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This thesis contains a detailed investigation of the rarefied-gas

viscoseal model proposed by Hodgson. Modifications to his basic model

are made to make its application more general. The modified-Hodgaon

model is used to predict seal leakag=^ rates. Since the model does not

lead to an explicit determination of the pressure difference at zero

flow, Newton's method is applied to solve for the pressure difference.

An improved analytical model is developed to predict cont^.nuum and

slip regime performance. This model leads to an explicit determination

of the zero flow pressure difference and also lends itself to predicting

optimum seal geometries. An optimization procedure is developed and

applied to a specific application. Comparison of Che two models with

available continuum data shows that the agreement with the improved

model is good, while the modified-Hodgaon. model shows only ;air agree-

ment. The improved model also shows good agreement with rarefied sealing

coefficient and lealcs.ge data. The modified-Hodgson model agrees well

with the more rarefied sealing coefficient data available, but its

agreement with slip regime data is poor. The leakage prediction of

the modified-Hodgson model is in poor agreement with all available

leakage data. Based on the comparison with experimental data, the

improved model appears to be the more promising of the two models.
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INTRODUCTION

In recent years much attention has been focused on the viscoseal

as a highly efficient sealing mechanism. The viscoseal, a rotary

shaft seal, consists either of a threaded shaft rotating in a smooth

close fitting housing with a small, but finite clearance or a smooth

shaft rotating in a threaded housing. In either k:ase the sealing effect

is produced by the balance between the flow induced by a pressure

gradient and the flow induced by rotation.

A very important application of the viscoseal is found in shaft

sealing devices operating in a space environment. The purpose of the

sealing system would be to seal a shaft one end of which is exposed

to a relatively high density working fluid while the other end is

exposed to the vacuum of space. Since the working fluid undergoes a

change from a continuum state at one end to a highly rarefied state

before exiting to space, rarefied gas.dynamics must be applied to the

analysis of at least a portion of the seal.

To date much research, both analytical and experimental, has-been

done on viscoseals using liquids as the sealant, while relatively little

research has dealt with gas-type viscoseals. Hodgson and Milligan (1)1

A; conducted an analytical and experimental investigation of the performance

'Numbers enclosed in parentheses refer to similarly numbered
entries in the List of References.
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of visco-type gas seals operating in the continuum flow regime. Baron (2)

conducted an experimental investigation of viscoseal performance in the

continuum regime with air and hydrogen as the sealants.

In the flow regime between continuum and the highly rarefied free-

molecule flow, few theoretical and/or experimental investigations have

been conducted. King (3) conducted a theoretical analysis in which he

treats the flow in the viscoseal as continuum flow with slip boundary

conditions. He presents experimental data in support of his theoretical

analysis. Milligan and Wilkerson (4) have presented a viscoseal model

which is a modification of the laminar continuum model.of Boon and

Tal (5) incorporating slip boundary conditions. Since the Boon . and Tal

model is based on.the Reynold g lubrication equation, the model of

Milligan and Wilkerson is known.as the slip-modified Reynolds model.

Wilkerson (6) has conducted an analytical and experimental investigation

of rarefied viscoseal.perfcrmance.

All of the analytical efforts mentioned above have dealt only

with the slip flow regime. The only investigator to date who has

attempted to analyze the entire flow spectrum including the free-molecule

regime is Hodgson (7). He developed .a model similar to the one p.-oposed

by King (3), but which is extended to the free-molecule regime. Hodgson

formulates his flow models .along the lines of the semi-empirical approach

first taken by Knudsen (8) in his long tube work.

I. Statement of Problem

The investigation reported here concerns . a complete examination_of

the rarefied viscoseal model proposed by Hodgson; modification of this

f



simpler improved model, the advantages of which will be pointed out.

Previous work in the field of rarefied gas dynamics is adapted to the

development of this improved model.



REVIEW AND MODIFICATION OF THE HODGSON MODEL

As was stated previously, the model developed by Hodgson (7)

is by far the most ambitious attempt at solving the rarefied viscoseal

problem. At this point it is desirable to review this particular model

in detail and indicate where improvements can be made.

Hodgson chose to analyze the particular configuration where a

smooth shaft rotates within a grooved housing. It will be shown

later that the analysis for t:ie grooved shaft and smooth housing is

identical to this configuration. This being the case, Hodgson's model

is not as restricted in this respect as it might appear.

Hodgson considers the flow in the viscoseal to be composed of

three basic components: (1) the pressure induced flow along the groove,

(2) the pressure induced flow over the lande, and (3) the rotor induced

flow in the groove. This treatment of the flow is quite common and is

exactly the way King (3) chose to break up the flow. Figure 1 shows a

representation of the flow components. Q L , QR, and Qg represent the

pressure induced land flow, the rotor induced groove flow and the

pressure induced groove flow, respectively. Hodgson also restricts his

considerations to a seal with a single thread start.

In his development of the two pressure induced flow components,

he tal,ces the semi-empirical approach of Knudsen (8) in describing the

flow throughout the entire regime from continuum to free-molecule flow.

4

w;
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Figure I. Viscoseal Flow Components.
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In his long tube work Knudsen found that his experimental data could

(1)

be described by an equation of the.form

Q ["YP + l^PI dP
+ EP dR

In the continuum limit Knudsen reduced Equation (1) to Q - yP E

and by equating this to the known continuum solution, he was able to

determine 'y. In a similar manner as the free-molecule limit was

approached he reduced Equation (1) to Q ^ and by equating this

to the known free-molecule solution he determined 0 . By considering the

slip flvij regime, Knudsen was able to determine the ratio V/^ by

V 
11Pnoting that Equation (1) becomes Q = (YP + 9)aR and equating this

to the known continuum with slip solution. Next Knudsen determined the

difference ^-V from a consideration of nearly free molecule flow and

thus was able to determine both E and V. He then applied experimentally

determined corrections to ^ and V so that the experimentally observed

minimum in the Q/dP versus P curve would be correctly predicted.

Knudsen applied the analysis above to a long circular tube. In his

analysis Hodgson applies the identical procedure to his treatment of

the pressure induced flow in the groove (a. long rectangular duct)

and the pressure induced flow over the lands which he takes to be

a narrow slit.

n	 _

r .,r

I. Pressure Induced Flow in the Seal Groove

Hodgson assumes that the pressure varies continuously along the

axis of the seal groove from a value of P2 at the high pressure end

„•	 to Pl at the other end. In order to determine the pressure gradient



i
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along the groove axis, it is necessary to relate the length of the

groove, 2g , to the seal length, L. A development of a viscoseal is

shown in Figure 2. Hodgson only considered seals with a single thread.

The development that follows is generalized to any number of thread

starts, n .
s

In Figure 2 line AB is drawn perpendicular to the grooves. The

number of turns of spiral that AB crosses is equal to the total number,

nt , of complete turns on the seal which can be expressed as

L Zos a
nt 	 w+b

The length of groove per turn of spiral is Trd/cos a. The -otal groove

length on the seal is

k a Trd	 L cos a LTrd
T cos a w+b w + b

The length of each groove is then

k	 kT	 LTrd
g n 	 n  (w + b)

It follows that

dP _	 dP	
ns(w + b) dP

dk	 LTid	 Trd	 dL
g	 d^ns(w + b))

Hodgson indicates that the groove pressure gradient in a single threaded

seal is

dP	 w + b dP
di	 Trd	 dLj	 g

from which it follows that the flow in a groove . of a multi-threaded

seal is ns times the flow in the groove of a single threaded seal of



I	

I
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the same groove width, land width and diameter. Since there are n  of

these grooves, the total groove flow in the multi-threaded. seal is n2

time the flow in a comparable single threaded seal. The total groove

flow is then

1 + C P
Qg = ng [(BP 	 + C -17+  C1P)dL^'

2

(2)

A'

L.

:f

i

i

Y	
q

t	 i

,r
r

where the bracketed term is the single threaded groove flow developed

by Hodgson. The constants B, C, Cl , and C2 depend on the geometry of

the seal and the properties of the sealant and are given in Appendix A.

Appendix A also contains a discussion of the flow models used by Hodgson

to obtain these constants.

II. Pressure Induced Flow Over the Lands

Based on the assumption that the pressure varies continuously

along the helical groove, Hodgson shows that the effective pressure

gradient for the land flow is

dP w + b cos o^
dtL 

a 
w	 dL

This pressure arpZient applies equally well to both the single and mult•1-

threac?c;d seal. The land leakage flow for a seal of any number of threads

is then
1 + C P

QL	[DP + E 1
_+C 4P 3 dL	 (3)

Tr'*.ere the constants D, E, C3 , and C4 also depend on the seal geometry
;f

"> a
:.a and the properties of the sealant and are given in Appendix A along

i
with a discussion of their origin.

j
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III. Rotor Induced Flow

Hodgson takes a simplified approach to the prediction of the

rotor induced flow. Ia Figure 3 a groove cross section is shown with

the rotor moving over the top of . the groove. Hodgson develops the rotor

induced flow on a molecular basis, but as he points out a continuum

approach yields the same result. It is , assumed that the rotor induced

flow is . the same as the flow obtained in a long rectangular duct of

width b and height h in which the upper wall moves with velocity

U cos a (the component of the circumferential velocity of the rotor

along the axis of the groove). Rather than solve the describing

differential equation for parallel flow, Hodgson chooses to compute

the volume flow based on an area-weighted average velocity. This average

velocity is

u = (U cos a)b + (2h + b)(0) _ = Ub 	
cos a^

2(b + h)	 2(b + h)

The total rotor induced flow is thus

2

QR = ns [2(bh+ h) Cos 
a]P = nsAP	 (4)

where QR is generalized to a multi-threaded seal.

IV. Total Seal Flow

The flow rates given.by Equations (2, 3, and 4) are superimposed

to give r_ae total flow in.the seal which can be expressed as
^	

$s
1+ C P 1+ C P

-
QN

2	 1_	 dP
ns [BP + C	 ] —	 [DP + E

3
]

dP
— - n AP	 (S)

rti I + C 2 	 dL 1 + C4 dL	 s
..':5

where flow in the direction of decreasing pressure is corsidered positive.



J%
n'1

a

u

u = 0

Figure 3. Groove Cross Section.



V. Solution of the Modified--Hodgson Equation

Unlike Hodgson's basic equation, Equation (5) is applicable to a

seal with any number of threads. There are three solutions to Equation

(5) which are of particular interest. These three cases are: (1) the flow

rate through a non-rotating seal, (2) the flow rate through a rotating

seal, and (3) the pressure difference across a rotating seal when the

net flow is.zero.

Flow Rate in a Static Seal

The volume flow rate at uni' pressure, Q = VP, is related to the

molecular flow rate, n, by

n _ Q
kT

For the case of a.non-rotating seal (Q R =.0), Equation (5) can be

integrated to obtain the apecific molecular flow rate

AP	 k1

_
Qn2B + D)P

C
+ n2 C G1 + E

2

CC3

4

C- C r+ 1	 r (1 + 2C,;P) + 1
• ns C 2C

2 P 1 
(r- p 1) In [rp + 2C 2g`+ 1 ]

2

C -C r +l	 r (1+2C Y) +1
• E 4	 3 (—^--) In (`p .	

4	
] } ,	 (6)

2C^ P	 r  - 1
	

rp + 2C4P '+ 1

i

Flow Rate in.a Rotating Seal

is
	 Assuming a constant pressure gradidnt along the groove, the total

'j	 rotor induced flow on a molecule b" pis is



(7)

r

}

r
I

The net flow through a rotating seal is found by combining the rotor

induced flow of Equation (7) with the flow in the static seal, Equation

(6). The net specific molecular leakage is

_	 C	 C
ZP kTL {(n8B + D)P + n8C 1̂ + E 

4C
2	 4

+ 2 [ rte— 1I(naC 2 — 1 In < p	 2_	 )
r +1	 C -C	 r (1+2C P)+1

p	 C2 P	 rp + 2C 2P + 1

C -C	 r (1+2C P)+1
+ E 

4	 3 In ( p	 4	
)- n AL]}.	 (8)

C4 P	 rp + 2C 4P 	+ 1	
s

Pressure Difference at Zero Net Leakage

Since a rarefied viscoseal, in the ideal case of a true space

environment, will normally operate with P l = 0, it would be impossible

to maintain a zero net flow. However, the condition of zero net flow

is of interest as far as experimentation and comparison to continuum

performance are concerned, and in non-space applications where P I # 0.

The maximum pressure difference under which a seal can maintain

a zero net flow is found by solving the modified-Hodgson model equation

subject to the condition that Q. = 0. Integrating Equation (5) subject

to this condition one obtains
_	 2 C1 	 _	 C

nSC+E 2 + C (2P + OP)nsC(C - 1) 2 + C (2P + AP) ( 3 1)
r2P + AP* s	 2	 2	 —	 4	 C4

2P - ^P	 2 + C
2
 (2P- AP	 2 + C4 (2P - AP)

= exp [n
8 
AL- (n2B + D)AP].
	

(g)

w	 4
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In general Equation (9) cannot be solved explicitly for AP. For the

special case of continuum flow 27P > > AP, the continuum 	 can be

obtained from Equation (9) as

n AL
AP a s
	

(10)
n 

2 
B + D

s

At the other extreme free-molecule flow, Equation (5) can be reduced

.. -

r	
to its free-molecule limit,

QN = - (neC  + E
) dL - n

aAP.	 (10a)

Since in the free-molecule limit P is very small, the last term in

Equation (10a) could presumably be very small; but since efficient seal

performance requires that the rotor induced flow be of the , same order

of magnitude as the pressure induced flow, this term is retained.

Solving Equation (10a) subject to the , condition that Q. = , 0, the free-

molecule pressure ratio becomes

rp = exp [nsAL/{neC + E)].
	

(11)

The AP across the seal can be expressed as

r. - 1
AP =

_
2P

rp + l
p

(12)

Combining Equations (11) and (12), the AP in the free-molecule regime

is

_ exp [nsAL/(neC + E)] - l
AP = 2P

exp (nsAL /(neC + E)) + 1

Since no explicit solution to Equation (9) eau in general be

obtained, some approximate solution technique must be employed. Since
z ^.

(13)



Newton's method of approximating roots is generally a rapidly converging

iterative method, it is employed in solving Equation (9). Newton's

method requires that the given relationship be differentiable.

Equation (9) can certainly be differentiated. Another very important

requirement is the ability to make a close initial approximation to the

solution. This requirement is particularly important with a complicated

relationship such as Equation (9).

In order to make a close approximation to the roots of Equation (9),

one needs to know as much as possible before hand about the character

of the solution. At this point two characteristics are known: (1) the

continuum limit, Equation (10), and (2) the free-molecule limit,

Equation (13). Figure 4 shows the general character of these limits

for a given seal operating at a given speed. The solution of Equation (9)

will simply define the behavior over the entire range of average

pressures and approach the continuum and free-molecule limits at the two

extremes. In order to make a close approximation to the value of AP

which satisfies Equation (9) for a given P, a high average pressure, P 

is chosen initially such that the continuum solution from Equation (10)

is a good approximation to the root of Equation (9). Using this initial

approximation for AP, Newton's method is employed to solve Equation (9)

for the AP at Pl . An incremental decrease, 5, in the average pressure
is then taken and the AP obtained from the previous iteration at P 1 is

used as the initial estimate of the solution for AP at P 2 and the

iteration process is repeated to obtain &P. The entire process is

repeated to obtain AP at P3 , P4 , etc.
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P2 P1
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00
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Figure 4. General Character of Modified-Hodgson Solution.
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Essentially the above process could be continued until the entire

spectrum of pre-cures had been traversed, but the process encounters

difficulties in the shaded region of Figure 4 near the intersection of

the continuum and free-molecule asymptotes. In the region to the right

of the shaded area, the AP versus P solution of Equation (9) is fairly

flat, thus making the solution at Pn _ 1 a good approximation to the

root at Pn . In the shaded region, however, the rate of change is so

large that the method used above for the initial estimation of the

solution is not sufficiently accurate. Two simple modifications to

the above method can help to ensure a close approximation of the root

at Pn . An obvious modification would be to reduce the step size, Z.

An enlarged view of the curve in the shaded region is shown in Figure

5. Since all previous points P 1 through P  _ 1 have been determined,

these points can be used to extrapolate to an initial approximation

at Pn . Essentially an extrapolation of order n - 2 could be made,

but experience has shown that a linear extrapolation combined with

successive reductions in bF is sufficient to ensure convergence at

P .
n

After passing through the critical region in the vicinity of the

intersection of the asymptotes, the curve essentially assumes the

straight line predicted by Equation (13). The solution is thus

complete.

The Fortran programs for the solution of Equation (5) for the

three cases outlined above are presented in Appendix D. The flow rate

in a static seal is simply a special case (QR ° 0) of the rotating

solution. Consequently only one.program is needed for the flow rate

solutions.

i
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Figure 5. Linear Approximation in Critical Region.
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Agy,

The modified-Hodgson model provides a convenient means of

predicting the performance of a given viscoseal. The limiting

conditions of Equations (1.0) and (13) can conveniently be used to

predict optimum seal geometries in the purely continuum and purely

free-molecule regimes, respectively. In the transition regime,

however, Equation (9) would be very difficult to use in an optimization

study because of the time consuming solution method. In the next

chapter a simpler transition regime model is developed in which the

non-leaking pressure difference can be obtained explicitly.



CHAPTER III

DEVELOPMENT OF AN IMPROVED MODEL

In this chapter a simpler model than the modified-Hodgson

model will be developed which will lit:nd itself to a less arduous

solution in the transition regime and will also correctly predict the

continuum performance. The model also predicts the rotor induced flow

in a more rigorous manner. Many of the concepts used in the development

by Hodgson will be employed in this chapter..

I. Basic Model Development

The basic model will be essentially the same as the one used by

Hodgson and which is basically the same as the simplified screw

extruder theory presented by Carley, et al. (9). The assumptions

inherent in these models are:

(1) the total flow in the seal can be treated as the super-

position of the leakage flow in the grrooves, the leakage

flow over the lands and the rotor induced flow in.the

grooves,

(2) the pressure varies continuously along the groove and

is constant over the cross section of a.particular groove,

(3) the groove depth is small compared to the diameter of

the seal, thus allowing curvature effects to be neglected

in the groove flow development,

20



(4) the flow in a seal with a grooved housing is identical to

the flow in a seal with a grooved shaft.

Assumption 1 obviously neglects the convective coupling of the flow

components. The solution without this assumption is extremely

complicated for even purely continuum flow (10). Its exclusion would

certainly lead to an even more complex analysis when non-continuum

boundary conditions are applied. Since the objective is the development

of a simplified theory, the inclusion of assumption 1 is a necessity.

Assumption 4 is discussed in greater detail in Appendix B. One

important assumption that is usually made which is not made here is

that the groove 5idewall effects are negligible. This assumption is

one of the prime distinctions between this analysis and the slip-

modified Reynolds model in which this assumption is made.

The assumptions governing the development of the component

flows are!

(1) the flow is steady, constant viscosity, fully developed, isothermal

and Newtonian with negligible body forces,

(Z) the Navier-Stokes equations with non-continuum boundary

conditions are applicable,

and

(3) the non-continuum boundary conditions can be expressed

as (11)
V

° Iwall	 do -.:all'

In the development of the flow components, flow models which have been

experimentally verified will be used and reference made to their

verification.
l

ry

I



Although most previous investigators have initially treated the

groove flow in two parts, this analysis will initially treat the groove

flow as a single flow from which the two previously mentioned groove

flows are eventually obtained.

Based on the assumptions stated above, the Navier-Stokes

equations reduce to the single z-momentum equation

2	 2

ax` + a 2

	

	 (14)u dz
Y

The applicable slip boundary conditions shown in Figure 6 are:

av (
0 ,Y) = 0 (15a)

v (b/ 2 ,Y)	 - Ala 
2v

(b/2, Y) (15b)
ax

v(x, 0) = A	 8v (x, 0)
1

(15c)
a

and

r ; v(x, h) _ - U cos - Ala	 —vv (x, h) (15d)
ay

where advantage has been taken of the symmetry about the y-axis. The

slip coefficient, Al , is usually taken as unity as will be done here.

It is convenient at this point to non-dimensionalize the velocity

and the coordinates and introduce an index of rarefication. 	 The non-

dimensionalized variables are taken as

.„
x	 X/(b/2)

v
y	 y/h	 and	 u= U

j cos .a



T

L X

_ Ala 8v
aX

v = —U cos	
3v
3vv
a.,

Figure 6. Groove Configuration.



A common index of rarefication, the Knudsen number is taken as

Kh a A/h

Introducing these new variables into Equations (14) and (15) one obtairzd

92  a 2 3 2u _	 b2	 dP R	 (16)
8x2 + ( 2 )	 2	 4uU cos a dz = U

where

b2	 dP
R - 4ucos a dz

and the boundary conditions are

ax (0 , y) = 0	
(17a)

u(1 , y) _ -
 2K. 

3x( 1 , y)	 (17b)

u(x, 0) = Kh ay(x, 0)	 (17c)

ay,. a

a(x, 1) _ - 1 - Kh ay(XI 1).	 (17d)

Many techniques have been used to solve non-homogeneous problems

of the type presented above, The least arduous is a modified form of

the method of variation of parameters (12). This method has been

employed successfully by Ebert and Sparrow (13) to solve Equation (14)

with four homogeneous boundary . conditions. In the case considered

here Equation (17d) presents a non-homogeneous boundary condition, but

I he method used by Ebert and Sparrow still leads to a solution.

The method of Variation of parameters is a generalization of the

method of separation of variables, and as such, experience gained from



employing the latter is helpful when applying the former method. In

the method of separation of variables, the sign of the separation

constant is taken so that the trigonometric solution is obtained for

the homogeneous direction. In the method of variation of parameters

the same reasoning is used in the assumption that the solution has the

form

u(x, Y)

	

	 n(y)(cos anx + C 5 sin anx)
n = 1

where the x-direction is the homogeneous direction determined by an

inspection of Equations (17). The function 0n (y ) is a yet unknown

function of y. One now proceeds to determine 0n , an , and C5.

Substituting Equation (18) into the boundary condition of Equation

(17a) one obtains

E 0n (Y) IC5an cos (0) - an sin (0)] = 0
n = 1

which implies that C 5 = 0 and that

u(x, Y) =	 E	 On (
Y) cos anx	 (19)

n = 1

Substituting Equation (19) into Equation (17b) gives

1K  a
E ^n (Y) [ cos an -	 a n sin an] = 0

n = 1

fbom which it follows that for a non-trivial solution

2Kh a
cos an -	 a n sin an = 0

r!
r	 or

a tan a	 a	 ('2(1}n	 n 2Kh

(18)

Ll



The eigenvalues, an , of the eigenfunctions, cos an
 x, are the roots of

the transcendental relationship of Equation (20).

The problem now reduces to determining 0n (y). Substituting

Equation (19) into Equation (16) yields

- n 1 an ^
n (Y) cos anx + (2)2 

n 
E 141n(y) cos anx

W

U	
E	 St cos ax	 (21)

n = 1 
n	 n

where Stn satisfies the Fourier series

1 =	 E	 0 cos a X.	 (22)

	

n = 1 n
	 n

The Fourier cosine series coefficient, St n , must be

2 sin an 	2	 sin an

^n	 n + sin an cosa n an • 1 + 2Kh sin2an	
(23)

a 

a

where the last step comes from Equation (20).

In order for 0n (y) to satisfy Equation (21), it must be that

	

2a	 4RSt

On (Y) - ( an)2 On (Y)= 	2 .	 (24)

Us

The determination of 0n thus reduces to the solution of a non-

homogeneous second-order ordinary differential equation. The boundary

conditions on 0n (y) are obtained from Equations (17c) and (17d).

From Equation (17c) one boundary condition is

On (0) = Khon(0).	 (25a)

I

I	
y
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Substituting Equation (22) for the unity term in Equation (17d)

leads to the second boundary condition,

0n (1) _ - S2n - Khon( 1)•
	 (25b)

The solution of Equation (24) subject to the boundary conditions

in Equations (25) is

-A y	 -A y RS2n	 n	 n
On (y) = (Clnp + Clnu)e	

+ (C2np + C2nu,)e	
- UC12n

where
2a

A = n
n	 a

R52n	(1 - KhO.)e An - ( 1 + KhAn)
C1np U U 

[ (I -	 2e-On - (1 + KhAn) 2eAn l

52n (1 + KhAn)

Clnu (1 - KhAn)2e An - (1 + KhAn)2eOn

= RQn (1 - KhOn) - (1 + Khen)eOn

C2np Ua2 [(1 - KhAn)2e ®
n _ (

1 + 
KhAn) 2eAn )

C
gnu	

0n(1 Kho n)
=	 .

(1 - hen)2e 
An - ( 1

 + Khen)2een

By substituting Equation (26) back into Equation (19) the,

dimensionless velocity distribution becomes, after considerable

simplification,

(26)

ti
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b 2	
dP °°
	 sin

lI^^ 

an
au(x, y)	 2µU cos	 dz n 

E 
1 L 1 + 2-h sing a ]•

	

---	 na

10,y
	 a	 2a y

cos a x cosh n - tanh 
n 
sinh 

n

L	 3 n ][	 1c a	 as	 a	 -1 ]
a	 1+ 2 h n tanh n
n	 a	 a

	

sin a	 cos a x
E	 2[	 2 n 

2 
][— a n ].

	n 1	 1+ h sin an	 n
a

2a y	 2Kha	 2a y
sinh n +	 n cosh n

	

a	 a	 a
[	 2Kha 2	 ?a	 4Kha	 2a ]'

Ll + (	
n) ] 

sinh n + a n cosh n

	

a	 a	
a

The volume flow rate in the groove is obtained by integrating the

velocity Jistribution over the area of the groove. The volume flow

	

rate, thus obtained is	 -

	

V - bah dP £	 a	
sin  an	 tanh an/a	 - an

g	 211 dz n	 1 a5 L
	

2Kh	 2	 ][	 2Khan	 an	 a]

n 1 +	 sin a 1 +	 tanh

	

a	 n	 a	 a

	sin2 a	 tanh a /a

	

- Ubh cos a E	
3[	

n	
]L	 2 n	 a ]•(28)

a
U 1 an 1+ 2 a sin  an 1+ % n tanh n

The first summation term represents the pressure induced flow in the

groove whereas the second term represents the rotor induced flow.

The linearity of Equation (14) has been demonstrated in the

analysis above since the solution of Equation (28) can be shown.to be

the sum of two solutions. The first term is in agreement with the

expression obtained by Ebert and Sparrow (13) for slip flow in a

rectangular duct with stationary walls. Milligan and Patterson (14)

have experimentally verified the solution of Ebert and Sparrow. The

last term'is the,solution of 02v 0 with the boundary conditions given



COs a	 0
n

or

4. '1

,i

p1-r„

n7T

an = 2
n = 1, 3, 5, 7 . . .

r}1

29

in Equation (15). It is thus demonstrated that it is permissible to

obtain the two solutions mentioned above independently and then to

add them togethe- to arrive at the same result as Eyaatica (28).

At this point it is interesting to determine Vg when the Knudsen

number approaches zero, the continuum flow regime. The solution fir

the eigenvalues becomes

With these eigenvalues and with K h -* 0, Vg becomes

__ 16b 3h dP	 a	 n'f _ nor

Vgc	 571	 dz	 —5	 tanh 2a	 2a^

	

A r	 n ] n

_ 8Ubh ^ 3

os a n 1 n3 t
auh 2a	 (29)

n = 1, 3, 5, 7 . . .

III. Correction to Rotor Induced Flow

In the analysis above it was assumed that the rotor velocity,

U cos a, acted at the top of the groove (y = h). No attempt-was made

to account for the fact that the rotor is not located at y = h but

rather at y = h + c. Since an exact analysis of the region above the

groove, h < y < h + c, has been shown to be very complex even for

continuum flow (10;i, some sort of approximation must be made to obtain

a simple solution. The following assumptions are made: (1) the flow

r^
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2a y 2Kha 	2a y
sinh n +	 n	

n
cosh a

2ka	 za 4%a

[1 + ( a n)2] sinh an + a

2a ]

	
(30)

cosh an

Induced by the rotor in the region h < y < h + c does not contribute

to the seal discharge and (2) an effective inducing velocity less than

U cos a acts at y = h as a result of the clearance region h < y < h + c.

This effective inducing velocity, Ue , will be determined by calculating

the average velocity in the plane y = h of a hypothetical groove of

depth h + c and width b with the upper boundary moving at U cos a and

s	 with slip boundary conditions on all surfaces. The hypothetical

groove and associated boundary conditions are shown in Figure 7. The

brackets in Figure 7 indicate the portion of the boundary over which

each boundary condition is applied.

From Equation (27) the velocity distribution induced by the rotor is

	

°°	 sin a cos a x

	dR = U cos a E	 a [	 2Kh	 2 n	 ]n 1 n	 h
1 +— sin aa	 n

If Equation (30) is applied to a groove of depth h + c, the resulting

distribution is

sin an cos a x

vi
= U cos a	 E a[	 2 n	 ].	

.
n = 1	 n	 1 +	 at sing 	an

2a y' 2Kha 2a y'
Binh +	 cosha ,

n
an

a,

[— 'qa	 2a	 ] '2%a 2a
[1 + ( sinh	 +a , n) 2 ]

an
n 

cosha,	 an

where

.K^

4.

Svc
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8v
vR -U cos a - Ala R

a:

9v a1A__

3x

X

Figure 7. Hypothetical Groove.
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baat = h + c 1+c/h

x	 K 
Kh ah+c 

m 
l+c/h

y' - yh + c

The eigenvalues of Equation (20) are still the same because

a	 at
2Kh = 2Kh

The average velocity at the plane y h or y 	 h + c is

1

Ue 	f v''(x, h/(h + c))dx.

0

Carrying through the integration, U  becomes

sin  a
Ue = 2U cos a E	

2	 2
n

n 1 an 1 +' sin2 a ]	a 	 n

	

2a	 2Kha	 2an
sinh n +	 n cosh 

	

a	 a	 a
[ On 2	 Zan 4Khan	Zan ]

[1 + ( a ) ] sinh a, + a
	

cosh 
a•

or

Ue = [U cos a] Ec

where the E  is equal to twice the summation in Equation (31). The

corrected groove flow is now obtained by replacing U cos a in Equation

(28) with [U cos a] Ec . The total groove flow now becomes

Vg = 2uh dz Ep - U bh cos a[E cEu]	 (33)

where

(31)

(32)

G

^w	 y

h

I
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a
a	 sing a tanh —n	a

Ep =
E

n
[a5	 2. 1 [	 - —na l (34a)

ari	 Y n	 ^1+	 sin2 a
2	 a	 ah n	 n1+	 tanha	 n a	 a

a	 sin 	 a
C1

tanh —n
Eu E

[	 na3	 2g (34b)
][	 l

n= l	
n	 h 	 2

2	 a	 a
h n	 n1+	 sin a	 1+	 tanha n	 a	 a

and
2sin	 a

E c = E 22 [	 2K^	 n ^.

n 1	
an	 1+	 h sin2 a

a n

2a	 2Kha 2a
sink

n +	 n	 cosh n

[
a

(34c)
2Kha	 2a a4Kha	 ^'2a

[1 +
n)2] sinh j( n cosh+

ana a

-, In terms of the viscoseal geometry
,i

dP  dP
n (b + w)
s	 dP dP

d z
_

Trd	 dL
	 sin a dL (35)dQg

and since the pressure gradient in the viscoseal is assumed to be constant,
s'+rl

dP 
= sin

AP
a (36)

dz L

The total groove flow is obtained by multiplying Equation (33) by ns.

Noting that ns = (7rd) sin a/(b + w) the total groove flow becomes

V	 = n V' = ardb 3hAP sin 	 a	 E _ U'rdbh cos a sin a E E (37)g s g 24L (b + w) p	 (b + w)	 u c

IV. Land Leakage Flow

The land leakage flow is taken as flow through a long annulus.

Milligan et al. (15) have developed an expression for slip flow in an

annulus and have obtained excellent experimental confirmation of the

expression. The expression derived by Milligan is

Mz -
	

'1



r

where

4	 (1 - K
2 ) 2	 2K (1- K2)

AL = [( 1 - K ) + in 	 + [	 2 ].
KinK-Kc(1-K)

r.

(38)

(39)

_ 2 2
[2K(K2 - 1) - 2K(ln K)(K2 - K + 1) - 

(12 i n K

+ 2(1 - K2 )(1 - K)2KCIS

and 
d is the effective land pressure gradient. For a single-threaded

L
seal, Hodgson (7) showed based on assumption (2) at the beginning of

this chapter that

dP	 w + h	 dP
dk

L
 = w cos a dL . (40)

As was stated Ir !" )ai?ter II,

threaded seal. This point is

Combining Equations (38)

_	 nd4(w + b) cos a
7̂L - _
	

128,; w

;quation

verified

and (40)

_ p dP
AI dL =

(40) remains valid for a multi-

in Appendix C.

the land leakage flow becomes

7rd 4 (w + b) cos a	 (

1281 wL	
dE	 41)

V. Total Seal Flow and Sealing Coefficient

The total seal flow is obtained by combining Equations (37) and

(41). The result is

VT = PL [A Z + AcAL I - c2[A Iclu]
	

(42)

where
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A = TTdb 3h sin  a.
p	 2(w + b)

A = TTd4 (b + w) cos a
c	 128 w

and

7Tdbhc2 coe a sin a
Au =	 6(w + b)

The specific molecular flow rate is

V

AP = AP (kT)

or
r + 1

zi = P IA E + AAL] - ZU Ir 11IAUZc Zu^	 (43)
AP	 U	

c
LkT p p	 c kT p

where Equation (12) is used to eliminate AP.

A common dimensionless viscoseal performance index (1, 4, 5, and

16) is called the sealing coefficient and is defined by

A- 6
2UL	 (44)
c AP

where AP is the pressure difference at zero flow. By equating VT to

zero in Equation (42), the sealing coefficient is obtained as

AE +A AL

A =. ^ApE E c	 (45)
U c u

Program three of Appendix D computes the specific molecular

flow rate from Equation (43) and the sealing coefficient from Equation

(45). In order to evaluate the summations, E p , E c ,, and Eu , it is

necessary to determine the eigenvalues which satisfy Equation (20).

Newton's method of approximating roots is employed to solve Equation

(20) for these eigenva yues at each Knudsen number. U



CHAPTER IV

OPTIMIZATION USING THE IMPROVED APALYTICAL MODEL

Equation (45) presents an explicit determination of the performance

in the transition regime, a vast improvement over the Hodgson model in

which no explicit determination was possible. Even with this improve-

ment the process of optimization in its broadest scope would require

the determination of optimum relationships among six basic parameters:

b, h, w, a, c, and d.

It seems appropriate to assume that for a given application the

following will be known;

(1) the average operating pressure, P;

(2) the shaft diameter, d;

and

(3) the minimum allowable clearance, c.

One important parameter that becomes fixed with the specification of

P and c is the Knudsen number K  based on the clearance. By definition

K - X
C	 c
	 (46)

but for isothermal flow= X(P) and thus for constant P and c, 
KC

is constant. From this AL olso becomes a constant since specification

of c and d fixes K.

The six basic geom ric parameters have now been reduced to four:.

b, h, w, and _X. Optimization requires minimizing the sealing coefficient.

A necessary condition for the existence of a minimum is that

36

r



to

s. 37

DA	 M aA aA
aa = aw = ah° a-b	

o
(47)

The formation of the partial derivatives, 8h 
and ab, would be very

difficult since the summations E p ,Eu and E  are all functions of b

and h and contain the involved transcendental relationship in Equation

(20). But the other two partial derivatives can be determined.

Differentiating Equation (45) with respect to w and setting this

equal to zero yields

DA
A a (A E+ A AL) - (A E+ A AL) u

l	 u aw p p	 c	 p p	 c	 aw	 0-- v
EcEu	A2

u

from which it follows that

(48)

DA
Au 

aw
 (ApEp + AcAL) - (APEp + AcAL) a—u = 0

Substituting the following:

DA  _ _ 'rdbhc2 cos a sin a
aw -	 6(b + w)2

IAP = _ 7rdb3h sing a
aw	 2(b + w)2

DA 	
7rd4b cos a

aw	
128 w2

into Equation (49) it can be shown that

b = w

will satisfy the condition that 
aw
IL

 
= 0.

(49).

(50)

(51)
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Differentiating Equation (45) with respect to a and setting

this equal to zero one obtains

dA
A 
8 

(A E +AA) - (AZ +A AL) u
1	 u@a pP	 cL	 Pp	 c	 0ea

^	 ^ m

r	 EcEu	 A2
u

from which it follows that

^ 3A

	

E`,i as (Ap Ep + A c AL ) - (A Z + ACA L) 
tau	

0.

Performing the required differentiation and making use of Equation (51),

(52)

Equation (52) becomes

Ka Cos 3 a+ Cos 2a-1=0
	

(53)

where

ALd3
Ka	

16b2h E
p

iwo optimization conditions have now been est" lished, These

conditions	 the land width and groove width must be equal and

that Equatic :°a ;j3) must be s&tisfied. The process now reduces to finding

the optimum value of b and h. Since the,infinite series, Ep, Ec, and

Eu , are involved the remainder of the ,process is carried out numerically.

The procedure is simply to set up acceptable.limits for b and h.

A valur. , of b is chosen, w is.determined from Equation (51), all values

of h are combined with the chosen value of b, for each b - ^i combination

the optimum helix angle is deterained from Equation (53) 9 and finally

the sealing coefficient is computed from Equation (45). The sealing

coefficients corresponding to all the b - h combinations are compared

and the minimum value chosen.



For purposes of illustration, the procedure outlined above is

carried out for a seal with the following characteristics:

d = 2.00 inch

c = 0.004 inch

K = 0.2c

As stated above acceptable limits for the variables b and h

must be established. The smallest practical value of b is chosen to

be 0.010 inch. The smallest practical value of h was chosen to be

O.QUi inch. The L Ter limits are in a sense arbitrary, but ar-

subject to machining restrictions. The upper limit for the groove

width is governed by the assumptions on which the basic model is

derived. Since the groove flow is developed for a long groove, the

groove width must be small compared to the length of the groove. The

length of the groove is L/sin a. In general L and a are not known

before the optimization study is conducted. Since the length of the

groove cannot be established before the optimization study, a broad

range of values for b is considered. In this instance b is allowed to

takg on values up to 0.5 inch. The upper limit for the groove depth,

h, is fixed by the restriction that h < < d. In the example

considered here, if ? 100, h must be equal to or less than 0.020

inch.

With the limits on b and L established, the problem now reduces

to finding the. b - h combination within these limits that gives the

minimum sealing coefficient. The Fortran program for computing and

comparing these combinations is found in Appendix B.
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The results of the optimization are shown in Table I. It should

be kept in mind that the land width is equal to the groove xfidth

and that at each value of b there exists an optimum value of h from

which the helix angle, a, is . determined using Equation (53). The

optimum sealing coefficient in Table I is computed using these values

of h and a. The values in Table I are only approximate due to the
i

fact that b and a must be chosen so that n s will be an integer satisfying

the relationship

1rd sin a 	 7rd
n 	 b 4 w	

2b sin a	 (54)

From Table I it is apparent that a wide shallow groove yields

the best sealing coefficient and that any value of b above 0.2 inch

will result in a good seal. It can also be seen that a groove depth

of 13 or 14 mils will give the best results and that the optimum helix

angle is about 22 degrees.

In order to satisfy the condition that the grove be long

compared to its other dimensions, the smallest groove width that gives

a good sealing coefficient should be chosen. In this case the sealing

coefficient is still close to optimum for b = 0.2 inch. Substituting

b = 0.2, a = 22.2°, and d - 2.0 into Equation (54), n s. = 5.94. But

since n  is the number of thread starts, it must be an integer. Taking

n
s 

equal to 6 and a as 22.2 degrees, the groove width must be, from

Equation (54), 0.198 inch. Once the seal geometry has been d,°termined

the sealing coefficient can be computed. With knowledge of the sealing

coefficient, the clearance, the viscosity of the sealant, the operating



OPTIMUM SEALING COEFFICIENT FOR A
2.0 INCH DIAMETER SEAL WITH A CLEARANCE OF 4 MILS

OPERATING AT A KNUDSEN NUIBER OF 0.2

Groove Width	 Groove Depth	 Helix Angle	 Sealing
(inches)	 (inches)	 (degrees)	 Coefficient

0.010 0.007 47.2 68.6

0.020 0.009 37.6 35.6

0.030 01010 33.5 28.5

0.040 1.011 30.1 25.6

0.050 0.012 27.3 24.0

0.060 0.012 27.1 23.1

0.070 0.012 26.9 22.4

0.080 0.013 24.6 22.0

0.090 0.013 24.5 21.7

0.100 0.013 24.4 21.4

0.200 0.014 22.2 20.5

0.300 0.014 22.1 20.3

0.400 0.014 22.1 20.2

0,500 0.014 22.1 20.2



speed, the seal diameter, and the pressure difference across the seal,

the seal 'Length can.be computed from Equation (44).

The procedure outlined above can be followed to find the 'best

seal configuration for any application where the diameter, clearance

and average operating pressure can be established.
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CHAPTER V

COMPARISON WITH EXPERIMENTAL DATA

Experimental data on gas-type viscoseal performance have been

obtained under continuum and rarefied conditions. Wilkerson (6) has

obtained both net leakage and sealing coefficient data. King (3)

obtained sealing coefficient data but no leal,:age data, while Hodgson

and Milligan (1) have obtained sealing coefficient data for purely

continuum operating conditions. Comparison of these data with the

predictions of Chapters II and III will be made.

I. Sealing Coefficient and Net Leakage for
f x

Modified-Hodgson Model

rt	 Combining Equations (10) and (44), the continuum sealing

a :?
`	 coefficient based on the modified Hodgson model is:

n (b + h) (b + w)h2
A = s	 [1 - 0.63 h tanh Trb

] + (b + h) (b + w 7Tdc. (55)

	

7rdbc 2 cos a	
b	 2h	

n b2hws

From Equations (13) and (44), the free-molecule sealing coefficient is

exp [n AL/(n2C + E)] + 1
A = 31JUL [	

s	
2	

]. 	 (56)
Pc	 exp [nsAL/(n2C + E)] - 1

In the regime between continuum and free-molecule flow, the solution

of the general pressure difference relationship, Equation (9), is

combined with Equation (44) to obtain the sealing coefficient.

.:`'?	 43
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The net leakage for all flow regimes as predicted by thy: modified

Hodgson model, is given by Equation (8).

II. Continuum Sealing Coefficient for the

' Improved Analytical Model

The sealing coefficient expressed in Equation (45) is applicable

to seals operating in the continuum and slip flow regimes, In the
.i

continuum limit,	 as K ► 0 and Kh + 0, the sealing coefficient can beC

written as:

A	 E	 +AA
LCA =	 p	 pc	 c

Au Etc Euc

where Epc
ALC' Ecd'

and E. 	 are the continuum limits of E p , AL , Ec

and Z. respectively, and are expressed as:

32
= - E a	 [tanh nTr - n",

4 °PC
IT 	 n

l n5	 2a	 2a

nTr
8	 E_ s inh	 a

cc
W 2	 n	 1 n2 	 sinh	

nTr
a

=	 -K4)+0..1
2 2

(llnK )ALC

and

E = 
8a	 tanh Za

uc	
7T3 n	 1	 n3

where n	 1, 3, 5, 7 . . , for all the summations.

III. Comparison with Continuum Data

Table II shows a comparison of the sealing coefficient predicted

b E nations (55 and 57) with datay q	 )	 (	 presented by various i.nve3tigators.

i



COMPARISON WITH EXPERIMENTAL CONTINUUM DATA

Seal Experimental
Sealing Coefficient

Modified-Hodgson Improved Model

Hodgson
Milligan No. 2 12.5 10.4 12.3

Hodgson
Milligan No. 4 14 10.5 12.4

Hodgson
Milligan No. 5 23.5 17.0 26.3

Wilkerson 25 14.6 24.6

King 45 40.5 47.4

.0
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A detailed description of the seal configurations is given in Table III.

The agreement of Equation (57) with the data is good for all five seals.

It should be pointed out that both the grooved housing and grooved shaft

type seals are represented, the seal tested by Wilkerson being of

the grooved shaft type, while the others are the grooved hdusing type.

This lends support to the applicability of the models to either type

seal. The modified-Hodgson model shows poor agreement for all the

seals except the seal tested by King. The reason for the good agreement

with this seal is due to the fact that the groove depth for this seal

is much larger than the clearance, thus making the assumption valid

that the rotor acts at the top of the groove. Also, the groove of this

seal has an aspect ratio of 1.77. With this aspect ratio the area-

weighted average velocity approach for the rotor induced flow is a

good approximation to the exact parallel flow solution.

IV. Comparison with Rarefied Data

To the author's knowledge, few investigators have presented

a significant amount of experimental data for rarefied viscoseals.

The most thorough investigation is presented by Wilkerson (6). This

data will be compared to the two analytical models. The seal tested

by Wilkerson is the same seal as his continuum seal of Table III with

one exception, Using a rubbing contact vacuum seal to seal the shaft

where it penetrated the test section, Wilkerson encountered small

changes in clearance due to thermal growth of the shaft. The clearance

varied with speed and was different for leakage and sealing tests. All

other dimensions are the same as those given in Table III.

0



EXPERIMENTAL SEAL CONFIGURATIONS

Seal
Hodgson

No.	 2
and Milligan
No. 4 No.	 5 Wilkerson King

d(in.) 2.5037 2.5037 2.5037 2.0005 3.147

c(in.) 0.00175 0.00175 0.00435 0.00418 0.0031

L(in.) 2.30 2.30 2.30 4,53 1.70

n 4 4 4 16 1
s

b'(in.) 0.125 0.125 0-.125 0.03111 0,197

w'(in.) 0.125 0.125 0.125 0.03235 0.110

h(in.) 0.010 0.0105 0.009 0.03065 0.111

a(deg) 7.27 7.27 7.27 9,30 1.47
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Figure 8 shows sealing coefficient data obtained by Wilkerson at

speeds of 5,000, 10,000, and 30,000 rpm. The theoretical curves for

the sealing coefficient for the modified-Hodgson model and the improved

model are also shown. The clearances fcr the 5,000 and 10,000 rpm

data were essencially the same, whereas the clearance for the 30,000 rpm

data differed by about 14 percent from the 5,000 and 10,000 clearances.

Note the speed sensitivity of the modified--Hodgson model. The difference

between the two curves for the improved model is due to the difference

in clearances and in no way indicates a speed dependence of this model.

The improved model gives fair agreement for all speeds. The modified-

Hodgson model also gives good agreement for the more rarefied data at

each speed, but gives poorer agreement with the less rarefied and

continuum data.

Figure 9 shows net leakage data for the same seal for speeds of

0, 5,000, 10,000, and 30,000 rpm. The flow rates of Equations (8)

and (43) are also shown. Equations (8) and (43) are pressure ratio

dependent. The average experimental pressure ratios at each speed

were used in these equations. The average pressure ratios given by

Wilkerson are 177, 146, and 807 for 5,000, 10,000, and 30,000 rpm,

respectively. The agreement of both models with the static leakage

is good. The improved model shows good agreement for the less rarefied

data at 5,000 and 10,000 rpm but is in poor agreement with the more

rarefied data at these speeds. It is in good agreement with the data

taken at 30,000 rpm. The modified_Hodgson model gives poor agreement

for all speeds. _, I
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Figure 9. Seal Leakage Flow Versus
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CHAPTER V1

CONCLUSIONS AND RECOMMENDATIONS

I. Conclusions

This investigation has dealt with a thorough evaluation of

the Hodgson model for a viscoseal. Modifications of the model have

been made to make it applicable to a multi-threaded seal. From the

basic flow dquation, expressions have been obtained for seal leakage

and sealing coefficient. A technique has been presented for solving

the expressions for the pressure difference at zero leakage.

Due to the rather lengthy process of solving the pressure

difference equation for the modified-Hodgson model in the slip regime,

a simpler model which better lends itself to seal optimization studies

has been developed. The improved model formulation results in an

explicit determination of the pressure difference at zero leakage, a

vast improvement over the Hodgson formulation in which only an implicit

determination could be made. The optimization process is demonstrated

for a specific application and the results presented.

In the Hodgson and modified-Hodgson models, no attempt was made

to account for the clearance ,_ffect on the rotor induced flow. The

improved model not only takes a more exact approach to the groove

a	 flow, but it also attempts to account for the clearance effect on the

<	 groove flow.

51
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A comparison of the modified—Hodgson and the improved model with

continuum data show that the agreement of the .,,proved model is better.

Since the data used represented a wide variation in seal geometries,

it appears that the improved model can be used with confidence to

predict continuum performance.

Although rarefied experimental viscoseal data are quite limited,

a comparison was made with the data obtained by Wilkerson. The improved

model in general shows better agreement with these data. Wilkerson did

discover a speed dependence in the sealing coefficient, a characteristic

which the Hodgson model predicts. The improved model predicts no such

speed dependence. Comparison of the models with the leakage data shows

that the improved model does a much better job of predicting the leakage

for a rotating seal. Since the improved model does not account for the

molecular diffusion which previous investigators (15 and 17) have

shown to be the primary flow component in highly rarefied flow, it fails

to predict the flow at high values of Knudsen number. This can be

seen in Figure 9 on page 50 by the failure of the model at higher

Knudsen numbers. It can also be seen that both models predict about

the same static leakage.

In general, this investigation has shown that the Hodgson model

aan be modified to account for multiple thread starts, that the model

does not lend itself to optimization studies, and that its prediction

of leakage rates is poor. An-improved model has been shown to

correctly predict seal behavior in the continuum and slip regimes and

also lends itself to optimization. The major difference between the

two models was found to be in the rotor induced flow component.
I.
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II. Recommendations

The obvious weakness of the improved model developed in this

investigation icy its exclusion of molecular d{ffusion. A model to

predict seal behavior in the lcwer slip and free-molecule regimes must

include this effect. Wilkerson (6) presents a model for this flow

component in a viscoseal. Combining this component with the improved

model in a manner analogous to Weber's (17) long tube formulation

and Milligan's (15) annulus treatment would result in a model applicable

to all flow regimes.

Although the Hodgson model is applicable to all flow regimes,

its rotor induced flow component is inadequate. A further improvement

in the Hodgson model would be to replace its rotor induced flow

component with the rotor induced flow in the improved model of this

investigation.

Regardless of what analytical studies are undertaken in the future,

considerable experimentation is needed to validate or invalidate the

models now under consideration and those to be developed in the future.

4
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APPENDIX A

CONSTANTS FOR HODGSON'S MODEL

The following expressions for the coefficients in Hodgson's

model are taken from reference (7).

_ N7rdb 2h
A 120(b + h) cos a

bh3 (b + w)K3
B	

12;:, rd

8K1 (bh) 2 (b + w) kT , 1/2
C -	 37rd (b + h)	 ( 27rmj

D =7rdc 3 (b + w)
121tw

E = 8K
2c 27rd(b + w) (kT )1/2

	

3w	 27rtn

K2 (b + h)2h

Cl	 Trm) 	 - K3 (b + h)]

2K1b

C2 K3(b + h) C1

C3	 8uK (2K c 
1)(kT ) 1 2

2	 2	 27im

C 4 = 2K2C3
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r

K1=
3(1 + 2 a) {aln(a+(1+a 2)1/2) + a In

2	 1 + (1 + a2)1/2

a
8a

+ 3 [1 + a 3 - (1 + a2)3/2]}

K3 = 1 - 0.63 b tanh 2h

Values of K2

w/c	 0.1	 0.2	 0.4

K2	0.036 0.068	 0.13

When w/c > 10, T = 8 In w.

0.8 1 2 3 4 5 10

0.22 0.26 0.40 0.52 0.60 0.67 0.94

The groove flow coefficients, B, C, C l , and C 2 are obtained

from a consideration of flow in a long rectangular tube, The continuum

groove flow coefficient, B, is obtained from the continuum solution for

Poiseuille flow in a long rectangular tube. From a consideration of

purely molecular flow, the free-molecule flow coefficient, C, can be

derived. The basic free-molecule flow equation used by-Hodgson is

given in Reference 18 and is written as

Q = 16 K (kT ) 1/2 02 dP
3 n 29fm	 S Sk

Equation (58) is attributed to Knudsen (18, p. 35), but the constant

Kn, which is equal to K 2 , is obtained by Clausing (18, p. 40). 0 and

S are the groove cross sectional area and perimeter, respectively.

The two remaining groove flow constants, C1 and C 2 , are obtained in

the same way Knudsen determined V and F in Equation (1). As was

pointed out in Chapter II, the determination of the ratio V/E requires

(58)

f,.
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knowledge of the continuum with slip solution. Hodgson does not take

an exact approach at this point since he determines C 1/C 2 from the

continuum with slip solution for flow between infinite parallel flat

plates rather than flow in a long rectangular tube.

Hodgson obtains the land leakage flow coefficients, D, E, C31

and C 4 , from a consideration of flow in a thin slit-like tube. In this

case the continuum coefficient, D, is obtained from the continuum

so1L 1 ion for Poiseuille flow between parallel flat plates, The same

basic model, Equation (58), for free-molecule flow is used to determine

the free-molecule flow coefficient, E. Kn now becomes Kl , which is also

attributed to Clausing. 0 and 6 now represent the cross sectional area

of the land leakage passageway and its perimeter, respectively. The

constants C 3 and C 4 are also determined using the same approach Knudsen

used to determine V and C in Equation (1). For the continuum with slip

solution, Hodgson once again uses the continuum with slip solution

for flow between infinite parallel flat plates which in this case is

the proper solution to use.



APPENDIX B

EQUIVALENCE OF GROOVED HOUSING AND GROOVED SHAFT SOLUTION

The only flow component which requires separate consideration for

the grocved housing and grooved shaft configurations is the rotor

induced flow. At first it would appear that the same boundary conditions

can not be applied in both cases. It would seem that the proper

boundary conditions for the grooved shaft would be three moving walls

and a stationary upper wall. Consideration of the movement of the fluid

in the groove will show that these are improper boundary conditions.

The rotor induced flow component can be considered as the

rate of progress of the fluid along the groove due to the rotor motion.

The proper boundary conditions are thus obtained from a coordinate

system moving with the groove. In this system the boundary conditions

are those of a moving upper wall with three stationary walls. These

are the same boundary conditions as those for the grooved ;reusing

configuration. The two configurations are thus equivalent.
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APPENDIX C

THE LAND LEAKAGE PRESSURE GRADIENT

In Chapter III the land leakage pressure gradient is taken to be

dP	 b + w	 dP
dQ	

w cos a dL
L

This expression which is developed by Hodgson (7) can be derived in a

much simpler manner than he used.

10

Figure 0 shows a land-groove pair. The component of the axial

pressure gradient,L, perpendicular to the land-groove pair is

cosa dP This represents the pressure gradient from point a to
dL'

point c and can be represented as

dP__ dP	 Pa - Pc
cos a dL dR

)	b -+w
a - c

The land pressure graident, dP , is
L

dP _ dP	 _ Pb - Pc
d9,L	dk)b - c
	 w

but from assumption 2 in Chapter TII, P a - Pb . By combining the

above expressions, it can be shown that Equation (40) is valid.

(40)
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Figure 10. Land Leakage Pressure Gradient.



APPENDIX D
FORTRAN PROGRAMS

C
C THE USER OF THESE PROGRAMS SHOULD TAKE CARE TO ASSIGN
C THE PROPER VALUE TO ALL SEAL VARIABLES.
C

PROGRAM ONE
C	 MODIFIED-HODGSON LEAKAGE
C
C THIS PROGRAM COMPUTES THE SEAL LEAKAGE BASED ON 7:;E
C MODIFIED-HODGSON MODEL
C PL = SEAL LENGTH; ALPHA = HELIX ANGLE; RPM = SEAL. SPEED
C DEL = SEAL CLEARANCE; R2 = K2(APPENDIX °A°); ANS = NO.
C OF THREADS; DIA = SEAL DIAMETER; VIS = VISCOSITY OF
C SEALANT; W = LAND WIDTH; HI = GROOVE DEPTH; BASE _
C GROOVE WIDTH; TEMP = ABSOLUTE TEMPERATURE; AKO = BOLTZ--
C MANN CONSTANT; CC = PSI/MICRON OF MERCURY; AMM = MASS PER
C MOLECULE;

PL = 4.53
ALPHA = 9.24/57.3
N = '

16 RE: 179RPMvDELFR2
17 FORMATFlF20.lvF20.6nF20.3)

N = N + 1
ANS = 16.0
DIA =2.00
VIS = 1.26E--06
W = 0. 03235*COS (ALPHA)
HI = 0.03065
BASE = 0.03111*COS{ALPHA)
TEMP = 535.0
AKO = 5.655E-24
CC = 1.935E-05
AMM = 1.459E-25
V = SQRT(AKO*TEMP*193.0*12.0/(AMM*3.1Er16))
GM = HI/BASE
FGM = SQRT(I.0+(GM**2))

C R1 AND R3 IN THIS PROGRAM REFER TO K1 AND K3o RESPEC-
C TIVELY, IN APPENDIX mA°.

R). _ (3.0*(I.Oi-GM)/(GM**21)*(GM*ALOG(GM+FGM)+(GM**2)*
I ALOG€(I.0+FGM)/GM) +(1.0/3.0)*(1.0++M**3-FGM**3))/8.0
R3 = 1.0-0.63*GM*TANH(3.14/(2.0*GM))

C THE FLOW COEFFICIENTS OF EQUATION 8 ARE NOW COMPUTED
C.1 = (HI*193.0*(IR3*(BASE+HI))**2))/(4.O*R1*BASE*VIS*

1	 V*(2.0*R1*BASE -R3*(BASE + HI)))
C2 =(193.0*R3*HI*(HI+BASE))/(2.0*VIS*V*(2.0*R1*BASE-
I R3*(BASE+HI))!
C3 = (193.0*DEL)/(4.0*VIS*R2*(2,0*R2-1.0)*V)
C4 = (193.0*DEL)/(2.0*VIS*(2.0*R2-1.0)*V)
A = ANS*RPM*3.1416*DIA*BASE**2*HI*COS(ALPHA)/
1 (120.0*(SASE+HI))

64



oe5

B = 986.0*BASE*HI**3*(BASE + W)*ANS**2*R3/
1 (12.0*VIS*3.1416*DIA)
C = 8.0*R1*(BASE*HI)**2*(BASE+W)*ANS**2*V/
1 (3.D*3.1416*DIA*(HI+BASE))
D = (3.14*DIA*(DEL**3)*(4+BASE))/(12.0*VIS*WI*386.0
E _ (8.,0*R2*(DEL**2)*3.14*DIA*(W+BASE)*V1/(3..0*W)
R4 =	 (C*C1/C2)+(E*C3/C4)
R5 = C*(C2- C11 /(C2**2)
R6 = E*(C4-C3)/(C4**2i
PRINT 799RPMvDEL

79 FORMAT(IHI96HRPM = vF10.191ZHCLEARA4CE c 9F10.6)
PRINT 101

101 FORMAT(1HOv10Xv5HPO/PEv12Xv4H1/NK.v14Xv41IPBAR913Xv
1 9H STATIC 9 14X 9 5HROTOR 9 14X 9 8HNET FLOW)
1 EE _ -2.0
2 VV = 1.0

C ANKINV IS THE INVERSE KNUDSEN NUMBER BASED ON CLEARANCE
3 ANKINV = VV*10.0**EE

PBAR = ANKINV*VIS*V*3.1416/(DEL*386.0)
C RP = SEAL PRESSURE RATIO

RP = 20.0
13 CONTINUE

Z2 = 1.0 {- 2.0*C2*PBAR
Z4 = 1.0 + 2.0*C4*PBAR

C FLOW IS THE SPECIFIC MOLECULAR FLOW RATE IN A STATIC SEAL
FLOW = (1.0/(12.0*AKO*TE4P*PL))*CC*((B+D)*PBAR + R4

1	 + (0.56PBAR)*((RP+1.0)/(RP-1.01)*(R5*ALOG((RP*72+-
2 1.0)/(RP+Z2))fR6*ALOG+iRP*24+1.0)/(RP+Z4))))
PBARP = PBAR/CC

C. FLOWR IS THE ROTOR INDUCED SPECIFIC MOLECJLAR FLOW RATF
FLOWR = A*(RP + 1.0)*CC/12.0*AKO*TEMP*(RP - 1.0)*12.0)

C FLOWT IS THE NET SPECIFIC MOLECULAR FLOW RATE IN A
C ROTATING SEAL

FLOWT = FLOW -- FLOWR
PRINT 40vRPvANKINVvPBARPgFLDWvFLOWRYFLOWT

40 FORMAT (1HOv10XvF6.1v5XvE13.3v5XvE13.3v5XvE16.4v5Xv
1 E16.495XvE16.4)
RP = RP + 20.0
IFIRP.LT.220.0)GO TO 13
VV = VV + 1.0
IF(VW-9.0)3v3v4

4 EE = EE + 1.0
IF(EE-- 3.0)2v5v5

5 CONTINUE
IF MLT.5) GO TO 16

6 CONTINUE
CALL EXIT
END

$ENTRY
0.0	 0.00418	 0.83
5000.0	 0.00385	 0.87
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$1I1FTC
C
	

PROGRAM TWO
C
C	 MODIFIED-HODGSON PRESSURE DIFFERENCE AT ZERO FLOW
C
C THIS PROGRAM SOLVES EQUATION 9 FOR THE PRESSURE DIFFFR-
C ENCE AT ZERO FLOW FOA FLOW 2EGI:MES FROM CONTINUJM TO
C FREE MOLECULE FLOW AND OUTPUTS THE RESULTS IN THE FORM
C OF A SEALING COEFFICIENT
C
C T'S READ STATEMENT INPUTS THE VALUES OF K2 FROM APPENDIX
C A INTO AN ARRAY SO THAT INTERPOLATION MAY BE USED TO
C DETERMINE PROPER VALUE OF K2;X = W/DEL; Y = K2

DIMENSION X(11)9Y(11)
READ B009(X(J)vJ=1911)

800 FORMAi£11F7.3)
READ 8019(Y(J)vJ=1911)

801 FORMAT(11F7.3)
DELA = 0.0

C PL = SEAL LENGTH; ANS	 NO. JF THREADS; DIA = SEAL CIA-
C METER; RPM = SEAL SPEED; VIS = VISCOSITY OF SEALANT;
C GC= G SUB Cl AKO = BOLTZMANN CONSTANT; AMM = MASS PER
C MOLECULE; TEMP = ABSOLUTE TEMPERATURE; DEL = SEAL CLEAR-
C ANCE; W = LAND WIDTH; HI = GROOVE DEPTH; BAS€ = G1310VE
C WIDTH; AA = G2OOVE ASPECT RATIO.

PL = 4.53
ANS = 4.0
DIA = 2.00
RPM = 1.OE04
VIS = 1.26E-06
GC = 386.0
AKO = 6.80E-23
AMM = 1.459E°25
TEMP = 535.0
DEL = 0.004
W'= 0.0125
HI = 0.0125
BASE = 0.0125
V = SQRT(AKO#TEMP*GC/(2.0*3.1416*AMM))
AA = BASE/HI
OP1 = 0.0
DP2 = 0.0
DP3 = 0.0
ANK1 = 0.0
ANK2 = 0.0
ANK3 = 0.0

C STATEMENTS 8 THROUGH 200 INTERPOLATE TO FIND THE PROPER
C VALUE OF K2 WHICH IS HERE GIVEN THE SYMBOL R2

8 THETA = W/DEL
IF(THETA.GT.10.0)GO TO 199
DO 110 J=1v11
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IF€THETA-X(J)) 11291119110
110 CONTINUE
111 R2 = Y(J)
112 R2 = Y(J-1)+(Y(J)--Y(J-1))/(X(J)-X(J-111#(THETA-X(J-1))

GO TO 200
199 R2 = 3.0*ALOG(THETA)/B.O
200 CONTINUE

C THE FLOW COEFFICIENTS OF EQJATION 9 ARE NOW COMPUTED
R1 AND R3 IN THIS PROGRAM REFER TO K1 AND K3 1 RESPEC-

C TIVELYv IN APPENDIX °A°.
GM = HT/BASE
FGM = SQRT(1.0+(GM**2))
R1 = (3.0-4,(1.O+GM1/IGM**21)*(GM*ALOG(G4+FGM)+(GM**2)#
1 ALOG((1.0+FGM)/GM)+{1.0/3.01*(1.0+GM**3-FGM**3))/8.0
R3 = 1.0-0.63*GM*TANH(3.14/(2.0*GM))
ALPHA. = ATAN(ANS*(BASE+W)/(3.1416*DIA))
ALPHAP = ALPHA*57,3
Cl = (HI*193.0*((P.3*(BASE+HI))**2))/14.0*R1*BASE*VIS*

1	 V*(2.0* RL*BASE -R3*(BASE + HI))I
C2 =4193.0*R3*HI*(HI+BASE))/(2.0*VIS*V*(2.0*R1*BASE-
1 R3*(BASEaHl)))
C3 = (19,300*DEL)/(4.0*VIS*R2*(2.0*R2-1.0)*V)
C4 = (193.0*DEL)/(2.0*VIS*(2.0*R2-1.0)*V)
A = ANS*RPM*3.1416*DIA*BASE**C'*`HiTCOS(ALPHA)/
1 (12(j.0*(BASE+HT))
B = 386.0*BASE*HI**3*(BASE + W"I*A.S**2*R3/
1 (12.0*VIS*3.1416*DIA)
C= 8.0*R1'a(BASE*Hi)**2*(BASE+WI*ANS**2$V/
1 (3.0#3.1416*DIA*(HI+BASE))
D =((3.14*DiA*(DEL**3)$(W}BASE()/(12.0*VIS*W)1*386.0
E _ (B.0*R2*(DEL**2)*3.14*DIA*(W+BASE)#V)/(3.0*W)
F = C + E
G = C*([CL/C2) - 1.0)
H = E*((C3/C4) -- 1.0)
PRINT IOOvBASEvH(vWvDIAvDELvALPHAP

100 FORMAT(1HLv10Xv6HBASE= vF7.4v5X 9 4HHI= vF7.4 9 5Xv3HW= v
1 F7.4 9 5Xv5HDIA= 9 F7.495Xv5HDEL = 9F7.4 9 5X 9 7ALPHA= 9
2 F8.4/1HO91OX 9 15HINVERSE KNUDSENv10Xv
3 19HSEALING COEFFICIENT)

C DELP IS THE PRESSURE DIFFERENCE AT ZERO FLOW
C THE CONTINUUM DELP IS COMPUTED

DELP = A*PL/(B+D)
EEE = 2.0

2 VVV=10.0
C ANKINV IS THE INVERSE KNUDSEN NUMBER BASED ON CLEARANCE

3 ANKINV = VVV*10 .0**EEE
C THE AVERAGE SEAL PRESSURE IS COMPUTED FROM THE KNUDSEN
C NUMBER

77 PBAR = VIS*V*3.1416*ANKINV/(386.0*DEL)
C IF THE INVERSE KNUDSEN NUMBER IS ABOVE 30.0 THE LINEAR
C APPROXIMATION OF THE NEXT DELP IS OMITTED

^F
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IF(ANKINV.GT.30.0) GO TO 30
C IF THE INVERSE KNUDSEN NUMBER 15 LESS THAV 30.0 THE NEX(
C DELP IS APPROXIMATED BY A LINEAR EXTRAPOLATION

DELP =EXP(4LOG(DP2)+ALOG(ANKINV/ANK2)*ALOG(DP3/OP21/
1 ALOCa(ANK3/ANK2))

C THE NEXT SECTION OF THE PROGRAM UP TO STATEMENT 40
C EMPLOYS NEWTON'S METHOD TO SOLVE EQUATION 9 FOR DELP

30 Z2 = 1.0 + C2*PEAR
Z4 = 1.0 + C4*PEAR
PE = PBAR — DELP/2.0
Z=((2.0*PBAR+DELP)/(2.0*PBAR—DEI.P)b**F*((2.0*Z2+C2*

1 DELP)1(2.0*Z2—C2*DELP))**G*((2.0*Z4+C4*DELP)/(2.0*
2 Z4—C4*DELP))**H*EXP(B*DELP)*EXP(D*DELP)
U = Z — EXP(A*P.•._)
DY=Z*(B+D+4.0*PBAR*F/(4.0*PBAR**2—DELP**2)+4.0*Z2*C2*G

1 /(4.0*Z2**2—(C2*DELPJ**2)+4.0*Z4*C4*H/(4.0*Z4**Z—(C4*
2 DELPI**2))
DELPI = DELP — U/DY
PO = PE + DELP
IF(ABS(DFLP1— DELP).LT.1.0E-°07) GO TO 40
DELP = DELP1
GO TO 30

C W!TH DELP DETERMINED THE SEALING COEFFICIENT 15 COMPUTED
40 ALAMBD = VI3"3. 416*DIA*°PM*PL/(3960.0*DELP*(DEL**7i)

PRINT 50vANKINVvALAMBD
50 FORMAT(1H0913XvF10.4916XvF1O.3)

DPI = DP2
DP2 = DP3
DP3 = DELP
ANK1 = ANK2
ANK2 = ANK3
ANK3 = ANKINV
IF(ANKINV.GT.30.0)GO TO 76

C IF THE INVERSE KNUDSEN NUMBER IS BETWEEN 16 AND 30 THE
C INCREMENTAL DECRECSc IN THE INVERSE KNUDSEN NUMBER IS
C REDUCED TO 1.0

IF(ANK'_ivV.LE.30.O.AND.ANKINV,GT.16.0)DELA = 1.0
C IF THE ihVERSE KNUDSEN NUMBER IS LESS THAN 16 THE
C INCREMENTAL DECREASE IN THE INVERSE KNUDSEN NUMBER IS
C REDUCED TO 0.25

IF(ANKINV.LE.16.0)DELA = 0.25
C THE SOLUTION WILL,. USUALLY BECOME THE LINEAR FREE MOLECULE
C SOLUTION BEFORE AN INVERSE KNUDSEN NUMBER OF 1.0 IS
C REACHED9 THE SOLUTION IS THEREFORE TERMINATED.

TF(ANKINV.LT'.1.0)GO TO 5
ANKINV = ANKINV — DELA
GO TO 7'7

76 VVV = VVV-°100
IF4VVV—Z.0)4v393

4 EEE = EEEi91.0
IF(EcE+4.0)595v2



69

5 CONTINUE
CALL EXIT
END

C DATA CARDS HAVE BEEN OMITTED FROM THIS LISTING

I

L.+	 i
om
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C
	

PROGRAM THREE
C
C LEAKAGE RATE AND SEALING COEFFICIENT FOR IMPROVED MODEL
C
C THIS PROGRAM COMPUTES THE SPECIFIC MOLECULAR FLOW RATE
C AND SEALING COEFFICIENT BASED ON THE IMPROVED MODEL
C
C EXECUTE IN DOUBLE PRECISION

IMPLICIT REAL*8(A-HvO--Z)
DIMENSION ALPHA(50950)vANKt'C(5019ANKIH(50)9ANKC(50)9
1 ANKH(50)vALAMB(50)

C BASE = GROOVE WIDTH; H = GROOVE DEPTH; ANS = NO. OF
L THREADS; W = LAND WIDTH; DIA = SEAL DIAMETER; C=CLEARANCE
C A = GROOVE ASPECT RATIO; AN = ASPECT RATIO OF HYPOTHET-
C ICAL GROOVE; PL = SEAL LENGTH; AK = SEAL RADIUS RATIO;
C AMM = MASS/MOLECULE; AKO = BOLTZMANN CONSTANT; !C=G SUB C
C YU = LOCATION OF ACTUAL GROOVE TOP IN HYPOTHETi(CAL GROOVE
C TEMP = ABSOLUTE TEMPERATURE; Cl = MICRONS OF MERCURY PER
C PSI; ANL; = VISCOSITY OF SEALANT
888 READ 19BASEvH9ANS9WvDIA9C

1 FORMAT(6D12.4)
K = 1
A = BASE/H
AN = BASE/(H + C)
PI_ = 4.53
AK = 1.0 - 2.0*C/DIA
AMM = 1.459E-25
AKO = 0.680E-22
GC = 386.0
YU = H/(H + C)
TEMP = 537.0
Cl = 51700.0
ANU = 0.126D-05
EE _ -2.0
VV = 1.0
DO 4 N=1945

C ANKIC = INVERSE KNUDSEN NUMBER BASED ON CLEARANCE
ANKIC.(N) = VV*10.0**EE
VV = VV+1.0
IF(VV.LT.10.0)GO TO 4
EE = EE + 1.0
VV = VV - 9.0

4 CONTINUE
C THE DO LOOP ENDING WITH STATEMENT 10 COMPUTES THE
C EIGENVALUES FROM EQUATION 20.USING NEWTONS METHOD OF
C APPROXIMATING ROOTS

DO 10 N=1v45
C ANKIH = INVERSE KNUDSEN NUMBER BASED ON GROOVE DEPTH

ANKIH(N) = H*ANKIC(N)/C
CC '= 0.5*A*ANKIH(N)



71

ALPHA(Nvl)	 =	 1.5707
DO 9 J =	 1915

7	 FA =	 ALPHA(NvJ)*DTAN(ALP)4 A(NvJ))	 — CC
FPA=DTAN(ALPHA(NvJ))+ALPS(A(NvJ)/(DCOS(ALPHA(NvJ))**2)
ALPH = ALPHA(NvJ) — FA/FPA
IF(DABSIFA/FPA).LT.1.OE-05)GO TO 8
ALPHA(NvJ)	 = ALPH
GO TO 7

8	 ALPHA(NvJ+I)	 =	 ALPHA(NvJ)	 +	 3.14159
9 CONTINUE
10 CONTINUE

DO 13 N = lv45
PRINT	 11vANKIC(N)vANKIH(N)vA

11	 FORMAT(1H095X9D10.2v5X9D10.2v5X9D10.4)
PRINT	 12v(ALPHA(N 9 J3v	 J=1915)

12 FORMAT(15FB.4)
1.3	 CONTINUE

C RPM = SEAL SPEEDS	 IF ONLY SEALING COEFFICIENT IS DESIREu
C ANY VALUE OF RPM MAY BE USED HERE

RPM '=	 10000.0
105	 PRINT 106vRPM
106	 FORMAT(1H0 9 1OXv6HRPM = 91)20.3)

C SINA = SINE OF HELIX ANGLE. 	 COSA = COSINE OF HELIX ANGLE
SINA = ANS*IBASE+W)/(3.1416*DIA)
COSA = DS9RT(1.0— SINA**2)

C THE FLOW COEFFICIENTS FOR LEAKAGE AND SEALING ARE NOW
C COMPUTED

AU = 64.0*C**2*BASE*H*COSH*ANS
AAC = (300#3.141.6*DIA**4*(BASE +-W)/W)*COSH

'?.'. 	 •`. AP = 192x0*ANS*BASE**3*H*SINA
Al = AAC/(384.0*ANU*PL)
A2 = AP/(384..0*ANU*PL)
A3 = AU*(301416*DIA*RPM	 )/(C**2#7680.0)

".:.4 DO 23 N=lv45
ANKC(N) =	 1.0/ANKICIN)
AC = 1.0 --AK**4 + (1.0—AK**2)**21OLOGIAK) — (2.0*

1	 ANKC(N)*(Ia0—AK**2)/(AK*DLOG(AK)-ANKC(N)*(1.0—AK**2
2	 )))*(2.0*AK*GAK**2-1.0)-2.0*AK*DLOG(AK)*(AK**2—AK+
3	 loC)— (I.O—AK**2)**2/(200*DLOG(AK))+2.0*(1.0°AK**2)
4	 *(1.0—AK)**2*ANKC(N))
ANKH(N)	 ='1.0/ANKIH(N)

C SUMP = SUMMATION ASSOCIATED WITH THE GROOVE PRESSURE
_ C FLOW; SUM4 = SUMMATION ASSOCIATED WITH THE ROTOR VELOCiTY

C CORRECTION;	 SUMU - SUMMATION ASSOCIATED WITH THE ROTOR .
C INDUCED FLOW

SUMP = 0.0
'. SUMU = -0e0	 s

SUM4 = 0.0
DO 22	 J'=1910.
TERM I=DTANH(ALPHAINv Jl /A) /I 1.0+2.0*.ALPNA( NvJ) *ANKH(N)*
1 DTANH(ALPHAINvJ)/A)/A)
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f Y

TERM2 =DSIN(ALPHA(NvJ))**2/(1.0+2.0*ANKH(N)*
1 DSIN(ALPHA(N,J))**2)
TERMP = (A/(ALPHA(NvJ)**5))*TERM2*(ALPHA(N,J)/A—TERM1)
TERMU = (A/(ALPHA(NvJ)**31)*TERM2*TERM1
SUMP = SUMP + TERMP
SUMU = SUMU + TERMU
TERI=DSINIALPHA(N,J))**2/((1.0+2.0*ANK4(N)*
1 DSIN(ALPHA(NvJ))**2/A)*ALPHA(N,J1**2)
TER2 =DCOSH(2.0*ALPHA(NvJ)*YU/AN)/DCOSH(2.0*ALPHA(NvJ)

1	 /AN) '
TER3 =(2.0*ANKH(N)*ALPHA(NvJ)/A +DTANH(2.0*ALPHA(NvJ)
1 YU/AN))/((1.0+(2.0*ANKH(Nl*ALPHA(NvJ)/A)**21*DTANH(
2 2.0*ALPHA(NvJ)/AN)+4.0*ANKH(N)*ALPHA(N,J)/A)
TER4 = TERI*TER2*TER3
SLIM4 = SUM4 ++ TER4

22 CONTINUE
C RU IS THE ROTOR VELOCITY CORRECTION FACTOR

RU = 2.0*SUM4
SUMU = RU * SUMU

C RPv THE SEAL PRESSURE RATIO VARIES FROM 20.D TO 200.0
C IN STEPS OF 20.0

RP = 2060
C PBAR IS THE AVERAGE SEAL PRESSURE

PBAR =ANU*DSQRT(2.0*3.1416*AKO*TEMP*GC/AMM)/
1	 (2.0*ANKC(N)*C)

C ANDDP IS THE SPECIFIC MOLECULAR-FLOW RATE
100 ANDDP=(PBAR/tCl*AKO*TEMP))*(A1*AC+A2*SUMP- A3*(RP4•1.0)

1 *SUMU/(PBAR*(RP-1.0)))
PRINT 999ANKIC(N)vRPvANDDPvRU

99 FORMAT(1HOv1OXvD10.2v5XvD10.295XvD20.5v5X,D20.5)
RP = RP + 20.0
IFIRP.NE.220.0) GO TO 100

C ALAMB IS THE SEALING COEFFICIENT
ALAMB(N) = (AAC*AC + AP*SUMP.)/(AU*'SUMU)

23 CONTINUE
PRINT 14gDlAgCvBASEvW,HvANS

14 FORMAT(1H195HDIA =vD11.4v2Xv11HCLEARANCE =vD11.4,2Xv
2 IIHGROOVEWID =v	 Dll.(tv2Xvl2HLAND WIDTH =011.4v2Xv
3 7HDEPTH =v	 Dll.4v2X99HGROOVES =9D9.2/1H0v5Xv
4	 15HINVERSE KNUDSENv5Xv6HLAMBDA)
DO 25 N = lv45
PRINT 249ANKIC(N)oALAMB(N)

24 FORMAT(lH0v7XvD20.4v7XsO20.4)
25 CONTINUE
26 CONTINUE

GO TO 888
CALL EXIT
END

C DATA CARDS HAVE BEEN OMITTED FROM THIS LISTING
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C
PROGRAM FOUR

C
C OPTIMIZATION USING THE IMPROVED MODEL
C
C THIS	 PROGRAM CARRIES OUT THE OPTIMIZATION FOR A 200 INCH
C DIAMETER VISCOSEAL WHICH HAS A CLEARANCE OF O.004 INCH
C AND OPERATES AT A KNUDSEN NO.	 BASED ON THE CLEARANCE OF o2
C
C EXECUTE IN DOUBLE PRECISION

IMPLICIT	 REAL*8(A—H,vD--Z)
DIMENSION ALAM150)vANKIH(50)sANKH(50)vH(50)9ALPHA(50)9

1	 A(50)vAN(50)vYU(50)vSP(50)vSU(50)
L = 1

C BASE = LOWER LIMIT ON GROOVE WIDTH;DIA = SEAL DIAMETER;
C C = CLEARANCE;ANKIC = INVERSE KNUDSEN NUMBER

888 READ	 19BASEvDIAvCvANKIC
1	 FORMAT(4D15o4)

C AK = THE SEAL RADIUS RATIO;	 AC = THE DIMENSIONLESS
C ANNULUS FLOW COEFFICIENT
721	 AK = 1.0 — 2e0*C/DIA

PRINT 722vBASE9DIAvCvANKIC
722	 FORMAT(LHO95HBASE=vF10a495Xv4HDIA=vF8o295X92HC=vF10o4v

1	 5Xv5H11NK=vF12o3)
C THE NEXT SECTION THROUGH CARD NO. 9 COMPUTES THE
C EIGENVALUES FOR THE SUMMATIONS

CC = Oo5*BASE*ANKIClC
ALPHA(1)	 = 1.5707
DO 9 J=194

7	 FA = ALPHA(J)*DTAN(ALPHA(Jll ° CC
FPA = DTANIALPHA{J))	 + ALPHACJ)/(DCOS(ALPHA(J),)**2)
ALPH = ALPHACJ) — FAFFPA
IF(DABS(FABFPA).LT.I.OE-05)GO TO 8
ALPHA(J)	 = ALPH
GO TO 7

8	 ALPHACJ+1)	 = ALPHA(J) + 3014159
9	 CONTINUE

ANKC = I.OfANKIC
AC = 100 — AK**4 + {1n0 —AK**2)**2iDLOG(AK) — (2e0*ANKC

1	 *(1o0—AK**2)1(AK*DLOG(AK)—ANKC*(lo0—AK**2)))*(2a0*AK
2	 *(AK**2— Io0)-200*AK*DLOG(AK)*(AK**Z—AK+1.0) — (lv0-
3	 AK**23*'X2112a0*DLOG(AK))+2e0*(le0—AK**2)*41.0—AK)**2
4	 *ANKC)

C H = GROOVE DEPTH;ANKH = GROOVE KNUDSEN NUMBER,A = 	 THE
_ C GROOVE ASPECT RATI0; AN = ASPECT RATIO OF HYPOTHETICAL

C GROOVE OF DEPTH-H+C9 YU = ACTUAL GROOVE DEPTH IN
C HYPOTHETICAL GROOVE

- DO 10 J=1920
H(J) = DFL0AT(J)*Oo001
ANKH(J)	 = CIIANKIC*H{J:))
A(J)	 = BASE/H(J)
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hN(J) =BASE/(H(J) + C)
YU(J) = H(J)/(H(J) + C)

C SUMP = SUMMATION ASSOCIATED WITH THE GROOVE PRESSURE
C FLOW: SUM4 = SUMMATION ASSOCIATED WITH THE ROTOR VELOCI(Y
C CORRECTION; SUMU = SUMMATION ASSOCIATED WITH THE ROTOR
C INDUCED FLOW

SUMP = 0.0
SUM4 = 0.0
SUMU = 0.0
DO 12 K=194
AL = ALPHAIK)
TER1 =DSIN(AL)**2/((1.0+2.0*ANKH(J)*DSIN(AL)**2/
1 A(J))*AL**2)
TER2 = DCOSH(2.0*AL*YU(J)/AN(J))/DCOSH(2.0*AL/AN(J))
TER3 = (2.0*ANKH(J)*AL/A (J) + DTANH(2.0*AL*YU(J)/
1 AN(J)))/1(1.0+(200*ANKH(J)*AL/A(J))**21*DTANH(2.0
2 *AL/AN(J))+ 4.0*ANKH(J)*AL/A(J))
TER4 = TER•1*TER2*TER3
TERMI = DTANH(AL/A(J))/(1.0 + 2.0*AL*ANKHIJ)*
1 DTANH(AL/A(Ji)/A(J))
TERM2 = DSIN(AL1**2/(1.0 + 2.0*ANKH(J)*DSIN(AL)**21
TERMF = (A(J)/(AL**51)*TERM2*(AL/A(J) 	 TERMI)
TERMU = (A(J)/(AL**31)*TERM2*TERMI
SUMP = SUMP + TERMP
SUMU = SUMU + TERMU
SUM4 = SUM4 + TER4*2.0

12 CONTINUE
SP(J) = SUMP
SU(J) = SUMU*SUM4

10 CONTINUE
L THE OPTIMUM HELIX ANGLE FOR EACH H IS COMPUTED
C USING NEWTON v S METHOD OF APPROXIMATING ROOTS

DO 27 J=192D
AKANG = DIA**3*AC/116.0*BASE**2*H(J)*SP(J1)
ANG = 3.14159/8.0

55 FANG = AKANG*DC0S(ANG)**3 + DCOS(ANG)**2 	 1.0
FPANG = --•3.0*AKANG*DCOS(ANG)**2*DSIN(ANG)
1 2.0*DCOS1IANG)*DSIN(ANG)
ANGI = ANG -- FANG/FPANG
IF(DABS(ANG—ANGI).LT.1.OE-05) GO TO 56
ANG = ANG1
GO TO 55

56 CONTINUE
AAC = 6.0*3.14159*DIA**4*DCI)S(ANG)
AU = 32.0*C**2*H(J)*3.14159*DIA*DCOS(ANG)*DSIN(ANG1
AP = 96.0*3.:14159*DIA*BASF**2*H(J)*DSIN(ANG)**2

C ALAM = SEALING COEFFICIENT; ANGI = HELIX ANGLE
ALAM4J) = IAAC*AC + AP*SP(J))/(AU*SU(J))
ANGI =;ANG*180.013.14159
PRINT 299ALAM(J)9H(J)vANG19AKANG9SPIJ)sACvSU(J)vSUM4

29 FORMAT(1HOv8D13.5)

t
t



75

27 CONTINUE
C A NEW VALUE OF BASE IS INTRODUCED AND THE PROCESS
C IS REPEATED UNTIL THE UPPER LIMIT FOR-BASE IS REACHED

BASE = BASE + 0.005
IF(BASE.LT.0.50)GO TO 721.

69 CONTINUE
L = L + 1
IF(L.NE.4) GO TO 888
CALL EXIT
END

C A REVIEW OF THE OUTPUT-MILL RESULT IN THE DETERMINATION
C OF THE BEST CONFIGURATION
$ENTRY

0.010D 00	 0.2000 01	 0.4000-02	 0.0500D 02
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