N \quad (0 4.446

CR 102848

STUDY OF A NONSTATIONARY ADJOINT STATISTICAL WIND MODEL FOR FLIGHT
 CONTROL SYSTEMS ANALYSIS

ENGINEERING REPORT NO. 1621

28 FEBRUARY 1969

PREPARED FOR
GEORGE C. MARSHALL SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HUNTSVILLE, ALABAMA

FINAL REPORT
CONTRACT NO. NAS8-21444

STUDY OF A NONSTATIONARY ADJOINT

 STATISTICAL WIND MODEL FOR FLIGHT CONTROL SYSTEMS ANALYSIS
ENGINEERING REPORT NO. 1621

28 FEBRUARY 1969

PREPARED FOR
 GEORGE C. MARSHALL SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINIST RATION HUNTSVILLE s ALABAMA

FINAL REPORT

CONTRACT NO. NAS8-2 1444

Prepared by:

J. 1. Palmer

Project Manager

Approved by:

SUMMARY

Design and analysis of large booster flight control systems require techniques that account for the time varying character of the dynamic system. In addition, the techniques must account for system forcing functions that are random processes. The tools available for these studies have been limited. In general, they are subject to analytical formulation, but tend toward numerical schemes. Such a numerical scheme was presented in "Launch Vehicle Winds and Turbulence Response by Nonstationary Statistical Methods, " NASA CR846.

This report is an extension of the work undertaken in NASA CR846 and presents the application of techniques there formulated, to large amounts of Jimsphere data with the random process frequency content included.

The work was performed at Hayes International Corporation from June 1968 to February 1969 under Contract No. NAS8-21444. "Study of a Nonstationary Adjoint Statistical Wind Model for Flight Control Systems Analysis, " for Aero Astrodynamics Laboratory of George C. Marshall Space Flight Center. Mr. Jerome R. Redus and Mr. William W. Heuser of the Optimal Control Theory Branch of the Astrodynamics and Guidance Theory Division were the NASA technical supervisors during the periods of performance of this contract.

TABLE OF CONTENTS

SECTION TITLE PAGE
SUMMARY ii
TABLE OF CONTENTS iii
I. INTRODUCTION 1
II. BASIC RELATIONSHIPS 5
III. WINDS AND TURBULENCE DATA DEVELOPMENT 8
IV. DEVELOPING THE COVARIANCE MATRIX 12
V. DETERMINATION OF THE DERIVATIVES OF THE 16 COVARIANCE MATRIX
VI. REGRESSION ANALYSIS FOR THE SHAPING FILTER 21EQUATION COEFFICIENTS
VII. SHAPING FILTER COEFFICIENTS 26
VIII. COMPUTER PROGRAMS 31
COMPUTER SYMBOLS 32
CRITIQUE OF RESULTS 38
CONCLUSIONS 40
RECOMMENDATIONS 41
REFERENCES 42

I. INTRODUCTION

For time varying systems that ascend the atmosphere, winds are a major consideration in design of flight control systems. Therefore, it becomes advantageous to have available a tool for design and analysis that can rapidly produce accurate vehicle response statistics. This tool is available in the winds and turbulence "shaping filter" and the "adjoint" techniques of analysis.

The shaping filter is designed for use with the adjoint technique of analysis, or programs formulated with optimal control techniques requiring mean square system response. By determining the appropriate coefficients, the shaping filter can be used to generate the winds and turbulence statistics that are necessary as an input to a dynamic system to obtain the system mean square response due to winds and turbulence input.

The shaping filter developed in this report is representative of the winds and turbulence over Cape Kennedy, Florida as measured by the Jimsphere Wind Sounding Program conducted by Marshall Space Flight Center, Huntsville, Alabama.

To use the shaping filter with an adjoint technique of analysis, the shaping filter is joined with the time varying system to form a combined system, that has a white noise input and a response which is the vehicle output that normally results from winds and turbulence.

The combined system equations are programmed as adjoint equations.

The impulse response of the adjoint system is the adjoint weighting function of the system, $g(T, t)$, as a function of the second argument T. Application of linear system theory has resulted in the equation

$$
\bar{O}^{z}(t)=\int_{0}^{t} g(\tau, t)^{2} d \tau
$$

and allows direct calculation of the same time varying system mean square response that would result from an ensemble of wind and turbulence profiles input to the time varying system.

The shaping filter, so named because it shapes a white noise input into a prescribed random process whose correlation function is known, was suggest. ed for use with the adjoint technique of analysis by Lanning and Battin (l),for stationary processes, and applied to nonstationary processes by Bailey, Palmer, and Wheeler ${ }^{(2)}$,using statistical dynamics based on the works of Batkov ${ }^{(3)}$, and Solodovnikov (4).

The general synthesis of the shaping filter in the nonstationary case requires far more preparation than synthesizing the shaping filter for a stationary process developed in Ref. (1). This is primarily due to the fact that the power spectra and correlation of stationary processes have a direct transfer relationship and admit to an analytical solution. There are relationships in the nonstationary case, but at present there are no analytical solutions which allow the attainment of the filter equation through direct transformation as in the stationary case.

The shaping filter is defined as an $n^{\text {th }}$ order differential equation with time or altitude varying coefficients that are developed from the winds and turbulence data. The input to the shaping filter is white noise and the output winds and turbulence statistics equivalent to ensemble statistics of the winds and turbulence used to develop the filter. These ensemble winds and turbulence nonstationary statistics, correlation or covariance, are related to the filter characteristics through the filter weighting function.

The winds and turbulence data are reduced and arranged in a form such that the statistics may be related to the filter. The order of the filter must be established and the necessary derivatives of the covariance determined. These derivatives are used to determine the coefficients of the filter equation.

Determination of the time varying coefficients of the shaping filter is equivalent to development of the shaping filter.

Section I of this report presents the basic equations that have been developed as foundation stones for the nonstationary statistical development. A
complete development of these equations is given in References 3 and 4, with an excellent summary of the adjoint approach in Reference 5. Sections II, II and IV present the statistical development and underlying problems that are to be considered prior to undertaking the numerical task of development of the mean and covariance matrix.

Section V presents the approach taken in developing the derivatives of the covariance at each point along the altitude span of the covariance matrix.

Section VI presents development of the coefficients for both the left and right hand side of the equation (1) of Section II.

Section VII presents the filter coefficient development computer programs.

II. BASIC RELATIONSHIPS

To arrive at the basic equations that are to be used in the numerical and analytical presentation and development of the shaping filter, let the filter be defined as an $n^{\text {th }}$ order differential equation with a white noise input

$$
\begin{align*}
& a_{n}(t) \frac{d^{n} x(t)}{d t^{n}}+\ldots+a_{o}(t) x(t)=b_{m} \frac{d^{m} \eta(t)}{d(t)^{m}}+\ldots+b_{o}(t) m(t) \\
& \text { or symbolically } \\
& D(p, t) x(t)=M(p, t) m(t) \\
& \tag{1}\\
& \\
& \\
&
\end{aligned} \begin{aligned}
& D(p, t)=\Sigma a_{i}(t) \frac{d}{d t} \quad p=\frac{d}{d t}
\end{align*}
$$

$m<n, \eta(t)=$ White Noise

The solution to the shaping filter problem is determination of the $a_{i}(t)$, $b_{i}(t)$ of equation (1) such that $x(t)$ has prescribed nonstationary statistics in the form of an arbitrary continuous covariance. A solution to the filter equation may be written as

$$
\begin{equation*}
X(t)=\int_{-\infty}^{t} g(t, T) \eta(t) d T \tag{2}
\end{equation*}
$$

$X(t)$ is the random process desired and $g(t, T)$ is the filter weighting function, or impulse response. The impulse response $g(t, T)$ of the filter can be defined as the solution to

$$
\begin{equation*}
D(p, t) g(t, \tau)=M(p, t) \delta(t-\tau) \tag{3}
\end{equation*}
$$

Equation (3) plays a major role in the development of relationships between the filter equation and the winds and turbulence, that the filter is to generate, for it delineates the form of the equations to be developed.

The form that is desired is a form that allows the solution to the filter equation to be in terms of winds and turbulence statistics, namely, correlation or covariance. The correlation of the solution to equation (1) is the average product of equation (2) at times t and τ.

$$
\begin{align*}
R_{X}(t, \tau)=\overline{x(t) x(\tau)} & =\int_{-\infty}^{t} g(t, \lambda) \eta(\lambda) d \lambda \int_{-\infty}^{\tau} g(\tau, \theta) \eta(\theta) d(\theta) \\
& =\int_{-\infty}^{t} \int_{-\infty}^{\tau} g(t, \lambda) g(\tau, \theta) R_{\eta}(\theta, \lambda) d \lambda d \theta \tag{4}
\end{align*}
$$

where $R_{\eta}(\theta, \lambda)$ is the correlation of the input which is known to be $\delta(t)$, a result following from the input being white noise.

Substituting $\delta(\mathrm{t})$ into equation (4) and recalling that

$$
\begin{equation*}
\int_{0}^{t} g(t, \tau) \delta(\tau-\lambda) d x=g(\tau, \lambda) \tag{5}
\end{equation*}
$$

equations for $R_{x}(t, \tau)$ are derived

$$
\begin{align*}
R_{x}(t, \tau) & =\int_{-\infty}^{t} g(t, \lambda) g(\tau, \lambda) d \lambda \text { for } t<\lambda \\
& =\int_{-\infty}^{T} g(t, \lambda) g(\tau, \lambda) d \lambda \text { for } t<\tau \tag{6}
\end{align*}
$$

Operating on both sides of equation (6) with $D(p, t)$, equation (6), part two reduces to zerofor $\tau<t$. The correlation, or covariance, of the output of the filter satisfies part two of equation (7), hence,

$$
\begin{array}{ll}
D(p, \tau) R_{X}(t, \tau)=0 & t<\tau \\
D(p, \tau) R_{X}(t, \tau)=M(p, \tau) g(t, \tau) ; & t>\tau ; p=\frac{d}{d \tau} \tag{7}
\end{array}
$$

Equations (7) state the relationships between the correlation of the winds and turbulence, and the filter function. They are the basic equations from which the $a_{i}(t)$, the time varying coefficients of the left-hand side of equation (1) are developed. The values of equation (1) on the right-hand side, $b_{i}(t)$, are developed from the initial conditions placed on $g(t, \tau)$. The initial conditions used to develop the $b_{i}(t)$ have been thoroughly developed in Reference 2.

The numerical techniques that follow are developed in terms of altitudes h_{i} and h_{j} as opposed to t and T in the development presented in Section II. Transformation from the altitude domain to the time domain can be accomplished by techniques described in Reference (6).

III. WINDS AND TURBULENCE DATA DEVELOPMENT

The shaping filter must have a random output which has the same correlation or covariance as the winds and turbulence measured by FPS/16-Jimsphere techniques. Figure 1 represents a Jimsphere zonal wind speed recording plotted over the altitude interval of interest.

Figure 1
From an ensemble of such profiles, the mean and covariance matrices are to be formed. Utilization of the Jimsphere data to develop a shaping filter requires a careful evaluation of both Jimsphere data and characteristics of the vehicle to be analyzed. The Jimsphere data, at present, is represented by over 1200 records of Cape Kennedy winds, recorded at 25 meter intervals, beginning at approximately 200 meters and extending to approximately 18000 meters. Present records are zonal, meridional and scalar winds.

Such large quantities of data require selectivity in use such that the model contains statistics that excite the important vehicle modes that would be excited
during an actual flight. Selecting data for building the filter can best be explained by an example. Consider the Saturn class vehicle during actual flight. The rigid body mode is in the neighborhood of 1 radian per second and the first the three elastic modes are approximately 6,13 , and 18 radians per second. The frequency range of importance then will be between approximately 0.5 and 20 radians per second.

The model can be developed around statistics that contain these frequencies if the proper lag is utilized in development of the covariance matrix. In order to determine a lag size in the covariance matrix that will insure incorporating frequencies up to $20 \mathrm{rad} / \mathrm{sec}$ into the problem, consider a vehicle velocity of $525 \mathrm{~m} / \mathrm{sec}$, and wind data recorded at 25 meter intervals. Then,

$$
\begin{align*}
\lambda(\text { wind profile wavelength }) & =\frac{V \text { (vehicle velocity at max } Q \text {) }}{f \text { (vehicle frequency of interest). }} \\
& =\frac{525 \mathrm{~m} / \mathrm{sec}}{3.18 \mathrm{c} / \mathrm{s}}=165 \text { meters } \tag{8}
\end{align*}
$$

Therefore, a wavelength of 165 meters is required to introduce frequencies of up to $20 \mathrm{rad} / \mathrm{sec}$ into the vehicle problem in the maximum dynamic pressure region. When building a covariance matrix, three points are required to define one wavelength. Hence, the lag size must be one-half ($1 / 2$) the wavelength requirement to avoid averaging out the desired frequencies. Therefore, to use the Jimsphere data without interpolation, a lag size of 75 meters would be appropriate in the example considered.

By considering the frequency range of interest, the analyst can select from the bulk of Jimsphere data only the wind direction desired, at 75 meter intervals,
thereby reducing the bulk of data to be handled by from 3 to 5 times. Proper selection of data can be crucial where the filter is to be developed on a small digital computer, i. e., 5K storage.

The data selected for this model development were the EAST-WEST (zonal) component of all Jimsphere recordings available. The data were taken in 50 meter steps, beginning at 200 meters and extending through 16,050 meters. To facilitate the analysis, all E-W (zonal) data at 50 meter intervals on 5 Jimsphere record tapes were transferred to a single E-W tape at 50 meter intervals, reducing the data handling from 5 tapes to 1 tape

The single tape contains record lengths of 1251 words: altitude, and 1250 recordings at a given altitude, extending over several years, for a grand total of 320 records each of 1251 words. From the ensemble of such profiles, on the single tape, separate statistics may be readily calculated for any altitude range. The required statistics of interest are:
mean wind at altitude h_{r}

$$
\begin{equation*}
V_{w}\left(h_{r}\right)=\sum_{j=1}^{N} \quad V_{w}\left(h_{r}\right)_{j} / N \tag{9}
\end{equation*}
$$

covariance of the wind profile

$$
\begin{equation*}
C\left(V_{w}\left(h_{r}\right), V_{w}\left(h_{s}\right)\right)=\sum_{j=1}^{N}\left(V_{w} h_{r}-\bar{V}_{w} h_{r}\right)_{j}\left(V_{w}\left(h_{s}\right)-\overline{\mathrm{V}}_{\mathrm{w}}\left(h_{s}\right)\right)_{j} / N_{s} \tag{10}
\end{equation*}
$$

and correlation defined as

$$
\begin{equation*}
R\left(V_{w}\left(h_{r}\right) V_{w}\left(h_{s}\right)\right)=C\left(V_{w}\left(h_{s}\right) V_{w}\left(h_{s}\right)\right) \tag{11}
\end{equation*}
$$

when the average of the process is equal to zero.

Either covariance or correlation may be used in the filter development. However, previous developments have indicated that covariance is a more tractable number and will be used in the filter development.

Utilizing equations (1) and (3), and the reduced data tape, a covariance and mean matrix can be formed.

Referring to Figure 2, a typical set of N wind profiles, and applying standard ensemble techniques, a matrix of covariance values may be formed.

A sample average or expected value of the wind velocity at any altitude h_{r} may be calculated by use of equation (9).

$$
\begin{equation*}
A V\left(V h_{r}\right)=E\left(V\left(h_{r}\right)\right)=\frac{1}{N} \sum_{j=1}^{N} \quad V_{j}\left(h_{r}\right) \tag{12}
\end{equation*}
$$

$\frac{1}{N} \sum_{j=1}^{N} \quad V_{j}\left(h_{r}\right)$ may also be expressed $\left\langle V_{j}\left(h_{r}\right)\right\rangle$, the ensemble average of wind velocity at altitude h_{r}.

$$
\begin{align*}
& \text { Let } V^{\prime}(h)=V(h)-<V_{j}(h)>\text {. Then the covariance is defined as } \\
& \operatorname{Cov}\left(h_{r} h_{s}\right)=\left\langle V^{\prime}\left(h_{r}\right) V^{\prime}\left(h_{S}\right)>\right.=\left\{V\left(h_{r}\right)-<V_{j}\left(h_{r}\right)>\right\}\left\{V\left(h_{s}\right)-<V_{j}\left(h_{s}\right)>\right\} \\
&=<V\left(h_{r}\right) V\left(h_{s}\right)>-<V_{j}\left(h_{r}\right)><V_{j}\left(h_{s}\right)> \tag{13}
\end{align*}
$$

Equation (13) indicates the covariance value between wind velocity at altitudes h_{r} and h_{s} is given by the correlation of wind velocities at altitudes h_{r} and h_{s} averaged across the wind profile sample, minus the product of the average values of wind velocity at altitudes h_{r} and h_{s}. By taking altitudes h_{r} and h_{s} throughout the wind profile, from the lowest to the highest altitude, a matrix of covariance values will be formed. The matrix is shown in Figure 3 , and is an $n \times n$ symmetric matrix with n depending on the lag size selected.

The numerical scheme that is used with equations (12) and (13) depends on the computational facility available, and as more Jimsphere data becomes
available, the computational scheme will play an even more important part. The scheme used in computing the matrix of this program was to "split out" the 320 Jimsphere records into 4 tapes of 80 records each, thus saving computer time in search through the tape as the record number increases.

There were 1251 words read into computer storage for 2 altitudes, beginning with 200 meters altitude. These records were correlated with themselves and all records above 200 meters. This procedure is repeated through out the 320 profiles. Any number of records may be read in initially, depending on available storage space of the computational facility. The technique described required 92 minutes on an IBM 7094 computer. An IBM $360-30$ of 5 K storage was tried but proved prohibitive timewise. This machine appeared to be execute bound.

The covariance matrix,generated and stored rowwise, is now ready for calculating the n derivatives for use with regression analysis to develop the coefficients.

Figure 2

COVARIANCE MAT RIX

h_{j}

Figure 3

V. DETERMINATION OF THE DERIVATIVES OF THE COVARIANCE MATRIX

A method for developing $\frac{d}{d h_{j}} C\left(h_{i} h_{j}\right)$ and $\frac{d^{2}\left(h_{i}, h_{j}\right), \ldots, \frac{d^{n}\left(h_{i}, h_{j}\right)}{d h_{j}^{2}}}{d h_{j}^{n}}$ when $C\left(h_{i}, h_{j}\right)$ is given in tabulated form as shown in Figure 3 is to represent $C\left(h_{i}, h_{j}\right)$, as shown in Figure 4, as a polynomial and evaluate $\frac{d C}{d h}$ and $\frac{d^{2} C}{d h^{2}}$, $\ldots, \frac{d^{n} C}{d^{n}}$ along the span of the polynomial. The polnomial that represents $C\left(h_{i}, h_{j}\right)$ is called an interpolating polynomial and may be found from the tabulated data through the use of a finite difference table to develop the elements of the polynomial.

When tabulated data is given as in the case of $C\left(h_{i}, h_{j}\right)$ of Figure $3, h_{i}$ is held constant for any tabulation of $C\left(h_{i}, h_{j}\right)$ resulting in a $C\left(h_{i}, h_{j}\right)$ that has h_{i} as a dependent variable and h_{j} as an independent variable。

The elements of the finite difference table are developed from the tabulated $C\left(h_{j}\right)$, called the zero order difference. Representing the first difference in the finite difference table as $\Delta C_{o}=C(\underset{j+1}{ })-C\left(h_{j}\right)$, the difference in $C\left(h_{j}\right)$ over a span of altitude h (lag size of C), $\Delta^{2} C_{o}$ as the second difference etc., the table takes the form shown in equation (14). The whole curve made up of all covariance values for a fixed $h_{i}=200$ meters is shown in Figure 4. Determination of the values of $\frac{d C}{d h_{j}}$ by fitting this curve with a single polynomial would require a polynomial of prohibitive degree if an accuracy of interpolation of 1% is desired. This problem was circumvented by using a floating point polynomial fit of small segments of the total curve, in this case 2000 meters and and a fourth degree polynomial.

From this finite difference table, the interpolation of C may be accomplished. The Gregory-Newton formula for forward interpolation will be used. This equation is

$$
\begin{align*}
P_{n}(C) & =\sum_{r=0}^{n} \frac{u^{[r]}}{r!} \Delta^{r} C_{o} \tag{15}\\
u^{[r]} & =u(u-1)(u-2) \ldots(u-r+1)
\end{align*}
$$

The polynomial is some function of $C\left(h_{j}\right), f(C)$. Lit is approximated by the polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{u})$ where $\mathrm{u}=\frac{\mathrm{C}_{1}-\mathrm{C}_{\mathrm{o}}}{\mathrm{h}}, \mathrm{h}=.05$ kilometer.

$$
\begin{align*}
& \frac{d f(C)}{d h_{j}}=\left(\frac{d P_{n}(u)}{d u}\right) \frac{d u}{d h_{j}} \tag{16}\\
& \frac{d u}{d h_{j}}=\frac{1}{h}
\end{align*}
$$

Differentiation of $P_{n}(u)$ results in derivative matrices similar to the covariance matrix. The derivative matrices have as elements the first and second, or more, derivatives of covariance corresponding to the elements of the covariance matrix. The N derivative matrices are developed from the covariance matrix by using the row-wise differentiation of the covariance matrix. The elements of the covariance, first, second, third and etc., derivative matrices are used with the regression technique of Section VI to develop the $\mathrm{a}_{\mathrm{i}}(\mathrm{t})$ of equation (1).

As in the initial selection and organization of the winds and turbulence data, the matrices must be arranged in a convenient form if a small computer is to be used for the filter development.

The elements of all matrices are formed by row-wise operation whereas the regression analysis of Section VI, used for developing the $\mathrm{a}_{\mathrm{i}}(\mathrm{t})$, is performed column-wise. To facilitate the regression analysis, data sorting is performed on the three matrices to form a single matrix. The single matrix is unique in that each single element of this new matrix has several parts, $C_{i j}, \frac{d C_{i j}}{d h_{j}}, \ldots$, $\frac{d^{n} C_{i j}}{d h_{j}^{2}}$. Therefore, when the regression analysis is performed at a given h_{j}, this matrix furnishes all necessary data values in a single record read by the computer. Regression analysis begins with the second record, since the
first record contains only one point i. e. $\left(\operatorname{Cov}(200,200), \frac{d C}{d n}(\operatorname{Cov} 200,200)\right.$, $\frac{d^{n}}{{d h^{n}}^{n}}$ (Cov 200,200)), and the regression analysis does not hold (is equal to zero) for a single point.

VI. REGRESSION ANALYSIS FOR THE SHAPING FILTER EQUATION COEFFICIENTS

In general theory, multivariate regression plane is represented by

$$
\begin{equation*}
X_{1 r}=k_{1}+k_{2} X_{2}+k_{3} x_{3} \ldots k_{n} x_{n} \tag{17}
\end{equation*}
$$

where X_{1} is a regression on $X_{2} \ldots X_{n}$. In other words, X_{1} is the dependent variable and it remains to determine the k_{i} such that the equation best approximates the data represented by the X variables. By relating the variables $C\left(h_{i}, h_{j}\right), C^{\prime}\left(h_{i}, h_{j}\right), \ldots, C^{n}\left(h_{i}, h_{j}\right)$ of the problem to the regression equation, the $\mathrm{a}_{\mathrm{i}}(\mathrm{t})$ of equation (1) can be found as the k_{i} are found in the general problem. The filter order is selected as 2 for the problem filter. The regression equation and the filter equation as related to the covariance is $C^{n}\left(h_{i}, h_{j}\right)$ o

$$
\begin{equation*}
C^{\prime \prime}+a_{i} C+a_{0} C=0 \tag{18}
\end{equation*}
$$

This equation is similar to the regression equation

$$
\begin{equation*}
X_{1 r}=k_{2} X_{2}+k_{3} X_{3} \tag{19}
\end{equation*}
$$

where the X_{i} are referred to their mean value and k_{1} becomes zero. The $a_{i}(h)$ are to found such that the sum of the squares of the deviations between the observed and predicted values, as given by

$$
\begin{equation*}
D^{2}=\sum_{j=1}^{N}\left\{C_{j}^{\prime 1}+a_{i} C_{j}+a_{o} C_{j}\right\}^{2}, \tag{20}
\end{equation*}
$$

is a minimum. By taking the partial derivative of D^{2}, a set of normal equations are arrived at such that their solution results in the a_{i} given in terms of products and squares of known values of $C, C^{\prime}, C^{\prime \prime}$ that were stored in the single matrix generated in the final stages of the derivative program. The equations
that result from differentiation of equation (20) may be solved as to equations with two unknowns, resulting in expressions for $a_{o}\left(h_{i}\right), a_{i}\left(h_{i}\right), i=200,15950$ meters, by 50 meter steps.

$$
\begin{aligned}
& a_{o}\left(h_{i}\right)=\frac{-\sum_{j=1}^{i} C^{\prime \prime}\left(h_{i}, h_{j}\right) \sum_{j=1}^{i} C^{\prime}\left(h_{i}, h_{j}\right)^{2}+\sum_{j=1}^{i} C^{\prime}\left(h_{i}, h_{j}\right) C^{\prime \prime}\left(h_{i}, h_{j}\right) \sum_{j=1}^{i} C\left(h_{i}, h_{j}\right) C^{\prime}\left(h_{i}, h_{j}\right)}{\sum_{j=1}^{i} C\left(h_{i}, h_{j}\right)^{2} \sum_{j=1}^{i} C^{\prime}\left(h_{i}, h_{j}\right)^{2}-\left(\sum_{j=1}^{i} C\left(h_{i}, h_{j}\right) C^{\prime}\left(h_{i}, h_{j}\right)\right)^{2}} \\
& a_{1}\left(h_{i}\right)=\frac{-\sum_{j=1}^{i} C\left(h_{i}, h_{j}\right)^{2} \sum_{j=1}^{i} C^{\prime}\left(h_{i}, h_{j}\right) C^{\prime \prime}\left(h_{i}, h_{j}\right)+\sum_{j=1}^{i} C\left(h_{i}, h_{j}\right) C^{\prime}\left(h_{i}, h_{j}\right) \sum_{j=1}^{i} C\left(h_{i}, h_{j}\right) C^{\prime}\left(h_{i}, h_{j}\right)}{\sum_{j=1}^{i} C\left(h_{i}, h_{j}\right)^{2} \sum_{j=1}^{i} C^{\prime}\left(h_{i}, h_{j}\right)^{2}-\left(\sum_{j=1}^{i} C\left(h_{i}, h_{j}\right) C^{\prime}\left(h_{i}, h_{j}\right)\right)^{2}}
\end{aligned}
$$

The numerical approach taken to develop the $b_{i}(h)$ can be more easily understood by referring to Figure 5 during the following development. When the $C\left(h_{i}, h_{j}\right)$ of Figure 3 is plotted with h_{i} as the dependent variable, the curves for $h_{i}>h_{j}$ are obtained and when the $C\left(h_{i}, h_{j}\right)$ are plotted with h_{j}, the dependent variable, the curves of $h_{i}<h_{j}$ are obtained. They are identical due to the symmetry of the matrix. Either form may be used to generate the filter coefficients. For the case taken, h_{i} is the dependent variable and the curves for $h_{j}>h_{i}$, the curves to the right of $h_{i}=h_{j}$ are used.

The line $h_{i}=h_{j}$ is of importance in evaluating

$$
\left.\left.\frac{d c}{d h_{j}}\right|_{h_{i}=h_{j}^{-}} ^{\text {and }} \frac{d c}{d h_{j}}\right|_{h_{i}=h_{j}}{ }^{+}
$$

$\left.\frac{d c}{d h_{j}}\right|_{h_{i}=h_{j}}+\quad$ is evaluated along the curves B at a point $h_{i}=h_{j}+$. The value of $\left.\frac{d c}{d h_{j}}\right|_{h_{i}=h_{j}} \quad$ is evaluated along the curves A at a point $h_{i}=h_{j}{ }^{-}$; or
can be more readily found by differenting curves C since the values of $C\left(h_{i}, h_{j}\right)$ etc. are taken along the curves B at 50 meter intervals. The values of $C\left(h_{i}, h_{j}\right)$ at $h_{i}=h_{j}$ appear to be zero (0) in Figure 5. This, however, is not the case as is shown in the exploded view of Figure 5, where a discontinuity is evident.

The curves A and C are obtained by taking a plane through the $C\left(h_{i}, h_{j}\right)$ curves at points h_{i} or h_{j}.

Since $g\left(h_{i}, h_{j}\right)$ is the impulse response function or weighing function for this filter

$$
a_{o}\left(h_{i}\right) g\left(h_{i}, h_{j}\right)+a_{1}\left(h_{i}\right) \frac{d g\left(h_{i}, h_{j}\right)}{d h_{j}}+\frac{d^{2} g\left(h_{i}, h_{j}\right)}{d h_{i}^{2}}=0 \text { for } h_{i}>h_{j} .
$$

By approximating $\frac{d g\left(h_{i}, h_{j}\right)}{d h_{j}}$ and $\frac{d^{2} g\left(h_{i}, h_{j}\right)}{d h_{j}}$ in terms of differences representing three points, a system of equations may be obtained to be utilized for numerically obtaining $g\left(h_{i}, h_{j}\right)$ for points near $h_{i}=h_{j}$. If $h_{i o}, h_{i, 1}$ and $h_{i 2}$ are three consecutive values of h_{i} near $h_{i}=h_{j}$ taken along the span of h_{j}, then $\left.\frac{d g\left(h_{i}, h_{j}\right)}{d h_{j}}\right|_{h_{i}=h_{\text {io }}}=\frac{1}{2}\left[-3 g\left(h_{i o}, h_{j}\right)+4 g\left(h_{i 1}, h_{j}\right)-g\left(h_{i_{2}}, h_{j}\right)\right]$
$\left.\frac{d g\left(h_{i}, h_{j}\right.}{d h_{j}}\right|_{h_{i}=h_{i 1}}=\frac{1}{2}\left[-g\left(h_{i o}, h_{j}\right)+g\left(h_{i 2}, h_{j}\right)\right]$
$\left.\frac{d g\left(h_{i}, h_{j}\right)}{d h_{j}}\right|_{h_{i}=h_{i 2}}=\frac{1}{2}\left[g\left(h_{i 0}, h_{j}\right)-4 g\left(h_{i 1}, h_{j}\right)+3 g\left(h_{i 2}, h_{j}\right)\right]$
and
$\left.\frac{d_{2} g\left(h_{i}, h_{j}\right)}{d h_{j}}\right|_{h_{i}=h_{i o}}=g\left(h_{i o}, h_{j}\right)-2 g\left(h_{i 1}, h_{j}\right)+g\left(h_{i_{2}}, h_{j}\right)$
In terms of three consecutive points the second derivatives are assumed constant. The points are taken close enough together to minimize error.

From the preceding numerical substitutions for the first and second derivatives of $g\left(h_{i}, h_{j}\right)$ in the differential equation of the shaping filter, the following system of difference equations may be obtained.
$\left.\left[a_{o} h_{i 1}\right)-2 a_{1}\left(h_{i 1}\right)\right] g\left(h_{i 1}, h_{j}\right)+a_{1}\left(h_{i 1}\right) g\left(h_{i 2}, h_{j}\right)=$

$$
\left[a_{o}\left(h_{i o}\right)-2 a_{\mathrm{I}}\left(h_{i o}\right)+a\left(h_{i I}\right)\right] g\left(h_{i o}, h_{j}\right)
$$

$\left(a_{o}\left(h_{i_{1}}\right)+1 a_{1}\left(h_{i 2}\right)\right] g\left(h_{i 1}, h_{j}\right)+\left(a_{1}\left(h_{i 1}\right)-a_{o}\left(h_{i 2}\right)-2 a_{1}\left(h_{i 2}\right)-2 a_{1}\left(h_{i 2}\right)\right]$

$$
g\left(h_{i 2}, h_{j}\right)=a_{i}\left(h_{i_{1}}\right) g\left(h_{i 0}, h_{j}\right)
$$

as developed in reference (3).

$$
g\left(h_{i o}, h_{j}\right)^{2}=\left(\left.\left|\frac{d C\left(h_{i o} h_{j}\right)}{d h_{i o}}\right| \begin{array}{|l|}
-\frac{d C\left(h_{i o}, h_{j}\right)}{} \\
h_{i o}=h_{j}
\end{array} \right\rvert\,\right.
$$

Thus, the system of two equations and two unknowns can be solved for $g\left(h_{i 1}, h_{j}\right)$ and $g\left(h_{j 2}, h_{j}\right)$. Substituting $g\left(h_{i o}, h_{j}\right), g\left(h_{i 1}, h j\right), g\left(h_{i 2}, h_{j}\right)$ when $h_{j}=h_{i o}$ in the formula for $\frac{d g\left(h_{i}, h_{j}\right)}{d h_{j}}$

$$
\begin{aligned}
& h_{i}=h_{i o} \\
& h_{j}=h_{i o}
\end{aligned}
$$

enables one to compute $b_{i}\left(h_{i o}\right)$ from the formulas,

$$
\begin{aligned}
& b_{1}\left(h_{i o}\right)=\left.g\left(h_{i}, h_{j}\right)\right|_{\left\lvert\, \begin{array}{l}
h_{i}=h_{i o} \\
h_{j}=h_{i o}
\end{array}\right.} \quad \text { and } \\
& b_{o}\left(h_{i o}\right)=\left.\frac{d g\left(h_{i}, h_{j}\right)}{d h_{j}}\right|_{\begin{array}{l}
h_{i}=h_{i o} \\
h_{j}=h_{i o}
\end{array}}+a_{1}\left(h_{i o}\right) b_{1}\left(h_{i o}\right) .
\end{aligned}
$$

VII. SHAPING FILTER COEFFICIENTS

The coefficients of the shaping filter differential equation (1) are given in this section. Figures 6 through 9 are $\mathrm{A} \phi, \mathrm{Al}, \mathrm{B} \phi, \mathrm{Bl}$ respectively. Computer tabulations of each graph are given following each graphical display.

No effort has been made to utilize the coefficients in an analog computer program, as was done during the development program CR846. No data smoothing was performed on the covariance data to insure smooth curves of $A \phi, A l, B \phi$ and $B 1$, rather, an effort was made to retain as much of the natural shape of the covariance as possible.

The covariance matrix will not be presented in this report due to the number of pages that would be required to fully represent all values utilized.

					$1]$																T						I																													\square
																					1																																			
																																															0									
				10			I																																																	\square
							1																																																1	1
																												$+1$																												
																												-																												
				-	1																						F	T																												\square
																							DI_{1}			H	H 7	L 1		1 N	10																									
																															\bigcirc																									
																													\square	T																										\square
					1																																																			
					1																																																			
					7																																																			
					3																																						4			7										
																	1			1									-																											
							1		-	T							-			-																									1											
									1	1			I																	n																							-			
																														I											1	-1			\bigcirc								1			
					6					1							1													1							A				1															
										T		1	-																	1							T		\square	7		\square											-			
							-	1	1	1																	1			\square										\square																
								1		1																	1		11	\square											\square												-			
					5		-	1												-							1		11	\square																										
																				\square							-															\checkmark	-													
															3		-			1							π		-												Γ						1									
							-1			\square						1				1																		1																		
					$1-$		L									T				-						0	1	-	\bigcirc									I																1		
							\bigcirc									1			-	-						4	1	T													4															
					4											14				-							1	N							H																					
					1							1	-1		1	11										1	1	1	\square		-										1				T											
										-		-1	\square		T	7	\square		\square	-						1	\square	N							\cdots										I											
										\square				\square	$\underline{1}$											\bigcirc	1	\square																												
					3									1	\square					\square						7			J		A																									
								$1 / 1$																																																
								$1 /$						CI	!		11	1		\square											,	1				\cdots																				
								1	11					${ }^{1}$	-				-1	\square						$\square 1$,						1																							
								11																																																
									T	1 1		${ }^{\square}$	\square	1	-1	11	1									1	I					V													0											
					2			-1	17	11		1		5	[1	10									-	1.														1															\square
									11	N	, 1				$1]$											1	I																													
										1	V	11		1				7				7				1	T												1																	
					\square					1	-				4			-				\cup				-	1												1		I															
					\square																																																			
					5																																																			
				\bigcirc	\square																			1																																
									$\underline{1}$																	7	1																													
					-																			1																																
					0											1												8.						Q					H2							14						16				
																																																								1
																																																								1

$A_{0}(h) \quad A_{1}(h)$
$\mathrm{B}_{0}(\mathrm{~h})$
$B_{1}(h)$
coefficients beginning 400 meters and increasing by 50 meter steps.
$0.943709 E \quad 00-0.211279 E$ 01 0.3177445 03 0.325791E O1
$0.802144 E \quad 00 \quad 0.157822 E \quad 01 \quad 0.102805 E$ U3 U. 2.33020 U1 $0.828959 E 000.340543 E 01 \quad 0.273399 E \quad 01 \quad 0.622388 E 00$ $0.843599 E \quad 00$ U.369723E
$0.864565 \mathrm{E} \quad 000.380628 \mathrm{E}$

$0.888715 E 000.378451 E$

0.893160 E 000.352549 E

$0.879876 E \quad 00 \quad 0.320951 E$
$0.108513 \mathrm{E} \quad 00-0.121552 \mathrm{E}$
$0.583673 E 000.100762 \mathrm{E}$
$0.744088 E \quad 00 \quad 0.236039 E$
$0.682485 E 000.218749 E$
U.631291E $000.208067 E$
$\begin{array}{lll}0.614490 \mathrm{E} & 00 & 0.218301 \mathrm{E} \\ 0.606613 \mathrm{E} & 00 & 0.234383 \mathrm{E} \\ 0.589931 \mathrm{E} & 00 & 0.245439 \mathrm{E}\end{array}$
$0.538930 \mathrm{E} \quad 0.23930 \mathrm{BE}$
$0.494154 \mathrm{E} \quad 00 \quad 0.239092 \mathrm{E}$
$0.454203 E \quad 00 \quad 0.265291 \mathrm{E}$
0.447347 E 00 O
0.430088 E 000.303655 E
$0.419509 E \quad 00 \quad 0.325960 E$ 0.429190 E 00 O.307066E O1 $0.505635 \mathrm{E} 000.458601 E$ OL $0.552012 E$ UO U.l171U3E OI - $0.448293 E 000.464117 E \quad 01 \quad 0.160020 E 03$ U. $255130 E$ U1 $0.141697 E 000.233752 E$ U1 0. 107500t U2 U.1759U3E U1 $-0.231535 \mathrm{E} 000.398151 \mathrm{E}-01$ 0.149330E U2 U. 202020 E U1 $-0.429863 \mathrm{E} \quad 00-0.174198 \mathrm{E} \quad 01-0.117201 \mathrm{E}$ O1 G.174727E OI -0.375097E 00-0.126482E 01-0.863995E U1 0.398UU3E O1 - $0.315105 E$ 00-0.639294E 00 U.1639JとE U1 0.138501E O1 $-0.300412 E \quad 00-0.516355 E \quad 00-0 . j 18522 E 01 \quad 0.245332 E 01$ $-0.253514 E \quad 00-0.571142 E-01-0.807778 E \quad 010.188162 E 01$

-0.174032E 00 0.105719E O1 0.33627UE O1 O.147708E O1

$-0.136513 E \quad 00 \quad 0.104821 E$ O1 $0.124524 \mathrm{E} \quad 020.180700 \mathrm{E}$ Ul
-0.118806E $000.229773 E \quad 01 \quad 0.984760 E \quad 01 \quad 0.245950 E O 1$

- 0.107625 E 00 0.270200E 01 U. $224566 E$ U1 0.186950E U1
$-0.948648 E-010.285227 E 010.301852 E 01 \quad 0.114634 E \quad 01$
-0.815233E-01 0.313020E 01-0.263678E 01 0.149140E OL
-0.572561E-01 0.308738E 01 0..769005E 02 0. $202379 E 01$
- $0.106617 E 00 \quad 0.460042 E 01$ O.b $80705 t$ U1 $0.200069 E 01$
-0.890381E-01 $0.478895 E \quad 01 \quad 0.740592 E \quad 01 \quad 0.236154 E \quad 01$
$-0.671857 E-01 \quad 0.499752 E 01-0.226520 t 01 \quad 0.356077 E 01$
- $0.378002 E-01 \quad 0.501886 E \quad 01-0.121078 \mathrm{~L} \quad 020.227320 \mathrm{E} 01$
$-0.298590 E-020.480592 E \quad 01 \quad 0.700022 \mathrm{E}$ JO 0.100238 E OL
$0.161119 E-010.490334 \mathrm{E} \quad 01 \quad 0.131103 \mathrm{E} \quad 01 \mathrm{U}$ U. $335748 \mathrm{E} \quad$ O1
$0.488736 E-01$ 0.436243E 01
$0.101570 E \quad 00 \quad 0.215354 E \quad 01$
$0.116154 \mathrm{E} \quad 000.601752 \mathrm{E}-01$
0.980002E-01-0.117030E O1
$0.686666 E-01-0.923914 E 00$
0.389109E-01-0.114997E 01
0.134006E-01-0.471046E 00
- $0.0889258 \mathrm{E}-02 \quad 0.338095 \mathrm{E} 00$
-0.314399E-01 0.771772E 00
-0.545792E-01 0.368309E OO
$-0.676400 E-01-0.309014 E 00$
$-0.800424 E-01-0.428428 E 00$
-0.938338E-01 0.380518E-01
- $0.112281 \mathrm{E} 00 \quad 0.655090 \mathrm{E} 00$
$-0.157654 E \quad 00 \quad 0.199363 E 01$
0.700022 E JO 0.10338 E OL
0.423120 E U2 0.100214 E J1
0.309789E U2 U.18U77UE O1
0.841005 E U1 0.298941E 01
$-0.409474 E$ U1 0.187342 E 01
0.162336 U U1 0. 215730 E U1
$0.922033 E 00 \quad 0.228207 E$ U1
0.79317 SE U1 $0.279029 E$ O1
$0.735091 E$ UU $0.1+2143$ E OL
$-0.220435 E \quad 01 \quad 0.304047 E \quad 01$
$0.213950 E$ O1 0.240402E U1
$0.1122750030 .438917 E 00$
0.120323 E U1 U.2USLloe U1
$0.230223 E \quad 02$ U. $347595 E$ U1
$0.38+108 E \quad 020.214221 E \quad 01$
$0.101884 E$ U2 $0.810395 E 00$

VIII. COMPUTER PROGRAMS

The computer programs furnished are the programs to calculate the covariance matrix, $A \phi, A 1, B \phi$ and $B 1$. The computer program to calculate the derivatives by polynomial curve fit are not furnished since this routine is standard in computation libraries and depends on the researchers preferences. The first program consisting of three pages is the computer program for calculating the covariance matrix. The second program consisting of one page is the program to calculate the A coefficients. The third program consists of one page and is the program to develop the B coefficients. The covariance program is developed for the IBM 7094 computer whereas the A and B coefficient programs were written for the IBM 360 computer.

COMPUTER SYMBOLS

AV1	Average wind speed
AV2	
AVW	
AVS	
AVPIJ	Product of the average wind speed at altitudes I, J
CORR	Correlation of wind speeds at altitudes I, J
COV	Covariance of wind speeds at altitudes I, J
C	Covariance
DC	Derivative of covariance
DDC	Tape Numbers Derivative of covariance
IT	Sum
S	Wind velocity at altitude I, record K

```
MAIN2 - EFN SOURCESTATEMENT - IFNISI -
```

```
            DIMENSION W(3.12511: AVWI21.COVE2.3501,GORR131.
    | CORRS(2)
    | FORMATIIHII
    2 FORMAT(FID.1 /(10F13.4))
    4-FORMATIBFIO.41
        DO 100 1B=36,159
        1日2=2#| (B
        1F(1B=40) 202,202,200
    200 1F(1日-80) 203,203,201
    201 |F(1B=120) 204,204,205
    202 1T=8
        15K1P=2(1)B-1)
        GO TO 206
    203 1T=9
        15KIP=2*(1B-4.1)
        GO TO 206
    204-1%=10
        15K1P=2苗(1B-8|)
        GO TO 206
    205 1Y=11
        ISKLP=2e(1B-121)
    206 1F(ISKIP) 209,209,207
    207 DO 208 &&1-15K1P
    208 READ(IT)
    209 READ(IT) (W(1.1).1P1.1251)
        READ(1P) (W(2.1),1(1.1251)
        WRITE(6,1)
        11:0
        12=0
        A\vee1=0.
        AV2=0.
    DO 14 K=2.125!
            1F(W(1,K)1)12.11.12
        11. 11=11+1
            G0 T0-13
    12 AVI=AV1+W(l,K)
    13 &F(W(2,K)) 132.131.132
    13| 12=12+1
    G0 T0 14
    132 AVZ=AV2+W(2,K)
    14 CONTINUE
        11=1250-11
        12=1250-12
        A!=1!
        Avw|l|mavi/A!
        A1=12
        AVW(2)=AV2/A.2
        AVP||mAVW(1)aAVW(!)
        AVP12=AVW(1)*AVW(2)
        AVP22=AVW(2) AVW(2)
        DO 22 I=1.3
        CORRIII=0.
        K=0
        IF1!-2) 15:16,17
    15 L=1
```

```
MAIN2 EFN SOURCE STATEMENT & IFN(SI -
```

```
    M=1
            60 10&8
    16 L=1
    M=2
        GO T0 18
    12-1.52
        M=2
    18 DO 21J=2,1251
    COREW(LOJ)OW(M,J)
    1F(COR) 20.19.20
    19 K=K%1
        GO YO 21
    20 CORR(|)ECOR+CORRI|)
    21 CONTINUE
        K=1250-K
        Al=K
        CORR(|)=CORR(|)/A!
    22 CONTINUE
            COV!&GCORR(1)=AVP!!
            COV12mCORR(2).EAVPI2
            COV22=CORR(3)-AVP22
            ALTEN(1,&)
            ALT2=W(2.1)
            15E|320-1B2
            D0 90 15:1,15F
            ITEST目B2+1S
            |F(ITESTG80) 216,216,2100
2100 GALL CLOSE (8,4)
            CALL REWO8
```



```
    2110 CALL CLOSE (9.4)
            CALL REWOQ
    211 {F(|TEST-240| 214,214,2150
    2150 CALL CLOSE 1.0.41
            CALL REWIO
            GD TO 2L5
    213 1Tm9
            GO TO 216
    21417=10
            G0 10-216
    215 1T=11
    2H6 READHIILHLC(3-H-8星+1254)
        J=0
        AVS=0.
            0025 1=2,1251
            |F|W13.1H-24.23:24
        23 Jev+1
            60_T0_25
    24 AVS=AVS+W13.!1
    25 CONTINUE
        J=1250-J
        A!-J
        AVS=AVS/A!
        D0_30_1=1.2
        CORRSI11m0.
        K=0
```

```
MAIN2 EFN SOURCE STATEMENT IFNISI -
```

 DO 29 J. 2.1251
 CORSEW(I, J) W(3, J)
 IF(CORS) \(27,26,27\)
 $26 K=K+1$
GO 10 29
22 CORRS (L) ECORRS (H)CORS
29 CONTINUE
$K=1250=K$
AI=K
CORRS (1) =CORRS (I)/AI
30 CONTINUE
A.VP3.1-AVN(1) 覃AVS
$A V P 32=A V W(2)$ AVS
COV(1, 15$)=\operatorname{CORRS}(1)=A V P 31$
$\operatorname{COV}(2,15)=\operatorname{CORRS}(2)$ AVP32
QO CONTINUE
WRITE(6,2) ALT,AVW(1),COVI1,COVI2,(COV(i,1), $1 \times 1,15 F)$

WRITE 16,11
WRITE(6,2) ALT2,AVW(2), COV22, (COV(2, HA, IETSFI
WRITE (7,4) ALT2,AVW(2), COV22, (COV(2,1), 1E1, \&SF)
CALL CLOSE (11,4)
CALL REWII
TOO CONFANUE
STOP
END

```
C
C
    a luEFFIlIENd pROGRAM
    LIMENSILN AL& 320<,A1%320<,C%320<,DC%320<,DDC%320<
    J=\UM C=CUV,UC=UEKIVATIVES OF COV
    3 FukMal(LHL)
    4 rukmal(6t15.7)
    5 ~ F u k M A T ( 5 E 1 5 . 7 ) ~
    C FURMAI!1X9H AO CUEFF !
    7 FURMATGIX9H Al CUEFF,
    8 FUKMAT%40\times110<
    KEAD(7)
    1|#10
    DU 40 1=2,11
    WR1TE%3.8く 1
    READ( 7 )(C(L),DC(L),DUC(L),L=1,I)
    SCC=0.
    SCDC=0.
    ScuUC=0.
    SUCUC=0.
    SOLDUC=0.
    Uu 1り J=1,1
    P=C(J)
    SCL=L(N)*P*SCC
    \triangleCOC=UC(J)*P+SCDC
15 SCUUC=ULG(J)*p+SCDOC
    Du 30 J=1.1
    P=UC(J)
    SULUC=DC(J)*P+SOCDC
30 SUCLUC=LUC(J)*P*SUCDOC
    TUP1=-SCC*SLCUUC+SCDC*SCODC
    OUT 1 = SCL*SUCOC-SCDG*SCDC
    1LP2=-SCODC*SOLDC+SCDC*SDCDOC
    BUT2=BUT1
    A1(1)=ICP1/DUTL
    wKlTt%3,3<
    WKITE%3,9< SLG,SCUC,SGUDC,SUCDC,SUCDDC,TUPL,BOIL,TOP2,BOT 2
    S FUKMAT%///LOE13.5<
    NR1TEs3,10く%C゙%Lく,DC%Lく,DOC%Lく,L游1,1く
10 FUKMAT%//%3E20.7<<
40 AU(1)=1CP2/BUT2
    Wh&TE(3,3)
    WKLTE(3,0)
    WK1TE(3,4) (AU(J),J=1,II)
    wKlTE(2,5) (Au(J),J=1,IT)
    Wk|TE(3,3)
    wkLTE (3,7)
    wK|TE(3,4) (Al|J):J=1,1T)
    wkiTE(2.5) (AL(J),j=1,IT)
    STUP
    LNU
```

Jubs shivglegu
BEGIN Gumpilatiun
6 Prumbab tu lalculate 00，31

3.0002
5.0003
3.0004
3.0005
s．0000
5.0007
5.0000

106\％ $320<06 \% 3<0 \% 320<$
Iallat300
REAUB1，LくもAU8Uく，JAR1，DALLく

wKITE $(3,2)$（AU（J），Al（J），$J=1,1 A L L)$
1 FURMAT（OUK E15．7／（5E15．7））
KEAD：1，7く\％USTARC\％Jく，J\＃1，IALLK
7 FUKMATBOE1Z． $6<$

WRITE（3，2）（DsTARC（J），OC（ J ），$J=1$, IALL）
2 FURMAIDSE13．6く
DO 10 If1．IALL

Kidut

Cunzaf al\％Jく

CUN4社AU．Jく\＆2．＊A1\％Rく

ALFA＝ABS（USTARC（1）－DC（1））
WR1TE（3， 21 CUN1，COIV2，CUN3，CUN4，CUN5，ALFA
5 G\％$<=$ SWRT\％ALFAく

6141）$=6(1)$

10 cuntinve
wRITEs3．8＜
8 furmatelhl＜
WR11E\％3．9く
9 FURRAT \％ 7×2 hisui 2×2 hibl＜

6 FUnimat（20×2E13．6）
STUP
END

CRITIQUE OF RESULTS

The results obtained, as shown in Figures 6, 7, 8, and 9, show an unusual amount of variability. This variability appears to be directly proportional to the variability in the covariance derivatives, $\frac{d C}{d h}, \frac{d^{2} C}{d^{2}}$. An important conclusion results from this proportionality: that this technique will not produce accurate results on turbulence data. A cursory view of tur bulence data obtained by separating turbulence frequencies from Jimsphere records reveals the impracticality in attempting to obtain these derivatives. To obtain accurate results on the filter development, accurate derivatives are required. This accuracy is difficult to obtain using polynomial techniques; however, any other technique results in smoothing of the data, thereby losing the effect of the selection of an appropriate lag size. Lag size was discussed in Section III.

The dependence on covariance derivative variability can be seen in Figures 6, 7, 8, and 9. The data up to 14000 meters were segmented for curve fitting every 2000 meters (500 meters between points), introducing some smoothing in the data. The data above 14000 meters were curve fit at 250 meter increments (50 meters between each point). The latter case detects each change of sign in the derivatives along the span of the covariance, resulting in the degree of variability as shown above 14000 meters; whereas, the former maintains the same derivative sign for large increments due to some smoothing introduced by the 2000 meter increment selection, resulting in less variability as shown below 14000 meters. A case for highly smoothed data which exhibits no variability can be seen in CR846.

The values of the covariance matrix of the Jimsphere data obtained during this analysis appears to be accurate. The data sample was adequate and sufficient care was taken such that the present matrix has the necessary elements (accuracy, sample size, etc.) such that validity can be placed on its use in further analyses.

Attempts were made during the present analysis to expand the order of the differential equation to an order greater than two (2). These were unsuccessful, primarily due to the order of the right hand side of Equation (1), Section II.

The coefficients of the right hand side were developed from results obtained by Solodovnikov ${ }^{(4)}$, based on the works of Batkov ${ }^{(3)}$, particularly Solodovnikov's Equations (10.27), page 383 and (10.60), page 390, Reference (4). The major difficulty that arises was pointed out by Stear ${ }^{(7)}$, that the Equation (10.27) is not a recursive relationship as stated by Batkov. Further, as became evident during the analysis, Solodovnikov's Equation (10.60) puts a restraint on

to be positive. When analysing the data, it is seen that there is no rational basis for such a constraint.

Equation (10.60) is equal to the value of the difference between the derivatives at $h_{i}=h_{j}$, or $(-1)^{n-m-1} \frac{b^{2} m(t)}{a^{2} n(t)}$, the value of the discontinuity at $h_{i}=h_{j}$, which has meaning when viewed as the initial value of $g\left(h_{i}, h_{j}\right)$ at $h_{i}=h_{j}$. When considered as the initial value of $g\left(h_{i}, h_{j}\right)$, (all values of $g\left(h_{i}, h_{j}\right)$ for $\left.h_{i}>h_{j}=0\right)$, only the magnitude of Equation (10.60) has significance. Therefore, this report utilized the magnitude of Equation (10.60).

CONCLUSIONS

1. The shaping filter can be developed using a large volume of winds and turbulence data.
2. The Jimsphere data handling requires a computer with large storage capacity.
3. Floating point polynomial fitting of the covariance curves produces derivatives of sufficient accuracy for filter development, except the end points of each segment fit.
4. The technique can be very effective for smaller more tractable data samples, but for large, highly nonstationary processes of high frequency content, accuracy of coefficients becomes critical with small lag sizes.
5. This technique is not readily useable on data of high variability, such as turbulence.

RECOMMENDATIONS

1. The accuracy of the coefficients should be validated prior to assigning credibility to analyses utilizing the filter coefficients.
2. Consideration should be given to use of this technique with partitions of the covariance matrix.
3. Some smoothing of the covariance matrix should be considered.
4. When using a polynomial curve fit to determine the covariance derivatives, the segments that are curve fit should overlap to eliminate the derivative error on the polynomial end points.
5. Lanning, J. H., Jr., and Battin, R. H. Random Processes in Automatic Control: McGraw-Hill Book Company, Inc., 1956.
6. Bailey, E., Palmer, J., and Wheeler, R. "Launch Vehicle Wind and Turbulence by Nonstationary Statistical Methods," NASA CR846.
7. Batkov, A. "Generalization of the Shaping-Filter Method to Include Nonstationary Random Processes," Automation and Remote Control, Vol. 20, No. 8, August 1955, 1049-1062.
8. Solodovnikov, V. V. Statistical Dynamics of Automatic Control Systems: D. Van Nostrand Company, Ltd., 1965.
9. Willens, G. "An Approach to the Adjoint Method Applied to the Statistical Analysis of a Homing Missile ${ }^{\prime \prime}$: U. S. Army Missile Command, Redstone Arsenal, Alabama: Report No. RE-TR-67-8.
10. Skelton, G. . et al. "Design of a Load--Relief Control System, " Honeywell Document 12013-FR 1, May 1966.
11. Steer, E. "Shaping Filters for Stochastic Processes, " Vol. IV, Recent Advances in Automatic Control Systems, University of California Engineering Extension Series, edited by C. T. Leondes.
