the same party if $r(X)=r\left(X^{*}\right)$.

These assumptions are not restrictive, since any game tree K can be aitered to satisfy them by the insertion of insignificant ${ }^{\dagger}$ extre moves.

Assumption 3: Any two moves $X \in W$ and $X^{\prime} \in W^{*}$ contained in the - same information set are of the same rank.

This assumption is not resirictive in we are considerang only perfect-recall information collection schenes. In this case, each player knows at any move that has been realized, how many choices he has previously made, and thus, by Assumption 2, the rank of the realized move.
501.2 An Expression for the Protagonist's Return When Mixed Strabegies Are Frployed

Let us assume arbitraxy orderings for the members of the sets $C P\left(R^{p}\right)$ and $C P\left(R^{a}\right)$, sud let us denote as:
(i) ort and $\operatorname{cl}^{\mathrm{p}} \mathrm{k}^{\mathrm{a}}$, the probabilities assugned to pure strategies $\sigma P_{k}^{p} \in C P\left(R^{p}\right)$ and $\sigma P_{k}^{a} \in C P\left(R^{a}\right)$ by mixed strategies $o M^{p}$ on ${ }^{p}{ }^{p}$ and oM ${ }^{a}$ on R^{a}, respectively; and as

[^14](fii) $n\left(N^{p}\right)$ and $n\left(R^{2}\right)$, the total mubers of gure stretegies in $\operatorname{CP}\left(R^{P}\right)$ and $C P\left(R^{2}\right)$, respectively.

Using this notation, we cen express the expected return to the prom tagonist when ow on R^{P} and OM^{A} on R^{a} are employed, as follons:

Hote that this expression is jinear in the components of the protagonist"t [antegoniat?s] mixed strategy. Thas, for any given mixed stretegy for the antagonist [protagonist], a degenerate ${ }^{\dagger}$ mixed strategy ond ${ }^{p}$ on $R^{p}\left[W^{2}\right.$ on $\left.R^{2}\right]$ can always be Pound wien maximizes [minimizes] -the protegonist's expected return.

5. 1.3 An Expression Por the Protagonist ${ }^{*}$ s Return Then Behavior Stretegies are Hologige

For ayy kisy H, let us denoto:
(i) 沙 $\mathrm{F}^{\mathrm{p}}(\mathrm{x}), \mathrm{F}^{2}(\mathrm{k})$, or $\mathrm{E}^{\mathrm{n}}(\mathrm{k})$, the alternative choice on $\begin{aligned} & \text { that }\end{aligned}$ Is esteblished by the protegonist, the antagonist, or nature, respectively, at that party's ich yove on W : and
(ii) by $X^{P}(X)$, $I^{E}(x)$, or $I^{n}(K)$, the information set containing the pretagonist's, the antagonist's, or neture's kth move on W: and
(iis) by I, M, and I, the total muber of moves on W for the probagomiat, the antagonist, or noture, respactively.

[^15] ordering of che infornation yets winch contain mores of rank k, and we will danoce of $I^{D}(x)_{1}, I^{2}(k)_{1}$, and $T^{H}\left(K_{2}\right)_{2}$, the ith possible inform mation set for the protagtnist, the artegomist, and nature, at that perty's kth movea, mader these sswned orderings.

Freceedings the expected retum to the protagonist when of ${ }^{p}$ on R^{p} and $u B^{2}$ on R^{a} are emblyy is first motiten as:

$$
\begin{equation*}
H\left(\sigma \theta^{p}, R^{p} ; \theta^{2}, R^{2}\right)=\sum_{\omega \in R} h_{1}(v) p(v) \tag{5,3}
\end{equation*}
$$

 of the plays $W \in K_{\text {, }}$ when o B^{p} on \mathbb{R}^{p} and σB^{2} on R^{a} are employed, and解 (W) is the protagonssis payotf when in is realized.

By (iii) above, we can oxprid (503) to obtaln:

Where a_{6} is tis bet of all choice sequences mich contitute plays
 playens make corditiongily indepencent choiess at every move, we can aryls Bayes mile to $(5,4)$ to obtain:

$$
\begin{align*}
& p\left(E^{2}(1) \mid \sum^{n}(1)\right) \underline{p}\left(E^{n}(2) \mid I^{n}(2)\right) \ldots p\left(E^{n}(L) \mid I^{n}\left(I^{n}\right)\right) h_{2}\left(E^{p}(i)\right. \text {, } \tag{5.5}
\end{align*}
$$

Since there awe finitely many choices and fintitely many information sets, we can construct from $h_{1}\left(\xi^{p}(i), i=1, N ; E^{2}(j), j=1, M ; E^{n}(k), k=1, I\right)$

$$
\begin{align*}
& I^{p}(1) \quad E^{p}(I) \mid I^{p}(I)_{i} \\
& \sum \quad \sum \quad p\left(\mathbb{F}^{2}(N) \mid I^{P}(N)_{i}\right), \sum i \\
& I^{P}(N) \quad I^{2}(N) I^{2}(N)_{i} \quad I^{2}(1) \quad E^{2}(I) \mid I^{2}(1)_{i} \\
& \mathrm{p}\left(\mathrm{E}^{2}(\mathrm{I}) \mid I^{a}(I)_{i}\right) \cdots \quad \sum \quad \sum\left(E^{a}(M) \mid I^{a}(M)_{i}\right) \\
& I^{2}(M) \quad E^{a}(n) I^{2}(M) \\
& {\left[\sum \sum \sum \sum^{n}(I) \mid I^{n}(I)_{i}\right)=0 \quad \sum \quad \sum} \\
& I^{n}(I) \quad E^{n}(I)\left|I^{n}(I)_{i} \quad I^{n}(L) \quad E^{n}(I)\right| I^{n}(I)_{i} \\
& p\left(E^{n}(I) \mid I^{n}(I)_{2}\right) \cdot g\left(E^{p}(j), I^{P}(j), j=I, N ; E^{n}(k), I^{Q}(k), k=1, M ;\right. \\
& \left.\left.E^{n}(2), I^{n}(2), t=1, y\right)\right] \tag{5.6}
\end{align*}
$$

Where the notation $\sum_{X / Y}$ means sumation over the set of alternatives X that are avallable in infomation set Y.

[^16]Carrying out the sumations of the term enclosed by brackets in (5.6) (using the behavior strategies given for nature in the rules of the game), we can denote the result as $a\left\{p^{p}(j), I^{p}(j), j=1, N ; E^{x}(x)\right.$, $\left.I^{a}(x), k=I, W\right)$, and rewrite (5.6) as:

$$
\begin{align*}
& H\left(O B^{p}, R^{p} ; \theta B^{n}, R^{a}\right)=\sum \sum \sum \sum \\
& I^{q}(1) \quad E^{2}(1)\left|I^{q}(I)_{i} \quad I^{p}(N) \quad n^{n}(N)\right| I^{p}(N)_{i} \\
& \sum \sum \sum \sum \sum\left(E^{W}(I) \mid I^{P}(1)_{i j}\right) \ldots \\
& I^{a}(1) \quad E^{a}(1)\left|I^{a}(1)_{1} \quad I^{a}(M) \quad E^{a}(M)\right| I^{a}(M)_{1} \\
& p\left(E^{p}(N) \mid I^{D}(M)_{i}\right) p\left(E^{a}(I) \mid I^{a}(I)_{i}\right) \ldots p\left(E^{2}(M) \mid I^{a}(M)_{i}\right) d\left(E^{p}(j),\right. \\
& \left.I^{P}(j), j=1, N ; E^{a}(E), I^{2}(K), X=1, M\right) 。 \tag{5.7}
\end{align*}
$$

Having completed the preliminary argunents, we will now begin the development of arr algorithm by stating the theorem and transformam tion upon which the algoritha depends.

5.2 Kuhn's Transformation and Theorem

In rexerence 2, Kuhn gives the following transformation mapping any mixed strategy on on R into an associated behevior strategy ö on R.

Transformation (Kuhn): The behavior strategy ob on R which is associated with a mixed strategy on on R, is defined by the following trengformation:

$$
\begin{equation*}
P(v \mid I)=\left[\sum_{D v} O M_{i}\right] \div\left[\sum_{D} O N_{i}\right], \tag{5.8}
\end{equation*}
$$

where:
(i) $\mathrm{P}(\mathrm{V} \mid \mathrm{I})$ is the probability that the player of the associated bohavior strategy selects alternetive v when information set $I \in \operatorname{IP}(R)$ is realized,
(ii) D is the set of all pure strutegies or F_{i} for the given player under which information set I is realizable, and
(iij) Dy is the subset of D conslisting of all pure strategies under which I \pm E realizable and v is chosen.

To intexpret this transiomation, supyose that the protagonist employs a mixed strategy and on P^{p} in a game Γ, and ineagine that an observer watches many occurrences of Γ and collects statistics on the relative frequencles of selection of each alternative in any giten informetion set $I^{T} \in \operatorname{IP}\left(\mathrm{R}^{p}\right)$ 。 If the observer watches "long enough," it will accuralate relative frequencies of selection for each alternative which are identioal to the csrresponaing probabilities of selection destaing the behevior strategy $\bar{a} B^{9}$ on η^{9} which is asso qutated with ow on E^{p} 。

In reference 2, Kun employs the transtormation given above to prove an interearing theorem which, in teras of our deininitions and nomenclatures con be stated as follows

Theoren(twhn): In axy itnite exteraed gane an which the players aach ompioy a parfectorecall information collection scherre, the payoft to each pleyer is identical under any set of mixed strategies or the corresponding set of associated behavior strategies.

The significance of this theorem in the case of a twomerson, seromun finite extended game is indicated by the following corollary.

Corollary 1: ${ }^{\dagger}$ If R^{p} is a perfect recall information collection schame, and if $\begin{gathered} \\ P^{p} \\ p^{n}\end{gathered}$ on R^{p} is the behevior strategy asscciated with a
 strategy E-R-sclution.

5.3 Use of the mransfoxnation

In view of the above theorem and transformation, an obvious way to obtain behavior strategy E-R-solutions when R is a perfect-recall information callection scheme, is to construct a mixed strategy $\in-R-$ solution on R and transform it into an aquivalent behavior strategy -E-Rogolution.

- However, in problems of the sort that we wish to consider, the motho of fictitious play is the only feasible technique for generating mixed strategy E-Rosolutions, and this technique tends to generate mixed strategy E-R-solutions which are so complex thet the inplied interneduatc steps of storing these strategies will not be feasible。

In the followins sections, honever, we will show that there is a second way to gmploy Kuhn's transiomstion in conjunction with the methoa of fletitious play to generate behnvior strategy GrRosolutions while avoiding the abovementioned storage problent.

[^17]
5.4 The Method of Electitious Pley

The method of metithous play (on equivalative, the fictitions play aigorithm) was sirst suggested by Eromas ${ }^{7}$ The idea upon minteh the dilgowithin is based is both etrafghtfoxmed and imtuttively
 solution for the protagonist on an intomation callection scheme F^{p}, We cen asaiga to the tandagnist its complete information collection gehere C^{m}, hat have the players engage in a mertes of fictitions plays (or zapotitional of the game as Pallows:
(i) at the firot rapatiticn of the game, each player chooses at arbitraxy zuxe strategy op ${ }^{p}$ on R^{p} or op P^{2} on C^{a}, and
(ii) st subsequent repebitions, each player chooses a pure straceg on his siven inionmation collaction scheme mich maximizes his axpected return, sssuming a mixed stretegy
 previousin used puxe strategies in proportion to the nubler of etret it hes beer used, and then
(isi) as the maber of repetitions becomes large, the expected. retum to the protagenist at each regetition shoula appraach (and evantuaty axpyass) the mintmon expecteã retum thet it can gurmantee itself by employing a mixed Btracegy erl-salution on R.

[^18]In reference 8 , Robinson proves that atatement (iii), is indeed true. Hote that since the initial pure strategies chosen by the piayers are arbitrary, and since there may be many prre strategies Which uratrize or minimite a playex's return at any given repetition, the sequences of mixed strategies generated by the fictitious pley algorithin are cortainly not unique. The convergence of the method depends only on the pect thet the mixed strategies of the sequences are related in the manmer described above.

To describe the fictitious play algorithm formaly then, we will state the followiag theorm thich combines Robsinson's result With a pain of recursive equations describing the mamer in which the mived strategies genergted in a sequence of fictitious play rapetitions are related.

Theorem (Broma-Robinson): Denote by:
 generated for the protagoniti [ancagonist] at the fth rapetition of the fictitious pley algorthm, and by
 00^{p} σP^{a} pure strategy ${ }^{\dagger}$ whicn maximizes [mininizes] $\mathrm{H}\left(\sigma P^{p}, \mathrm{R}^{9}\right.$;

Then any pair of mored stretegy sequences (ovp (2) on R^{p},
 the following pair of recursite equations:

[^19]σP^{9}
(whexe the "pius" in these expressions has the obyious operationel mesning $)^{\dagger}{ }^{*}$ mast heve the following properties: for any given $\in>0$, there exists gis integer J such that for all $j \geq J$,
 or ${ }^{\text {P }}$ any minxed strategy om on c^{a}, and
 - $0^{\frac{2}{2}}$
any mitred strategy on on R^{p}.
The aigntelcance of this theorem is inducated by the following coroliexy.

 generated by tha pictitious play $21 g o r i t h m$, then for any $\in>0$, there exists an integar \mathcal{J} axch that fox any $f \geq J, \mathcal{O N}^{p}(j)$ on \mathbb{R}^{p} is an E-R-solutions

5.5 Use of the Transtorimation (Continued)

In practice, for gerses and $\epsilon^{\prime} s$ of the soxt thet we wish to consider, the mixed strategies generated by the Jictitious play
$P_{\text {The proof is given in Appendion } B \text { o }}$
个t Hemrescrst the neminteing [minimizing] wura stretegy as a aegenerate mixea stratery and wid.
algoritha becone too cauplex to store long before sufficlently many repetitions have been carried oub to generate a mixed stretegy E-Rsolution for the protagonist. As mantioned in section 5.3, this yeans thet the obvious route to a behavior strategy $\epsilon-R-s o l u t i o n$, え。E., fina a mined sbretegy E-R-solvtion and transform it, is not feusible.

This problem can be atoided, horrver, by transiorming the fictitious play algorith itself so that it generates a sequence of behavior strategies which comverges to a behavior atrategy E-N-solution, rathex then a sequance of mitred strategies which converges to a mixed strategy EuR-bolntions Deroting Kuhn's transformation es T, this transformation of the stetitious play algorishm is accomplished by replacing equations (5.9) and (5.10), respectively, by equations (5.11) and (5.12) shom belor: ${ }^{5}$

Where the fudtested transformations of the pure strategies are

[^20]accorplished by anploying equation (5,8) and considering the pure strategies as degenerate mixed strategies, and where the "plus" in each of these expressions means addition of the probability distributions at each information set of $\operatorname{TP}\left(\mathrm{N}^{2}\right)$ or $\operatorname{IP}\left(\mathrm{C}^{2}\right)$.

With this replacement, however, we have not yet achieved a practical means for finding behavior strategy ER-solutions in ganes of the sort that ye wian to consider. One more difficulty remains, and we consider it below。

5.6 Pyamic Programing and Fictitions Play

In implemerting the inctitious play algorithm note that at each repetition we must determine pure strategies op $p^{p \%}$ on R^{p} and op $P^{\text {a* }}$ on 'c respectively, satisfying expressions (5.13) and (5.14) belows

$$
\begin{align*}
& H\left(\sigma P^{P^{n}}, F^{p} ; 0 B^{a}(j), c^{a}\right)=\min \left(\sigma P^{p}, R^{p} ; \sigma B^{a}(j), c^{a}\right) \tag{5.13}\\
& \sigma F^{p} \tag{5.14}
\end{align*}
$$

Recall, however, thet in section 3.7 .3 we commented that in games of the sort that we wish to consider, the numer of pure strategies for each player can be anomous, Obvioualy then, tha determination of yure strategites satisfying (5.13) and (5.3.4) by means of byute force searches of the players' pure sirategy sets is not feasible.

[^21]Continuing our arguments thith the maximization problem (the minimiatition problem follous easily), note that any degenerate behavior

also setisfied expression (5.13). thus, we may consider the maximi* zation problem as a search for a solution oBD ${ }^{\text {pt }}$ of (5.15).

Using eqpression (5.7), tre can rewrite (5.15) as:

$$
H\left(O B D^{p *}{ }_{s R^{p}}{ }_{g \sigma B^{a}}(J), C^{\mathrm{E}}\right)=\operatorname{man}_{\sigma B^{p}}\left[\sum_{I^{p}(I)} \sum_{E^{p}(I) \mid I^{p}(I)} \cdots \sum_{I^{p}(N)}\right.
$$

$$
\sum_{1) \mid I^{2}(I)_{i}} \sum_{I^{a}(M)} \sum_{E^{2}(M) \mid I^{a}(M)_{i}} p\left(E^{a}(1) \mid I^{a}(1)_{i}\right) \ldots 0
$$

$$
\left.\left.p\left(E^{B}(M) \mid I^{2}(M)_{i}\right) \cdot a\left(B^{P}(l), I^{P}(l), x=1, N ; E^{n}(k), I^{a}(k), k=1, M\right)\right]\right](5.16)
$$

Whare the antagonist ${ }^{5}$ probebility distributions are specified by $\sigma_{5}^{2}(J)$ on C^{a}. Carrying out the aumations of the imer bracketed terms in (5.16) and indicating the result as $e\left(e^{2}(i), I^{p}(i), i=1, H ;\right.$ $\left.O B^{a}(j)\right)$, and expanding σB^{p} to Indicate the collectiong of aistributions

[^22]\[

$$
\begin{align*}
& \text { OE }{ }^{2} \tag{5.25}
\end{align*}
$$
\]

specified for each rank at which the protagonist has moves, we can rawrite (5.16) as:

$$
\begin{align*}
& \text { - } \left.e\left(F^{p}(k), I^{p}(k), k=1, N ; \sigma B^{a}(3)\right)\right] \text {. } \tag{5.17}
\end{align*}
$$

- Now, if R^{p} is a perfect-recall informstion collection scheme, then $I^{P}(j)$ completely specifies $E^{p}(k)$ and $I^{p}(k)$ for $k=1, j-1$. This implies that a difyerent probability distribution is chosen for every realizable combingtion of values for $\mathrm{E}^{\mathrm{p}}(\mathrm{k}), \mathrm{I}^{\mathrm{p}}(\mathrm{k}), \mathrm{k}=1, \mathrm{j}-1$, which, in torn, allows us to rewrite equation (5.37) as:

$$
\begin{aligned}
& \mathrm{H}\left(\sigma B D^{p^{*}}, \mathbb{R}^{\mathrm{p}} ; \mathrm{OB}^{\mathrm{a}}(j), \mathrm{C}^{\mathrm{a}}\right)=\sum_{\mathrm{I}^{\mathrm{P}}(1)} \sum_{\mathrm{p}\left(\mathrm{I}^{p}(1) \mid I^{p}(1)_{i}\right)} \sum_{\mathrm{E}^{p}(1) \mid I^{p}(1)_{i}} \\
& p\left(E^{p}(1) \mid I^{p}(1)_{i}\right)\left[\sum_{I^{p}(2)} \sum_{p\left(E^{p}(2) \mid I^{p}(2)_{i}\right)} \sum_{E^{p}(2) \mid I^{p}(2)_{i}}\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.p\left(\mathbb{E}^{p}(N) \mid I^{p}(N)_{i}\right) \cdot e\left(F^{p}(N), I^{p}(\mathbb{W}) ; \propto B^{n}(j)\right)\right] \ldots\right] \tag{5.18}
\end{equation*}
$$

Bxamining the right side of equation (5.18), we see that it can be maximized sequentially, starting with the probabtlity aistributions $\mathrm{p}\left(\mathrm{F}^{\mathrm{p}}(\mathrm{N}) \mid \mathrm{I}^{\mathrm{p}}(\mathrm{M})\right)$ and working backwards to the distributions $\mathrm{p}\left(\mathrm{F}^{\mathrm{p}}(\mathrm{I}) \mid\right.$ $\mathrm{I}^{\mathrm{p}}(\mathrm{I})$). This technique of bechwards sequential maximization is commonly known as dymanic prosremming ${ }^{10,11}$

Note thet this sequential maxiraization cen be accomplished with the choice of a degenerate probability distribution at eacin information set, thus producing a degenerate behsvior strategy which maximizes

In light of thase observations, and noting that $T(O B D)=\sigma B D$ for any degsorate behavior strategy $O B D$, we will change the form of our dagorithm once more. Specifically, in the final form of the aigoritims, instead of equations (5.11) and (50.12), we will employ equations (5.19) and (5.20) given below:

$$
\begin{align*}
& \sigma B^{p}(j+1)=\left(\frac{1}{j+1}\right)\left[(j) C B^{p}(j)+\underset{\sigma B D^{p}}{\operatorname{amax}} H\left(\sigma B^{p}, R_{; G B^{p}}{ }^{\mathrm{a}}(j), C^{\mathrm{a}}\right)\right] \tag{5.19}
\end{align*}
$$

where the max and min operations will be accomplished using dymamic programing.

In order to see the sort of computational advantage to be gained by using the dymmic programming technique to find a pure strategy

[^23]maximizing $H\left(\sigma^{3}, R^{p} ; \mathrm{B}^{a}(j), c^{a}\right)$, rather than a brute force search, consticer agrin the weatmartet geas with $N=4$ and a protagonist who amploys his comiete information collection schere. In this game:
(i) using a brute force search to aind a maximizing pure strategy requatres comparison of the walues token by $H\left(O P^{p}, R^{p}, 0 B^{E}(j), C^{\text {w }}\right)$ over $20^{17.5}$ possible pure strategies, or $10^{27.5}$ seatar coraparisons, but
(ii) using the dynamic progranming technique to find maxim miving pure stratagy requires ecmparisons of vaiues for 3 2vernetives aehs in 820 information sets, or $2460\left(10^{3.5}\right)$ scalar comparisons.

Cleariy then, the use of the dymmic proyraming technique to carry out the maxinization and minimization operations requirea in sictitious play is essentiat in problems of the bort that we wish to consider.

507 Stamaty

Onx objective in this chapter was to conetruct an algorithm for determination of behevior strategy E-R-solutions when the protagonist amploys a pexfectorecall informetion collection scheme in the preceeding aections we have shom that such an algoritim chn be constructed by comining Kume's transformation, the method of fictithous piay, and the technique or dynanic programing.

We sumarize the digorithm obtained, then, fin the following theorem.

FIGURE 7. FLOW DIAGRAN -FOR THE PERFECT-RECALL FICTITIOUS PLAY ALGORITHM.

CHAPTER 6

DESERMTNATION OF BEHAVIOR STRATEGY E-R-SOLUTIONS ON RESATIVIHY GENERAL DNFORMATIOT COLJECMTON SCHESES

6.0 Introduction

The determination of a benavior strategy $\in-R-s o l u t i o n ~ f o r ~ t h e ~$ protagonist on a general infomation collection scheme is usually a muck more difficult problem than the corresponding problem with a perfect-recali jnformation collection scheme. This afiference in difefculty is due to two factors:
(i) a behavior strategy E-R-solution does not necessarily exist on every information collection scheme that the protagonist can employ; and
(ii) the behavior strategy that is associated with a given mised strategy $\in-$ R-solution on a general information collection scheme R^{p}, is not necessarily of maximum quality In the set of behavior stretegies possible on R^{p}.

In this chapter we will develop an approach to the problem of determining a behavior strategy E-R-solution on a given information collection scheme which can be applied for relatively genexal information collection schemes R^{p}.

Our arouments will proceed as follows:
(i) We vill describe an n-person, non-cooperative game Γ^{\prime} which can be defined for eny given tro-person, zero-sum finfie extended game with a given information collection schnme ${ }^{\text {p }}$ for the protegonist.
(iin) We will define the concept of an entibymehevior equilibrium point in 1 ", "and we will show that a behevior stretegy on R^{P} is of meximm quelity in the set of behavior strategies possible on \mathbb{R}^{p} only if tit cormesponds to an entity-behavior equalibriwn point in Γ^{\prime} 。
(i11) We will show that in order for a behavior strategy on n^{P}, which corresponds to an entity-behavior equilibrium point In Γ^{\prime}, to be an R-solution, it is sufficient but not necessery for R^{p} to be a perfect-recall information collecm tion scheme.
(iv) On the basis of these axguments, we will conclude that behavior stravegies on F^{p}, which correspond to entitybehavior equilibritm poimts in r^{*}, are promising candidates for behavior strategy E-R-solutions in Γ; and we will describe a fox of the fictitious play algotithm which can be usad to generate such behavior strategies.

6.1 Ereliminaries

Before beginaing our argments, we fill define the cless of imperfect-recall information collection schemes thet we intend to
consider, and ve will develop a conventent form of expression for the expected return to the protagonist when both players employ betavior strategies.
6.1.1 Tmpriect-fecall Thformation Collection Schemes to be Considered

We vill agatan naire Assumptions is 2 and 3, mich were stated in the previous chapter in section 5.10 . W hote, bowever, that if we are no longer limated to perpect-recall information collection schemes, theneAssumption 3 is rescrictive. Specifically, in making this astumption tee are saying:
(i) thas the protagonist has perfecturacal of the number of choices thet it has previcusiy made, or equivelently,
(ii) that the protagonsist knows the rani of the move that has - been reelized hhenever he is to choose an alternative. In this chaprer then, we will only consider information collection schemes which induce infomption partitions which satisty Assumption 3. ${ }^{\dagger}$ We minl refer to such information collection schemes as amissible information collection schemas.

6.1.2 An Bypaession for the Brocted Return to the Frotagonat

farploying the notation of section 5.2 .3 and assuming for each
 moves of rank is, re derine paritizoned vectors $X^{p i r}$ for $k=1, N$, and $Y^{2 d}$ for $k=1$, H as follots.
(a) Let the foth componext of $x^{\text {pix }}$ be given by:

[^24]$x_{d}^{p k}=p\left(E^{p}(k)=i \mid I^{p}(k)_{f}\right)$ where $A=j+\sum_{m=1}^{i-1} \eta_{m k}^{p}$ and $n_{\text {mk }}^{p}$ is the total number of alternatives of information set $I^{2}(x)_{m} ;$ and
(b) Iet the eth component of $\Psi^{\text {ais }}$ be given by: $\Psi_{i}^{a k}=p\left(x^{a}(i c)= \pm 1\right.$ $\left.I^{a}(k)_{j}\right)$ where $\ell=j+\sum_{m=1}^{i-1} n_{\text {mbe }}^{a}$ and $n_{\text {mk }}^{a}$ is the total mmber of sitematives of intomation set $I^{(k}(x) m^{*}$

In ingure 8 we show how such vectors can be decined in the example game of section $2.4^{\text {t }}$ when each player is employing its complete informstion collection schera.

Wote that the set of vectors ($\mathrm{X}^{\mathrm{pl}}, \mathrm{X}^{\mathrm{p} 2}, \ldots, \mathrm{X}^{\mathrm{DNI}}$) constitutes a behavior strategy for the protagonist with the mth partistion of $x^{\text {pl }}$ being a probability distribution on the alternatives of information $\operatorname{set} I^{p}(k)^{\prime}{ }^{\text {. }}$

Continuing, denote by ∇ the inner product operition depined by the following example of its use,

$$
\sum_{i} \sum_{j} \sum_{k} \alpha_{i} \beta_{j} y_{k} A_{i j k} \triangleq \alpha \nabla \beta \nabla \gamma \nabla A
$$

and $\operatorname{let} \prod_{i=1}^{N} X^{p i} \triangleq X^{p I} \nabla X^{p 2} \nabla \ldots \nabla X^{p N}$.
Referring to expresaton (5.7) of section 5.1 , we can construct an $N+H$ dimensional array F from the function $d\left(E^{p}(j), I^{p}(j), j=1, N ;\right.$ $\left.E^{a}(k), I^{a}(k), k=1, M\right)$ such that, by employing the notation given above,

[^25]
Key

(i) Information set A, B, C, D, E shom in ingure 5
(ii) Assumed orderings on information sets at each rank are as follows: $I^{P}(1)_{1}=A ; I^{2}(1)_{1}=B ; I^{2}(1)_{2}$ wi C $T^{p}(2)_{1}=D ; T^{p}(2)_{2}=E$

$$
x^{p 1}=\binom{p^{p}(1 \mid A)}{p^{p}(2 \mid A)} ; y^{a l}=\left(\begin{array}{c}
p^{a}(1 \mid B) \\
p^{a}(2 \mid B) \\
\hdashline p^{a}(1 \mid C) \\
p^{a}(2 \mid C)
\end{array}\right) ; x^{p 2}=\left(\begin{array}{c}
p^{p}(1 \mid D) \\
p^{p}(2 \mid D) \\
\hline p^{p}(1 \mid B) \\
p^{p}(2 \mid B)
\end{array}\right)
$$

FIGURE 8. BEHAVIOR STRATEGY VECTORS.

we cen xewrite expression (5.7) in the following simple form:

Note thet for a particular gene I; the structure of this expression is determined by the information collection schanes employed by the players.
 persony non-compertive geme that is suggested by the structure of axpreszion (6.2), wad we will Bhor titat behavior strategies which correspend to equitibrium strategies in the defined non-copperative game are prondsing candidates for EaRnolutions it the oxiginal game.

6.2 筑e Assoctated Hora-Cooparative Gare

Detintion 18: The associated non-cooperabive game for a given two-person, zerowsum, fintite extended game Γ with a given
 person nom-coopexative ${ }^{\dagger}$ gome definea by:
(i) assigning to the antagonist its ecripleve information collection scherne $C^{\text {a }}$.
(id) constdering each rant of player moves in tro be under the control of a aggargte and independent gntity and
(i11) considering the payof to each entity to be identical to that of the player mose motes the entity is controlling.

[^26]Denoting the entity controlifing the kth moves of the protagonist [antagonist] as the k^{p} wentivy [K^{a}-entity], we define the concept os an entity-behavior strategy as follows.

Definition 19: An entzty-behavior strategy for the ${ }^{p}=$ entity $\left[k^{2}\right.$-entitity is any function which maps each information set $I^{p}(k)_{i}$ $\left[I^{a}(k)_{i}\right]$ into a probability distribution on the alternatives of that information set.

Note that the set or all possible entity-behavior strategies for the k^{p}-entity $\left[k^{2}\right.$-entity $]$ corresponds to the set of all possibie values for the vector $X^{\mathrm{pk}}\left[\mathrm{X}^{\mathrm{ekj}}\right]$. In vient of this correspondence, we can refer to the vector $X^{p k}\left[y^{\text {ak }}\right]$ as an entity-behavior strategy for the K^{p}-entity [$\mathrm{K}^{\text {a }}$-ntity], and we can consider any behavior strategy $\left(X^{P i}, i=I, N\right)\left[\left(Y^{a i}, i=I, M\right)\right]$ as a collection of entity-behavior strategies for the eattifies associated with the protagonist [antagonfst].

We will consider the associated non-cooperative game to be playec in the following manner:
(i) each entity k^{p}, fow $k=1, N,\left[k^{a}\right.$ for $\left.k=1, M\right]$, employing its behavior strategy $X^{\mathrm{pk}}\left[x^{2 k}\right]$, simultanecusiy chooses an - +D/r rta/r)] under

It nonurol, ank wheis
(ii) for the compic set of choices thus aicurnined, the expected return to th- -..nsc is computed and ewerded positively to each protagonist entity and negatively to each antagonist entity.

 ' E

 -

$$
\begin{aligned}
& \max _{x^{p i}}\left(\prod_{j=1}^{j-1} x^{2 p j}\right) \nabla x^{p i} \nabla\left(\prod_{j=j+1}^{N} x^{* p j}\right) \nabla\left(\prod_{i=1}^{M} x^{* g i k}\right) \nabla F \leq \\
& \left(\prod_{j=1}^{N} x^{x p j}\right) \nabla\left(\prod_{k=1}^{M} \sum^{\text {rak }}\right) \nabla E \leq
\end{aligned}
$$

for $i=1, N$ and $\hat{k}=1, M_{*} \stackrel{\uparrow}{ }$
We complete this section by steting the following two theorems. Theorem 2: ${ }^{\text {t }}$ For any associated game Γ^{\prime}, there exists at least one entity-behavion equilibrium point.

Theorem 3: A behavior strategy on ${ }^{p^{*}}$ on R^{9} is of maxinnm quality in the set of all possible behavior strategies σB^{p} on R^{p} only if it corresponds to an entity behavior equilibrium point of the associated non-cooperative game Γ^{*}.

Proot: A behaviox swrategy $o B^{p}$ on R^{p} is of maximum possible quality on R^{p} only if it corresponds to some playex-beharior equalibrium point based on F^{p} and the antagonist's complete information collection scheme c^{a}; bux furthex, any player-behavior equilibrium point based on R^{p} and C^{a} must coxrespond to an entity-behavior equilibrium point of the associated non-cooperative game.

Suppose, then, that we have found an entioy-behavior equilibrium point in the associated non-cooperative gane Γ^{\prime} corresponding to a

[^27]

(a) is $=\sum_{k=2}^{N}{ }^{n} p k$, and
(b) $\left\{\delta^{p 2}, \delta^{p 3}, \ldots, \delta^{p N Y}\right\}$ is a set of real numbers defined as follons:

$$
\begin{aligned}
& \delta^{p k}\left(X^{* p i}, i=1, N ; Y^{* a j}, j=1, M\right)=\max _{X^{p L x}, I^{p}(k)}^{2\left[\max _{X^{p I}} \ldots \max _{x^{p(h-1)}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& x^{p 1} \quad x^{p(k-1)} \\
& \left.\left.f=1, M) \mid I^{p}(k)\right)\right], \text { for } k=2, \text { n. }
\end{aligned}
$$

The recall-sensitivity of the protagonist has the following propexty.

Property 5:" The recall-sensitivity of the protagonist about any pair of behavior strategies ($\mathrm{X}^{\mathrm{pi}}, i=1, N$) on R^{p} and ($\mathrm{Y}^{\mathrm{aj}}, j=1, \mathrm{M}$) on F^{p}, is zero if R^{p} is a perpect-recall information collection scheme.
-The concept of recallosensitivity can be interpreted as follows. First, note that the protagoniss's expacted return, given that it has realized a particular informetion set $I^{p}(k)$, is dependent upon the functions $X^{p i}, i=1, k-3$. Go the extent that these functions establish a probability distribution on the alternatire choices he knew in the past but cannot recall. To see this, we will denote

The proof is given in Appendix B. .
the information that has been forgotten by the protagonist when $\mathrm{T}^{\mathrm{P}}(\mathrm{k}){ }_{2}$ has been realized, as $\mathrm{TP}^{2}(\mathrm{~K})_{i}$, and we will express $\mathrm{H}\left(\mathrm{XX}^{\mathrm{pi}}\right.$, $\left.\left.t=1, \mathrm{~K}_{\mathrm{K}} ; \mathrm{Y}^{\mathrm{af}}, \mathrm{j}=1, \mathrm{M}\right) / I^{\mathrm{P}}(\mathrm{k})_{j}\right)$ as follows:

$$
\begin{aligned}
& H\left(\left(X^{p i}, i=1, N ; Y^{a j}, j=1, M\right) \mid I^{p}(k)_{2}\right)=\sum_{2} E\left(X^{p i}, i=1, M ;\right. \\
& T^{2}(k) \&
\end{aligned}
$$

 that can be taken on by this forgotten information.

How, for some perfect-recan finformation collection scheme $\mathrm{Rp}^{\mathrm{p}^{\prime}}$,

 roalized. Thererore, by definition 22 and property 4, this conditional. expected return cannot depend upon the functions $X^{p i}, i=1, k-1$. Furtiher; by causality, $P\left(\left.T^{2}(k)\right|^{p}(k)_{t}\right)$ is not dependent upon any of the functions $X^{p i}, \underline{f}=\mathrm{k}$, NTO
 $j=1$, , 1) is singly a bound on the Effect of forgottan information on the protagonist's conditional expectea retura at $3 t$ ksin decistion
 the recall.sensitivity of the protagonist about ($\mathrm{K}^{\text {"pip }}, \mathrm{I}=1, \mathrm{M}$) on n^{2} and ($\Psi^{\text {itaj }}, j=I_{y} M$) on R^{3} is a measure of the total effect of forpotton information on the protagonist's expected returo.

Examining expression (6.3), we can also see that under either of the following conditions, the lass of informetion $\Pi^{2}(k)$ will contribute littlle to $\delta^{p \mathrm{pk}}\left(x^{* p i},\left\{=1, N ; Y^{j a j}, j=1, M\right)\right.$.

 brad any given information set $\mathrm{I}^{(k)}(\mathrm{l}$, or
(2) $P\left(F^{P}(k)_{A} \mid I^{p}(k)_{2}\right)$ is not strongly dependent upon the functions $X^{p i}, i=1, x-1$.

6.4.2 A Sufficient but Not Necessary Condftion for Behavior strategy R-Solutions

By exploying the concegt of recall-sensitivity, we can obtain the theorems and corolleries given betot.
meoren 4: ${ }^{+}$, If a pair of behavior strategies, ob ${ }^{\text {Tp }}$ on R^{p} and $\sigma{ }^{*}{ }^{*}$ on C^{a}, in a twomerson, zeromsum finite extended game Γ is such thet:
(a) it corresponds to an entity-behavior equilibrium point in the associated non-cooperativa game Γ^{\prime}, and
(b) the recall-sensitivity of the protagonist about this pair of behevior strategies is less than ϵ, then:
$Q\left(O B^{2} P, H^{p}\right) \triangleq \min _{O B^{a}} H\left(O B^{*} P, R^{p} \xi \sigma B^{A}, C^{a}\right)=H\left(O B^{*}, R^{p} ; O B^{*}, C^{a}\right) \leq$
$\operatorname{mox} H\left(O B^{p}, R^{p} ; \sigma B^{*}, C^{a}\right)<K\left(\sigma B^{* p}, R^{p} ; O B^{* a}, C^{a}\right)+\epsilon$.
00^{2}

[^28]
91

Fros this theosea cear obtain the roliveng coroliary whin stotes a sufficiers condition for a ben zor strategy mioh comrosponds
 in 1 .
 behavior stretegies which consen, and vo an entity-beharino eçulibriwn
 protacomist about this pair of Dehavior strategies is less than E.

Wote that the suffleint condition of corolitary 1 is given in terms of the weallagensitirity of the protagomist about a given pair of benavior stretegies, a quanticy mincia is not easily evaluated in probjens of the sort that ve wian to comstater.

However, coraliery 2 gipen below, which estabisines a more rebtrictive but shuplew sufficient contion follows directy from corollayy 3 and propezty 4.

Corollary 2 : A behavior strategy $\sigma B^{* D}$ on R^{p} which corresponds to an entitymenavior equilibrim point in $\Gamma^{\prime \prime}$, is an R-solution in Γ If in a

The comollary given kbove reises a question Specifically, in this corollary, is the conaition "R is a pexpect-xecall information collecticn scheme" atso a necegacy condition? we can see that the anawer to thas cuestion is "30" by constinerine the following example。

Bxample: In figwre 9 施 describe a two-person, zeromsum, finite extencied gane ro In tins game, note buat bit moves of ranks I and 3

[^29]

FIGURE 9 AN EXAGPLE GAME.
are protagonist moves while the moves of rapk 2 are antagonist moves.
Consider then the inperfectarecall infomation collection scheme $R^{p *}$ under which the protagonist forgets at any nove of rank 3_{y} the
 tion induced by $\mathrm{F}^{\text {T }}$ can be formed from the sets of the information partition induced by the protagoniat"s coralete information colfection scheme, and is given by $\operatorname{IP}\left(\mathbb{K}^{D^{*}}\right)=\{A, C \cup E, D \cup G\}$ there A, C, D, E and G sre the information sets labeled in figure 90

How, to investigate the recali-sensitivity of the protagonist, we mast examine the protegonist's expected returne when information sets CUEA and DUG are realized. The finst of these returas can be expressed as:
 move sinlch is a member of bapormstion set CUE, and GeUs indicates sumation over the set of all partitil plays leading from 0 to a move in CUE. Contixuing ws can expand (6.4) to obtain:

$$
\begin{align*}
& x\left(\left(x^{p 1}, x^{p 2} ; x^{a l}\right) \mid C \cup I\right)=p(I \mid A) p(I \mid B)\left[p(I \mid C \cup n)_{1}+\right. \\
& \left.p(a \mid c \cup E) h_{2}\right]+p(2 \mid A) p(1 \mid B)\left[p(1 \mid c \cup B) h_{5}+p(2 \mid C \cup E) h_{6}\right] \\
& \div p(1 \mid B)[p(1 \mid A) \div p(2 \mid A)]=p(1 \mid A)\left[p(1 \mid c \cup B) h_{L}+p(2 \mid C \cup E) h_{2}\right] \\
& +p(2 \mid A)\left[p(I \mid C \cup E) h_{5}+p(2 \mid C \cup E) h_{6}\right] . \tag{6.5}
\end{align*}
$$

Eramining equation (6.5), we see that if $h_{1}=\alpha h_{5}$ and $h_{2}=B h_{2}$ where
 dependent unon $x^{p l}$.

The grotagonist" wpacted retwrn when infoxmation set DUG is realized can be expressed as:

$$
\begin{align*}
& H\left(\left(X^{p 1}, x^{2} ; Y^{2 a} \mid p \cup G\right)=p(1 \mid A) p(2 \mid B)\left[p(1 \mid D \cup G) h_{3}+\right.\right. \\
& p\left(2 \mid D \cup G h_{4}\right]+p(2 \mid A) p(2 \mid B)\left[p(1 \mid D \cup G) h_{7}+p(2 \mid D \cup G) h_{8}\right] \\
& \div p(2 \mid B)[p(1 \mid A)+p(2 \mid A)]=p(1 \mid A)\left[p(1 \mid D \cup G) h_{3}+p(2 \mid D \cup G) h_{4}\right] \\
& +p(2 \mid A)\left[p\left(1 \mid D \cup G h_{7}+p(2 \mid D \cup G) h_{g}\right]\right. \tag{6,6}
\end{align*}
$$

Extminhng $(6,6)$, we see that if $h_{3}=p h_{7}$ and $h_{h_{4}}=p h_{8}$ where ond μ
 dependent upon $X^{12 L}$.

Therefore, by definition 22, if $h_{2}=\alpha h_{5}, h_{2}=8 h_{6}, h_{3}=0 h_{7}$ and $h_{4}=\mu_{g}$ for aroitrary constants α, β, p, and μ, the protagonist hes a recellmansitivity of value zero about say pair of behevior strategies σB^{9} on $A^{p *}$ and $\sigma B^{\text {a }}$ on $C^{\text {a }}$. By corolilary 1 , then, for the given game and the given information collection scheme n^{p}, ary behavior strategy $\sigma \mathrm{B}^{\text {pri }}$ on $\mathrm{R}^{\text {p* }}$ which corresponds to an entity-behavior equilibrim point in the assoctated game $\Gamma^{\prime \prime}$, is an R-solusion。

It is also aasy to show that for the given geme and the given

 protegontsi about any zent of behavior stretegies is bounded by
$\epsilon^{\pi}=\max \left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}\right)$ In this case, by coxoliary 3 , axy behavior ctrategy of ${ }^{p}$ on $\mathbb{R}^{2 *}$ rihich corresponds to ath entity-behavior equilibrium point in $\Gamma^{\prime \prime}$ is an $\varepsilon^{*}-$ R-solution

Conbining coroliary 2 bith the observations made in this examole, we botain the fallowing thearemo

Theorem 5: In order for a brhavior strategy ob on p^{p} to be an
 behavior equatibrimon point in the associated noxacooparative game T^{*}; it is sufficient but not necessury thet 1 be a periect-recell information collection schans.

6. 5 Construction of Entity-Behayior Equaldbrime Foints

Th the preceding two sections we have shom that if wr con

 information collection schene F^{3}; the behsvior strategy ($\mathrm{X}^{\text {" } 2 \mathrm{i}}, \mathrm{I}=1, \mathrm{~N}$) on x° :
(1) alkay meets a set of necestary conditions for a behevior strategy of mariman quality in the set of behavior strateghes possible on $\mathrm{K}^{\text {P }}$
(ii) is an R-solution if if p is perfect-recall information collection seneme, and
(iit) may be an Rosolution (or G-R-solution) in cases where R^{p} is not a parfect-recal information coilection scheme.
" Inis retses an obvious question. "Given a particular associated non-cooperative game $\Gamma^{\prime \prime}$, how can we find entizy-behavior equilibrium points for T'?"

In the following subacction will give an antwer to this question by describing an algoritim thet has been employed by the author to generate entity-behavior equilibrium points in a muber of associated non-cooperative games. We will call, this algorithm the "extended ifictitious play algorith" because of its similarity to the Brom-Robinson fictitious play algoritm aescribed in section 50.

6.5.1 The Extended Fictitious Play Alyoritime

Extended fictitious pley in an associated non-cooperative game $\Gamma^{\text {t }}$ is analogots to fletitious play in a game r: Specifically, in extended Pictitious play we cerxy out a series of fictitious plays (or repetio tions) of Γ^{*} in the folloving manner: ${ }^{+}$
', (i) at the finst repetition of $\Gamma^{\prime \prime}$, each entity chooses an arbitrary aegenerate behavior strategy, and
(if) at subsequent repetitiona of r^{\prime}, each entity chooses a degenergte behevion stratogy maich naximizes its retuxn, Qssuming for each of the other entities the entity-behavion atrategy that can be forzed by suming (and aypropriately nombizing) the deganerate behsuior strategles previously employed by that other entity,

With the expectation tint, as the muber of repetitions becomes large, the set of extity-behavior strategies, whtch at any given repetition

[^30]are asmmed for esch eatiby by the other entities, will gpproach an Entitityobeheviox equatiorive poirt in P^{*}.

In orcer to describe the algorthm formaing, we establish the Polloning notation Danote:
(i) by $\mathrm{X}^{\mathrm{pz}}(\mathrm{j})\left[\mathrm{x}^{3}(\mathrm{~s})\right]$ the exritymbenevior gtrategy that is produced at the juble fertation of the extended fictidious

 for a single 1.0 entry in exch peatition in a potition
 in that particions ${ }^{\text {™ }}$ and

Usiug this notation, we can foxmsily descriDe the extonded fictitione play algoritha by suating the folloning set of recursite equatione mich inatcate the zamer in which the entity-behavior drategies genemated by the aigoritim are related.

[^31] axe arbitrary deganerste ontitymehavior strategies.
"In the flow dixgram of figure 20 we indicate an implementation of the extended fictutious play agoritho The convergence of the algorithm is comsdezea in the whaection belon.

6.5.2 Conversonce of the Brtended Yetitious play Algorithm

In ary application of the extended fictitsous pley algorithm,
(1) we are interested in the quality or the behrvior strategy od ${ }^{P}$ on R^{p} which torresponds to any entity benavior equilibritun point that may be generated, but
(Ii) since only finite nuber of iterations can be made, only an approximation to an extity bebevior equilibsium point will be generated.
tooking back to section $6,4,2$, we see that theorem 4 egtablishes the quality of any behavior strategy of ${ }^{2}$ on R^{p} which cormesponds to. an entitymbehsvior equiliorium potat.

In iligh of thesa observations then, we will appropriately reatate theorem 4 for the case of appoximate antitymbhavior equitia brivm points, and whelll then coment on the convergence of the algorithn in terns of this restetement。

FIGURE 10. FLOW DIAGRAM FOR THE EXTENDED FICTITIOUS PLAY ALGORITHM.

Theorem 4^{\dagger} (restatea): Consider a given two-person, zero-sum finite extenced geme Γ with a given inupormation collection scheme R^{p}, and the assoelated non-coopsative gene Γ^{\prime} 。 When, if a set of entity-

 on 2° and or B^{*} on C^{2} ini 1 axe such that:
 thenth the aubacr has employed this algoxithan to obtain approximate

[^32] cooperativegames and in cach case cemvergence res obsarted in the follsuing zense.

 a pututcal gusstas involvat in their uaco

Th the peoccaing sectione we heve cevelopsü, for twouperson,
 zypscinations to behsvior atrategtes of on fig whthe
(1) atrays tieat a sct of necesiaxy counitions fox a behevior merstagy of manfaca quality in the set of behavior

We exgue, then, that the algozibim can be asid to wroduce quatimin cantidsten for behevior strategy Eaposolutions on axy information cellection achems.

However, is R^{p} is an inpexpectwrecall information collection scheme, and the slgorithm is thus producing behavior strategies which are orily knoma to be pronising candidstes, any candidate that is preduced must be verified. But verificetion requires knowleage of the qualitity of an Rosolution on \bar{R}^{p}, and in games of the sort that tre Whish to consider, there are no practical rechniques for detamining the quality of n R-solution when R^{P} is an fuperfect-recall information collection schame.

AII lis not lost horever, for secall that our primery interest is in E-solutions on R^{P}, not ins ER-solutions on R^{p}. In fact, ye set otit to deveion an algoritim for generreing E~R zolurions only because te knot that in order to be mn E-solvtion on F^{p}, a behaviox strategy must first te an Eriocolution on R^{P} 。

In light of theat caments then, we note that:
(i) the extenced flctitious play nagoritim generstes prouising candidates for E-solutions on F^{p}, and, consequently
(ii) what wo are primarily inveressed in mowing is whether or not a beharior strategy produced by the algorithm is an E-salution on F^{D}.

The verification impliea by (ii) above, however, only requires monledge of the quality of a solution in Γ, and this cen be determined by apprprifte exployment of either the extended fictitious play algoxitrm ot the perfect-xecall fictitious play algorlthm of the previous chapter.

CHAPPETR 7

A FURSUIT AND SVASION GAKES
 $a^{\text {a }}$

7.0 Intsoduction

In this chapter we will consider a pursuit and evasion process In finite discrete tixe and in a finite discrate state space.

He will assume that the pursuer and the evader ane each able to gather pexfect measurements of their ofn states and movetain measureruents of their gpouent's states, with the amout of wncertainty dependent upon the atates of both pursuer and ewader.

At each of the pursuerte decision tines in the process, the purmer either terminates the process or chooses a stafe to occury at the nert time instant. At egch of the evader'定 deciaion tises; ! the evader detects whether or not the purguit has been previously's teminated; and if it has not been, the evader chooses a state to occugy at the next time instamt.

Finally, when the pursuer teminates the process, which he must do at or before some time t_{1}, the pursuer wins and the evader loses e payoff hhich is deteruined by the state histories that have been realized by the players at the time of termination.

7.0 .1 objectives

In consideriag this problen, our objectives mill be
(i) to give a denonetretion or the wse of the pertect-recall fictitious play angorithas
(ii) to give an expmole of a type of problem which may be much more easily solved in behavioz strategies than in mixed atretegies, and
(iix) to denonsizate (by showing that enost plaumble airple mathod for generating "subotismol" strategies leads to stratogles of reladively poor gaxitiy) that the erfort fnvolved in deternination of sin esolution may be well juatirisa

In mesting these objectivea, we vill sind behevior btrategy E-salutions for the promer and the eveder wen ach is emioying its convete informaion callection schene We will consider the problem of finding niminally conplea behnvior strateg Eabolutions in the example of the next chapter.

7.1 Generai Dosextytion of the puxaut-Evasion Process

We give baler a formal description of the parsuit and avasion process that wa are golng to conaider. In this description and in the randinder of the chayter, wie coasider the purgusy as the protagraite in the mroceas ant the evtier as the antaroniat.

To begin, Fo extailiah the following notetions
(i) Denote by stare stete space of a pointa in thich the
process is considered to taike place, and assign to the points of 5 an arbitraty ordering
(ii) Dencite by $t_{i}, f=0,2,2,0$. the diserete time instants at which measurementia axe mede, and decisions are mane and
" \quad executed. 全
(IIi) Denote by $a\left(t_{i}\right), b\left(t_{i}\right), z\left(t_{i}\right) y$ and $W\left(t_{i}\right)$, qespectively; the pursuex's state at time t_{i}, the ovader's state at tiz the

 $\operatorname{ast} 1^{\circ}$
(iv) Dancte by $\mathrm{g}\left(\mathrm{t}_{\mathrm{i}}\right)$, the set of temization alternatives open to the gursuer at tiv Thie set mill consist, of the alterm Hatives: ternintete the pursuit, andor combinue the purgut, which will be acnoted, xespectively by the integers I and 0 .
(v) Denote by $T\left(t_{1}\right) \in T\left(t_{1}\right)$, the pursuer's termination decision at time $t_{i=}$.

The puasuit and grasion prosess thet we win consider, then, is fomelty describsa by the following atauritions.

Assumpion A: The movemem capabitity of the pursur in S is
 history at ty" of part ataves occupted by tive prucuer, into a mubet of ${ }^{\circ}$ conalatiag of the states that carn be cecupied by the pursuex at t_{i+1}. The movenemt equobinity of the evader in s is siminariy 'aderined by the set function $\mathrm{s}^{\mathrm{a}}\left(\mathrm{b}\left(\mathrm{t}_{0}\right), b\left(t_{2}\right), \ldots 0, \mathrm{~b}\left(t_{i}\right)\right)$; and the yursuer and evedar each tnot 3oth Imetions.

 $T\left(t_{2}\right)=(1)$ 。

 ervalezs

 and andaz.

 O

 O2.

(v) on the wasis of the intomaticn it poeseazes, but without

 dlagram shotitg hor tion purcoit sud evastion gane is so be played
 tien tolymes.

 an berns of bhe method of descritition that was developea for tro-

 sactiome Th ratitioulas,
(i) the atit of an worsible plays ta specified by Assumptions这 $\operatorname{axx} \mathrm{E}_{\mathrm{y}}$

(iJi) tha ghyorrs to exch plaver stor eaeh possible pley ax

 WHEN SOTH PLAYETES EMPLOY THEIR CORPLETE TNFOR剈ATION COLLECTION SCHEMES.
(iv) the Hatiman exouns of infoxazion thet eath player can

After astabliming the folleming notabica and conventions, we
 tree disgram

7.2.I Convonticns ancinctation

First, st my move mexs the pureuer is mexing a terningtion

Noxt, at any move where the pursuar or the gvader is choosing a
 On the stete of tia relgvert zacersible stete set, and let the ith sivite of the accessible stete set mier this ardering be the ith alternative at the given sove。

For example, suppose that iss agtven prosuit and evadion gane,
 accessible stete set is $\{2,4\} \in S=\{2,2,3,4\}$ In this caise we

Finally, at ny nove where nature is choosing an atiormative,
 at zeres where the jixyerg are chooing next gtotes, an jnaming to

 getso
动
解story der

 tion dectsica or the gursuex.

Fow examiet

$$
\begin{aligned}
& I^{s}\left(t_{1}\right)=\left(b\left(t_{0}\right)=4\left(t_{0}\right)=T\left(t_{0}\right), b\left(t_{1}\right), w\left(t_{1}\right)\right)
\end{aligned}
$$

End

$$
\begin{aligned}
& I^{P}\left(t_{2}\right)=\left(a_{3}\left(t_{0}\right), s\left(t_{0}\right), r\left(t_{0}\right) s\left(t_{1}\right), z\left(t_{1}\right), r\left(t_{1}\right)\right)
\end{aligned}
$$

Favisg astanlished these combations and notation, let us
 atiagrasu

(iv) evadar rovement cayebitioy: $S^{2}(1)=\{1,2\} ; S^{2}(2)=\{2\}$

(vili) payoris described as follous:

 evaker loses a paytit of 200 is tise tive of texnination

[^33] convicte fnownetion collection zehting

112

Teble 4: Teasurement Statiatica

$$
\begin{aligned}
& z(t) \text { or } b(t), e(t), b(t) \quad F^{n}(z(t) \mid a(t), b(t)) \quad p^{n}(w(t) \mid a(t), b(t)) \\
& \begin{array}{lll}
1,2.20 .90 & 0.55
\end{array} \\
& \begin{array}{lll}
3,2 & 0.10 & 0.90
\end{array} \\
& 3,2,20.5500 .45
\end{aligned}
$$

is to nata payot of 2.0 in the tane of temination

(b) if the purgut termantes with the prosuer and the evacer

In atifexant stares, the pursuex ging and the evader
zoses a pegoft of 0.0 mgg gidess of the time of termina rican

In figere if we show a gane-twee diagrea for the pursuat and evasion geme amsexibed airactly abore, and in tigure is we give o debailed asscrigition of stingle piag.

To these kigures, in order to cleaxiy iadictite the memberships OR the pleyers inforsation sets, we have fndiceted at each move the
 pu*ars. Specintentiy, at each move,

LEGEND:

Numbers ar each veriex are. pursuer's observations/evader's observations, with an obsersation string alternating - oun state, measurement of opponent's state, ferminction decision, own state, oses.

FIGURE 12. GAME TREE FOR 2-STAGE AND 2-STATE PURSUIT AND EVASON GANE.

 get) is ind
 Is ixatheater by the staticg of integrat to the right of the Blash, 枟能
 the Thich they mexis wedis
 PItran 12 is D then mare:
 $\{3,2,0,2\}$ sata
(it) the wader has disexata $\left.\{b(t))_{g}\left(t_{0}\right)_{s} r\left(t t_{0}\right)\right\}=\{2,2,0\}$.
 tha miternative choice history derining thec move.

 Deen concinac into a gingle msyag and

\therefore Finaliy, note that the purguit and evasion game that we hove

 not restrictive and wis made fa Chepter 5 mily to allow the kriting

7.3^{-}Yurgust trax pusion Ganss Stuotea

 Escrugie 2:
 $T\left(t_{2}\right)=\{3\}$
(i1) tro stetes: $S=\{1,2\}$
 for maxy $a\left(t_{0}\right), a\left(t_{3}\right)$
(iv) evader mevement eapability: $s^{2}\left(b\left(t_{0}\right)\right)=s$ for any $\dot{b}\left(t_{0}\right)$; $s^{2}\left(x_{0}\left(t_{0}\right)_{y} b\left(t_{1}\right)\right)=S \pm x_{0} b\left(t_{0}\right)=b\left(t_{1}\right)$ $=\mathfrak{b}\left(\dot{t}_{3}\right)$ otharwise
(v) 2natisy state dictributions $\mathrm{P}^{\mathrm{a}}\left(\mathrm{a}\left(\mathrm{t}_{0}\right)\right)=\left(\begin{array}{ll}1.0 & 0.0\end{array}\right)$; $\left.P^{n}\left(t_{0}\right)\right)=\left(\begin{array}{ll}0.0 & 1.0\end{array}\right)$
(ri) insampanat stetistics as derinea in table 4
(visi) payort wescribe as Ecllows:
(s) if tha pawedt texuinates with the puwsur and the crader in the same 6 tete, the pursuer wins and the Cveder losea a payof of 2.0 if the time is to,

(b) is the pursuit terminates with the parswer and the evader in difeerent states; the pursuar wins and the evader loses a payofi of 0.0 regardiess of the time of tominationo

Grampla 2 : $^{\text {th }}$ the number of stages, movement capabilities of the
 We inst the diferences beloro
(1) throe statest : $5=\{3,2,3\}$
(ii) Intitial steta dictribtrions: $\mathrm{p}^{n}\left(\mathrm{a}\left(\mathrm{t}_{0}\right)\right)=(1.0 \quad 0.0 \quad 0.0)$; $P^{n}\left(b\left(t_{0}\right)\right)=\left(\begin{array}{lll}0.0 & 0.0 & 1.0\end{array}\right)$
(iti) measuressnt statisties aenined as in table 5.
The wse of the pexiecturecall fictitious play algorttho in the generation of behavior strategy emalutions in these examples is aticussea belor
7.4 AWylicesion of the PexfectaRecail Ficticious May Algorithm

Th apply the pextect-recell Iictitious play algorithm, must
(i) express the pursutw's (pretogowist's) azpected rewum as a fumetion of the behavior atrategies employed by the playexs; and malosing this anpression,
(ii) inaplement on a digitat comprcers, the flor diagram shoum供 figure 70

[^34]Table 5: 解esurement statisties

$$
\begin{aligned}
& z(t) \text { or } w(t), a(t), b(t) \\
& \text { 1,1,1 } \\
& p(a(t) \mid a(t), b(t)) \quad p(w(t) \mid a(t), b(t)) \\
& \text { I, } 1,2 \\
& \text { 1,1,3 } \\
& \text { 1,2,1 } \\
& \text { 1,2,2 } \\
& 1,2,3 \\
& \text { 1,3,2 } \\
& \text { 1,3,2 } \\
& \text { 1, 3, } 3 \\
& 2,2,1 \\
& \text { 2,1,2 } \\
& 2,1,3 \text {. } \\
& 2,2,2 \\
& \text { 2,2;2 } \\
& \text { 2,2,3 } \\
& \text { 2,3,3 } \\
& \text { 2,3,2 } \\
& \text { 2,3,3 } \\
& 3.2 .1 \\
& 3,152 \\
& \text { 3,2,3 } \\
& \text { 3, } 2,2 \\
& \text { 3.2,2 } \\
& \text { 3,2,3 } \\
& \text { 3,3,1 } \\
& \text { 3,3,2 } \\
& \text { 3,3,3 }
\end{aligned}
$$

Hith the cormon payorl expressicns given above, the can write a gingle exgession for the pursuer's masectea payof which is valid fox both of the examples. In particulax, denoting by C^{p} and c^{a}, respectively,
 we can trize advantaga of the sumpe structure of our examgles to write:

$$
\begin{align*}
& 1.5 x s\left(a\left(t_{1}\right)=t\left(t_{1}\right), s\left(t_{0}\right)=0, s\left(t_{1}\right)=1\right)+1.0 \times p\left(a\left(t_{2}\right)=\right. \\
& \left.B\left(t_{2}\right)_{3} T\left(t_{0}\right)=\tau\left(t_{2}\right)=0\right) \tag{7.1}
\end{align*}
$$

there the probrbilitien of the three events with nom-zero payotis ase derized by the naxyers and neturete betnvior arrategies.

If we dgncte by $x(0,0)$ an indicetor function having value 1.0 witere fta argunents are identicel and 0.0 othewise, we can expand empression (7.1) to stite:

$$
\begin{aligned}
& P^{P}\left(r\left(t_{0}\right)=t / s\left(t_{0}\right) s\left(t_{0}\right)\right)+E^{2}\left(r\left(t_{0}\right)=0 \mid \varepsilon\left(c_{0}\right), z\left(t_{0}\right)\right) \cdot \\
& s\left(t_{2}\right), 2\left(t_{2}\right), b\left(t_{1}\right), v\left(t_{2}\right) \quad B \cdot\left[1 . 5 u (e (t _ { 1 }) , b (t _ { 1 })) \cdot p \left(r\left(t_{1}\right)=11\right.\right. \\
& \left.a\left(t_{0}\right), 2\left(t_{0}\right), r\left(t_{0}\right) s\left(t_{1}\right), z\left(t_{1}\right)\right)+p^{p}\left(\tau\left(t_{1}\right)=0 \mid a\left(t_{0}\right), z\left(t_{0}\right) r\left(t_{0}\right),\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.\left.\ldots\left(t_{2}\right), z\left(t_{2}\right)\right) \cdot \sum_{a\left(t_{2}\right), b\left(t_{2}\right)} c \cdot\left[1,0 u\left(a\left(t_{2}\right), b\left(t_{2}\right)\right)\right]\right]\right] \tag{7.2}
\end{equation*}
$$

where:
(I) $\left.A=P P^{3}\left(z\left(t_{0}\right) / a\left(t_{0}\right), b t_{0}\right)\right) \cdot E\left(p\left(t_{0}\right) \mid a\left(t_{0}\right), b\left(t_{0}\right)\right) \cdot$
$\ldots P^{n}\left(s\left(t_{0}\right)\right) \cdot Z^{n}\left(b\left(t_{0}\right)\right)$,
(ii) $B=p^{n}\left(z\left(t_{1}\right) \mid \overrightarrow{b_{2}}\left(t_{1}\right), s\left(t_{2}\right)\right) \cdot p^{n}\left(t\left(t_{2}\right) \mid a\left(t_{2}\right), b\left(t_{1}\right)\right)=$
 $\left.t\left(t_{0}\right)=0\right)$
 $p^{2}\left(b\left(t_{2}\right) \| B\left(t_{0}\right)+t_{0}\left(t_{0}\right), \tau\left(t_{o}\right)=0, b\left(t_{2}\right)_{5} v\left(t_{1}\right), \tau\left(t_{2}\right)=0\right) ;$
(iv) the indicotera sung ane cror the gtates of S_{5}
(v) $p^{n}\left(z\left(t_{i}\right) \mid a\left(t_{i_{2}}\right), b\left(t_{i_{2}}\right)\right)=p^{n}\left(w\left(t_{1}\right) \mid a\left(t_{i 2}\right), b\left(t_{i 2}\right)\right), p^{n}\left(a\left(t_{o}\right)\right)$

 wioth the ricvernent and ternination cezotianties of the pleyst (for examie, in a state spoce of 3 staces, if $\left.f^{P}(1,2)=(2), \cos ^{2}(3)^{2}, z\left(t_{0}\right), 0,2, z\left(t_{1}\right), 0\right)=P^{0}(1]$ 2. $\left.2\left(t_{0}\right) 0, E_{y} z\left(t_{3}\right), 0\right)=0$ for ang pain of measuremanta $\left.z\left(t_{0}\right) \operatorname{sen} z\left(t_{2}\right)\right) ;$ and
(vii) the sets of reatablen won which the probabilities
 plaserse intcyastion secs in TP $\left(C^{9}\right)$ and IP($\left.C^{2}\right)$.
 then the expressian bhat woud have resulted if ve nod ignored the
 returs to 'the proceqentat in the form of equation 5s 18.

$7 . k_{0} 2$ Genaration of Behariow Stratary Emsolutions for the purgear agd the Hrader

 Ghe purduce gud the svaders

 at the sase thise

In betk tradins, the vaive of ϵ thet was selected ras 0.02 .
 given in 动解 6 belong

Mxampe 1	Erample 2
.845	.661
.864	.681

 of bhavior suravogiea to be ectemmind fox the players. This nuber

[^35]Teble 7: Beharion strateg Easolution for Exanite 1

Examex	Ruxsuer	Purstur	Evader	Erader
Onserved	Terainsidon	Hoversent	Obaervei	Provement
Etistory	Decistora	necimsm	History	Decision

$x^{2}\left(\oplus_{i}^{*}\right)$	$\begin{aligned} & I^{2}\left(\tau\left(t_{1}\right)=0\right\} \\ & I^{2}\left(t_{2}^{\infty}\right) \end{aligned}$	$\mathrm{P}^{0}\left(\mathrm{a}\left(\mathrm{t}_{1-2}\right)=11\right.$	$2^{2}\left(t_{i}{ }^{0}\right.$	$p^{2}(t)\left(t_{i+1}\right)=11$
		$t^{\prime 2}\left(t_{i}^{*}\right)$,		$\left.I^{\text {a }}\left(t_{i}^{-}\right)^{-}\right)$
		$t\left(t_{p_{1}}\right)=0$)		$\left.\tau\left(t_{1}\right)=0\right)$

or the fact tibst the components in axy ditiribution mast gum to 3.0 since the prograns (as mrititen) do not obtain any aduantage from these pacts.
 Traya 8: Onserved Comergance Rates for Persoct-Recenl Fictutioun play Algowith

	Example 1	Example 2
Numbex on albernetive proodollity dimbibutiona to be aeterminad	28	90
Wurnber of vardabies to be determinea	56	240
frumber of iterstions	200	295
Tbtal tixas (in seconds)	46	436

Qor the ployers

 that stight be propesed for generating "good" behavior strategies for the piayers the folloming particulerin plaustble techique wes examinad for each of orr mamples.

F'isth, bathyior stretegy E-solutions wexe coumuted for each natyar in the gurgut and ovesion geme excmples which are obtained from exprizea 1 anc 2 by assuning that ach player has perfect
 turese strategien is much eabler than the determinetion or behavior ntwategy E-colutions in the originat ghase

Then, the "decision operations" fox the pursuer and the evader were separated into two paris:
(i) a filcering operation in which the pursuer or the evader computes from its measuraments, the stave history most Itrely to have beew realized by its opponent (assuming thet the opponent has perfect measurements and is employing its pexfect measurement strategy computed above); and
(i1) a gecision operaticy in which the pursuer or the evader employs its computed perfect measurement strategy, treating the opponentis most lirely state history as if it wewe the opponent's actual state historyo

Finally, the behavior strategies defined by the above separation were determined, and the qualnties of these separation strategies" ษere calculeted.

In table 9 below, tre give the qualities of these separation strategies and, for purposes of comparison, the qualities of the behsvior strategy Easolutions previously deternined.

Table 9: Qualities of "Separation" Behavior Strategies and Behavior strategy E-Solutions

Examie 1 Example 2

Quality of evader separation strategy	1.12	.90
Quality of evader Easolution	0.864	0.681
Quality of pursuem E-solution	0.854	0.661
Quality of pursuex separation strategy	0.16	.56

From these results we can see that the losses risixed by employwent of separation strategies of this type are quite substantial for both pursuer and the evader. ${ }^{+}$In these exampies, then, the effort involved in determination of behavior strategy Emsolutions for the players seems well juistifaed。

[^36]CHAPMER 8
A MEDECEH DECISION PROCESS

8.0 Introduction

In this chapter we till consider a finite medical decision process informally described as follows.

A doctor encounters ε patient whose general condibion is ropiday ceteriorating with the spread of a disease but whose relative condition varies within a range fron "relatively wears" to "relatively strong:"

A surgical operation exists which can arrest the advance of the disetse, but its exfectiveness
(i) 23 a function of the patient's eondition and the treatnent being admanisrerad by the doctor at the time of the operaษ之on, aza
(ii) is diminished as titue goes on (and the disease spreañ), reachitg zero ar sowe time t_{f} (when the spreat of the disease can no longer be halted).

The doctoris centrol over the situation is through his choice of a time for the operation, and his choices of preoperative treatments for the patiento In particular:
(i) if the doctor aministers treatment thet is aypropriate for tie relative conctition of the patame, the patient's reletive cozation changes in a zandoct but sqatisticelly

(ii) if the doctor aministers wreamem that is inegpropriate for the relative condition of the patienc, the patientrs relative conaition charges in a raradr but unkown fashion. The dockor ${ }^{2}$ a information on the patient is relatiwe conditions as the process unfolas is unceruain fan that the doctor does not knom the actual relative conditions of the patient; he only has diagnosea which are statisticely related to the patient's actual relative conafitionso

Finally, the process tis texminated weat the doctor decides to operate, and at that tine he is considered vo receive a payof which is:
(i) given in terms of an expected extension of the pabienc ${ }^{3}$ s 1inetime, and
(ii) described by a moram function of the total time elaysed in preaperative treatient and the patient's relative conm dition and the treatment he is receiving at the time of the opergtion.

8.0.1 Objectives

We will considec belou, a formal version of the medical aecision process deseribed zoove. In considering this process, ow specific
objective will be so devermat tor the docsox a simplest possible treatment and operation behavior ztrategy which comes acceptably close to raximining the aoctor"s minante expecced return againgt all possible untrona probabitity discributions moder which the patient's relative conetution may be changing men the doctor adzenisters inappropsiate traament.

In order to find such strategies, te will pose the problem es $\stackrel{1}{4}$

* wownerson zero-sum game by considering thet, in situations in which the doctor adminsters inopproriate treatuent, the patient is under the costroin of "devit" whose intereste axe diametrically opposed to those of the coctor.

Gus specitic objective, onen, will be to deternine for the doctor a bebaviox strabegy Ensolution in this doctor (protagonist)devil (ancasonizu) gemae

Our genersy pojectives in conaitering tizis problem winl be
(i) to give a deanotivetion of the ust of the extexded Pictithous giay algorithay
(it) to give an exdrate of a sempin (a very productive one, : as it happens) for a stuplest posstivie beherior strategr G-solution sud
(iid) to gity an examis of a provien minich can be solved practically th teras of behatior strategies but which is far too complest to solve in terms of mixed strategies.

8.1 Foxmai Description af the Doctor-Devt1 Geme

In this section we till describe the formal version of the doctordevil game that we are going to consider. In this Pormal version we Will make the pyyor sumethon refnect the changes in the peinent's general condition and we will concemn ourselves only with the patient ${ }^{\prime} s$ relative condtions. For conventsoe then, we will henceforth drop the word relative。

Tied game that we will consider, then, is described by the folloting set of assumptions.

- Assumblon A: The set T of treaments t thet can be administered By the doctox, and the set 0 of concitions c thas can be realized by the potient are both fintee sets with their mambers in one-to-one correspondence, y_{j} paired with Tjot

Agsumpion Bs The game ferminates with the doctor's decision to operate, whech must be made as or betore some time ty

Astumption C: The ereatment and operative decisions made by the doctor, and the condition changes rade by the patient occur at adacrete thes $t_{i} \in\left\{t_{1}, t_{2} ; \omega_{f-1}\right\}$.

Astamption Dt The potient is partianty controlled by the doctor and partality controlled by the devil as follows:
(i) if $\tau\left(t_{i}\right)=\tau_{j}, G\left(t_{z}\right)=c_{k}$ and $j=k$, then nature selects the patients condition at tifl under a knom probebility distribution $\mathrm{P}^{\text {It }}\left(\mathrm{e}\left(t_{2+1}\right) \mid \tau_{1 k^{\prime}} \mathrm{c}_{\mathrm{E}}\right)$, but

[^37](ij) if $\tau\left(t_{i}\right)=i_{j}, c\left(t_{i}\right)=c_{k}$ and $j \neq \mathrm{k}$, then the devil can select any condition $c \in C$ as the patient's condition at t_{i+1}

- Assumptiom E: If the game terminates at tine thy the doctor $=$ wins and the devil loses a payofi $h\left(c\left(t_{k}\right), \tau\left(t_{\mathrm{f}}\right)\right)$ which is given in terms of an expected extension of the patient's Lifetime.

Assuartion F : At the end of each subinterval $\left(t_{0}, t_{1}\right)$, $\left(t_{1} \rho t_{2}\right)$,
 patients condition during that subintervel. This diagnosis is salected by nature .under a known probability alstribution $p^{n}\left(a\left(t_{j}\right)\right)$ $\left.\tau\left(t_{j}\right)_{y} c\left(t_{j}\right)\right)_{0}$

Assumption G: The Informetion that the coctor can gather as the gatie progressea consista of the diagnoses he mekes (receives), and the treatment and operation decisions thet he makes.

Assumbtion H: The information that the devill an gather as the gene progresses consists of the conditions assumed by the patient, and the treatement and operation decisions made by the doctor*

Assumption I: The terquoral order in which the doctor and the patient (devil or nature) will be assumed to operate et each time instant t_{i} is as follows:
(i) the doctor "receives" an uncextein diagnosis of the patient's condition,
(ii) on the basis of the string of past diagnoses and trabinents that be recalls, the doctor decides whether ox not to operate,
(i31) the devil receives the information thet the doctor has decided (aecided not) to operate,
(iv) in the doctor has decided not to operate and has not applited appropsiate treahment over the past tine interval, then the deyil, on the basis of the obseryation history it possesses, chooses a next coritition for the patient,
(v) if the doctor hes decided not to operste and hes applied sypropriate trastment ofer the past time interval, then gature chooses a next condition for the patiant, and innaing
(vi) on the basts of the string of past dingroses and treatments it recalls, but mithout knowledge of the patient's next conditicns the doctor chooses a treatment to administer to the petant over the next time interral.

The maner in which the moctormevil gake described above is playea is sumaxized in the flow diagram of figute 14. In this diegran we have assumed for the antagonist, a completa infomation collection mathent.

8. 2 Interpretation of the Doctor-Deril Game

Note that the four rules of our affinition of a fimite extended game are specified by the assumptions given above, In particular,
(1) the set of all possible pliys is specified by Assumptions A, B, D and ${ }^{2}$
(iv) the mancre in whel newure chooses an aturnative at each

OF

 ecurentis路

䢒

8.3 The poctor-beyix Gera Studied

The rolloritg exaule doctox-devil gem ven stuated.
(3) The acts of possible privext contstions and treatments are given by $c=\left\{c_{1}, c_{2}\right\}$ and $T=\left\{\tau_{y}, \tau_{2}\right\}$ 。
(in) The gan lasta for ho wore than 25 days, winch is considered to constist of 5 tincee way periodso
 conditions change then mprogriate treatment is maninistered
 2) are constan with times These distwibutions are given in table 10 belorm

Tajle 10: Probemility Dintributions for Patient's Condition Chasges Unier Propen treatnent

$$
\begin{aligned}
& P^{n}\left(c\left(t_{i+1}\right) \mid c\left(t_{i}\right)=c_{1} g r\left(t_{i j}\right)=t_{1}\right) \\
& P^{a_{1}}\left(c\left(t_{i+1}\right) \mid c\left(t_{i}\right)=c_{2}, r\left(t_{i}\right)=t_{2}\right)
\end{aligned} \begin{array}{ccc}
c\left(t_{i+1}\right)=c_{1} & c\left(t_{i+1}\right)=c_{2} \\
0.70 & 0.30 \\
0.70 & 0.30
\end{array}
$$

(iv) The petorfs to the doctor upon his decision to operate are given in tems of expected exprestions on the patient's Iifetime in dayss These payofs are described by the
 $\left.c\left(t_{i}\right)=c_{k}\right)$ listed in table 12 belowo

Table 11: Expectea Lhietime Extension Payore Matricea

$$
\begin{gathered}
A(1)=\left(\begin{array}{rr}
1800 & 180 \\
720 & 540
\end{array}\right) \quad A(2)=\left(\begin{array}{rr}
1620 & 160 \\
650 & 485
\end{array}\right) \quad A(3)=\left(\begin{array}{rr}
1300 & 130 \\
520 & 390
\end{array}\right) \\
A(4)=\left(\begin{array}{rr}
910 & 90 \\
360 & 270
\end{array}\right) \quad A(5)=\left(\begin{array}{rr}
550 & 55 \\
215 & 260
\end{array}\right)
\end{gathered}
$$

(v) The diagnosef received by the doctor at the end of exch three day periou-are chosen by nature under probability alatributions wich are constart with tine, These distrim butions ere given in table 12 belom (Note that $d\left(t_{i}\right)=$ a_{1} and $a\left(t_{1}\right)=d_{2}$ are compleanentary events.

Table 12: Probability Distributions for Diagnoses

j	1	1	2	2
\underline{L}	1	2	2	2
$p^{n}\left(d\left(t_{i}\right)=a_{l} \mid \tau\left(t_{i}\right)\right.$.80	.30	.70	.20
$\left.=\tau_{j} c\left(\tau_{i}\right)=c_{L}\right)$				

8.4 Application of the Fitended Fictitious Play Algorithm

To apply the extended fictitious play, algorithm, we carry out the frollcaing three stewt.

Step 1: We assign to the antagonisi, its complete infomation coliection schema c^{2}, and to the grobagonist, the information collection scheane R^{p} that ve wish to examine.

Step 2: We identify the entities of the essociated game and qe develop sor theae anities, the pyote expressions which are denoted

In the assocdated geare ris for the doctor-devill game and any datastble information collecticn seheme K^{p}; the entitias are:
(1) $2^{2}, 3^{p}, 5^{2}, 7^{2}$ axd 5^{p}, who choose treatments for the petient for the ist, zad, ou* and the 5th rime pertode, respectively,

 respectively, and
(ini) $2^{a}, 2^{a}, 3^{2}, 4^{2}$ and 5^{2}, who choose (when nature does not) patient conditions for the lst, 2ndy 00 and jth tixte periocis, rexpactivelyo

In toble 13 we 1ist:
(i) the entities of an associaxed game and their functions, and
(15) the generel deacriotion sud the nuaber of information sets bhat eacin entity controls when the dontor amploys 3.cs complete infonanion collection scheme.

(i) te do not carxy out the labortous task of detemining the axray F and forsing these expressions as indicated in sigure 10, but insteed,

Table 13: Information Set Structure for the Complete- Information Collection Scheme case

Exacity	Pritity Punction	Information set description $I^{p}(k), I^{s}(k)$	170, of info sets "controlled"
2^{28}	choose $\mathrm{c}\left(\mathrm{t}_{1}\right)$	\{0\}	3.
1^{19}	choose $\tau\left(t_{1}\right)$	[0]	1
2^{p}	oparate at $t_{2}^{\text {? }}$?	$\left\{r\left(t_{1}\right), d\left(t_{1}\right)\right\}$	4
2^{2}	choose $e\left(t_{2}\right)$	$\left\{\tau\left(t_{1}\right), \mathrm{c}\left(t_{2}\right)\right.$; no operation thrut $\left.t_{2}\right\}$	2
3^{5}	choose $\tau\left(t_{2}\right)$	$\left\{r\left(t_{1}\right), a\left(t_{1}\right) ;\right.$ no operation thru $\left.t_{2}\right\}$	4
4^{9}	operate at t_{3} ?	$\left\{r\left(t_{i}\right), d\left(t_{i}\right), 1=1,2 ;\right.$ no overation thru $\left.i_{2}\right\}$	16
3^{2}	choose $\mathrm{c}\left(\mathrm{t}_{3}\right)$	$\left\{t\left(t_{i}\right), c\left(t_{i}\right), t=1, z\right.$; no opersetion thru $\left.t_{3}\right\}$	8
5^{p}	choose $r\left(t_{3}\right)$	$\left\{r\left(t_{i}\right), d\left(t_{i}\right), i=1,2\right.$; no operetion thru $\left.t_{3}\right\}$	16
69	operate at $t_{4}^{\prime \prime}$?	$\left\{\tau\left(t_{j}\right), a\left(t_{i}\right), i=\lambda, 3 ;\right.$ no operration thru $\left.t_{3}\right\}$	64
$4^{\text {a }}$	choose $\mathrm{c}\left(\mathrm{t}_{4}\right)$	$\left\{\tau\left(t_{i}\right)_{5} c\left(t_{i}\right), i=1,3 ;\right.$ no operation thru $\left.t_{4}\right\}$	32
7^{p}	choose $r\left(t_{4}\right)$	$\left\{\tau\left(t_{i}\right), d\left(t_{i}\right), i=1,3 ;\right.$ no operation thru $\left.t_{4}\right\}$	64
8^{p}	operate at $t_{5}^{\prime \prime}$?	$\left\{\tau\left(t_{i}\right), \alpha\left(t_{i}\right), i=1,4 ;\right.$ no operation thru $\left.t_{5}\right\}$	256
$5^{\text {a }}$	choose $c\left(t_{5}\right)$ -	$\left\{r\left(t_{1}\right), c\left(t_{1}\right), i=1, r ;\right.$ no operation thru $\left.t_{5}\right\}$.	256
9^{p}	choose $\tau\left(t_{5}\right)$	$\left\{\tau\left(t_{i}\right), d\left(t_{i}\right), i=1,4 ;\right.$ no operation thru $\left.t_{5}\right\}$	256

[^38]Total number of controlled inf. sets: 852; 681 for doctor, 177. for devil
(ii) We take satvastage of the structure of the game to mate payofic exprossions which hevo lest olegunt forms than
 to nore arseient corputatson. ${ }^{\text {p }}$
 on

8.5 A Search fox a situlest Behavior Sowntegy E-Solutuon for

ths Doctras
 foiloring objective: pind a singlegs possible treabiment and opera
 mine vis the quatity of a couxtione

Hoployitg the extendeă pictivious play algoxitm and avaluating the qualitien of bebarior strategies it produce by means of Theorem 4* (section 6.5*2), tre preceec as follum:
(2) Finst, solution tor the acetox by genexsting an entitym behovsor equilubiw peint in the ansociated gane corresw ponting to the doctor* acmiete information collection scheme.
 achemes for the aoctor which might produce simple behsvior
 therned in section 6. Is i.
strategy \in - Eolutions, ${ }^{\dagger}$ by genexstiag entitymbehavior equilibrium points in the corresponaing sssociated games and comaritag the qualitis of beazion stretegies thus obtainea with the quility or a solution.

B. 5.1 Intornation Col1ection Schemes Considered

 Emolutiong themined a totral of 8 informition collection schemes for the dector (including his complote anexmethen collection schene).

In table 14 we give the sesults of our geareh, specticeliy,
(3) we descrive the infomation collection schemss examined by ilsting tinc information that is forgoten by the Boctor undar enct schene (th eact scheme considered, the acctor gathars evexy evaliable plece of infomation),
(ii) We list the qualities or the treatment was operation behtuion strutegies that were gezerated on esch information collection schsme, and
(ilit) Por eseh trategy generated, we list the total amber of funcrontion seta rectirable (ox an ugpar bound on this number), as an indection of the compiexity of this strategy.

8. 5.2 Cnmertsom of the Behbvior Strategiges Genareted

Comparing the strategtes genexated on each informition collec. tion scherne, we see that:

[^39]Table 3 ： ：Sumaty of Resuts of Search for e Simplest Behavior straceey Easolution

Informerion Collection scheme	Txiommetion Forgotwen	ifunber ox Remilizable Enformation Seする	Qublity of Selasior strategy （in dxys）
1	ccreps tinfo coll	675	$890+0$
2	gt t_{j}^{-}等gect $\left(t_{2}\right), d\left(t_{2}\right)$	292	892
3	atits torgee $t\left(t_{j}\right), d\left(t_{j}\right), t=1,2$	295	$885+0$
4	$\begin{aligned} & \text { at } t_{5}^{*} \text { forget } r\left(t_{i}\right), d\left(t_{2}\right), t=1,2 \\ & \text { at } t_{4} \text { porget } r\left(t_{1}\right), d\left(t_{1}\right) \end{aligned}$	99	$885+0$
5		77	$89{ }_{-38}^{+0}$
6	$\begin{aligned} & \text { at } t_{5}^{\prime} \text { forges }\left(t_{i}\right), d\left(t_{i}\right), j=1,3 \\ & \text { at } t_{i} \text { foxget } t\left(t_{i}\right), d\left(t_{i}\right), i=1,2 \\ & \text { at } t_{3}^{\infty} \text { forget } \tau\left(t_{1}\right), d\left(t_{2}\right) \end{aligned}$	$\begin{gathered} 33 \\ (\text { max }) \end{gathered}$	706_{-13}^{+0}
7	$\begin{aligned} & \text { st } t_{5}^{-} \text {texget } i\left(t_{i}\right), d\left(t_{i}\right), i=1,3 \\ & \text { st } t_{i} \text { forget } T\left(t_{i}\right), d\left(t_{i}\right), i=1,2 \end{aligned}$	53	888^{+0}
8	$\begin{aligned} & \text { at } t_{5}^{-} \text {forget } t\left(t_{1}\right), a\left(t_{i}\right), i=1,4 \\ & \text { at } t_{4}^{*} \text { Porget } t\left(t_{i}\right), a\left(c_{i}\right), j=1,2 \end{aligned}$	$\begin{aligned} & 51 \\ & (2 x a x) \end{aligned}$	727_{-27}^{+0}
	Quatity of Solutioms 890^{+29}－42		

（土）the strategies enerated por schenea $1,2,3,4,5$ axd 7 ．are anc cosolutions for $E=0.10 \mathrm{v}$ ，and that，
（i土）under the garticular E－solution generated for infownetion callection echene 7，onty 53 information sets are resilizeble。

In Einding＂stretaty 7^{11} then，which is listed in table 15 ，we hewe rouna a beicevion firategy Emalution which is less than 8% as coaplax as the behsyior ptrategy E－balution generated on the doctor＇s complete fniomation collection scheme．

In fighre is me show for aach information collection scheme exatined，a plow of the amont of infomatson recalled by the docior

 conchruction of a behavior strategy Emolution is not non－iecreasiag．

This resule seered exporistig，but upon examination of the strategy generated for information collection scheme 7 ；we found thet the probebilitey of ars ofaration betore time tiy is quite hith （ $\$$ ．90）．This makes the octrmence of infornetion sets corresponding to times t_{4} and t_{5}＂xare suantsy which in turn makes the sxpected payorf to the doctor insengitive to cxuce play lin these later sturntionso

	$7\left(t_{7}\right)$	1	1	1	1	1	1	2	1	2	\%	2	2	2	2	2	2
	$\tau\left(t_{2}\right)$	1	1	1	1	2	2	2	2	1	a	1	1	2	2	2	${ }_{2}^{2}$
	d(t^{2})	1	1	2	2	1	1	2	2	1	${ }^{1}$	2	2	1	3	2	2
	a. $\left(t_{2}\right.$)	1	2	1	2	1	2	1	2	1	2	1	2	1	2	2	2
$4{ }^{2}$	p (operate \mid ($\left.\left(t_{2}\right), a\left(t_{1}\right), i=1,2\right)$. 99	. 53	. 99	. 05	. 97	. 03	. 93	. 01	.99	. 11	-99	.99	. 99	. 06	. 99	. 111
5^{2}	$p\left(r\left(t_{2}\right)=r_{1} \mid r\left(t_{i}\right), d\left(t_{i}\right), 2=1,2\right)$	1.0	. 35	.93	. 09	. 11	. 99	. 42	. 99	.97	. 10	.97	.10	. 53	. 97	. 01	.97

Wrote that \{operctice, don't operate\} are complenontary events, as are $\left\{\mathrm{c}_{2}, \mathrm{c}_{2}\right\}$ in the ganie under study.

		$\tau\left(b_{3}\right)$	2	1	2	2
$d\left(t_{3}\right)$	2	2	1	2		
6^{p}	$p\left(\right.$ oparate $\left.\mid \tau\left(t_{3}\right), a\left(t_{3}\right)\right)$.99	.99	.99	.08	
7^{p}	$p\left(\tau\left(t_{4}\right)=\tau_{2} \mid \tau\left(t_{2}\right), d\left(t_{3}\right)\right)$.99	.02	.73	.99	

Qualtity: 888_{-34}^{+0} days of expected patient Iifetime extension (compared with 890^{+0} for behevior strategy generated for complete information coliection scheme).

Tabla 15: Treatment and Operation Behavior Slrategy for Information Collection Scheme 7

Informetion collection

 CCLLECTION SCHEMES I THRU 9.

 2civentage or tixis hite

 852
 1704
 200
 2000？
8.

表䲱

 an expected retura of only 180 dusts antennion. ${ }^{T}$

 the "eoxnexwative potwry" wentzens above

[^40]

thizect References

 Ecomomic Behaytox，Drinction Unxversity Presss 1944o

 NO．28，Exinteton University Erests 196\％。
 and Sonay Incey 195%

 pg。 109－1354
 Activity hnalyais of Exodicction ana filuodtion，Cowtes Comission
 Wew Yonk ig5，Wpe 3740376e
 of Matheneties，Vol．54，耳ios 2s getto 2956e

 195\％。

12. Nash, J., "Won-Cooperative Games," Amais of Mathomatics, Vol. 54, No. 2, segt. 1951.
13. Shapley, I. S., "Scone Topics in Tho-Person Games, " Annals or Math Studies, Vol. 52, 1964.
14. Kuhn, H. W., "Hxtersive Games," Proceedings of the Kational Academy of Sciences, U. S.Ae, To. 36 , 1950, ppo $570-576$.
15. Utgofe, Vo, and Kashyap, Ro, ${ }^{2 H_{\text {A }}}$ Pursuit and Evasion Problem With Measurement Uncertainty, "Tech. Rept. 69-39, School of M男ectrical Fingineerang, Purdue Unirersiby, Lafayettes, Inde, Oct. 1969e
16. Utgoff, V_{0}, and Keshyaj, Ro, "On Benavior Strategy Solutions of Finite Twomperson Conswant-5um Friended Ganess "Techo Rept.
$\therefore \quad 70-9$, School of 血ectrical Hinineering; Furdue University, Lafayette, Indo, Feb. 1970.

Genezal References

27o, Ferguson, To, Matnematicsi statistics, A Dectsion Theoretic Approach, Acudenile Pressy 2 Sof
18. Game Theory ana Relatea Approaches to Soetal Beheviory Shubin, Mo, editor, fohn whley and Sons, Inco, 1984.
19. Danskin, Jo, The Theoxy of Moxumin, EConometrics and Operations

20. Blackwell, Doy and cershide, Mos Theory of Games and Statiatical Decisions, John Wiley and Sons, Ines, 195^{12}
21. Aumann, R., "Mixea and Behaviox Strategies in Infintte Extensive Games, "Annals of Math Studies, FO. 52, Erinceton Unitersity Press, 1904, ppo 627-650.
22. Dalkey, N., "Haxvalence of Information Fstherns and Essentially Determinate Games, "Annels of Math Stuajes, No. 28, Frinceton University Exess, 1953; 59. 217-244.
23. Thompson, Ge, "Signaling Strategies in n-Derson Qames, "Annais of Math Stuajes, No. 28, Exinceton Univergity Press, 1953, 0. 267-278.
24. Thompson, Go, "Bridge and Signeling, "Amols of Math Studies, No. 28, Princeton University Press, 1953, \$p. 279-290.
25. Kuhn, H. W., "A Simplified Twowerson Pokers" Amals of Math Studies, No. 24, Princeton Univexsity Press, $2950,90.97 m 104$.
26. Aström, K., "Optimal Control of Harkov Processes with Incomplete State Information, ${ }^{1 *}$ J. Math. Anal and Appl. 10,1955 pp. 174-205.
27. Deyst, J. J., "Optimai Control in the Presence or Measurement Uncertainties, "M.I.T. Expr. Astronom. Iab. Repts TE-17, Jan. 1967.
28. Isaacs, Ro, "Differential Gazas: Their Scope, Tature, amd Euture, " fournal of Optimization Theory and Aget., Vol. 3, No. 5, 1969.
29. Dresher, 劫, Games of Strategy: Theory and Fapilications; Prentiss Hejn, 1961.
30. Danskin, Jo, "An Algoritbm for the Solution of Concave-Convex Games, ${ }^{\text {" }}$ Computing Methods in Ootinization Probleme - 2 , Acsdemic Press, thes, 1969, ppe 67-76.
37. Galton, Fe, "Statistical Inquiries into the naficacy of Prayer," Fortnighily Review, No. LXVIII, Hew Series, Aug 1872.
 Discreteatrate Probabilistic systeus " Joumal of Basic Figineering, Vo1. 23. Karch 1902.
33. Ryylov, Fo Vo, "The Constyuction of an Optimet Strategy for a

34. Zachristen, It Es, "Martor Gamas; "Contributions to the Theory of Games, Apmals of Math Stuateg, Ho. 39, Princesion Univaxsity Press, 1957.
35. Reviv, Jos "Decision Making in Ineompletely From Stockestic Systemeg "Inte Jo Eng. Scio, Vol. 3, 19650
 Systems Science and Cybernecics, Vol. SSC-3, TO Ih Jume 196%
 Systems Selence and Cybemetice, VoL. SSC-2, No. 1, Aug. 1966.
36. Dynkin, E Be, "Controlled Rexhm Sequences," (trenclated by A_{t} R. Tratage), Theory of Probabjlity and Its Anplicetions, Vald X, WO. 1, 1955.

APP鞇DTA

WOIES

1. Aovantages of Roxdcomizatien

Gande can cosint be coastructed such that for sone information collection solbeme for the protegonist zandorized strategies axist

For an examie of a "reak tire" gans vith this property, see refferane 1, pages 186-219, vinex Von Netuann ghow thet poker is
 In poker call ior a randenization in betting which is commony called blutsing
2. Quaity and Sointion streagy pefintitons Pow the Antagonist

If in a given gane we wish to retain a given Iabeling for the protegonifa and che whagonsst, we can detine stratesy quality for the entagonist as follops.

Deftnitions The quality $Q\left(Y^{2}, R^{2}\right)$ or any strobegy F^{2} for the antagonist whith as basca on an information collection scheme R^{E} as dasined by:

Using this definition, the deflatitions of an E-Rusolution and an E-solution tor the antagonist are analogous to the corresponding desinitions for the protagonist.

3. pasiaituon of rexms Usecin the Hhetwnarket bame

On the Caicago Mercantile Erchange, it is posible to buy and sell gontracts for furtuxe delivery of theat.

The size of a contrget is pised at 5000 bubhels; the date of delivery of any contract 1 is fixed; and untill the date of dalivery, ondy a small deposit is zequired to darry out a purchese or sale.

A trader in theatwfotures contracts can realize proitits or losses by carrying out transactions of the following sorts.
(i) He can buy a wheat contract, and "cancel" his purchese at or before the delivery date by sellize a whect contract whth the ssac delfregy date. This is called takirg a "long position" and the trader realizes a groftt (loss) in the value of a contract for delivery rises (falls) while he is Iong.
(is) He can sely a vioeat contract, and "cancel" his purchase at or berore the deilvery date by buying a theat contract with the sane delivary date. This is called taking a "ghort position" and the trader reaizes a profit (loss) in the value of a contract for delivery falls (rises) while he is short.

4. A Grase With en Eafomation Coliection Scheme Vpon Which a Behavier Stratery Soluwion Does Not Exist

Consider the geme show in figure 16 and the infomation collaction scheme R^{p} in which the protagonist qails to recall at any af his znd moves, the choice he has made at his ifirst nove.

The information partition for this informetion collection scheme is gitren by $I P\left(R^{P}\right)=\{A, C U D\}$. In table 17 below, we itst the protagonint's pure strategies on R^{p} ard the antagoniat's pure strato egies on its comalete fntoraston collection schere. In the listed strategies, the first integer in each entry indicates the alternative to be chosen when the infornation set indicated by the letters in - thet entry is ralized.
-Teble 17: Fure Strategies in coded rorm

$$
\begin{aligned}
& \cdot \cdot \sigma P_{4}^{P}=\binom{2 \mathrm{~A}}{2 \mathrm{CUB}} \quad O \mathrm{P}_{1}^{a}=(1 \mathrm{~B}) \quad \sigma \mathrm{P}_{2}^{a}=(2 \mathrm{~B})
\end{aligned}
$$

Using the notetion esteblished in section 5.1 .2 , we can write the expected recurn: to the protagonist when mixed strategies dup: on R^{P} and ont on C^{2} are employed, as:

 UPON MHICH A EEHAVIOR STRATEGY R-SOLUTION DOES WOT EXIST.

$$
\begin{align*}
& {[p(2 \mid C U B) \cdot 5+p(2 \mid c u n) \cdot 0]+5(2 \mid z)[p(1 \mid C) \cdot 10+} \\
& p(2 \mid 0)=0]]
\end{align*}
$$

 sยxitegies.

The Enajity of this beherior statagy, however, is only 3.75, and therefore a behaviox gtrategy $\mathrm{B}-\mathrm{Bolution}$ on R^{P} does not exist.

Whic fuaction ana be ocngtunctec by histing for eech play
 tion satis mader the peyext given infomstion collaction schemes.
men, for each listed stang, the function g taicex the pailue of

 both raploying their complete information achlection scheses, ig is actinad as shomin table 28 yelono

Thala 18: Defintion of g for Geat frigure 16 then Both Players

$$
\begin{aligned}
& g\left(1, A, z_{g} \subset \cup D ; \varepsilon_{2} B\right)=5 \quad 3\left(2, A_{5} \dot{Z}_{5} C \cup D ; \sharp, 3\right)=0
\end{aligned}
$$

He quote Brom in refersnoe 7

 This mothod is related to serb particular syedens of diffexential equations those nteaty stete solvtions eorxespona to
 We Ioosaly charactexired y tine fact fhet yt raste or the

 opponent's pust pleys (chosen pure staxtegien) axd, ju the

 the nixture represtrted by all tie oppencris past pleys (chosen pare sumbegies).
7. garduaxicx or Behavios Shrovery pietitivan zlay Eroktions

Starising with acastion (549) xeperted bexen

率地
 $(A 7.2) 2 s:$
$6{ }^{3}$
 in that tame maners

3

 rapialy than mutiplication operaitonss

9. A Enss Restrictive Assumbtion

 belden
 On the same pley.

 satidection scheme C^{2};

 wain that
 te only one player, and
(b) the probability of occumence or exactiy che of the entify's information sess is 2. 6 in exy repetition of the game for any ntratecies empluyad by the extities; anci

 ETHek

 enc Zvaston Gaine furmale

In cases where such dependence is present, use of a separation strategy of this type may be particulariy dangerous, for such a strategy does not place a value upon a state on the basis of the infornation that may be gained (or lost) by entering it.

FSOCES

 anco

2

on 0^{2} sues that

S" Proge of corollary (Sacion 5.4)

$$
\begin{equation*}
\cos ^{25} \tag{BE,D}
\end{equation*}
$$

位

[^41]\[

$$
\begin{aligned}
& \mathrm{Mr}^{\mathrm{a}} \mathrm{EA}^{\text {a }}
\end{aligned}
$$
\]

 3w 基

 and

petinition 多: For exy entity

 betw

为药

 1. Styex by

湶

 (2) peist

 . 5 - x,
bxity y

$$
\begin{align*}
& x^{4} \tag{33.7}
\end{align*}
$$

Sivais (20 系

$$
\begin{align*}
& E^{\text {eb }} \tag{33.10}
\end{align*}
$$

defined by Nash. ${ }^{12}$ For such games, Nash gives the following theorean.
Theorem(Nash): Every finite (noperson non-cooperative) game has an equilibrium point (in mixed strategies).

The proof of Theorem 2 of section 6.3 follows airectly from Nash's theorem and Levima 2 above.

4.0 proof of property 5 (Section 6.4.1)

Suppose that the protagonist is employing a periect-recall information collection scheme R^{p}.

From expression (5.5) we can write for any infomation set $\mathrm{I}^{\mathrm{P}}(\mathrm{k})$,

$$
\left.I^{p}(1)\right) p\left(E^{2}(2) \mid I^{p}(2)\right) 0 . v\left(F^{P}(k) \mid I^{p}(x)\right) p\left(E^{2}(I) \mid I^{2}(1)\right) p\left(E^{a}(2) \mid\right.
$$

$$
\left.I^{a}(2)\right) \ldots p\left(E^{k}\left(M_{k}\right) \mid I^{a}\left(M_{L}\right)\right) p\left(E^{n}(I) \mid I^{n}(1)\right) p\left(E^{n}(2) \mid I^{n}(2)\right) \ldots
$$

$$
\begin{equation*}
\left.p\left(E^{n}\left(I_{k}\right) \mid I^{n}\left(I_{k}\right)\right)\right] \tag{B4sI}
\end{equation*}
$$

$$
\begin{aligned}
& H\left(\left(X^{p i}, i=1, N ; Y^{a j}, j=1, M\right) \mid I^{p}(k)_{\ell}\right)=\left[\sum_{C_{W \mid I}{ }^{p}(k)_{\ell}} p\left(E^{p}(1) \mid I^{p}(1)\right) \cdot\right. \\
& p\left(E^{p}(2) \mid I^{p}(2)\right) \ldots p\left(E^{p}(N) \mid I^{p}(N)\right) p\left(E^{a}(I) \mid I^{a}(1)\right) p\left(E^{a}(2) \mid I^{a}(2)\right) \ldots \\
& p\left(E^{a}(M) \mid I^{a}(M)\right) p\left(E^{n}(I) \mid I^{n}(I)\right) p\left(E^{n}(2) \mid I^{n}(2)\right) \ldots p\left(E^{n}(I) \mid I^{n}(L)\right) . \\
& \left.h\left(E^{p}(i), i=1, N ; E^{A}(j), j=1, M ; E^{n}(m), M=1, I\right)\right] \div\left[\sum _ { C _ { W I } { } ^ { p } (k) } p \left(E^{p}(1) \mid\right.\right.
\end{aligned}
$$

where:
(i) $C_{W \mid r}{ }^{T}(x){ }_{2}$ indicates sumation over all plays w which contain a move in $\mathrm{I}^{\mathrm{p}}(\mathrm{K}){ }_{0^{3}}$
(ii) $C_{W I}{ }^{p}(k)$ indicates sumation over all partial plays leading to a move in $I^{p}(k)$,
(iij) M_{h} is the moner of moves for the antagonist on any partial play leading to a move in $\mathrm{I}^{\mathrm{p}}(\mathrm{k})_{\hat{U}}$, and
(iv) I_{y} is the mmber of moves for nature on any paxtial play leading to a move in $I^{p}(k)$.

Now, if K^{p} is a perfect-recall intormation collection scheme, then $I^{9}(k)$ specifites $W^{p}(i), I^{p}(i)$ for $i=1, k=1,{ }^{\dagger}$ so we can rerrite (34.1) as follous:

$$
\begin{aligned}
& H\left(\left(X^{p i}, \sum=1, M ; Y^{a j}, j=1, M\right) \mid I^{p}(k){ }_{2}\right)=\left[\prod_{n=1}^{k-1} p\left(E^{p}(n) \mid I^{p}(n)\right)\right] . \\
& {\left[\quad \sum p\left(E^{p}(k) \mid I^{p}(k)\right) \ldots p^{p}(N) \mid x^{p}(N)\right) p\left(E^{a}(1) \mid I^{a}(1)\right) \ldots} \\
& \mathrm{C}_{\mathrm{W} \mid \mathrm{I}^{\mathrm{P}}(\mathrm{k})}^{2} \\
& p\left(E^{n}(M) \mid I^{a}(M)\right) p\left(E^{n}(1) \mid I^{n}(1)\right) \ldots p\left(E^{n}\left(I_{1}\right) \mid I^{n}(I)\right) \cdot h\left(E^{p}(1),\right. \\
& \left.\left.i=1, N ; E^{a}(j), j=1, M ; E^{n}(m), m=1, L\right)\right] \div\left[\prod_{n=1}^{k-j} p\left(E^{p}(n) \mid I^{p}(n)\right)\right] . \\
& {\left[\sum p\left(E^{p}(k) \mid I^{p}(k)\right) p\left(E^{a}(1) \mid I^{a}(1)\right) \ldots=0 p\left(E^{a}\left(M_{k}\right) \mid I^{a}\left(M_{k}\right)\right) .\right.} \\
& G_{W \mid I^{p}(k)}
\end{aligned}
$$

FFor every information set containing any move on any partial play $^{\text {and }}$ leading to a move in $I^{P}(k) \&^{\circ}$

$$
\begin{equation*}
\left.p\left(E^{n}(I) \mid I^{n}(I)\right) \ldots p\left(E^{n}\left(I_{k}\right) \mid I^{n}\left(I_{k}\right)\right)\right] \tag{B4.2}
\end{equation*}
$$

Now, noting that all terms derined by ($\mathrm{x}^{\mathrm{pl}}, \ldots, \mathrm{X}^{\mathrm{p}(\mathrm{k}-1)}$) cancel out, we can write:

$$
\begin{aligned}
& \left.\left.Y^{a d}, j=1, M\right) \mid I^{p}(x)_{\ell}\right)=0 \quad \text { for } \operatorname{any}\left(X^{p i}, i=1, N ; X^{*} \sum_{i}, i=1, k-1 ;\right. \\
& \left.Y^{\mathrm{Qd}}, j=1, \mathrm{M}\right) \text { 。 }
\end{aligned}
$$

But similar arguments can be carried out for any information set $I^{p}(k)_{\ell}$ for $k=2, N$. By derinition then, $\delta^{p k}=0$ for $k=2$, wand thus the recall sensitivity of the protagoniat about any pair of behavior strategies ($X^{p i}, i=1, N$) on R^{p} and ($X^{a j}, j=1, M$) on $R^{\&}$ is zero if R^{p} is a. perfect-recall information collection scheme.

5.0 Proof of Theorem 4 (Section 6.4.2)

Suppose that the pair of behavior strategies ($x^{*}{ }^{*}, i=1, N$) on R^{p} and ($X^{\text {*aj }}, j=1, M$) on C^{a} corresponds to an entity-behavior equilibrium point. Taking the protagonist's paxit, we can then write:

$$
\begin{align*}
& \left.\left.\left.X^{p N i} ; Y^{* a j}, j=1, M\right) \mid I^{p}(N)_{\ell}\right) p\left(I^{p}(N)_{j^{j}}\left(X^{*} p^{j}, i=1, N-1 ; X^{p N} ; Y^{* a j}, j=1, M\right)\right)\right] \\
& \leq H\left(X^{*}{ }^{i}, i=1, M ; Y^{*}{ }^{\text {ad }}, j=1, M\right) \tag{B5.1}
\end{align*}
$$

 gtretegios amioyed by tite playasm.

$$
\begin{align*}
& \text { ara mily } \tag{35.2}
\end{align*}
$$

$$
\begin{align*}
& +8{ }^{3} / 2 \tag{35.3}
\end{align*}
$$

 $\mathrm{L}^{2}(\mathrm{~N})$, and (equmdent 3 raves for the extugenist on wry parbiail pley teantig to a nove in $x^{2}(E)$, so (5503) ven be zogrottton es:

 2 2

 Wy the dentaition of yecallosenstavity we nave:

Conbintug (35,6) and (85.7), we cotaing

 obtain:

$$
\begin{aligned}
& \text { (2x } \\
& x^{21} x^{22}
\end{aligned}
$$

Butit the sumetion texzi is the protagonisitis reeallmensitivity about
 we ean witu fyen (85.13):
 of the antagonizt, we can camy out for the antagonist, axgunents or' the dame type as those givon sove Por the protegonist, obtaining:

Finany then, notiog that the antagenist is maloying a perfectm

$$
\begin{aligned}
& 06^{6}
\end{aligned}
$$

$$
\begin{align*}
& 05^{7} \tag{85.16}
\end{align*}
$$

'6.0 Exoor of corroitaxy 3 (Section 6. 4.2)

 in the associated rom-conpexative gene pl, ead
(ix) abowt thich the protugonist hes a racallugensitivity which亡路 Ieat than \&

Frem Theoter 4, whaty we neve

$$
\begin{align*}
& { }_{62}{ }^{2} \tag{B6.1}
\end{align*}
$$

Frea Yon Melk

$$
\begin{align*}
& \mathrm{OD}^{\mathrm{F}} \tag{36.2}
\end{align*}
$$

 (6) oxtan:

Security Classification

DOCUMEHT CONTROL DATA - R\&D

I ORIGINATIMG ACTIVITY (Corporate Euthor)	Ia meport security clasmification
School of Electrical Engineering	Unclassified
Putdue University Lafayerte, Indiana 47907	26 GROUP

3. REPORT TITLE
ON BEHAVIOR STRATEGY SOLUTIONS IN FINITE EXTENDED DECISION PROCESSES

c.
a

9A OTHERFEPORT NORS; (Any othar numbere that may bo atationad thia raport)

10 a VAILABLLITY/LIMITATION nOtICES
Unlimited
11. SUPPL EMENTARY NOTES

12 SPONSORING MILITARY ACTIVITY
Air Force Office of Scientific Research
i3. ABSTRACT
The problem of determination of best behavior strategies for a decision maker In a two-person, zero-sum, finite extended decision process is considered.

In this problem, best strategles are defined to be those strategies thich maximize a player's expected return against all possible strategies that can be employed by the other player, and the decision process is thus considered as a twom
person, zeromsum, finite extended game.
In the report then, techniques are developed for finding best behavior stratem gies on arbitrary information collection schemes. These techniques malie it possible to search in any given game for strategies which are minimally complex but acceptably effective.

A doctor-patient medical game is "searched" using these techniques, and behavior strategies are found for the doctor which are more than 90% as effective but less than 10% as complex as the best strategy which results when the doctor gathers and retains all the information defined to be avaflable to him.

A pursuit and evasion game is also studied and best behavior strategies are detemined for the pursuer and the evader when both players gather and retain all the information defined to be available to each of them.

[^0]: ${ }^{4}$ Gamers in which each playery, at each move, kows sill pravious altermafilve woicen by all paxifes ane conthonly known as 安mes with pexfect Infopmation. Such granes can be solved by techniques which are far simpler than those whind we whal develop here.

[^1]: Tro be defined later: roughly, s measure of the influence of the forgotiten information on the expected return.

[^2]: In the verbal portions of the text, square brackets will be employed only for this purpose.
 thef. reference 1 , page 49 .

[^3]: Tor a scalar indicatang the protagonist's payofe in the two-person, zero-sum case.

[^4]: ${ }^{\dagger}$ See Appendix A, Note 1 for comments on a common game with this property.

[^5]: as they would be suatea for the anteronizt.

[^6]: TWe will describe this game using terms taken from the commodity mariket, but since the terms used are only altermative labels, an understanding of their technical meanings will not be required here. However, for interest's sake, the terms used are defined in Appendix A, Note 3.

[^7]: ${ }^{\dagger}$ See section 2.1; we are considering the "unknown" portion of the whees market as the "second party."

 TH The brokex, here considered as part of the market, uins a conmision with every change in the trader's market position.

[^8]: We can always construct a sumplifice equivalent game in which this assumption holds.

[^9]: In such a situstion, the protagonist is seid to heve "perfect information: "
 ${ }^{t}{ }^{t}$ Reperence 1, page 123.

[^10]: Hote that narure is considered to employ a behavior swrategy.

[^11]: Trote that undex some behavior strategies, every information set in $\operatorname{IP}\left(\mathrm{R}^{p}\right)$ will be realizable; and the the wheat-marset game, the total monber of infornazion sets is given by: $\sum^{\mathrm{MH}} 3^{2 i}$.

[^12]: Tsee Appondix \hat{A}, Note 4 for an example.

[^13]: TWe rule out games which are sirnle enough for aigebraic techniques.

[^14]: $\dagger_{\text {A move is insignificant if identical play structures and payofes }}$ result for any alternative chosen at that move.

[^15]: Degenerete mixed and degenerate behavior strategies are introduced in sections 3.8 and 3.9 , respectively.

[^16]: ${ }^{\dagger}$ See Appendix A, Note 5 for an exarmple of this construction.

[^17]: The proof is given in Appendix Bo

[^18]: The nethed and ita properties win be described in terus of our deffinitions and notetiox.
 ${ }^{\text {t }}$ See Appenais A, Note 6, for observations on the intuitive appeal of the method.

[^19]: Tn section 50.102 we argued that pure strategies exist which maximize [minimize] this expressiona

[^20]: The dexivetion of equations (5.11) and (5.12) from equations (5.9) and (50.10) is given in Appeadix A_{s} yoote 70
 $H\left(63^{Y}(j), n^{p} ; \in P^{2} ; C^{2}\right)$ may be used which reduce the anount of computam tion requảred in each repetitiong see Appendix A, Note 8.

[^21]: The protagonist in the minestomeriket geme with $N=4$ has $10^{17.5}$ pure strategies when mploying its complete informetion scheme.

[^22]: TRecall that the set of 011 behavior strategies on any information collection scheme R^{p} contains a degenertete behevior strategy equivalent to any pure strategy on R^{p} 。

[^23]: $\hat{T}_{\text {Recall }}$ that this was our original aim; see equation (5.13).

[^24]: A anishty mote ernerat assurgtion cost be made; see Appendix A, Note 9.

[^25]: TThe "card" game.

[^26]: The gane we uisin to conataer is completeiy described fin whi

[^27]: ${ }^{\dagger}$ A total of M expressions of the form of 6.2 . ttithe proof of this theorem is given in Appendix B.

[^28]: The proof of theorem 4 is given in Appendix B.

[^29]: The proof or Corollaty 1 is given in Apperdix B.

[^30]: ${ }^{\text {twe described in gection } 6.2 \text {, the manner in thich an associated }}$ game [' is constdered to be played.

[^31]: Tn the case of geveral meximon [rinimom] eleasnts in a given partitions, the choice of which one lis to correspond to the 1.0 entry

 thtote thet fais zrokuet yiclas a vector.

[^32]: Tonly minor modifications to the proof of theoran 4 are required to establish this restatemert.
 ${ }^{\text {Hthepley }}$ (reference 13) hes giten a class of games for which the method of sictitious play will not converge, hovever, this class of games cennot te transformed into a clatso of games of the type that we are consitering.

[^33]: Trecoll that both the mursuer and the evader are cmploying their

[^34]: Tin Amperdis Ay Hote 10, we coment on hor the numbers were chosen in thise examele.

[^35]:

[^36]: Thee Appendix A, Note 11, for coments on the sizes of these quelity differences.

[^37]: \hat{T}_{T} is considered "appropritate treatinent" for e_{j}

[^38]: Total number of entities: 14; 9 for doctor, 5 for aevil

[^39]: Tsee gection 4020

[^40]:

[^41]:

