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ABSTPRACT

After evaluating numerous methods of numerically integra-
ting the equations of motions formulated for nonlinear dynamic
analyses of shells of revolution by the matrix displacement method,
it is concluded that the Houbolt method is the most efficient and
practical technique. A total of nine different integration tech-
niques are formulated for use in nonlinear structural dynamic
analyses by the finite element method. The results, conclusions,
and observations of other investigators are discussed for each of
the integration techniques. Each technique is initially evalu-
ated in a nonlinear beam analysis (first vibratory mode only)
to determine the most promising methods for use in shell analyses.
Only these promising techniques are then applied in nonlinear
shell analyses. Realistic test problems are used to evaluate
three of the numerical integration procedures as applied in shell
of revolution analyses. A comparison of the results obtained by
each of the methods is made by analyzing the response data ob-
tained for the lower modes of vibration. Since essentially the
same response is obtained by each of the methods, a comparison
of the efficiencies of the various techniques is made. This com-
parison reveals the superiority of the Houbolt method; SO a
critical test of this technique is conducted using a highly non-

linear test problem. Results of this test lend additiomal support



to the selection of the Houbolt method. For high frequency
response other numerical techniques may be more advantageous

than the Houbolt method.
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NOMENCLATURE

crossectional area of beam

coefficients in the expansion for shell slope repre-
sentation

Est/(1 - szvOs)
)

Egt/(1 = v oVes

Est3/[12(l -V )1

)]

sOves
3

E@t /112(1 - szv@s

modulus of elasticity

linear strains and rotations of shell middle surface

generalized nodal force (including pseudo nonlinear
force)

shear modulus

Gt

Gt3/12

number of Fourier cosine harmonics

structural stiffness matrix

length of beam element

moment resultant; mass matrix

stress resultant

order of the error in a finite difference expression

generalized nodal force (excluding pseudo nonlinear
force); shear resultant

generalized nodal displacement (cylindrical coordinates)
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Matrix

[ ]
{1

generalized nodal velocity
generalized nodal acceleration

third derivative of the generalized nodal displacements
with respect to time

radial coordinate normal to the axis of revolution
meridional coordinate

kinetic energy

time; shell thickness

strain energy

meridional, tangential, and normal displacements,
respectively

generalized coefficient of a displacement function
parameter of generalized acceleration

time increment

midsurface nonlinear strain

circumferential angular coordinate

Poisson's ratio

mass density

angle between meridian and axis of revolution in the
undeformed shell

d¢/ds

changes in curvature

square matrix

column matrix



Superscript

m = harmonic number
Subscript

i = degree of freedom

L = 1linear

n = time increment
"NL = nonlinear

o = dinitial value

s = meridional direction

©® = circumferential direction



CHAPTER 1T
INTRODUCTION

The increased use of shells as structural elements in aircraft,
spacecraft, missiles, and other structures requiring a minimum
amount of weight and a maximum amount of structural integrity has
promoted if not necessitated rapid advancement in the state of the
art of shell.structural analysis. Several papers have been pre-
sented which survey these advancements. ™%

Although considerable progress has been made in the develop-
ment of closed-form solutions for shell analyses, these contribu-
tions are generally limited to specialized geometries which
therefore restricts the usefulness of these advancements. As yet,
closed form solutions for general shell equations have not been
presented. Perhaps the most significant advancements in shell
analysis in recent years utilize numerical techniques applied with
the aid of high-speed digital computers. Computer codes which are
capable of calculating the response of complex shell problems to
realistic static and dynamic loading environments have been assem-
bled. An assessment of current capabilities for computer analysis
of shell structures has been presented by Hartung.5 As reported in

Ref. 5, "with the development of the computer, the solution to

The citations on the following pages follow the style of the

ATAA Journal.




complex shell problems involving such things as geometric and
material nonlinearities, anisotropic and inhomogeneous material be-
havior, discrete stiffening and local reinforcement, arbitrary
geometry and very general loading became possible."

While the most rapid advancements in shell structural analysis
techniques have undoubtedly occurred in the development of computer
codes®™10 for static analyses, the development of codes!l™16 fop
dynamic analyses has been greatly accelerated in recent years.

The development of these codes is directly related to increases in
the storage space and the accompanying decreases in computation
time allowed by the present generation of digital computers. Al-
though dynamic analyses remain expensive, these analyses are well
within the realm of practical applications providing care is taken
to make the computer codes as efficient as possible.

Two basic methods of analysis can be utilized to effect a
solution to the equations of motion derived for shell dynamic
analyses. The mode superposition methodl’ requires the solution
of the eigenvalue problem associated with the free vibrations of
the structure. A coordinate transformation is then made to un-
couple the equations of motion. This transformation to principal
coordinates is performed using the eigenvectors associated with the
free vibration of the shell., This technique is not applied in
many of the recent computer codes since computational problems are
encountered in uncoupling the equations of motion when large systems

of equations are to be solved. 1In addition, the mode superposition



method is based upon the assumption of linear structural behavior
and therefore cannot be used for nonlinear analyses.

The second method of dynamic analysis uses numerical integra-
tion of the equations of motion without necessitating a transforma-
tion of coordinates. The numerical integration technique (also
referred to as the step-by-step method) is characterized by the
calculation of the response at some time, t, followed by the incre-
menting of the time by a finite (but usually relatively small)
amount, At., The response at time, (t + At), is then calculated.
This process is repeated until the response is obtained for the
desired period of time. Since the step-by-step method of solution
is readily adaptable for use in nonlinear analyses, numerical in-
tegration procedures are employed in most of the dynamic response
codes which have been recently developed. A large number of
methods for numerically integrating the equations of motion are
available.

The purpose of the present study is to investigate the ef-
ficiency, stability, and accuracy of a wide variety of numerical
integration procedures in order to determine the optimum procedure
for use in the computer code (DYNASOR) described in Refs. 14 and
15. This code has been developed at Texas A&M University to
analyze the nonlinear dynamic response of shells of revolution
resulting from a wide variety of mechanical and thermal loading
conditions. By obtaining the most efficient numerical solution

technique, the computer time and hence the cost required to obtain



the dynamic response of shell structures can be greatly reduced.
By compiling, formulating, and discussing the variatioﬁs of a re-
latively large number of numerical integration techniques it is
hoped that this report will serve as a valuable reference for the
many researchers who desire to employ numerical fbrmﬁlations for
structural dynamic analyses.

The formulation of the equations of motion (Chapter II) for
the DYNASOR code utilizes the matrix displacement method!® of
structural analysis. This method has been used extensively in
linear structural analyses and has been employed efféctively in a
number of nonlinear analyses. Odenl® aﬁd Martin?? have compiled
survey articles to describe the nonlinear contributions. In a
number of studies geometric nonlinearities have been incorporated
using a geometric stiffness matrix which must be incremented as
the displacements vary. Stricklin, Haisler, MacDougall, and
Stebbins® have presented a formulation which treats the nonlinear
contributions as pseudo loads. Advantages accrued using this for-
mulation are discussed in Ref. 1l4. Since the formulation of the
equilibrium equations has been presented in detail in Ref. 14, an
overview of the formulation is presented in Chapter II for com-
pleteness.

Several numerical integration procedure321“25 are discussed in
this study with each of the methods being formulated (Chapter III)

for the solution of the equations of motion incorporated in the



DYNASOR code. 1In addition to presenting the various formulations,
the results, observations, and conclusions obtained by other re-

searchers2®-34

are discussed. The advantages and disadvantages of
applying each numerical technique are discussed along with the re-
lative amounts of storage space required by each procedure.

An evaluation of each of the methods is presented in Chapter
IV. The accuracy, stability, and efficiency of each procedure are
evaluated. A judicious choice of the methods tested in the non-
linear shell of revolution code is made. In this study the numeri-
cal procedures are initially evaluated in a relatively simple, but
nevertheless nonlinear, analysis of a beam vibration problem.

Only the most promising methods of solution are then evaluated in

shell of revolution analyses. The choice of the optimum procedure
is based upon the amount of computer time required to determine a

satisfactory solution to the problems under consideration.

Many of the conclusions drawn in this study as well as the
observations made concerning the integration procedures are not only
applicable in the shell of revolution analyses conducted using the
DYNASOR code but can also be generalized for application in a wide
variety of important structural dynamic analyses, as well as in
nonlinear analyses requiring the solution of systems of second-

"order differential equationms.



CHAPTER 11
FORMULATION FOR SHELL OF REVOLUTION ANALYSES

Equations of motion for the nonlinear dynamic analysis of
shells of revolution by the matrix displacement method are formu-
lated in this chapter. Documentation of the formulation used in
the evaluation of numerical integration procedures is necessary
since the stability as well as the speed of the numerical techniques
is dependent upon this formulation.

Development of the DYNASOR code has been a logical step in ex-
tending the application of the finite element method of structural
analysis. The curved element employed in this analysis was develop-
ed by Stricklin, Navaratna, and Pian.3® Grafton and Strome3® for-
mulated the displacement function. Employing the nonlinear shell
theory of Novozhilov,37 static nonlinear analyses of shells of
revolution can be performed using the formulation and computer code
described in Ref. 6. The DYNASOR codel" was developed using this
static formulation and incorporating the inertia effects. A con-
sistent mass matrix which includes the effects of rotary inertia
is utilized in the equations of motion.

The nonliﬁearities considered in this analysis are the result
of the geometry of the deformed shell and are not in any way the
result of the material of which the shell is composed. In other

words, elastic behavior of the material is assumed.



Structural Idealization

In this analysis the shell of revolution is idealized as a
sequence of curved elements whose slope in the meridional direction
[
) !
(s) can be represented by a second order polynomial function

¢ = a; +ays + a3s2 ; (1)

The coefficients of this polynomial are calculated by requiring the
slopes of the idealized shell at the ends of each element to be
identical to the slopes of the actual shell at those points. The
elements of the idealized shell are assumed to be interconnected

at a discrete number of nodal circles situated on the boundaries of
the elements. The displacements of these nodes are the unknown
quantities in this analysis. Figure 1 depicts the coordinization

of the shell of revolution element employed in this analysis.
Equations of Motion

The matrix displacement method of structural analysis (an
energy formulation) readily admits application of LaGrange's
equation to derive the equilibrium equations. One equation cor-
responding to a particular degree of freedom, 95 and a particular

. - t R s . .
Fourier harmonic, the m h one, is derived in the following form:

d oT U _ m
dt (a=m)‘+ E;?E'— Q (2)
a; a4



Qp+|,4 Qp+1,2

9+, 3
Clp-H,l
Fig.| GENERALIZED COORDINATES
OF SHELL ELEMENT



where
m . : . .
q; = generalized degree of freedom i in harmonic m.
The internal energy of any system is a scalar quantity and can
therefore be determined (even in nonlinear analyses) by superim-
posing the contributions from various sources. 1In this analysis

the internal energy is separated into two parts:

U= UL + UNL (3
where
UL = strain energy based on linear strain-displacement relations

UNL strain energy resulting from nonlinearities

Equilibrium equations in matrix notation can be determined for
a particular harmonic by substituting Eq. 3 into Eq. 2. These

. . th .
equations of motion for the m  harmonic can be expressed as

. oU
1(a™ + K™{q™ = Q") - —& )
3q
It is noted that by using Eq. 4 the contribution of the geo-
metric nonlinearities are treated as additional loads and are
therefore termed pseudo nonlinear forces. The coupling between
the various Fourier harmonics appears only in the expressions for
these loads. The stiffness matrix which appears on the left-hand
side of Eq. 4 can therefore be treated as a matrix of constants
and does not have to be incremented as the time (and hence the dis-
placement vector) varies.
The remaining sections of this chapter describe the calcula-

tion of the various terms which appear in Eq. 4.



Strain-Displacement Relations

The relationships between the strains and the displacements
must be specified if the internal energy is to be formulated in
terms of the displacements of the idealized shell. Geometric non-
linearities are incorpqrated into this analysis by assuming that
the only important nonlinearities are the second-order contribu-
tions due to rotations about the shell coordinate axes. Utilizing

this assumption the strain-displacement relations presented by

Novozhilov3’ can be written for shells of revolution as
~ 1~ 2
s~ es + §.e13
A1 2
€g g T 7 %3 (3)
€s0 - ®so T ©13%23
where
e, = (3u/3s) - ¢'w
ey = (1/x)[(3v/36) + u sind + w cos¢]
s = (1/1x) (3u/38) - (v/r)sing + 5v/3s (6)
" — H
ey = (dw/8s8) + u¢
&)y = (1/x)(5w/38) - (v cos¢)/r

The expressions for the changes in curvature can be expressed

10
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as

x = - 8e13/as

>
@
1

-(1/r)(a;23/ae) — (1/x)siné 813 N

~

—(l/r)(8;l3/86) + (sincb/r);23 - 8e23/35

XSG
Strain (Internal) Energy

An expression for the determination of the strain energy in an

orthotropic shell as developed by Ambartsumian3® is

€ 2 + 2v C.e e+ G

Sl e 2
U=3 /1 (Ceg + Cheq s6C1%s%0  G1fqp

2

2 (8)

2 2
, +
+ Dlxs + DZXG zvseDleXG + GZXSG )rdsds
The integrais around the circumference are evaluated in closed form
for each of the harmonics while strip integration of the variables
is employed over the length of each element.

The internal energyAbased upon linear theory, UL’ can be ob-

tained by replacing the e's in Eq. 8 by the corresponding e's.
The terms of the element stiffness matrices are obtained from the
internal energy of the elements and are transformed to the global
(structural) coordinates before assembling the structural stiffness
matrix.

Internal energy of an element resulting from geometric non-

linearities is given by the expression:
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1 ) ~ag N TP
Uyp = 7 /7 [Cegeqq + Coegeyg + v Cileeys™ + ege gy
Aa 1% 4 1.~ 4
* 2Gje geqqey3 T 7 Cregg + 7 Coeyg (9)
1 ~2r 2
+ (f'vsecl + Gl)e13 € lrdsdé

The‘retention-bf thg fourth-order contributions has been shown?9
to be essential for analyses where the nonlinear contributions are
significant., Conservative results are noted if the fourth-order
terms are neglected.

The generalized forces due to the geometric nonlinearities can
be calculafed for each degree of freedom by taking the partial de-
rivative of the nonlinear strain energy with respect to the genera-
lized coordinaées of the idealized shell. The generalized forces
due to the nonlinearities are then combined at each point in time
with the forces resulting from the external loads to genurate the

Vright—hand side of the equations of motion (Eq. 4). Calculation

of the pseudo generalized forces is discussed in more detail in

Ref. 14,
Displacement Functions

In order to apply the matrix displacement method of structural
analysis, displacement functions must be chosen to uniquely define
the state of displacement ( and hence strain) within each element

in terms of the displacements of the nodes of the element.
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Certain requirements should be met by the assumed displacement
functions.!8 Continuity of the (j—l)th derivative of the dis-
placement in a particular direction is required between elements
if the expression for the internal energy of an element is a func-
tion of the jth derivative of the displacement in the same direction.
The linear strain energy depends upon the second derivative of
the normal displacement, w, with respect to s. A third-order
polynomial in s is therefore required in this expression to satisfy
continuity between the elements. The nonlinear strain energy is a
function of only the first derivative of w so a linear displacement
function satisfies compatibility when substituted into Eq. 9.
Dif ferent displacement functions can therefore be used, without
violating compatibility, in the expressions for the linear and non-
linear strain energy.
The displacements of the elgments are represented in this

analysis by the following functions:

" UNL IA i i i2 i3
w =3I (a; + a8 + a,s 4+ a,s )cos i0 (10)
. 1 2 3 4
i=0
In U
NL IA . .
w =13 (a” + a,s8)cos i0 (1)
. 5 6
i=0
In both UL and UNL
IA i i
u=23Z (a7 + a85)cos io (12)

i=0



i4

IA . .
i i ..
v = §=0 (a9 + ulos)51n io (13)

It is interesting to note that polynomial functions are used
to represent displacement variations in the meridional direction
while a Fourier series expansion is utilized in the circumferential
direction. Each node of the idealized structure is allowed four
degrees of freedom: three translations (u, v, and w) and one
rotation (¢).

Once the displacement functions have been chosen the element
stiffness matrices and the ensuing structural stiffness matrix can

be determined by considering the internal energy for each element.
Stress Resultants

The stress resultants for orthotropic shells may be expressed

as functions of the strains and curvatures by the expression

r 7 r— . oy ol -l
NS C1 vsecl 0 0 0 0 €
Ne \)eSC2 C2 0 0 0 0 €g
NSe 0 0 G1 0 0 0 a0
< - = - L' (14)
MS 0 0 0 Dl vseDl 0 Xg
Me 0 0 0 \)SSD2 D2 0 Xg
MseJ _0 0 0 0 0 G% Lxse
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The approximate relations used to calculate the shear resultants

are
M
-1 3 s6 .
Q = 7 [3g (M) + —5 My sing]
“L () + =k using] )
Q = 7 535 s6 96 sg°

The strains and curvature changes are calculated at the middle of
each element using the assumed displacement functions. Equations

14 and 15 are then employed to determine the state of stress.
Mass Matrix

The element mass matrices are calculated from the expression
for the kinetic energy of the element in a manner similar to the
procedure employed to determine the element stiffness matrices
from the strain energy. A consistent element mass matrix, first
proposed by Archer,"0 is developed. Inclusion of the effects of
rotary inertia makes the element mass matrix a function of the
harmonic number. A different element mass matrix must therefore
be célculated for each Fourier harmonic. The element mass matrices
are assembled to form the structural mass matrix using transfor-
mation matrices identical to those used for the building of the

structural stiffness matrix.
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CHAPTER TIIX
NUMERICAL INTEGRATION PROCEDURES

A variety of numerical integration procedures are discussed in
this chapter. These procedures are formulated to solve the
equations of motion for structural dynamic analyses. The nonlinear

differential equations for each harmonic can be written in the form
Ml{q} + [Kl{q} = {F(t,q)} (16)

Equation 16 is equivalent to the expression for the equations of
motion in the dynamic nonlinear analysis of shells of revolution
providing the matrix of loads, {F(t,q)}, is defined as the right-
hand side of Eq. 4.

The numerical prqcedures applied in this study employ differ—
ence equivalents to develop recurrence relations which may be used
in a step-by-step calculation of the response. Utilizing these re-
currence relations the response is obtained at a time t; the time
is then incremented by an amount At and the response is obtained
at the time t + At. This process is continued until the response
has been calculated for the desired period of time. The procedures
employed are systematic and are therefore easily adaptable for use
on high-speed digital computers.

The initial conditions and the external locads must be known in

order to solve the initial value problem set up in this analysis.
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The initial velocity and displacement vectors are specified as

®

{io} (17)

al
I

and

{q¢} (18)

(o] (o]

)
[

Although some numerical methods use the same formulas for calculat-
ing the response at each time step, most solution schemes require
the development of special procedures for calculating the displace-
ments at the end of the initial step. The procedure employed to
start the solution is presented for each of the numerical solution
techniques.

Each of the numerical integration procedures employed in this
analysis is discussed along with the results and conclusions ob-
tained by researchers who have étilized, investigated, or compared
these solutibn techniques. The final section of this chapﬁer is
used to discuss extrapolation procedures employed to calculate the
loads for the implicit methods of numerical integration employed in
this analysis.

In this analysis the solution is considered unstable when the
displacements become exceedingly large. The presence of such an
instability can readily be detected by considering the program out-

put. The critical time increment for stability, Atc is defined

rit’

as the smallest time step for which the solution becomes unstable.
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Fourth-Order Runge-Kutta Formulas

The equations of motion (Eq. 16) can be solved at any point in
time to obtain the nodal accelerations. For the specialized set of
equations derived for this shell analysis (neglecting damping
effects), thesevaccelerations are independent of the nodal veloci-

ties. The accelerations may be written in functional form as
{q} = G(t,{q}) (19)

For this set of equations the general fourth-order forward integra-

tion Runge-Kutta formulas presented by Hildebrand?! reduce to

3 .., At 5
{qn+l} = {qn} + At{qn} + 7 {m0 + m + mz} + 0(AE™)
(20)
L] _ L] l 5
{qn+l} = {qn} + g{mo + Zml + Zm2 + m3} + 0(ALT)
where
{m} = at G(t_,{q_})
] At At
{m}l = At G(tn + > ,{qn + 5 qn})
21)
_ At oAt LAt
{m}2 = At G(tn + 5 ,{qn +5mq, 3 mo})
{m}, = At G(t_ + At,{q_ + Atq + 2Em D)
3 n > in n 2 1

Utilization of these one-step formulas provides a number of

desirable advantages over other numerical schemes:
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1. The formulas are the same for each tiﬁe step and do
not require any special starting procedureé for the
initial time increments.

2. Since the procedure does not require displacement vec~-
tors from previous time steps the time increment may
be easily changed at any point in the calculations.

3. The explicit formulation of the Runge-Kutta technique
readily permits application of these formulas in non-
linear analyses since iteration is not required.

4, The relatively high order of the truncation error [the
truncation error in a fourth-order Runge-Kutta solu-
tion is of order (At)s] permits the determination of
very accurate results.

5. The formulas can possess at worst a weak instability26
(i.e. the technique is unstable for At > (At)Crit but
is stable for smaller time steps).

These inherent advaﬁtages are offset in some cases by the dis-
advantages inherent in the procedure. The major disadvantage noted
in applying these Runge~Kutta formulas is that it is necessary to
calculate the acceleration vector four (4) times for each step of
the advancing calculation. Since a set of simultaneous algebraic
equations must be solved to determine the accelerations, a large
amount of computer time may be required by this numerical solution

technique. In order to be competitive with other numerical solution
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routines (which require the solution of only one set of simul-
taneous equations per time step) the critical time increment for
the Runge-Kutta method must be substantially larger (preferably by

a factor of at least 4) than the step allowed by other methods.
Houbolt Method

The finite difference method of solution developed by HouboltZ2?
for use in dynamic structural response studies of aircraft can be
adapted for use in the present shell analysis. The acceleration
vector in the equilibrium equations is replaced by an equivalent
finite difference expression and the resulting matrix equation is
solved for the displacements at the end of each time step.

The nodal accelerations are approximated by the following

finite difference expression:

{q

1
at1lT bey2 {2q 41 - 59, *+4q, 5 - q 5} (22)

Substituting Eq. 22 into Eq. 16 and simplifying yields an expres-

sion of the form:

@2 + GO KD, } = G (FE,q) .}

(23)

+ [M]{5qn - 4qn_l + }

qn—Z

This expression is used to determine the response at the end
of each time increment except the first. A special procedure must

be employed in order to calculate the displacements at the end of
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the first time step (n = 0) since the values of the displacement
vectors {q_l} and {q_2} are unknown.
In addition to the initial velocities and displacements which

are specified, the initial accelerations may be calculated by con-

il

sidering Eq. 16 at time t = 0 or by employing Newton's second law

of motion:

[l4q,)

it

{F(0,q)} - [KI{q} (24)

Difference expressions can then be used to develop equations to
relate the known initial conditions to the fictitious matrices

{q_l} and {q—Z}' The difference expressions employed are

. 1
{9 }=——51{q, -2q +q .} (25)
o (At)z 1 o -1
and
. 1
tagd = gag 29y *+ 39, - 6a_y + a_,} (26)

Equation 25 can be solved for {q_l} and written as

fa_} = a0)*{q ) + {2q, - q) 27)

1

Equations 26 and 27 can now be combined to yield
_ 9 - .
{3_2} = 6(0t)"{q_} + 6at{q I + 9{q } - 8{q } (28)

These last two expressions can be substituted into Eq. 23 to yield
an expression to be solved to obtain the displacements at the end

of the first time step (n = 0) providing the forces at the end of
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the step are approximated by those at the start of the calculations:

6 + Ao ?KDIa;} = (0X(F0,q )1 + M{200)%
. (29)
+ 6Atq0 + 6q0}

Having determined the displacements at the end of the first step a
fictitious vector, {q_l}, of displacements can be calculated using
Eq. 27. Equation 23 can then be used to calculate the displacements
at the end of the second and all succeeding time steps. It should
be noted that utilizing this fictitious set of displacements does
not violate in any way the prescribed initial conditions.

The stability of the Houbolt procedure has been investigated
by researchers and has been proved in Ref. 27 to be unconditionally
stable when utilized in the solution of linear structural dynamics
problems. The procedure developed by wvon Neumann“! was applied
in this analysis in the manner previously employed by Leech, Hsu,
and Mack?® in a stability study of the second-order central dif-
ference approximation of the acceleration vector.

The research presented earlier by Levy and Kroll2? predicts
this inherent stability by noting the presence of a decaying ex-
ponential in the homogeneous solution., This exponential term tends
to significantly damp the responses in the higher modes of vibra-
tion when large values of the time increment are used. In addition
the procedure is shown to decrease the natural frequency of the
system, Of the methods investigated by Levy and Kroll, "the Houbolt

method is the only one which gives convergent results for large
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time increments."

The Houbolt procedure has been evaluated in shell analyses by
Johnson and Greif.3% This technique was incorporated into a com-
puter code to evaluate the linear, elastic response of thin
cylindrical shells using a finite difference formulation for the
spatial coordinates. The Houbolt (implicit) procedure was compared
with the second-order central difference formulas used in many
dynamic analyses. It was concluded that '"the explicit method tends
to be more efficient when the response varies rapidly, whereas the
Houbolt method tends to be more efficient for the prediction of

' The Houbolt procedure was found to be the

slower responses.'
more flexible of the two methods since unequal spacings (in the
spatial directions) and large time increments could be readily
utilized. The damping inherent in the Houbolt procedure was also
noted in Ref. 30. In order for the output of a particular vibra-
tory mode to appear undamped , the time increment,'At, was required
to be less than about 1/50 of the period of the mode being analyzed.
Stephens and Fulton3! have successfully employed this method
of numerical integration to obtain the axisymmetric dynamic re-
sponse of spherical caps to centrally distributed pressure loadings.
The nonlinear equations of motion were linearized using a Newton-

Raphson procedure which necessitates iteration at each time step

to determine a satisfactory solution.
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Chan, Cox, and Benfield Procedure

Structural dynamics problems may be solved using the method of
solution presented in Ref. 23 by Chan, Cox, and Benfield. This
numerical method is derived directly from the equations of motion
of the system. The resulting equations can be readily applied to a
wide wvariety of multi-degree-of-freedom problems in structural
dynamics.

As noted by other researchers,23°32 this numerical technique
is a specialized version of the more general technique developed by
Newmark.33 Unless this version of the Newmark formulation is used,
damping (either positive or negative) is introduced into the re-
sponse.

The numerical solution of the differential equations of motion
for the dynamic system is accomplished utilizing the following

finite difference relations:
(@, ={ar+55q  +q} (30)
n+1 n 2 n+l n

and

lq_ } = {a ) +8t{d )+ G - @D a ) + 800 (q ) 6D

Eliminating the matrix of damping from the formulation in Ref. 23
the displacements for the (n+l)th time step can be calculated from

the expression
(32)

(allq_,,} = [Bl{q } - [Al{q__,} + BAOXF_ + G- DE+F__)
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where

[A] = [M] + 8(Ae)2 (K]

[B]

(33)

it

2[M] - (1 - 28)(At) 2[K]

The response at the end of each time step (except the first one) is
calculated using Eq. 32.

A special procedure is necessary for calculating the displace-
ments at the end of the first time step. This procedure is neces-
sary since, for n = 0, the matrix of displacements {q_l} is
unknown. The starting procedure presented in Ref. 23 simplifies
to the following expression which is used to calculate the response
for the first time step:

[a1{q,} = [C]{q } + Ae[MI{d_} + 8(a)*(F(bt,q))]

1 2 (34)
+ (G - B () *{F(0,q )}

where

(¢l = M - G- B @D (35)

An inherent disadvantage in applying the Chan, Cox, and Ben-
field procedure is evident if the form of Eq. 32 is considered.
This formulation requires two matrix multiplications for each har-
monic during each time step. If a large number of finite elements
are utilized to approximate the structure, the matrix multiplications
will require a relatively large amount of computer time making this
method slower than the numerical procedures requiring only one

matrix multiplication. The time increment which can be utilized
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by this numerical procedure must (when compared with other methods)
be large enough to offset the expected increase in computation time
per step.

The Chan, Cox, and Benfield routine is an invaluable proce-
dure when applied in a study of the effectiveness of various numeri-
cal procedures since at least five different numerical procedures
can be investigated by varying the parameter of generalized accel-
eration, B. Each of these numerical procedures is consistent with
a different assumption concerning the variation of the acceleration
within the time increment. The acceleration parameter is used to
describe the variation of the acceleration within the time incre-
ment. Five values of B have been employed in this study to inves-

tigate five different numerical solution procedures.
Constant Average Acceleration (8 = 1/4)

Setting the value of B equal to 1/4 corresponds to using tra-
pezoidal integration formulas to determine both the displacements
and the velocities of the system. This trapezoidal integration
procedure is consistent with the assumption that a constant acceler-
ation exists within the interval. This constant acceleration has a
value equal to the mean value of the initial and final accelerations
of the increment.

This procedure (B = 1/4) has been shown to be unconditionally

stable and to possess no artificial or inherent damping.3? This
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stability had been previously noted in Ref. 23.
Linear Acceleration (B = 1/6)

A second variation of the Chan, Cox, and Benfield formulas can
be derived using Simpson's one-third rule to integrate the accelera-
tions and trapezoidal integration of the velocities. These formulas
correspond to using B = 1/6 and are consistent with the assumption
of a linear variation of the acceleration within each time step.
This numerical technique has also been presented by Wilson and
hlh

Cloug and applied in dynamic analyses of structures subjected to

earthquake loadings.
Step Function Acceleration Variation (8 = 1/8)

The formulas which are derived utilizing B = 1/8 can also be
shown to be consistent with the assumption that the acceleration
within the time increment varies as a step function. The step
function has a value equal to the initial value of the acceleration
during the first half of the time increment and then uses the
final value of the step function during the second half of the in-

crement.
Fox and Goodwin Formulation (8 = 1/12)

The set of formulas which evolve as a result of using 8 = 1/12

are identical to those presented by Fox and Goodwin3" for the solu-
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tion of ordinary differential equations. Newmark33 has concluded
that in most instances better results are obtained if larger values

of B are used.
Second-Order Central Difference Formulation (8 = 0)

One of the most commonly used formulations for dynamic struc-
tural analyses results from utilization of a zero value for the
parameter of generalized acceleration. This variation is equiva-
lent to making the assumption that the acceleration vector can be
approximated by

{a}= — 5 a5 = 20 +q__} (36)
(at)
An explicit formulation for the displacements at the end of the
(n+l)th time increment results from the substitution of Eq. 36 into
Eq. 16.

The research conducted by Distefano?® has established the fact
that since an explicit formulation exists, the procedure can possess
at worst a weak instability. 1In other words, the process will be
stable for time increments smaller than a certain critical value

(At<AtC ). TFor linear structural analyses the critical value of

rit

the time step as determined by Levy and Kroll2? can be written as

Atcrit B 2/Wmax (37)
where
w = largest natural frequency of the structure

max
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In a more rigorous analysis, Leech, Hsu, and Mack?® established
the value of the critical time step using the procedure developed
by von Newman.'!

In addition to the stability studies which have been conducted,
this explicit formulation has been utilized in a large number of
structural dynamic analyses. Shell dynamic analyses using finite
difference formulations for the spatial coordinates have been per-
formed utilizing this formulation. Johnson and Greif3% evaluated
this method and compared the efficiency of this formulation with
that of the Houbolt procedure in the linear elastic response of
cylindrical shells. This study indicates that this explicit method
tends to be more efficient when the response varies rapidly. Leech,

16 and Wrenn, Sobel, and Silsby12 employ this for-

Witmer, and Pian
mulation in computer codes for the nonlinear analysis of general
thin shells. Wrenn, Sobel, and Silsby12 employ this formulation in
computer codes for the nonlinear analysis of general thin shells.
Wrenn, Sobel, and Silsby have found this method to be more efficient
than either the fourth-order Runge-Kutta formulation or the Adams-
Moulton predictor-corrector technique. Based upon the results ob-
tained in numerous computer runs, they also report that "in most
cases the critical time step is so0 small that the larger truncation

error of the finite difference method does not create a serious

accuracy problem."
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Parabolic Acceleration Method

Another step-by-step integration prbcedure which may be
employed in dynamic analysis allows the accelerations to vary para-
bolically within each increment of time. This procedure is pre-
sented in Ref., 24, Adapting these formulas for the solution of the
equations of motion (Eq. 16), the dynamic response of a structure
can be determined. Tﬂe nodal accelerations at the end of each time

step are calculated using

2
([M] + =5~ [K]){q } = {F(t,q)n+l} - [K1{A} (38)
where
5 At3 .o
{A} = {q}+At{q}+ Ty At {q}+ {q} (39)

The nodal displacements are then determined by applying the follow-
ing equation:

2 .
lq_, } = (&} + 25— {q_, ) (40)

The values of the velocities and the third derivative of the dis-

placements with respect to time are calculated for each step using

}—{q}+3—A£{"}+——{ B 2L 1, ) (41)

la 1y 9n+1

and

o 2 . 2 . ..
{qn+l} - KE-{qn+l} - ZE‘{qn} - {qn} (42)
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These vectors are used to determine the components of the vector {A}
which is used to calculate the accelerations and displacements at
the end of the next step. By successively applying Eqs. 38, 40,

41, and 42, the structural response can be calculated for each time
step.

In order to start the calculations (first timé increment) the
initial accelerations and the initial values of the third deriva-
tives must be calculated from the given initial velocity and dis-
placement vectors. The initial accelerations are determined using

the equations of motion at the initial time which is written as
IMl{q } = {F(0,q )} - [K]{q } (43)
o o o
The initial values of the third derivatives are determined using
® . -]_‘— _ _ ®
[M{q } = 7+ {F(at,q;) - F(0,q)} - [K]{q } (44)

Having determined the values of these two derivatives, Eq. 38 can
be used to calculate the displacements at the end of the first time
step.

Utilization of this higher order method may result in an in-
crease of the size of the critical time step. The increase in this
step size must be substantial in order to justify employing this
procedure since a relatively large number of calculations must be
performed for each time step. This implicit formulation requires a

knowledge of the force vector, {F(t,q)}, at the time increment at
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which the displacements are to be calculated. The extrapolation
procedures utilized to calculate these forces are presented in the

final section of this chapter.
Third-Order Explicit Formulation

A third-order explicit formulation can be developed if the ac-

celeration vector in Eq. 16 is approximated by the following

expression25

°
-

{q } =

n

- q } (45)

{11q 03

1
2

~ 20q +6q_ + 4q
12(At) n n-1

n+1 n-2

The displacements at the end of the (n+l)th time step can then be
determined if Eq. 45 is substituted into Eq. 16 to yield

lZAt2

11

2
y - 12(At)

[M]{anrl i1 {F(t,q)n} -

[Kl{q_}

1 (46)
+ EI'[M](Zan - 6qn_1 - 4qn_2 + qn_3)

This method requires a knowledge of the response at the end of
four previous time steps in order to calculate the response at the
end of the fifth step. This requirement necessitates the use of a
larger amount of storage space than is required by the other proce-
dures. In addition to the requirement of additional storage space,
this explicit procedure requires a relatively large amount of matrix
operations since four displacement vectors must be summed and two
matrix multiplications are required for each harmonic at each time

step. In order to be competitive with other numerical solution
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schemes this procedure must therefore be able to utilize a slightly
larger time step since the computation time per step will undoubted-
ly be larger than for most of the other solution procedures.

A slightly different approach is taken to start the numerical
solution using this formulation. Since relatively small errors
in the values of the displacements of the initial time steps can
cause large errors in the ensuing calculations, it is extremely im-
portant that the displacement vectors for the initial time step be
accurately calculated. The fourth-order Runge-Kutta formulas
presented in a previous section are utilized to calculate the re-
sponse for the first three time steps. These formulas are applied
for six time steps with one half the value of the desired time
incremen£ to insure accurate values for the vectors {ql}, {q;}, and
{q3}. Using these displacement vectors, the displacements at the
end of the fourth (and all succeeding) steps can be calculated by

employing Eq. 46.
Loads Matrix Approximation

In order to determine the displacements at the end of the
(n+l)th time increment, the method of Chan, Cox, and Benfield, the
Houbolt forﬁulation, and the parabolic acceleration method require
a knowledge of the loads, {F(t,q)}, at the end of the increment.
As can easily belnoted by considering Eq. 16, these loads are a

function of the displacements which are to be calculated . These



34

loads cannot therefore be evaluated exactly.
The right-hand side of Eq. 16 will therefore be evaluated
using a first-order Taylor's series expanded about the nth time

increment. This expansion may be written as:
_ 0 2
(F(6,0) ) = {F(6,) 3 + At (F(e,q), ) + 0(at) (47)

Using a first-order backwards difference expression to approximate
the partial derivative results in the following extrapolation for-

mula, which is used to calculate the loads:
{F(t,0) 4} = 2{F(t,9) } - {F(t,0) _,} (48)

Employing Eq. 48 in the Houbolt and Chan, Cox, and Benfield for-
mulations is consistent since the inherent error in these formu-
lations is the same as the order of the truncation error (Atz) in
Eq. 48. Applying Eq. 48 corresponds to using a linear extrvapolation
of the loads at the two previous time increments.

The loads may be approximated with an accuracy of order (At)3

using the following second-order expression:

{F(t,q)n+l} = 3{F(t,q)n} - 3{F(t,q)n_1} + {F(t,q)n_z} (49)

This expression can be obtained by passing a parabola (second-order
curve) through three points and extrapolating to obtain the fourth

point on the load-time curve.
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CHAPTER IV
EVALUATION OF NUMERICAL INTEGRATION PROCEDURES

In this chapter the results obtained using the various
numerical integration techniques in selected test problems are
presented, compared, and evaluated to determine the optimum proce-
dure for use in the DYNASOR code. A ane degree-of-freedom beam
vibration proBlem is formulated to initially evaluate the integra-
tion techniques. After considering the results obtained in the
beam analysis, two numerical integration techniques are eliminated
from consideration. The remaining three techniques are then eval-
uated in shell of revolution analyses.

Test problems formulated for the evaluation of the numerical
procedures in shell analyses are described since the relative
stability of the integration procedures must be evaluated in light
of these particular applications. A thorough evaluation of the
Houbolt procedure is made after the technique is adjudged to be the
optimum procedure. This critical test lends additional support to
the conclusion that the Houbolt technique is the most advantageous

procedure for use in the DYNASOR code.
Beam Response Study

The beam configuration depicted in Fig. 2 was selected as a

test case for use in screening the numerical integration techniques.
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The concentrated loading was instantaneously applied at the begin-
ning of the response calculations and does not vary with the time,
Two elements were used to idealize the beam structure with the free
nodal point being located at the center of the beam where the con-
centrated loading is applied. Although the two element idealiza-
tion may appear somewhat crude, it should be kept in mind that this
test problem was used primarily for testing the numerical integra-
tion techniques. Rigid investigation of nonlinear beam vibrations
was not the purpose of this study. The one degree-of-freedom for-
mulation is sufficient for the evaluation of the integration
techniques providing only the response of the first vibratory mode
is needed.

The equation of motion which describes the nonlinear dynamic

response of the beam can be expressed as

U
o NL
Mq + Kq = - —a'ci— (50)
where
M = pAL
K = 24 EI/L3 (51)
au
NL _ 3
q EA(q/L)

Equation 50 has been written in the same form as the equations of
motion for shell of revolution analyses (Eq. 16), Similarities

between the shell and beam analyses allow utilization of the beam
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configuration for a preliminary analysis of the charactgristics of
the numerical integration techniques providing the material and
geometric properties of the structure are judiciously selected.
Since the presence of nonlinearities affects the stability of
the solution techniques, the nonlinear effects of the rotation of
the beam upon the axial strain are included. The material proper-
ties selected are typical of those currently employed in the
aerospace industry while the geometric parameters provide a test
problem in which the nonlinearities are significant. The values

of these parameters are as follows:

A= 0.2 in?
E = 10.0 x 10%psi
(52)
L =10 in
= in3
0 0.1 1bm/1n

The static response of this fixed beam configuration is pre-
sented in Fig. 2 to show the degree of nonlinéarity present in the
response, This response clearly indicates that the influence of
the membrane effect becomes increasingly more significant as the
loading is increased. The effect of the inclusion of the nonlinear=-
ities becomes increasingly significant as the loading is increased.
Inclusion of the nonlinear terms causes a stiffening effect which
results in smaller displacements for the same amount of load when

compared to the linear solution.
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In the dynamic analysis of this beam each of the numerical
integration procedures was found to give essentially the same
results when relatively small time steps were used. Results pre-
sented in Fig. 3 indicate the vertical response of the middle of
the beam obtained by the various integration techniques with a time
step of fifty microseconds. No significant discrepancies between
the results obtained by the various procedures were noted for the
small time increments.

As the time step was increased, two of the numerical integra-
tion procedures, the parabolic acceleration method and the third-
order explicit formulation, were found to be unsatisfactory. A
divergent oscillation was noted in the response obtained using the
parabolic acceleration technique. A positive damping effect was
noted in the response obtained by the third-order explicit formu-
lation. The damped respomnse converged to the static nonlinear
solution. As the time increment was further increased, numerical
instabilities were noted (i.e. the response became unrealistically
large). Each of the other integration procedures provided satis-
factory results for time increments at least as large as the step
size at which the undesirable solutions were noted.

It should be noted that the mean point of the oscillations of
this beam has a value less than the predicted static nonlinear de-~
flection. This phenomena is expected since more energy per unit

of deflection is required as the response increases.
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For exceedingly large values of the time increment the inherent
damping of the Houbolt method was noted (Fig. 4). For small values
of the load (hence only moderately nonlinear response) the dynamic
response converged quickly to the static solution. A larger
number of cycles was required for this convergence as the loading
was increased. Only a small, almost negligible, amount of damping
was apparent in solutions obtained using large values of both the
load and the time increment; additional increases in the size of
the time step resulted in unstable, not positively damped, solu-
tions. The unconditional stability of the Houbolt technique as
applied in linear dynamic analyses does not therefore exist for
nonlinear dynamic analyses. As the degree of nonlinearity of the
response increased the inherent damping of the Houbolt method
became less significant since the time increment for stability be-
came less than, or at least approached, the time increment at which
the inherent damping became noticeable.

Satisfactory results were obtained using the method of Chan,
Cox, and Benfield, the fourth~order Runge-Kutta formulas, and}the
Houbolt integration procedure. These solution techniques were

therefore selected for application and evaluation in shell analyses.
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Shell of Revolution Response Studies

The most promising methods of numerical integration, as
determined by the beam analyses, were efficiently incorporated into
the DYNASOR code using the FORTRAN IV language. The calculations
were then made using an IBM 360/65 computer. In addition to pre-
senting an evaluation and comparison of the varicus numerical
integration techniques, the results of a critical test of the
Houbolt procedure are described in the remaining sections of this

chapter.
Runge-Kutta Evaluation

A linear analysis of a shallow spherical cap (A=6) with
clamped edges was performed to evaluate the Runge-Kutta method of
integration. A radius of 0.9 inches and a rise of 0.0859 inches
were assumed for the cap. The slope of the shell at its base was
selected as 10.90; a uniform thickness of 0.01576 inches was used
in the calculations. The shell was subjected to an instantaneously
applied (constant in time) internal pressure and the response of
the zero harmonic was determined using a thirty element idealiza-
tion of the shell.

After obtaining numerically unstable solutions for time in-
crements of 2.0, 1.0, and 0.5 microseconds, a stable solution
(linear) was obtained using a value of 0.005 microseconds. Utiliz-

ing this extremely small time step would necessitate prohibitive
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amounts of computer time for dynamic analyses. Since the numeri-
cal instabilities consistently occurred after completing only a
few time steps, a smaller time step was used to obtain the dis-
placements at the end of the initial time steps. Employing this
small initial step size increased the accuracy of the calculated
displacements. Inaccurate calculations in an initial value problem
greatly affect the numerical stability of ensuing calculations.
Additional stability was afforded by this approach and the allow-
able time step size was increased to 0.05 microseconds. It was
presumed that this time increment would be decreased if a nonlinear
analysis was conducted. The allowable time increment was definite-
ly too small to allow practical use of the Runge-Kutta formulas
for nonlinear shell analyses.

The many advantages afforded by the simplicities of appli-
cation and the high order of accuracy of the Runge-Kutta method
are more than offset by the small critical time increment re-
quired for dynamic shell of revolution analyses conducted using
this technique. The fourth-order Runge-Kutta formulation is

therefore unsatisfactory for use in the DYNASOR code.

Chan, Cox, and Benfield Evaluations (B = 1/6, 1/8, 1/12, and Q)

Attempts were made in a variety of problems to use values of
B < 1/4 in the Chan, Cox, and Benfield routine. A numerically

stable response was never obtained using time increments as small
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as 0.1 microseconds. The results of the Runge-Kutta evaluation
indicated that a stable response could be obtained if further re-
ductions were made in the size of the time step. A stable solution
(zero harmonic only) was then obtained in one application for B = 0
using a time step of 0.0l microseconds. The same problem had been
solved using another method (Houbolt) with a time increment of

0.25 microseconds. It is therefore impractical to employ the Chan,
Cox, and Benfield procedure with values of B less than one-fourth

for shell analyses using the DYNASOR code.

Comparison of Houbolt Method and Chan, Cox, and Benfield Routine

(B = 1/4)

Selection of the most advantageous numerical solution tech-
nique can now be made by comparing the response obtained using the
Chan, Cox, and Benfield method with B = 1/4 to the response deter-
mined using the Houbolt formulation. The shell selected for this
comparision is the cap-torus—cylinder configuration depicted in
Fig. 5. Fifty elements are used to idealize the shell with the
distribution of the elements selected to yield a large number of
elements near the c;ﬁ;torus intersection and near the torus-
cylinder intersection. The widely varying element sizes and the
irregular shape of the shell combine to provide a problem which
serves as a realistic test of the integration techniques.

The displacements and stresses for the zeroth harmonic were

calculated using both methods of solution (single~precision
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arithmetic). The displacement vresponse calculated by the two
numerical procedures is almost identical (Fig. 5). Likewise ex-
cellent agreement is noted (Figs. 6 and 7) between the stresses
calculated by the two integration techniques.

Selection of the technique for use in the DYNASOR code can
be based upon economic considerations since the response curves
are essentially the same. A time increment of 3.0 microseconds
yielded stable solutions for the Houbolt method. The method of
Chan, Cox, and Benfield could employ only as large as a 1.0 micro-
second time step. In addition to allowing a larger time step the
Houbolt method requires less computation time per step. A‘com—
parison of Egys. 23 and 32 reveals that two matrix multiplications
are required per time step for the Chan, Cox, and Benfield routine,
but only one multiplication is necessary in the Houbolt formula-
tion, thus explaining the difference in the amount of computer
time required per step. As the number of finite elements is in-
creased the savings in computation time per step becomes increas-
ingly more significant.

In this test problem the combined effect of using a larger
time step and decreasing the required computer time per step is to
provide a solution to this problem almost four times faster using
Houbolt's method. Comparable savings in computer time resulting
from using the Houbolt procedure were noted in a number of other

applicationslq of the two techniques.
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Although the Houbolt scheme requires slightly more storage
space than the Chan, Cox, and Benfield technique (three displace-
ment vectors instead of two), the benefits and advantages accrued
using the Houbolt scheme more than offset this slight disadvan-
tage. The Houbolt method of numerical integration is therefore
chosen as the most advantageous method for use in the shell analyses

conducted using the DYNASOR code.
Comprehensive Evaluation of Houbolt's Method

A critical test of the Héubolt method was made to see if the
procedure is capable of obtaining the dynamic response of shells
whose behavior is highly nonlinear. A shallow spherical cap (A=6)
with clamped edges was used in the evaluative study. The geometric"
and material properties together with a descriptive drawing of the
shell are presented in Fig. 8. A concentrated load applied at the
apex of the shell was used to excite the response. This load was
instantaneously applied at time t = 0 and remained constant for
the duration of the calculatiomns.

The problem was selected for the evaluation for two reasons.
First, the response is highly nonlinear. The high degree of non-
linearity of the response can be established by considering the
static load-deflection curve presented in Fig. 8. These results
were obtained using the Newton-Raphson method of solution in a

version of the SNASOR code similar to the version described in
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Ref. 6. These results agree well with the work of other research-

ers,t2-43

A forty pound load was selected for use in the dynamic
evaluation studies. The nonlinearities are quite significant for
this loading since the static nonlinear response is more than four
times as large as the linear deflection at this loading.

A second reason for selecting this configuration centers
around the existence of a singularity at the apex of the shell.
Extremely large stiffness terms evolve as a result of this singu-
larity; the corresponding terms in the mass matrices for the
various harmonics are, however, rather small. The large stiffness
to mass ratio provides an exceedingly large speed of sound in
the medium. The criteria for selecting the size of the time step
»developed12v30 for use in finite difference shell analyses are
based upon the time required for a signal to travel from one mesh
point to another. Applying these criteria to this problem results
in the prediction of an unrealistically small time increment. It
>is hoped that by utilizing the Houbolt technique the time incre-
ment for stability will be much larger than the value predicted

by the finite difference criteria.

Effect of Increased Numerical Accuracy

The effect of using a greater degree of numerical accuracy
in the solution of this test problem was investigated. Using a

thirty element idealization and a time increment of 0.125 micro-
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seconds , response data was obtained with both single-precision
(seven significant figures) and double-precision (sixteen signi-
ficant figures) numerical accuracy. A comparison of the response
curves can be made by considering Fig. 9. The decrease in the
round-off error of the double-precision response results in an
increase in the period and the amplitude of the motion in this
highly nonlinear application. Single precision results for mod-
erately nonlinear problems have been shown!* to be in excellent
agreement with the results obtained by other investigators.
Double-precision arithmetic seems therefore to be necessary only
when the behavior of highly nonlinear shells is to be analyzed
gsipg the DYNASOR code on computers whose inherent accuracy is
equal to or less than that of an IBM 360/65 computer. Double-
precision arithmetic is not thought to be necessary, even for
highly nonlinear behavior, when the DYNASOR code is used in com-
puters (such as the CDC 6600) which have a significantly longer

word length than the IBM 360/65 system.

Effect of Load Extrapolation Procedure

Two extrapolation procedures (Ch. III, pp. 33 - 34) are
qtilized to calculate the loads at the end of the (n+1)th time step
froﬁ the loads at the previous steps for the implicit Houbolt
procedure. A comparison of the results obtained using both ex-

trapolation procedures is presented in Fig. 10. These results
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were obtained for the zeroth harmonic using a time increment of
0.125 microseconds and thirty elements to idealize the shell. No
significant differences in the results obtained by the two ex-
trapolation procedures are noticed in Fig. 10.

For a time step of 0.25 microseconds the solution obtained
using the parabolic extrapolation procedure was found to be numeri-
cally unstable. A stable solution was, however, obtained using
the linear extrapolation procedure to obtain the loads. Because
of the additional stability obtained using the linear approxi-
mation, it is concluded that a linear extrapolation is more
effective than a parabolic procedure,

In addition to the increased stability, the amount of storage
space required by the code is lessened, as is the amount of
computer time required per time step, since the force vectors at
only two, instead of three, previous time steps must be retained
and combined. Utilization of the linear extrapolation procedure
is therefore an efficient and effective means of approximating the

loads at the end of the (n+l)th time increment.

Solution Convergence with Improved Idealization

Since this analysis is based upon a finite element formula-
tion , it is necessary to show that the idealization used for this
test problem is fine enough to yield an accurate solution. As the

number of elements is increased, the responses obtained by any
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acceptable numerical method should converge. Solution convergence
using the Houbolt method is demonstrated in Fig. 11. Responses
were obtained using 15, 30, and 50 element idealizations of the
shallow cap; these elements were concentrated near the apex -and
near Fhe suppor;s qf the shell where the displacements and stresses
vary rapidly.

For the formulation employed in this analysis it was expected
that in highly nonlinear problems, such as this test problem,
the convergence with improved idealization would be rather slow.
Utilizing linear displacement functions in the nonlinear strain
energy expression and employing strip integration across the ele-
ments was expected to result in rather slow convergence. However,
as indicated in Fig. 11, the response, even in this highly nonlinear
test problem, has completely converged for as few as 30 elements.
Although the period of the motion is slightly damped, the response
obtained using only 15 elements is accurate enough for many engin-
eering purposes.

Obtaining accurate solutions using a relatively small number
of elements results in considerable savings of computer time. Each
element used to idealize the shell increases the size of the
matrices which must be manipulated and increases, by four, the
number of simultaneous equations which must be solved at each time
step. Hence, the amount of computer time required per time step

increases rapidly as the idealization of the shell is improved. 1In
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this problem the computation time per step was 0.0067 minutes for
the 50 element solution but only 0.0021 minutes for the 15 element
case (only the response of the zeroth harmonic was determined).
The Houbolt method as applied in the DYNASOR code provides conver-
gent solutions using relatively few elements for idealizing the

shell.

Effect 9£~Time Increment Variation

The presence of inherent damping in the Houbolt method of
integration necessitates demonstration that the time step size has
been chosen small enough to ensure tnat the artificial viscosity
of the method does not affect the calculated response., To deter-
mine the effect of varying the time increment in this problem, the
test problem was run using time steps of 0.125 and 0.25 micro-
seconds. Again, double~precision numerical accuracy was used for
calculating the response of the thirty elements used to idealize
the cap. As presented in Fig. 12, no discernable errors are in-
troduced using the larger value of the time step. TFor a time step
of 0.50 microseconds the solution became numerically unstable.

Selection of the Houbolt method as the optimum procedure for
use in the DYNASOR code is further supported by results obtained
for this.test case., Using the method of Chan, Cox, and Benfield
(8 = 1/4) the responses obtained were numerically unstable for

time steps as small as 0.125 microseconds. Using B = 0, a stable
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solution was finally obtained using a 0.01 microsecond time step.
Again it is noted that the Houbolt procedure is numerically
stable for time steps much larger than can be used with other
methods.

If the Houbolt method is used to calculate high frequency
response, a small time increment (in relation to the period of the
motion) must be used. The step size must be chosen small enough
(approximately 1/50 of the pericd) to keep the response from being
damped. In these applications other numerical procedures may be

deemed more efficient than the Houbolt procedure.
Time Increment Selection

Since the cost of a dynamic analysis is directly related
to the size of the time step used in the calculations, judicious
selection of the size of the time step is almost mandatory.
Considerétion must therefore be given to the factors which affect
the size of the time step which may be used in nonlinear dynamic
analyses of shells.

Techniques of estimating the size of the critical time step
developed for finite difference analyses are based upon the
minimum amount of time required for a signal to travel from one
mesh point to another. Although applicable in a number of impor-
tant analyses, these techniques are not applicable in many in-

stances, such as for the test problem in Fig. 8. For the shallow
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cap an unrealistically small time increment is estimated by
these procedures. Results indicate much larger time steps may be
used.

The size of the time step is greatly affected by the degree
of nonlinearity present in the response. Hence, both the geometry
of the shell and the loading applied to the shell affect the
choice of the time step. In nonlinear analyses the influence
of the loading on the size of the time step can be quite signifi-
cant. As previously stated, a time increment of 0.25 microsecon&s
can be effectively used for the shallow cap (Fig. 8) subjected to
a forty pound apex loading. The response of the same shell
subjected to a uniform external pressure was satisfactorily
determined using a time step of 1.0 microsecond. This increase
in the allowable time step is permitted since the response to the
pressure loading does not exhibit the high degree of nonlinearity
present for the concentrated loading.

Selection of the time increment for use in nonlinear dynamic
analyses must therefore rely upon the -judgement of the investi-
gator. This judgement should be based upon the shell geometry
and both the degree of nonlinearity and the frequenc§ expected in
the response, The choice should be aided by the estimated values
obtained using finite difference techniques. Through experience
an investigator can rapidly gain an insight into the selection of

an efficient step size. Only when an acceptable level of pro-
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ficiency has been attained can dynamic analyses be efficiently and
effectively performed. Further study to develop techniques for
estimating the size of the critical time step in nonlinear dynamic
analyses is needed to correct the admiﬁtedly inefficient proce-

dure presently being used.
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CHAPTER V
CONCLUSIONS

The results obtained in this study strongly support the con-
clusion that, of the numerical integration procedures tested, the
Houbolt method is the most efficient and practical method of solu-
tion for use in the DYNASOR code. For the test problems analysed
in this study, as well as in the low frequency studies discussed in
Ref. 14, the Houbolt method was the only technique which obtained
numerically stable solutions usihg realistic values for the time
increment.

When the high frequency response of higher modes of vibration
is to be determined, the Houbolt procedure requires a small time
step in order to keep the damping inherent in the technique from
becoming significant. Other numerical techniques may, in these
instances, be more efficient than the Houbolt procedure. Although
applying another numerical technique would be more efficient for
some of these cases, it is believed that the Houbolt technique is
the best method for use in the vast majority of practical analyses
to be conducted using the DYNASOR code.

In the present implicit formulation the loads applied at the
end of the (n+l)th time step are obtained using a first-order
Taylor's series expansion about the nth step. Although utilizing

the approximation undoubtedly contributes to making the method
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unstable for large time increments, the Houbolt method is sub-
stantially more stable than the formulations which require no
extrapolation of the loads.

Even for highly nonlinear analyses convergent solutions can be
obtained using Houbolt's method. For a highly nonlinear test
problem the response was shown to converge as the idealization of
the shell was improved and as the size of the time step was de-

creased.
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