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ABSTRACT

An iterative method for determining bound-state eigenvalues and
properties of the radial Schradinger equation 1is appraised. The method

stems from iterating the integral equation

v

uT + %3 T vw

where T and V are the kinetic and potential energy operators. The
basic theory is briefly reviewed, and calculations are performed for the
Coulomb and Screened Coulomb potentials. The lowest three/m—eigenvalues
together with expected values of (Yr)—l, Yr and (Yr)2 are obtained
from a single iterated eigenfunction sequence. Convergence is rapid for
eigenvalues but slow for expected values. There is some sensitivity to

the choice of numerical integration formula. Regarded as a numerical
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method, this approach may be most competitive for the determination of
zero—energy potential-strength eigenvalues. Its disadvantages are
listed.

Analytical improvements to eigenfunctions can be easier to obtain
by iteration than by perturbation, and some success has been achieved.
A simple example suggests that the rate of convergence of an iterated
eigenfunction sequence is less than that of a related perturbation

sequence unless the choice of starting function is bad.



I. INTRODUCTION

In this paper we report on the utility of an iterative method for
calculating bound-state eigenvalues and properties associated with the

radial Schrgdinger equation

(T +uy = =5*, v >0 1)
where
T(r) = - d*/dr® , 0<r<=, (2)

is the kinetic energy operator, V(r) is the potential energy, and Y(r)

is the r-multiplied radial wave function. The method is based on an

integral-equation equivalent of (1), namely
_ Loan=l, .
Vo= u(T + %) T(=VY) (3)

which is formulated using the bound-state free-particle Green's

operator (T + %yz)_l with kernel
1 ' , |
Y {exply et 1 - explv (o] (4)

The alternative form (3) of the Schrodinger equation has been called

the conjugate eigenvalue equation. When <Y is regarded as a fixed para-
meter, equation (3) gives rise naturally to eigenvalues and eigen-
functions for the ﬁotentiai strength 1 ; often (most simply by scaling
procedures) it is possible to relate them to energy eigenvalues and

1

eigenfunctions for a prescribed u .

We employ the iterative sequence {¢k§ specified by

(pk'l‘l = (T + 1/2Y2)_1 ("Vd)k)s k = 091,2,..., (5)



which ultimately behaves like a constant times the eigenfunction wo
of (3) which corresponds to uo(y), the p-eigenvalue of smallest magni-
tude. TITllustrative numerical calculations are performed for the
Coulomb potential, and also for the screened Coulomb potential. Pro-
perties of the lowest three eigenstates are obtained from a single
iterative sequence. The convergence of expected values is slow but
steady, and the convergence of bounding sequences for eigenvalues is
rapid.

Regarded as a numerical technique, the iterative method is akin to
the power method for finding the eigenvalues of a matrix. It is likely
to be competitive only for the lowest eigenstates, and mogt competitive

3

for zero—energy states where more sophisticated methods might
run dinto difficulties because of their dependence on the adjustment
of v .

As an analytical method of improving approximate wave functions
and estimating eigenvalues, this iterative approach has enjoyed success
from time to time. Activity has been mainly in momentum space where an
integral equation arises naturally as the Fourier Transform of the
Schrgdinger equationoa—g But there has been some work in coordinate

Spacelo’11 and recently considerable attention has been paid to eigen-

value bounds derived from the conjugate eigenvalue equat:i.on.12"16 The
present paper is concluded with a simple example which suggests that
the rate of convergence of the sequence {¢k} is less than that of a
related perturbation sequence unless the choice of ¢O is a bad one.

However, analytical improvements to wave functions are in principle

easier to obtain by iteration than by perturbation.



IT. GENERAL THEORY

The theory is clear-cut when the operator (-V) is positive-definite,

thus admitting a square root, and given that the operator

i - L
K = (-N)7% (T + 5y L (1) * (6)
is a Hilbert-Schmidt operator (i.e. K has finite double-norm).

Equation (3) may then be written as
(DY = w{nH} (7

and the standard Hilbert-Schmidt theory of integral equations in-

17,18

voked, The potential-strength ¥ has a discrete spectrum {Pn }

whose members can be arranged in ascending order of magnitude
O<u0<ul<...<u"\/< so e . (8}

(In general there could be some equalities here, but not for a one-
dimensional radial problem.) If -{wn} are the corresponding eigen-

functions, orthonormalized so that

0

WL (DY) = f UMY dr = 5, (9)

nm
[+

then it follows from the Hilbert-Schmidt theorem that

o0

-k
¢k = an U:n Wn s k= 1,20°° ) (10)
Z
where
2, = (0> -DY) (1)

and the initial function ¢0 need not necessarily be in the domain



spanned by {wnﬁ. Assuming that 24 is not zero, the sequence {¢k}
ultimately behaves like a constant times wo, and (if ay is also non-

zero) the rate of convergence is governed by the ratio uo/ul. Thus

if ji(r) is an operator of interest and
L= (& L0)7/(0p50,) (12)

the sequence {;k? will tend to the expected value of ji(r) in the
bound state which is specified by the parameter values Ho and vy .

It can also be shown that19

AOZBoiAliBl ‘”iAkZ_ Bki'“iuo (13)
where
A = Vg Vil ) A A TR IR = (14)
and
1]
vij = j;¢r(—V)¢j dr . (15)

The sequences {Akg and {Bk} actually have limit-point /”o s and
their rate of convergence is governed by the ratio (UO/ul)

If a, (but not al) happens to be zero, then ¢k tends to a
constant times wl ,» and we obtain bounding sequences for My - If

Favd
My is known, then the sequence {¢k} defined by

o~

O = Wo Ppag T O (16)

Fa"d
always has a zero a, since

B = (b (V) = QigP, (DY) = (b5 (DY) n



and from equations (3) for wo and (5) with k=0 the terms on the right
of (17) are seen to cancel. Similarly if

& ~

by = 1y bpg - By (18)

=R

~ ~
then ao and ay are zero and

and so on. These ideas were first developed and applied to vibration

problems by Templezo“22 and Bickley.22 In the event that the powers of

tends to a constant times MZ s

the dominant eigenvalue make ¢k too small as k dincreases (so that
accuracy is lost), powers of an appropriate scale factor can be intro-
, -k~ -k
duced. We can work with ¢kP s ¢k Q etc., when P, Q are very
rough estimates of UO’ ul etc.
Certain relaxations of the Hilbert-Schmidt condition on K are

possib1623;

as far as My and wo are concerned, the method is not
likely to be affected by the presence of a continuum at the upper end of
the y-spectrum. If the operator (-V) is indefinite, equation (3) must

be treated in the form
DY = u{nr @ + Yo - (19)

The operator on the right of (19) is positive-definite and self-adjoint,
but the signs of the eigenvalues are now uncertain and negative eigen-
values may well not be physically relevant. The inequalities (8) and

(12) are replaced by19
0 < Iugl < gl < woe < gl <o e

and

[Bgl > [Byl > eoe > B[ > oo > Juyl . (21)



Nothing can be said here about the sequence {|Ak|3o

Whenever for a given value of y the quantity -ly? is a discrete
energy which is not embedded in a contihuum, physical considerations
indicate that the entire p-spectrum is discrete for that value of vy .

-

IIT. SCREENED COULOMB POTENTIAL

The negative screened Coulomb potential has been studied in con-

25

nection with the deuteron7_9, hydrogen plasmaSZ4,\ scattering theories™™,

and has recently been the subject of a perturbation treatment26. Let
-1
V(r) = -r ~ exp(-Br), B >0, (22)

Then the double-norm of K is, from (4), (6), and (22),
o W
[ -1 2
J (rr') “exp[-B(r+r')] [exp[—y|r—r'I]—exp[—y(r+r'){} dr dr'

0“0 (23)

I8, y) = v 2

which satisfies the relations

0 < I(B,y) < I(0,y) = N2/ y2 , (24

4872 In(4/e) (25)

1(B,0)

and is thus finite unless both B and <Yy are zero. Hence K ig Hilbert-Schmidc.

Remembering that Y(r) is r-multiplied, we set
¢k = 9, > k=0,1, 2, ... (26)

so that equation (5) becomes

)

r9k+l(r) = y_l Ji{exp[—y]r—r'{]—exp[—y(r+r')]} exp(—Br')E&(r') dr’

T=p (27)



which reduces to
o0

B12(® =2 | expl-B+r'1 0, z") ar’ (28)

t=o

at zero r . If Yy 1s zero (corresponding to zero-energy bound states),
equation (27) simplifies to

o4
T k+l(r) = 2 Jﬂ min {r,r'} exp (-Br") Qk(r') dr’ . (29)
)

=2
Whenever suitable, equations (27) and (28) can be recast in terms of

a variable (yr); likewise equation (29) in terms of (Br).

IV. NUMERICAL RESULTS

Illustrative calculations of iterative sequences for eigenvalues
(un/y) and expected values of (Yr)—l, vyr and (yr)? were performed
for the Coulomb potential (Table 1) and also for the screened Coulomb
potential with <Y = 0.3138 (Table 2). This particular ratio was used
by Goldstein and Salpeter8 for a deuteron model; they found an estimated
value of 3.797 for (UO/Y) in comparison with our 3.91770. 1In Table 3
appear the eigenvalue sequences for the zero-energy screened Coulomb
potential. Here our values of (ZUn/B) for the lowest three gtates are
1.68374, 6.5066 and about 14.6. Gilda Harris24 has obtained approximate
values 1.74, 7.14 and 13.33 by a variational method, and the directly-
calculated value for (ZUO/B) of 1.683 by Sachs and Goeppert—Mayer27 is

25,28

still quoted in the more recent literature (Expected vulues of

powers of r are not relevant for this latter system.)

A typical iteration integral like (27) was replaced by the

discrete approximation



Table 1. Hydrogenic States; 8 = 0

k CWADH <(yeyts < yr > <(yr)?>
) 1.02058 1.21845 1.23336 2.04225
5 1.00031 1.02174 1.46395 2.85934
8 1.00000 0.99978 1.49538 2.98162
11 1.00000 0.99707 1.49943 2.99769
16 1.00000 0.99669 1.49999 2.99995
Exact 1 1 1.5 3
) 2.04856 0.65904 2.51028 7.50855
5 2.00418 0.53968 2.84926 9.52412
8 2.00036 0.51011 2.95426 10.20061
11 2.00003 0.50179 2.98630 10.41303
16 2.00000 0.49877 2.99821 10.49287
Exact 2 0.5 3 10.5
2 3.08672 0.47910 3.69947 16.2225
5 3.01531 0.38479 4. 15840 19.9559
8 3.00268 0.35286 4.35433 21.6771
11 3.00079 0.34032 4.43927 22.4466
Exact 3 0.33333 4.5 23
) 4.13443 0.39205 4.80276 27.6378
5 4.03504 0.30827 5.40371 33,7558
8 4.00214 0.27294 5.72726 37.2586

Exact 4 0.25 6 40.5



n=0

Table 2. Screened Coulomb Potential: vy = 0.313B
k /v, <(yryt> < ye >
2 3.96021 2.09677 0.78233
5 3.91771 2.31556 0.73404
8 3.91770 2.31973 0.73328

11 3.91770 2.31982 0.73327

16 3.91770 2.31982 0.73327
2 14.9319 1.23822 1.08014
5 14,1578 1.47790 0.97406
8 14.1538 1.49632 0.96807

11 14.1538 1.49768 0.96761
2 37.367 0.92969 1.30628
4 33.497 | 1.10295 1.17606
6 33.281 1.15282 1.14950
7 33.266 1.16213 1.14524
2 78.8 0.773 1.492
4 66.7 0.909 1.344
6 63.4 0.944 1.308

<(yr) 2>

0.90407
0.82038
0.81916
0.81913

0.81913

1.47862
1.24966
1.23784

1.23694

2.02770
1.69953
1.63902

1.62963

2.550
2.132

2.036



Table 3. Screened Coulomb Eigenvalues at Zero Energy: v =0
k (2u4/8) (2ul/8)+ (2u,/8) (2u,/8)
2 1.75493 6.6309 15.3334 28.698
4 1.68406 6.5112 14.6989 28.609
6 1.68374 6.5068 14.6420 26.424
7 1.68374 6.5066 14.6235 - -
8 1.68374 6.5066 - - -
16 1.68374 - - - - - -

10
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%0901 (% /7) =2{6Xp[—| Xi-le] -eXp[-(Xi-ij)]} eXP[—ij/y]Gk(xj/Y)sz
] (30)
where x =+yr and (Xﬁ,wj) are the points and weights of the numerical
integration formula. The same integration formula was used to evaluate
all the integrals in a single program, thus saving a factor of about a
hundred in time. The particular formula ugsed to give the results in
Tables 1-3 was a trapezoidal rule with 100 equal intervals from 0.0 to
10.0, combined with a 19-point Gauss~Laguerre quadrature formula from
10.0 to . The trapezoidal rule was chosen beguase the discontinuity
in the slope of the kernels should have no effect on it. Beyond
X = 10.0 there is little contribution to the integral and different
means used to integrate the tail of the integrand gave similar results.
In each case the starting function was 60 = exp(-3x/2), but the itera-
tion is insensitive to choice of starting function. After one or two
cycles, similar results were obtained with for exampile 60 = 1,
Sixteen iterations were performed, and the bounding sequences
{Ak& and {Bkj given by (l4) were stable through eight figures after
twelve iterations. Only the sequence {Bkﬁ is quoted in the tables,
(designated by (Un/Y)+ and (Zun/8)+) since Ak z-Bk , and only some of
the k-values are shown to save space. Appropriate {ka sequences are
also given. Only a single sequence ~{Gk§ was calculated for each of
the three systems, and sequences suitable for the next highest states
were deduced from it, as indicated in equations (16) and {18). Although
this method of finding sub-dominant eigenvalues is highly subject to

round~off errors, the calculations were stable thorugh 16, 11, and 8

iterations for the next three hydrogenic states, and through rather less
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iterations for the other systems (the highest k-value shown is the last
stable one for n =1, 2, 3). Better accuracy could of course be ob-
tained for n > 0 4if a fresh iterative sequence were generated for each
state, with renormalization at appropriate stages. But such refinements
consume more machine time, and were felt to be unjustified in the
present context. The calculations were run in FORTRAN on a CDC 3600
computer in single precision arithmetic which is good to about 10 sig-
nificant figures, and the average running time including compilation

was about 40 seconds.

In an attempt to improve the expected value of (yr)-l for hydrogen (which
for n=0 dis 0.3% too low), an alternative integration formula was tried
with 40 equal intervals in 0.0 to 2.0, 80 inﬁervals in 2.0 to 10.0 and
the same 19-point Gauss-Laguerre formula past 10.0. The main effect of
this change was to lower the eigenvalue results in about the. fourth
significant figure, but the (\(r)_l values were improved slightly. This.
fact, combined with the stable convergence of the eigenvalué sequence with
each formula; would seem tokindicate that the iterative method is |
somewhat sensitive to the particular integration formula in use. Because
of the excellent results>fdr the first two hydrogenic eigenvalues, we

put our faith in the trapezoidal rule with equal intervals from 0.0 to 10.0.
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V. COMPARISON WITH PERTURBATION THEORY

As a simple example let us consider the hydrogenic ground state
where Uy = 1, y=1 and wo = r exp(-r) (not normalized). The overlap

of ¢k (= rek) with r exp(-r) is

0
8, = qT6k(r) exp(-r) r2dr . (31)
0

If we also define

A
Cp = Jpek(r) exp(-r) r dr (32)
>

then it follows from (27) with g = 0, ~ = 1 that

(@]
1]
Q

(independently of k ) (33)

and

Ii

S o + (8o~ co)z"k (34)

k 0

The rate of convergence of the overlap integral Sk is thus exactly
1/2 (the wvalue of uolul) and this is independent of the initial trial

function 6

0 -
If we take
Xg = exp(~ar), a# 1, (35)

as the unperturbed wave function for a Rayleigh-Schrodinger perturbation
expansion, the perturbation is (o~1)/r and it is possible by standard
methods29 to determine Xk , the wave function corrected throéough order
k in the perturbation. For comparison with Gk » the normalization

is arranged so that
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b}
Ck' 2= jﬂxk exp(-r) r dr = CO (independently of k ) , (36)

14

and the consequent overlap integral

2]

Sk' = [Xk exp(-r) r? dr (37)
o
has the wvalue
k+1
S =G ~ S - (38)

Thus judging by the overlap integrals Sk anhd Sk', the perturbation
apprvach to the true eigenfunction converges more rapidly than does

the iterative approach whenever
—= <L, i.e. a<3. (39)

Since o=l gives the true eigenfunttion, the iterative approach is
only superior when a bad initial trial function is chosen.

Qualitati&ely one might expect a pérturbation treatment to be
better; i&eally such a treatment involves corrections resulting from a
small perturbation to the potential, whereas in the iterative approach
corrections are generated by the operator (T + %y2)~1(—v), involving the
whole potential. However thé single quadrature required for an iterative
correction to a wave function is in principle easier to carry out
analytically than the double quadrature required for a first-order
perturbed wave functionzg. Thus In some cases it may be possible to
improve a wave function analytically by iteration but not by perturbation.
It has been pointed outh that the first iterated improvement to a hydro~

genic ls function is a so-called Os function.
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VI. CONCLUDING REMARKS

As a numerical tool, this iterative method is conceptually very
simple but it has shortcomings. These are:

(i) the difficulties with the basic theory if K is not Hilbert-
Schmidtg

(ii) the slow convergence of expected-value sequences;
(iii) the difficulties in dealing with sub-dominant-eigenvalues;

(iv) the sensitivity of results to integration formulas:

(v) the possible difficulties in relating the two different types
of eigenvalue equations.

Perhaps these help to explain its relative lack of popularity. The
method may well be seen to best advantage in the calculation of zero-
energy potential-strength eigenvalues, which are useful in determing the
number of bound states admitted by a given potentiall.

As an analytical method, the approach has enjoyed some success
devolving from its simple Green's operator. It may be useful occasionally
when perturbation theory fails.

Equation (1) which we considered was for s-states. For states with

higher orbital angular momentum, one can either work with the operator

-1

{T + 2)@(2,+l)r—2 + I/ZYZ} (40)

which has kernel

20ex") Tou G ) Koy (vry ), (ro s minfr,r'], x, = max[r,r']),
(41)

where I£+% and K2+% are the modified spherical Bessel functions, or

alternatively the r--2 might be absorbed into the potential.
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Iz
1f the Schrodinger equation is many-dimensional and non-separable

the difficulties mount. But some analytical progress has been made for

+ 5,6,15
2

certainly in two dimensions. The free-particle Green's function in

. , . 30
n-dimensions is known™ .

He and H ,» and the numerical approach may well be feasible,

Methods which combine features of the two types of eigenvalue

equation (1) and (3) have been suggestedll’3l.
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