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ABSTRACT

This thesis contains the results of four separate effofts
to overcome some of the mathematical difficulties involved in formulating
atomic and molecular quantum mechanics in terms of reduced density
matrices. First the problem of constructing approximately N-repre-
sentable density matrices which can be used in variational calculations
is studied in detail. The effects of approximate N—gepresentability
on calculated properties are also analyzed.

Secondly use is made of field theoretical Green's functions

to directly determine the second-order density matrix of an N-fermion
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system, This method is applied to the ground state of the helium
atom as a test case. Thirdly a new technique for caleulating, in a
self-consistent fashion, the first-and second-order density matrices
of atoms and molecules is put forth. This scheme makes use of a
generalized random-phase approximation to obtain equations for various
spin components of the density matrices. The results of applying this
new method to'helium, lithium, and beryllium are presented. TFinally,
the first-and second-order density matrices of symmetry-projected

single determinants are derived and analyzed.
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INTRODUCTION

For a quantum mechanical system composed of N identieal,
pairwise-interacting particles, the Hamiltonian operator can be

written as follows:

Mz

9L,4) (1)

*

A

N
H=Z,1C<J.> + =

N

5
The one-particle operator £(i) operates only on the space-spin

variables of the ith particle, which are represented by the index 1.
Similarly the two-particle operatbr g(i,j) operates on the space-spin

h

variables of both the it and jth particles. The system wave

function ¥ (1,2,3,...N) is the solution of the time-dependent

"
Schrodinger equation

Lk 571_ Pty = Het) b (2)

with the initial condition

Ph="W,6 « t=t,. (3)
If the Hamiltonian does not depend expliecitly on time, the time-

"
dependent Schrodinger equation allows the separation of variables

Y = exp (~£E (2-2,))P &



which leads to the time-independent Schrgdinger equation

Hy=EY ®

The solution 'HP of Eqn. (5) describes a stationary state of the
system whose energy is equal to the eigenvalue E.
The expectation value of any observable Q for a system

described by the wave function ‘V” is given as

(&)= SV QYar /§vrpur (6)

/

where a is the quantum mechanical operator corresponding to the
observable Q, and d< implies integration over the space-spin
variables of all N particles. If the particles which comprise the
system are fermions (bosons) then the wave function 7%’ (1,2,3,...N)
must be antisymmetric (symmetrie) under permutation of the space-spin

variables of any two particles:

‘sb(/,z}-«.j//.soJ}afaA/) = (.-;.) ‘%(42/---);‘}'&-}:!‘& -/V).‘ (7)

This fact allows the expectation value expressed in Eqn. (6) to be
"

written in a more suggestive form. For example, if the operator Q

is a ohe—particle operator

N A
Q:Z_ R (8)



then Eqn. (6) can be written as follows:

<

¥ 3
<Q> = f\/ S'(P(’,Z,-";\‘/) C\) (/). 7/)(//'2/“’/‘/)_0/2)1 JT’/\/ (9)
SW T2 ) W2, n) 7, 2y

Eqn. (9) follows directly from Eqn. (6) by repeated application of

the following identity:

¥ A
S [ (1,2, 4, N) R (&) V(/,l/---ac:/-w/v) N

#
= 57/)[,{_:2/--—//---*/\/) 6/2\ (1) w/«é}il“'(/”'/\/} /T

¥
= \53’/ (1,200 £ 002 A) cé'(,ﬂ,b(//,-z,...,é...,v) ST (10)

The first equality in Eqn. (10) is obtained by relabeling dummy
integration variables; the second equality is a consequence of Eqn. (7).
Arguments similar to those employed above can be used to rewrite the

expectation value of a two-particle operator in the form given belows

S 4 A
(2/‘/) 51/’(/,2,-“/\/) Pi,2)VP(1,2,n) J2. Iy
S—lp.l‘(/,z,.u,\/) “P (I,l,-“/v} O/?J,‘ ({‘Z'N

P> =

J (11)

where (g) is the binomial coefficient.

It is clear from Eqns. (9) and (1l) that knowledge of the N~particle



wave function is not necessary for the calculation of expectation values

of one-and two-particle operators. All of the necessary information is

contained in the first-and second-order reduced density matrices defined

as follows:

¥
X(’jl,) =N yql)(’f&’w-NJ 7;L‘(/,.z,m/v) v, - dv,,
51{/*(/,2}”.,\/) Y2, n) 4T dTN

(12)
and
A 5 'W( 2! ) Y6 y
R'/"f ‘)/9:) = (9\) 2,2 %N 023 N/Q/ZE e Iy (13)
SWP*(,,z,—-- w) VW (12, W dT e d Ty
Higher order density matrices are defined in an analogous fagshion. 1In

terms of these reduced quantities, the expectation values given in

Eqns. (9) and (1ll) can be written as

<Q>’=5c¥(i-—;') CA? (1) }((,}.,/J d7, dv,- ) (14)

and
(PY = Su-mda-20Paa [(Ga; ) de, de dvy 4oy a9

For an N~-particle system the wave function _‘}L’ depends on 3N

continuous variables and N spin wvariables, whereas the second~order

R



density matrix /_1 is a function of only twelve continuous variables

and 4 spin variables, independent of the number of particles. Moreover

the second-order density matrix contains all of the information needed
to calculate the properties of systems composed of pairwise-interacting
particles. These facts, together with the knowledge that accurate
wave functions are extremely difficult to obtain for any but the simplest
systems, lead naturally to investigating the posgsibility of determining
directly the first-—and second-order density matrices.

By using the definitions of the reduced density matrices, e.g,
Eqns. (12) and (13), and the fact that the wave function obeys the
Schrgdinger equation, a system of coupled integro-differential equations
involving the density matrices can be derived. In statistical mechanicg
this hierarchy of equations is known as the BBGRY (Bogolubov, Born,
Green,vKirkwood, Yvon) equations. The main difficulty with such an
approach 1s that the equations are coupled; the equation which should
be used to determine the first-order density matrix contains the secﬁndw
order density matrix. Likewise the equation for the second-order
density matrix is coupled to the third-order density matrix, and so op.
There are many decoupling procedures which can be used to approximate
the solutions of the first few equations in the hierarchy, but they are
not based on sound theoretical foundations.

Another approach to the direct determination of first-anad secopdr
Brder density matrices would be to use trial density matrices in a
variational calculation. The difficulty with this approach is that the
trial density matrices must be restricted to the class of functions

which are derivable from an antisymmetric or symmetric wave function as



in Eqns. (12) or (13). Such density matrices are said to be N-represent~-
able. The problem of restricting trial demsity matrices to be N-repre-
sentable is very difficult and has yet to be solved.

Presented in this thesis are the results of four separate efforts
to develop techniques allowing the N-particle wave function to be by--
passed in favor of reduced density matrices. In the first chapter the-
problem of constructing approximately N-representable density matrices
which can be used in variational caleculations is studied in detail. The &
effects of approximate N-representability on calculated properties
are also analygzed.

In chapter two use is made of field-theoretical Green's functions
to directly determine the second-order density matrices of N-fermion
systems. As a test case the method is applied to the ground state of
the helium atom.

Chapter three contains the derivation of a new technique for
calculating, in a self~consistent fashion, the first-and second-order
density matrices of atoms and molecules. This new method makes use of
a generalized random-phase approximation to obtain equations for various
spin components of the density matrices. These equations are solved
by an iterative procedure. The results of applying this method to the
helium, lithium, and beryllium atoms are also presented.

Finally, in chapter four the first-and second-order density matrieces
of symmetry-projected single determinants are derived. The totally symmetric
components of the density matrices are also presented and discussed.

It is hoped that the research reported in this thesis will help



provide theoreticians with a useful set of tools for calculating the
properties of atomic and molecular systems. If this is too ambitious,
perhaps some thoughts for more productive research will arise in the

readers' minds.



CHAPTER ONE

CONSTRUCTION OF APPROXIMATELY

N-REPRESENTABLE DENSITY MATRICES
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- I. INTRODUCTION

1-6

The pth order reduced density matrix, ~° or p~matrix,7 for a pure

state of an N-fermion system can be obtained from the wave function Y as

a4

Dp(lliap;l'so‘p')= fq’(lclap,p"'l.nQN)\y*(:l'oocp',p+1o'oﬂ)dTp+1;a chN ® (15

It has certain properties as immediate consequences of this definition:
it is hermitian, and 1f Y is a normalized, antisymmetric function
D(p) is antisymmetric with respect to permutations eof the priwed or of
the unprimed variables, and is of trace 1. Howewver, a proposed density
matrix having these properties is not necessarily derivable from an '
antisquetric, N-particle wave function. The prdblem of determining
conditions on a proposed density matrix such that there exists at least
one antisymmetric function- ¥ from which the given D(P) can be obtained
according to Eqn. (1) is known as the (pure stat95 N~representability

problem.7-17

It has received much attention in regcent years but remairs
unsolved.

One reason for interest in this nrqblem is that it would be easier
to do a variational calculation with the 2;matrix directly than with a
many-electron wave f.uncticm.10’18’,]’9 This is parpticularly true when
correlation effects are of interest, since they can be dealt with fairly
well in two electron systems. If a trial depsity matrix ié not . N-repre~
sentable; however, then the energy computed as the trace of the product
of the density matrix and an appropriate reduced hamiltonian matrix is

not in general an upper bound to the ground state energy of the system,

as 1is a variational energy calculated fro@‘tha wavafunction. The energy



I

10

calculated from a non-N-yepresentable density matrix is rigorously
bounded below only by the lowest eigenvalue of the reduced hamiltonian.
This eigenvalue is also a lower bound for the ground state energy of
the system, and may be quite far below it. Unless N~representability
constraints are imposed; a density matrix calculation fs thus of doubt--
ful va@ue.20"23
Although N~representability conditions for the l-matrix can be
stated entirely in terms of its eigenyalues, those for the 2-matrix
necessarily involve not only the matrix elements but also'the geminals
in terms of which the matrix is expanded. One of the many problems
associated with direct attacks on the N-representability of the 2~matrix
has been that the conditiéns on geminals seem to involve the very weakly
occupied geminals to exactly thé\same‘extent as the most strongly
occupied_geminals.13 This‘is<unfortunate since thefweakly occupied

geminals have relatively little effect on calculated'bhysical properties,

It is a conéequence of the statement of the N—representabilify question

'

in "all or nothing” térms. We are thus led to consider thé possibility

of an approximately N-répresentabie density matrix.

Some work has been done in which conditions which are known to
be necessary; but not sufficient, for N-representability are imposed
and a variational caiculatioﬁ carried out.. The results have been

enccuraging.lo’24’25

Perhaps if enough necessary conditions are imposed
the resultant density ﬁatrices will not be. too far from being N-repre-
sentable. It would clearly be more satisfactory, however, if some

measute of degiqtion from N-vepresentability could be introduced and

the canaequenges:for calculation of properties such as the energy .



quantitatively escimaced.
In this chapter we will consider the following question, which is
closely related to that of the N-representability of a 2-matrix:
Given a set of M orthonormal, anitisymmetric spin geminals
{¢i(L2}5 i+ 1,...,M} din terms of which Z-matrices can

be expressed as

(.2> 3 o) .\ “ b sz: -
D(L,2517,2") = p 4 (1,2 9 (10,20 (2)
1] )
S.':l
what are the restriccions on the coafficients di* such
.

(2) .

that D is as nearly N~repregentable as possiblel?
We find this problem to be somewhat more tractable than vhe N-repre-
sentability problem icself. It will be of interest if we can establich
. ) 2y ;

a measure of the extent to which D is N~representable, and an
estimate of the maximum extent to which an energy calculated from

2 : .
D( ) can fall below the ground state energy of the system. Since we
hope to do a variational calculation, we want to obtain a density matrix

which has some free parameters in it. We will examine the way in which

maximization of N-representabilicy interacts with minimization of the

3

approximate energy.
As a firgt step in investigating the question posed above, we
introduce in Section Il a continuous measure of the N-representability

of a density matrix, and define a procedure which can in principle be

used to obtain the density matrix or matrices of optimal N-representability

for a given geminal basis set. The method could easily be extended to

consider a general p-matrix, but we will confine our discussion to the



2-matrix, because of its physical interest for systems of pairwise
interacting fermions. We find that the exact N-representability problem
can be treated as a special case, but the solution which then results

is not of great interest, leading in general to the equivalent of a
complete CI calculation.

In Section IIT we comsider the effects of approximate N-represenuabhility
on variational energy calculapions. We find that the maximum extent to
which the calculated energy can go below the true ground state energy
can be related to our measure of N~representsbilicy and to the eigen-
values of the reduced hamilionian in a greatly restricted basis seu.

In Section IV we expand on methods of calculation which could be
used in practice and consgider the effects of truncatvion of certain
expansions on our results. We 2lso show how the geminal set can be
systematically expanded to improve N-representability and decrease

maximum possible errors. We conclude with 2 discussion in Section V

of the results which have been obtained, and a view to future efforts.

II. DEVELOPMENT OF FORMALISM

In this treatment we will assume that we have available a fixed
set of orcthonormal, antisymmetric spin geminals { ¢i} «+ They may be
explicitly correlated or given as CI expansions in Slater geminals.
Any member of the family of N-particle functions whose 2-matrix is

expressible in terms of these spin geminals can be written as

M
¥(l1...N) = L ¢i(l,2} X; (3...N) (3
A=1



13

where the Xi are arbitrary N-2 particle fuactions. Of course Y
will not in general be antisymmetric in all particles. The 2~matrix

of such a function is given by Eqn. (2) with the coefficlents dij

«

determined by

%
r = E ; .
d,, = jx. (3...)x, (3...N)dt,,...d1 . 4,
by = DB NGl NdT L ary (4)
It is clear that the matrix of coefficients d i3 hermitian, positive
semi~definite, and that trace d = 1 if VY Iis normalized to unicy.

(This will be assumed to be the case throughout what follows.) Thess

e

are well known necessary conditions for N-representabiliuy.

We now introdece as a wmeasure of the antisymmetry of ¥ che nor

of its antisymmetric component:

2,
uivl = flog ¥l (%)
k= &U* " T
J-t {l“vN)‘ﬁ‘_l.,,NWCI..QN)dTl‘..dLN 3
where 6& N is the N particle antisymmetric projection operator

= (N;)"'l o (-1)Pp . (6)

PESN

mlﬁ . lN

The summation on P extends over all N! permutatlons of the N space-

spin variables, and p 1s the partiy of P. Because O is 3

1...N

projection operator and Y 1is normalized we know that O0< u[¥] < 1

and that Y = 0 dimplies that @ Y=0 while W = 1 implies that

l...N

@H_ NW=W. Substituting from Eqn. (3) into Equn. (5), we obtain an



14

expression for the measure of antisymmetry for any member oI the

desired class of functions:

M
* s "~ \ g A 3
ul¥] = I fcbi(l,.’z)xi(s...N)@l 64 (1,203 (3e e 0Ty

PR vaeedd ]
1.3

N

This expression can be simplified somewhat when we rvealiza that O

can be decomposed as

o !N“:‘l\a’f' &3
Or w42 99,29, n -
Here O and © ~ are the 2 particle and N-2 particle
1,2 3...N

antisymmetric projection operators, respectively, and | 1s the sum

of all signed transpositions between particles 1 and 2 and particles

3...N:26
N N
= 1 - Z (P, +P..)+ L P,.P
fj 323( 13 23> i<k 1y "2k -
=3

Our metrhod of obtaining the density matrices which can be expanded
in terms of the given set of spin geminals and which are as nearly
N-representable as possible will be to choose the functions{ Xy }

80 as to maximize M{¥] and then to take éi to be given by Eqn. (4).
In general we will not be able to attain the result U = 1, which would
imply exact N-representability. We can, however, interpret the maximum

attainable value of U as a measure of the N-representability of the

density matrix we have obtained.

N
-~

o~
Les]



A v Nt B

i5

The forvm of @l N introduced in Eqn. (8) makes it clear that
in seeking a maximum value of u for normalized Y we need considex

dn

only those functions xi(B...N) which are antigymmetric in the N-Z particles.

.

The spin geminals ¢i are also antigymmetric, by assumption, so that our

ro

expression for | cap be written as

M ’ v
V] = N . *' 'cﬁ“‘i’ '= 3 - T
UI‘:} (2 i,:};ul f(piXi J (pj /(j GTi“.dZN - \,J.'.))

[

If the antisymmetric functions are varied so as to meke )
Y i

stationary subject to the normalization constraint
: M

-
J¥V¥dr= 1%
a gset of equations satisfied by the optimum {Xi} is obtained:

M
vjil(g‘;’l fd):(l,z‘)“j 05 (1,2, (3...MATydT, = A ¥y (3.4 = LY (12)
vhere A 1is a lagrange multiplier introduced to assure that Eqn. {(11)
will be satisfied.
In order to make progress in using Eqn. (12) to determine the
optimum { Xy t we introduce in Appendix 1 a set of R (perhaps infinite)
orthonormal spin orbitals labeled by {al’az...aR} in terms of which
all the { ¢i }can be expressed. For convenience we denote the spin

orbitals themselves by the indices o, - Then

R
0,(1,2) = T (ilagey) [og,) (13)
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Here (i}uluz) is an expansion coefficient and brackets denocte a
normalized Slater determinant

~1/2

[aj0,] = 2 {al(l)a?i’z} - g (Lo (2) L CL4)

In general there will be (%} Slater determinants [mi@%ls but the
number M of spin geminals used in the density matrix will be smaller,
possibly much smaller, especially if the spin gemiunsls are correlated.
It can also be shown that the optimum { x.} <¢an be expressed
- e

] - 1 R Py % . s “

exactly in terms of the N=2 N-2 particle Slater determinants which
e

can be formed from the o .

R
xl(S...N) = asg...<a 81430 00 (O v o a0y
=1
R
éﬂnZ)
= L Gl ()

where the set QGgee Oy has been replaced by «o for brevity.
That this expansion is possible for ths optimum {X-i} can most readily
be verified by examining the dependence of the terms in Eqn. (12) on one

particle, say particle 3, and making use of the antisymmetry of the

functions.

Substitution of Eqn. (15) into Eqn. (10) gives

PR
z

utel = [ N O s RN CIELICAN (16)

l,:',:’l Gs P

=]
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which is a hermitian foim in the ccefficients {Cia}‘. In Appendix 2

we show that the integral appearing in Eqn. (16) can be further reduced

by use of the identity

yrl . . .
(3 Folte1™ ¢;81av = [ 8j1a1" T o 1p2er = 2, (17)

with27’28

T o= (NTL or1 - oeneny L AN=2) (§-3) 18y,
T= (Y701 - 2(v-2)p g : I 0 (18)
Eqn. (16) can then be replaced by
R
M (N~2) W% ”~ ) '
w T . ;
183 z L Cyy 10,38 CJB (19)

i,j=1 Q, B=1

The functional u{¥] is thus a weighted average of the eigenvalues

of the matrix T whose elements are given in Egn. (17). The maximum
i -

value of u[¥] 1is equal to the largest eigenvalue of I, and occurs

when the Cia} are the elements of an eigenvector of ;gi agsociated
with this largest eigenvalue. Thus we are led to comnsider the eigeuvalue
equation

u k2l

i I

51 gl Taongs G T M Gua (20)



LT, S,

The normalization condition on V¥ takes the form

{ R,)
M M AN-2 9
L [Xgx4dT4. . dTy = 151 c;f:l }cw} =1, (21)

go the eidgenvector should be taken to be normalized. We will denote
the largest eigenvalue of T by AO, and recall that Lt may be
. WA

equation which can in principle

&

degenerate. Eqn. (20} is an aigenvalu

~

]

be solved directly, without requiring an iterative process. This

o

reason alone may place the present method closer to being computationally
\ 29
ugeful than some previous schemes. Howaver, we must remember thax
~ 1’ B ‘
the dimension of T is M{w‘?} » which can be an extremely large
red N .
number, or even infinite 1f R is infinite. In practice it would
probably be necessary to choose some truncated set of spin orbitals
{ai, i=1,...R" }in terms of which to express the N-2 particle Slater
determinants. Also, we have in mind a situwation in which the number
. ; R R .
M of spin geminals ¢i is much less than 5 and probably much lass
R' .
than (2 ) . These approximations will be discussed in more decail
in Sect. IV.
We assume that the degeneracy of the largest eilgenvalue Ao ig

§ and denote the set of orthonormal eigenvectors associated with it

by ,{ng) , & = l,'..ﬁ} . Any linear combination of these will

provide a set of coefficients optimizing u[¥]:

6 (a) .
Cio = oI Ya i, (22
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in which the Ya are arbitrary except for the normalization condition

§
ax=

~

will be an eigenvector of T with eigenvalue _)0 and thus with u = A
aah

The coefficients Y1 can be considered as variational parameters in

<

the density matrix, which is given by Eqn. (2} with

(i22) . 8 . (2o} o oy
;5 La 3) ,
dij aﬁl Cia Cj& u,%ml LIRS aﬁl 10 ij . (24)

This provides a solution in principle to the problem of constructing
optimally N-representable 2-matrices. In practice there would remain
problems associated with the construction of ;éa and the'determinatign
of the { C§Z>} . Except in simple cases, the large dimension of ;éi
would probably make the time and effort required to carry out these
steps prohibitively large. For this reason we will examine later the

”"

possibility of decreasing the dimension of T by truncation of the
N

set of determinants {as..aaw] used in the expansion of the optimum{ ¥

; were equivalent to the set of all Slater geminals
R
2

- g
If the ..(Pi

é, then the largest eigenvalue

Ao would be equal to 1 and its degeneracy § would be ( %) . This is

[aiaj] , which requires that M = (

just a restatement of the fact that (%) independent N particle
: . - , "y 30,31 ..

Slater determinants can be formed from N spin orbitals, The

present approach then reduces (or expandsi) to the equivalent of a

conventional full configuration interaction calculation. In practice

we hope to use a number, M, of spin geminals which is much smaller.

2 N
21 iYa’ = 1 , (_23)

1
'J
*L

¥
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and the N-representability is measured by

uy] = t% L |y A, . (27)

Before turning to a discussion of ervors, methods and approximations,
we find it of interest to relate this treatment to the exasct N-repra-
sentability problem for a given density matrix. We note that the
{ Cia} are not the only coefficients which will lead to the matrix vg;

From the properties of “éh we know that there exists a square, hermitian

1/2

matrix d such that
Wi

M
/2 1/2 .
A T 28y

/2

To relate d* to C = {C., l}we define the rectangular matrix V by
v WA 14 Vs

M 1/2 .
C, = I d . {3
io j'—"l ij VJO’, \&9)
It then follows from Eqn. (28) and
(x52) ()
N-2 % M N-2 1/2 * 1/2%
= Y =z i
dij o=l Cia Cj@ k,§m1 ail d ik Vka Vﬁa d 3L (30
that
R
(N_g) N
@ﬁl Vim Vja = aij ' (31)
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However, it is not necessarily true that

M *

L Vv, V,,=20 .
je1 3% IR B

Matrices such as “\\Iw are referrved to as partial Isomcivies.
To relate these partial isometries to the exact N-representability

problem, let us suppose that we are given a hermitien, non-negative

matrix ‘slw of unit trace, and a set of orthomormal, antisymmetric spin

geminals {¢i} . We can then use Eqn. (29) to define a set of cocefficients

{c;} end thus a wave funccion ¥ , for any partial isometry V. We

substitute this expression for the coefficients into Eqn. (19) and obtain

w o ezl

i - * -1/2 ~ .1/2 )
= T
ulvl k’%ﬁ}_ q,éwl Vk.cx. (& T g, >kcx,% VQ.S (32)
where
(dl/Z 7 a2y ; M RV /2
T R

If we now vary the {Vioc} to make W[¥] stationary, subiect to the

constraints
R
(N..g) "
== 1.9 = {
ocEl vioc Vjoa dij 1,5 = 1,...M {33)
we obtain the set of equations
v (el
. -~ hi
- 1/2 1/2 .
Qﬁl 351 @ E L Duans Vs ” ggl %o Vo - (34)
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The €. are Lagrange multipliers associated with the constraints of
<
Eqn. (33). Since we initially know neither the elements of the optimum

V nor the Lagrange multipliers €, Eqn. (34) would have to be solvad
Ll W

»

iteratively, if at all. If this can be done, we obtain

M (Ngz}

v v
ksﬁzl ail_gkﬁ.'iu Yio

W

M M
= 3 5 E) . = » & . 33
kﬁgl € Oup Tk fpi T TEECe £ (353

We conclude that if the trace of the Lagrange multiplier matviz

fo

is 1, then the given density matrizx is exactly N-vepresentable, Wran
trace £ < 1, we interpret its value as a measure of how nearly'
N-representable the density matrix is. Because of the large dimension
of 33/%3%i/2 , and because we do mot know that Eqn. (34) can in fact

be solved, there is little hopg that this method will be computationalily
useful. This discussion has been presented only to establish the
connection between our approach and the exact N~r§pre8entability problem
for a given density matrix.

There 1s another formulation of the exact N-representability
problem for a given density matrix which avoids the difficulties
associated with Equn. (34), although again the solution provided is one
in principle rather than one of practical utility. .Given a& hermitian,
non-negative matrix »ﬁ, of gniu rrace and 2 set of orxthonormal,

~
antisymmetric spin geminals {¢1} , we first construct the matrix &;

and find the & different eigenvectors associated with the largest

eigenvalue AO. If AO is not unity, the density matrix cannot be
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N-representable, so0 the question is answered. Iif AO is equal to 1,

we must determine whether the parameters {Ya}~ of Equn. (22) can be
chosen so the Eqn. (24) yields the given values of the dij . The
density matrix will be Nu?epresentable if and only if such ccefficiéﬁts

-

can be found. If we define

(R
\H-2 .
. Lay L)’ 57
13,ab @51 Cia Ysa (36)
and
z y v °” (37)
ab a b ’ L7
Eqn. (24) can be rewritien as
§ ., ”
X P Z = d,, i,i = 1...M 8y
ij,ab Tab i ’
a,b=1 ds J

; s 2 . . . -2
This can be thought of as M linear equations in the 6§ unknowns

zab’ of which only ¢ -are independent. That is, 1f we know
% % %
-{-‘-‘,-«

YlYl s Yle ""Y1Y§ we can determine all of the coefficlents to

e

within a single arbitrary phase factor. As in all systems of linear
equations, the existence of solutions is governed by the rank of the
matrix P and the rank of the augmented matrix which is formed by

adjoining the "column vector" g to P,

-t

{911 Pav,an oot Py es

g
e

di2 Pia,11 P12.85
o |- . . . (39)
i . . .
4 > P
MM MM, 11 MM, 86
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From the ranks of éi and P% we can in principle learn how many, if
ande

any, of the unknowns zab are determined and how many are arbiltrary.

If the density matrix is to be N-representable there must be a non-

.

trivial solution to Equn. {38) baving the further property that

Bt
o
=
-

*
zab = zbe

Methods, and even computational proceduves, exist by which Eqn. (38)
can be solved and the solutions tested to see if the necessary coa~
ditions are satisfled. We are thus able in principle to test ihe N-
representability of a given density matrix. Because of the large
dimensions of éi and vgg however, this approach is not useful, and iz
perhaps better characterized as a restatement rather thgn & solution of
the N—representability.problema

Let us review what we have found in this section. To construct

optimally N-representable 2-matrices from a given set of orthonormal,

antisymmetric spin geminals, we must find the eigenvectors associated

o
Ll

R
with the lavgest eigenvalue ko of the M (N~2> dimensional matrix r

The required coefficient matrix is then given by Eqn. (24), and ko
is a measure of how N-representable the resultant density matyix is,

with the value 1 corresponding to exact N-representability. Additional
elgenvectors of éé assoclated with eigenvalues nearly as large as Ao
may also be included to increase the variational freedom, with some

.loss of N-representability. This approach can als¢ be ralétad to the

exact N-representability problem for a given density matyix, but the

resultant equations are not practical to work with.
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III. CONSEQUENCES OF APPROXIMATE N-REPRESENTABILITY

As we remarked earlier, one reason for interest in the N-repre-

sentability problem is the desire to do variational calculations

.

directly with the reduced density matrix, which is & potentially
simpler thing than the wave function. If the Hamiltonian for the

system is of the form

N N

J o= b £ 4 Loog(diy) (41}
i=1 173
=1

Then a reduced Hamiltonian may be defined 3532

% = 1\71 [£(1)y + £(2) + (W=-1) g (1,231 , (42)

such that for an antisymmetric wave function V¥

E = trace (X d) = [V (43)

where 5; is the matrix of X in the { ¢i } basis:

_ ®
Ky, o= _{¢i<1,2>$<¢j(1,2>drldrz . (44)

If Y is not antisymmetric the two expressions for E are not

equivalent, and E calculated from d 1is not an upper bound to Eo’

the ground state energy of a fermion system defined by :%§33 Since Ji

is in any case so defined as to be a non-negative, hermitian matrix,

13
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i it will be true thac

o2
v
m
P
o
)
Nt

(A},:;

where % is the lowest elgenvalue of .  However, £ is a

o
lower bound to the ground state energv of the N eglectron systen.

§ In this section we will consider the errors which can avise from tha

use of a density matrix th%t is only approxiwmatesy N-representable.

We will show that the extent to which E can fall below the ground

state energy is related to U, the measure of N-representabilivy

introduced in the previous section, and approaches zero as | approacaes L.

We begin by introducing a remainder function 0(1,2,...N) defined

for any ¥ of the type in Eqn. (3) by

Q(1,...N) = EDI N ul¥ (46)

With n determined from V¥ by Egn. (5). This function is antisymmetric
in the first two particles, and if only antisymmetyxic¢ ¥'s are con-

sidered, it is also antisymmetric in the last N-2 particles:

! O ,2§z w4, Nsa w 0, (47)

1 3.

If the optimum ¥'s are used, corresponding to W = AO, then it also

follows from Eqa. (12) that Q 1is orthogonal to all of the ¢i

33
f¢;(l,2)€2(1,2,3...N)d'rld'rz =0 . (48)
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The square of the norm of { is

heg? = Jlatfer = flo,  w¥t@,  -wvd

2

) 9
== 2RT T e w(l - ) . (49)

For an antisymmetric function such as OV 1t is r&aéily,éhawn by

3

g

relabeling variables of integratzion that

ES P
- (O #1094aT O et d s
Slo¥|“ar J oy Zax

~ .

It is clear also, by the variation principle, that E > EO. We will
~ ~

consider the possible difference between E and E defined in terms
of the density matrix. Of course awny other symmetric one-or two-
electron operator can be substituted for the Hamiltounian if an
appropriate reduced operator is also defined, but the comparison with
Eo has an analogy only for operators that are bounded below.

We look first at the éxpectation value of ‘i with respect to

QK> = <@¥-p¥Klov-uy>

= <YloKo|¥> - pl<¥in]ovs + <o¥l|ve] + iy ie|vs, (51)

ty

Making use of OY = Q + W¥ and the definitions of u and § , we

rewrite this as

<Y |Dko| V> 2 <Yy
o - wYolE 2

<Y IOy

o<yl v i e .
S ML s f YRR+ |y (52)
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ot

Y] = uE - W2 E , (53)

k| + ul<yfk|e> + <@k

since

<Y [¥>/<¥|¥> = <Yfic|[¥> = crace (4 K) = E (54)
Then using the triangle inequality we find
lE - v%E| < |<elx|o] + 2n|<@lx|v>]. (55)

A more useful relationship can be obtained by using bounds for the

terms on the right hand side. By the Schwarz inequality

2

[<vfela|? < ol vyt = e <K (56)

It should be noted that ‘kz, the square of a two-electron opeyator, is

itself a two-electron operator. It follows that
VAN 2
<YR|¥> = trace (K° 4) . (57)
e B

The remaining term can be bounded as

[<@kie>] < <Q§Q>.]e{mx =“(1'“)53{max, (58)

where Iet is the eigenvalue of maximum absolute value associated

max

with % in the space spamned by the Slater spin geminals [diaﬁl‘

This follows from the expansion of Eqa. (13).
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We have seen earlier that in the case of the optimum { Xi} when
U= Ao’ € dis orthogonal to all the spin geminals ¢i. In this case it
follows that

[<afk|>] < n@-wife'| (59)

where |e'|  is the eigenvalue of maximum sbsclute value associated
with & in the difference space between that spanned by all the Slater
geminals and that spanned by the ¢i. The dimension of this difference

R
space is (2) - M. Our bound on the eneygy difference is thus

~ - 12 2, ,1/2
B - E] < @-wlel _ + 2lu(i-w1{erace (X&) (60;
. , ) . ]

and 1if the optimum ¥, are used, Ielmax can be replaced by |e Imax*

The occurence of U multiplying % ig somewhat unfortunate, but not
really serious since presumably u~l in cases of interest.

Since both terms on the right hand side of Equn. (60) contain
(144), the bound can be improved by modifying the spin geminal set to
increase Y. In the limit when W becomes equal to 1 the bound

goes to zero and E = E. For yu's somewhat less than 1, if the

let] makes
max

fo

optimum X; have been used and the term involving
significant contribution, the bound can be reduced by a particular
augmentation of the spin géminal basis. We add to tﬁe sel {¢i } the
eigenfunctions of K , withiﬁ the difference space, which are associated
with large eigenvalues. Because the new difference space which remains

does not contain these high energy functions, the effect of this
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procedure will be to reduce le’émax and thus to iwmprove our bound.
Such an augmentation will clearly not decrease the optimum value of W,

Of course we could augment the spin geminal basis by adding all
of the functions in the éifference space. We would then have te daai
with a set of (?} functions gquivalent to the full set of Slater gamiméla

[uiaj], and would again be in effect doing a complete CI  caleulation.

I

IV. METHODS OF CALCULATION AND EFFECIS OF TRUNCATION

Clearly the possible practical utility of the method described

above for the construction of optimally N-vepresentgble density

:
i T
matrices 1s dependent on our ability to comstruct the M{WE?E

Ts

~

dimensional matrix é; and to find the eilgenvectors 5C§2) } associated
with the largest eilgenvalue Ao’ Let us first turn our attention to
the evaluation of the elements of é& The operator T is defined in
Eqn. (18) and the matrix elements of iInterest are those of Bqn. {(17),

« Using the well known rules for evaluating matrix elements of one-

and two-particle operators between Slater determinants, we obtain the

~

; following expressions for contributions to T, .,¢
| io, 3R
f¢*[&]*¢ 8ldr = 8., & 61
i j{ T2 %5 B e

} N
X -1 ® %
-2 : =0
W-2)"" T 9, (1,200 (309, (3,200 (1) dt if a=B

[65 1017, 6. (8] dt =
i 13 J - 2)..1 k+m !. * * o -
(N- (-1 J ¢i(l,2)ak(3)¢j(3,~)ﬁm(l) drt
if a—qk=B—Bm

0 otherwise

(62)
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<

r N-—Z -1 N * ® . 3 CE e
PR Jo,(1,2) [og o, 1(1,2)dt [ (o 0] (3,4)¢j§3,4)d1 if =8 .
==3 :

~1

| e I~

[ op(L2 B o (L,2at [ [opa, 1 (3,4)6,(3,4)dr
4=3 ‘ ‘ -

. -1 % . W, . R
CDEIR ®n T 1 oR 1,2 (8 8 10,20dr [laa, 13,46, (3,4 T

if o-a, =, = B8 -3
if oo -a, ™
L 0 otherwisge
(63)
The notation o=8 wmeans that the two sets { Cig e e+ Chy }ooand { 83..,8N K
are didentical; ooy = B - B'n means that the two sets differ pnly in
the unequal indices & and Bm’ the other indices in the o set
being the same as the other indices in the £ set; and 00y =0, = B*8m~BnL
1

means that the two sets differ in the two indices ak,uz and Bm’Bn

only. If strongly orthogonal geminalsBS are usad, all the integrals are

zero except in Eqn. (61) and the third case in Eqn. (63), Since the spin

geminals {¢. } can also be expanded in terms of the spin orbital set { o } .
N l o

these results can be expressed entirely in terms of the expansion coefficients

of Eqn. (13), which are determined by

E
(i[aluz) = f [a,0,1" ¢, dr (64)
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It should be noted that only the coefficients with oy < G, are raquirad
in Eqn. (13). It is convenient for the expressions we now want, and con-
sistent with Eqns. (13) and (64), to allow either order with {ilazal) =

- (iialaz). The expressions for the inteprals can then be written

E \
[oyla1"0 [8ldT = 6, 8.4 .
f- 1 3 y

[8310172 4, [B)dT =

krtm R .
ﬁ._{-.:.é‘.}...___ AT -1 by fa i .\.“1’.-:'»\, %
> (8~2) o 2e (118 0,0 e,
1
£ om0y =B-B
G otherwise
{&8)
N__z "'1 N‘ ot % . o )
L Gilogay) " (Glaag) 1 o=p
=3
N

: -1 #
GDEREED T E e Gloey
[¢ [a] PlB 24¢j{51dr =

if o-on =f-8

ket LAm+n (N«Z)”l

(~1) il )y C}]u w, )

H n
if 00y ~0lp = B»Bm—Bn

0 otherwise
{67
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These integrals provide all the information we need to evaluate the

elements of i& Because of the large dimension of im 1t will be difficult,
or at least time consuming, to find che largest eigenvalue and the eigen-
vectors associated with it. Many of the matvix elements are zero, but

Y UF
S

o

even though the matrix is quite sparsa it doss nob &ppreay Lo have
block structure which might aid in the diagonalization.

~
The trace of 'Ew is of some intevest. Siunce the positive quanuity

u[¥] is expressed in Eqn. (19) as a potentially arbitrary weighted
”~
average of the eigenvalues of T, all the eigenvalees musi be non~negavive,
sl
and KOS thus cannot exceed the trace of T. This quantiry can ke
. el
evaluated from the diagonal matrix element expressions included above.

It is found that the expansion coefficiencs occur only in sums chat can
R 9 '
i e which is 1 4f ¢, is normalized.
bé put in the form oo [ ¢ 10 2)] s which is 1f ¢, is normalize

]

The trace is thus indeﬁ&ndent of the expansion coefficients. It is

(B=2) L

(88
N1 (R-XN) 1 (€8

”~
trace T = 2M
wa,
We note that it is simply proportional to M, the number of spin geminals -
R
2
4

A
this case the eigenvalue 1 will occur with degeneracy (%}. If M < i%}
EA

in the set. If M = ( ) , then the trace is (§). We expect that in

o+

then trace T < /R>.
F1 it

We have noted previocusly that the number R of spin orbitals {b%'}
may be very large or even, if correiated geminals are used{ infinite.
It may thus be necessary to truncate the set, using only some smaller
number R'. In addition we may find it a practical necessity to use only

1
S <(N-2) of the possible N-2 particle determinants made up from these
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spin orbitals. Either of these truncations will affect our estimation

of u and also the elements dij which we ascribe to the optimally
N-representable density matrix.

As an initial step in the estimation of the consequences of sucﬂ
truncations, Qe note that much of what we have done above is in fact valid
for any choice of basis sat. The particular choice {aihial,w.RJ is
merely one which is convenient and is capable of leading to optimum resulis.
Eqn. (7) defines u[¥] for any {xi}, and so long as these functions are
antisymmetric, the expression of Eqn. (10) follows. If the X, are ex-
panded in terms of gome set of Slater determinants built up from orchonormal
spin orbitals, we can arrive at Eqn. (19) and the optimum sxpansion co-
efficilents are obtained from Eqn. (20). The optimum density matrix hasg éi
given by Eqn. (24). ©None of this requires that the set of spin orbitals
be complete for the expansion ofythe spin geminals ¢i or that the sum
over the N-2 particle determinants include all possible choices. If
these cénditions are not met, we will not be able in general to attain
the truly optimum W or find the truly best é& possible for the given
set {¢i }. This loss of complete optimization may be offset by gains
in convenilence, however. We will still be able to estimate the conse-
quences of only approximate N-rvepresentability and thus to decide in a
given case 1if the results are good enough.

In deciding which spin orbitals and which determinants to include
in the truncated sets we must be guidad by the following considerations:

we want the largest eigenvalue of I, Ao’ to be close to unity and its

degeneracy (or the number of other eigenvalues nearly degenerate with it)
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to be sufficiently large to give good variational freedom, but not so
large as to return us effectively to the CI problem. It is difficult
to formulate specific criteria in the general case. The fact that we

are trying to make V¥ as nearly antisymmetric as possible, togather

. with the effect that various functions have in attalning this gual as

indicated by the results above, suggests certain features of the criteria,
however. Those spin orbitals which figure significantly in the {¢i}

must be included. For a general set of spin orbitals {a ; }, we can

say that a; and a; must be included in any truncated set if fﬁ&;mg}*®kd%

is large for any k . Similarly, the determinants which ave mosit important

to include are those containing the greatest numbers of the mOBT Important

'spin orbitals.

Let us consider finaliy the problem of using the density matrices
resulting from the above précedures to calculate properties of our system.
We suppose that we have chosen uot only the set of spin geminals { ¢i 1,
but also a set of spin orbitals { m'i,i=l...R' } and selected some S
of the N-2 particle determinants made up from them. We suppose that éi
has been formed and the g+l largest eigenvalues, XO,.Q.Aq, togathey

with thelr associated elgenvectors {Cigia),‘taO,...q, aal,..ét } have

been found. The 2-matrix is then given by Eqn. (2) with

) q ) 8 %
£ Lu * . (6,8) L (u,b) ’
d,,= L & LI ¥ Y Y C'0V ¢ . (69)
ij o'=l t,u a=l b=l at "bu ~ iu Jo
=0
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The expectation value of a two particle operator

Y
67 = (M) T a4 6, =
J

with
e - 1-2) {1,2) dti.dt
ji f¢j< 3 812¢i\ y &/ li‘z
ar
M g *
G = {4y oz el g olEm
bu;at 32; lpjﬁl 01931 JOL 3:!_ la‘

When our interest 1s in the energy of the system we introduce

reduced hamiltonian ‘K , as in Section III.

of E
We obtain in the usual way an eigenvalue equation

q ¢
Iz

t=0 a=

L
1 Kbu,at Yat = EXbu

stationary, subject to the normalization constraint of Eqn

37

G can be written

{70)

#

{713

the

We seek to make the value

ey
{26%.

(73)

The dimension of the matrix X which must be considered is the sum of
Sl

the degeneracies of the eigenvalues which have been included

q
dimension (K) = X . -
A =0

(74)

gl

[0 %
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The lowest eigenvalue in Equn. (73) is our approximation to the grou-d
state energy of the system., Its associated, normalized eigenvector can
be substituted into Egn. (69) to determine an approximation to the
2-matrix for the system in its ground state, and from this, vther properties
can be determinad. In the same way, higher esigenvalues and their nssociated
elgenvectors can be used to approximate properties of exclted states of
the system. We would expect the approximatlon to get progressively Qarse i
88 we go higher, and it is obvious that to obtain a full description we
would have to work with a matrix of infinite dimension.

For the ground state, where our approximation should be the best,
we can calculate | from Eqn. {27) and bound {ﬁ - ué{ by using BEqn. {80%.
Since E is an upper bound to the true ground state ensrgy, this sstablishes
a maximum on the extent to which our estimate may fall below the true
value. OFf course if the {¢i} are poorly chosen ot we have too few

linear variational parameters our value may be far above the true valus.

This is common to all variational calculations, howevar.

V. DISCUSSION OF RESULIS

We have proposed here a method whereby, given some set of spin
geminals, we can find the 2-matrices expressible in terms of them which
are as nearly N-representable as possible. We introduce a family of
wave functions, not necessarily aptisymmetric, which lead to Z-matrices
involving only the given set of spin geminals. The norm of the antisymmeiric

component of such a normalized wave function is taken as a measure of the

N-representability of the corresponding density matrix. The wave functions
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are then varied to maximize this quantity, and thus to obtain the wost
nearly N-representable density matrix. The wave function itself need
not appear explicitly at any stage, however. The measure of N-repre-
sentability and the density matrix are determined from the eipgtonvalues
and eilgenvectors of & matrix V§: We have given explicit expressions
for the elements of this matrix.

If the largest eigenvalue of ‘é; is degenerate, then variational
parameters occur in the density matyix. If there is no degeneracy, or

~

if more parameters are desired, other large elgenvalues of £ may be
included. Variational £reedom is then gained at the cupense of N-repre-
sentability. Of course ths spin'geminals themselves can be varied, but
each change in the spin geminals requires a re~evaluaticn of UW-represent-
ability. We have also investigatéd the N-vepresentability of & density
matrix for which both spin geminals and expansion coefficients are given.
The proﬁlem here is more difficult and although a new restatement cf the
exact N-representability problem results, it is doubtful that practical
utility will be found in this case. The treatment for a given demsity
matrix is thus of interest primarily in relating the present treatment
to other attacks on the N-~representability problem. This iz not a severe
limitation, however, since we are less interested in testing a given
density matrix than in obtaining density matrices with embedded variatiomal
parametars, such that exact or approximate N-representability is main-
talned as the parameters are adjusted to minimize the energy of the system.

Because the energy calculated from a non-~N-representable density

matrix is not an upper bound to the true ground state energy of the system,
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it is necessary to estimate the comsequences for such a calculation
of having only approximate N-representability. We have obtained a

-~

bound on the difference between E, an energy determined from the density -

P
matrix, and E, determined from an antisymmetric wave function. Since

-\

E is an upper bound to the true energy, this establishes a limit on
how far E could possibly be below the true energy. The difference
between these two energies can be reduced in a systematic way by expanding
tﬁg basis set, and becomes zero as exact N-representability is approachad.
The principal difficulty with our approach lies in the large size .
of the matrix é& It can be comparable in size to the full €I matrix
for the problem of interest, for a basils set of a given size. We have
thus considered the possibllity of truncating the set of spin orbitals
and the set of N-2 particle determinants which are used in estimating
N-representability and in determining the optimum density matrix. Such
trppcations are possible and the calculation can be carried through,

although the optimuﬁ results potentially available for the given spin

getinal set will then not be obtained.

We have neglected the consequences of symmetry, other than permutational,

+

in the density matrix or in the wave function., It is well known that
symmetry restrictions on the wave function lead to certain limitations on

N-representable density matrices,z’Béwas

These restrictions should
probably be imposed if we"waﬁt satisfactory descriptions of the physical
system of interest. We have not included them in the present discussion

because of the additional complications they would add to an already

difficult problem. The consequences of symmetry should be further ilavestigated.
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It is clear that the method propesed here cannot be properly
avaluated until an attempt has been made to actually apply it to a
calculation. We heve considered some model problems in an attempt
to investigate and 1llustrate the features of the method, but we find
that 1f the model is simple enough to be easily treated 1c does not
fully reproduce the interesting parts of the problem. We are continuing
{0 investigate more extensive models, acnd hope also to apply the method
to an actual problem, probably the lithium atom. When this has been
done we will be better able to assess the practical urility of the method.
Even 1f it should prove £o be comparable in difficulty to a conventional
€I caleculation, however, we feel that the concept of approximate
N~representability 1s a useful one, and that this investigation has in-~

creased our understanding of the properties of reduced density matrices.
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APPENDIX 1. Spin orbital expansion of the spin geminals.

The spin geminals with which we work are orthonormal and antisymmetvic,
Each such two particle function can be expanded in terms of an orthonormal

sat of spin orbitals as

r
i
$,(1,2) = z £3 (1)5 (2~ E l)».(’)} .
i+ K<h k21f“ 2
=1
There are wall known advantages to taking the g, to he eigenfunctions

of the Il-matrix associated with ¢ . They are the nawural spin cibitals
. N

of ¢i and the pseudo natural spin orbitals of the full problem. The
number of spin orbitals required, Ty is the l-rank of @i and may
be infinite.

To choose a spin orbital basis for the whole problem we first form
the space which is the union of the spaces spanned by the spin orbitals.
agsocinted with the various spin geminals. We then find some orthonormal
basils for this space., It might be convenient to start with thel 5; }

associated with 9., which we take to be the spin geminal we expect to

1°
be most imporﬁant in the final density matrix. Any of the {E }
assoclated with the next spin geminal which cannot be expanded in terms
of the {E& } are then orthogonalized to all the {Ei } and added to the
set. Any independent '{Eg } are then orthogonalized and added to the
set, and this process continued until the set is sufficient to expand

all the { a; } . This final set will be labeled by {a ,i=1...8}

Clearly
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and we expect that R will be much less than the sum unless stronzis
orthogonal spin geminals are used, in which case the equality holds.
The expansion of Eqn. (13) is clearly possible because of the way i,

which tha {ai }  have been chosen.



APPENDIX 2. The relationship between ] and T .

».l -~
We want to show that the operators ( Y and T , defined by

Eqns. (9) and (18), respectively, have the same matrix elements In the

| ; 1 . ¢ N -1 5 . Pk ot

; ‘ui)i X4/ basis. The common constant factor { - and the initial waom,
‘ Z

|

; 1, are clearly the same for both operators. The second terms in s

are of the form P + P.. and have matrix elements

13 23
i
* % N
quk(l,z)xk(s... LMY [Py R 10, (2D (30e 30 DT L ndTy
% &
= fcbk(lgz})(k(j...3...N)?13¢i(1§2)xi{j. L WETS ... AT

* . L P
+-f 9 (B (d e e o300 P, 0. (1) (- -3 0Ty L udTy

=2 b L (L2)X kcs CIP L0, (1)) (3. 3. M, dT,

The first transformation is obtained by relabeling the dummy variebles

of integration, and the second follows from the antisymmetry of

¢k’¢i’xk and Xy - There are N-2 terms in the sum for 3 < j < N, so

~ -1
i the second terms of {N\) ‘j and T are equivalent.
2

The third terms in °J are of the fom P sz, j <k, and have

13

matrix elements

E3 E3
f¢£(l,2)xg(3...j,k..‘l\1) 9, (120X, (3. -3 ke .y dry . odTy

13 2:"

5

% * . ; -
= f(bl(%Z)X,Q’(J,k,..S,ih..V)P13P24¢i(l})xi(3,lc...3,4...N)dfl...dLN

:
:
i
HH
B
5
u
(&
b
¥
4
i
i
i
18
i
.

= f%(z,z)xk(s bevdyKe s NP P 0, (1,2)X, (3,40 .05 ke M) dT) ATy

N
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Use has again been made of relabeling

3o

“

and Xg* There are ( } terms in

)
o

between 3 and N. The final terms in

equivalent.

45

and of the antisymmetry of Ky

this sum, corresponding to

g

J

<k

the two operators are thus algo

.
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CHAPTER TWO

DIRECT CALCULATION OF SECOND-ORDER

DENSITY MATRICES USING GREEN'S FUNCTIONS
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I. Introduction

In this chapter we show how one can obtain directly the second-
order density matrix for a system of pairwise interacting fermions.

We employ the Green's function method, which has recentlyl been used
to calculate the first—order density matrix of the helium atom. The
important advantage of this technique is that it permits the direct
calculation of reduced quantities; it does not require the calculation
of the N-particle wave function.

In Sec. II we demonstrate the connection between the two-particle
Green's function ,29 and the second-order density matrix I'. The
usual time-dependent perturbation treatment of the wave function and
an introduction to the use of diagrams is presented in Sec. III. 1In
Sec. IV we use Green's function diagrams to derive an exact integral
equation for ,Agf . Approximations to the so-called irreducible
vertex potential are also introduced. We obtain a matrix equation
for the Green's function in Sec. V using a specific approximation to
the irreducible vertex potential. The second-order density matrix is
then obtained from 129 by performing a contour integration. One
contribution to this integral is evaluated analytically, but there
remains a contribution which must be done numerically. Finally we dis-
cuss the application of these methods to the ground state of the

helium atom.

IT. Second-Order Density Matrix and Two-Particle Creen's Function

The two-particle propogator (Green's function) & corresponding

to the state vector |J> is written in the Heisenberg representation
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i

as follows:

* #
(1 23y t-2= 2T TG e B 68 Yo arn
PR S <£_Dl ?)

where w; and wH are fermion2 field creation and annihilation opera-
tors respectivélys T 1is the Wick time ordering operator, and the integers
1, 2, 3, 4, refer to space-spin coordinates. That Jé9 depends only

on the difference t—t' can easily be seen by recalling that we are in
the Heisenberg picture (thus the subsecript H) and that the hamiltonian

is independent of time. The denominator of Eq. (II.l) is included so

that we can obtain a linked-diagram expansion for ,27 . This is dis-
cussed in Sec. IV. The one-particle Green's function in the Heisenberg

representation is defined as follows

-f.
Gz pty= 57 ST %G Wy @,4912)
(21®)

¢(IT .1a)

One—-and two-particle operators can be written in the second-

quantization language as is shown below

+
Fo= S ¥y Foo P di |

and

+ o+,
J;Qf‘" Z S§ Yo ¥ Jop (4 2) Yy Pa)ydi da (II.2a)

where fOP and jop are the usual "first-quantized" one-and two-particle
operators respectively. If the operators defined above are to be in a
particular representation (Heisenberg, SchrBdinger, interaction, etec.),

then we must use field creation and annihilation operators which are



52

expressed in this representation.
The first—and second-order density matrieces belonging to the

state vector |P> can be defined by the following relations:

{¥IFI2)= 5 S Ci-1Y {:OP i X 7)) die di? ,

and

(IT|® = S d G-y J(z-2Y jolv €1,2) [7(//1)/:l’}a/lclllc/Za/Zi(II.2b).

If we use the second-quantized expressions given in Eq. (II.2a) for
the operators and the second—-quantized state vector, the expectation

values in Eq. (II.2b) can be written as

<‘I)IF(?)= S <q)/ ‘10+(1J )Cop (i] SD((II£P> d

= 8§ da0 Fopar <2190y Yoyl @y didvf

and

1312 = % §<2| YWl 4, c2 W)V 123 d1dz

=% §da- I2-2") §,0 2P| Yoy Yot Wa) W01) | @ didad 42’ (11.2¢)

Thus the first-and second-order demsity matrices in the second

quantization language can be identified as

X, = <TI‘P¥&I')LP(HI@> )
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and

(2,200 = £ @Y V) iz Yal o) (I1.2d)

respectively. To include the possibility of wave functions which are

not normalized to unity, and in preparation for the deviation of a

linked-diagram expansion of the density matrices, we can generalize

the expressions in Eq. (II.2d) by dividing the right hand sides by <§4§5.
From the definitions of the one-#nd two-particle Green's functions

given in Egs. (II,la) and (IL.l) respectively, the following relation~

ships between Green's functions and density matrices can easily be

established

‘X(bi7="é Lim G:U/;t—tu

t_’—)t.;.

and

[MG2,052') = -t4»¥u &, 102" t-t) (11.3)
2L+

We have made use of the antisymmetry of T and & 3, and we take
the limit t' approaches t from above (t'>t).

In the following sections, we will obtain an expression not for
,87 (t-t') but rather for its fourier transform & (E) defined by

the following equation:

0

/27(51,3,‘1'1#“-1') = (.zn)aje)(?(%!z(*—zfﬂ /37(1,1,311/1 E) JE (IT.4)

- 0
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With this, the expression for the second-order density matrix given in

Eq. (II.3) becomes

[~

>

r'(a,z,:'z.‘):—- (2r).
’ = 7+ “od

This integral cam be evaluated as a contour integral in the upper half

complex E plane (Fig. (I)).

Figure I. Contour I

A
re
X X X

The upper half plane is chosen so that the integral ovéer the arc vanishes

“T(ImE>, We will see later that ,ff (E) has

due to the factor e
poles both above the real axis to the left of the imaginary axis, and
below the real axis to the right of the imaginary axis, as is shown in
Fig. (I). Because the integral about contour I is difficult to carry
out, we choose instead the contour shown in Fig. (II). Both contour I
and contour II enclose the same poles of .»&f (E) and so they lead
to the same result when substituted into Eq. (II.5). We choose the

i@ 3m

™
,Eigf_‘ )

Coulson contour because the integral over the arc (E = Re 5

can be done analytically and the integral
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Figure II. Coulson Contour7 (Contour II)

aiong the imaginary axis can be handled conveniently by standard
numerical techniques.

Hence we have reduced the problem;of caleulating the second-order
density matrix [ to that of finding an expression for _<& (E) and

then evaluating the contour integral:

3T/2

-

[} - 4: e
P(:,xlt’,z) == (21) Lim { Siﬂ(:,z,:',z’l Re @)Rel'x.de
v

R =0

R
+ g Az, i3 1Ly) £ cl\/}
-R (I1.6)

The evaluation of these two integrals is treated in See. V.
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III. Time-dependent Perturbation Expansion of [Wi>‘and Diagrams

We assume that the hamiltonian of our system can be written as

o ~ o 4]
H#H = H + e

(I11.1a)

where H® is a sum of one~particle hamiltonians (perhaps Hartree-Fock

or hydrogenic), and V is a two~particle time-independent perturbation:

N
Vo =2 V,5) (III.1b)

We also assume that we know the eigenfunctions of h , and thus of u°.

In Eq. (III.la) o i1s a pésitive real constant which we will eventually

allow to approach zero.

The time-dependent Schrddinger equation is written as follows:

LH 2 = ) | ¢
t5?1T> Ho (@)

(111.2)

However, the problem is not yet completely specified. We must also

stipulate the state vector ]W > at some particular time. Therefore

we decide that at t = - «, ]%’> is given by some eigenfunction of u° s

[P (tn -0)y = | $) (I1I.3)
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where

Ho1®)= E° &) (xr.0

The function |9 > will usually be some Slater determinant composed of
spin-orbitals which are eigenfunctions of h.

To write the Schr&dinger equation in a more useful form, we trans-
form to the interaction representation. This is done by defining new

state vectors and operators as follows:

l@%‘: QXF(J“:‘T}#) I@> y (111.5a)

~ XAl L e iHe
\é(:l—) = e exXp (’LJ{\-‘“‘#)\/Q)(P(‘*:E‘L) J (I11.5b)

H::Ul‘) = QXP(%‘t) H" exp ("‘“L%H“t) = (III.5c)

The Schr&dinger equation and its boundary condition in this representa-

tion become:

I D

LhH 2 (8 = N th 12

(I1I.6)

! @(t—é—ﬂo)}r = [$)y
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This differential equation and boundary condition are equivalent

to the following integral equation
p o
19w} = |$)- = Sdt‘ Vg Gh) | S?(JHJ>I ) (ITI.7)
~c0

which can be iterated to yield the usual perturbation expression for

e(e) >

*
JP) = 18 ~ £ & Vecn) [ B) + -

.
o \H »
+ (t'ﬁ‘) (n!) :LM‘“"SM“” T\/I (A} eee \/I(fn) [ $)

+ oo (I1I.8)

The Wick time ordering operator T arises by recognizing the identity

* 7y *M—u
“S;:bt.l g“z ’“J\ er\ \/I ()h) wee \/I (Jf“n) -
i * '; j-
(m!) S;&‘:gmuz —":L‘{’%AT V) oo e () (I11.9)

For convenience we write Eq. (IIT.8) in the form

[Py = Ug (4-=313)

Cil (wnl
= (l + UL Gh-s0) +o0 + UI“@)-”H.M) (§> , (II1.10)
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where we have made the identification of terms in Eq. (III.8) in-

(m) .

volving m—VI's with Ug

Because we are interested in obtaining

an eigenfunction of 1 + V, we integrate from ~« to 0 (at t = O,IH = 1° + )

and take the adiabatic limit (o + 0) of the terms in Eq. (II1.8).
It may seem that the introduection of the time ordering operator

T accomplished nothing, but as can be seen by reading any book on many-

body theory, its presence is essential to the use of Wick's theorem

and the techniques of Feynman diagrams.4’5
To illustrate the use of diagrams in expressing the terms given

in Eq. (III.8) we consider the first order contribution UI(l)(O,~ w)l®>.

This can be written in second-quantization notation as

i &z.j:(,h SSJ, dz Te~dl\)y(/,z)
—c0

T + -
Yocnt) b)) Yeae) Yt [P (TT1.11)

Each field operator is written in the particle-hole picture8 as

F
Y ox, k)

It

¥ +
Yioon + Pt

Y (x4 = % a1+ P X, A1,

and each of these particle-hole operators is represented by a directed

line segment as in Fig. (III).



Figure ITI  Particle and Hole Diagrams
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particle creation
hole annihilation
hole creation

particle annihilation

In these diagrams, time increases in the positive vertical direction,

and a dot represents a space-spin-time point =x,t. Recalling that in

the particle-hole picturée the unperturbed vector I®> becomes the

vacuum state represented by |O > ,we find by using Wick's theorem that

the contributions to Eq. (ITI.1l) can be written diagramatically'as in

Fig. (IV).

Figure IV  Contributions to UT(l)(o,;cn)}Q N

ik 2, &
Lk 2,t Lt 2,k
L% 2,t Lt 2,t
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The wavy line represents V(1,2), and integration over the space-spin-
time variables is implied. The construction and use of such diagrams

is discussed in a number of texts,4 and so we will not pursue it further
here. In the next section we use somewhat different diagrams (Green's
function diagrams)4 to derive an integral equation for the exact two-

particle Green's function.

1v, Evéluation of Two-Particle Green's Function

The expression given in Eq. (IIL.l) for the exaect two-particle
Green's function ,29 can be rewritten in a form more amenable to
calculation by using the following relations between the Heisenberg and

interaction pilctures:

fg:j>H = ! %({:':o)%:: UI CO}_ao) 1§> ) (1Iv.la)

and

LPH (1,£)= Usr Co,t) ‘1’} (,¢) Uz (£,0) ) (IV.1b)

+ +
LVH ()= Uz (o,¢) Vrae) Ur (£,0)0 (IV.1c)
These relations lead to the following expression for L

& ,2,3416-t)= £ 2{E[T Uiet) PO Plat) Utt]

.I. - -
@ Z%,w Y e Ut-) B[ (P Ueo,-0)| B)]

5 (IV.2)
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where the subscript (I) has been dropped for convenience.
The denominator in Eq. (IV.2) can be expressed as the sum of all

time-integrated vacuum diagrams,9 some of which are shown in Fig. (V).

Figure V  Vacuum Diagrams

O
[ Gonentd + + B

S SO

The numerator must be expressed in terms of the so called

e

Green's function diagrams. These diagrams are obtained by expanding

as in Eq. (III.10) each of the three U's appearing in the numerator
and then using techniques similar to those used in writing the diagrams
in Fig. (IV). Some of the Green's function diagrams are shown in

Fig. (VI).

Figure VI Green's Function Diagrams

£ ! 2 ¢

{ pa
i\ f\-/:’ a) t' b)
v d 3
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4 3
A directed line segment leading from x,t to x',t' represents the

unperturbed one-particle Green's function Go(x‘,x,t‘—t), In thesg
diagrams all time orderings of T with respect to t and t'

are implied. Then disconnected diagrams such as in ¢) and d) can
be factored into their constituent parts, and, for example, diagrams

a) and ¢) can be combined to give

(1 o+ M)(i ;:)

If higher order diagrams were included in Fig. (VI), we would find

that much more factorization of diagrams would ocecur and that the above
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result would generalize to

éy*“”““(ﬁ A > &
(MM‘* @+ BrecangS + +)(§ ZZL’
v 3
Notice that the first factor is exactly what we wrote in Fig. (V) for
the denominator. This type of factorization occurs for all disconnected
diagrams, and thus we can omit such diagrams from the list of Green's
function diagrams since they only serve to cancel the denominator. This
is the linked-cluster result for Green's functions.
Diagrams a) and b) represent contributions to the unperturbed

. 8] . .
two-particle Green's function .Agf . Each directed line segment

. « [o]
represents an unperturbed one-particle Green's function G

1A
f = G (/,4/,75—&))

4t

and so diagrams a) and b) yield

L (h2,3,914-4 = G C,y t-27) G (2,3, ¢-¢")
(17.3)
- G (3, t-¢Y G°(2, 4, 4-¢") .

Diagrams such as e) and f) only serve to convert the unperturbed
one-particle Green's function & ® into the exact one-particle

Creen's function (5 . Therefore we can omit diagrams in which the



65

section containing the wavy line(s) is connected to only one of the
directed line segments if we now interpret directed line segments to
represent not G ° but the exact & .

With these considerations we can write the essential diagrams

which contribute to /& . Some of these are given in Fig. (VII).

Figure VII  Essential Contributions to .,8

o R

[
n AN
b AAAASANAD /8
N N
QM\MMMﬁ
N
™~ N
] 3 &

To understand how these diagrams lead to an integral equation for/iy

we have written their sum in a slightly different form in Fig. (VIII).

Figure VIII
P N 5

-+ + g
J
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where

5 6 5 A 7 6
I S ane SR
g 7 ¥ 7 pe e

The box represents a generalized potential which is non-local in space
and time. We recognize that the sum of the diagrams which are attached
to the bottom of the box is identical to the sum of the Green's function
diagrams given in Fig. (VII). Therefore we can immediately write an
equatioﬁ which _/é9 must satisfy. From Fig. (VIII) we see that ,gf?

must be a solution of the following integral equation:

2,391 4-4")= G (,9,t-t) G (2,3,4-¢

-G(3,t-t) G (2,9 t-¢") +fe e, b-t) G (2,5,t-F)

C n ~— "“'/1 - f
V56,78 t-£).(75,3,9/72)dsdedrdediad’ | .

where V , which is represented by the box in Fig. (VIII), is commonly
referred to as the irreducible vertex potential. We can think of V as
a non-local potential describing the interaction between two particles
moving in the "sea" of the remaining particles.

The irreducible vertex potential can be evaluated to any desired

order by simply writing all essential Green's function diagrams of that



order and then identifying the contributions to V as that which

multiples the factor

G 16, t-T) G(z,5¢-E) L Ger9E52) G (9,3,£L¢")

~ G(1,33E-¢) G(5,9 £t ] .
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To prove this statement we expand ﬂng and V in perturbation series

and then write the various ovders of Eq. (IV.4) in symbolic notation:

(z)

/&j:/@o+ /b’(“—/-/j .

e (1] - (2]

V=V + V 4

Y= [6e-6 &)

/27“’=j 66V [c6-6aG)

(1v.5a)

(IV.5b)

(IV.5¢)

(1IV.5d)

/@a; j 66 \70:8 Cl)‘}'\yG’G‘ \-/(z)LGG‘GG] (IV.5e)
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with

7 — ) — (i) S -
Seev ey =§6cV {66V Ice-66], s

etc.
Thus we see that we can identify 'V(l) as that factor which multiplies

+(2)

GG[GG-GG] in the firvst-order diagrams; likewise V is the factor

multiplying GG[GG-GG] in the secound-order diagrams. This result can
obviously be generalized to higher orders. As an example, let us con~

sider the first-order contribution to V:

ct)

A (12,3984 “—“f@ (,6,t-¢) G (2,5, ¢-€)

e (1) — oy -7 ) -

V (5,6,7,8 £-£) [Gﬁ,‘;’,fzt) G(8,3,£5¢')

~ G (73,5¢') G(3,9,i¢9] d5ded7ds JELT’ (1v.6)
The first-order diagrams which contribute can be written as follows:

/ 2. i 2

£ oy

(1)
STE =023 40164

t
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The sum of these two diagrams is equal to

L SG(r,é,tva) G (=,5,¢-t) NV (5,6) [G (6,4, ¢~

G (53 5-t')~ Glo,3,i-t") G (597-t)]ds5de /T
(0

Therefore, we can identify v as

=, (1) - o = g
(5,6,1,8,¢-t )L (€-T ) (58)S(6-7)V (5,¢) (.1

Higher order terms can be calculated in a similar fashion.

In the next section we will develop Eq. (IV.4) in more detail,
using only the first-order irreducible vertex potential given by
Eq. (IV.7). This approximation will be referred to as the extendéd

random-phase approximation (ERPA).

V. ERPA in a Basis

Substituting the first-order approximation for the irrveducible
vertex potential into the exact Eq. (IV.4), we arrive at the following

approximate equation
L 2,3, 94-¢) = Gl t-¢") G(=,3,¢-¢0~ G (1,3,t-t")

G Q4 t-t) + 4 SG(:,&,%—E)G(z,s; -2, V(56)

A e,5,39/E-27) /546 JZ . v.1)
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We now assume that the fourier transform of the exact one-~

. s . 6
particle Green's function is known and is given in the form:

F .
- &
G(/,«,E):%; Ju (E-EL) B,(1) P, (4

4

P
! %
+ Z 9s (E~ES) Pcr) Q%(sf) , (v.2)
+1

5=F+

+ - .
where the E&, and ES ara complex numbers with

+ -
Ex = Eg +4 & (V.3a)

and the g; are positive real constants. The number Pl and the
Greek and Roman subscripts are used in the summations to distinguish
between those poles which lie above the real axis (EZ) and those
which lie below (E;)a The (not necessarily linearly independent)
functions ¢i are assumed to be expanded in some chosen basis set of

spin-orbitals { Xa } as

™M
?ég () = Z Csa XQO) (V.4)

=1 )
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and the Cia are assumed to be known.
The time-dependent one-particle Green's function ¢an be obtained

by fourier transform from Eq. (V.2). This gives the following result:

G (1,9 t-t)= Olt-2') G, (L4t-t') + O E) G lyy,e-t”) , (V.5)

where we have defined

R
- + #
G (4t =227' 2 Ju exp(-<EL (e-t')) b ) ) (v.6a)
A=
t -1 P - f
G—+ (a)q)t—t')z,i sf::;'gs exp (-,Z E< (t-t’,;) 955(/) 5255 (%) ) (V.6b)
=P, .

and ©O(t) dis the unit step function.

With this, we can rewrite Eq. (V.1) as follows:
2,3 9/¢-¢") = Of~t" [G+ (Lo, t-2") Gp(2,3, £-t") —
Gy (13, ¢-t') Gy (%4, t«t’)] + e(t’-t)}_:é{, (1,4 t~t")G (2,3,¢-¢") —
G. (4,3,£-t') G (2,49 £-2')] +L5 { O(t-t) Gplit ¢, t-£)
G, (2,5, t-t) + 6UtZt) G (1,6,t-t) G (2,5, z:vif)j

N (5,00 AT (6,5,3,41t-¢") dt /56 v.7)
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We can then fourier transform this equation to yield the more useful

result given below:

1,2, 91E) = (I-Ps) G (1,2,3,4915) +4 JFG (1,2,5,61E)

\/(5;6)‘/{%/(6,5;‘3/7’/5) S5 dé (V.8)

where we have defined G(1,2,3,4iE) as the fourier transform of
G(l,4,t-t'y G(2,3,t-t"'). The operator PB& permutes the spacs-spin
varigbles 3 and 4. Let us now examine the permutation symmetry of
factors in Eq. (V.8), remembering that ‘,Zj (192,3,4}5) is anti-
symmetric in variables (1,2) and (3,4).

First we consider the integral term:

szG (1,2,561EY LV (56) (¢,53,4/16) d5d6 =
S@Cl,l,Sjé.'E) AV(56) 4 (6,53 41) dsd¢ =
S G (1,2,6,51E) L NV (5,6) . (6,5,9,4/E) d5/¢ =
§ G (1,2,5,61EY L N (4,5) AT (56,3,%/E) d5d¢ =

-Se (1,2,5,618) L V(5¢) LI(e,5,3,4/E) 4 56 (v.9)



73

We have used the fact that G(1,2,3,4(E) dis the fourier transform or
the product G(1,4,t) G(2,3,t), and we recognized that the variables
(5,6) are dummy. Hence the integral term is antisymmetric in variables
(1,2) and (3,4). Therefore the first term in Eq. (V.8) must also be
antisymmetric in (1,2) and (3,4).

Thus we can expand Eq. (V.8) in the following basis of antisym-

metric functions:

/-y .
[abl(na)= 2 (Kot Xpz) = K 2) Xy () (V.10)

This results in the matrix equation given below:

M

/aab‘c& (E) = Gab/c& (E) “2; Ga,.;,,e{—‘ (E)vef,ghzggh,c& (gy (V.11)
9<h
=1

We have made the following identifications:

M
- # .
127(,)1,3,«4//5)—.-4‘;,.; Yot ca (B) [ablo,n[eal (s4)  (V-122)
[
< <L

=/

P

< - # #*
Gobea (B) = Et:'f’gs G (E-E5-Ex) CsaCab C 4 Cyy
s, E=[,+i

P,
-1 . ¥ ¥
- ;{%!34 gP (E"Ec(“ Ep) Qa(a. C_/gb C/BCL Cdej (v.12h)
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and

#
Ve{;j% b :S Ve Ag2) Ve, 2) [Xg Xy (2) ~ %’g (2) X4, (,)JQ[, 42 (y.120)

Thus given any basis ‘{ Xa’ a=1...M l and the exact one-particle
J
Green's function as in Eq. (V.2), we can calculate the matrix elements
v . . R d ai
Gab,cd(E) (for any E) and er,gh Eq. (V.11) is then a simple
matrix equation which determines ’4£/ab,cd(E>' We write this equation
in matrix form as

L) = Gy — GE) V. Y E) (v.13)

Re

from which it follows that
-t -1
ey LG e + V] (V.14)

This is the final expression for fgéf (E).
Let us now return to the problem of evaluating the second-order
density matrix as discussed in See. II. Being careful to notice the

1/i in Eq. (V.12a), we write the previous expression (Eq. (II1.6))
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for ' in matrix notation as follows:

EL/Y
"= - (p?“/r/«i)w/&}ma‘{ fé‘j (Re'(:é,;} He*ji:a’@
- Ree g
R
+ g;{z‘(/éw idy (v.15)
-R

with the matrix g& defined by

M
@ *
["(1,2,1)2°) ‘22:; Jub,ea Labln [cd] ¢)2) (V.16)
AL
¢ L

=
The evaluation of the arc integral can be done analytically by

noticing (see Eq. (V.12b)) that for large R

G

P
- LeyT! ¥ ok
wca (REE)= (RED] 2 4294 Caa Cas Cie Ly

It
\ ¥ ¥
" 25 949 G Cpcpe Clu

— Loy
= (Re Bab)co{ (v.17)
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This defines the matrix B. Therefore the arc integral reduces Lo

30/z
,,,]' ] Jie o § ) oo f J;@
== (477"»5)/{,{%3( ff{a B+ v] Re ido
T Roon . e o
32
-1 ! .
= - (271) 5 ;{‘? de
ﬂ"/a :
= - ‘h B (V.18)

This result is exact, and is easily evaluated if the exact one-particle
Green's function is known.

To calculate the integral along the imaginary axis we resort
to the use of numerical integration techniques. However we first
write the integral in a form which is most amenable to computer treat-
ment. We notice that each term in Gab,cd(iy) contains factors of

the form
-t 2 2 =t
(LY-Es-Ez) == (Y*+ (E, +E4) ) (Es FE4 +LY) (V.19)

Therefore we can write égiy) as

ci) (z)
Guyy = G (y)+x G ()
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where
) P f ¥ ¥
Gabyea (V) = ;;Fﬁs?x (Est8) (Y +(E +E4Y) CsaCib Cre Cyy
! A=
: - L F
+ %43(} (Eo("‘E[})(“/Z-I" (Ea'&"EF)z) Cuo C/sé C-/BC.C;(J ,
“e=! (V.20a)
and

2)

P
2y=!
Gab)cd y) = -;S‘j . 85 94+ y (y2,+ (Es *E/:)) Csa Ctb Cj;-C Cﬁo(
) *=F+

g _
+ ;‘ 34313)’ ( \/z‘f" (Eo(‘f‘E{;)z) Co{n Cpb C;c Cf{o(

{(V.20b)
—l 1 /& 2 ] o o
We also decompose E (iy) and (iy) into real and imaginary
components as
= |
Gyy= T +i U (y) (v.21a)
e dasar s J

and

) )

Yuyy= G+ . (v.210)
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To determine T(y) and U(y) we write the real and imaginary parts

of the identity

() (=)

(Q(y)+j, gcy))(ICyHL Uy) = 1

This results in the following matrix equations:

w §

ol
1) {2) (1) (2)
T ) = LQ‘ <yl + G (y) Guy) G (y)

Ataan

and

)y ! 2)

Un==G6 G T
Then knowing E(y), H(y), and 0\‘/: we can write Eq. (V.1l4) as

C1)

(2)
LTen+y +2 vl yv)+i L en] = 1

(v.22)

(V.23a)

(V.23b)

which yields the following equations for 4:‘(‘9(1) (y) and .;?(2) (y):

[4)]

- -1
Yoy = []:(VJ V+ U (T+Y) Uyl

() ()

-/
()= = (Tw+ V) U

(V.248)

(V.24b)
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Because agfl)(y) is an even function of y (see Eq. (V.20a)}
and JECZ)Cy) is an odd function of v, it can easily be seen that
.Aéjcl)(y) is even in y and ,67(2)(y) is odd in y. Therefore
/27(2)(y) will not contribute to the integral along the imaginary
axis because we integrate from ~-R to R. As a result of the above

analysis we can now write the imaginary axis integral as follows:

R
bt} - =)
f;x,,jznwﬁf@f[zfyny U (Ty+Y) U] dy (V. 25)

where we have used the fact that zéz(l)(y) is an even function of vy.
This integral is evaluated numerically.
To review our formal discussion of the calculation of density
. matrices using Green's function techniques, we now outline the method
for determining the second-order demsity matrix T.
We assume that we are given the one-particle Green's
function as in Eq. (V.2) as well as a set of basis
functions {3 xa,aml,2,...M } . The procedure then is
as follows:
1) Form the matrix B defined in Eq. (V.17). The contribution

to ' from the arc integral is immediately written as:

1
ul:arc =-7k2-

2) Calculate the matrix JL defined in Eq. (V.1l2¢).
3) Set y equal to zero.

4) Use Eq. (V.20a) and Eq. (V.20b) to evaluate ‘ﬁﬁl>(y) and
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£§2>(y) for the current value of vy.

5) Use Eqs. (V.23) and (V.24) to obtain & P (y).

6) Increase y by some small increment, and return to
step 4) after adding the contribution to [ from this

iteration.

The results of such a caleculation are presented in the next
section. Hopefully this method will prove to be very useful for
calculating second-order density matrices of reasonable accuracy for
atomic systems. Certainly it represents a new and interesting method

which should be investigated a great deal more in the future.

VI Results and Discussion

We have applied the Green's function method described above
to the ground state ('S) of the helium atom. The basis10 of five
S-type Slater orbitals (normalized) which were used in the present

calculation are described in Table I.

Table 1. Slater Basis

n exponent
1 1.4191
1 2.5722
2 4.2625
3 3.9979

3 5.4863
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It was found to be sufficient to take the upper limit (Rmax.) of the
numerical integration equal to 1000 atomic units. The total calculation
took five minutes on a Univac 1108 computer.

Because helium is a two-electron system we can extract the wave
function from our calculation of the second-order density matrix. The
radial part of the singlet wave function can be expanded in the following

set of symmetrized functions:
§“ = 7Zj (1 M (2)

Fij = @™ [ %)+ () Mz )] , A4y
where the 171 are the five Hartree-Fock orbitals constructed from
the above Slater orbitals. In Table II the expansion coefficients for
the wave function obtained from the Green's function technique are
compared to those for a complete C.I. wave function within the same

basis.
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Table II. Expansion Coefficients for the Wave Function

i 3 c.I. Green's Function
1 1 .99969 .99968
1 2 -.02327 ~.02330
1 3 .00697 .00699
1 4 -.00318 ~.00323
1 5 .00245 .00250
2 2 .00303 .00313
2 3 ~.00151 ~.00155
2 4 .00078 .00084
2 5 .00066 .00071
3 3 .00050 .00060
3 4 ~.00039 ~.00042
3 5 -.00040 ~.00044
4 4 ~.00009 ~.00014
4 5 .00024 .00026
5 5 -.00020 ~.00028

The wave function obtained from the Green's function calculation
seems to be in excellent agreement with the C.I. wave function. It
is not surprising then that the energies reported in Table III are

in such close agreement for the two calculations.



83

Table III. Predicted Energy

Method Energy
Hartree-Fock -2.8617 a.u.
Cc.I. -2.8790 a.u.
Green's Function ~2.8780 a.u.

It is important to note that we must compare our results to the
complete C.I. calculation within the original basis rather than to
the results of more extensive computations.

Although the results of this caleulation are encouraging they do
not constitute a proof that the Green's function method will be a
useful tool for larger systems. In order to intelligently evaluate
the method, we must have numerical results from many more computations.
Hopefully these calculations will be performed in the near future.

In review then we see that in this chapter we have described
in considerable detail the application of Green's function techniques
to the calculation of the second-order density matrix for an interacting
N-fermion system. We derived am integral equation for the two-particle
Green's function ,45/ which was reduced, after making the extended
random-phase approximation, to a matrix equation. We then obtained
an expression for the density matrix I involving a contour integral
of A&f . The evaluation of this integral was discussed.

We have also presented the results of applying this method to the
ground state of the helium atom. Although such caleulations have never
before been carried out, we believe that these techniques will prove

to be very useful in atomic and molecular problems. The most appealing
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aspect of Green's functions is that they provide a means of directly
calculating reduced quantities without ever having to obtain an
N-particle wave function. Certainly this reason alone is sufficient

to justify further research.
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1. Ihtroduction
It is well~known that the second-order reduced density matrix is
sufficient to determine all observable properties for systems composeﬁ-
of pairwise interacting particles. In addition the second-order demsity
matrix is a function of only twelve continuous variables, whereas the
system wave functionlvdependa ott 3N continuous variables. These
" observations, together with the knowledge that accurate wave functions
become much more difficult to obtain as the number of particles inareasgd;f
lead us to investigate possible methods %or directly determining re&uce& :
density matrices.
One cannot merely use trial second-order density matrices in a
variational calculation of the energy; there-is no variational principle
for arbitrary density matriées, One must restrict the class of trial

density matrices to those which can be expressed as

F(’Iz)‘ ’/)23 = (g/-)f y)‘(l)zi - ) %a;/’ Z’_'"./V') /25 d?l/l/) ‘,,i1~1) :

where the normalized N~particle wave fun%tion 9L/(192@..N) is anti-
symmetric in ali of the gpate~spin variaéles represented by the integefév
. 1,2,..8. Such dehsity matrices are said to be N-representable. The
problem of determininé neceséary and sufficient conditions to guarantee
that a proposed second-order density matrix /~7 can be cobtained from

an antisymmetric wave function as.in Eqm; {(I.1) is known as the pure
state N-representability problem. The e%act solution of this problem

2,3,4

has not Beenbfound, but some progress has been made toward obtaining.

nearly N-representable density matrices which ecan be used in variational-

i
1
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‘calculations. Very few numerical applications4 of these methods have
been carried out.
Another more promising method which has been successfully applied

356 and molecular7 problems is the Green's function technique.

to atomic
This is a potentially exact scheme in which the first-order (second-

ordgr) density matrix is obtained as a contour integral involving the

Fourier transform of the one-particle (two-particle) Green's function.

The evaluation of the contour integral is done numerically on an auto-
matic.computer, which is a distinct disadvantage of the method.

In this chapter we present a new method for approximating, in a self-
consistent fashion, the first— and_ second-order reduced density matrices
for systems of N pairwise-interacting fermions. Unlike the Green's
function technique, this method requires no time-consuming numerical
integration.

Within this scheme, one can bound the errors in expectation wvalues obtained
by using the resultant density matrice$S which might not be N-representable.
This test involves formally generating a special wave function whose
reduced density matrices are then compared to the density matrices
obtained using the proposed procedure.

Before developing the formalism of our method, we briefly review in
Sec. II the generalized random—phase approximation (GRPA) as presented
by Rowes. In Sec. III we discuss the occupation number representation
of density matrices and their spin components. In Sec. IV the GRPA
is used to evaluate certain contributions to the second-order density
matrix. Sec. V contains closed expressions for the spin components
of the first-order density matrix. In Sec. VI we discuss a scheme which

allows the self-consistent determination of the first~ and second-order
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density matrices. Sec. VII contains the results of applying the method
to the helim;lithium,and beryllium atoms. We discuss possible error
bounds involving the resultant density matrices in Sec. VIII. Sec. IX

contains our concluding remarks.

II. The Generalized Random-Phase Approximation

The equations-of-motion method was originally developed by nuclear
physicists8 as a technique for directly determining excitation energies
and ground state9 transition strengths for nuclei. It is expected that
these relative quantities will not be as sensitive to correlations with-
in the stationary-state wave functions as, for example, the energies of
the individual states. Thus the results of such calculations often imply
a higher order of ground-state correlation than would be expected by
considering the approximations made within the method. The GRPA occurs
as a special case of the equations—of-motion method.

As an approachlo to the equations-of-motion technique, let us
recall the operator equations for a harmonic oscillator of frequency

) , and Hamiltonian H @

[H,0]=w O [H,0)=-wo, (11.1)

Lo @-‘j =1 (II.2)
where we have chosen to use units in which“f = 1. In attempting to
approximately solve Eqns. (II.1l) and (II.2) we will expand the unknown
operators ({ and @- ) and the Hamiltonian in a basis of known operators.
These equations will then allow us to determine the expansion coefficients
and the excitation energies . Before doing this we transform Egns. (IL.1)

and (II.2) into forms which will be more easily used.
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If we define the usual set of eilgenfunctions and eigenvalues by

@,D>:OJ ©+!o>: “)x
O = (i [ty

Evw = (nt ') O, (11.3)

the solution to Equns. (II.1) and (II.2) is given as follows:

'," s ' iz
@: %;o(nﬂ) lm+¢><M)

and therefore
oo y
z
© ::zM (n+) Jn><m+¢/1 (I1.4)
=0 )

It is easily seen that these operators a%e raising and lowering operators

respectively with respect to the Hamiltonian (energy). |
To extend this type of treatment to more general Hamiltonians, we

assume that the spectrum of our‘Hamiiton%an'is harmonic up to the mth

i,
Jdevel, i.e.

EEV\+'-m Ey = W N < ??12

] (LT.5)

where (40 1s a constant. The space spapned by the (m+1l) lowest
eigenfunctions of H is referred to as jthe harmonic region of Hilbe:t
space. If the spectrum of. H  is not aﬁaéll harmonic, then m=0 and ,i
the harmonic region ig the 0na~&imensional space spanned by the ground
state. In any case Eqn. (II.S) serves to define (,AJ

Based on the above discussion, we c}mose to considar the ﬁollowing

R TR e e e e L e g gy
A . | ) 3 . “’.‘,1".’?%5:"'1‘

! ) v . . . [ targe
\ . n 1 . Lot
. b IR !
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proposed form for the excitatlon operatox:

o y —
6ﬁ:~§;§iméﬁgglm%Q{W§ %;Z?C?§Jﬁ>4§/ (11.6)
weo B> /

with arbitwary (Zi?z , For this operator we can write equaticans which
resemble Eqns. (IL.1) snd (TT.2):

e \ ,
[H,07= co@+ P

| n
TH,O 1= ~w O — F;

(11.7)
T V
where
. + \ +
Pin) = Pind = QInd =G Ind =0 ngm,
(11.9)

1t is clear from the above results that Equns. (II.7) and (I1.8) are
identical with Eqas. (II.1) and (I1.2), provided that we restrict the
operators to the harmonie region of Hilbért space. This is important
because we are eventually going to take expectation wvalues of all
equations with rvespact to functions belonging to the harmonic regioﬂ?“
Although the excitation operator given by Bgqn. (11.6) does not axaétiy.
obey Eqn. (II.1), it does satisfy Eqn. (ii.i} within the harmonic space.
To obtain more useful equations we premultiply the first equation
of (II.7) by an arbitrary operator R and the second by R, Then
take the expectation value of the firgt plus the adjoint of the second
with réspect to a wave function | @%} lying within the harmonie spacg;

This gives the following result:

()[R, LK, G114 = co <Pl LR, 0711, _—




92

for arbitrary R . In a similar fashion we obtain an analogous

equation involving ©:

($| [R,LHOTNIP) = —co {PILROIIL,  aruw

for arbitrary R. Also it follows directly from Equs. (II.8) and

(11.9) that

GILO,0 Ty = L. ar.12)

If the harmonic region is one~dimensiona1, I 4’} must be the exact

ground state of the system. In this case Eqn. (II.11) is the Hermitian

conjugate of Eqn. (LI.10), so we need only consider one of them. If
Id%}is only an approximation to the ground state wave function}Eqns.
(11.10) and (II.1l) are not simply Hermii:ian conjugates of one another.
To regain this Hermitian relationship, we generalize Eqn. (II.10) in
the following way:

(I LR, H O IE> = w!<q‘)l LR OIS (11.19)

o,

for arbitrary R. The double commutator symbol [R’, H) (f)*] is defined

by

"y +
2IR Hotl= [RLH O] + LLR,HLO 1. (11.14)
If '4’> is the exact ground state, Eqn. %(11.13) is identical to

!

Eqn. (I1.10).
t
The solutions @ﬁ of Eqn. (II.13) are to be interpreted as

excitation operators which generate excited state wave fuanctions when

| —
;
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operating on the ground state lqb)

(4> = O | ) (1.1

+
The energy wkassociated with Ok then represents the excitation energy
from the ground state | to the excited state /<ﬁ> To derive the
generalized random~phase approximation we restrict the execitation

operator to be of the following form:

+
@ft :g’—; <gme («k)CTm Ce ~ lnmé(//e) Ce Cm)) (11.16)

where the C& and C. are fermion creation and annihilation operators
respectively and the jme (A, z‘me(’é) are coefficients. The index /Mm

is summed over all single-particle functions (spin orbitals) which

are unoccupied in the single~determinant approximation to the exact
ground state functionll, Similarly & is summed over all occupied -spin-
orbitals. Inserting Equ. (II.16) into Eqn. (II.13) and using the fact
that Eqn. (IT.13) must hold for any R within the space of operators
spanned by{c;@, CZCm}, we arrive at a set of equations for the

coefficientsj (&) » f‘m(eﬁ), which can be written in matrix form:
Mme
A B 9 U O 9
+ 3 - K (11.17)
B -A h o U \k

with

1

Ame no= <®l [CeCum, H, Ch Call®,
B'me, ne = <¢/ [CZ T, H, Cg Cm]’¢>)
Ume)v‘\e = {¢] [ct Ch, C;Ce]]4’> .

(I1.18)
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if we agsume that the Hamiltonian cawn be written as

=
JC a?’“EZ N%s@wgCCazC&
"&
the expressions given in Eqn. (II.18) can be evaluated exactly.
Because the results are somewhat lengthy we will not reproduce them

here, but rather we refer the interested readers to page 161 of Rowe's

article.

If we now assume that the Hartree-Fock single-particle demsity is
reasonably close to the true single~particle density, the expressions

3
given by Rowe reduce to

ﬁm ne = Cfmﬂgea (6’,,,,, €o)( }f/ - Um) + Vm@ en
( Ef@ f‘ZﬂQ “”>(h1- E(ns"-l>

-~

Dmene = Vann eo (XéJv }f@w~ X’mm; . f))

Uvms,ne = dmn deeo (Ye - X’m);, (11.19)

where all subscripts refer to the Hartree-Fock spin orbitals. We _

have introduced the exact single-particle density

Y, = LPlCh Cm |4,

Ve = 4?#’162 Ce{‘f’},z (11.20)

- the Hartree~Fock eigenvalues é?g') and the two-particle interaction

including exchange

\limmt,é@ E an-néée - \/m;ﬂ; @& e (11.21)

g 3102 e e e, O o o i s e e e e 2 et i s vy o o g ey
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Equations {TL.17) and (I1.1%} ave vefarvad to as the GRPA

When the spin of the psrticies {cesumed to be spin 1/2) is taken

q e " 5 ot
into consideration, the sei of sweitabion opsrators g @% can ba
separated into singlete and triplets. By defining a bagie of singlet

3
triplet oparatctg“z

I / T +
o 77 3
D@m«% = {8} < Copae Lo T C in Qe‘éﬁ J ,

D = ) A C O - €
meE ‘ . e b o A
gé'ﬁ ’}1 P
mE & e (ﬁ a4,
+ .

? . .

¢ i

2

!

we can write the singlet and triplet excitation operators as follows:

,.f’» .1
Z (3%:& ({%3 ,m,, “t)jme(‘m Dm&‘) 2

3 3,M
chmcﬁi)rﬁsa = h me (% S) Mg-ni{?il%\

The GRPA squations (I1.17) salisc separate into singlet and triplet

-equations, with the matrix slements béiné givan by
i)

A-me nd = (?}d (Jmn f@fﬁ (&...m ﬁﬁe;j(Xe*‘Xm} + Vme@?& (&g?‘“k’e

‘Xm *\5%”"23 ff> X%/me,ma {}{& + 5}@ - 5’; “ ¥ “2)}}

4¢3l
wf o o e a o
Bepo = ' (Ve (e # %5~ ¥ yh-2)

(fj ™me, e ( ()/q: + Efg ﬁ i? o Xiéf})ﬁ

) i3/

U/me.'rs@ = (:’2} ffmm f:fezev ‘f \X? %;J

zquations.

and

{11.22)

(Ii «23)

(1T.24)

N
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The diagonal elements of the charge density matrix ave defined as

XZ = (CISIC;%C@« “f'Cj;ﬁCdﬁ/(}"};

+ .
Xsn = {9’5/ C-ﬁnd Cma + Cmp Cm/zf§5> . (I1.25)

To convert the GRPA equations to theilr final form we premultiply
Eqn. (II.17) by the (diagonal) matrix

u-//& o

=it
o) W)
which is well~defined because the elements of the (diagonal) matrix i/
are positive. This leads to a set of equations which can bs written

in matrix form as follows:

A B\ /3

n = | - (11.26)
-B" -AY) | 4 h) /
with
1(3) o
- -77 e 03/
Jme (W)= @7 (Ye-¥m) Gone (4],
and ,
—1(3) ’//z_ £ (3
- )
’Armev (&) = (2) & ( X%“’” X;m) }’\ me (k) . (xr.27)

The matrix elements appearing in Bqn. (II.26) are given by

ic3) ‘
- o o/ o
A»me,ne = Jmn deo (ﬁw“'ééﬁ) + (=) (5’% *‘b’m)

o

#L

(‘52«56%)%( Vine,en & \/me,ésv) 5 T

!



&7

and

bz, o
- -f o O ¥ o &
gwae;n@ = (1) (Ye-¥m) (Yo-§n

}”2(\?;,4% co ¢ Vanae). (.28
This ie the working form of the GRPA squatiangléa
We have thus reduced the problem of €inding the approximate
exclitation oparators @Z end their associated snergies {,',Uﬁ to
a fairly simple matrix eigenvalue equation. Given the Hartrese-Fock
orbitals and eigenvalues and the exact charge density matrix, we could
uvse Eqn., (I1.28) to form the A and B matriceée Standard numerinal
technigues would then vield the sigenvalues and eigenvectors of the

(unsymmetric) matrix

A 2]
-t AT/ .

We defer umitil See. VI the problem of obtaining the exact.eharge density

matrix. Orthogonality and normalization of the eigenvectors of matrices

such as the . .above are discussed clearlylin Rowe's asrticle, aes are tgg"

conditions which guarantee that the eig?nvalues (Wg will be real.

We will not go into these details here,§

Let us assume that the GRPA equations {(I1.26} have been solved

and that the exact charge density matrix is known. The coefficients
103/ ‘=

vg'm& (£}, %me (%) which ap\pear in the expression (I1.23)

for éfaé are given by Egn. {(II1.27). The appﬁcximata‘%xcized stat@s$

can then be written as follows:

P
l%,0,0)= Oy !f} |
5?@ [ Mgy = @Z% g‘%}j (11.29)




.

28
with obvious notationj;s
Suppose now that we wish to evaluate the transition value of some

operator (} between the ground state é@} and one of these approxi-

mate excited states, e.g.

*
(bl Q40,05 = (P Q O 14D .

Using the fact that ! 4?> is the ground state, we can write

O; { Qb) = O to obtain the result

t
{41Q 14,005 = <Pl [Q,01]1). 11.30)

Thus to calculate transition valugs of G\? we need only know the

ground state expectation value of the commutator of (¥ with the

appropriate excitation operator. This is the use which will be made

of the GRPA in Sec. IV.

III. Density Matrices in the Occupation Number Representation

The firsteand second~order demsity matrices corresponding to tha

‘wave function /[ 4> can be written ss follows 5

¥ 5= 4%,‘1‘#’%'2 {0 3,

and R
. . X vj"
, Z + oot | I
2 [M0,251,2) = L [P0 Yz P id), .y
where the arguments [, 2,/ ‘2’ refer to space-spin coordinates, | o

and the expectation value is taken with respect to the occupation number ™ = -

A
H
3
H
E
{
i
H
'
i
b
I
Lo T it
{
+
1
4
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representative of i ‘§7>’ . g‘fpn} and Q‘{” are fermion field
creation and annihllation operators mspaativelyg By expanding the
field operators in a complete - orthtmom:al set of spin orbitals

{ 43,_ (¥} g} we car decompose the above axpressione for ?‘5’

and | into spin components, €.g.

g ! ‘é‘ 3

+ B o gt <A Chp ] re.)

3 i
There is an analogous expression for f involving six terms 70 I

weiting Eqn. (I1I1.2) we have assumed that the state  /f&) is an

eigenstate of the operator Syg » This allows us to write:

(4’3 Cf:v‘ 3‘@” 14’> = Jcra"" 44”53}:'9’%'0‘;#’} 2 (111.3)

7
where 0° and 9 represent either of the one-electron spin
] o,

functions o ) B .

As a mattexr of choice we wil]{ restrict the remainder of the

. development to the most frequently used spin components of i

This restriction is by no means necessary to the treatment; the method

can be applied to any other spin cmponénts with minor modifications.

‘The one-electron charge-and spin-density matrices ars respactively:

o ¥
Z. X;’d C#A: (V‘g') C%’ \C‘rs))

“4

B’a({,' 1)

+ + 18
(| CenCyu + ChpCup I,

74
-
1

S
i
13
t
N i
I
1
i
i
3
E
3
1
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gnd

Y ¥ 0= 2 Y2 & (magag (o)

z t, T o 3 oy
\Z{g':_: = Pl haCru - Cep Cﬂé'ﬁ;@f ) (1AL 4D
The analogous components of the second-order demsity matrix ave definad

as follows:

© t * ) t Lt -
2 P e = ‘<‘:H Caa:cgccg“a Ci’;a{ (,ﬁ.a( + C‘a’{s Céﬁ Cﬂqﬂg Lfésg

¥
+ Cfy C}(} Cap Cpa + Cup e Cae Capl#,

and

| ’ ot
2 3”-_}2 = <’:fl}; C.;:o:C‘; C..Qo( Cﬁ_g( e C«Aﬁ ngg C.eﬁ Cgf:@

A Lé

7 te ) -
+ C,gd Cg'p C,Qg C,gu( -~ C.»t.'ﬂ Cjor Lot C«;aﬁ /‘aé’#!’ . {1I1.5)
These are the four compoments of ¥ and [ with which we will
concern ourselves. They are chosen because they are sufficlaent to ™
determine the expectation values of all spin-fres operstors and the
spin density of the system.

e 4

To obtain forms for / and /7 which will allow us to make

use of the GRPA , we use anticommutation relationsg to reexpress the

terms appearing in Egn. (IIL.5), e.g.

. +
{41 Chacsp b Cap Canldd = @1 (<l €T C Crp Copl)

’ ”“44’56&:@ CSLP Q;p Qﬁa{l#& %@'}g*ﬂ <Q£?; A@'Cb ﬂ,f@,;m,)’,} CIIT.6)
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and so forth, In sddition we ineert s complete orthonovwal sst of
H-particie functions between the pairs of crestion asd srnibilevion

operators in Eqa. (I11.6). For exsmple,

‘é" ‘, {&gﬁ s .
‘{}:gjgé Aol C/&a{ w:g §, &.J??@ <§%>’ [ (#’ G&i*ﬂf’ ?2%!4“) f‘g"_‘) 5 {‘:Ei}'rg‘? é}é,f

+ %?_ <l Qi}« Chol 3 L Al Q;,:a Cop ¥, CEEY L
where the sum is over a complate orthonormal sget of funciions which

are orthogonal to / ’5} »  EBventually we will identify thesce funchlons
with the approximate ewcited states of the CRPA i:h@ax’y , and we will

-

use Eqo. {I7.30) to svaluate the quantities <§5/ e ‘e» & g o LA
By using relationships such as Equns. (LII.8) and (TI1.7}, we can writs

o 7
the previous expressions for ,ﬁ and Fz as followse:

@ o
j—;&g = ‘?’d (/ ‘5’;&5 ( gd:fé’ + K-%g'j "“‘Jﬁ@;‘ 5’;@' - “;% (}5;:?" ;'{55@,

ey,
e,

+ K?éa, ‘Xi‘g'}(} ‘% 4};’??&3' 2
and

7 t 7 o F O LB
(o, = 4 ( ¥ae (2 ay + ¥ag)oduy ¥ae ~4 (Fac ¥y

+ ?f,es. ?fﬁ i} + ‘&ﬁﬁ LY (131.8)
Here ,./,:_}f and Kﬁ% contain the contributions from the eum over all

statas orthogonal to f¢> . In the next section ws will wake ues of
[4

g
the CGRPA to avaeluate /4  and Al . Becauss the above euprassism:

@

@ vy ﬁ
forx /7 and 4 contain the sxact 0"1&3"%@@&& spin-densiby wmebrices,

[P
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we must find an independent method to detsrmine thess quentitiss. This

will be discussed in See. V.

IV. Use of the GRPA

. o o
The explicit form of A«fe«,sg | can be determined f?m

Equs. {1II.5), (IIieé) aﬁd‘(ﬁlis7}é Tt is given by:

i
1]

Ay = 97 (b 10k Cur #+ Clip Cip 14D4H C fu Cam”

L 4 ClpCepldd = L#] Chu Coul d ) <H Cla Cat 18

t

(PIChp CapladXH Chip Chplp) — < PlChuCap i)

LA Cl Cuattd = <HCha Coa 4D <A C e g 193, (v,

There is a similar expression for ﬂ £, 04 which we will not
- present here. Rather we will catry through the evaluation of A B
"  ',”-"fand just quote the result for k-AE '« The technigques employed to
obtain Az are identical to those deséribad below, so the interasted
"‘Zrea‘der can verify our result. | |
To approximate A;&,,:Jf we will identify the fuactions /4%
. in Eqn. (IV.1) with the excited states of the GRPA theory. This
Iidentification is not uﬁidue" any orthon?mal set of states orthogonal
k‘ ‘to' / ¢> is equally acceptable._ The &ifficulty in finding such states
is contained in the reetriction thét thay be crthoganal to the unknowsn

/¢> » The . GRPA mathod Provides a t:echnique for datez‘minﬁng the .'“~

[}
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approximate excited states without requiring knowledge of / &#) .
Because the GRPA procedure was designed to acecurately predict transi-
tion properties, it should provide reasonable approximations to the
quantities { <l Ct’cr C&’cr' [#> which occur in the expression
for ay - Note that the functions C g'v’ Ceo | ‘*‘l’>’ are
single excitations from i‘#’.} . Them?ore we need only énn@idﬁr
excited states [A)  which are single excitations of ) ; the con-
tributions from double and higher excitations vanishes. Thus the form
of the excitation operator given in Eqn. (II.6) is sufficient to exhaust
the sum over excited states., Also it is shown in Rowe's article that
certain sum rules are satisfied exactly if‘ry‘ the GRPA excited states,
even when a truncated set of orbitals is'used. This supports our con-~
viction that the GRPA method, carriaed out in a finite basis, can
yield reasonable approximations to A° and AT, .

We recall from Sec. II that the excitation operators @; are
of either singlet or triplet character. ‘g”rhus the sum over excited -
states in Eqn. (IV.1) reduces to a sum over ginglet excitations and
three sume over the triplet excitations. It is therefore vonvenient
to define six new quantiﬁies in terms ufywhich Aa and Agam

.
{

eaglly expressed: 1

S;:,; (a) f(‘ﬁ’{Ci'«C&« + C':f'g Capla,o,0),
z +
Sfu.‘ (a) = (d’{ Ci’e{ Chor C',a'/ﬂ C;y%,za [ A, o, o}g

+ +
ng: (A = ‘<¢! Cra Cpa * Q,x@jgﬁgfﬁ, 3;0,))




in4

i :;:Z g . -5« S vz?!“ { . %
Tgoins SP1Cuu Co ~ Clplaup (A, 0)

A 74 - '?1' Ly
Tol e <Bl C L Captt, 13,

snd

o *;{"“_.g f :\.(,L

lygotirs {F[C @ Cahaf A, 1,7, (IV.23
We have used the notation of Bqn. (11.29) for the excited state wave
functiona. With these daflnitione Bgn. (IV.1) can be written in tha

|
following forms

o W, ot o o¥ ¥ w7 L,
A?«’Zﬁ;!&g:ﬁ v ; (S;oé»{' SJ'.E"“ ;"‘é{’ (!S/é’z E;Jﬁ + «S_,éc' agj's‘f }}

o ‘ | e
5—-: ; of 3 ‘E?." " )
£ & (7?5,4 J -2 (Tjg '&.,;é * 7 e Tc;f.@’.}/

ctr ey ¥

7 P
“‘“‘%’ ‘}"{5’ (T@ T 4 A St 7“;';%)0 (IV.3)

B
The corresponding result for A is given by:

- o =¥ E o ¥
ﬁgﬁ'ﬂfg&g o /F (S%wz x ‘,/j:,?. - %’l (Swf'&' S;é 7L&Slé"-e' g{jﬂ%}}

wd S gt T o = #
o s . - “?Lf’ é oo Geo b4
4 F 2 {7’%4 juﬁ? e ( L ?;;fé 7= jef,f :?;;ﬁ}j
wf st ed L PR ¢
v é_: ( /‘,gﬁ 7 fﬁf s T.g”,g' ft;f;/g . IV A

! ‘.', ey TTM,«‘ Y A S
.
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In these equations the summation indices (s and &) have been aliminasted
;fm:" notational counvenience. Eqns. (IV.3) and (IV.4) are the £inal
expressions for gffia and A‘% .

Let us now turn our attention 0 the svaluatlon of the sdix

quentitias defined in Fan. (IV.2). This can be carvied out im &

relatively straightforward fashion by using Egn. (I11.30), identifyving
‘f"

{3 with C i CJ' ol Knowing the form of the excitation operatoy

Pr . ,‘L
o 1 . A D e
from Eqn. (I1.23), the commutator £Q£q« {*ﬂér(f!ﬁ ey can easily

be evaluated by using anticommutation velations. ALl that remains thes
is to take the expeciation value of the commutator with raspeet to the

exact ground state f'?%} »  FThe resulis of performing thess staps are

ziven balow:

& wffy . o ey
gg’j {A} £ g ( %m ( g{?.é (»:9.} Xé{i" % éﬂ%ﬁj&g K@H} é)/;jag j

1 o ,
- Z ( s () 8im + }z;;ia -~ la/ X::ia L')) T

- 7 yi 2 4 -
rg‘éﬁ&; (J@)?a‘ .:Z ’ 421 (jg’é {,@.j }{é/i °?L Aﬂ_*éﬂé@,} (5:; ,&)

- 7 3 =
T (jﬁrfw Yoo+ hoe (Al }Yj@f}
(/3;3;?,3 (47 5/ v 71"/2%,? (A7 X?"?ﬂ/}/z

S R
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@i’(ﬁzr gm%(%: (?;éw@i Yoo + hret b*';ar:»}
~Z (G ¥ gm # !;%../w doms))

”%Cj»){,ﬂ =27 ( %:.. (j}e{;ﬁ (¥o: +¥E:) Hhire ot (Bfg”)ffﬁ))
- Z (Gt (¥ m= ¥ o) b ) (e 4 ¥5))),

- - \,O 3 o
T;i‘ (A :z.g(%‘(gg'éfi“ (ké.@'“)%i')“i'!’\re(}!")(é’g'e+ ngéj)

“‘; (gf;w W(X;m M’fm) + %‘?;3' 1 (Y one - Yae))), avs

&Y
s
In evaluating these quantities one must remember that g,‘g:a' (%) and

%i?{%) are nonzero only 1if the orbital &i& is unoccupied and the

orbital éJ' is occupied in the single-determinant approximation

to /9‘9&} . Notice that if the GRPA calculstion has been carrisd

ocut and if the exact charge~and spiln-density matrices are knowm, Aa

and AE can be determined from Eqﬁs» (Iv.3), (IV.4), and (IV.5). We
B

. . &
have thus succeeded in spproximately evaluating <\  and Al by.

using the GRPA method.
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V. First-Order Demsity Matrix

The components of the first-order density matrix are related to those

of the second-order density matrix through the following identities:

0 - <
Sas =acv-r' 2 Thpun
and o
Vi = a3 [ihea
¥ ks = 2 (W17 A T (v.1)

Let us assume that a truncated basis of M orbitals has been chosen,
and that we wish to evaluate the first~and second-order density matrices
: 4 2
within this basis. If we substitute the expressions for /° and /7
given in Equn. (III.8) into Eqn. (V.l), we obtain, after some ;:earrange4

. & ?
ment, the following closed expressions for X and Y ¢

w . M o I
o B Y | - 20 o 0= 2
X‘fuﬁ > d (-?M'H*N) %; (yﬁx Xlx*ﬂ?"é’*&.ﬂ, X.h’ "Q’A:&,q,,‘-j)}%

4

and

M
. z ol of > " b
Yhi =3 @Mte-N) %:: ( b’guxi’u + Yaa Vi ~ ?AE%,P,;J))

%’,,L. =42,-- M. (v.2)

o - . ° z
Because A and Az are ,cmnpletelgrf- determined by ¥ and o
the above equations are closed, and they can be used to evaluate ¥ °

and ¥ « The only approximations :tn; Equ. (V.2) are the approximate

A and A?» which we obtain by doing & GRPA ealeulation. In -~ -

R AT PR A A | TR s

ki i . it R TR AN A W NS T
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i

the next section we will describa an iterative proesduvre which can ba

used to solve Eqn. (V.2).

o Eod o b
Vi. Self-Consistent Determination of P/ /'7 y b/ , and X

In the preceding sections we have shown how the GRPA method can
be used to evaluate various components of the first-and second-order
density matrices. Eqn, (V.2) provides usf with a means of divectly
determining Xa and yi by using the GRPA approximations to A~
and Az . Eqns. (III.8), (IV.3), (IV.4), and (IV.5) can be used to
evaluate /°° and /7 2, 1f ¥~ and 5/2 are known. In this
section we propose an iterative, self-consistent procedure for deter-

o E \
mining Xj XZ) [ , and /77, The procedure is as follows:

o P ’
(1) Set ¥ and ¥ equal to their single~determinant
approximations.
(2) Carry out the singlet angi tripiet GRPA ecalculations,
using the present value of b’a, e
, ’ o
(3) In Eqn. (IV.5) use the current & and b”g to
‘ © !
evaluate 33’,4: s Bte,’
o 2 o
(4) Form A and A" by using Eqns. (IV.3) and (IV.4)
(5) Use the current b’c and ¥ z on the right hand
side of Eqn. (V.2) to obtain new values for KO and b’?
(6) In Eqn. (111.8), uéé.the- new XQ and Xg to
e bl
evaluate /77 and /" s

[»]
(7) Compare the new X and Y = to the E’@ and Y B

I

v & b4
/obtained by reducing ﬁ and /7~ (Eqn. (V.1)). If

B easnr | e

ST TR S S T g g T

o e,

A T RSN TIK ST T MRAHINES T, T e 8 1o T T A e W W e KT VR S

i e e s

oo,
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o

the agreement is satisfactory and if the old 3’

and B'E agree well with the new ¥ and 5’2 then
the calculation is compléte. Otherwise return to step
(2), using the new 2{°.and B’z,

That this procedure is an iterative method is clear from the above
description. It is also called self-consistent because half of the
convergence criterion is that the first-ordgr density matrix calculated
in step (5) must agree with the first~or§er density matrix obtained by
reducing /' (step (7)). That is, the first*order density matrix must
be consistent with the_Second~order density matrix.

One disadvantage of the iterative method is that matrix elements
-,2{;rn connecting occupied and unoccupiéd orbitals are difficult to
calculate. If one begins the iteration process with a charge density
matrix having ZrZyn== © , the procedure never produces any nonzerc
rZﬂ:ha . However if exact Hartree-Fock orbitals are being used,such
matrix elements should be quite small due to Brillouin's theorem. That
is, if the C. I. expansion of the wave ﬂunction /%é} contains no single
excitations, then the lowast order nonzero contributions to
<<#[C3m{ Cex + Cj"/’ Cepl®)  will come from matrix elements
of double excitations with triple excitagions. Because the C. I. expansion
coefficients of triple excitations are'uéually quite small, the elemenfa
X’Ekn will, in general, also be very small. To obtain approximate’
values for ?(ézh » which could then be used in the first step of the
iterative procedure, one can use first-order perturbation theory. This
only requires a knowledge of the Hartree-Fock orbitals and energies.

There is no formal proof that an iterative procedure such as we ha&e

proposed will converge to any meaningful result. Therefore we must test
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the convergence by using the method to carry out numerical calculations
on systems of interest. In the next section we report the results of

such calculations on the helium, lithium and beryllium atoms.

VII. Application to Helium, Lithium, and Beryllium
There are a number of reasons behind our decision to choose the
. .ground state of the helium atom as our first test case. In the first
place, helium is the simplest atomic system to which our method is
applicable. In addition the second-order density matrix which we
obtain can easily be tested for N-representability, because, necessary
and sufficient conditions are known for the two-electron case. Finally,
we want to compare the results of the present method to results which
we have previously obtained for helium using Green's function techniques.
We have chosen as a basis five s-type Hartree-Fock orbitalslg, each
of which is given as a linear combination of the five Slater orbitals
(normalized) described in Table I.

Table I. Slater Basis for Helium

n exponent

1 1.4191

1 2.5722

2 4.2625

3 3.9979

3 5.4863

The cirvergenCe criterion used was that

c 2 .,
;ﬂ / Y’“}f (mew)— )/,; (o/oe)/ <10 é,

Convergence was realized after two iterations: the complete calculation
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taking thirty seconds on a Univac 1108 computer. Calculation of the
necessary one- and two-electron integrals required twenty seconds,

so the GRPA calculation only required ten seconds. This is to be

. , 20, , ;
compared to our Green's function calculation™ in which four minutes
were used in the numerical integration step. The convergence was
o

not found to be very sensitive to the initial choice of 8/ . The
expectation values of the one- and two-electron operators which occur

in the Hamiltonian, along with the results of other work, are given in

Table IT.
Table II. Expectation Values for Helium
. . 42 R
1) This work: 2427~ %) 3882 am.
L
) =+0.98766 a.u.
{H)  =-2.8945 a.u
2) Hartree-Fock20 8> =-2.8617 a.u.
3 c.1. 2t 5> =-2.8790 a.u.
4) Green's function22 <ﬁﬁ> =-2.8780 a.u.
23
E
5)  Exact {B)  =-2.9037 a.u.

The fact that our energy is beiow the energy of the complete C. I.
immediately tells us that the second-order density matrix which we
have calculated is not N-representable. We will defer further comments
concerning this problem until the next section.

The eigenvectors (natural orbitals) and eigenvalues (occupation
numbers) of the charge density matrix \B/Qare given in Table III,

Of course, the spin density matrix is identically zero.
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Table III. Natural Orbitals and Occupation Numbers for Helium

Occupation Numbers

1.9974 1.0000  ~-0.0004  0.0001  0.0000  0.0000
2.5025x107> 0.0004 0.9286  —0.3688  =0.0419  —0.0007
4.9696x107° 0.0001 0.3612  0.8717  0.3311  0.0053
2.1833x107° 0.0000  -0.0853  -0.3216  0.9386  0.0814
2.2919%10"° 0.0000 0.0066  0.0246  —-0.0880  0.9958

Expansion coefficients refer to the Hartree-Fock orbitals. In carrying
out this calculation we first approximate the charge density matrix
elements >i:h (see the end of Sec. VI) by using first-order pertur-
bation theory. These approximate values were then used to begin the
iterative procedure. This was found to have negligible effect on Qur
results. The diagonal overlaps between our natural orbitals (8i)

24

and those of Reinhardt and Doll”™" (R-Di) are given in Table 1IV. The

two sets are in fairly good agreement.

Table IV. Diagonal Overlaps

i (R-Di(SL)

1 1.00000
2 0.99817
3 0.99719
4 0.99901
5 0.99997

Although our natural orbitals seem to be reasonably accurate, the
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expectation value of the one~electron operators given in Table IT is
too low.25 This is evidence that the occupation numbers of the second
through fifth natural orbitals are not large enough.

By imposing the additional comstraint (necessary for N-represent-
ability) that the diagonal elements of f7gbe non-negative, we obtain
an energy of -3.8496 + 0.9877 = -2.8619 a. u. for helium. In this
case the natural orbitals are essentially unchanged, but the
occupation numbers are altered considerably. The new occupation

numbers are given in Table V.

Table V. Occupation Numbers with Constraint

1.9854
1.2441%102

2.1319%10>

6.7217x10™°

2.5378x10"’

With this )(o the predicted expectation value of the one~electron
operators agrees very well with the correct result.25 The fact that the
total energy is not very good when compared to the C. I. vesult
indicates that the second-order density matrix [70 which our method
yields is probably not very accurate in this case.

In addition to the first- and second-order density matrices

of the ground state, the GRPA calculation yields an approximate

electronic excitation spectrum of the system. The energy differences



between the ground state and excited states which are obtained by

doing the GRPA calculation are compared to the C. I. results for

singlet states in Table VI.

Table VI, Singlet Excitation Spectrum for Helium

GRPA

1.4243 a.u.

5.3068
19.522

118.50

c. I.

1.4068 a.u.
5.3208
19.451

118.34

For the calculations on the ground states of lithium and

beryllium we used bases of gix s~type Hartree Fock orbitals

26

(restricted H.F.) which are expressed in terms of the (normalized)

Slater orbitals described in Table VII.

Table VII. Slater Bases for Lithium and Beryllium

Lithium
n exponent
1 2.4803
1 4.7071
2 0.3500
2 0.6600
2 1.0000
2 1.7350

Beryllium
n exponent
1 3.4703
1 6.3681
2 0.7516
2 0.9084
2 1.4236

2 2.7616

114
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Convergence was realized in each case after four iterations. Both
computations took ninty seconds; sixty seconds for integral evaluation
and thirty seconds for the GRPA iterations. Again the convergence was
not found to be sensitive to the initial choice of 2{0 , and for
lithium the calculation was quite insensitive to the initial spin-
density matrix "5%?. The natural orbitals and occupation numbers for
lithium and beryllium which are obtained by our method are given in
Tables VIII and IX respectively. In both cases the constraint that

°
the diagonal elements of ri be non-negative was imposed.

Table VIITI. Natural Orbitals and Occupation Numbers for Lithium

Occupation Numbers Expansion Coefficients (rows)
1.9979 1.0000 ~0.0002 0.0001 ~0.0002 0.0003 -0.0001
0.9976 0.0002 0.9994 0.0282 -0.0186 0.0003 0.0000
2.9614&{10-3 ~-0.0001 ~0.0088 0.6743 0.5608 0.3341  -0.3451
1.1524x107> 0.0002 0.0319 ~-0.6121 0.7862 -0.0784 0.0047
3.056lx10—4 -0.0003 0.0067 -0.3946 ~-0.2232 0.8264 -0.3338
8.5726x10™°  ~0.0001 -0.0010 0.1184 0.1315 0.4463 0.8772

Table IX. Natural Orbitals and Occupation Numbers for Beryllium

Occupation Numbers Expansion Coefficients (rows)
1.9998 0.9339 0.3575 0.0000 0.0000 0.0000 0.0000
1.9968 -0.3575 0.9339 0.0000 0.0000 0.0000 0.0000
2.41755107°  0.0000  0.0000  0.7697  -0.6304  0.0986  -0.0205
2.7226}:10_4 0.0000 0.0000 0.5626 0.7327 0.2285 -0.3072
4.2424x10_5 0.0000 0.0000 -0.2849 -0, 2006 0.8675 -0.3551
6

7.8827x10 0.0000 0.0000 0.0991 0.1596 0.4308 0.8827
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These natural orbitals and occupation numbers are similar to those

27,28,29

obtained by other workers using somewhat different basis

functions. Notice that the block structure of the natural orbital
expansion coefficients implies that the.\égmﬂ, which are more difficult
to obtain by our iterative scheme, are, as we anticipated, quite small
in the three cases considered here. The ground state energies for
lithium and beryliium calculated by using our density matrices are

presented in Table X, For lithium our gpin density at the nucleus

(2.8006) agrees fairly well with the correct value (2@9096).30

Table X. Ground State Energy of Lithium and Beryllium

Method Lithium Beryllium
This work ~7.4419 a.u. -14.579 a.u.
Hartree Fock ~7.4327 a.u. ~14.572 a.u.
Radial Limit ~7.4420°% a.u. 14,5923 a.u.

In both calculations the expectation values of the one~electron
operators agree very well with the exact results. Almost all of the
error in the calculated energy is due to error in the two-electron
energy. This supports our earlier proposal that the {7£>obtained by
our method can be .inaccurate, whereas the resultant 2{0 is usually
rather good. This is not surprising because the detailed effects of
particle correlation which enter into {10 can not be adequately
described by the limited basis sets which we have chosen. On the

other hand it is well known that correlation does not appreciably alter
the change density, and so the limited bases should not prohibit us

from obtaining accurate first-order density matrices.
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We have also studied the behavior of the resulting density matrices
for helium as the basis set is expanded. It was observed that the
natural orbitals and occupation numbers couverged smoothly to the
radial limit results reported in Table III. Such calculations were
carried out with two, three, four, and five s-type basis functions.

Although the results of these examples do not consititute a proof
that the proposed iteration scheme will always converge, they do indi-
~cate that the method can be a useful tool for determining first- and
second~order density matrices of atomic and molecular systems. Even
though the energy which our method predicts is not accurate, the
resulting natural orbitals can be used in C. I. calculations to obtain

better expectation values of two-electron operators.

VIII. Error Bounds

We have seen from the results of the helium calculation that our
method does not necessarily yield density matrices which are exactly
N-representable. However this does not mean that these density matrices
can not be used for predicting the properties of atomic and molecular
systems. We learned from the calculations reported that our method can
yvield first-order density matrices which are reasonably accurate.
However density matrices which are obtained by the GRPA method, the
Green's function method, and other "direct calculation'" techniques
might not be N-representable, therefore it is important to examine
the consequences of possible approximate N-representability. In a
recent paper2 we have shown that the errors introduced in calculating

expectation values with non-N-representable density matrices can be
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bounded, and that these errors decrease to zero as the density matrices
become more nearly N-representable.

In the method which has been presented in this paper, approximations
to the first- and second-order density matrices belonging to the
unknown wave function 54@} are obtained by an iterative procedure.
Hopefully these approximate density matrices are quite close to the
true (N-representable) density matrices of ]#& . Concentrating on the
first—-order density matrix }{ , we can define & measure of deviation

from the density matrix belonging to /qﬁ as follows:

2z
/4:5 / X(I;l') - 5/7- (/j-/y/ clz‘, J‘t,r) (VIII.1)

where 2{ is our approximation to the true }53“
£, . -
¥ = S C#(/)Z)'--N) <§5 (15,2,-N) e dy, (VIII.2)

It should be kept in mind that we are trying to bound the differences
in expectation values which are calculated using our ?( and the ?ﬂr

belonging to I4%> . Neither of these expectation values are necessarily

Suppose now that we are interested in calculating the expectation

exact. Y
value of some one-particle operatorF";Z 7[\' . If we define the
A=
difference function ffClifyby
gl . . -
ECyi= S Cij - X7 Cee?y (VIII.3)

then

AF

Hi

Trace 3 F Ef

= Taac (£ Y - Tuace $PY ] (VIII.4)
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is the deviation of the calculated expectation value of F from its

value for the wave function I<k>. Notice that Trace { F‘Xf}

is not necessarily the expectation value of F for an exact wave function.
If X and 3%~ are expanded in some orthonormal (probably finite)

basis, then the quantity [AF7can be bounded as follows:

M M
/AF/Z‘-é Z /FIJ;‘LZ, IE,%:{L (VIII.5)
J’/;ﬁ’ ?,_:)3':( J

where M is the dimension of the basis and ﬁJ and E‘J are the representatives
of f and E within this basis. The bound on [AF/ is thus written

as a factor depending on the operatbr F times a factor which depends only

on the difference function E. It is easy to see from Egn. (VIII.1)

that the second term in Eqn. (VIII.5) is identical to what we have

defined ai/J :

M

> [Ega'll = M (VIII.6)

.i/é.:{
The bound onlllfycan then be written in either of the following forms

M
] AFI® é/u"£’ /ﬁa']z é/u ;;{(fz)fu , (VIII.?)

41431

where ({:7,:,( is a matrix element of the operator ‘FZ which is still a
one-particle operator. The second : inequality in Eqn. (VIII.?7)
follows from the fact that the basis in which }( and B<r are expanded
is probably not complete. If we can find a means of evaluating the
paramete%/u , either form of Eqn. (VIII.?7) will allow us to bound the
quantity'/LlFY. We do not mean to imply that the bounds given sbove
are in any sense good bounds; we only wish to show that knowledge of/%

can lead to error bounds for expectation values.
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In order to calculate the value of/M corresponding to a given 3/ s
we must somehow obtain ng, at least formally. This can be done by

7{.
using the following property of the known excitation operators (S%é :

@,}4 [¢) =0 ) (VIII.8)

for all excited states fﬁ>,s Eqn. (VIII.8) is a consequence of the
fact that ‘4» is the GRPA ground state wave function which must be
orthogonal to all of the excited states (92?/@&) . DBecause the Cf%:
and hence the(ééare known once the GRPA calculation has been performed,
the above equation can be used to determine |¢b).

For what follows we find it convenient to relate fqﬁ> to its single

determinant approximation lcQ*by the unitary operator given below:

[P = exp (-S) [o>) (VIII-9)

where S is an antihermitian operator which is to be determined by using

Eqn. (VIII.8). The expression for an element of the second-order

density matrix

7L
[—;u,x;' = ?{:443'/ Cf“" Cy Ca Culéd,

can be rearranged to give

ey = = Jja <#ICh Caldd
R AT INSAATIN

(VIII.10)

By using the definition of the first-order density matrix and Eqns.
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(V.1) and (VIII.1l0) we can write M
-
L V-1 Yo = F M Fhe ~é§/ (1CL CC Calg)
M +
or  (M+i~~) ¥po = > Ll ¢ Cs Crld), (VIII.11)
J=

In the GRPA method we approximate the right hand side of Eqn. (VIII.1l)

as follows:
{4>/Ct’ C;C; Ciley = <Pl Ci’ Cg' PC; Cé/¢>j (VIIL.12)

where the projection operator P is given by

P= 145<l + X OF 1B<H &

) (VIII.13)

4
and the @,\ are the known GRPA excitation operators. Thus the deviation

of )}/ﬂ (GRPA) from the true (&-)ﬂ can be written formally as

(Mti-p)Ege = (Mtr~n) (Y;-—X)ﬁ4'

M
= < -t o, t, (VIII.14)
?:', $lceC; @Cy Cy 3
with
Q= [(~-P , (VIII.15)

+
If the spin-orbital basis used in constructing @,\ is complete, the
.f.
operators (9,\ and@/t form a complete set in terms of which any operator

t
of the form C . C/ can be expanded as follows:

d
+ ”" <~ +
C Cg’ = W»;;' + % (W»fj i) Ox + Wg ‘Al O ) . (VIII.16)
The W”"d' [/\),V\/@" (A, and W,i; are expansion coefficients. By

using the orthogonality properties of the states @\*/qﬁ} and the
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expansion given in Eqn. (VIII.1l6), it is easily shown that each element
Ek; vanishes. Therefore as the spin-oribtal basis approaches
completeness, it is expected that the E%A will approach zero and
the approximate 2( will approach the true YT .

To make use of Eqn. (VIII.9) in evaluating the parameter//L s We

recall the following identity for exponential operator333

B exp (-A) = eXpc-A) $ B+LAB)+37 [4,0LA 8] pee f (VIIL.17)

With Eqn. (VIIL.9) the expression for Ep; can be rewritten in the form:
M
- £t
CM+I~N)-E1“' = Z §<O /E)(,aCSJC."%' C,f Cy exp (57| <5>
=y

- Solexptsich C; expe- s)jop<olexpcs) C:} Cre €xp -1 10)

——; {ol exp(s) CCk <, Oul exp (-1/0)

VIII.18)
{o] expCS)EO/\) Q;' <) exp (—5910>}, ¢

Before this equation can be simplified by using Eqn. (VIII.1l7), we
must investigate in more detail the form of the operator S.

34,35

In the nuclear literature the wave function Iq€>is usually

written as
[y = K exp (-s) )O>j (VIII.19«)

where K is a normalization constant and

T +
Q= 2 Sey,\o{{n\@ C o C¢ Ca C/Z, ) (VIII.20)
n

m,
%<, P

We are using the subscript convetion of Sec. IL.
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This form of the wave function is not especially useful because the
operator S is not antihermitian. This means that Eqn. (VIII.18)
can not be used to evaluate £, if we insist on using the above
wave function. To avoid this problem we can express /¢>as in Eqn.

(VIII.9) with the antihermitian operator S given by

+ ¥ + ~
S=27 Cgmx,np C:tn Ca Cn Cp—- S’”’“‘ﬂ‘ﬁ CpC. Cde) _ (VIII.21)
wm,n

o, f
Once the) coefficients S,md‘“{; have been determined, Equns. (VIIT.17)

and (VIII.18) can be used to calculate E,,. We will return to this
calculation shortly.
To obtain an equation for the coefficients 9’”‘“’;“{3 we make use

of Equn. (VIIL.9) and Egn. (VIIT.1l7) to write Egn (VIII.8) in the form

Ople)> = ex7a<~sl{<374 + LS, Ol +:fz [s,[s,00)) +«} lo)=e (VIII.22)
By substituting the explicit expressions for Q\and S given in Eqn. (II.6)
and Eqn. (VII.21) respectively, and carrying out the commutations
indicated above we can equate to zero the coefficients of the various
independent functions o) , Ct» Cd'lo,), C i C; Cp Co /o) 5 ete.
This leads to the following equation involving S’m o N

¥ ¥
*5/%; 9mo</np gﬂﬁ (A) = — h (/l))

Mo

of =2~ N  fn= Nt M) A=4,2,-~ N ~w] . (VIII.23)

In our GRPA calculations all of the Aym (A) turned out to be quite
small (~10‘3) as did most of the 3;%« (A) . TFor each value of A there
was one ?me{ (A} whose wvalue was near unity. These results are typical

of RPA calculations on atomic systems. Based on these observations
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Eqn. (VIIIL.23) implies that the magnitude of the j;uqmp will generally
be at least as small as the ’A&hx CA)

1f we represent each of the (M-N) N pairs Mm@ by a single
Greek index/u ,the set of GRPA coefficients 3/;\,3 (A) and /l\ ma CA)
can be thought of as forming square N(M-N) dimensional matrices, and
so Eqn. (VII.23) is a simple matrix equation which can be solved by

standard matrix inversion techniques to ydield the coefficientsf%md{“ﬁ
NCm~n) -

4/%/\ = - 2; //\ 1 ?K/\ . (VIII.24)

It should be pointed out that Eqn. (VIIL.23) is identical to the
equation which would result if the wave function given in Eqn. (VIII.19)
had been used. In other words no additional complications arise when
we introduce the antihermitian form for S given in Eqn. (VIII.ZlS,

With the coefficientsf%mdyn@ given by Eqn. (VII-24) we now
return to the evaluation of theffk;. By using the identity given in
Eqn. (VIIL.17) and carrying out the indicated commutations, the right
hand side of Eqn. (VIII.18) can be written as a sum of terms involving
various powers of the coefficientsf?wht,np. Because the 5?”1“1”/3
are generally quite small the use of powers ofSﬁnd,nF for ordering
purposes is justified. The sum of all terms which do not contain any
Smo/mp is given by

Z Z’ i A Mw (A, 4 kRN

(Mt1~w) E:; ~—§Z Z Aims ) mh N o 4k EN

o, otherw1se (VIII.25)
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Notice that there are no contributions in the zeroth order to £yg-
This supports our earlier claim that the quantitieslxmx should be
quite small in general. 1In addition all terms which are first order
inJma,np are found to vanish identically. Thus the factorsS;nd snf
contribute to E«j only in the second and higher orders. Because
thefama snp are generally smaller in magnitude than 10_3, the second
order contributions toEyy will be of the order of 10"6 or smaller.
This is a negligible contribution for our purposes, and so we need not
obtain explicit expressions for these second order terms.

Because the zeroth order contributions Z?'f? given in Eqn.
{VIII.25) are also quite small, it is not surprising that the expectation
values of the one-electron operators which we have calculated are in
good agreement with the correct values. The fact that the magnitudes
of all the /Aw“g(Alare 10—3 ot less implies that the value of # given
by Eqn. (VIII.6) witgﬂEqn. (VIII.25) is of the order of 10—12° Therefore
unless the quantity;E: /€%~/2 which enters into Eqn. (VIII.?7) is

£ 4=
quite large, the dev;ation | AF] should be very small.
It is our opinion that error bounds such as have been discussed

in this section are necessary components of any complete and workable

method which attempts the direct calculation of reduced quantities.

IX. Conclusions
In this paper we have shown how the GRPA method can be used to
approximately determine the first- and second-order density matrices

of atomic and molecular systems. In our method there are no numerical



126

integrations and the size of the arrays to be diagonalized increases
much less rapidly with the number of particles than in the C. I.
technique. Besides these computational advantages there exists the
possibility of obtaining error bounds involving the resultant density
matrices. These bounds allow us to estimate the deviations in
calculated expectation values caused by using density matrices that
might not be exactly N-representable.

From the application of our method to the ground states of the
helium, lithium, and beryllium atoms, we learned that the iterative
procedure which we proposed can converge to a meaningful result. In
these cases convergence was realized after a few iterations. We
also found that the results of the method are not very sensitive to
the initial approximations for the charge density matrix. In the case
of lithium the results were also insensitive to the initial choice of

Brz. This indicates that there are probably no inherent instabilities
in the iterative method.

We observed that by imposing the additional constraint that the

Q
diagonal elements of r? be non-negative, the calculated natural
orbitals were essentially unaltered but the occupation numbers were
significantly changed,36 With this constraint the resulting charge
density matrices gave nearly exact results for the expectation values
of the one-electron operators occurring in the Hamiltonian. From
this observation we inferred that nearly all of the error in the
predicted energy is caused by error in i—7a. These results also

indicate that the occupation numbers which we obtain are probably of
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reasonable accuracy.

Although our method might not yield accurate second-order
density matrices or ground state energies which are competitive with
the best results, it does show promise as a method for obtaining
first~order density matrices and natural orbitals which can then be
used in a C. I. calculation. Let us vecall that the GRPA technique
was developed to predict properties which do not depend strongly on the
complex correlations within wave functions. Therefore in our use
of the GRPA for evaluating certain contributions to the first- and
second-order density matrices, we should not expect to be able to
accurately describe detailed particle correlation effects. Because
such detailed effects contribute significantly to the second—ordgr
density matrix, it is not reasonable to think that our method can
consistently yield reasonable second-order density matrices. On the
other hand, it is well known that particle correlations have relatively
little effect on the first-order density matyix. Thus it is not
surprising to find that the GRPA method is capable of predicting the
small corrections to the Hartree-Fock first-order density matrix.

In order to better assess the wvalue of our method as a tool for
calculating first- and second~order density matrices, many more
numerical calculations are needed. Hopefully such results will

become plentiful in the future.
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The notation "singlet and triplet.operators' is based upon the

8 3/M;+
fact that EDhme operating on a singlet yields a singlet and ﬂ&lé
operating on a singlet yields a txiplet.
We assume that there are no effects which split the degeneracy
of the triplet level.
Notice that the dimension of the matrix to be diagonalized is
given by 2N, (M~MNy), where N, is the number of occupied
orbitals and M is the number of basis functions which we use.
The size of this matrix does not increase nearly as rapidly with
the number of particles as, for example, the C. I. matrix. This

is an important computational advantage of the method.

The function/ﬁ,g M5> is not necessarily an eigenfunction

of Sz. The notation only implies thatﬂ&,S’,M;) is obtained by
SIMS+ . 2
@4& operating on the ground state /4>> . The S"-dependence

of M%,S',M;> has no effect on our problem; we are just using the
%‘ﬁa& M.s>} as a set of orthonormal functions which are also
orthogonal to [ .

» » - (¥)
We use the following normalization: Tracer-lv;Trace = 2
See, for example, R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).
We sometimes use Xi to represent a diagonal element of the

o o

charge density matrix: Z,c = Y,u . This is done for
notational convenience.
We are grateful to Professor William Reinhardt for furnishing

us with the Hartree~Fock basis.
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the sense that @7& f¢>=° (see Eqn. (VIII.8).



132

Chapter Four

First- and Second~Order Density Matrices

of Symmetry-Projected Single Determinants
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I. Introduction

It has been found that the effects of applying a spin projection
operator to a determinental wave function involving different orbitals
for different Spiqs can be conveniently summarized by ccnsideriﬁ; tﬂe ‘
first and second order reduced density matrices.l’2 In thié chapter we
will be concerned with the density matrices of wave functions obtained
by applying to a single determinant projection operators of point-groups
or the axial-rotation group.

In section II we consider the effects of point-group symmetry
projection, and obtain expressions for the elements of the first gnd
gsecond order density matrices of the proje&ted function. An examﬁle
is considered in section III. In sections'IV and V we treat the axiale
rotation group and an example of this group.

It is also of interest to obtain the to:aily symmetrié coméonents
of density matrices, since only these components contribute to the’
expectation values of symmetric operators.1;Wé consider this problem
in section VI. In section VII, we consider the effect of projection

on, the eigenfunctions of the totally symmetric component of the first

order density matrix. We find that these eigenfunctions can be taken

i

to be the same after projection as before.
! 3

I1. Derivation of the Density Matrices for PointPgrouE Projection

4

Wevatatt,with a function ¢ which we wish to adapt to the symmetry

of a particular group:

|
i

PN = oy (g N, ™
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where s{ 1s the N-particle antisymmeteizor, ¢l~-- QN are orthonprmal
spin-orbitals without any particular symmetry properties, and the
arguments 1 ... N refer to the space and sgin coordinates of particles
1 through N, respectively. The normalized; symmetry~adapted wave’

function can be obtained by projection as
- =1/ 2
¥, = w, @Dv® FZ)
where

- * (3)
w, = [(O&) (covq»)gr,

. ‘ 3
The projection operator ED\, can be expressed as

[

o, = éCV(R) J&, (4a)
where the sum is over all operatiomns in thé group. The index V refers
to that irreducible representation which characterizes Wv. The co= ™~
efficients C\)(R) are defined in terms of the characters x\ﬁR), the

dimension n, of irreducible representation V , and the order of

the group; g. f

.
* 0
Cv(R) = (nv/gbxv (R). (4b)
Since we are dealing with a many-particle system the group

operators .E’ wiil be of the form 7'.1

%]
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R(T...N} = R(1IR(2)...,R(N), {33
W weo we wnr

t
where &;k) operates only on the coordinates of the k B particle., For

convenience, we adopt a special notation for the effect of a symmetry

operation on a spin-orbital:

. 4 R
RUkI¢ (k) = ¢, 7 (k). (6}

Then Yy,1is seen to be
A

YoM N = i 250

v R

L(R) ¢‘RM)Q.,¢ Rny,

N {7)

We first evaluate the normalization constant Wy s making use of

the facts that @9\)i8 self-adjoint and i.de‘mpct:ent,l+ and that)f is

self-adjoint and has

A2 = 5(-1)Pp, ®
p Ari

the sum of all N! signed permutations of N-particles. Then

- - ayPpra ¥ * R R (9
w, écvm)g( TIPS, (1) enidy (NG, " (). ..9 " (M)dr

PN

where Pi is the index produced from i byéﬁ?la The integral in (9)

is a product of one-electron integrals of the form




®o R, . _ * X
Fop (g "CddT,= S¢, (DRI, (1)dT, , (10)

The expression for W, therefore takes the form

£
"

~1)P
écv(m%( 1IPRy by Ry py
I0,(R) dot 2 (11)

i

Notice that the determinants, detﬁi, are to involve only the spin-
orbitals appearing in @ . They are determinants of N x N mdtrices.
Thus if we know the matrix elements of the group operations in the

spin-orbital basis, we can calculate W We will assume that these

\) a
matrix elements are known.
We now proceed to the calculation of the first order density

matrix. Given a symmetric, one-particle operator §, we can write

its expectation value < >, with respect to ¥, in two ways:

<Q>v = IWV*QWvdT = f'@(f)yv(Ttﬂ')qu. (12)
The first expression is the usual definitiop of the expectation valus,
and the second is the density matrix equivalent. The prime on thg
integral means that £ (1) first operates on the unprimed coordinates
only, then the primed coordinates are set equal to the unprimed and
integration is carried out. Our method will be to calculate < %v
‘using the first expression, and then to ide&tify Y, a8 that which

will correctly reproduce the second expression.
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Therefore, we must calculate

1 % 4
i - b £ PR ' ila}
Wy o= ow, S0 @9v9é?v@éTV 3

First we examine the operator @?\;ZK?V*

N
écv<R%§i§ﬁa<;)@Dv

CN 9,

=

o ; {24

£C. (R) IR(i) QUIIR (R, Ve
Y . A w4

R i=1 ,

Substituting (14) into {13) and noting that R and & y commute with

Yo

943 we obtain

*
= "1
<Q>v b w\) EC\)(R)M‘bﬁ (‘%)esa¢

¥* N -
y (N ZRODY 2CDR Yoy
, W Ao .
R i =4

RO b, (1), .0, (N)dT
N % (15)

w7} I C_(RIC(S) & 5(=-1)Pro. (43, .0, (N)
Vor,s Y Y g=gp N

i

o,
S S(NYdT

. S . R R
ﬁﬁ}i)ﬂ(l%ﬁ (x)¢91 q)‘”°¢PN

Since the symmetry operators are unitary,

Fo CHRDAUIR  Cires Rodr. = f6.® “thative, Sciidr, .(16)
P (DR N PP p= e py (1247,

If we now let T = RS, so that R = Tsﬁls we have
o Banady L i H
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N wy ¥
= "t =1 Tl ST 5
<G> = w, " 1ILC (TS )Cv(S)i ;=1T(IIJ3f¢i ﬁ)ﬁ(i)¢ﬁ (1)1,
s J (17)

where T(i|j) is the i,j cofactor of T.

We now assume the existence of an orthonormal set of spin-orbitals

4y oo @N, ¢N+l con ¢M s such that ¢1 bes @N are tha spin-orbitals

accurring in ¢ and that for anygﬁlin the group,vﬁ@i can bo expressed

as

¢, =

nmMxE

vij k 1Rki¢k F] i = ?gZpa-vMu (18)

We can then write

7. 5T Tihatre . S(dr
0 | J 4
= ¥ (5771 ¥ , ¥
= I (ST h, s“fcpk (110114, (1)dT,
k,Rl"" 1 (19)
M - -
= L (TS '), 5,.0
K, &= 4 k&) 7kE;
|
and thus
. - N M
0> = w ZC (TS ")C (S) T TG¢lJ)y £ «(Ts™Y),. s..0
VooV g,V VoL ke RS
M N (20)
= I{w ' C(TSTHC (S) E T(i[y(TsTYy, .8, .1Q
Kk, 951 ¥ 5,7V v P = 1k78) 7 "k8,
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Therefore, we may identify ’lé ae

M .
(v) L, ¥ (21)
Y 41ty = ¢y b0, (1)
v K, =1 k& "4 Tk
where
(v) - . N .
e ’ 3 {1 YLTS ' 5o, £EY
Y kg ° 9, SXTCv(TS )Cwﬁﬁ}i %ﬁﬁTisiJ,{F% }ék“zﬁ ¥y
# & o

In a similar fashion, we find the second order density mstrie Lo

be given as

M

’ (v) A # LI r
ro(i2[1121) = I T (1091 (2)0 (1T, (27) (23
vl Psq,r,t pqrifptt 0 220, (1100, ‘

Y

with
?
rtV =Tt B G (TsT e () ; | T ke

par T,S P<j=qk<l=i

(24}

=1 -1
spkqu(TS )dr(Ts )

Jts
where T(ij|kl) is the ij;kl cofactor of TQ&

Equations (21), (22), (23), and (24) ?re the final expressions for
the desired first and second order density matrices in the case of
-finite groups. Notice that we only need know the matrices of the group
operations in the spin-orbital basis, and the appropriate character -
table (the group multiplication table must. also be kaown, bui can ba

determined if necessary from the orbitslebaeis representation}. Owas
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we have this information, cazleulation of qy\) and mgv iz straight~

¢

gfcrward.

';ggg Example for Finmite Point Groups

et e e

As an example we consider a wave function for the water wolecule

o, ., o Brgoa © B,
o = ALe, e, P2 0,20, Fer0, 9, Pion]

where the orbitals are

6, = (2+28) 7P (15 15, A= J15,15.d7
oy = ‘fo# 03 = 25 ¢ﬁ = 2P0

$¢5 = Z“Vg(sz?0+2¢ygm)

b = Zwlh(pr,Omzpypg)

e,

The molecule is assumed to have C v gymmztry and to lie in the yaz

2
plane. Subseripts A and B refer to the two hydrogen atoms and O to

the oxygen atom. Orbitals §. through $& are thus symmetry adapted

1
but ¢5 and @6 are not. The last orbital is added to give a complate
set in the sense of equation {(18}.

In this basis, the matrices of the symmetry operators decompose

into pairs of 6 z 6 matrices, & set of matrices involving € spin and

an identical set involving P epin. These metrices are as follows:
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E is the 6 x 6 unit matrix. Each ocf 27 g = g and ng*w

Vaw Ny ey \gyz

has diagonal elements 1,1 through 4,4 equal to 1. In addition,
= = e = &= {
€5 5= (C)g6= "1 C0)56=C 0)g 5= 1 and (0 056"
{ -
{ o, }6,5 = =1, QOther elements are zero,
We will L1llustrate the formulas developed in the previous section
by obtaining the density macrices for the Az component of 9@ . Using

equation (11), we find that

_ 1 - B '
W = E£ det E + det C, deto, det g ]

= 1r = 1
= TL { + 17 + 0+ 0] = 5

Remember that in equation (l1) the determinants are over only the

spin-orbitals appearing in ¢ ; so only the pairs of 5 x 5 submatrices
[
of our operator matrices are to be used to calculate Wy e

2

We also find it helpful to comstruct a table of the various terms

appeafing in the expressions for Y andug\) {Table I).

-

Using this information and equation (22) we obtain

'y . 4 ( -)(-“' ¥ 3#* 1 %v % %*
YA2(1|1 ) = i§1¢‘ ¢, « oo +88 1 + =b5(1)dg (1 yao 88 1

4 * . ¥ ¥
*omde (110, (1" oo +B8 J .

Similarly, by using equation (24), we find that
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Table I. Combinations of Group Operations

Used to Calculate Density Matrices

=1 =l « w}
s TS %(S) Xy (T8 7)
: 2

E E 1 1

C2 C2 1 1

o o -1 -1

v v

Gv, g, fl =1

E C‘2 1 1

C2 E 1 1

G 0 ] '“l ‘”1

v v

[9) 1 o] ""l “’1

v v \

E v -1 “1
v

c, o, 1 ]

c B -1 1

v

o, c, =1 1

E o, 1 “1
A’

C2 ov 1 =1

O’V G2 L) 1

g, E b1 1
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&

4
r, (212 =% 3 {|ieja|®+|iaj8| 2| igja| 4] 18)8] )}
2t gt

4 | :
+5 L {|ias5a|?+|1058] 2+ 150 2+|i858]2)
i=1

S
*y

M

{|ia6o|2+]ia6B|?+]|iB6o|2+|iB6R]|?}

I=1

+3 {|5a58] 2+|585a] 2+ | 6a6p| 2+ | 686a| 2)
i #*
5 [B6,%(116,5(2)I0B  1m19Pi2)]

' #
5B o e P e fanT,

where

i ) o
B=2" (1£,,), B'= 2"Viizp, 500 -~

and ]

ft

[10j8]? [23¢i°‘<1)¢J‘3<2>3[gg’¢’i“uv:pq,J'B(z')]*&

Equivalent results are of course obtainable more directly. The
advantage of the present method increases with the number of non-
symmetry adapted orbitals, and is much more appasrent for non-Abelian

groups.
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IV. The Axial-Rotation Group

.To extend the above treatment for the first order density matrix

to the axial-rotation group, we need only change the formuls for the
5

projection operator. The proper projection operator is

27

- 4 - i mo (25) .
@?m I édu e *ﬁaa

In this expression'gﬁa is an operator which rotates through angle .

1f we define

. , 27 \
. ‘ ‘ = =n = mo e -
Q CikLjla) = (2m) 7 %q é b (R Ry g s (26)

then we obtain for the coefficieénts

2m N ,
(m) - -1 S (27)
Yk T W é dai ?zqRa(llJ)Pm(ikzjla)
? -

where ch(i]j} is the i,j cofactor of R a'} The normalization integral

e

is given by

2%

- i mo ‘;
da o' ™det R . (27a)

|
w I e
m 27

0

The evaluation of the second order density matrix is somewhat more

difficult and will not be presented here.

V. Example for Axial-Rotationm Group

i

As an example in this case we will calculate the first order

* X
density matrix of the Lz = 1 component of an atomic function (we

g
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will not consider the Lz behavior). 'We take

o =sd 1% 1sP2r25% 3128 (ar2p “(5)3

Since ZPX = 24/2(2P+1 + 2P_1) and the S orbitals are symmetric, the

effect of a rotation about the Z-axis by angle £ can be written as’

. L2 . o ) L.
Bt = ALs¥tsfzs®asf iz o'%2p ve7 02p_03%050],

From this and equation (27),

: # # * *
Y4(1[1') = [1s(1)1s (17)+42s(1)2s (1) ]J(aa +BB )

1 * * .
+7[¢3(1)¢3 (1')+¢4(4)¢4 “r) -
#* : * %
+¢3(1)¢4:(1’)#¢4(1)¢3 (1) Joo

where
b5 = 27V2(2p 42 40 = 2p
and
= m:‘/z - = |
bg = 2 T2py =20 40 = i2p
But this  can be written as

' : ¥* ' # #* *
Y[ = [1s(1)1s (17)+2s(4)2s" (17) 1o +BB )

_ * : %
+2p+1(1)2p+1 (i Yaa ,

t\;‘
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[
# 4

This result is of course expected because the Lz = 1 component

of ¢ is given by

o S
v, = 4 C1s%1sPzrzs (3)255(4)2p+1a(5)],

"and the first order density matrix above follows directly. For a
more complicated function, however, the density matrix wethod can

be simpler than the direct method.

6

VIi. The Totally Symmetric Components of ;Lv and wgv"

The totally symmetric compbnent ' ° of T can be obtained as
we V ww V)

0 . | “1
wy T8 AR |
(28)
= -1 1ot 11
g §§ﬁ12)5(1 2‘)rv(12:1 2")
and
0 _ L1 1 ¥
Yo g §y1)&u )YVH113). (29)
n
We will consider Yvo first.
wat
04| ~1q M (v) *
vy, '(1]17) =g 'L L v QUi (1)IQUA " )p, (1)
v 0k, =1 k% k %
M _ M - %
=5 g7tz ™) 007, T (e )
i,d= Qk, =1 J J
M . M
= DR Yo .0 (1), (1) 3
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Where
M ‘
0 -1 (v) -1 _
), , = z z ' 31
(Y\J i g 0 k,2,=1Y kﬂ'kaQ %] . (31)
But
M .
(v) 1
L Q..Y Q
K, %=1 ik k& L

M N
- “1 “1 1
= i w L C,(Ts")c (s) 2 T(p|g) (TS Yo,

AY -
k' =1 S,T pg "‘i! (32>
* Skq? T2k
1 LN i* =1
-1 L) | h ey i
= w L C (TS ")C (s)y L "Tiplg)¥(7s *Q 2 .(QS)i R
Vos, TV ALY PJ q
Letting\g’a 3&3 and using the orthogonality properties of the
C V(R)’ we obtain
- . N ‘ - e,
(v.")., = g tw ™ & C(TS™H)C (8) & T(k|wIR, (TR™Y) |
v i v R,S,T v \Y k, %=1 i kJ
(33)
= g ‘W LC (T T T(k{&IR, (TR ")
Vor,T Y k2= .14 kJ ¢

1

r

In a similar way we obtain the matrix elements of the symmetric
component of the second order density matrix

1 Y

(TR .
p ’ﬁq

[ {3 ]

N
(r." =g tw, "t L C(TY I T(ijlk&IR_,R_.(TR™})
vV 'rspq R,T v P<j=1 ri sj k
k<=1 (34)
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Equations (33) and (34) are the final expressions for the coefficients
in the expansion of ;LVD and J;VO ’ respecf:ivelyo Again a knowledge
of the matrices of the group operations and the appropriate character
table is all that is needed to perform the calculations. Bécause
equations (33) and (34) are slightly simpler than equations (22) and

(24), the totally symmetric components should prove more convenient

for performing numerical calculations involving symmetric operators.

VIL. Totally Symmetric Components of First QOvder Density Matrices

Before and After Projection

¢

1t has been noticed in spin-projection calculations that the
i
natural orbitals of the charge density matrix are not changed by pro-
jection.1 In what follows, we will examine the corresponding problem

in the point-group case.

3

Let the totally symmetric compounent of the first order density

matrix before projéction be denoted by p% . with v,,° from

WV

equation (33), we have for an element of the commutator of 0% and Y o
. AR SEad

AY
i
0 0 M 0 0 |
. = ] 0
Lvy®oe®dy qu{‘Yv TGS DY RIS PRSI
=g 'w,~t L C (T I Tm|n)
R, T m,n=1

R r [
. hlo ’ - 0 n-l
| X{Rin(TR p )mj (p R)in(TR )mJ

(35)
b

4
y

Betause bothviioand ;Lvoare by definition totally symmetric;

they will commute with all symmetry operations and so will their
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commutator. We can transform to a symmeiry adapted bagis {n&a;}
related to the original spin-orbital basis { @i } by a unitary transe

formation

o

(eai),j ai , (363

The set. gail can be thought of as congtituting 2 single index
labeling n or as a set of indicies. The irreducible representation
is identified Sy ¢ and further labeled by a if J% ; the number of
times the m?h irreducible representation’ occurs in the reduction of
the {$i} representation, is greater than 1. The functions transe
forming among themselves within a given irreducible representation
are indexed by i.

In ' this gymmetrywadapted basis, .symmetric operators will have
zero matrix elements between functions belonging to different irre-

ducible vepresentations. Further, the blokk associated with a given

irreducible representation ( o and a) wust be 4 multiple of the

"'«'2@«‘“
n_Xn unit matrix !
o o
t i
0.0 - ,
¥ [2%]n aj” = 8 Eaa) (37)
]
where ' canbe p%, v %, or their commutator and £(oa)
IIER PRAY)

depende on the operator, a and o , but not'on L or j. The matrices
of the sypmetry operations themselves will ke zmero cutside each
n&xn% block labeled by o and a.! ¢

5

4
4 i
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Using equations {33) and (36), and the fact that p” commnutas
Aflpde

with all symmetry operations, we obtain

i P ¥

Ny M, |
S - h .
Cv.%p%. " = g7 "t s c(T) £ Tmln) & £ {u
v ¢ id Vi oR TV m, e o,a B,b i, (aaqg)
¢ G, t,8
: o o =1 ‘
X <n aquln ar>U (uar)ﬁﬂumﬁ(ﬁbs} {38)

x <nf__[p®TR™ [nf, >u”

1 . :
(Bbt), ] “a,(maqycn“aqiﬂgﬁlngar>

e gl D e 11,8 =y
XU gary, nYm, (Bbs) <M sl TR TInT ou (Bbt), e

N V)

L

¢

i
Therefore, we may identify the matvix element in the symmetry-~adapted

basis as

N
o 0 8 =1, =1
en”_ L0y, % 090" > = g"lw Tt B C (T) £ Tim|n)
ag \Y bt Vv R,T v m,n=1
| (39) <.

x 1 {<n® 8

' [+
[R]n ><n
r,s q ar

erp™l|n.B
2 bl P TR TInTy >

w en® 0.0 B Yrp=1]..B Y
<n anRp !n ar><n bslTR .Jﬂ b?>}u (@ar},num@(ﬁbs}g

From equation (37) we have

i

t } ¥ i

€ £ 0,0
[RIn", ><n” 1’07, >

o Fopy O
<n [Rp?|n >
aq k ar u aq e eu (40}

L]
o ™
A
fows

§‘<naargpo Maaﬁ ?

i
A
s
e
=3

ar
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. o *
where <nwar_|p°|n is in fact independent of v.

ar
Because [Y\f’pp°] is anti-Hermitian, it can be diagonal~-
ized by a.unitary transformation. The set’ {rfﬁé; }has not yet been

completely gspecified, so we now use our freedom to choosg it so that

[yv“,{3°] is diagonal. Equation (39) then becowmes
o ) B “y,, -1 N l
< Ly %03 n", > = 6 ,0_ 8 g 'w L CAT)Y & Tim|m)
aq'~'v bt e ab gt YOR,T Y m, =i
) o o SNIR: (A1)
x 1< aquln ar” <N aslTR In aq> ‘
r,s i
+) 0 s - O proo0q 08 . =, .
x {<n as!p Iﬂ as> <n ar!p ’ﬁ ar}}u (mar)gﬁum,imasEQ
it i .
Bacause ﬁﬁ@ lg“ln@ > . doeg not depend on v
‘ ar’' ar £ oo oA
o 8 =
gl By eIt > = 0 {42)

3

!
and from this we deduce that the eigenfunctions of the totally

symmetric component of the first order density matrix will not be w%ﬁ'
changed by projection.

¢

i

VIII. Discussion of Results
In this @%wgﬁ@@we have shown how to calculate the first and second
£
order density matrices of symmetry-projected wave functions. Our

technique does not require the explizit calculation of the projected
)
wave function. The method should prove very useful when appliisd to

‘point-group projection in polyatomic molecules and Iﬁaprcjectien‘in
1 : *
diatomics.,

1 ‘ &
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We have also shown how to project from a given density matrix the
totally symmetric component. This compone%t is all that is needed in
the calculation of expectation values of symmetric operators. Finally,
we have shown that the NSO's of the totally symmetric component Gf’ihe
first order density matrix are unchanged by projections. ’

These regults are of potential use in two ways:

(1) As a practical method of obtaining expectation values of symmetiic
operatcré for the compdnent of a particular symmetry, projeéteé.

*  from a non-symmetry adapted single-determinant wave function.

(2) As the first step in obtaining a varihtionally-useful energy
expression for an extended Hart%ee-Foék calculation in which
non~-symmetry adapted orbitals are usell to obtain a lower energy
without sacrificing the symmetry propérties of the total wave

function. )
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