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ABSTRACT 

The equations for  calculating the two-dimensional, unsteady, 

potential motion of a near-weightless liquid in  a partially filled container 

a r e  derived and discussed. 

that mus t  be made before pract ical  solutions can be obtained by finite 

difference methods a r e  discussed. 

equations be l inearized i f  a central  o r  forward time difference can be 

used. 

The simplifications of the surface equations 

It is not necessary that the surface 
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INTRODUCTION 

A variety of problems have a r i sen  concerning the static and dynamic 

behavior of liquids in a weightless o r  near-weightless condition. 

these problems a r e  concerned with the operation of liquid-propellant vehicles 

in a reduced gravity field. 

usually contain a large liquid-vapor interface that is subject to  a number of 

disturbances, such a s  acceleration perturbations, jolts, disturbances in 

propellant feed lines, etc. When the confined liquid i s  almost weightless 

(relative to  the space vehicle), one o r  more  of these disturbances, if 

sufficiently severe,  can cause violent reactions at  the liquid surface. 

Furthermore,  since most  of the common fuels have small  viscosities, 

the resulting motion may pers i s t  for  a long period of t ime. Loss of fuel 

and/or oxidizer through tank vents, stability difficulties in the control of 

the space vehicle, and liquid-vapor mixing (which could affect the per-  

formance of the pumps upon engine r e s t a r t )  a r e  some of the problems that 

could resul t  f rom the sloshing of near-weightless liquids. 

Many of 

The main propellant tanks in these vehicles 

This i s  one of several  reports  being issued by the Research 

Laboratories, Brown Engineering Company, on the dynamic response 

of an almost-weightless liquid in a partially-filled tank t o  an oscillatory 

fluid disturbance. An oscillatory fluid disturbance occurs, for  example, 

when the valves in the fuel or  oxidizer feed lines a r e  suddenly closed 

(o r  opened). 

of the Saturn SIV-B stage i s  of particular interest .  

cerned with the derivation and discussion of the equations for calculating 

the two-dimensional ( three “dimensional including time), dynamic behavior 

of a liquid-surface when the gravitational acceleration (relative to  the tank) 

i s  small  and the effects of surface tensions a r e  important. 

cations of the surface conditions that must be made in order  to  obtain 

practical  numerical  solutions by finite difference methods a r e  discussed. 

The behavior of liquid hydrogen in the partially-filled tank 

This report  i s  con- 

The simplifi- 
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DISCUSSION O F  PROBLEM 

The calculation of the dynamic behavior of an almost -weightless 

liquid in a partially -filled container differs from the usual boundary -value 

problem in hydrodynamics in at least two important respects.  

all, the fluid is exposed to a new environment - that of a near-zero,  

effective-gravity, so that the effects of surface tensions are generally 

important. Secondly, a nonlinear boundary condition is to be satisfied 

along the liquid-gas interface; however, the shape and location of this 

surface is not known a pr ior i  and must  therefore be determined as a par t  

of the solution. 

problem . 

First of 

Both of these character is t ics  greatly complicate the 

There  a r e  extensive discussions of the dynamics of free surfaces* 

for an  unbounded surface (primarily concerned with the study of water 

waves, e. g . ,  see Lamb o r  Stoker ) and for a bounded surface when the 

effects of surface tensions can be ignored. 

the dynamic behavior of bounded, liquid surfaces in a greatly reduced 

gravity field have been reported. These studies a r e  mainly concerned 

with the analysis of the free oscillations of liquids in various containers. 

Methods for calculating limits of stability and natural  frequencies (which 

a r e  obtained by solving an  eigenvalue problem based on a set of linearized 

surface conditions) dominate the l i terature.  

analyses of free oscillations is given by Satterlee . 
4 

of the fundamentals of hydrodynamics at low g is given by Reynolds . 
Reynolds a l so  gives an extensive list of references.  

1 2 

However, very few studies of 

One of the most thorough 
3 

A good discussion 

The study that is presently underway differs f rom those in the liter- 

a ture  in two respects .  First of all,  the study is principally concerned 

,:<A "free surface" is defined as a fluid surface along which no tangential 
stresses ac t  and the presgure is constant. 
not apply when surface tensions a r e  considered since a pressure  gradient 
along the liquid side of the liquid-gas interface exists;  however, the term 
is commonly used for this case also. 

This term would seemingly 

2 



wi th  the forced oscillation of a near -weightless liquid in a partially-filled 

container. The calculation of natural  frequencies is of secondary impor-  

tance in this study. 

The surface equations a r e  simplified f o r  the case  of small  amplitude per- 

turbations about the static equilibrium surface but the nonlinear t e rms  a r e  

retained. 

earized set and are discussed in this report. 

The second difference concerns the surface conditions. 

These surface equations a r e  m o r e  general than the usual lin- 

The objective of the present study is  the development of a numerical  

program for calculating velocities (throughout the flow field) and amplitudes 

versus  t ime that a r e  the direct  resul t  of a specified forced fluid disturbance. 

A specific problem which i s  being solved numerically is i l lustrated in 

f igu re  1. 

3 



ANGLE 

F igu re  1. Geometry o f  Flow Model 
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SURFACE CONDITIONS 

Dx - -  Dy - 
Dt Dt 

y=h(x, t)  

The dynamic and kinematic surface conditions are briefly discussed 

in this section for  the case  of a near-weightless liquid that is bounded by a 

gas at constant p re s su re  above its surface and confined by rigid plane walls 

on the other sides,  as  i l lustrated i n  Figure 2 .  

of gravity (i. e . ,  the acceleration of gravity relative to the container) is 

assumed to act  i n  the negative y-direction. The unsteady (but not neces- 

sar i ly  periodic),  two-dimensional, inviscid motion of an incompressible,  

homogeneous fluid is assumed. 

The effective acceleration 

a h  t -  ah - ax a t  
y=h(x, t )  

KINEMATICAL SURFACE CONDITION 

Consider a plane, liquid surface,  e. g . ,  y = h(x, t) in Figure 2,  

that  is  moving with the local fluid velocity at all points. The liquid and 

gas  a r e  assumed not to mix and the velocity components and their  first 

derivatives a r e  continuous. Under these conditions, the same fluid 

par t ic les  will always remain on the surface (e, g . ,  see  Lamb , pp. 

6 - 8) so  that, 

1 

o r  

ah  t -  ah 
V(Xih, t) = U(X, h, t) - ax a t  

For  irrotational flow, 

function +(x, y, t), as 

Equation 1 can be written in t e r m s  of the potential 

ah t -  ah  - ax ax a t  
y=h(x, t) y=h(x, t) 

5 



D, PLANE WALLS 

X 

Figure 2. Illustration o f  General Problem 
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since 

Equation 1 o r  Equation 2 is usually re fer red  to a s  the kinematical 

o r  physical surface equation and provides a means for calculating the 

surface shape when the surface velocities a r e  known. 

It is interesting to note that Equation 1 applies to a viscous a s  well 

a s  an inviscid liquid, A question therefore a r i s e s  concerning the behavior 

of the liquid surface near  the walls. According to  Equation 1, the surface 

particle at the wall will remain on the liquid surface; the no-slip boundary 

condition fo r  a viscous fluid requires  this particle to adhere to the wall. 

This would imply that the location of the liquid surface a t  the wall would 

never change; observations of the dynamic behavior of liquids in  common 

containers confirm that this i s  not the case.  There i s  no contradiction of 

boundary conditions fo r  the inviscid case  since motion tangential to the 

wall is allowed. 

The types of surface waves that can be described by a theory that 

uses Equation 1 o r  Equation 2 is limited because of the no-mixing and 

continuity of derivatives assumptions. For  example, the case of "breaking 

waves", i. e. ,  when one par t  of the surface folds back on another portion 

of the surface,  is one type of wave motion that is not considered. 

assumed that y = h(x, t) is a continuous and single-valued function through- 

out this analysis. 

It is 

THE PRESSURE- SURFACE TENSION CONDITION 

At any point on a liquid surface the net  force  due to a discontinuity 

in  pressure  (normal stress for  the viscous case)  ac ross  the surface is 

7 



balanced by the surface tension forces* a s  i l lustrated in  Figure 3 for  a 

segment of a plane surface.  A balance of these forces gives 

where 

T - the surface tension between the liquid and gas 
i g  

R - the local radius of curvature 

- the constant p re s su re  of the gas 

- the p re s su re  on the liquid side of the surface,  pS 

The body forces need not be considered in this force balance since the 

surface forces are in  local equilibrium. 

system of Figure 2, Equation 3 can be written as:  

F o r  the rectangular coordinate 

a2h ah  - ax 
[l t (27 3” 1 

(4) 
At a point where the liquid surface contacts a rigid wall, another 

condition (actually a boundary condition to Equation 3 o r  Equation 4) must  

be satisfied since the surface tensions between the liquid and wall, the 

vapor and wall must be considered in  addition to the tension between the 

liquid and vapor. 

face tensions is::* 

The equation which is widely used to relate these sur -  

*Surface tension is actually an energy/unit a r ea  although i t  behaves in every 
way l ike  a force pe r  unit length 

4 
*Wee Reynolds , pp 6 -7 ,  for a discussion of this equation. 
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Figure 3 .  Force Diagram a t  Liquid-Vapor Interface 
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Tgs - Tis = COS 6 T p g  (5 )  

where 8 is the contact angle. 

Equation 5 depend only on the par t icular  mater ia l ,  liquid, o r  g a s  and 

the temperature ,  the contact angle should theoretically be invariant 

with g o r  the dynamics of the flow field (provided that no significant tem- 

pera ture  gradients exist) .  However, according to Satterlee , the con- 

stant contact angle condition a t  a solid-liquid-gas intersection is observed 

only when pure liquids and clean, carefully prepared  solid surfaces  a r e  

used. 

of the contact angle is  observed. 

the hys te res i s  of the contact angle and must  be determined experimentally. 

In  the analyses of Satterlee3, Reynolds', and others  concerned with f ree  

oscillations, the cotangent of the contact angle is frequently assumed to 

be proportional to the difference between the dynamic and s ta t ic  equilib- 

r ium surface elevations a t  the walls. 

Since the various surface tensions in  

3 

In most  pract ical  cases  these conditions do not exist  and a variation 

This variation is conventionally termed 

SURFACE EQUATIONS FOR POTENTIAL MOTION AND PERTURBATIONS 
ABOUT H(x) 

The p r e s s u r e s  in  the surface conditions for  plane, potential motion 

can be eliminated by introducing the Bernoulli equation. Also, for  reasons 

which will become apparent, the surface variables will be writ ten in  t e r m s  

of perturbations about the s ta t ic  equilibrium surface.  

The p r e s s u r e  on the liquid side of the surface i s  given by the Ber-  

noulli equation, 

1 2  - -  qs - gh(x, t )  f f ( t )  + A P ( x , h , t )  = a@ 
P a t  2 

for the dynamic case ,  and in  the static case by 

10 



Any function of time (or constants) in  Equation 6 can be absorbed in the 

a W a t  t e r m  without affecting any of the other equations since the Ber- 

noulli equation i s  the only equation that contains a time derivative of the 

potential function. 

stant in  Equation 6 a r e  chosen so that 

Fo r  convenience, a new potential function and the con- 

3 
a t  + f ( t )  = a@ 

a t  
- -  

and A = C. The Bernoulli equation for the dynamic case now becomes*, 

F r o m  Equation 4, the pressure-surface tension condition fo r  the static 

case is 

P P P 3 

[ 1 +  (ygIT 
Equating the dynamic-static p re s su re  difference obtained f rom Equations 

7 and 8 to the same quantity obtained from Equations 4 and 9 yields 

91 
a Y  y=h(x,t)  

T -2 
P 

d2 H - d2q d2 H 
t- 

- 
dx2 a- 

*This particular form of the Bernoulli equation satisfies the initial con- 
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where 
~ ( x ,  t) E h(x, t) - H ( x )  

Using Equation 11, the kinematic surface condition, Equation 2, can be 

written as 

Equations 10 and 12 a r e  the dynamic and kinematic surface conditions 

respectively i n  t e rms  of differences between the dynamic and static 

equilibrium surface shapes. 

dimensionless forms of the surface equations. 

It is often more  convenient to work with 

Let 

y = Y .  t = -  I $ = -  + * - - 3 .  - - t u  X 

W W W u w .  ’ rl - w l  
x = -  ; 

where w and U a r e  a characterist ic length and velocity, respectively, e .  g . ,  

the width of the tank and the maximum source velocity. Using these defini- 

tions, the following dimensionless forms of Equations 10 and 12 a r e  obtained: 

d2 5 d2 d2 

= o  dX2 
t- - -  1 dX2- dX2 

B 

/ 

and 

12 



where 
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SIMPLIFICATIONS OF SURFACE CONDITIONS 
FOR NUMERICAL CALCULATIONS 

Even for the ideal fluid behavior that was assumed to exist  i n  the 

derivation of the surface conditions, i. e . ,  the potential flow of an incom- 

pressible,  homogeneous fluid, additional simplifications must  be made 

before mos t  forced oscillatory wave problems can be solved, even by 

numerical techniques on a high-speed digital computer. 

tions of forced wave-motion problems cannot, in general, be obtained and 

therefore a r e  not discussed in this report .  

aging, however, is the fact that a particular flow may be unstable and 

therefore defies a mathematical treatment. Nevertheless, the calculation 

of stable wave motions and the ability to predict  the conditions under which 

unstable motions will occur a r e  very important. 

Analytical descrip- 

Perhaps what is most  discour- 

The purpose of this chapter is to discuss the simplifications of the 

surface conditions that mus t  be made before practical  numerical solutions 

of forced oscillatory wave problems can be obtained. This can perhaps 

be best  accomplished by examining a particular but ra ther  general  wave 

problem which i s  described below. 

FORMULATION O F  A GENERAL PROBLEM 

Consider an almost-weightless, incompressible liquid that is 

bounded by a gas a t  constant p re s su re  above i t s  surface and confined by 

rigid, plane walls on the other sides as illustrated in Figure 2.  

which is initially motionless and i n  static equilibrium (e .  g . ,  t = O )  i s  then 

disturbed by an oscillatory fluid source a t  some point (or points) below 

the surface. 

versus  time a r e  to be determined. 

flow is assumed. 

The liquid 

The flow field, shape and location of the liquid-gas interface 

Two-dimensional, unsteady potential 

14 



Mathematical Statement of the Problem 

The problem can be stated mathematically as follows: 

Laplace Equation 

V 2  .Q, (x, y, t) = 0 in R(t)  

Boundary Conditions at Rigid W a l l s  

- a’ = 0 at the walls 
a N  

Surface Conditions, y = H(x) t q(x, t)  = h(x, t) 

(Kinematic ) 

(Dynamic) 

- 
= o  (1 8) 

3% + - d2 H d2 H 
-2 Ti -- dx2 dx2 

3 

[ 1 +  (37” P 

Contact Angle Condition (No hysteresis)  

(19) - a h  = f cot 8 at the liquid-gas-wall inter-  

sections (t at right wall) 
a N  

Source Disturbance 

- vs a t  the source a +  
a Y  
- -  - us 9 

- -  a +  
ax 

15 



Initial Conditions 

R is the transient region occupied by the liquid and N is the coordinate 

that is normal to the wall. 

Numerical Difficulties 

There a re  four characterist ics of this ra ther  general problem that 

make a numerical solution of the equations in their present unsimplified 

forms impractical .  

a r e  briefly discussed below. 

These characterist ics and the numerical difficulties 

(1) The shape of the liquid-gas interface and consequently the 

region, R,  for which $(x,y, t) mus t  be calculated i s  not known a pr ior i .  

The numerical  solution of the equations in  their present  forms would 

therefore require the use of a time variable, finite-difference mesh. 

Furthermore,  this m e s h  would have to be established by an i teration 

pro ce du r e .  

(2) A number of nonlinear t e r m s  a r e  present  in  the dynamic and 

kinematic surface equations. However, these t e r m s  a r e  nonlinear in 

their space derivatives only. 

l inear.  

ward t ime difference' can be used, the nonlinear te rms  do not cause any 

significant difficulties and the surface variables can be obtained explic- 

itly. However, i f  a backward time difference is necessary (in order  to 

obtain a stable or accurate numerical solution) the nonlinear t e r m s  

would cause tremendous difficulties and would have to be eliminated. It 

i s  not c lear  which of these finite difference methods should be used a t  

the present  time. 

especially important when it is observed that the dynamics of the problem 

appears through the surface conditions. 

All t e rms  involving time derivatives a r e  

This is  a very interesting point, for i f  either a central  o r  for- 

The type of time difference scheme that is used seems 

16 



( 3 )  The Laplace equation is one of the s implest  ( i n  mathematical  

fo rm)  and best  known equations i n  fluid mechanics. 

solution of this equation that satisfies the specified boundary and surface 

conditions is very difficult. Because this equation contains second o rde r  

space derivatives and no time derivatives, an implicit scheme must  be 

used to solve a large number of finite-difference equations (as many as  

severa l  thousand) for the same number of unknown potentials. A large 

number of i terations (sometimes,  severa l  hundred pe r  time step) is 

usually necessary to solve the finite difference equations. 

large storage-capacity (preferably grea te r  than 32K) digital computer is 

necessary for numerical  solutions of this kind. 

However, a numerical  

A high-speed, 

(4) The value of the normal derivative of the potential function 

a t  a rigid wall (Neumann type boundary condition) is specified instead of 

the value of the potential function itself (Dirichlet boundary condition). 

The Neumann boundary condition is more  difficult to satisfy numerically 

especially for the case of curved walls. 

Since neither the Laplace equation nor the Neumann-type boundary 

condition can be changed, nothing can apparently be done to eliminate the 

difficulties described i n  ( 3 )  and (4). 

a r e  directly associated with the surface conditions so that any further 

simplifications of the general  problem must  be the resul t  of s impler  

surface equations. 

The remaining numerical  difficulties 

SURFACE CONDITIONS FOR SMALL AMPLITUDE PERTURBATIONS 
ABOUT H(x) 

The surface equations can be simplified (for numerical  calculations) 

for the case of smal l  amplitude perturbations about the static equilibrium 

surface.  A surface variable, say f(x, y, t )  

a Taylor se r ies  as  

can be expanded into 1 y = W ,  t) 

17 



Using Equation 22 and assuming '1 is small enough to give a desired degree 

of accuracy when only the l inear  t e rms  of the se r i e s  a r e  used, the surface 

Equations, 1 7  and 18, become 

and 

- 

- d2 H a2rl 
TQ dx2 -I- ax2 dx2 

= 0 (24) f g.-- 
P 

d x  

where now the surface variables a r e  evaluated a t  y = H(x).  Therefore,  

for small amplitude perturbations about the static equilibrium surface,  it 

is not necessary to use  a t ime-variable finite-difference mesh. 

numerical  point of view, this is  a significant simplification. 

F r o m  a 

In Equations 23 and 24, the nonlinear t e r m s  were retained. It should 

be emphasized that the assumption of small  amplitude perturbations about 

the static equilibrium surface does not necessarily justify the neglect of all  

nonlinear te rms .  The crit ical  magnitudes of 7, i. e . ,  the smallness  of 7, 

for which the nonlinear t e rms  can be neglected (or the assumption of 

retaining only the l inear  par t  of the se r i e s )  cannot be established before 

the solution itself is obtained. 

the solution itself and/or  experimental  data. 

These assumptions must  be justified by 

18 



NUMERICAL SOLUTION FOR A PARTICULAR FLOW MODEL 

Equations 15, 16, 19,  20,  21,  and the surface equations for small 

amplitude perturbations have been solved numerically for the simple but 

useful flow model illustrated in  Figure 1 .  

used so that the numerical difficulties associated with the nonlinear te rms  

A forward time difference was 

could be avoided. 

derivatives. 

technique i s  described by Young . 
was obtained f rom Geiger . 

Central  differences were used to evaluate the space 

The solution of the finite difference equations by a relaxation 
5 

The static equilibrium surface shape 
6 

The dynamic response of near-weightless liquids to the "saw- toothed" 

source disturbance and pulse disturbance illustrated in  Figure 4 have thus 

fa r  received the most  attention. Based on the results obtained for these 

disturbances, the use  of a forward t ime difference (which permi ts  the 

inclusion of the nonlinear t e rms)  appears to be justified. 

have only been obtained for a limited range of parameters  (Bond, Froude 

numbers,  etc. ); therefore, final conclusions concerning the numerical 

procedures and behavior of the fluid cannot be reached until more  results 

have been obtained and studied. 

i n  a future report .  

However) results 

The results of the study will be published 

19 



F i g u r e  4. T y p i c a l  Source D i s t r i b u t i o n s  Used i n  A n a l y s i s  
o f  t h e  S i m p l i f i e d  Flow Model (See F igure  1) 
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