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Abstract: This report describes the use of a2 new optimization
technique, complex optimization, which may be applied to the
synthesis of distributed-lumped-active networks, i.e., networks
comprised of elements which are distributed, lumped, or active
in nature. A constraint procedure which may be used to insure
the realizability of the network parameters and which avoids
local optima in the optimization process is described. Several
examples of the application of the process to specific network
configurations are given.
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Automated Synthesis of Distributed-Lumped-Active Networks Using
Constrained Complex Optimization

I. Introduction

This is one of a series of reports concerning the use of digital
computational techniques in the analysis and synthesis of BLA (Distributed-
Lumped-Active) networks. This class of networks consists of three distinct
types of elements, namely distributed elements (modeled by partial differen-
tial equations), lumped elements (modeled by algebraic equations and ordinary
differential equations), and active elements (modeled iy algebraic equations).
Such a characterization is especially applicable to the broad class of cir-
cuits referred to as linear integrated circuits, since the required fabrica-
tion techniques for these circuits readily produce elements which may be
referred to as '"distributed', as well as producing elements which may be
characterized as "lumped'" and/or "active'". The DLA class of networks is
capable of realizing network functions with a wide range of properties. 1In
addition, such realizations usually have fewer components and superior
characteristics than realizations using only lumped elements, or realiza-
tions using lumped elements and active clements. DLA networks also have their
disadvantages. One of the most significant of these is the difficulty of per-
forming synthesis procedures, i.e., determining network topologies and element
values such that the network meets some specified characteristics. Although
synthesis procedures have been developed for networks containing only lumped
elements, and for networks containing only distributed elements, these
procedures are not, in general, applicable to the DLA class of networks. One
of the most fruitful approaches to the synthesis of such networks has been
the use of optimization techniques implemented on the digital computer. In
this report a new approach to the application of such optimization methods is

presented. The approach is called complex optimizaticn. 1t is discussed in

more detail in the following scctions.

11. Complex Optimization

In a conventional optimization problem, if it is desired to have the
response characteristic of a network match some specified sinusoidal steady-
state magnitude curve, a methematical model of the network's response function

is evaluated at a series of discrete sinusoidal frequencies, as indicated in
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Fig. 1. Next, a scalar error function is computed,; usually as & weighted

sum of the differences between the desired and actual curves, as evaluated

at the specified frequencies. Finally, an optimization strategy is utili-
zed in such a manner as to change the network parameters to decrease the
error function. One of the disadvantages of this type of an approach is that
it requires several evaluations of the network response function for each
application of the optimization strategy. In the complex optimization proce-
dure presented in this report the network response function is defined for
complex frequencies. Thus, if a network characteristic corresponding with a
specified pole or zero location is desired, the optimization strategy need
merely maximize or minimize the magnitude of the network response function

at the desired complex values of its frequency argument. A sketch of the
process is shown in Fig. 2.

As a general example of the application of this procedure consider the
use of complex optimization to realize a single dominant complex conjugate
pole pair for a given network. Let p be the complex location of either of
the conjugate poles, let x be a vector defining the value of the network ﬁara~
meters, and let f(p,x) be the square of the reciprocal of the network function
magnitude. The basic problem is to find some vector x such that the value of
f(p,x) is arbitrarily small, i.e., the magnitude of the network function is
very large. 1In Fig. 3, the basic complex optimization algorithm for accomp-
lishing this is presented. As shown in this figure, first a starting vector
Xy is chosen. Next, an optimization strategy is employed to modify Xy in such
a way as to minimize the value of f(p,x). When the value of f(PyEO) is less
than some specified small magnitude, the resulting b9 is the desired solution
vector X.

There are several major advantages that result from the use of complex
optimization rather than the more usual optimizaticn methods. First of all,
the number of evaluations that need he made for each cycle of the optimization
strategy is considerably reduced. For example, if only a single pole is to be
synthesized, then only a single (complex) evaluation is required for each cycle,
an obvious computat%onal advantage over the 5-10 evaluations at different siou-
soidal frequencies that might e required in conventional optimization. Second,
it is possible to provide control over the phase characteristics as well as the
magnitude characteristics of the uetwork, since the synthesis is iu terms of a

set of pole and zero locations rather than a magnitude curve defined over some
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limited frequency range. Finally, all the well known techniques of approxi-
mation theory may be used to determine the desired pole and/or zero locations
for a desired network trnasfer characteristic. Such approximation is consider-

ably more difficult to apply in terms of a sinuscidal magnitude characteristic.

I11. Examples of Complex Optimization

As an example of the application of the technique described above, a
solution for a syuthesis problem using the network shown in Fig. 4 was found,
The vector x was chosen as (C, A)t, where C is the value of the the total
capacitance of the distributed network, and A is the value of the gain of the
VCVS represented by the triangle in the figure, The problem was the realiza-

tion of the low-pass network function
2 .
VQ(P)/Vl(P) = N(p) = .9048/(p~ + .%p + 1.0%) QY

thus, the reciprocal of the magnitude of the voltage transier function at
Py = -.2 + jl was to be minimized. The resulting values of the parameters
found by using the complex optimization algorithm with a Fletcher-Powell
optimization strategy are C = 17.48 F and A = 0.87. The error, defined as
’I/N(po)‘ 2 is 5.237 x 10-8. A corresponding synthesis using a design chart
developed by Kerwin1 which matches the network magnitude characteristic at
various sinusoidal frequencies gave C = 16 F, A = .87, and an error of 9.413 x
10-3. A comparison of N(ju), the actual values of the second degree function,
with Nl(jm), the optimized results, and Nz(jm), the results from Kerwin, at

50 logarithmically spaced values cf sinusoidal frequency w, from 0.1 to 10.0

k
rad/sec using an error criteria defined as

50 [ INGu)l - PN Gu). |
E. = z - ~ (2)
L | NG g

gave E. = 23.74 and E, = 2,26?, indicating the iﬁprovement obtained from the

1 2
complex optimization approach to synthesis. A small improvement was also
noted in a similarly defined phase error criteria,

As a second example of the power and utility of the complex optimization
approach to network synthesis the circuit shown in Fig. 5 consisting of three
cascaded DLA networks, each capable of realizing a dominant complex-conjugate

pole pair, was used to approximate a 6th order maximally-flat-magnitude Butter-

worth low-pass function. A second purpose of this example was to investigate
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Cl 1.06422 1.07095
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P2 2.27479 2.27714
C3 0.34973 0.35186
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Fig. 6 Parameter Values for the Network
shown in Fig. 5
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the effect of inmaccuracies which may result when DLA network configurations

are used to realize high-order network functions. Regarding this latter,
Bunker has claimed that the exact realization of such a maximally-flat-magni-
tude characteristic requires the specification ¢f dominant poles which are
displaced from the traditionally accepted pole locations for a 6th order
Butterworth low-pass filteru2 The values of a set of parameters for the net-
work shown in Fig. 5 which provide a realization based on the displaced Butter-
worth poles are given in Fig. 6. These values were used as a starting point
for a complex optimization procedure designed to minimize the reciprocal magni-
tude of the voltage transfer function for the entire network at the pole
positions normally used for a 6th order maximally-flat-magnitude Butterworth
low-pass filter. These complex locations are tabulated in Fig, 7. The
reciprocal voltage transfer function for the ith stage of the circuit shown

in Fig. 5 is

v,(p) .
V2(P) = 1 +-Ci /P sinh Pi 1r5> (3)

where Pi = ROiC and Roi and Coi are the total resistance and capacitance

oi’
of the distributed RC uniform line used for the ith stage. The error criterion

E used for this problem is

3 2
E = % G, (4)
, i
i=1
where
v ,
L |

and the p, are the upper-half-plane Butterworth pole locations. Using Bunker's
values from Fig. 6 for the network parameters gave an error E = 7.487 x IOQS
for the network. Starting from these values, and using complex optimization,
after eight iterations of a Fletcher-Powell optimization strategy this error
was reduced to 4.830 x 10_12. The corresponding optimized parameter values

are given in Fig. 6. 1t is readily observed that these values differ only

slightly from the ones originally determined by Bunker. To compare the perfor-

mance of the network shown in Fig. 5 using the two different sets of parameter



values, namely, Bunker’s original values and ones found by complex optimiza-
tion; an evaluation was made of the magnitude of the actual network functicn,
the network with Bunker®s parameter values and the network with the values

determined by complex optimization for 40 sinusoidal frequencies logarithmi-

cally spaced from 0.1 to 10 rad/sec. An error criterion defined as

40 !B(ju) )l - lN.(jm,)l 2
E. = I k LI (6)
L el |BCiw) |
where the wk are the sinusoidal frequencies, lB(jwi)l is the actual magnitude
of the Butterworth function evaluated at w, |N1(ka)l is the Bunker network

transfer function magnitude evaluated at the frequency W, and Nz(j“y) is
the corresponding magnitude of the network produced by complex optimization.
The respective errors are El = 1289 (for the Bunker networi parameter values)

and E2 = 1365 (for the complex optimization network parameter values). The
difference between the two errors is obviously relatively small. It is of even
less significance when one examines the data and notes that the major contri-
bution to the difference occurs in the high frequency region where attenuations
of over 100 d» occur.

As a third example of the use of complex optimization, and one which
requires the generation of bLoth poles and zero, consider the network shown in
Fig. 8. Let us assume that it is desired to use this network configuration to
produce a complex-conjugate pole-pair at Py = 0.1 + j0.6 and a complex-conjugate

zero-pair on the jw axis at z, = + jl. Choosing the value of the lumped

1
resistor as unity, four parameters of the network remain to be found. 1In Fig.
9 the values of the arbitrarily chosen starting point for the vector x represent-

ing these parameters are tabulated. The error E corresponding with this choice

of parameter values was 1.249, where

v, v

‘__1 2

v, @ * |7 ® (7)
P =P P =z

After 14 iterations of a Fletcher-Powell optimization algorithm the error was

-7
reduced to 2.766 x 10 . The resulting values of the parameters for this error
are also tabulated in Fig. 9. To verify the validity of these results a compar-

able set of values for the network parameters were directly determined from a
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for after obtajned
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Ro 15.0 18,0443 17.78

C0 0.5 0.61288 0.629

C 0.1 0.05401 0.05
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Error 1.249 2.766 x 107’ 0.0258
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design chart for this network presented by Xerwinln The network parameter
values are shown in the right column of the table in Fig. 9. Comparing these
values with those obtained by complex optimization it is obvious that good
agreement is attained. Actually, the error associated with the network para-
meter values found by Kerwin {(which were derived by matching the magnitude
characteristic along the jw axis) is 0.0258. This is considerably higher than

the error obtained by the use of complex optimization.

IV. Constrained Complex Optimization

One problem that arrises in all applications of optimization methods,
including complex optimizations, is the tendency of optimization strategies
to converge toward a local rather than a global optimum. 1In addition, such a
local optimum may represent physically unrealizable sets of network parameters,
for example, negative-valued ones. In this section a technique is presented
for imposing constraints on the general complex optimization procedure such
that only global optimal solutions with physically realizable values for the

network parameters are obtained. The method is called constrained complex

optimization. It is covered in more detail in the following paragraphs.

The method of constrained complex optimization may be explained as follows:
Let f(p,x) be a function of some complex scalar variable p and some vector set
of variables x which gives the value of the reciprocal of the magnitude squared
of a network function. The basic complex optimization procedure may be stated
as requiring that the function equal zero when evaluated at some value Py of
the functional variable p. Thus we wish to find a specific vector %, which
satisfies the relation 0 = f(p,in). The usual optimization approach for doing

this is to start with some vector x, for which ﬁ(pn,io) = E # 0 where E is an

0
ervor criteria. A conventional optimization strategy is then applied in an
effort to minimize E by varying x. Such a procedure faces several possible
difficulties, for example,; non-convergence, convergence to a local rather than

a global optimum, the possibility of a non-physically realizable solution vector
x, etc. - To avoid these difficulties we may apply a constraint procedure. We
begin by choosing a physically realizable vector set of variables X which is
known to produce a pole at p.,. Thus we define 0 = f(quin)° We next define a

set of intermediate quantities P, = Py + i Ap, where Ap = (pn - po)/n. Using

3y @5 a starting point, we then apply complex optimization to find a vector L3}



11

152
AN\
10 AN ) ¢
o AN~ 00 o}
+ +
R
V, v,
o o
Pole Location ' R(ohms) l C(farads;
Starting point 0+ j.l 0.056 11.19
Problem - -0 + jO.1 ? ?
Fig. 11 Complex Optimization
Example Problem
Iteration R(ohms) C(farads) Exrror
0 0.056 11.19 25.380
18.58 11.33 0.125
2 18.60 9.61 0.0290
40 18.58 9,63 0.0289
vy 2
Error =|— (p)! p = -1+ jO.1
V2 }

Fig. 12 Results of Using Non-Constrained

Optimization on Complex Optimization

Example Problem



el

Ry

RS

RRERRNY

]

which satisfies f(plfﬁl) 0. The vector x., is then used as a starting point

for the determination of Koy the solution oé f(pz,iz} = 0. The process is
continued until X is found. By choosing a sufficiently large value of n,
the value P, can be positioned so closely to Py (for which a global optimum
is a global optimum solution with physically

solution x, is known), that x

realizableoparameters, similaily the other sclution vectors X, satisfying the
relations O = f(pigii) will also be global optimal solutions. Thus we sub-
stitute n small optimization problems for the large one originally posed.
The basic constrained complex optimization strategy for the realization of a
single dominant pole at P, is shown in Fig. 10.

As an example of the application of constrained complex optimization to
a typical DLA network synthesis problem consider the network shown in Fig. 11.
The circuit consists of two lumped resistors, a distributed RC network and an
operational (infinite gain) amplifier. The properties of this circuit will be
discussed in more detail in a future report. Here the circuit will be used as
a media for illustrating constrained complex optimization. The parameter
vector for this circuit may Le defined as x = (R,C)t. The portion of the
circuit on the right in Fig. 11 consisting of the distributed RC network and
the resistor R is well-known as a null network. Specifically, for the values
R = 0.056 ohm and C = 11.19 F, there is no transmission through the distributed
RC network at a frequency of 1 rad/sec. Thus, at this frequency there is no
negative feedback around the operational amplifier and the gain of the network

is directly equal to that of the amplifier. 1In effect this closely approximates

the condition where the network has a pole at the corresponding complex frequency,

namely, 0 + jl. Thus, we have defined an initial vector Xq which has the value
Xy = (0.056, 11.19)t which is known to produce such a pair of poles. Suppose

that we now desire to modify the parameter vector x, S0 as to produce poles at

0
-1 + j0.1. First let us attempt to do this by using conventional (non-con-
strained) complex optimization., The results of such an attempt using a
Fletcher-Powell strategy are shown in Fig. 12. From the data it is clear that
the optimization strategy converges rapidly (on the second iteration) to a non-
global optimum, and, even after many more iterationsyit has been unable to
reduce the error to anything approaching the value of 10‘8 which was specified
as the criterion for the con.ergence of this problem. Now let us see how the

constrained complex optimization technique described above operates on this

problem. Using the same Fletcher-Powell optimization strategy, and ten inter-



13

mediate steps, the results obtained are shown in Fig. 13. For each inter-
mediate change for the required pole position the optimization strategy rapidly
converges to an error less than the specified minimum value of 10-8, In
addition, a final solution vector X107 (0.5%54, Aqll)t is found satisfying

the requirements of the problem. A comparison of the results obtained by
applying non-constrained and constrained complex optimization is given in

Fig. l4.

V. Automated Preparation of DLA Network Desizn Charts

In generating meaningful results describing dominant pole positions for
DLA networks frequent recourse is made to two-dimensional charts which give
the location of one of the dominant complex conjugate poles as a function of
two of the network parameters. The concept of constrained complex optimization
: described above is readily adapted to the development of such design charts.

In such an application; having found a set of variables x . such that 0 = f(po,io),

0
we proceed to reapply our optimization strategy to find a vector x, which

satisfies 0 = f(pl,il), where Py is some value of the complex freqiency variable
; in the vicinity of Po Repeating this process for a series of values P, such
i that a grid of points covering some desired area in the complex frequency plane
is treated, we may readily interpolate between the values of the elements of
the vectors X; so as to construct equal-valued contour lines for the network
variables. Such a procedure is readily implemented on the digital computer, and
it provides an effective approach to the automated preparation of design charts
for DLA networks. As an example of the application of such an automated design
procedure let us consider the network shown in Fig. ll. The general problem is
illustrated schematically in Fig. 15. Using complex optimization a grid on the
complex frequency plane was defined by using 11 values of Im p from 1 to O and
mé 11 values of le p from -1 to 0. Complex optimization was applied at each of
these points on the complex plane, thus, 1?1 separate optimization problems were
specified. The starting point py was chosen as 0 + jl using the known solution
vector x, = (0,056, 11.19) defined in Sec. IV. A summary of the resulting data

obtained is shown in Fig. 16. Using this data to locate equal-valued contours

R —

for the network parameters R and C leads to the design chart shown in Fig. 10.
Thus, the network shown in Fig. 1l may be used to produce a dominant pair of
complex conjugate poles anywhere in the left-haif of the complex frequency plane

by choosing the values of the lumped resistor R and the distributed capacitance
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1 Step ! P Iterations R(ohms) C(farads) | Error
; 0 031 0 0.0561 11.19 9.609x1n" 10
4 1| -0.1+30.91 5 0.0805 10.57 | 3.77x10" M
3 2 -012+30.82 5 0.1167 9.82 1.99x10" 13
f 9 | -0.9+3j0.19 6 0.5316 4.54 2.22x10" 1%
10 -1+jo.1 7 0.5454 4.11 1.16x107 1]
i v, 2
Error = — (p)
\)
f 2
Fig. 13 Results of Using Constrained Optimization on Complex
Optimization Example Problem using Ten Intermediate Steps
Optimization Algorithm ‘ R{ohms) C(farads) , Error
; Non-Constrained 18.55 9.63 2.89x1072
’ Constrained 0.545 4.11 1.16x10" 1t

Fig. 14 Comparison of Results from Constrained and Non-
Constrained Optimization on the Complex Optimization

Example Problem
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C shown in the chart in Fig. 16. The method is readily applied to a wide

range of other DLA synthesis problems.

VI. Conclusion

This report has described two new results which have been found to be of
significant importance in the synthesis of DLA networks. The first of these,
namely complex optimization, is a simple method for achieving an approximation
to some desired network performance using a DLA network. The performance
specifications are given in terms of the pole and zero configuration for the
desired characteristics. The computational effort required at each applica-
tion of the optimization strategy is minimized over that required by other
methods. The second result, namely constrained complex optimization, is a
general technique which may be applied to a wide varity of optimization problems.
It provides a means of preventing convergence to a local minimum and helps to
constrain the values of the network variables in such a way that the possib-

ility of a solution requiring unrealizable parameter values is minimized.
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