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DISCUSSION OF THE LEAST SQUARES TECHNIQUE AND DEVELOPMENT

OF A CURVE FITTING SUBROUTINE

by

T.A. Eppes

I. INTRODUCTION

Attempts to interpret the relatio n -', ip between

backscatter measurements and the scattering elements have

been made for over a decade. The most useful form of these

data are as graphs of scattering coefficient as a function

of incidence angle, for some applications it is sufficient

to classify these graphs according to some characterizing

factor such as slope of curve, etc. This general approach

was employed by Rouse (1969) to categorize backscatter from

Arctic ice. The data were fit to an equation developed by

Hagfors (1964) based on the Kirchhoff method of describing

scattering. The original work by Rouse used a manual. tech-

nique of estimating the appropriate equation variable to fir

the experimental data. This report describes a computer

technique which improves the degree of "fit" and is readily

adaptable to other scatterometer data analysis techniques.

II. LEAST SQUARES TECHNIQUE

In the final phase of an experiment, a decision

must be made concerning the interpretation of the results.
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This decision is often faciliated by previous experimenta-

tion and theoretical analysis of the problem. Often the

decision is to "fit" the data to some desired mathematical

model. Before the operation of this subroutine can he

clearly understood, one needs a firm background in the theory

of the least squares technique.

The method of least squares is an application of

the science known as prediction analysis. Prediction anal-

ysis is a general method for predicting the accuracy of re-

sults that can he expected from an experiment. The fcllow-

ing notation and derivation will he used in describing this

technique (Wolherg, 1967).

Y i	= Observed values of the dependent variable.

ayi = Uncertainty (Standard Deriation) of Yi.

X j i = Observed value of the j th independent variable.

oxji	
Uncertainty (Standard Deriation) of Xji.

y
i
	= Calculated value of dependent variable.

Xji = Calculated value of the jth independent variable.

n	 = Number of data points.

m	 = Number of independent variables.

a 
	 = Calculated values of the unknown parameters.

ako = Initial estimates of the unknown parameters.

p	 = Number of unknown parameters.

S	 = Squared error of data.
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The derivation is begun by defining residuals

and the squared error. The residual, R, and the squared

error, S, are given by the following relations respectively:

R
yi	

Y 	 yi

R	 = X	 - x
x

.
 ji

R2m x
j	 )

j=1 Q2
x.
ji

For any function the following is true given any set of

calculated data:

1
F	 = 0 = y i - f (x li , x 2i , ..., xmi , a l , a 2 , ..., ap)

i = 1 ) 2,	 ... , n.

Since the experimental results will contain error,

we can only estimate the functions F 1 . We will denote F0

as the estimates of the functions F  for a given set of ex-

perimental data.	 In this case:

i	 _F 0 = Y i	f (Xli , X 2i ,	 Xmi, a 10 , a 20 ..., ap0 ) ^ 0.

This equation(-will now be expanded in a Taylor's series, there-

by making F0 a function of the partials and the residuals of

F 0 . After expanding and neglecting the higher order terms,

we have:

3
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a 0 a	 -

m	 p
FO 

1 = F 
1 

R	 + E Fx 
1 Rx . i + E Fa I 

A 
	 (1)

y	 y i j =1	 k=1 k

where	 F i 
= DFl

y	
ayl

F 
1 = aFl

X.	 ax	 '
J	 J1

F 1 
= aF1

a 
	 a ak

and R 	 and R	 are the previously defined residuals. Ak
j1	 yi

will be used to denote the variation around a  ; namely a
ko	 ak'

A relation must now be found between the residuals. This is

accomplished by taking the differential of the S, squared error,

equation. Since S is meant to be a minimum, small variations

will not change the squared error. It therefore can be said

that:

n	
R ZiR	 R	 ARx .

112 AS = E [ yl yl + E
m	

x

^-1 1 ] = 0	 (2)
i=1	 02	 j=1	 Q2

y i	 xj 1

Since 
F01 

is not a-function of either R 	 or Rx	 .(see
yi 

original equation of F 0 1 ), variation in them would not cause

a change in F 0 1 . Only by varying the 
akO 

set of parameters

can 
F01 

be changed. In as much as A  has been defined as the

-mow_ -- —
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difference between the initial estimates and the true values

of the variable parameters, AF 0 1 
can be set to zero and ex-

pressed as:

m
F 

1 
AR	 +	 E F 1 AR..Y	 Yi	 j=i 

x	 x
j 

+ E	 a 1
F 
	

AA  = 0	 (3)
k=1	 k

for	 i = 1, 	 n.

There now exists two sets of equations which are functions

of the partials of F 1 and the residuals of the experimental

data. Equation (3) must now be multiplied by some multipler

a i . This is done in order that we may subtract Equation (3)

from Equation (2). This technique is known as the method

of Lagrange multipliers. The n equations of (3) are each

multiplied by a different multiplier (al, X 2 , ...,
 X i ). The

result of the subtraction of (3) from (2) is:

1

r; •1.

R
ny•	 m	 n
E	 (	 1 - X i Fy l

 )
ARy + E	 E

i = 1	 Q2	 1	 j=1 i=1
Yi

p	 n
-	 E	 ( E aiFa 

1 
)AA  = 0.

k=1	 1=-1	 k

.- -

go

 ._.y

To satisfy this relation all of the coefficient

variations must be equal to zero. Thus,

R	 = a 2	a.F 
1, 

i = 1 9 2 9 ..., n.
Yi	 Yi 1 Y

)AR x
 ii

R X.
( -23	

- AiFxi

ox..
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b

R	 = cs2
X	

a F	 1 , i = i t 2 9 ... , n.	 (S)

ji	
X 
ji

1 X
 j

n
and	 E	 X 

i 
F 
a 

1 = 0,	 k = 1, 21	 P.	 (6)
i=1	 k

^iquations (4) and (S) give a relation between the residuals

and the partials under 'Least square conditions. The residuals

c ^.r_ . ► Ow be substituted for and thereby removed from the final

results. Upon substituting Equations (S) and (6) into Eq-

uation (1) we have:

m	 p

	Q 2 ^ i (F 1 ) 2 +	 E	 ox..Xi(Fx.1)2 +	 E	 Fa 1 Ak	 FO 1 , (7)
y i 	 y	 j=1	 31	 k=1	 k

for	 i = 1, 2, ..., n.

This equation can be simplified by the following substitution:

m
2 (	 i ) 2	 (
Q2L i = Q	 F	 + E	 a	 FX

y i y	 j=1	 ji

for i = 1 9 2 9	 n.

The partial of F 1 with respect to y, F y l is equal to one,

and this further simplifies the substitution. Now:

m
L i = Qy + E (Qx FX 1 ) 2,

	i 	 j=1	 ji	 3

for i * 1, 2 9 A- * ., n.
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The result of the above substitution into Equation (7) is:

P
L i a i = F 0 - E Fa lAk
	

(8)
k=1	 k

It can now be seen that there exist two sets of equations

which_ are functions of A  and X i , Equations (6) and (8).

Solving Equation (8) for X i we have:

P
^ i = 1 [F 0 - ` Fa lAk]

L	 k=1	 kL.

for	 i = 1, 2, ..., n.

Eliminating 
X  

in Equation (6) by the above substitution

yields a set of n + p equations. Namely,

F 1 F 1	 F 1 F 1	n 	 al a l	n	 al a2
A	 E	 + A	 E	 + ...

21	 1
F	 i F	 i.	 F	 i F i

n	 a	 a	 n	 a	 0
+ A	 E	 1	 p = E	 1

P i = 1	 L.	 i=1	 L.

F 1 F 1

	

n	 a	 al
A l	E	 p	 + ...

	

i = 1	 L
i

F 1 F 1	 F 1 F 1
n	 a	 a	 n	 a	 0

+ A	 E	 p	 p = E	 p
P i = 1	 L.	 i=1	 L.

eft

IL



W.

This equation can be seen as	 functions of the partials	 of

F 1 with respect	 to the unknown parameters, a k ,	 the uncertain-

ties and	 the partials of F 	 with respect to independent vari-

ables,	 the variations in the unknown parameters, A
k

,	 and the

estimates	 of F 	 as functions of the experimental data.

By adapting matrix notation and using	 the	 follow-

ing substitutions we can greatly simpl.fy the solution of

Ak .	 Letting:



C = (LFa)TFa

and	 V = (LFa)TFO.

The L matrix is a diagonal matrix of order n x n. 	 It

can be expressed as:

1	 0	 0	 ...	 0
L1

0

.	 2

0	 1
L

n	 n x n

The F a matrix is the partial of ► 1 with respect to the variable

parameters evaluated at each data point. Thus,

y

L=

F=
a

The F 0 matrix conta:

aF 1	 9F 1	 9F1

aa l ^a2 	aaP

aF2

aal

a F 
n
	 aFn

aa l 	aa 
n x p

Ln the estimates of F 1 . That is:

W-1-

Y1	 f(X 11 , X 21)	 Xml, a 10 , a 20 , ..., ap0)

F O =
	 Y 2 - f ( X 12 , X 22 , ... , Xm2 , a 10 , a 20 , ... , ap0)

Y  - f(Xin, X 2n ,	 Xmn, a 10 , a 20 ,..., ap0)	 n x 1

- -	 - -^	
00

	 C	 •	 -	 •	 -.,w-t
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where	 Y i	= Experimental value of the.ith dependent
point,

X ji	 = Experimental value of the jth independent
variable at the ith data point,

and	 an0	 = Initial estimates of the nth variable
parameter.

The A:matrix will be a p x 1 matrix containing the necessary

increments to the initial guesses in obtaining a least squares

fit.	 It can be expressed as:

Al

A2

A=

A
P

where	 A.	 = Necessary increment for ith variable
parameter

The A matrix will be referred to as the incrementation matrix

since it is the required correction needed to be added to ini-

tial guesses to obtain a least squares fit

Here one would assume that the job has been completed.

However, this is true only for linear cases since the higher

order terms were neglected in the Taylor's series expansion.

By making the above procedure iterative, the values in the A

matrix will approach zero as the true values of the parameters

are reached. The higher order terms will prove to be less and

less significant as each iteration is completed. This tech-

nique of guess, increment, and re-guess will in most cases

At

F ....- .......	 _.^ - --.iii",.^w.-+^^A^I^^-...+r_.....^}....•	 ._...^.-...^. -^:.cci 
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converge. Many cases in which the initial estimates of

the variable parameters were off by a magnitude of five

have converged. On the other hand, estimates off by no

more than 20% have failed to converge. In general, however

the closer the initial estimates, the greater the prob-

ability of convergence.

To greatly simplify the teachnique of least squares,

two assumptions were made regarding the uncertainties of

the variables. First, the uncertainty of the independent vari-

ables was assumed to be 100%. Second. the uncertainty of the

dependent variable was assumed to be the ;ame for all data

points. Data satisfying these assumptions are most common and

the analysis is greatly simplified in as much as the L matrix

becomes a scalar diagonal matrix and can be removed. The gen-

eral incrementation matrix now becomes:

A = (F aT Fa ) 1F aT F 0	 ( 9 )

The subroutine herein discussed utilizes this equation in

obtaining the per iteration correction term.

III.

Figures 1 and 2 provide a listing and a flow

chart of the subroutine called NONLIN. The development of

this subroutine can be classified into two categories. One,

the formatior of the array sizes and the derivation of a
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convergence testing criterion. Two, the ordering of the

necessary matrix operations needed to satisfy Equation 9

This subroutine can be used for any number of independent

variables or variable parameters. A vectorial storage tech-

nique is used; that is, any member of an array must be

specified by one subscript. All data matrices and subroutine

parameters must be supplied by the user.

Since this subroutine must provide for the general

case, the results of all matrix operations are uniquely

stored. The result of which is the need for much more storage

a!'ea than would be absolutely necessary. By providing single

storage capability, one may use the by-product matrices as

output arrays in complex analyses. Two criteria are used in

generating a "return", number of iteration completed and squared

error. A third test could easily be implemented based on a

comparison between the increment and the present value of all

the variable parameters. This test would reveal percentage change

information about the variable parameters. By applying all three

of the above discussed criteria, an accurate estimate of the

convergence possibilities could be determined, and an intelligent

decision would be made.

Two function routines are required for the generation

of the calculated data and the slope information. An array

called SLOPE is iniated by evaluating the partials of function

at every data point with respect to each variable parameter.

low-
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The function is then evaluated at all data points, and

a calculated data array called SUBARR is created. This

calculated data is subtracted from the experimental data

array, DEXP, and an error matrix is formed called DDIFF.

In the same loop in which DDIFF is created, the squared

error is also calculated. The test sequence is placed

after the squared error calculation, and a "return" will

be generated if either of the two tests is satisfied.

Matrix operations are now performed upon the

two arrays, SLOPE and DDIFF, according to Equation 9. The

following matrix operating subroutines are needed: XGMTRA

for transpositions, XGM PRD for multiplication, XGMINV for

inversion, XGMSVB for subtraction, and XGMADD for addition.

The incrementation array, DELTVP, is created by performing

the necessary operations. After a "write" is executed, the

previous variable parameters are altered by the addition of

the DELTVP array. The "write" statement prints out four

things: current variable parameter values, future variable

parameter increments, the squared error, and the iteration

number. The program now returns to calculate a new SLOPE

and DDIFF arrays based on the new values for the variable

parameters. After the matrix inversion, according to Eq-	 E
uation 9, a test is performed to see if the determinant is

zero, and an appropriate warning is printed if the test is

affirmative.

.-	 __



IV.

In radar s-catterometry analysis, a common equation

used i,L curve fitting is based upon the Kirchhoff theory of

scattering (Rouse, 1969). The reflection coefficient which

relates received power to transmitted power can he expressed

as a funztion of incidence angle. Accordingly:

P = -15log 10 1 Cos 4 0 + Ssin20l

where 0 = Incidence angle,

P = Reflection coefficient,

and	 S = Surface roughness factor.

The family of curves formed by varying S from 2 to 200 is

shown in Figure 3 (after Beckmann and Klemperer, 196S). P

will be the dependent variable, 0 the independent variable,

and S the variable parameter. The data in Table I are samples

of experiment results (Rouse, 1969).

Table 1

	0
	

P

(degrees)	 (decibels)

	2.S	 0.0

	

6.7	 - 8.7

	1S.0	 -13.0

	

2S.0	 -1S.3

po
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From Figure 3 one can estimate the value of the variable S.

Figure 4 is a printout of the following information for any

given iteration: current value of S, change in S, the

squared error, and the interation number. Figure S is a

plot of experimental versus calculated data. Using the

final value of S. as shown in Figure 4, a set of calculated

data is created and is represented by the solid line curve.

The experimental data is shown by the "+" characters.

I f the mathematical. model is altered with the

same data, a unique effect is produced on the variable

parameter S. Suppose the model had been:

P = -151og lo icos 4 0 + Ssin 2 01 + 2loglolcos0l

Figure 6 is a pointout similar to Figure 4. It can be seen

that since the additional term forced the .family of curves

more negative, the S parameter must have been decreased in

an effort to force a fit to the same data. Figure 7 is a

plot of experimental versus calculated data; however, the

effect of the additional term is difficult to see visually.

It is demonstrated in the change of the variable S and the

least square error.

Although the above example utilized a model equation

with only one variable parameter, this subroutine is capable

of handling many of them. The same is true for the number of

independent variables and data points. The limitaticns are a

'no
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function of the capability of the crmputer and the complexity

of the squared error versus variable parameter contour. Tt

is conceivable that one may never achieve an absolute minimum

and the results may indeed be only relatively minimum. Ideally,

the model equation's behavior as a function of all variable

parameters should be clearly known before one attempts a least

squares fit. The results may prove to he erroneous and mis-

leading otherwise.

,

low- y 	 :C	 'fie
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Figure I
	

SUBROUTINE LISTING

SUBROUTINE NONLIN(FUNC,PART,VARCOF,ERREXP,ERROBD,

C NL,DEXP,EXPI,NIDATA,IVVP,NIV,NI,DELTVP)

C	 THE DATA MAY BE A FUNCTION OF MORE THAN ONE

C INDEPENDENT VARIABLE, IiOWEVER ALL INDEPENDENT

C VARIABLES MUST BE SUPPLIED BY THE USER. THE DEPEN-

C DENT VARIABLE OF EXP. DATA MUST ALSO BE SUPPLIED

C BY THE USER. THE SUBROUTINE PROCEEDS TO INCREMENT

C THEM(UP OR DOWN) TO GIVE A LEAST SQUARES FIT.

C FUNC = FUNCTION TO BE FITTED (IT IS A 'FUNCTION'

C	 ROUTINE)

C PART= PARTIAL OF FUNC WITH RESPECT TO ITH VARIABLE

C	 PARAMETER. IT IS ALSO A 'FUNCTION' ROUTINE.

C VARCOF= VARIABLE PARAMETER ARRAY

C DELTVP= INCREMENTATION OF VARCOF ARRAY

C ERREXP= DESIRED LEAST SQUARED ERROR

C ERROBD= OBTAINED LEAST SQUARED ERROR

C NL = NUMBER OF ITERATIONS NOT TO BE EXCEEDED

C DEXP = EXPERIMENTAL DATA ( DEPENDENT VARIABLE FOR

C	 ALL DATA POINTS)

C EXPI= INPUT VARIABLES (INDEPENDENT VARIABLES FOR

C	 ALL DATA POINTS)

C WARR= WORKING ARRAY

_	 w	 so
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SUBROUTINE LISTING (cont'd)

C MDATA= NUMBER OF MEMBERS OF EXP DATA (DEPENDENT

C	 VARIABLE) ARRAY

C	 DWORK=	 WORKING ARRAY DIMENSIONED TO	 (NVP)

C	 NVP=	 NUMBER OF VARIABLE PARAMETERS

C	 PRDARR=	 WORKING ARRAY DIMENSIONED TO	 (NVP**2)

C	 NI=	 NUMBER OF ITERATIONS

C	 MM=	 WORKING ARRAY DIMENSIONED TO (NVP)

C	 SWORK=	 WORKING ARRAY DIMENSIONED TO	 (NVP*MDATA)

C	 SLOPE=	 WORKING ARRAY DIMENSIONED TO (NVP*MDATA)

C	 DDIFF =	WORKING ARRAY DIMENSIONED TO (MDATA)

C	 LL =	WORKING ARRAY DIMENSIONED TO (NVP)

C	 NIV =	NUMBER OF DEPENDENT VARIABLES

C	 VPINC = INCREMENT OF VP'S DIMENSIONED TO	 (NVP)

C	 SUBARR= WORKING ARRAY FOR XGMSUB DIMENSIONED TO (MDATA)

C	 FUNC AND PART MUST BE DECLARED EXTERNAL IN THE

C	 MAIN PROGRAM. ALL ARRAYS MUST BE STORED VECTORIALLY,

C THAT IS, THEY ARE COLUMN MATRICES.

C DIMENSION VARCOF(NVP),DELTVP(NVP),DEXP(MDATA),EXPI

C (MDATA*NIV),WARR(NVP),SLOPE(MDATA*NVP),DDIFF(MDATA),

C SUBARR (MDATA) , SWORK (NVP*MDATA) , PRDARR. (NVP* * 2) , DWORK

C (NVP) ,VPINC (NVP) ,LL (NVP) ,MM(NVP)

DIMENSION VARCOF (1) ,DELTVP (l) ,DEXP (4) ,EXPI (4) ,WARR(1) ,

SLOPE(4),DDIFF(4),SUBARR(4),SWORK(4),PRDARR(l),DWORK(1),

J ^ _

r

'1•
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SUBROUTINE LISTING (cont'd)

VPINC(1) ,LL(1) ,MM (1)

'^t = 1

NI= 1

C	 BEGINNING OF ITERATIVE PROCESS

6 ERROBD= 0.0

c	 NOW FILL UP ARRAY CONTAINING SLOPE INFORMATION

DO 1 I=1,NVP

DO 1 J=1,MDATA	
I

K= J+ (I - 1) *MDATA

1 SLOPE(K)= PART(EXPI,VARCOF,MDATA,NIV,NVP,I,J)

C	 NOW CALCULATE A DIFFERENCE OF EXPERIMENTAL AND CALCULATED DATA

C	 AND PLACE IN THE ARRAY CALLED DDIFF

C	 ALSO FROM THIS ARRAY CALCULATE THE SQUARED ERROR 	 ,.

DO 2 I=1,MDATA

2 SUBARR(I) = FUNC(EXPI,VARCOF,MDATA,NIV,NVP,I)

CALL XGMSUB(DEXP,SUBARR,DDIFF,MDATA,,M)

DO 8 I =1 , MDATA

8 ERROBD = ERROBD+DDIFF(I)*;,2

C	 TEST TO SEE IF LEAST SQUARED ERROR IS SATISFIED OR IF DESIRED

C	 LIMIT OF ITERATIONS IS EXCEEDED

IF(ERROBD.LE.ERREXP) GO TO 3

IF(NI.EQ.NL ) GO TO 4
i

C	 PERFORM NECESSARY MATRIX OPERATIONS TO GET INCREMENTATION MATRIX
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SUBROUTINE LISTING (cont'd)

CALL XGMTRA(SLOPFR,SWORK,MDATA,NVP,IER)

ITEMP= NVP

CALL XGMPRD(SWORK,SLOPER,PRDARR,NVP,MDATA,ITEMP)

CALL XGMINV(PRDARR,NVP,DET,LL,MM)

C	 IF DETERMINENT IS ZERO, THE MATRIX IS SINGULAR AND A MESSAGE

C	 IS PRINTED

IF(DET.EQ.0.0) GO TO 7

CALL XGMPRD(SWORK,DDIFF,DWORK,NVP,NiDATA,M)

CALL XGMPRD(PRDARR,DWORK,DELTVP,NVP,ITEMP,M)

C	 INCREMENT OLD VALUES OF VARIABLE PARAMETERS AND CREATE NEW

C	 SET. THIS SET SHOULD GIVE A BETTER LEAST SQUARES FIT THAN

C	 THE OLD ONES

WRITE(6,104) VARCOF(1) ,DELTVP(1) ,ERROBD,NI

104 FORMAT(' ',10x,F10.4,9X,El3.6,9X,E13.6,18X,I21)

CALL XGMADD(VARCOF,DELTVP,VPINC,NVP,M)

DO S I=1,NVP

S VARCOF(I) = VPINC(I)

C	 INCREASE LOOP PARAMETER

NI= NJ+1

C	 RETURN TO EVALUATE THE NEW SET OF VARIABLE PARAMETERS

GO TO 6

C	 THE LEAST SQUARE ERROR IS SATISFIED

3 WRITE(6,100)

s	 _	 _	
jlr

-

;M,	
-	

--	 -	 -	 - -	 -

1 -
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SUBROUTINE LISTING (cont'd)

100 FORMAT(' '30X ) 'LEAST SQUARE ERROR IS SATISFIED')

RETURN

C	 THE MAXIMUM NUMBER OF LOOPS HAVE BEEN MADE

3 WRITE (6,101)

101 FORMAT(' ',30X,'NUMBER OF ITERATIONS IS EXCEEDED')

RETURN

C	 THE MATRIX WAS A SINGULAR MATRIX

7 WRITE(6,102)

102 FORMAT(' ',30X,'MATRIX WAS SINGULAR AND.HAD NO INVERSE')

RETURN

END

TOTAL MEMORY REQUIREMENTS 0006BC BYTES

Y

c

._,_	 _	 _ +	
yams=—^..ona.^wr	 _^.^ ..	 .^rrr^.	 — — — •	 —
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SUBROUTINE LISTING

Initialize subroutine

Parameters

Establish Matrix

Containing Slope

Information [SLOPE]

Establish Residual

Matrix [DDIFF]

Calculate Squared

Error

/ Is

Least

Square Error
Write:

Below "Least Square
Desired Error	 Is	 Satisfied"

alue

Return
las

The Number Write:
Of Iterations "Number Of

Been
Iterations	 Is

xceeded Exceeded"

Return i

F

.r. ^^l
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SUBROUTINE LISTING (cont'd)

[D-WORK] = [SLOPE]T

[PRDARR] = [SWORK][SLOPE]

[PRDARR] = [PRDARR]-I

I f\

Determ 

i 

nent

Is Equal To Zero

The Matrix Has N

alnverse

Write:

"Matrix Is

Singular"

Return

[DWORK] = [SWORK][DDIFF]

[DELTVF] = [PRDARR][DWORK]

Write:	 VARCOF,DELTVP,

E R R 0 B D I N I

[VPINC] = [DELTVP]+[VARCOF]

VARCOF] = [VPINC]

Increase Loop

Counter
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