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FOREWORD

This document is subnitted as an interim report om the rarefied-
gas viscoseal investigation, which is part of the“Fuﬁdamental Study in
Low-Density Gas Dynamics currently being conducted in the Department
of Mechanical and Aerospace Engineering at the University of Tennessee.
Support for this work was provided by grant NGR~43-001-023 from the
National Aeronautics and Space Administration Lewis Research Center.

This report was submitted to the University of Tennessee in

§ partial fulfillment of the requirements for the degree of Master of

Science with a major in Mechanical Engineering, and is presented here
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ABSTRACT

This ﬁhesis containg a detailed investigation of the rarefied-gas
viscoseal model proposed by Hodgson. Modifications to his basic model
are made to make its application more general. The modified-Hodgson
model is used to predict seal leakags rates. Since the model does not
lead to an explicit determination of the pressure difference at zero
flow, Newton's method is applied to solve for the pressure difference.
An improved analytical model is developed to predict continuum and
8lip regime performance. This model leads to an explicit determination
of the zero flow pressure difference and also lends itself to predicting
optimum seal geometries. An optimization procedure is developed and
applied to a epecific application. Comparison of the two models with
available continuum data shows that the agreement with the improved
model is goed, while the modified-Hodgson model shows only fair agree-
ment. The improved model alsc shows good agreement with rarefied sealing
coefficient and leaksge data. The modified-Hodgson model agrees well
with the more rarefied sealing coefficient data available, but its
agreement with slip regime data is poeor. The leakage prediction of
the modified-Hodgson model is in poor agreement with all available
leakage data. Based on the comparison with experimental data, the

improved model appears to be the more promising of the two models.
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CHAPTER 1
INTRODUCTION

In recent years much attention has been focused on the viscoseal
as a highly efficient sealing mechanism. The viscoseal, a rotary
shaft seal, consists either of a threaded shaft rotating in a smooth
close fitting housing with a small, but finite clearance or a smooth
shaft rotating in a threaded housing. In either vase the sealing effect
is produced by the balance between the flow induced by a pressure
gradient and the flow induced by rotation.

A very important application of the viscoseal is found in shaft
éealing devices operating in a space environment. The purpose of the
sealing system would be to seal a2 shaft one end of which is exposed
to a relatively high density working fluid while the other end is
exposed to the vacuum of space. Since the working fluid undergoes a
change from a continuum state at one end to a highly rarefied state
before exiting to space, rarefied gas.dynamics must be applied to the
analysis of at least a portien of the seal,

To date much research, both analytical and experimental, haa‘Been
done on viscoseals using liquids as the sealant, while relatively little
research has dealt with gas-type viscoseals. Hodgson and Milligan.(l)l

conducted an analytical and experimental investigation of the performance

LNumbers enclosed in parenthesés refer to-similariy numbered
entries in the List of References.
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of visco-type gas seals operating in the continuum flow regime. Baron (2)
conducted an expervimental investigation of viscoseal performance in the
continuum regime with air and hydrogen as the sealants.

In the flow regime between continuum and the highly rarefied free-
molecule flow, few theoretical and/or experimental investigations have
been conducted. King (3) conducted a theoretical analysis in which he
treats the flow in the viscoseal as continuum flow with slip boundary
conditions. He presents experimental data in support of his theoretical
analysis. Milligan and Wilkeréon (4) have presented a viscoseal model
which is a modification of the laminar continuum model.of Beon and
Tal (5) incorporating slip boundary conditions. Since the Beon and Tal
model is based on.the Reynolds lubrication equatiomn, the model of
Milligan and Wilkerson is known as the slip-modified Reynolds medel.
Wilkersoen (6) has conducted an analytical and experimental investigation
of rarefied visceseal.perfermance..

All of the analytical efforts mentioned abeve have dealt .only
with the slip flow regime. The only investigator to date who has
attempted to analyze the entire flow spectrum including the free-molecule
regime is Hodgson (7). He developed .z medel similar to the one proposed
by King (3), but which is extended to the free-molecule regime. Heodgsoen
formulates his flow models . along the lines of the semi-empirical approeach

first taken by Knudsen (8) in his long tube work.
I. Statement of Problem

The investigation reported here concerns a complete examination eof -

the rarefied viscoseal model propesed by Hedgson; modification ef this



bt

model to mske its application more general; and the development of a
simpler improved model, the advantages of which will be pointed out.
Previous work in the field of rarefied gas dynamics is adapted to the

development of this improved model.
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CHBAPTER II1
REVIEW AND MODIFICATION OF THE HODGSON MODEL

As was stated previously, the model developed by Hodgson (7)
is by far the most ambitious attempt at solving the rarefied viscoseal
problem. At this point it is desirable to review this particular model
in detail and indicate where improvements can be made,

Hodgson chose to analyze the particular configuration where a
smooth shaft rotates within a grooved housing., It will be shown
later that the analysis for the grooved shaft and smooth housing 1s
identical to this configuration. This being the case, Hodgson's model
is not as restricted in this respect as it might appear.

Hodgson considers the flow in the visceoseal to be composed of
three basic components: (1) the pressure induced flow along the grooée,
(2) the pressure induced flow over the lande, and (3) the rotor induced
flow in the groove. This treatment of the flow is quite common and is
exactly the way King (3) chose to break up the flow, Figure 1 shows a
representation of the flow components, QL’ QR’ gnd Qg represent the
pressure induced land flow, the rotor induced groove flow and the
pressure_induced groove flow, respectively. Hodgson also restricts his
considerations to a seal with a single thread start.

In his development of the two pressure induced flow components,
he talies the semi-empirical approach of Knudsen (8) in describing the

flow throughout the entire regime from continuum to free—molecule flow.
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Figure 1.

Viscoseal Flow Components.
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In his long tube work Knudsen found that his experimental data could

be described by an equation of the. form

In the continuum limit Knudsen reduced Equation (1) to Q = yP g%

and by equating this to the known continuum solutivn, he was able to
determine Y. In a similar manner as the free-molecule limit was
apprecached he reduced Equation (1) to Q = 3%%- and by equating this

to the known free-molecule solution he determined B. By considering the
slip floy regime, Knudsen was able to determine the ratio V/E by

noting that Equation (1) becomes Q = (YP + Bg}%%- and equating this

to the known continuum with slip solution. Next Knudsen determined the
difference £-v from a consideration of nearly free molecule flow and
thus was able tc determine both £ and V. He then applied experimentally
determined corrections to £ and V so that the experimentally observed
minimum in the (/AP versus P curve would be correctly predicted.
Krudsen applied the analysis above to a long circular tube. In his
analysis Hodgson applies the_idégtical procedure to his treatment of
the pressure induced flow in the groove (a long rectangular duct)

and the pressure induced flow over the lands which he takes to be

a narrow slit.

I. Pressure Induced Flow in the Seal Groove

Hodgson assumes that the pressure varies continuecusly along the
axis of the seal groove from a \'r'alue of -Pz at the high pressure end

to P; at the other end. In order to determine the pressure gradient

3N

o



along the groove axis, it is necessary to relate the length of the
grnove, Rg, to the seal length, L. A development of a viscoseal is
shown in Figure 2. Hodgson only considered seals with a single thread.
The development that follows is generalized to any number of thread
starts, n .

s

In Figure 2 line AB is drawn perpendicular to the grooves. The

nuwber of turns of spiral that AB crosses is equal to the total number,

0., of complete turng on the seal which can be expressed as

The length nf groove per turn of spiral is md/cos 0. The total groove

length on the seal is

md , Lcoso Lmnd =

QT cos & w+b w+b
The length of each groove is then

_ L7d

2 S TR .«
g n, ns(w + b)

It follows that

& _ P ) ns(w + b) ar
dlg d[Lﬁd Td dL °

o (v ¥ b))

Hodgson indicates that the groove pressure gradient in a single threaded

seal is

dP _w+b dp

ar T md 4L
g

from which it follows thet the flow in a groove of a multi-threaded

seal is B, times the flew in the groove of a single threaded seal of
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the same groove width, land width and diameter, Since there are ng of

these grooves, the total groove flow in the multi-threaded seal is nz

* wva

time the flow in a comparable single threaded seal. The total groove

flow is then

1+ ClP\dP
1+C

/. ]!
2P dL

Q = ni ((BP + C (2)

8

where the bracketed term is the single threaded groove flow developed

by Hodgson. The constants B, C, Cqi» and C, depend on the geometry of
the seal and the properties of the sealant and are given in Appendix A.
Appendix A also centains a discussion of the flow models used by Hodgson

to obtain thesge constants.

II. Pressure Induced Flow Over the Lands

Based on the assumption that the pressure varies continuously
along the helical groove, Hodgson shows that the effective pressure

gradient for the land flow is.

dpP w+b dpP
@ = e o

This pressure grsdiient applies equally well to both the single and multi-

threadud seal., The land leakage flow for a seal of any number of threads

is then
1+C.P
3 dP
QL [DP + E --—-———-*1 T C415,] —a-i (_3)

vere the constants D, E, C3, and C4 also depend on the seal peometry

and the properties of the sealant and are given in Appendix A along

with a discussion of their origin.

y
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IITI. Rotor Induced Flow

Hodgson takes a simplified approach to the prediction of the
rotor induced flow. Ia Figure 3 a groove cross section 1s shown with
the rotor moving over the top of the groove. Hodgson develops the rotor
induced flow on a molecular basis, but as he points out a continuum
approach yields the same result. It is assumed that the rotor induced
flsw is. the same as the flow obtained in a long rectangular duct of
width b and height h in which the upper wall moves with velocity
U cos o (the component of the circumferential velocity of the rotor
along the axis nf the groove). Rather than solve the describing
differential equation for parallel flow, Hodgson chocses to compute
the volume flow based on an area-weighted average velocity. This average

velocity is

= _ (U cos )b+ (2h + b)(0) _ . Ub

" 20b + h) 2(b + hy °°8 &
The total rotor induced flow is thus
Ub2h
Q =g 5@ v 1y co8 ¢IF = nAP (%)

where QB is generalized to a multi-threaded seal.
IV. Total Seal Flow

The flow rates given.by Equations (2, 3, and 4) are superimposed
to give ihe total flow in.the seal which can be expressed as.

1+ C.P 1+C.P

2 £ ap 3. ap -
Weommg Byl - PP Byl Tt )

where flow in the direction of decreesing ?ressure is corsidered pesitive.
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V. Solution of the Modified--Hodgson Equation :

Unlike Hodgson's basic equation, Equation (5) is applicable to a !
seal with any number of threads. There are three solutions to Equation :
(5) which are of particular interest, These three cases are: (1) the flow
rate through a non-rotating seal, (2) the flow rate through a rotating
geal, and (3) the pressure difference across a rotating seal when the

net flow is. zero.

Flow Rate in a Static Seal

The volume flow rate at uni’ pressure, Q = VP, is related to the

molecular flow rate, n, by

: t—1 i'
n= %T

For the case of a non-rotating seal (QR =.0), Equation (5) can be

integrated to obtain the apecific molecular flow rate

A 2 &1 €y
N kTL {(nB+D)P+n c-é~2-+EEZ
* “5 0022-"01 é’ - i) in [: (41~ :cz‘; i)1+ l] ?'
2c;, P r P
04-031:-{-1 r(1+2CP)+1
+B=5—= (F—7) In [-F 1}, (6)
04P P rp + 204P + 1

Flow Rate in.a Rotating Seal

Assuming a constant pressure gradidnt along the groove, the total

rotor induced flow en a.molécule buuis 1s
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n AP nA r +1
-..2 - __8 (-2 ]
kTAP 2kT rp -1

(7)

*
LU
A

The net flow through a rotating seal is found by combining the rotor
induced flow of Equation (7) with the flow in the static seal, Equation

{6). The net specific molecular leakage is

[ ) c C
a__ 1 2 Y 2, 1 3
AP = T {(n“B + D)P + n_C c, + E C,
r +1 C r (1+2C.P) + 1
+3 [EB——llc g,__ L (2t
' o P "y 4+ 2C.P+1 .
2 ° P 2 -
c, - C4 (1 4+ 2C P) + 1 :
+E-—?2—-—ln( )-nSAL]}. (8) .
c, P r + 2C,P + 1 ;
P 4

Pressure Difference at Zero Net Leakage

Since a rarefied visccseal, in the {ideal case of a true space
environment, will normally operate with P; = 0, it would be impossible
to maintain a zero net flow. However, the condition of zero net flow
is of interest as far as experimentation and compariseon to continuum
performance are concerned, and in non-space applications where Pl # 0,

The maximum pressure difference under which a seal can maintain
a zero net flow is found by salving_the modified-Hodgson model equation

subject to the condition that QN = 0. Integrating Equation (5) subject

to this condition one obtains C . _ ;'”
2, n C( Y - Cy :
[?P + AP: . C+E 2 + C (2P + AP 2 E'+ C4(2P + AP) CEZ -1
2P - AP 2 + cz(zr - AP 2 + 04(25 - AP)

= exp [hsAL - (nzB + D)AP]. (9
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In general Equation (9) cannot be solved explicitly for AP, For the
special case of continuum flow 2P > > AP, the continuum A™ can be
obtained from Equation (9) as

nsAL

2

—_ (10)
nB+D
8

AP =

At the other extreme,. free-molecule flow, Equation (5) can be reduced

to its free-molecule limit,
Q. = - (¢ + E)YSE - 1 AP (10a)
N 8 dL -

Since in the free-moliecule limit P is very small, the last term in
Equation (10a) cculd presumably be very small; but since efficient seal
performance requires that the rotor induced flow be of the.same order
of magnitude as the pressure induced flow, this term is retained.
Solving Equation (10a) subject to the condition that QN =, 0, the free-

molecule pressure ratio becomes
r = exp [n AL/(nzc + E)] (11)

The AP across the seal can be expressed as

r. — 1

- 2. -
AP = 2P S (12)

Combining Equations (ll) and (12), the AP in thé free-molecule regime

is . 2 .
_ exp [nSAL/(nSCr+ E)] -1

Ap = 2P — > — . (13)
exp [nBAL/(nSC + E)] + 1

Since no explicit seolution to Eqﬁatién_(g) caa in general be .

obtained, some approximate solutien technique must be empleyed. Since

gy
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Newton's method of approximating roots is generally a rapidly converging
iterative method, it is employed in solving Equation (9). Newton's
method requires that the given relationship be differentiable.
Equation (9) can certainly be differentiated. Another very important
requirement is the ability to make a close initial approximation to the
solution. This requirement is particularly important with a complicated
relationship such as Equation (9).

In order to make a close approximation to the roots of Equation (9),
one needs to know as much as possible before hand about the character
of the solution. At this point two characteristics are known: (1) the
continuum limit, Equation (10), and (2) the free-molecule limit,
Equation (13). Figure 4 shows the general character of these limits
for a given seal operating at a given speed. The solution of Equation (9) -
will simply define the behavior over the entire range of average
pressures and approach the continuum and free-molecule limiis at the twe
extremes. In order to make a clogse approximation to the value of AP
which satisfies Equation (9) for a given f; a high average pressure, 5&,
is chosen initially such that the continuum solution from Equation (10)
is a good approximation to the root of Equation (9). Using this initial
approximation for AP, Newton's method is employed to solve Equation (9)
for the AP atlgi. An incremental decrease, AP, in the average pressure
is then taken and the AP obtained from the previous iteration at P, is

1

used as the initial estimate of the soelution for AP at'i?_2 and the

iteration process is repeated to obtain AP, The entire process is

repeated to obtain AP at,P3, Ph’ etc.
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Essentially the above process could be continued until the entire
spectrum of pre¢_sures had been traversed, but the process encounters
difficulties in the shaded region of Figure 4 near the intersection of
the continuum and free-molecule asymptotes. In the region to the right

of the shaded area, the AP versus P solution of Equation (9) is fairly

flat, thus making the solution at 5; _ 18 good approximation to the

root at ?;. In the shaded region, however, the rate of change is so
large that the method used above for the initial estimation of the
solution is not sufficiently accurate. Two simple modifications to
the .above method can help to ensure a close approximation of the root
at f;. An obvious modification would be toc reduce the step size, AP,
An enlarged view of the curve in the shaded region is shown in Figure
5. Since all previous poeints §i through 5;__ 1 have been determined,
these points can be used to extrapolate to an initial approximation
at ?g. Essentially an extrapolation of order n - 2 could be made,
but experience has shown that a linear extrapolation combined with
successive reductions in AP is sufficient to ensure convergence at

P .

After passing through the critical region in the vicinity of the
intersection of the asymptotes, the curve esgentially assumes the
gtraight line predicted by Equation (13). The selution is thus
complete.

The Fortran programs fer the solution of Equation (5) for the

three cases outlined above are presented in Appendix D. The flow rate
in a static seal is simply a special case (QR = 0) of the rotating
selution. Consequently only one. program is needed for the flow rate

solutions.
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The modified-Hodgson model provides a convenient means of
predicting the performance of a given viscoseal. The limiting
conditions of Equations (10) and (13) can conveniently be used to
predict optimum seal geometries in the purely continuum and purely
free-molecule regimes, respectively. In the transition regime,
however, Equation (9) would be very difficult to use in an optimization
study because of the time consuming solution method. In the next
chapter a simpler transition regime model is developed in which the

non-leaking pressure difference can be obtained explicitly.



CHAPTER III
DEVELOPMENT OF AN IMPROVED MODEL

In this chapter a simpler model than the modified-Hodgson
model will be developed which will lmnd itself to a less arduous
solution in the transition regime and will also correctly predict the
continuum performance. The model also predicts the rotor induced flow
in a more rigorous manner. Many of the concepts used in the development

by Hodgson will be employed in this chapter.
I. Basic Model Development

The basic model will be essentially the same as the one used by
Hodgson and which is basically the same as the simplified screw
extruder theory presented by Carley, et al. (9). The assumptions
inherent in these models are: |

(1) the total flow in the seal can be treated as the super-

position of the leakage flow in the grooves, the leakage
flow over the lands and the rotor induced flow in the
grooves,

(2) the pressure varies continuously along the groove and

is constant over the cross section of a particular groove,
(3) the grcove depth is small compared to the diameter of

the seal, thus allowing curvature effects to be neglected

in the groove flow development,

20
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and
(4) the flow in a seal with a grooved housing is identical to
the flow in a seal with a grooved shaft.
Assumption 1 obviously neglects the convective coupling of the flow
components. The solution without this assumption is extremely
complicated for even purely continuum flow (10)., Its exclusion would
certainly lead to an even more complex analysis when non-continuum
boundary conditions are applied. Since the objective is the development
of a simplified theory, the inclusion of assumption 1 is a necessity.
Assumption 4 is discussed in greater detail in Appendix B, One
important assumption that is usually made which is not made here is
that the groove gidewall effects are negligible. This assumption is
one of the prime distinctions between this analysis and the slip-
modified Reynolds model in which this assumption iz made.
The assumptions governing the develcpment of the component
flows are:
(1) the flow is steady, constant viscosity, fully developed, isothermal
and Newtonian with negligible body forces,

(

I

} the Navier-Stokes equations with non-continuum boundary
conditions are applicable,
and
{3) the non-continuum boundary conditions can be expressed

as (11)

Sy
vlwail VA B eeall’
In the development of the flow components, flow models which have been
experimentally verified will be used and reference made te¢ their

verification,
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II. Flow in the Groove

Although most previous investigators have initially treated the
groove flow in two parts, this analysis will initially treat the groove
flow as a single flow from which the two previously mentioned groove
flows are eventually obtained.

Based on the assumptions stated above, the Navier-Stokes

equations reduce to the single z-momentum equation

2 2

1
e Rl )
ox ay

The applicable slip boundary conditions shown in Figure 6 are:

2 (0,7) = 0 (15a) o
ox o
— v — i
v(b/2,y) = = AA == (b/2, y) (15b)
ox s
v, 0) = & A &, 0) (15¢) ;‘
dy
and
v(x, B) = - U cos o = A A *L(x, h) (154)

oy
where advantage has been taken of the symmetry about ﬁhe Sr_-axis. The
slip coefficient, Al’ is usually taken as unity as will be done here.
It is convenient at this point to non-dimensionalize the velocity
and the coordinates and introduce an index of rarefication. The non-

dimensionalized variables are taken as

x = %/ (b./2) v = y/h  and u =
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Figure 6.

Groove Configuration.

NI
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A common index of rarefication, the Knudsen number is taken as
Kh = A/h o.

Introducing these new variables into Equations (14} and (15) one obtaims

2 2

%u, a2 2%, __b° @ R (16)
3x2 2 3y2 4UU cos o dz U
where
b2
R s —em ...(_':]'-..I_,.. ™
fMcos O dz
and the boundary conditions are
2u (0,y) = 0 (17a)
ax Y a)
2 Jdu
u(l, Y) == “—'a—_;( ) ) (lTb)
ulx, 0) = K Bx, 0) (17¢)
3 K11 ay ]
ar-
i, 1) = - 1 -k S, 1), (17d)
3y

Many techniques have been used to solve nen—-homegeneous problems
of the type presented above, The léast arduous is a modified form of
the method of variation of paramepers.(12). Thié method has been
employed successfully by Ebert and Sparrow (13) to solve Equation (14)
with four homogeneous boundary conditiens. In the case considered
here Equatidn (174d) presents'a'non—hémogéneous boundary condition, but
the method used by Ebert and Sparrew still leads to a selution,

The method of variation of parameters is a generalization of the

methed of separatien of variables, and as such, experience gained from
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employing the latter is helpful when applying the former method. 1In
the method of separation of variables, the sign of the separation
constant is taken so that the trigonometric sclution is obtained for
the homogeneous direction. 1In the method of variation of parameters
the same reasoning is used in the assumption that the solution has the
form

u(x, y) = L ¢n(y)(cos o _x + C

sin a x) (18)
n
n=1

5

where the x-direction is the homogeneous direction determined by an

inspection of Equations (17). The function ﬁn(y) is a yet unknown

function of y. One now proceeds to determine ¢n? o s and CS'
Substituting Equation (18) into the boundary condition of Equation

(17a) one obtains .% fi

1 4 8

I 8 _(v) [Csa cos (0) - a sin (0)] = O

which implies that Cg = 0 and that

e o]

u(x, y) = Z ¢n(y) cos & X . (19)
n=1 '

Substituting Equation (19) into Equation (17b) gives

2K %
a

N o4 8

¢n(y) [ cosa_ -

sin an] =0
1

n

from which it follows that for a non-trivial seolution

2 o
cos o - -EEL-JE sin g =0
n a n

or

un tan_an e . _ (20>

T
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The eigenvalues, dn’ of the eigenfunctions, cos unx, are the roots of

the transcendental relationship of Equation (20).

The problem now reduces to determining ¢n(y). Substituting

Equation (19) into Equation (16) yields

. 2 2_2 - "
- I a ¢n(y) cog o x + (2) )3 ﬁn(y) cos 0, x
n=1 n=1
=R % i cos 0. X
U n n
n=1

where Qn gsatisfies the Fourler series
o0
1= % 2 cos O XK.
~ n n

The Fourier cosine series coefficient, Qn, must be

2 sin O
n

2
n ¢ 4+ sin 0 cos O o
n n n n

[ sin On 1

- 2
1 4+ ZKh sin an
a

whare the last step comes from Equation (20).

In order for Gn(y) to satisfy Equatien (21), it must be that

: 20Ln 2 ARQﬁ
¢n(y) - ﬁn(Y) = i

The determination of ¢n thus reduces to the solution of a non-

homogeneous second-order ordinary differential equation.

conditions on ¢n(y) are obtained from Equations (17c) and (17d).

From Equation (17¢) one boundary condition is

9 (0) = K 9 (0).

(21)

(22)

(23)

(24)

The boundary

(25a)



27

Substituting Equation (22) for the unity term in Equation (17d)

leads to the second boundary condition,
Y P —- 1
@ (1) Q- K@ (1). (25b)

The solution of Equation (24) subject to the boundary conditions

in Equations (25) is

—eny —Gny Rﬂn
¢n(y) - (Clnp + Clnu)e + (C2np + CZnu)e - UGZ (26)
n
where
20
o =——
n a
' - -€, -
c _ Rﬂn [(1 Khen?e | (1 + Khen) ]
Lnp 2 _ 2 -8 _ 2 8,
U an (1 Khen) e n 1+ Khen) e
. 2 (1 +K86.)

1nu 2 -6 2@
(1 - Khen) e I - (1 + Khen) e n

N 0
. ) Rﬂn [(1 - Khen) - (14 Khen)e n
Znp Uai (1 - Khen)ze'en - (1 + Khen)zeen

C, = =- 4,0 - K8y
n 7 o, 28,
(1-K®8 )% - (lL+Ke)%en

By substituting Equation (26) back into Equation (19) the
dimensionless velocity distribution becomes, after considerable

simplification,
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o« o
U(x’ Y) .ﬂ 2 sz o ‘%2' B [ szn = 2 ].
HU cos @ dz .7 "y 4+ %K g4n o
a
20y o 20y
cos O X cosh - - tanh~;~ sinh
[ 1[ -1
a3 142 thn tanh_iﬂ
n a a
o« sin OLn cos ctnx
- i 2 1 1 ].
ne=1 1 + 2Kh sin2 un an
a
20,y 2K o 20, y
sinh L + K: n cosh 2
2Khot 2 70 WK 7 1. (27)
[l + (— sinh 3 + 5 n cosh‘uz—

The volume flow rate in the grcove is obtained by integrating the
velocity distribution over the area of the groove. The volume flow

rate thus ebtained is

2
e b3h a ; a : sin o y tanh un/a ) Egﬁ
g 20 dz _ _ 5 2 2K, o o, a
n=l %1+ ———-Kh sinf o 1+ -——Kh—ﬁ tanh -2
a n a
oo a gin2 o tanh an/a
-Ubhcos a Z — | 10 1.(28)
n=1a 3 Kh 2 2 %n. “a
n 14+ 2~ sin”™ o l 4+ ——— tanh —
a n a a

The first summation term represents the pressure induced flow in the
groove whereas the second term represents the rotor induced flow.

The linearity of Equation (14) has been demonstrated in the
analysis above since the solution of Equation (28) can be shown to be
the sum of two selutions. The first term is in agreement with the
expression obtained by Ebert and Sparrow (13) for slip flow in a
rectangular duct with staﬁionary walls., Milligan and Patterson (14)
have experimentally verified the solution of Ebert and Sparrow., The

last term 'is the solution of V2v = 0 with the boundary conditions given.
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in Equation (15). It is thus demonstrated that it

is permissible to

obzain the two solutions mentioned above independently and then to

add them togethexz to arrive at the same result as Equaticu (28),

At this point it is interesting to determine Vé when the Knudsen

number approaches zero, the continuum flow regime.

the eigenvalues becomes

cos o =0
n

or

o = nT

n """i ns= 1, 3, 5, 7 .

With these eigenvalues and with K0, Vé becomes

3 -]
1l6b™h dP a nT T
V! = — I = { tanh -— - 5~
gc ﬁ5u dz _— nS 2a  2a
8 o0
-SBheos f 5 tam T
m n=1 n
n-= l’ 3, S, 7 * .« e

III. Correction to Rotor Induced

The solution fur

(29)

Flow

In the analysis above it was assumed that the rotor velocity,

U cos ¢, acted at the top of the groove (§'= h).

Ne attempt. was made

to account for the fact that the roter is not located at §'=.h but

 rather at ¥ = h + ¢. Since an exact analysis of the region‘above the

groove, hr£,§'§_h + ¢, has been shown to be very complex even for

continuum flow (10), some sort of approximatien must be made to obtain

a simple solution. The following assumpﬁions are

made: (1) the flow

._“,_,_.‘:.
. .
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induced by the rotor in the region h §_§'§_h + ¢ does not contribute

to the seal discharge and (2) an effective inducing velocity less than
U cos @ acts at y = h as a result of the clearance region h §_§'§_h + c.
This effective inducing velocity, Ue’ will be determined by calculating
the average velocity in the plane'g = h of a hypothetical groove of
depth h + ¢ and width b with the upper boundary moving at U cos O and
with slip boundary conditions on all surfaces. The hypothetical

groove and associated boundary conditions are shown in Figure 7. The
brackets in Figure 7 indicate the portion of the boundary over which
each boundary condition is applied.

From Equation (27) the velocity distribution induced by the rotor is

® 2 s8in an cos anx
v. =Ucos & L — [ ]
R s} 2
ns=1.l n 2

l +—=8gin" @
a n

200y 2K o 200 y
sinh n + Kz n cosh L

2K o 20, L% o 20,
Kh sinh an + Kl; B sosh -——a“

] . (30)

[l+(

If Equation (30) is applied to a groove of depth h + ¢, the resulting

distribution is

oo 9 sin dn cos anx
1 _ “ - .
Ve U cos an i ) a [ 2Kh. 2. ]
1+ o sin an
20, y' 2K'a 20, y'
sinh n, + Kh,n cosh - n
[ 2 2 ]
- 2 an 9 2a 4Khoc 20, ’
[1L+ ¢ Y“] sinh Py y cosh-—;%

where

//"
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The eigenvalues of Equation (20) are still the same because

al

x, T ]

The average velocity at the plane y = h or y' = o : = ig

&

1
U, = / viGx, h/(h + c))dx.
0
Carrying through the integration, Ué becomes

o 1 sin2 an
U =20 cos & L ~— [ |
n=1 dz 2Kh 2
n 1+ Tsin o
20, 2K, o, 20,

sinh + Kh n cosh ——
L 1 ara— Za_ WK 2o
1+ (—By2y g By D osh —2

a a a a

or

U =
e [U cos a]IEc

where the EC ig equal to twice the summation in Equation (31).

The

Lerws

(31)

(32)

corrected groove flow is now ohtained by replacing U cos 0 in Equation

(28) with [U cos a) Ec. The total groove flow ndw becomes

3
v o . bh dP _
Vg 2 dz Ep U bh cos a[Zch]

(33)
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9 a

e a_ gin” a tanh 2 otn
I .= I 5 [ 1[ - —]
P N o 25 2K, o o a

n I n 1 +-;h sin2 o 1+ Kﬁ tanh -
o
o a_ sin otn tanh—-g-
T B T .
1 +—— sin™ o l 4+ ——" tanh —
a a a
and 2
o0 2 sin™ d
Eo= I I 1
c 2 2
n 1 cy'n 1 +-—EE sin2 o
20, 2K, o 20,
sinh L Kh n cosh‘-5
ke TR— TR
o o ol
(1 + 012}152] ginh a? + Kz n cosh*—zg

In terms of the viscoseal geometry

.Q:.E;-P_ =—._-———-—-—ns(b+W)-d-P_=sina_d-'?i
dz 4% md dL aL '’

and since the pressure gradient in the viscoseal is assumed to be constant,

~ AP
iz " sin O I °

(34a)

(34b)

(34c)

(35)

(36)

The total groove flow 1s obtained by multiplying Equation (33) by n .

Neting that n_ = (1d) sin /(b + w) the total groove flow becomes

V =n G' = deShAP Binz o - Undbh cos O sin © g T
g 5 B 2uL (b + w) P (d + w) ure

IV, Land Leakage Flow

The land leakage flow is.taken as flow through a long annulus,

Milligan et al. (15) have developed an expression for slip flow in an

annulus and have obtained excellent experimental confirmation of the

expression. The expression derived by Milligan is
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4
_ na®  ap
VL~ 128 TR AL (38)
where
2
2.2 K (1 - K)
A e e R 1.
K 1n K - K_(1 - K°)
2 2 1 - x%H?
[2ZK(K" = 1) - 2K(ln K)(K™ - K + 1) iy P
+ 21 - k5Q - K)ch], (39)

and-%% is the effective land pressure gradient. For a single-threaded
L

seal, Hodgson (7) showed based on assumption (2) at the beginning of

this chapter that

dp w+ b dP

As was stated in Mhapter II, Equation (40) remains valid for a multi-
threaded seal. This point is verified in Appendix C.

Combining Equations (38) and (40) the land leakage flow becomes

4 4 X
= . T™ ' (w+b) cos o 4P _ md (w + b) cos o

V. Total Seal Flow and Sealing Coefficient

The total seal flow is obtained by combining Equations (37) and

(41). The result is

4 _ 8, |

ucu

where

¥

i

e
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ﬂdbsh sin2 o

A, = 2(w + b)
4
A = md (b + w) cos o
c 128 w
and
A = 'n‘dbhc2 cog O s8in ¢
u 6(w + b)

The specific molecular flow rate ia

AP AP kT
or
5 3u ?p t 1
A _ P (AL +AA)-—=—[-R—=1[AZC] (43)
AP WLkT PP ¢ L csz rp 1 ucu

where Equatien (12) 1is used to eliminate AP.
A common dimensionless viscoseal performance index (i, 4, 5, and

16) is called the sealing coefficient and is defined by

6uu

CZA

o

Az

|

(44)

w

where AP is the pressurce difference at zero flow. By equating Vp to
zero in Equation (42), the sealing coefficient is obtained as
%PZE,+ AcAL

AL L .

ucu

A=

(45)

Program three of Appendix D computes the specific melecular
flow rate from Equatioen (43) and the sealing coefficient from Equatioen
(45). In order to evaluate the summations, Ep’ ch and Eu, it is
necessary to determine the eigenvalues which satisfy.Equation (20).
Newton's methed of approximating roots is employed teo seolve Equation

(20) for these eigenvaiues at each Knudsen number.



CHAPTER IV

OPTIMIZATION USING THE IMPROVED ANALYTICAL MODEL

Equation (45) presents an -explicit determination of the performance
in the transition regime, a vast improvement over the Hodgson model in
which no explicit determination was possible. Even with this improve-
ment the process of optimization in its broadest scope would require
the determination of optimum relationships among six basic parameters:
b, h, w, @&, ¢, and 4d.

It seems approrriate to assume that for a given application the
following will be known:

(1) the average operating pressure, P;

(2) the shaft diameter, d;
and

(3) the minimum allowable clearance, c.

One important parameter that becomes fixed with the specificatien of

P and ¢ is the Knudsen number K 6 based on the clearance., By definition

K
c

A
Z _ (46)

but for isothermal flow A= A(P) and thus for conatant'ﬁ-and c, Kc
is constant. From this A  2lsc becomes a constant gince specificatien
of ¢ and d fixeé K. |

The six basic geomsivic psrameters have now been reduced to four:

b, h, w, and 3. Optimization requires minimizing the sealing coefficient,.

A necessary condition for the existence of a minimum is that.

LA

36
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e 5w “8n o6 - 0 (47)

The formation of the partial derivatives, %%-and %%3 would be very

difficult since the summations Zp,Eu and ZC are all functions of b

and h and contain the involved transcendental relationship in Equation

(20). But the other twe partial derivatives can be determined.
Differentiating Equation (45) with respect to w and setting this

equal to zero yields

JA
3 u
1 Au ow (Apzp + AcAL) - (%p;p + ACAL) ow
[ ] =0 (48)
Tz 2
cu Au

from which it follows that

. QA
d U
Ay g AT +HAAD - (AL +AA) =0 (49)
Substituting the following:
aAﬁ,= _ ndbhc” cos o sin o
ow 6(b + w)>
EIAE - _ mdb>h_sin® o (50)
ow 2(b + w)?
BAc - wdab cos O
ow 128 w?
into Equation (49) it can be shown that
b=w | - B (51)

will satisfy the condition that %% = 0.
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Differentiating Equation (45) with respect to 0 and setting

this equal to zero one obtains

JA
) . - —u
1 A 53 -(APEP + ACAL) (APZP +.ACAL) g
[ ] =0
L 2
cu A
u
from which it follows that
g BAu
L oa (APEP + ACA.L) - (APZP + ACAL) o - 0. (52)

Performing the required differentiation and making use of Equation (51),

Equation (52) becomes

K cos3 o + coszla - 1=0 (53)

3

K "ALd

®  16b%h I
P

Twoe optimization conditions have now been esfablished, These

conditions zw: gt the land width and groove width must be equal and
that Equatici +353) must be satlisfied. The process now reduces to finding
the optimum value of b and h. Since the .infinite series, Ep? Loy and

Eu’ are invelved the remainder of the process is carried out numerically.
The procedure is siﬁply to set up acceptable limlts for b and h.

A valur of b is cheosen, w is.determined from Equation (51), all values

of h are combined with the chosen value of b, for each b - i combination

the optimum helix angle is deterained from Equation (53), and finally

the sealing coefficient is computed from Equation (45). The sealing

coefficients corresponding te all the b - h éomﬁinatioug are compared

and the minimum value chosen.

R T
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For purposes of illustration, the procedure outlined above is
carried out for a seal with the following characteristics:

d = 2.00 inch

¢ = 0.004 inch

K =0.2
c

As stated above acceptable limits for the variables b and b
must be egtablished. The smallest practical value of b is chosen to
be 0.010 inch. The smallest practical value of h was chosen to be
0.00. inch. The 1l rer limits are in a sense arbitrary, but ara
subject to machining restrictions. The upper limit for the groove
width 1is governed by the assumptions on which the basic model is
derived. Since the groove flow is developed for a long groove, the
groave width must be small compared to the length of the groove., The
length of the groove is L/sin w. In general L and o are not known
before the optimization study is conducted. Since the length of the
groove cannot be established before the optimization study, a broad
range of values for b is considered. In this instance b is allowed to
take on values up te 0.5 inch. The upper limit for the groove depth,
h, is fixed by the restriction that h < < d. In the exsmple .
considered here, if-%_z 100, h must be equal to or less than 0.020
inch.

With the limite on b and L established, the problem now reduces
to finding the b - h combination within these limits that gives the
minimum sealing coefficient. The Fortran pregram for computing and

comparing these combinations is found in Appendix B.
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The results of the optimizatiorn are shown in Table I. It should
be kept in mind that the land width is equal to the groove width
and that at each value of b there exists an optimum value of h from
which the helix angle, d, is determined using Equation (53). The
optimum sealing coefficient in Table I is computed using these values
of T and o. The values in Table I are only approximite due to the
fact that b and O must be chosen so that n will be an integer satisfying

the relationship

__.7d gin o _ 7md
s b 4+ w 2b

sin o (54)

From Table I it is apparent that a wide shallow groove yields
the best sealing coefficient and that any value of b above 0.2 inch
will result in a good seal. It can also be seen that a groove depth
of 13 or 14 mils will give the best results and that the optimum helix
angle is about 22 degrees.

In order to satisfy the condition that the groove be long
compared to its other dimensicns, the smallest groove width that gives
a good sealing coefficient should be chesen. In this case the sealing
ccefficient is still close to optimum for b = 0.2 inch. Substituting
b =10.2, oo=22.2°, and d = 2.0 into Equation (54), B, = 5.94. But
since n_ is the number of tlread starts, it must be an integer. Taking
n_ equal to 6 an& o as 22.2 degrees, the groove width must be, from
Equation (54), 0,198 inch. Once the seal geometry has been d-termined
the sealing ccefficient can be computed. Wiﬁh knowledge of the sealing

coefficignt, the clearance, the viscosity of the sealant, the operating

i
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TABLE I

OPTIMUM SEALING COEFFICIENT FOR A
2.0 INCH DIAMETER SEAL WITH A CLEARANCE OF 4 MILS
OPERATING AT A KNUDSEN NU!BER OF 0.2

Groove Width  Groove Depth Helix Angle Sealing
(inches) (inches) (degrees) Coefficient
0.010 0.007 47.2 68.6
0.020 0.009 37.6 35.6
0.030 0.010 33.5 28.5
0.040 7,011 30.1 25.6
0,050 0.012 27.3 24,0
0.060 0.012 27.1 23.1
0.070 0.012 26.9 22.4
0.080 0.013 24,6 22.0
0,090 0,013 ' 24.5 21.7
0.100 0.013 24.4 21. 4
0.200 0.014 22,2 | 20.5
0.300 0.014 22.1 20.3
0.400 0.014 22,1 20.2

0.500 0.014 22.1 20.2
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speed, the seal diameter, and the pressure difference across the seal,

the seal length can. be computed from Equation (44).
The procedure cutlined above can be followed to find the best
seal configuration for any application where the diameter, clearance

and average operating pressure can be establisghed.

B s



CHAPTER V
COMPARISON WITH EXPERIMENTAL DATA

Experimental data on gas-type viscoseal performance have been
obtained under continuum and rarefied conditions. Wilkerson (6) has
obtained both net leakage and sealing coefficient data. King (3)
obtained sealing coefficient data but no lealiage data, while Hodgson
and Milligan (1) have obtained sealing coefficient data for purely
continuum operating conditions. Comparison of these data with the

predictions of Chapters IIL and III will be made.

I. Sealing Coefficient and Net Leakage for

Modified-Hodgson Model

Combining Equations (10) and (44), the continuum sealing

coefficient based on the modified Hodgson model dis:

2
n (b +h)( + w)h
p=-2 ~ [1- 0.63 £ tann 12] + {22 BUb + Winde

'n'dbc2 cos 0O nsb hw

.(55)

From Equations (13) and (44), the free-molecule sealing coefficient is

2 .
L 3L [exp [nSAL/(pSC +E)] +1

B2 exp [nSAL/(nic + E)] -1

1. (56)

In the regime between continuum and free-molecule flow, the solution
of the general pressure difference relationship, Equation (9), is

combined with Equation (44) to obtain the sealing coefficient.
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The net leakage for all flow regimes as predicted by the modified

Hodgson model is given by Equation (8).

II. Continuum Sealing Coefficient for the

Improved Analytical Model

The sealing coefflcient expressed in Equation (45) is applicable
to seals operating in the continuum and slip flow regimes, 1In the
continuum limit, as Kc + 0 and Kh + 0, the sealing coefficient can bLe

written as:

o oA Tpe TAM
AL L ’
u €ec uc

where Epg, ALC’ Ecd’ and Euc are the continuum limits of Ep‘ AL, Zc

and Eu, respectively, and are expressed as:

[»]
- 32 a o nm
I =-22 1 A q[eamp A _IT
pe ™ no=1 n5 2a 2a |
. nT )
= EE . T l? sinh a
¢ ¢ n=1 n° ginh =¥
: 2,2
_ 4 a1 -~ K7)
A = =KD+~ oy
and
w tanh Ll
8a 2a
Zuc = 3 1L 3 g
T n=1 n
wheren=1, 3, 5, 7 . . . for all the summations.

ITI. Comparison with Continuum Data

Table II shows a comparison of the sealing coefficient predicted

by Equations (55) and (57) with data presented by various investigators.
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TABLE II

COMPARISON WITH EXPERIMENTAL CONTINUUM DATA

Sealing Coefficient

Seal Experimental Modified-Hodgson Improved Model
Hodgson

Milligan No. 2 12.5 10.4 12.3
Hodgson

Milligan No. 4 14 10.5 12,4
Hodgson

Miiligan No. 5 23.5 17.0 26.3
Wilkerson 25 14.6 24.6

King 45 40.5 47 .4
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A detailed description of the seal configurations is given in Table III.
The agreement of Equation (57) with the data i1s good for all five seals.
It should be pointed out that both the grooved housing and grooved shaft
type seals mre represented, the seal tested by Wilkerson being of

the grooved shaft type, while the others are the grooved hdusing type.
This lends support to the applicability of the models to either type
seal. The modified-Hodgson model shows poor agreement for all the

seals except the seal tested by King. The reason for the good agreement
with this seal is due to the fact that the groove depth for this seal

is much larger than the clearance, thus making the assumption valid

that the rotor acts at the top of the groove. Also, the groove of this
seal has an aspect ratio of 1.77., With this aspect ratio the area-
weighted average velocity approach for the rotor induced flow is a

good approximation to the exact parallel flow solutioen.
IV. Comparison with Rarefied Data

To the auther's knowledge, few investigators have presented
a significant amount of experimental data for rarefied viscoseals.
The most thorough investigation is presented by Wilkerson (6). This
data will be compared te the two analytical models. The seal tested
by Wilkerson is the same seal as his continuum seal of Table III with
one exception. Using a rubbing contact vacuum seal to seal the shaft
where it penetrated the test section, Wilkerson encountered small
changes in clearance due to thermal growth of the shaft. The clearance
varied with speed and was different for leakage and sealing tests. All

other dimensions are the same as these given in Table III.

B T T e Y o T - S s TS o g £e e e e - R S
J . M v B T . T ,
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TABLE III

EXPERIMENTAL SEAL CONFIGURATIONS

Hodgson and Milligan

Seal No. 2 No. 4 No. 5 Wilkerson King
d(in.) 2.5037 2.5037 2.5037 2.0005 3.147
c(in.) 0.00175 0.00175 0.00435 0.00418 0.0031
L{in.) 2.30 2.30 2.30 4,53 1.70
n b b 4 16 1

b' (in.) 0.125 0.125 0.125 0.03111 0.197
w' (in.) 0.125 0.125 0.125 0.03235 0.110
h(in.) 0.010 0.0105 0.009 0.03065 0.111
o(deg) 7.27 7.27 7.27 9.30 1.47

r’,':?
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Figure 8 shows sealing coefficient data obtained by Wilkerson at
speeds of 5,000, 10,000, and 30,000 rpm. The theoretical curves for
" the sealing coefficient for the modified-Hodgson model and the improved
model are also shown. The clearances for the 5,000 and 10,000 rpm
data were essencially the same, whereas the clearance for the 3G,000 rpm
data differed by about 14 percent from the 5,000 and 10,000 clearances.
Note the speed sensitivity of the modified--Hodgson model. The difference
between the two curves for the improved model is due to the difference
in clearances and in no way indicates a speed dependence of this model.
The improved model gives fair agreement for all speeds. The modified-
Hodgson model also gives good agreement for the more rarefied data at

each speed, but gives poorer agreement with the less rarefied and

continuum data. S

Figure 9 shows net leakage data for the same seal for speeds of
0, 5,000, 10,000, and 30,000 rpm. The flow rates of Equatioms (8)
and (43) are also shown. Equations (8) and (43) are pressure ratio
dependent. The average experimental pressure ratios at each speed

were used in these equations. The average pressure ratios given by

Wilkerson are 177, 146, and 807 for 5,000, 10,000, and 30,000 rpm,

respectively. The agreement of both models with the static leakage

is good. The improved model shows good agreement for the less rarefied
data at 5,000 and 10,000 rpm but 1s in poor agreement with the more
rarefied data at these speeds. It is in geood agreement with the data
taken at 30,000 rpm. The modified-Hodgson model gives poor agreement

for all speeds.

=
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

I. Conclusions

This investigation has dealt with a thorough evaluation of
the Hodgson model for a viscoseal. Modifications of the model have
teen made to make it applicable to a multi-threaded seal, From the
basic flow dquation, expressions have been obtained for seal leakage
and sealing coefficient. A technique has been presented for solving
the expressions for the pressure difference at zero leakage.

Due to the rather lengthy process of solving the pressure
difference equation for the modified-Hodgson model in the slip regime,
a simpler model which better lends itself to seal optimization studies
has been developed. The improved model formulation results in an
explicit determlination of the pressure difference at zero leakage, a
vast improvement over the Hodgson formulation in which only an implicit
determination could be made. The optimization process is demonstrated
for a specific application and the results presented.

In the Hodgsen and modified-Hodgson models, no attempt was made
to account for the clearance e2ffect on the rotor induced flow. The
improved medel not only takes a more exact approach to the groove
flow, but it also attempts to account for the clearance effaect on the

groove flow.
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A comparison of the modified-Hodgson and the improved model with
continuum data show that the agreement of the ..proved model is better.
Since the data used represented a wide variation in seal geometries,
it appears that the improved model can be used with confidence to
predict continuum performance.

Although rarefied experimental viscoseal data are quite limited,

a comparison was made with the data obtainad by Wilkerson. The improved
model in general shows better agreement with these data. Wilkerson did
discover a speed dependence in the sealing coefficient, a characteristic
which the Hodgson model predicts. The improved model predicts uno such
speed dependence. Comparison of the models with the leakage data shows
that the improved model does a much better job of predicting the leakage
for a rotating seal. Since the improved model does not account for the
molecular diffusion which previous investigators (15 ard 17) have

shown to be the primary flow component in highly rarefied flow, it fails
to predict the flow at high values of Knudsen number. This can be

seen in Figure 9 on page 50 by the failure of the meodel at higher
Knudsen numbers. It can also be seen that both mudels predict about

the same static leakage.

In general, this investigation has shown that the Hodgson model
can be modified to account for multiple thread starts, that the model
does not lend itself tc optimization studies, and that its prediction
of ieakage rates is poor. An improved medel has been shown to
correctly predict seal behavior in the continuum and slip regimes and

also lends itself to optimization. The major difference between the

two models was found to be in the rotor induced f£low component.
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II. Recommendations

The obvious wealkness of the improved model developed in this
investigation is its exclusion of molecular diffusion. A model to
predict seal behavior in the lcwer slip and free-molecule regimes must
include this effect. Wilkerson (6) presents a model for this flow
component in a viscoseal. Combining this component with the improved
model in a manner analogous to Weber's (17) long tube formulation
and Milligan's (15) annulus treatment would result in a medel applicable
to all flow regimes.

Although the Hodgson model is applicable to all flow regimes,
its rotor induced flow component is inadequate. A further improvement
in the Hodgson model would be to replace its rotor induced flow
cemponent with the rotor induced flow in the improved model of this
investigation,

Regardless of what aralytical studies are undertaken in the future,
considerable experimentation is needed to validate or invalidate the

models now under consideration and those to be developed in the future.
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APPENDIX A

CONSTANTS FOR HODGSON'S MODEL

The following expressions for the coefficients in Hodgson's

model are taken from reference (7).

2
_ Nmdb“h
A=T500 + ny <°s @
bho (b + WK,
B = 12vard
2
3md(b + B D)
3
D _mde (b + w)
L2uw
2
o 8K2c md(b + w) (kT )1/2
3w
K?‘(b + 1)
C =
Lo bu(kT Y2219k b - K. (b + )]
2 1 3
2K, b
c o1

N ¢

c

C =
3
Bk, (2K, - 1) (kT 1/2
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. 2.1/2
K -‘-'":i(—l-t—a")-{a ln (a + (1+82)1/2) +a2 ln’l'+ (1 +a’)
1 2 a
8a
+-§- (1 +ad- @ +ad¥y

h b

K3 = 1 - 0.63 5 tanh T
Values of K2

w/ie 0.1 0.2 0.4 0.8 1 2 3 A 5
K 0.036 0.068 0.13 0.22 0.26 0.40 0.52 0.60 0.67

2

When w/c > 10, K, = -g— 1n %

The groove flow coefficients, B, C, Cl’ and Cz are obtained
from a consideration of flow in a long rectangular tube, The continuum

groove flow coefficient, B, is obtained from the continuum solution for

Poiseuille flow in a long rectangular tube. From a consideration of

purely molecular flow, the free-molecule flow coefficient, C, can be
derived. The basic free-molecule flow equation used by. Hodgson is
given in Reference 18 and is written as

2 dP

1/2 %_EE . (58)

16 KT

Q _._§ Kn (2ﬂm)

Equation (58) is attributed to Rnudsen (18, p. 35), but the constant

K> which is equal to K,, is obtained by Clausing (18, p. 40). O and

2
S are the groove cross sectional area and perimeter, respectively.
The two remaining groove flow constants, Cl and Cz, are obtained in

the same way Knudsen determined v and £ in Equation (1). As was

pointed out in Chapter II, the determination of the ratio V/E requires

10

0.94

L



knowledge of the continuum wilth slip solution. Hodgson does not take
an exact approach at this point gsince he determines 01/02 from the
continuum with slip solution for flow between infinite parallel flat
plates rather than flow in a long rectangular tube.

Hodgson obtains the land leakage flow coefficients, D, E, Cq,
and C4’ from a consideratlion of flow in a thin slit-like tube. 1In this
case the continuum coefficient, D, is obtained from the continuum
solu*ion for Poiseuille flow between parallel flat plates, The same
basic model, Equaticen (58), for free-molecule flow is used to determine
the free-molecule flow coefficient, E. K, now becomes Kl’ which is also
attributed to Clausing. O and 3 now represent the cross sectional area
of the land leakage passageway and its perimeter, respectively. The
constants Cq and 04 are also determined using the same approach Knudsen
ugsed to determine V and § in Equation (l). For the continuum with slip
solution, Hodgson once again uses the continuum with slip solution
for flow between infinite parallel flat plates which in this case is

the proper solution to use.



APPENDIX B

EQUIVALENCE OF GROOVED HOUSING AND GROOVED SHAFT SOLUTION

The only flow component which requires separate consideration for
the grocved housing and grooved shaft configurations is the rotor
induced flow. At first it would appear that the same boundary conditions
can not be applied in both cases. It would seem that the proper
boundary conditions for the grooved shaft would be three moving walls
and a stationary upper wall., Consideration of the movement of the fluid
in the groove will show that these are improper boundary conditions.

The rotor induced flow component can be considered as the

rate of progress of the fluid along the groove due to the rotor motion.

The proper boundary conditions are thus obtained from a coordinate

system moving with the groove. In this system the boundary conditions

are those of a moving upper wall with three stationary walls, These
are the same boundary conditions as those for the grooved jwusing

configuration, The two configurations are thus equivalent.
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APPENDIX C

THE LAND LEAKAGE PRESSURE GRADIENT

In Chapter III the land leakage pressure gradient is taken to be

dp b+ w dP
dEL = —— cos & & (40)

This expression which is developed by Hodgson (7) can be derived in a

much simpler manner than he used.

|0
Figure # shows a land-groove pair. The component of the axial

+

pressure gradient,-%%, perpendicular to the land-groove pair is

dP . ,
cos (IEEE This represents the pressure gradient from point a te

point ¢ and can be represented as

cos o 4 - 4P _fa” e
dL. d% b+ w
a c

The land pressure graident, %% y 18
L

dP _ dp Py~ B,

ds ds b W

- C

but from assumption 2 in Chapter III, Pa = Pb' By combining the

above expressions, it can be shown that Equation (40) is wvalid.
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Figure 10.
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APPENDIX O
FORTRAN PROGRAMS

THE USER OF THESE PROGRAMS SHOULD TAKE CARE T ASSIGH
THE PROPER VALUE TO ALL SEAL VARIABLES.

PROGRAM ONE
MODIFIED-HGDGSON LEAKAGE

THIS PROGRAM COMPUTES THE SEAL LEAKAGE BASED ON Tut
MODIFIED-HODGSON MODEL

PL = SEAL LENGTH; ALPHA = HELIX ANGLE:; RPM = SEAL SPEED
DEL = SEAL CLEARANCE; R2 = K2(APPENDIX °A®); ANS = NO.
OF THREADS: DIA = SEAL DIAMETER: VIS = VISCOSITY OFf
SEALANTS W = LAND WIDTH; HI = GROOVE DEPTH: BASE =

GRODVE WIDTH; YEMP = ABSOLUTE TEMPERATURE:; AKO = BDLTZ-
MANN CONSTANT; CC = PSI/MICRON OF MERCURY; AMM = MASS PER
MOLLECULES:

PL = 4,53

ALPHA = 9,24/57.3

N = 1

16 REAS L7 oRPMoDELR2
17 FORMAETIF20.19F2006¢F20,3)

N=NI+%1

ANS = 160

DIA = 2,00

VIS = Lo.26E~06

W = 0.03235%COS{AL HA)
HI = 0.03065
BASE 0.03111*COS{ALPHA)
TEMP 535.0
AKO = 5.655E-24
CC = 1:.935E-05
AMM = 1,459E-25
V = 3QRTLAKD*TEMP*193, 0*12n0/(AMM*301416)¥
GM = HI/BASE
FGM = SQRT{1.0+{GM¥**2}}
R1 AND R3 IN YHIS PROGRAM REFER TO K1 AND K3y RESPEC-
TIVELY, IN APPENDIX 2A?,
RL = {3.0%{1.0+GM}/{GM*#%2} ) *{GM*ALOGI GM+FGM)+ {GM**2)*
L ALDGI{1-.O0+FGM)}/GMI+(1.0/3.02%(1.0++M&x3-FGM%%3})/8,0
R3 = 1.0-0,63%GM*TANH{3:14/{2.0%GM))
THE FLOW COEFFICIENTS OF EQUATION 8 ARE NOW LOMPUTED
Cl = [(HI*193,0%( [RIX{BASE+HI)}*%2))/ (4. 0%R1*BASE*VIS*
1 V¥*¥{2.0%R1*¥BASE —R3*{BASE ¢ HI)))
C2 ={193, 0%R3I*HI*{HI+BASE} } /{2, 0XVIS*V¥[2 . 0%R1¥BASE~
1 R3%*{BASE+HI) )}
C3 = (193.0%DEL) /{4, 0%VIS¥R2¥%{2.0%R2-1.0)*V)
Cé = (193, 0%DEL)/{2.0%VISH(2.0¥%R2-1.0}%V)
A = ANSHRPM%3,1416%DIA%*BASE**2*HI*COS{ALPHA)/
1 ©120.0%(BASE+HI)?

N
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B = 3B6.0%¥BASE*HI*%3%[BASE + W)XANSK*2%R3/
I 1{12.0%VIS®3,141L6%DIA)
C= BoO*R1*{BASEXHI J*¥#2%{BASE+W)HANS*&2%Y/
1 {3.0%3,1416%DIA%X[HI+BASE) )
D = (3.14%DIA%{DEL*%3)%x(d+BASE)})/(12.0%VISkW)%386.0
E = (B O0*R2%{DEL %2 ) %3, 14*DTAX{W+BASE}I*V)/(3.0%W}
R& = {C*CL/C2)4+{EX¥L3/04 )
= Cx(C2~CL)/(C2%%2)
= Ex{C4-C3V/{C4%*x2}
PRINT T79:RPM,DEL
T9 FORMAT(LIHIL. 6HRPM = ;FID.Lls1ZMCLEARANCE = F10.6}
PRINT 101
101 FORMAT{1HO,10Xy5HPD/PEs12Xs 441/ NKe14X,4HMPBAR13X
1 9K STATIC 414X,SHROYOR,14Xe8HNET FLDW!
1 EE = ~2.0
2 VV = 1,0
ANKINV IS THE INVERSE #NUDSEN NUMBER BASED ON CLEARANCE
3 ANKINV = VV¥]10,0%*EE
PBAR = ANKINV*HVIS*Y*3,.1415/(DEL*386.,0})
RP = SEAL PRESSURE RATIO
RP = 20.0
13 CONTINUE
L2 = 1.0 + 2.0%C2*PRAR
Z& = 1.0 + 2.0%C4%PBAR |
FLOW IS5 THE SPECIFIC MDLECULAR FLOW RATE IN A STATIC SEAL
FLOW = (1e0/{12.0%¥AKO¥TEMP*PL Y IXCC)k{{B+D} *PBAR + R4
1 + (0.5/PBARI*{{RP+1.0V/{RP—=1.0V)F{RSXALOGIUI{RP*Z2¢
2 1o0)/iRP#I2}I+RO*ALDGIIRPX2441.D¥/{RP+24}))3
PBARP = PBAR/CC
FLOWR IS THE ROTOR INDUCED SPECIFIC MDLECULAR FLOW RATYE
FLOWR = A¥{RP + 1.0)*CL/{2,0%AKO*TEMP*[RP -~ 1.0}%12,0}
FLIWT I5 THE NET SPECIFIC MOLECULAR FLOW RATE IN A
ROTATING SEAL
FLOWT = FLDW ~ FLOWR
PRINT 40,RP ANKINVoPBARPoFLOWy FLOWR (FLOWT
40 FORMAT{IHMOo 10X oFOoloS5XoEL3.395XsE13:.3:5XeE16.445Xy
1 Ei60495XcEL6:4)
RP = RP + 20.0
IF{RPLT220.0G0 TO 13
VY = VV 4+ 1,0
iF{Vv=9.033¢3:4%
4 EE = EE + 1.0
IFQEE“‘ 30032?595
5 CONTINUE
iF{N:LYT-5} GD YO 16
& CONTINUE
CALL EXIT
EMD

]
8]
!

$ENTRY

0.0 0.00418 0.83
5000.0 0.00385 087
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$TBFTC

¢ PROGRAM THWO

C

G MODIFIED-HODGSON PRESSURE DIFFERENCE AT ZERD FLOW

C

C THIS PROGRAM SOLVES EQUATION 9 FOR THE PRESSURE DIFFER-
C ENCE AT 2ERO FLOW FOKR FLOW REGIMES FROM CONTINUWJUM TO

C FREE MDLECULE FLOW AND QUTPUTS THE RESULYS IN THE FORM
C OF A SEALING COEFFICIENT

G

C T'*S READ SYATEMENT INPUTS THE VALUES DF K2 FROM APPENDLX
C A INTD AN ARRAY SO THAT INTERPOLAYION MAY BE USED TO

C DETERMINE PROPER VALUE OF K23X = W/DEL; Y = K2

DIMENSION X{11),Y(LLl}

READ BOO,{X{JiesJ=1s11)
800 FORMAI{11FT7.3}

READ 801,(Y(J)yJd=1p1l1l)
801 FORMATI{11F7.3)

DELA = 0.0

C PL = SEAL LENGTH; ANS = ND. JF THREADS; DIA = SEAL DiA-
€ METER: RPM = SEAL SPEED; VIS = VISCOSITY OF SEALANT;
C G6C= G SUB Cs: AKD = BOLTZMANN CONSTANT; AMM = MASS PER
C MOLECULE; TEMP = ABSOLUTE TEMPERATURE; DeEL = SEAL CLEAR-
C ANCE; W = LAND WIDTH; HI = GRO0VE DEPYH; BASE = GRI0OVE
C WIDTH; AA = GROOVE ASPECT RATIO.

PL = 4,53

ANS = 4,0

DIA = 2.00

RPM = 1.0E04

VIS = 1.26E-06

GC = 386.0

AKO = 6.80E-23

AMM = 1.459E-=25

YEMP = 535,0

DEL = 0.004

W = 0.0125

HI = 0.0125

BASE = 0.0125

V = SQRT{AKO*¥TEMP%®GC/(2.0%3.1416%AMM)}
AA = BASE/HI

DPL1 = 0.0
pDpP2 = 0.0
DP3 = 0.0
ANK1 = 0,0
ANK2 = 0.0
ANK3 = 0.0

C STATEMENTS 8 THROUGH 200 INVERPIOLATE TO FIND THE PROPER
C VALUE OF K2 WHICH IS HERE GIVEN THE SYMBOL R2
8 THETA = W/DEL
IF(THETA-GYT.10.0)GD YO 199
BO 110 J=1511
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IF{THETA-X(J}) 112,111,110

CONTINUE

R2 = ¥Y(J)

R2 = Y{J-1}+(Y(J)=Y{IJ-1IYSUXCI)=X(I-1) )= ( THETA-X(J-11)
GD TO 200

R2 = 3.0%ALOGITHETA} /8.0

CONT INUE

THE FLOW COEFFICIENTS OF EQJATION 9 ARE NDW COMPUTED

R1

AND R3 IN THIS PROGRAM REFER TO K1 AND K3, RESPEC-

TIVELYy IN APPENDIX ®A°,

100

GM = HI/BASE

FGM = SQRT{1.0+(GM*x%2))

RL = {3.0%#(1.0+GM}/IGM&%2) ) % {GM*ALOG(GM+FGM)+(GM%%2 )=
1 ALOG{({1l.04¢FGM)/GMI4+{1.0/3.0¥%(1.04GM**3-FGM*%*3)}/8,0
R3 = 1.0-0.63%GM*TANH(3.14/(2.0%GM)})

ALPHE = ATAN{ANS*(BASE+W)/{3:1416%DIA))

ALPHAP = ALPHA%®5T.3

Cl = {HI*193.0%{{R3*{BASE+HI})*%2))/ (4, 0%R1¥BASE*V]IS*
1 VE{2,0%R1L*¥BASE —R3%({BASE #% HI}}}

C2 ={193.0%R3*HI*(HI+BASE)}) /{2, 0%VIS*V*(2,0%R1%BASE~
L R3x{BASE<+HI}))

C3 = (123,0%DEL)/(4-0#VIS*RZ2¥(2.0%R2~1,0) *V})

Ca = (LI3.0%¥DEL}/{2.0%VIS*{2:,0%R2~-1,01%V)

A = ANSFRPM#%3,1416%DiA*BASEF*2*HI*LOS{ALPHA}/
1 {120.0%{BASE+HI})

B = 3B6.0¥BASE*HI*%3x(BASE + W)} *ANS®%2%R3/
1 (12.0%VIS*3.1416%DIA}

= BoO¥R1&{BASEHHI J X% 2% {BASEFWI FANSH*2%V/
1 (3,0%3,1416%¥DIA%(HI+BASE))
((3.14%DIAR{DELF*3 ) (W#BASE) } /{12, 0%VIS*W} ;¥386,0
(BoO¥R2%¥{DEL*&2) %3, 14%D AR {W+BASEI*V) /(3. 0%W}

€ + E

(#={{CL/7C2) - 1.0}

E+{{C3/C4) — 1.0}

PRENT Y100.BASEcHI W ,DIA,DEL o ALPHAP
FORMATILIHL 10X 6HBASE= FTo4pSXeaHHTI= 2F7.49¢5X¢3HW=
L FTo435Xo5HDIA= (FT.4¢5XoSHPEL= sFT7c405Xs TALPHA= &
2 FBo4/1HO 10X, 15HINVERSE KNUDSEN.10Xs
3 1GHSEALING COEFFICIENT?}

fl

TaTmo

DELP IS YHE PRESSURE DIFFERENCE AT ZERO FLOW
THE CONTINUUM DELP IS COMPUTED
DELP = A¥PL/i{B+D}
EEE = Z.0
2 YVW=10.0

ANKINV 1S THE INVERSE KNUDSEN NUMBER BASED ON CLEARANCE
3 ANKINY = VVV%]10,0%%EEE

THE AVERAGE SEAL PRESSURE {S COMPUTED FROM THE KNUDSEN
NUMB ER
77T PBAR = VIS®#V¥3,14L6FANKINV/(386.0%DELY}

IFf THE INVERSE KNUDSEN NUMBER IS ABOVE 30.0 THE LINEAR
APPROXTIMAYION OF THE NEXY DELP IS OMITTED
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IFCAMNKINV.GT 30,08 GO TO 30
IF THE INVERSE KNUDSEN NUMBER IS5 LESS THAN 30.0 THE NEX{
DELP IS APPROXIMATED BY A LINEAR EXYRAPOLATION
DELP =EXPLALOG{(DP2)+ALDGIANKINV/ANK2)*ALOG(DP3/DP2}/
1 ALOG(ANK3/ANK21})
THE NEXT SECTION DF THE PROGRAM UP YO STATEMENT 40
EMPLOYS NEWTON®S METHOD TO S0OLVE EQUATION 9 FOR DELP
30 72 1.0 + C2%PBAR
24 = 1.0 + C4¥PBAR
PE = PBAR -~ DELP/2.0
I=((2.0%PBAR+DELP)}/ [2.0%PBAR—DELP)I*%Fx( {2, 0%724( 2%
1 DELPYI/{2.0%Z2—-C2¥DELP) [**G¥{ {2.0%24¢C4%DELP)/({2.0%
2 Z4—C4H¥DELPII**HXEXP (B*DELP Y*EXP(D*DELP}
U= 7 - EXP{AXPL)
DY=2%{B+D+4. 0¥PBARSF/ (4. O%PBAR**2—-DELP*¥2 }+4.0%L2%(L2%G
1 7(4.0%22%%2-{C2#DELPI®®2 )44, 0%746%C4*H/ {4 0% 4%x%2-(( 4%
2 DELPiI*%2))
DELPL = DELP - U/DY
PO = PE + DELP
IF{ABS{OFLPL1~DELPY«LTo1.,0E~GT) GD TO 40
DELP = DELPL
GO YO 30
WITH DELP DETYERMINED THE SEALING COEFFICIENT I5 COMPUTED
40 ALAMBD = VIS*3.1416*%DIA#RPMEPL/ 13860 0%DELPXIDEL*%2} )
PRINT 50¢ANKINV,ALAMBD
50 FORMATUIHOoI3X¢FLl0ob4olb6XcF10.3)

1f

DPL = DP2
Dp2 = 0GP3
DP3 = DELP
ANKLl = ANKZ
ANK2 = ANK3

ANK3 = ANKINV
IF(ANKINV.GT.30,0)G0 TO 76
If THE INVERSE KNUDSEN NUMBER IS BETWEEN 16 AND 30 THE
INCREMENTAL DECREASE IN THE INVERSE KNUDSEN NUMBER IS
REDUCED 70 1.0
IFCANK I WV LEG3Co 00 ANDoANKINV.GT16.01DELA = 1,0
IF THE InNVERSE KNUDSEN NUMBER IS LESS THAN 16 THE
INCREMENTAL DECREASE IN THE INVERSE KNUDSEN NUMBER 15
REDUCED 70O 0.25
IF{ANKINV.LE.L6.0)DELA = 0,25
THE SOLUTION WILL USUALLY BECOME THE LINEAR FREE MOLECULE
SOLUTION BEFORE AN INVERSE KNUDSEN NUMBER OF 1.0 IS
REACHEDy THE SOLUTION IS THEREFORE TERMINATED.
FFIANKINV.LYc1.036GD 7O 5
ANKIANV = ANKINV — DELA
GO 10 77
76  VVV = VVV-1,0
IF{VYV-2.0}45393
4 EEE = EEE~1.0
IF{ECE44o02545¢2

[T
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5 CONTINUE
caLt EXIY
EMD
DATA CARDS HAVE BEEN OMITYED FROM THIS LISTING
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$I1BFYC

C PROGRAM THREE

C

C LEAKAGE RATE AND SEALING COEFFICIENY FOR IMPROVED MODEL
C

C THIS PROGRAM COMPUTES THE SPECIFIC MOLECULAR FLOW RATE
C AND SEALING COEFFICIENY BASED ON THE IMPROVED MODEL

C

C EXECUTE IN DOUBLE PRECISION

GO0 &G

aEeNe

IMPLICIY REAL#8(A-H,0~2}

DIMENSION ALPHA(S50:50), ANKIC(S50),ANKIH{50),ANKC(S50},

1 ANKH{50) yALAMB{50)
BASE = GROOVE WIDYH; H = GROOVE DEPYH; ANS = NO. OF
THREADS:; W = LAND WIDTH; DIA = SEAL DIAMETVTER; C=CLEARANCE
A = GROGVE ASPECT RATIO: AN = ASPECT RATIO OF HYPOTHEY-
ICAL GRGOVE; PL = SEAL LENGTH; AK = SEAL RADIUS RATIO;
AMM = MASS/MOLECULE; AKO = BOLTZMANN CONSTANT; =C=G SUB C
YU = LOCATION OF ACTUAL GRDOVE TOP IN HYPOTHETIHCAL GROOVE
TEMP = ABSOLUTE TEMPERATURES C1l = MICRONS OF MERCURY PER
PSI3 ANL = VISCOSITY OF SEALANT

B88 READ 1:BASEsH:ANS;W,DIA,C

1 FORMAT{6D12:4)

K = 1

A = BASE/H

AN = BASE/(H + C)
Pl.L. = 4,53

AK = lao - 200*CIDIA
AMM = 1.459E-25
AKO = 0.680E~22
GC = 386.,0

YU = H/{H + C}
TEMP = 537.0

ClL = 51700.0

ANU = 0.,126D-05
EE = -2.0

VV = 1.0

DO 4 N=1,45
ANKIC INVERSE KNUDSEN NUMBER BASED ON CLEARANCE
ANKICEN} = VV¥10.0%%EE
VV = VV+1i.0
IF{VV.LT-10.0)6G0 TO 4
EE = EE + 1.0
VV = VWV - 9.0
& CONTINUE
THE DO LOOP ENDING WITH STATEMENT 10 COMPUTES THE
EIGENVALUES FROM EQUATION 20 USING NEWTONS METHOD OF
APPROXIMATING RDOTS
DO 106G N=1.45
ANKIH = INVERSE KNUDSEN NUMBER BASED ON GROOVE DEPTH
ANKIH{N} = H*ANKIC{N}/C
CC = 0.5%A®ANKIH{N]}
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ALPHAINs1) = 1.5707
DD 9 J = 1,15
7 FA = ALPHA(NJ)*DTANCALPHA(N,J))} — CC
FPA=GTAN{ALPHA(NyJ) ) #*ALPHA(Ny J)}/(DCOSCALPHA(N,J) j**2}
ALPH = ALPHA(NsJ) — FA/FPA
IF(DABS{FA/FPA) .LT-1.0E-05)G0 TO 8
ALPHE(NsJ) = ALPH
GO TG 7
8 ALPHA(NgJ+L) = ALPHA({NgJ) + 3.14159
9 CONTINUE
10 CONTINUE
DO 13 N = 1+45
PRINT 11,ANKICUN) AMKIH{(N) A
11 FORMAT(1HO¢5X3D10o295X¢D102¢5XeD10.4)
PRINT 12,(ALPHA{N,J}y J=1,15)
12 FORMAT(15F8.4%)
13 CONTINUE
RPM = SEAL SPEEDe IF DNLY SEALING COEFFICIENT IS DESIRESD
ANY VALUE OF RPM MAY BE uU>ED HERE
RPM = 10000.0
105 PRINY 106¢RPM
106 FORMAT{1HO¢1lO0Xy6HRPM = ;4D20.3}
SINA = SINE OF HELIX ANGLE; COSA = COSINE DF HELIX ANGLE
SINA ANS#*{BASE#WI/7{3.1416%D{A}
COSA DSQRT{1.0—~ SINA®%2) "
THE FLGW COEFFIGIENTS FOR LEAKAGE ANMD SEALING ARE NOW
COMPUTESD
AU = 64, 0%C¥*2%BASE*H¥COSA®ANS
AAC ={3.0%3.1416%DIA*¥4%{BASE # W)/HI*COSA

"ot

AP = 192, 0%ANS*BASE*#*3%H&SINA

Al = AAC/(384.0*%ANU*PL)

A2 = AP/{384,0%ANU*PL)

A3 = AU*{3, I#lﬁ*DIA*RPM Y/ 1C*%2%7680.0)

DO 23 N=1¢45
ANKC({N) = 1.0/ANKIC(N}
AC = 1.0 = AK®%4 & (1.0-AK*%2}%%2/DLOG{AK) ~ {2.0%
1 ANKUINI*{150-AK®%2 )/ {AK®DLOG{AK)-ANKCIN}*{1.0-AK¥*Z
2 P1IR{2.0%AKRGAKE¥2~-1,0)—2 . 0%AKXDLOGIAK) *{ AK¥%*2-AK+
3 1. 0?'(loOQAK**Zl**2/€ZoO*DLGG(AK)}+2o0*ll 0-AK**2)
4 %#{l. OmAK?**Z*ANKC!NJ}
ANKHIN} =" 1. 0/ANKIH{N)
SUMP = SUMMATION ASSOCIATED WITH THE GROOVE PRESSURE
FLOW: S4UM4 = SUMMATION ASSOCIATED WITH THE ROTOR VELDCITY
CORRECTION; SUMU = SUMMATION ASSOCIATED WITH THE ROTOR
INDUCED FLOW
SUMPp
SUMU 0
SUM4 0o
DO 22 J=1510
TERHI-DTANH(ALPHA!NyJ?/A)/ﬁ1»0+2 O ALPHA(N+J) FANKHI{NI % -
1 DTANH{ALPHAIN,J}/A)/A)

0.0
«0
0



C

C

72

TERMZ =DSIN{ALPHA(N J)}¥*%%2/ (L0042 . 0*ANKH{N}*
1 DSIN{ALPHA{NsJ) I %%2)
TERMP = (A/LALPHA{N,J)**5) ) *TERM2%{ ALPHA(N¢J)} /A-TERML}
TERMU = (A/{ALPHA(N,J)*%¥3) ) *TERM2*TERM]
SUMP SUMP + TERMP
SUMU SUMU + TERMU
TERLI=DSINCALPHAINJI}**2/((1.0+2.0%ANKH{N)*
1 DSIN{ALPHA{NsJ) ¥I*®%2/AV &AL PHA(N,J)*%2)
TER2 =DCOSH{ 2. O*ALPHA[NvJ‘*YUfANilDCGSH(Z O¥ALPHA(N,J)}
1 /AN
TER3 =(2.0%¥ANKH{NI*ALPHA(Ns S} /A +DTANH{2.0%¥ALPHAIN,J)
1 YU/ANII/((1o04(2.0%ANKHINI®ALPHAIN,J)/A)%%2 )%xDTANH
2 2.C*¥ALPHAINGJ)/ANI +4,0%xANKHIM)*¥ALPHA{N:2)/A)
TER4 = TERL1*TER2%*TER3
SiM4 = SUM4 ¢+ TERSG
22 CONTINUE
RU IS THE ROTOR VELOCITY CORRECYION FACTYOR
RU = 2,0%SUM4 '
SUMU = RU * SUMU
RPy THE SEAL PRESSURE RATIO VARIES FROM 20.0 YD 200.0
IN STEPS OF 20.0
RP = 20,50
PBAR ‘IS THE AVERAGE SEAL PRESSURE
PBAR =ANU%DSQRT{2.0%3 1416%AKO*TEMPRGC/AMMY/
1 (2. 0%ANKC{N)*C}
ANDDP IS THE SPECIFIC MOLECULAR -FLOW RATE
100 ANDDP= (PBAR/iCl*AKD*TEHP’3*(A1*AC+A2*SUMP~A3*QRP*1o0!
I *SUMU/(PBAR#*{RP-1.0})}}
PRINT 99, ANKIC{N} ,RP,ANDDP RU
99 FORMAT({1HOy10X¢D1l0c29 SXleO 2¢5X¢D20:.5¢5X3D20.51}
RP = RP + 20,0
IFIRF.NEG220.0) GO TO 1060
ALAMB IS THE SEALING COEFFICIENTY
ALAMBINY = (AAC*AC + APXSUMPI /(AU=SUMU)
23 CONTINUE '
PRINT 14.,DIAyCoBASE WsHyANS
14 FORMAT(1IHL+5HDIA =¢D011c0492Xs11HCLEARANCE =9D1l1lo%¢2Xy
2 L1HGROOVEWID =g Dllco%o2Xs 12HLAND WIDTH =¢D11.452X,
3 THDEPTH =g DIloG o2 X9 IHGRODBVES =:.D9.2/1H0 95X
4 1S5HINVERSE KNUDSEN:5X, 6HLAMBDA)
‘DO 25 N = 1,45
PRINT 24, ANKICE{N} ;ALAMB{N) .
24 FORMAT{LIHOoTXoD20o4:TXeD20.4)
25 CONTINUE :
26 CONTINUE

n

GO TG 888
CALL EXIY
END

- DATA CARDS HAVE BEEN OMITTED FROM THIS LISTING
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PROGRAM FDUR
OPTIMIZATION USING THE IMPROVED MODEL
THIS PROGRAM CARRIES OUT THE OPTIMIZATION FOR A 2.0 INCH

DIAMETER VISCOSEAL WHICH HAS A CLEARANCE OF 0,004 INCH
AND OPERATES AT A KNUDSEN NO. BASED ON THE CLEARANCE OF .2

OOCOoOOOOn0m O

EXECUTE IN DOUBLE PRECISION
IMPLICIT REAL*8{A-H,D—-1)
DIMENSION ALAM{50) 9 ANKIH{50) s ANKH(50)yH{50) s ALPHA{50]}
1 A{50)«AN{50)¢YU{SO0):SP{50) ¢SU(50]
L =1
C BASE = LOWER LIMIT ON GROOVE WIDTH;DIA = SEAL DIAMETER;
C C = CLEARANCE;ANKIC = INVERSE KNUDSEN NUMBER
888 READ 1yBASE;DIACyANKIC
1 FORMAT{4D15,.4)
£ AK = THE SEAL RADIUS RATIO; AC = THE DIMENSIONLESS
C ANNULUS FLOW COEFFICIENT
721 AK = lo0 — 2,0%C/DIA
PRINT T22¢BASEsDIAsC ¢ ANKIC
722 FORMAT({1HO SHBASE=gF1l0c4y5Xs4HDIA=yF8.2¢5Xs2HL=3F 104
1 5X¢AHL/NK=oF12.31
C THE NEXT SECTION THROUGH CARD NO. 9 COMPUTES THE
C EIGENVALUES FOR THE SUMMATIONS
CC = 0,5%*BASE*ANKIC/C
ALPHALLY = 1.5707
DD 9 J*—-lg"f
7 FA = ALPHALJJ*DTAN{ALPHA{J}} - CC
FPA = DTANLALPHA(JY} + ALPHA{J)/{DCOS{ALPHALJ}}**2)
ALPH = ALPHALJ} —~ FA/FPA
IFIDABSIFA/FPA} oLTo1-.0E-05)6G0 TO 8
ALPHALJ} = ALPH
GO TG 7
8 ALPHAfJ+13} = ALPHA{J} + 3.14159
9 CONT INUE
ANKC = 1.0/7ANKIC
AC = 1.0 — AK%%4 + {1.0—AK*x¥2)&«¥2/DL0G{AK) — (2.0%ANKC
1 *11.0-AK*%2) /{AK¥*DLOG{AK } —ANKC* (1. 0-AK%%2)) j*{2,0%AK
2 F{AK®#F2—1,01—2.0%¥AK¥DLOG{ AK) ¥ [ AK*x#2—-AK+1.01—{1,0~
3 AKZX2 %22/ {2.0%DLOGIAK I J+2, 0% { 1o O—AK¥¥2 ) %[ 1, 0—AK)*%x2
4 ¥ANKC) - o o
H = GRGOVE DEPTH:;ANKH = GRODOVE KNUDSEN NUMBERZA = THE
GROOVE ASPECT RATIO; AN ASPECY RATIO OF HYPOTHETICAL
GROCVE OF DEPTH H+C: YU ACTUAL GROOVE DEPTH IN
HYPOTHETICAL GROOVE '
DG 10 J=1.20
H{J} = DFLOAT{J}*0,001
ANKH{J} = C/{ANKIC*H{J})
AfJ: = BASE/H{J)

OO



OO0

74

ANTJ) =BASE/(H{J) + ()

YUtJ) = HIJY/TH{J) + ()
SUMP = SUMMATION ASSOCIAVED WITH THE GROOVE PRESSURE
FLOWS SUM4 = SUMMATION ASSOCIATED WITH THE ROTOR VELOCITfY
CORRECTIONs SUMU = SUMMATICN ASSOCIATED WITH THE ROTOR
INDUCED FLOW

SUMP = 0.0
SUM4 = 0.0
SUMU = 0.0

DO 12 K=1ls¢4

AL = ALPHAILK)

TER1 =DSIN{AL}*%2/([ 1042 0*ANKH{J}*DSIN{AL)%*%2/
1 A{J) i%=AL*%2)

TERZ2 = DCOSH({2.0%AL*YU{J}/AN{(J)})/DCOSH(2. O%AL/AN{J)})
TER3 = {2.0%ANKH(JI*AL/A {J) + DTANH(2.0%AL%YU{J)/
1 AN(JI)I/({(1lo0¢ {2, 0%ANKHIJ}*AL/A(JI ) *%2} #DTANH(2,0

2 ¥AL/AN(JI)* 4-.0%ANKH{JI®AL/A(J}}

TER4 = TERL#TER2%*TER3

TERML = DTANH{AL/A{J))/ (1.0 + 2.0%AL*XANKH{J)*

1 DTANHUAL/ACGJS)/ALI})

TERMZ = DSIN{ALI%*¥2/(1.0 ¢+ 2. 0%*ANKH{J)*DSINCAL)**2)

TERMF = [A{J)/{AL*%5))*TERM2*[AL/A(J) — TERM1)
TERMU = (A{3)/CAL*%*3}I*TERM2%TERM]

SUMP = SUMP + TERMP

SUMU = SUMU + TERMU

SUM4 = SUM4 & TER4*2 o
12 CONTINUE

SP{J) = SUMP

SUlJI = SUMUxSUM4
10 CONTINUE
THE OPTIMUM HELIX ANGLE FOR EACH H IS COMPUTED
USING NEWTON®S METHOD OF APPROXIMATING ROOTS

DO 27 4=1,20

AKANG = DIA#¥3%AC/{16.0«BASEX*¥2*¥H{J)*5P(J))

ANG = 3.14159/8,0
55 FANG = AKANG*DLCOS{ANG)**3 + DCOS(ANG)I**2 — 1.0

FPANG = -3, O*AKANG*DCDS{ANGD**Z*DSIN(ANG} -

1 2.0%DCOSIANGI*DSEN{ANG)

ANGL = ANG — FANG/FPANG

IF(DABS{ ANG~ANG1}.LT-1.0E~05} GO TO 56

ANG = ANG1

GO TO 55
56 CONTINUE

AAC = 6.0%3, 14159*DIA**4*DCDS(ANGD

AU 32, 0%CRE2%¥H(JI*3.14159*%DIAXDCOS{ANGI*DSIN(ANG)

AP 96-:0%3.14159%DIA+BASEE#2¥H{JIXDSINIANG) %2
ALAM = SEALING COEFFICIENT; ANGL = MHELIX ANGLE

ALAM(JY = TAAC*AC + AP*SP{J)}/(AURSULJ) )

ANGl =+ ANG%*180,0/3.14159

PRENT 29,ALAM{J) s H{J)sANGLl ¢ AKANG¢SP{J)+AC sSU{J) s SUM4
29 FORMAT{1HO,8D13.5}

H i
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$ENTRY

27
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CONTINUE

A NEW VALUE OF BASE IS INTRODUCED AND THE PROCESS
IS REPEATED UNTIL THE UPPER LIMIT FOR -BASE IS REACHED

69

BASE = BASE + 0.005
IF{BASE.LT.0.50)G0 TO 721
CONTINUE

L=L +1

[F(L-NE.4) GO TO 888

CALL EXIT .

END .

A REVIEW OF THE OUTPUT :MILL RESULY IN THE DETERMINATION
OF THE BEST CONFIGURATION
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