Rell

FINAL REPORT FOR CONTRACT NAS 12-2074

DIGITAL FLIGHT CONTROL
 and
 LANDING SYSTEM
 for the
 CH-46C HELICOPTER

REPORT NO 6200-933013

MAY 1970

By
William Cockayne
Walter Rusnak Lionel Shub

NASA/Electronic Research Center

For ${ }^{\text { }}$

Cambridge, Mass

CONTENTS

Section Page
I INTRODUCTION I-1
II SUMMARY AND CONCLUSIONS II-1
A. Summary Description of the DFCLS. II-1
B. Flight Control II-3

1. Modes II-3
2. FInght Control Laws II-3
C. Guidance II-4
3. General II-4
4. Modes II-4
5. Guidance II Laws II-4
D. General Conclusions II-6
III DETAILED DESCRIPTION OF SYSTEM III-1
A. Baselne System III-1
B. Flight Control Laws III-4
6. Design Philosophy and Assumptzons III-4
7. Final Flight Control Laws III-18
C. Guidance Laws III-37
8. Guddance Requirements and Design Approach III-37
9. Detalled Description of Guidance. III-43
10. Guidance Implementation III-48
IV SIMULATION. IV-1
A. General IV-1
B. Data Used in Simulation IV-1
11. Bare Helicopter IV-1
12. Actuator and Rotor Dynamics IV-22
13. Wind Model IV-22
14. Strapdown Navigation System IV-24
15. Airspeed Indicator with Pitot Head IV-30
16. Alpha and Beta Vanes IV-35
17. GSN-5 Radar Model IV-36
18. Radar Altımeter - Honeywell YG7091B. IV-39
C. Simulation Mechanization. IV-43
19. General Description IV -43
20. Helicopter Module IV-46
21. Flight Data Systems Module IV-53
22. Gudance and Fhight Control Module IV-59
23. Cockpit Module IV-59

CONTENTS (CONT)

Section Page
V RESULTS OF EVALUATION V-I
A. General $\mathrm{V}-1$
B. Data Compled. $\mathrm{V}-1$
C. Summary of Evaluation Conclusions. $\mathrm{V}-8$
VI RECOMMENDATIONS FOR FUTURE STUDIES VI-1
A. General VI-1
B. Approach Profiles VI-1

1. Fixed Glide Path to the Touchdown Point VI-1
2. Segmented Glide Path VI-2
3. Exponential or Recomputing Flight Path VI-2
4. Modifications to Present Flight Profile VI-2
C. Displays VI-2
D. Computation Simplification. VI-3
5. Sampling Rates VI-3
6. ISU Updating VI-3
E. Other Control Modes. VI-4
F. Simulation of Other V/STOL Vehicles VI-4
G. Examınation of Evaluation and Performance Criteria VI-4

ILLUSTRATIONS

Figure Page
II-1 Conceptual Diagram - Flight Control and Landing System H-2
II-2 Landmg Mission Phases II-5
III-1 Sumplfied Block Diagram III-2
III-2 EISS Intial Condition Switching III-10
III-3 Longitudinal Flight Control Laws III-26
III-4 Lateral Flight Control Laws III-27
III-5 Pitch Limit Cycle with No Hysteresis Comp III-33
III-6 Pitch Limit Cycle with Variable Gain Comp III-3t
III-7 Normal Profile Phases III-39
III-8 Flow Dragiam of Guidance II Laws III-49
IV-1 Aciuator and Rotor Dynamics Model IV-23
IV-2 Functional Model for the Simulation Gyro IV-25
IV-3 Functional Model for GG334A Rebalance Loop IV-26
IV-4 Velocity Sensor IV-31
IV-5 Attitude Sensor IV-32
IV-6 Pitot Tube Model IV-34
IV-7 $\quad \alpha, \beta$ Vane Model IV-35
IV-8 Block Diagram of GSN-5 Radar System IV-36
IV-9 GSN-5 Radar IV-38
IV-10 Resolver Unit IV-39
IV-11 Analog Computer Model IV-40
IV-12 Data Link Error Model IV-40
IV-13 Radar Altimeter N-41
IV-14 Hybrid Simulation Flow. IV-44
IV-15 Helicopter Simulation Program IV-45
IV-16 Helıcopter Module Subroutne. IV-47
IV-17 Hysteresis Mechanization IV-50
IV-18 Cockpit Displays IV-60
V-1 Sample Computer Output V-3

TABLES

Number Page
III-1 Performance Index III-16
III-2 Handling Qualities Rating Scale III-17
III-3 Data Requirements for FCS III-19
III-4 Control Mode Defmitions III-20
III-5 Plot's Controls Parameters III-21
III-6 Commands Displayed III-24
III-7 FDI Display Sensitivities III-25
III-8 Pitch Differential Collectuve FCS Laws III-28
III-9 Roll Cyclic FCS III-29
III-10 Yaw Cychc FCS Laws III-30
III-11 Collective FCS Laws III-31
III-12 Desmed Nominal Profile Characteristics III-40
IV-1 Data Base IV-6
IV-2 Data Base. IV-7
IV-3 Data Base IV-8
IV-4 Data Base IV-9
IV-5 Data Base IV-10
IV-6 Data Base. IV-11
IV-7 Data Base IV-12
IV-8 Data Base IV-13
IV-9 Data Base IV-14
IV-10 Data Base. IV-15
IV-11 Data Base IV-16
IV-12 Data Base. IV-17
IV-13 Data Base. IV-18
IV-14 Data Base IV-19
IV-15 Defintion of Symbols Used in Flow Chart. IV-46
V-1 Fhght Test Conditions-All Modes V-2
V-2 Additional Flight Test Conditions-AUTO, VEL 1 and ATT 2 Modes V-2
V-3 Touchdown Condition Data V-4
V-4 Mean Touchdown Conditions V-6
V-5 Performance Index Means V-6
V-6 Cooper Rating $\mathrm{V}-7$
V-7 Error Model AUTO V-8

I INTRODUCTION

On Fcbruay 27, 1969, NASA/ERC, Cambridge, Mass, awarded Contıact No 12-2074 to Bell Aerospace Company to perform an analytical and hybrid sumulation study of a Digital Fhight Control and Landing System (DFCLS) for the CH-46 Helicopter This study was to be prelmmary to the testing and demonstration of such a system aboand the CH-46C helicopter at NASA/Langley Research Center In Iune 1969, BAC was awarded a second contract by NASA/ERC to perform the system integration and hardware assembly required to perform the testing and demonstration of the flight control and landing system Both of these programs were part of NASA's V/STOL program designed to demonstrate the technologies required for the navigation, guidance and control of V/STOL vehicles

This report is on the first of these study programs The principal output of this study was to be a flight control system design including specifications on mput data, output data and display requiements and with a defimition of the control laws over the flight regime The flight control system was to be a flexible, multi-mode, experimental system suitable for evaluation - by flight testing of control, display and gudance concepts related to landings of V/STOL under minimum visibility conditions The flight control system was to include a number of manual modes and their displays to investigate velocity, attitude and attitude rate controls as well as a fully automatic mode

It was an objective, to demonstrate the flight control system in automatic approach and landing In this connection, it was a secondary objective of the program to define and evaluate by smulation the gudance laws required to perform this approach and landing Included in this task was the requirement to supply displayed information suitable for the pilot to perform - the landing in each of the manual flight control modes

- NASA/ERC defined a base line system which mcluded a central digital arborne computer, * a strapdown navigation system, a ground based GSN-5 radar and a digital telemetry link These equipments were to be combined to form an integrated approach and landing system using the central digital computer to perform all computations However, the flight control and gurdance laws developed in this study, are valid, independently of this hardware definition since these laws are specified in terms of input and output data requirements These data requirements formed the basis for specifying the hardware of the baselme system but can be used to define the hardware requirements of other possible configurations

The study was divided into tasks as follows
Item 1 Establish Data Base
The characteristics of the helicopter and its onboard flight control elements were compled, the error models of the subsystems of the basehne system were formulated and the wind model was defined The Data Base was used to provide the data required for the remaining tasks This report discusses the Data Base in Section IV

Item 2 Flight Contiol Laws

A set of control laws were defmed for a digital approach and landing flight control * subsystem The flight control subsystem includes six manual modes with varying degiees of pilot assistance and a fully automatic mode A detailed description of these digital flight control laws is contaned in BAC Report No 6200-933011 "Final Flight Contiol Software Package." The flight control system is discussed in Section III-B. of this seport

Item 3 Gudance Laws

Guidance laws suitable for flight demonstration of the flight control system in an approach and landing under minmal visibility conditions were formulated A detaled decription of these digital gudance laws is contamed in BAC Report No 6200-933012 "Final Guidance Software Package " The guidance laws are discussed in Section III-C of this report

Item 4 Simulation and Evaluation

A real time simulation using a piloted cockpit was developed as described in Section IV of this report The flight control and gudance laws were mechanized on an IBM 7090 computer in a manner similar to that in which they could be mechanzed on an arborne computer Performance criteria were established and automatic and pilot runs were made These results are discussed in Section IV of this report

Item 5. System Design

A gudance and control configuration was established Subsystem requirements and interfaces were defined to the device level A system signal flow diagram was developed These results are reported in BAC Report No 6200-933033 'Systems Peıformance/Design Requirements Specification"

Item 6 Equipment Specification

Equipments required to mechamize the system were identified as "existmg" or "to be developed" in BAC Report No 6200-933032 "Hardware Identıfication" The "to be developed" items were specified in the systems performance/design requirements specification

Item 7 Technical Presentations
Presentations were made as required by the contract at facilities and dates set by agreement between BAC and NASA/ERC

II SUMMARY AND CONCLUSIONS

A SUMMARÝ DESCRIPTION OF THE DFCLS

The Digital Flight Control and Landing System (DFCLS) may be depicted in a simplified diagram as shown m Figure II-1 This is an abstraction of the orignal baseline system proposed by NASA/ERC which is illustrated in Figure III-1 of Section III

In the guded modes, position data of the vehicle is obtaned with respect to an orthogonal coordmate system ANF defined with a horizontal axis along the desued approach heading, a second axis along the local vertical and the origin at the desired touchdown point In Figure II-1, the position vector $X=x, y, z$, is the position coordmate of the helicopter with respect to this coordnate system This data may be obtaned by inertial means, radar measurements, combinations of these or by any method which gives the position with the accuracy required This information is processed by the arborne digital computer using the guidance laws For the experimental system, two sets of laws have been specified, one set developed durng the course of this study and a second set to be developed independently for purposes of comparison In the figure these are identified as Guid 1 and Guid 2

In the guided modes, using appropriate update algorithms and optımal filtering techniques, if required for precision, the position information (rate of change of this information) is used to update and refine the vehicle velocity coordinates The vehicle velocity again may be obtaned by any sensing technique which has the required accuracy

The velocity data (to be used in both guided modes and in unguided modes where velocity control modes have been selected) constitute a set of inputs to the Flight Control Computations The vehicle attitude and attitude rate data is another set of inputs The vector $\underline{\theta}$ shown in the figure represents the vehicles Euler angles ψ, θ, ϕ, and the vector $\underline{\theta}$ represents the vehicles body axis rates p, q, r These may be obtamed from inertial sensors but, for flight control purposes, standard flight control system rate, heading, and vertical gyros are sufficiently accurate

The flight control system takes these inputs plus the inputs from the pilot's controls and depending on the mode selected, computes commands to the basic helicopter controls In the figure, $\Delta \delta_{\mathrm{c}}$ is the vector of incremental commands to the pitch collective, roll cyclic, yaw cyclic and collective controls of the helicopter

In addition, the flight control system sends out a set of command displays, $\Delta \delta_{\mathrm{d}}$, for the pilot's direction. These are appropnate for the flight control mode which has been selected

In the unguided modes, there is no position information but the vehicle is controllable with the same modes as available for guided flights except for AUTO (automatic) A more detaled description of these flight control and guidance laws follows

Bell Rerospace Company

- B FLIGHT CONTROL

1 Modes

There are eight pilot selectable modes of operation of the flıght contiol laws (1) Disengage, (2) SAS, (3) Attitude I, (4) Attitude II, (5) Velocity I, (6) Velocity II, (7) Velocity III, and (8) Automatic In the first of these modes the system is inactive except for mode sampling and mitiahzation activities The next six modes are manual modes of operation where command errors are normally displayed to the pilot on flight director needles and the pilot nulls these errors by inputting commands to the flight control laws thiough the electric stick or sidearm controller, rudder pedals, and collective stick The last mode of operation is a completely automatic mode where incremental velocity error mputs to the fight control laws are obtained from the guidance laws In this mode, actual velocity errors are displayed on the flight director needles for monitoring purposes The types of control, the form and source of the commands, and the form of the displays for each of these modes, except the Disengage mode, are histed in Table III-4 shown in the next section of this repoit

All of the manual modes and the automatic modes of operation of the flight control laws are designed to be used in conjunction with either the Guid I or Guid II modes The manual flight control modes can also be used when the guidance is in the Disengage mode although no command errors will be avalable on the flight director needles in this case The automatic flight control mode cannot be used when the guidance is in the Disengage mode In addition, all of these possible modes of operation apply in both the flight phase to hover and in the landing flhght phase

2 Flight Control Laws

The flight control laws for the various modes of operation have been divided into command laws and control laws The command laws convert the pilot control inputs into command inpuis to the flight control laws for the selected mode of operation There are separate command laws for the SAS Mode, the Attitude Modes, and each of the Velocity Modes By doing this, it is only necessary to include a single set of velocity control laws for the three Velocity Modes since the control . inputs in each mode can be converted into velocity commands that are compatible with these

The control laws generate the incremental output commands to the electric hydrauhc control system Also, in conjunction with the command laws, they also generate the display information in each mode, therefore, no separate display laws are requred The command laws have been developed in a cascading manner where there are separate laws for the SAS, attitude, and velocity loops Each of these control laws receives its input either from the corresponding command law or next outer loop depending on the mode of operation This was done to eliminate the necessity of duplicating the inner loops in the digital flight control program sections for the higher order modes

This separation of the command and control laws also permits the laws for the outer loops to be updated at a slower rate than is used for those in the inner loops, therefore, the command and control laws have been grouped into fast and slow loop computations for efficiency in the arrborne program In general, the fast loop computations contain the (1) SAS loop control laws, (2) SAS command laws, and (3) attitude control laws The slow loop computations contain the (1) attitude command laws, (2) velocity control laws, and (3) velocity command laws In some cases, certain equations in the inner loops can be updated in the slow loop computations These will be described in the report

C GUIDANCE

1 Gencrá

The gudance section of the Digital Flight Control and Landing System for the CH-46C helicopter will have three modes of operation (1) Disengage, (2) Gudance I, and (3) Guidance II The guidance laws for the Guidance II mode of operation have been developed by Bell Aes ospace Company during this study The Guidance I laws are to be mdependently developed for comparison purposes The gudance laws have outputs defined as velocity cirors in a coordmate system which is the ANF coordnate system rotated through the yaw Euler angle such that the X axis lies 1 n the horizontal plane (heading-vertical system) The flight control system will accept guidance commands in this form from any proposed gudance laws

2 Modes

The Gudance II laws are for the landing mission of the CH-46C helicopter and have been designed to operate in conjunction with a digital flight contiol system which has several manual modes and an automatic mode of "operation as described above There are two modes of operation of these laws (1) an Acquisition to Hover Mode, and (2) a Landing Mode In each mode, they generate velocity error commands for the flight control system In the manual modes of flight control, these errors are used by the flight control system to generate command errors for display and the pilot manually controls the helicopter based on these displays In the automatic mode of flight control, these errors are used by the flight control system to generate automatic commands to control the helicopter

In the Acquistion to Hover Mode, the laws generate velocity error commands to bring the helicopter from Aquisition conditions to a hover condition over the pad In the Land Mode, the laws generate velocity error commands to bring the helicopter from hover to touchdown. In the Land Mode, the laws check to determine if the hover conditions are acceptable before starting to generate commands for landing If the hover conditions are not acceptable for landing, the laws contmue to generate hover commands until acceptable conditions are met

*. 3 Guidance II Laws

The Guidance II laws generate velocity errors between a velocity landing profile and the sensed helicopter velocities The profile that is used is a constant speed glide type as shown in Figure II-2 As shown in this figure, the flight along this profile is divided into the following phases (1) acquisition, (2) level flight deceleration, (3) glide acquisition, (4) ghde transition, (5) ghde, (6) flare, (7) hover, and (8) land In each phase, separate longitudinal guidance laws are used to generate total forward and vertical velocity commands along the profile A single lateral guidance law is used to generate a total lateral velocity command These total velocity commands are then differenced with the sensed helicopter velocities and transformed into velocity errors in the vertical heading frame These errors form the command inputs to the fhght control system
Report No. 6200-933013

Figure 1I-2 Landing Mission Phases

D GENERAL CONCLUSIONS

1 Command information using the command bars and ghde slope deviation index on a . Flight.Director Indicator display were developed suitable for each of the manual modes It was found that all modes could be flown to touchdown

2 The simple rate damping mode (SAS) described in this report is unsatistactory for flight control because of the excessive pilot work load It is also unsatisfactory as a candidate for a backup mode because the change in adaptation fiom a low work load to the SAS mode, suddenly and in mid-flight, generally resulted in loss of mission The SAS mode could be flown to touchdown if the mission started in this mode and the pilot did not let the system "get away" from him

3 Backup modes in an operational system will require the attitude hold feature
4 In terms of performance measured by in flight errors and vehicle rates and attitude angles at touchdown all manual modes except SAS were equivalent but the equivalence was established at the expense of yarying degrees of pilot's work load Except for the sidearm controller the velocity modes were best with the attitude mode with velocity control in the vertical axis (collective) judged next best Attitude control with raw collective followed these modes in terms of pilot's preference

5 Problems were encountered with the type and installation of sidearm controller avalable The results, however, justify the conclusion that-velocity mode control with a proper, human factors design of the sidearm controller would be a very dcceptable mode

6 The fully dutomatic mode (AUTO) had significantly better overall performance in terms of errors from the required flight profile However, the requirement to satisfy certain conditions before the gurdance would proceed with the LAND phase, made all systems equivalent in terms of velocities, attitude angles and dispersion errors at hover Only the length of time in hover before satisfying the necessary conditions to proceed with the descent to touchdown were affected
7. The flght control system performance with winds and gusts met the accuracy requirements for landing under minimal visibility conditions The principal dispersion at touchdown was due to the errors in instrumentation assumed for the error models in measurement and not to the flight control system or the pilot's ability to fly the command displays

With ideal measurements of position, the vertical impact velocity at touchdown averaged about $38 \mathrm{ft} / \mathrm{sec}(4 \mathrm{ft} / \mathrm{sec}$ being the preprogrammed nominal) and had a standard deviation of $078 \mathrm{ft} / \mathrm{sec}$ The average error from the touchdown point in the forward durection was 138 feet with a standard deviation of 4 ft This indicates some system bras was present due to tolerance on LAND conditions The average error in the Y direction was 11 ft with a standard deviation of 61 ft These results were obtaned in averaging over 180 runs piloted and automatic and including the undesirable SAS mode Each mode represents no more than $1 / 6$ of the cases averaged so that the results stated are not brased in favor of any particular configuration.

(xill

The averages stated were obtaned under combinations of wind conditions (15 knots steady, $2.5 \mathrm{ft} / \mathrm{sec}$ one sigma horizontal gusts, $075 \mathrm{ft} / \mathrm{sec}$ one sigma vertical gusts, headwind, tallwind, crosswind)

To these errors, whatever position measurement errors are specifed must be added statistically This is a function of the medsuiement system selected In the baseline system, it is a function of the last GSN-5 update If the update is made while the helicopter is in hover phase while awaiti'g the LAND signd, the additional error can be negligıble

8 The Flight Control System design did not require programmed gam changes oi gain changes as a function of flight condition except for the lateral guidance law gain

II D DETAILED DESCRIPTION OF SYSTEM

A. BASELINE SYSTEM

Figure III-1 depicts the baselme system as orgmally conceived in Bell's response to NASA/ ERC's RFP for this study It outlines the major hadware elements in block dagram form The four helicopter controls,

- δ_{r} yaw cyclic
δ_{a} roll cyclic
δ_{e} pitch collective
δ_{c} collective
are controlled by electrohydraulic servos, termed the EISS (Electric Input Servo System) The EISS is part of the existing VSS (Variable Stability System) system aboard the NASA/LARC CH-46C helicopter The helicopter's position is measured by the GSN-5, ground based precision radar, and the position coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in the ANF (Approach Navigation Frame) coordinate system are transmitted via the Gemmi data link to the helicopter

The ANF frame is defined as follows
Ongin Fixed to touchdown point
X-Axis Horizontal and parallel to the runway axis in the direction of approach
Z-Axis Vertical and Directed downward
Y-Axis Completes orthogonal triad

- Aboard the CH-46C helicopter, a strapdown mertial sensing system (ISU) is updated by the GSN-5 measurements The updating and processing of the ISU outputs is accomplished by computations with an airborne digital computer using appropriate algorithms
- Using the vehicles attitude angles, angular rates, position and velocity which are avalable from these computations and the pilot's mputs, the computer generates output commands to the EISS based on flight control and guidance laws which have also been mechanized on the arborne digital computer.

The basic purpose of the study was to provide a design for a flexible, multi-mode digital flight control system for the $\mathrm{CH}-46 \mathrm{C}$ for flight research in V/STOL guidance and control Additionally, the guidance laws were to be formulated which would be suitable for demonstrating the flight control system's performance in landing the helicopter under minmum visibility conditions The study and resulting design was based on andysis and simulation

Both manual and automatic modes of control, with displayed information appropriate for each - mode, were required These modes were initally then to be
(1) disengaged
(2) rate damper (pilot input)

Figure III-1 Simplfied Block Diagram
(3) attitude/attitude rate (pilot mput)
(4) translational velocity command (pilot input, stick)
(5) translational velocity command (pilot input, side arm controller)
(6) fully gutomatic

These modes evolved durmg the course of the study to the modes described in Secion III B 3 Since in this report il is convement to refer to the mode designations ultmately developed, the current designations and then pincipal featuses are

SAS - The helicopter is controlled through the pilot's stick, rudder pedals and the collective stick Angular body rates in the three axes are fed back The collective stick control is the same as for the bare helicopter

ATT 1 - The pilot's stick controls the pitch and roll angles of the helicopter The rudder pedals contiol the side slip angle above 35 knots and the heading angle below 35 knots The collective stick contiol is the same as for the bare helicopter

ATT 2 - This mode is the same as ATT 1 except that the collective stick conirol is converted to a vertical velocity control
. . VEL 1 - The pilot's stick controls the forward acceleration in the Heading Vertical coordmate system and ether laterdl acceleration in this coordmate system or the course rate depending on speed The collective stick controls the vertical velocity The Heading-Vertical coordinate system is defined by

Origin	At a defined point in the aircraft
X-Axis	The orthogonal projection of the Body X axis onto the local horizontal plane
Z-Axis	Vertical and directed downward
Y-Axis	Completes orthogonal triad

Above 35 knots, the lateral control is accomplished by a course change and below 35 knots, by a side shp The rudder pedals function as they do for ATT I

VEL. 2 - The pilot's stick controls the forward velocity in the Heading Vertical coordmate system and either the lateral velocity in this coordinate system or course depending on speed Above 35 knots, the lateral control is accomplished by a course change and below 35 knots, by a side slip.

- The other controls remain as for VEL 1
\therefore VEL 3 - This mode is the same as VEL 2 except that a sidearm controller is used for forward and lateral velocity control instead of the pilot's control stick and only velocity is controlled in the lateral axis instead of ether velocity or course

AUTO - This is a fully automatic mode where velocity errors in the Heading Vertical frame are generated by guidance functions

The landing mission profile, described in detal in Section IlI 3, is briefly summarized here to facilitate the following discussion The profile requires that the helicopter
(1) intercept the centerime at any arspeed
(2) decelerate to 42 knots range rate
(3) intercept a 6° glide slope and descend
(4) at approximately 1550 ft ground range and 150 ft altitude, decelerate and flare to 50 ft altitude and 10 knots range rate
(5) at 200 ft ground range and 50 ft altitude, decelerate to hover above the touchdown (I D.) at 50 ft
(6) descend to TD point vertically

3. FLIGHT CONTROL LAWS

1 Design Phulosophy and Assumptions
The total problem of designing a flight control system may be subdivided into distmet phases for each of which a definte philosophy must be adopted and assumptions made These phases, in their logical study sequence, are
(1) defintion of scope of design and purpose of the flight control system
(2) definition of vehicle and operational requirements
(3) configuration design
(4) detall design appioach
(5) system evaluation and design modufications

This section describes the point of view adopted for each of these phases for the purpose of the study
a. Defintion of Scope

As stated in Section III A, the flight control system design was based on the requirement for a practical, multmode digital flight control system to control the CH-46C helicopter at NASA/LARC. The purpose of the flight control system was to provide a flexible research tool for flight investigation of control system, guidance and display requirements for V/STOL area navigations and landings under mmmal visibility conditions

During the course of the program, it became apparent that a large number of variables could be considered in every aspect of the study For example, in the area of displays alone, a large number of parameters suitable for investigation exist
(1) Conventional aircraft instruments versus nonconventional displays
(2) Situation versus command information
(3) Variation of displayed data with flight control mode
(4) Variation of displayed data with plot's control element
(5) Scale factor or sensitivity of displayed information
(6) Possible shaping of data to avoid PIO (Pilot Induced Oscillation) or pilot disorientation
(7) Influence of data displayed on pilot's work load
(8) Influence of data displayed on system performance
(9) Backup displays for flight safety or possible mission completion

These areas have been, and contmue to be, frutful subjects for mestigation and taken in combinations present a great many possibilities

In addition, the other areas such as sensor blending, complexity of flight control and guidance laws, digital programming considerations, flight control and guidance sensor specifications, sampling rate and quantization studies and alternative mission profiles each mvolve a number of parameters which could be investigated

The necessary contrants of budget and schedule restricted the scope of the study to a practical bound This implies that many useful deas could not be explored within the range of this study The system design presented in this report, therefore, represents one method of attammg the objectives descubed at the begmming of this section

The flight control system was to incorporate the modes listed in Section III A All modes except AUTO are manual modes SAS was a derivative of the origmal rate damper mode, ATT 1 and ATT 2 were denvatives of the original attitude/attitude rate mode, VEL 1, VEL 2, VEL 3 were derivatives of the onginal velocity command modes

The SAS mode was to be regarded as the most primitive mode for which the FCS objectives could be met and its inclusion was regarded primarily to investigate the possibility for a backup flight safety mode for a future operational system

It was further decided that the displays would be based on the Flight Director Indicator as defined by MIL-I-27193B(USAF) In the manual modes, longitudinal and lateral command errois would be displayed on the horizontal and vertical command bars and the collective error on the displacement index In these modes, the display would show the difference between where the pilot has positioned his control and collective sticks and where the automatic system would have positioned it In the AUTO mode, these indicators display the velocity error along each of three aves of the Heading Vertical frame

The flight control system design was not required to incorporate redundancy or to provide automatic monitoring and switchover to the Safety Pilot in the event of malfunction System safety was to be insured by monitoring of the conventional helicopter displays and visual cues by the Safety Pilot who has the option of taking control of the vehicle at all times
b Definition of Requirements

(1) General Requirements

The flight control system (FCS) was to have the basic modes histed in the previous paragraph modified as determined by the study to attan the objectives listed in that paragraph These modes were to be pilot selectable by suitable cockpit switch functions with the selection clearly indicated Each mode was to be avalable by selecting the approprate switch irrespec-- tive of the flight control mode which was operative prior to the selection There was to be no transient introduced by the switching The Control stick position, the pedal position, side arm controller (SAC) position and all instantaneous outputs of the attitude and velocity sensors at the instance of mode switching were to become the reference values for the selected mode

Mode selection was required to be suitably interlocked with the guidance system and with the displays such that illogical combinations were not possible An example of an illogical combmation is the selection of an automatic landing mode without the presence of guidance mformation In fact, it was recognized early that the AUTO mode of the FCS could not be clearly separated from the guidance requirements, and where clarity is served, arbitrary separation into flight control and guidance is not adhered to in this discussion

Initrally, the phulosophy which was adapted with respect to automatic modes of FCS operation was to permit pilot overrides or assists This policy changed during the course of the study when it became apparent that, in a number of cases, this had the reverse effect and deterrorated the performance The requirement for transient fiee mode switching, furthermore, made this unnecessary since the pilot was capable of switching to a manual mode if he felt the need for direct control.

The FCS was to be capable of controllmg the helicopter over the entire speed range of 0 to 140 knots Performance between 80 and 140 knots was to be considered secondary to performance in the low speed regime Due to the large speed varation, the phlosophy was adopted that the helicopter-FCS combination should behave as an arrplane at high speeds and as a helicopter at low speeds It was logical to use the arrspeed measured by the Pitot tube to separate these flight phases and, further, to use the arspeed below which the Pitot tube measurements becomes unreliable as the dividing line. This was taken to be an arrspeed of 35 knots after filtering to remove gust effects

During the course of the study it became apparent that the FCS design was not completely separable from the gudance function in that as touchdown is approached, the speed which is of interest shifts from airspeed to groundspeed To illustrate this point, if a 30 knot headwind exists ' and the helicopter's ground speed approaches zero under the direction of the guidance laws, the behavior of the helicopter FCS combination would be that of the high speed flight phase down to a ground speed of 5 knots This behavior with respect to such functions as turn coordination is not desirable so close to the touchdown point where sideslip maneuvers are more efficient for small flight path corrections For this ieason, the FCS switching functions which are speed dependant were to be based on an .effective speed, $\mathrm{V}_{\mathrm{a}}^{\prime}$, where

$$
\begin{aligned}
\mathrm{V}_{\mathrm{a}}^{\prime} & =\mathrm{V}_{\mathrm{af}}, \text { if } \mathrm{V}_{\mathrm{af}}<\dot{\mathrm{V}}_{\mathrm{x}}^{\mathrm{h}} \\
& =\dot{V}_{\mathrm{x}}^{\mathrm{h}}, \text { if } \mathrm{V}_{\mathrm{af}}>\mathrm{V}_{\mathrm{x}}^{\mathrm{h}} \\
: \mathrm{V}_{\mathrm{af}} & =\text { filtered arspeed }=\frac{\mathrm{V}_{\mathrm{a}}}{1+\mathrm{s} \tau \mathrm{~V}_{\mathrm{a}}} \\
\mathrm{~V}_{\mathrm{a}} & =\text { Pitot measured arspeed } \\
\tau_{\mathrm{V}_{\mathrm{a}}} & =\text { arrspeed filtering time constant } \\
\mathrm{V}_{\mathrm{x}}^{\mathrm{h}} & =\text { forward velocity in vertical heading frame }
\end{aligned}
$$

For all modes, except SAS, turn coordination when $\mathrm{V}_{\mathrm{a}}^{\prime}>35 \mathrm{knots}$ was to be assisted by feeding a suitably modified function of the roll angle control, $\Delta \Phi_{c}$, into the yaw cychic control channel

For all modes, when $V_{a}^{\prime}>35$ knots, side slip was to be reduced by feeding a suitably modified function of β, the measured sideslip angle, into the Yaw Cychc Control Chamel

For the ATT 1, ATT 2, VEL 1, VEL 2 and VEL 3 modes, a heading hold with pilot control was to be incorporated when $\mathrm{V}_{\mathrm{a}}^{\prime}<35$ knots For the AUTO mode, when $\mathrm{V}_{\mathrm{a}}^{\prime}<35$ knots and crosswinds were present, a blend of crab angle and roll angle was to be used to mantam the vehicle on the demonstration Landing Profile described in Section III B Guidance Laws The blend required that the helicopter head into the average relative wind such that the average roll angle required for crosswind compensation would not exceed 5° This was based on pilot inputs that indicated 5° of steady roll angle would be unacceptable

Compensation for loss of vertical lift due to helicopter bank was judged to be an operational requirement which was to be satisfied by feeding a suitably modified function of the bank angle into the collective channel

The flight control system was to incorporate control stick, side arm controller and pedal thresholds such that pilot induced oscillations (PIO) were mimimized The thresholds were not to exceed 5% of the total travel of the plot's control

Stick, pedal and sidearm controller commands were to be commands with respect to the heading vertical coordinate system in the Velocity modes and Attitude modes and the vehicle body axis system in the SAS mode

The flight control laws and flight control sensors were to be considered together such that sensor noise did not result in faulty signals or exceed a 1 sigma noise of 01 in in the collective, pitch differential collective, roll cyclic or yaw cyclic channels of the EISS or result in saturation of these channels These requirements were based on the Data Base used (see Section IV A) which indicated that the EISS hysteresis in each channel was to be taken as 01 in

Further constraints imposed on the FCS design by the EISS and helicopter control boost system were that the pitch collective, roll cyclic, yaw cychic, and collective were related to the commanded values of these controls by an approximate quadratic transfer function with natural frequancy of 15 hertz and a damping factor of 06

To simplify mechanization, it was a goal of the design that within the constrants imposed by performance requirements, the mmmum number of control laws should include as much of the flight profile and fhght conditions as feasible However, these laws could be linear or nonlinear and could differ for each operational mode if required by performance specification or sensor constrants The balance between simplicity and performance is a judgement factor

The FCS design had to be based on the existing EISS and pilot's controls aboard the CH-46C helicopter The existing trim system would relieve stick and pedal forces but not reset any stored references in the FCS The FCS would be self trimming where necessary to meet the requirements

Thecharacteristics of the existing Feel and Trim System were given as
Ths scale factors requred to convert inches of pilot controls to volts mput to the lefs actuators
Pisif Axis, $392 \mathrm{~m} / \mathrm{volt}$
Colnctive Axis, $641 \mathrm{~m} / \mathrm{volt}$
RO: Axis, $241 \mathrm{~m} / \mathrm{yolt}$
$Y_{5 \times 2}$ Axis, $136 \mathrm{~m} / \mathrm{yolt}$
C䄳伯 Electuc Stıck Characteristics
The sfick forces are force/displacement gradients and were given as
Pittin differential collective, $10 \mathrm{lb} / \mathrm{m}$
Rers cyche, $10 \mathrm{lb} / \mathrm{m}$
Int es measured at a radus of 25 m
The-pedal force is a force/displacement gradient and was given as
Yaw Cychc, $40 \mathrm{lb} / \mathrm{m}$
The collective force is a friction force which may be adjusted by the pilot The force was given as beme lariable from essentially zero to at least 5 lb measured at a radius of 180 m

The electric stick has hinear pots which vary on stick position and infinite resolution The output voldats were given as

Pitcli Axis, 0.4 volts $/ \mathrm{m}$
Collective Axis, 033 volts $/ \mathrm{m}$
Roll Λ xis, 04 voits $/ \mathrm{m}$
Yaw Axis, 08 volts/in

CH-16C Trim System Characteristics

The foice trim system for pitch differential collective and roll cyclic operate - from the "coolie hat" button on the stick Each axis has its own trim The button activates a motor which runs to relieve the lurce at $10 \mathrm{in} / \mathrm{sec}$

The lim on the pedals is similar to that on the stick with the trim button being on the collective stick

There is no trim for the collective stick
The lange and sensitivity of the sensors to be used were given as follows

stick, witch	$\pm 5.5 \mathrm{~m}$	04 volts dc/n
stich, roll	$\pm 36 \mathrm{~m}$	04 volts dc/m
peduts	± 23 in	08 volts dc/in
collet tive stick	0 to 128 m	033 volts dc/m

u, \boldsymbol{r} ranes	± 035 radians	98 volts dc/radian
Pitot tube	35 to 150 knots	008 volts de/knot

An additional ground rule with repect to the interfacing of the EISS and the FCS output is illustrated in Figure III-2 This figure, taken from Bell Report No 6200-933033, depicts the requirements that the EISS in its disengaged mode is configured such that
(1) The hydraulic actuators duving each of the four controls are bypassed
(2) All electrical inputs to the EISS are being cancelled
(3) The drive voltage to each hydiaulic control valve is displayed for pilot montorng

The EISS is not engaged by the pilot unless the NULL METER mdicates that all electrical inputs to the EISS have been cancelled This insures aganst transients on EISS engagement
(2) Dynamic Performance Requirements

In searchung for dynamic performance criteria, a number of factors were considered and an approach formulated from which working criteria could be established The approach was based on the following considerations

First, the fundamental performance requirement was considered to be that the FCS controls the helicopter to the profile defined by the mission The tolerance and constrants imposed by this requirement are described in Section III C The implication of this viewpont was that the ultimate justification of the flight control laws would be a satisfactory evaluation of the full system on the smulator

It was necessary to have requirements for the design of the subsystems before the full simulation could be evaluated These were defined on the basis of transient response because the nonlinearities (hysteresis, quantization, limiting) of the system made frequency response or pole-zero criteria artificial and because transient response is conveniently observed in evaluation by sumulation This viewpoint leads naturally towards considering the dynamic response in terms of the residual oscillations after transients have died out, response in the nominally linear range and to response to saturation command sıgnals

Consistant with the philosophy of trading off performance for simplicity, the -view was adopted not to require unform levels of performance or higher performance than necessary in view of the full stmulation evaluation which would be the ultimate test Higher performance was desired during transition, hover and touchdown then when the vehicle was f_{2} ing high and fast

The FCS helicopter combination should also meet the requirements of MIL-H-8501A, "Helicopter Flying and Ground Handling Qualities" where this specificatron apples

The requirements in light of this approach were specified as in the following paragraphs

The FCS system was permitted residual oscillation due $七$ © EISS nonlmearities sensor noise, sensol package hysteresis or quantizing of sensor information wir quantizing of commands to the EISS This was not to exceed $\pm 10^{\circ}$ or $\frac{0.5}{f^{2}}$ degrees, whichever is smarter, about any axis and
Figure IIL-2 EISS Intial Condition Switchang
± 1 or $\frac{05}{\mathrm{f}} \mathrm{ft} / \mathrm{sec}$ diong any dans , whichever is smaller where f is the frequency in Hertz
For mput signals at least five times the largest threshold, hysteresis, signal quantum or command quantum in a given channel, but not large enough to cause signal, velocity or position saturation of any element in that channel, the FCS requirements for each mode were specified Superposition of the residual oscillations on other response requirements was considered permissable

The SAS mode was simply to meet the requrements of MLL-H-8501A, relating to rate damping Smec this was to be evaluated as a possible backup mode, no more than accepted helrcopter handling characteristics weie to be requied

The ATT 1 mode by defintion, was to have an unaugmented collectrve, hence, as for SAS, the vertical control would required to mect specifications of MIL-H-8501A only

In response to a step change in attitude angle command about any axis, the ATT 1 mode would not be permitted to overshoot the final value by more than 15% of the total commanded change, would attain 90% of the total commanded change in less than 15 sec after the step command mitiation and would remain at the final value within 5% or less of the total commanded change withon 5 sec after step command intiation

The ATT. 2 mode would satısfy the same requirements as the ATT 1 mode with respect to attitude angle commands smce, by definition, the control laws were the same

The vertical control characteristics of the ATT 2 mode would be such that the response to a step velocity command would exhibit a maximum allowable overshoot of the final velocity in accordance with

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{ZO}} & =006 \Delta \mathrm{~V}_{\mathrm{ZC}} & & \text { for } 0<\mathrm{V}_{\mathrm{a}}<10 \text { knots } \\
\because & =\left(-04+010 \mathrm{~V}_{\mathrm{a}}\right) \Delta \mathrm{V}_{\mathrm{ZC}} & & \text { for } 10<\mathrm{V}_{\mathrm{a}}<40 \mathrm{knots} \\
\because, & =\left(-40+02 \mathrm{~V}_{\mathrm{a}}\right) \Delta \Delta_{\mathrm{ZC}} & & \text { for } \mathrm{V}_{\mathrm{a}}>40 \mathrm{knots}
\end{aligned}
$$

where $\Delta \mathrm{V}_{\mathrm{ZO}}$ is the maximum allowable overshoot, $\Delta \mathrm{V}_{\mathrm{ZC}}$ is the magnitude of the step command and V_{a} is the forward arspeed in knots

The vertical velocity would attain at least 90% of the total commanded change within one second after the initiation of the step command in vertical velocity command

The VEL 1, VEL 2 and VEL 3 modes would satisfy the same requrements as the ATT 2 mode with respect to vertical control characteristics since, by definition, the vertical control laws in these modes would be the same

The VEL 1, VEL 2 and VEL 3 modes would respond to a step change in forward and lateral commands such that the maximum overshoot in response to a step command would be in accordance with

$$
\begin{array}{rlrl}
\Delta \mathrm{H}_{(X, Y)} \mathrm{O} & =\left(005+0004 \mathrm{~V}_{\mathrm{a}}\right) \Delta \mathrm{H}_{(\mathrm{X}, \mathrm{Y}) \mathrm{C}} \text { for } 0<\mathrm{V}_{\mathrm{a}}<40 \text { knots } \\
& =02 \Delta \mathrm{H}_{(\mathrm{X}, \mathrm{Y}) \mathrm{C}} & \text { for } \mathrm{V}_{\mathrm{a}}>40 \text { knots }
\end{array}
$$

where $\Delta H_{(X, Y)} O^{\text {is }}$ the maximum allowable overshoot, $\Delta H_{(X, Y)} C^{\text {is }}$ the step command size and V_{a} is the ausspeed in knots In VEL 2 and VEL $3, \Delta H$ is an meremental velocity In the VEL 1 mode, ΔH is an meremental acceleration, 80% or more of the total commanded change would be realized within five sec after the'mitiation of the step command

For saturation command inputs the FCS would constram the vehicle limits as follows

In all FCS modes
Pitch angle rate $<25^{\circ} / \mathrm{sec}$
Roll angle rate $<25^{\circ} / \mathrm{sec}$
Yaw angle rate $<25^{\circ} / \mathrm{sec}$
In all FCS modes except SAS
\mid Roll angle $\mid<45^{\circ}$
Yaw angle unlimited
|Pitch angle - nominal pitch angle $\mid<10^{\circ}$
Nominal pitch angle is the pitch angle required to trim the helicopter for the flight condition being experienced

In SAS, ATT 1, ATT 2 modes
Maximum angles would be limited by direct pilot control
c Configuration Design
The flight control laws for the various modes of operation were divided into comman laws and control laws The command laws convert the pilot control inputs into command inputs to the flight control laws for the selected mode of operation There were separate command laws for the SAS Mode, the Attitude Modes, and each of the Velocity Modes By doing this, it was only necessary to mclude a single set of velocity control laws for the three Velocity Modes since the control inputs in each mode could be converted into velocity commands that are compatible with these

The control laws were to the incremental output commands to the EISS In addition in conjunction with the command laws, they also were to generate the display information in each mode As a result of this, no separate display laws were requred The command laws were to be developed in a cascading manner with separate laws for the SAS, attitude, and velocity loops Each of these control laws was to receive its input either from the corresponding command law or next outer loop depending on the mode of operation This was done to eliminate the necessity of duplrcating the inner loops in the digital flight control program sections for the higher order modes

This separation of the command and control laws also would permit the laws for the outer loops to be updated at a lower rate than for those in the mner loops As a result of this, the command and control laws were grouped into fast and slow loop computations for efficiency in the arborne program In general, the fast loop computations were to contam these laws (1) SAS loop control, (2) SAS command, (3) attitude control The slow loop computations would contan (i) attitude command, (2) velocity control, (3) velocity command laws

d Design Approach

Assembling valid data on which to base the study and a paper design using the data provided in the RFP, were parallel first items in the design approach In addition to the equibrrum aerodynamic data on the $\mathrm{CH}-46 \mathrm{C}$ wheh was recenved as part of the orignal RFP, further data was requested and received from Boeng Vertol as listed in Section IV B 1

It was judged to be essential that nonequilibrium fhght conditions be simulated A number of approaches toward smulating nonequibbrium data from the avalable equilibrium data were explored These, and the technique selected are described in Section IV C

The second set of items required to complete the Data Base was the development of the subsystem error models These subsystems were the strapdown navigational system, GSN-5 Radar and Gemmi Uplink, Radar Altımeter, Pitot Tube, Angle of Attack and Side Slip Vanes These models were first developed in analog form and then recast in a form for optimum digital implementation These are discussed in Section IV

In parallel with the establishment of the Data Base, prelimmary design of the flight control system began using the data contamed in the RFP Because of the large number of flight conditions and the many loops involved (angular rate, angle, velocity and ultimately position) it was decided to automate the procedure for selection of the gans

The philosophy which was adapted was to use the classic root locus method to determine the coefficients of an assumed form of feedback law Where δ_{NC} is the command to the N control channel of the EISS and θ_{N} is the principal vehicle parameter to be controlled in the loop under analysis, then if the form

$$
\frac{\Delta \delta_{\mathrm{NC}}}{\Delta \theta_{\mathrm{N}}}=\mathrm{K}_{1}+\mathrm{sK}_{2}+\frac{\mathrm{K}_{3}}{\mathrm{~s}}
$$

is assumed for the feedback law, then the problem was to determme $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} The cntenon for selecting these coefficients was to hold the dominant pole on the 07 damping line, and rase its natural frequency until the required compensation became excessive When these had been determined for one loop, they were held constant while the next loop was closed and the process repeated. The concept was to contmue in this manner proceeding from the fastest inner loops, successively to the slowest outer loops

This was programmed for digital computation and included the helicopter response to control action, the transfer function of the control actuators, norse filters and simulated samping rate lags

This procedure worked well for the short period control loops but-1t was not found possible within schedule constrants to develop a general algorithm to express the selection logic for successive trials in the outer loops and although convergence was obtamed over some ranges of , flight conditions; others diverged defeating the design objective Since at this point in the study an all digital check simulation of the mission became avalable which did provide the outer loop gams, the attempt to perfect the root locus program to give vahd outer loop results was dropped However, the mner loop coefticients which had been determmed were valid staiting pomts for the FCS design The all digital check program was then also used to check the mner loop response to steps in accordance with the requirement discussed previously

The design then proceeded to the hybrid simulation refinement phase where all of the fast moving helicopter dynamics except for the stability derivatives were simulated on two AD4 and one PACE 231 R analog computers and the control laws and stability derivatives were simulated on the IBM 7090 digital computer Due to the size of the analog simulation and typical analog hardwate problems, the realiability and repeatablity of this simulation was poor and did not allow for sufficient up time for evaluations

The avalability of the all digital check program made it possible to consider shifting more of the simulation to the digital computer The crucial point was whether the smulation could be run in real time This was unmportant for the AUTO mode but imperative in the manual modes where a pllot would fly the system It was found possible to program the IBM 7090 such that real time performance was attainable in all modes This resulted in shifting all but the cockpit interface equipment and the wind model to the digital computer

The s domain laws were digitized using Tustin's method in converting the laws found by the prelimmary analysis and in converting the helicopter simulation to the digital doman

It was felt that strict adherence to flight control laws developed in the s doman would not fully exploit the capability of the digital computer in this respect, it was found that the limit cycling due to hysteresis in each channel of the EISS could be reduced further by a nonlinear law. On the analog computer a conventional lead/lag hysteresis network had been used to reduce the hmit cycle amplitude Paper analysis using describing function techniques confirmed the analog results A 20% reduction in the amphtude of the limit cycle was attaned By using a digital variable gain compensation technque the limit cycle was reduced 70%

The necessity for varying the coefficients in the flight control laws as a function of airspeed was explored It was found that the requirements previously discussed were attamable with fixed gains, considerably simplifying the FCS mechanization

e. System Evaluation

As previously stated, performance on the full smulation was considered the ultmate justification of the flight control (and guidance) laws At this point, performance measurement criteria were required.

Ideally, performance evaluation should result in a single score Only in this way can different systems be compared and ranked unambiguously However, it is frequently not possible to set up criteria which satisfy this ideal when there are important factors which are entirely dissimilar This was found to be the case in setting up the criteria for the simulator tests

First, it was desued to have a measurement of performance in terms of how well the landing profile was being followed This measurement was termed the PI (Performance index) and was based on the nomalized rms value of the altitude error, altitude rate errors, lateral error, lateral iate errof and forward velocity erior The relationship is shown in Table III-1 Note that the normalization procedure allowed for different values for the maximum errors as the helicopter was further away fiom touchdown The lowei the PI the better the performance with a Pl of umty (1) meanmg that all errors held at their maxmum allowable throughout the flight

Due to the averagng process taken over the whole flight, it is concervable that some portion of the flught could have large earors and still the flight have an overall PI which is low provided the time duration of the poor performance was low In general, this is unmportant since it implies large crrors for short periods of time, a situation which generally exists only on intiation of control However, if the cncumstances were such that the large errors occurred at, or near, touchdown, this could result in a disasterous landing with a low PI Thereforc, the conditions at touchdown are special and must be looked at mdependently of any possible overall PI The radial error from the nommal T D point is a second performance criterion Important and independent, the mpact velocity at touchdown was considered to constitute a third measure of performance

Finally, it was recognized that equally good performance could be achieved in terms of PI and touchdown conditions by the different flight control system modes but that in some modes this was attaned at the expense of heavy pilot work load Thus, pilot opmion constituted a fourth measurement which was required Foi this purpose the rating scale of Table III-2 was used (from "The Use of Pilot Rating in the Evaluation of Ancraft Handling Qualities," by GE Cooper and R F Harper, Jr, NASA Technucal Note D-5153)

TABLE III-1
PERFORMANCE INDEX

$$
\mathrm{PI}=\frac{1}{\mathrm{Tn}} \int_{0}^{\mathrm{T}} \sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\Delta_{\mathrm{x} 1}}{\Delta_{\mathrm{X}, \mathrm{max}}}\right)^{2} d t}
$$

$$
\text { where } \begin{aligned}
& \Delta \lambda_{1}=\Delta h, \Delta h, \Delta X, \Delta \dot{X}, \Delta Y \\
& \Delta h=h_{c}-h, \text { alttitude error } \\
& \Delta \dot{h}=\dot{h}_{c}-\dot{h}, \text { alttude rate error } \\
& \Delta \dot{X}=\dot{X}_{c}-\dot{X}, \text { forward velocity error } \\
& \Delta Y=Y, \text { lateral error } \\
& \Delta Y=Y, \text { lateral rate error } \\
& \Delta h_{\max }=20+\left(\frac{180}{10,000}\right) X \leqslant 100 \mathrm{ft} \\
& \Delta \dot{h}_{\max }=4+\left(\frac{36}{10,000}\right) X \leqslant 20 \mathrm{ft} / \mathrm{sec} \\
& \Delta \dot{X}_{\max }=05 \dot{X} \leqslant 20 \mathrm{ft} / \mathrm{sec} \\
& \Delta Y_{\max }=100+\left(\frac{900}{10,000}\right) \mathrm{X} \\
& \Delta \dot{Y}_{\max }=20+\left(\frac{180}{10,000}\right) \mathrm{X} \\
& \mathrm{~T}=\text { Total flight time } \\
& \mathrm{n}=\text { number of } \Delta \mathrm{x}_{1} \text { considered (five) }
\end{aligned}
$$

TABLE III-2
HANDLING QUALITIES RATING SCALE (COOPER-HARPER RATIRGS)

2 Final Flight Control Laws
The final flight control laws resulted in a design which is summarized in two companion documents

1 Systems Performance/Design Requirements Specification Bell Aerospace No 6200-933032
2 Final Flight Control Softwave Package Bell Aerospace No 6200-9330I1
This portion of the final report necessarly draws heavily on these documents
a Data Requirements
The Flight Control System has as its inputs ue vouy axis angular rates (p, q, r), the Euler Angles (ψ, θ, ϕ), the ANF frame velocities ($\mathrm{V}_{\mathrm{X}}^{\mathrm{an}}, \mathrm{V}_{\mathrm{y}}^{\mathrm{an}}, \mathrm{V}_{\mathrm{Z}}^{\mathrm{an}}$), the Heading Vertical frame velocities $\left(\mathrm{Vh}, \mathrm{V}_{\mathrm{h}}^{\mathrm{h}}, \mathrm{V}_{\mathrm{Z}}^{\mathrm{h}}\right.$), the pilot's control stick and pedal commands ($\delta_{\mathrm{ep}}, \delta_{\mathrm{ap}}, \delta_{\mathrm{rp}}, \delta_{\mathrm{cp}}$), the indicated arrspeed $\left(\mathrm{V}_{\mathrm{a}}\right)$, the sideshp angle (β), and the FCS and Guidance Law discretes

The output of the FCS are the commands ($\delta_{\mathrm{ec}}: \delta_{\mathrm{ac}}, \delta_{\mathrm{rc}}, \delta_{\mathrm{cc}}$) to the EISS Table III-3 lists the minimum requirements for the measured and output data

System noise in Table III-3 is defined as erroneous signals which may cause control system movements or saturations but which do not result in perceptible hehcopter motions For purposes of the study, noise is defined as those components of error sugnal whose power spectra lie above $20 \mathrm{radians} / \mathrm{sec}$ Those components of error signal whose power spectra lie below 20 radians $/ \mathrm{sec}$ -are defined as errors
$\stackrel{\rightharpoonup}{ }{ }^{\prime}$ Control Modes
Table III-4 summarizes the flight control modes

- c Pilot's Interface with FCS

Table III-5 Iists the control laws from the pilot's control stick, collective stick, rudder pedals, and side arm controller Table III-6 identifies the commands displayed to the pilot on the Flight Director Indicator with Table III-7 listing the command indicator (horizontal or vertical bar, glide slope index) senativittes

d Flight Control Laws

This section is abstracted from Bell Report No 6200-933011, Final Fhght Control Software Package Figure III-3 and III-4 are the block diagrams of the longitudinal and lateral flight control laws.

Tables III-8, 9, 10, and III-11 summarize the flight control laws for the pitch, roll, yaw and collective channels respectively in each of the FCS modes The symbols used are defined in the listed tables

TABLE III-3
DATA REQUIREMENTS FOR FCS

Parameter	Mmúum SampIng Rate (Samples/ Second)	Maxmum Quantrzation	Maximum Allowable Nouse (ms)	Maximum Enor	Range of Operation
Vertical Heading Velocitres	8	$01 \mathrm{ft} / \mathrm{sec}$	$02 \mathrm{ft} / \mathrm{sec}$	$\pm\left(004 \mathrm{~V}_{\mathrm{x}}^{\mathrm{h}}+025\right) \mathrm{ft} / \mathrm{sec}$ where $\mathrm{V}_{\mathrm{X}}{ }^{\mathrm{h}}$ ($\mathrm{f} / \mathrm{sec}$)	$\begin{aligned} & \mathrm{v}_{\mathrm{x}}^{\mathrm{h}},-50 \mathrm{to}+250 \mathrm{ft} / \mathrm{sec} \\ & \mathrm{v}_{\mathrm{y}}^{\mathrm{h}}, \pm 50 \mathrm{ft} / \mathrm{sec} \\ & \mathrm{v}_{\mathrm{z},}^{\mathrm{h}}, 30 \mathrm{ft} / \mathrm{sec} \end{aligned}$
ANF Velocities	8	$01 \mathrm{ft} / \mathrm{sec}$	$02 \mathrm{ft} / \mathrm{sec}$	$\pm\left(004 \mathrm{~V}_{\mathrm{x}}^{\mathrm{h}}+025\right) \mathrm{ft} / \mathrm{sec}$	$\begin{aligned} & \mathrm{V}_{\mathrm{x},}^{\mathrm{an}}, \mathrm{~V}_{y^{\mathrm{n}}, \pm 250 \mathrm{ft} / \mathrm{sec}} \\ & \mathrm{~V}_{\mathrm{z}}^{\text {an }}, \pm 30 \mathrm{ft} / \mathrm{sec} \end{aligned}$
Body Axis Angular Rates	32	$02^{\circ} \mathrm{sec}$	$05^{\circ} / \mathrm{sec}$	$\begin{aligned} & \pm(006+0005 \mathrm{p})^{\circ} / \mathrm{sec} \\ & \mathrm{p}=\mathrm{p}, \mathrm{q}, \mathrm{r} \end{aligned}$	$\pm 60^{\circ} / \mathrm{sec}$
Euler Angles	32	01°.	02°	$\pm 02^{\circ}$	$\pm 90^{\circ}$ Ptch, Roll $\pm 180^{\circ}$ Yaw
Indicated Arspeed	8	$05 \mathrm{ft} / \mathrm{sec}$	$5 \mathrm{ft} / \mathrm{sec}$	$\pm 3 \%$ of actual for dirspeeds above 30 knots	$\begin{aligned} & +30 \text { to } \\ & +250 \mathrm{ft} / \mathrm{sec} \end{aligned}$
Sideslip Angle	32	002°	02°	$\pm 03^{\circ}$. ± 035 radrans
Commands to EISS	32	0005 m	005 in	NA_{A}	See Table III-5
Pilots Commands	$\begin{aligned} & 32 \text { for } \\ & \text { SAS } \end{aligned}$	See Table 111-7 and	NA	NA	- Sce Table IIL-5
to FCS	8 for all other modes	Convert to 001 mch of Command - Bar Displacement	,		. ${ }^{\text {- }}$

TABLE III-4 CONTROL MODE DEFINITIONS

Mode	Command and Source				Type of Control			
	$\begin{aligned} & \text { Diff } \\ & \text { Coll } \end{aligned}$	Cyclic	Coll.	Diff Cyche	Diff Coll.	Cyclic	Coll	Duff Cyche
SAS	ES	ES	CS	RP	Pitch Rate Damping	Roll Rate Damping	Direct	Sidesinp hold, $\mathrm{V}_{\mathrm{a}}^{\prime}>35 \mathrm{kts}$ Yaw Rate Damping, $\mathrm{V}_{\mathrm{d}}{ }^{\prime}<35 \mathrm{kts}$
ATTI	ES	ES	CS	$\begin{aligned} & \mathrm{RP} \\ & \left(\psi_{c}\right) \end{aligned}$	Pitch Attitude Hold	Roll Attitude Hold	Direct	Sidesip Hold, $\mathrm{V}_{\mathrm{a}}>35 \mathrm{kts}$ Heading Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}<35 \mathrm{hts}$
ATT II	ES	ES	CS	$\begin{aligned} & \mathrm{RP} \\ & \left(\psi_{\mathrm{c}}\right) \end{aligned}$	Pitch Attitude Hold	Roll Attitude Hold	Vertical Velocity Hold	Sideshp Hold, $\mathrm{V}_{\mathrm{a}}>35 \mathrm{kts}$ Heading Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}<35 \mathrm{kts}$
VELI	ES	ES	CS	$\begin{aligned} & \mathrm{RP} \\ & \left(\psi_{\mathrm{c}}\right) \end{aligned}$	Forward Velocity Rate Hold	Lateral Velocity Rate or Course Rate Hold	Vertical Velocity Hold	Sidesip Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}>35 \mathrm{kts}$ Headung Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}<35 \mathrm{kts}$
VELII	ES	ES	CS	$\begin{aligned} & \mathrm{RP} \\ & \left(\psi_{\mathrm{c}}\right) \end{aligned}$	Forward Velocity Hold	Lateral Velocity or Course Hold	Vertical Velocity Hold	Sideshp Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}>35 \mathrm{kts}$ Heading Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}<35 \mathrm{kts}$
VEL III	SAC	SAC	CS	$\begin{aligned} & \mathrm{RP} \\ & \left(\psi_{\mathrm{c}}\right) \end{aligned}$	Forward Velocity Hold	Lateral Velocity Hold	Vertical Velocity Hold	Sideshp Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}>35 \mathrm{kts}$ Heading Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}<35 \mathrm{kts}$
AUTO	GUlD	GUID	GUID	FCL $\left(\psi_{c}\right)$	Forward Velocity Hold	Lateral Velocity Hold	Vertical Velocity Hold	Sideslip Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}>35 \mathrm{kts}$ Heading Hold, $\mathrm{V}_{\mathrm{a}}^{\prime}<35 \mathrm{kts}$ to Hover Yaw into Wind, Hover

NOTE	ES	Electric Stick	GUID	Guidance	
	CS	Collective Stuck	FCL	:	Flight Control Laws
	RP	Rudder Pedals	V_{a}^{\prime}		Effective Speed
	SAC	Side-arm Controller	ψ_{c}	Yaw Rate Command	

TABLEIII-5
PILOT'S CONTROLS PARAMETERS

Control	Control Travel	Command Laws	
		$\begin{gathered} \operatorname{SAS}\left(p_{c}, q_{c}, r_{c}\right. \\ \operatorname{deg} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \operatorname{ATT} 1\left(\theta_{\mathrm{c}}, \phi_{\mathrm{c}}, \psi_{\mathrm{c}}\right. \\ \mathrm{deg}) \end{gathered}$
Longitudinal Stıck ($\delta_{\text {ep }}$, in $)$	± 55	$\begin{aligned} q_{\mathrm{c}} & =47\left(\frac{\delta_{\mathrm{ep}}-01}{54}\right), \delta_{\mathrm{ep}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ep}},<01 \\ & =47\left(\frac{\delta_{\mathrm{ep}}+01}{54}\right), \delta_{\mathrm{ep}} \leqslant-01 \end{aligned}$	$\begin{aligned} \theta_{\mathrm{c}} & =45\left(\frac{\delta_{\mathrm{ep}}-01}{54}\right), \delta_{\mathrm{ep}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ep}}<01 \\ & =45\left(\frac{\delta_{\mathrm{ep}}+01}{54}\right), \delta_{\mathrm{ep}} \leqslant-01 \end{aligned}$
Lateral Stick $\left(\delta_{\text {ap }}\right.$, in $)$	± 36	$\begin{aligned} p_{\mathrm{c}} & =47\left(\frac{\delta_{\mathrm{ap}}-01}{35}\right), \delta_{\mathrm{ap}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ap}}<01 \\ & =47\left(\frac{\delta_{\mathrm{ap}}+01}{35}\right), \delta_{\mathrm{ap}}<-01 \end{aligned}$	$\begin{aligned} \phi_{\mathrm{c}} & =60\left(\frac{\delta_{\mathrm{ap}} 01}{35}\right), \delta_{\mathrm{ap}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ap}}<01 \\ & =60\left(\frac{\delta_{\mathrm{ap}}+01}{35}\right), \delta_{\mathrm{ap}}<-01 \end{aligned}$
$\begin{aligned} & \text { Pedals } \\ & \left(\delta_{\mathrm{rp}}, \text { in }\right) \end{aligned}$	± 23	$\begin{aligned} r_{\mathrm{c}} & =85\left(\frac{\delta_{\mathrm{rp}}-01}{22}\right), \delta_{\mathrm{rp}} \geqslant 01 \\ & =0,-02<\delta_{\mathrm{rp}}<02 \\ & =85\left(\frac{\delta_{\mathrm{rp}}+01}{22}\right), \delta_{\mathrm{rp}}<-01 \end{aligned}$	$\begin{aligned} \psi_{\mathrm{c}} & =17\left(\frac{\delta_{\mathrm{rp}}-01}{22}\right), \delta_{\mathrm{rp}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{rp}}<01 \\ & =17\left(\frac{\delta_{\mathrm{rp}}+01}{22}\right), \delta_{\mathrm{rp}}<-01 \end{aligned}$
Collective Lever $\left(\delta_{\mathrm{cp}}, \mathrm{in}\right)$	128	Raw Collective as for bare helicopter	Raw Collective as for bare helicopter
Longitudinal Side Arm Controller ($\delta_{e p}, \operatorname{deg}$)	± 10	Not Used $\quad \therefore$	Not Used . . .
Eateral Side Arm ($\delta_{\mathrm{ap}}, \mathrm{deg}$)	± 10	Not Used	Not Used

TABLE III-5 (CONT)

Control	Control Tavel	Command Laws	
		$\operatorname{ATT} 2\left(\mathrm{~V}_{\mathrm{cz}}^{\mathrm{h}} \mathrm{ft} / \mathrm{sec}\right)$	VEL 1 (Vft/sec/sec)
Longtudinal Stick $\left(\delta_{e p}, 1 \mathrm{n}\right)$	± 55	Same as ATT 1	$\begin{aligned} V_{\mathrm{cx}}^{\mathrm{h}} & =9\left(\frac{\delta_{\mathrm{ep}}-01}{54}\right), \delta_{\mathrm{ep}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ep}}<01 \\ & =9\left(\frac{\delta_{\mathrm{ep}}+01}{54}\right), \delta_{e p} \leqslant-01 \end{aligned}$
Lateral Stıck $\left(\delta_{a p}\right.$, in $)$	± 36	Same as ATT 1	$\begin{aligned} \dot{\mathrm{V}}_{\mathrm{cy}}^{\mathrm{h}} & =6\left(\frac{\delta_{\mathrm{ap}}-01}{35}\right), \delta_{\mathrm{ap}} \geqslant 01 \\ & \doteq 0,-01<\delta_{\mathrm{ap}}<01 \\ & =6\left(\frac{\delta_{\mathrm{ap}}+01}{35}\right), \delta_{\mathrm{ap}} \leqslant-01 \end{aligned}$
$\begin{aligned} & \text { Pedals } \\ & \left(\delta_{\mathrm{rp}}, 1 \mathrm{n}\right) \end{aligned}$	- ± 23	Same as ATT 1	Same as ATT !
Collective Lever $\left(\delta_{c p}, \mathrm{~m}\right)$	128	$V_{c z}^{\mathrm{h}}=40+80\left(\frac{\delta_{\text {cp }}}{128}\right)$	Same as ATT 2
Longtudinal Side Arm Controller ($\delta_{\text {ep }}, \mathrm{deg}$)	± 10	Not Used	Not Used
Lateral Side Arm ($\delta_{\text {ap }}$, deg $)$	± 10	Not Used	Not Used

TABLE III-5 (CONT)

Control	Control Tiavel	Command Laws	
		VEL 2 (Vft/sec)	VEL 3 (Vft/sec)
Longtudinal Stick ($\delta_{\mathrm{ep}}, \mathrm{m}$)	± 55	$\begin{aligned} V_{c_{\mathrm{x}}}^{\mathrm{h}} & =36\left(\frac{\delta_{\mathrm{ep}}-01}{54}\right), \mathrm{o}_{\mathrm{ep}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ep}}<01 \\ & =36\left(\frac{\delta_{\mathrm{ep}}+01}{54}\right), \mathrm{o}_{\mathrm{ep}} \leqslant-10 \end{aligned}$	Not Used
Lateral Stick ($\delta_{\text {ap }}, \mathrm{m}$)	± 36	$\begin{aligned} \mathrm{v}_{\mathrm{cy}}^{\mathrm{h}} & =24\left(\frac{\delta_{\mathrm{ap}}-01}{35}\right), \delta_{\mathrm{ap}} \geqslant 01 \\ & =0,-01<\delta_{\mathrm{ap}}<01 \\ & =24\left(\frac{\delta_{\mathrm{ap}}+01}{35}\right), \delta_{\mathrm{ap}}<01 \end{aligned}$	Not Used
$\begin{aligned} & \text { Pedals } \\ & \left(\delta_{\mathrm{rp}}, \text { in }\right) \end{aligned}$	± 23	Same as ATT 1	Same as ATT 1
Collective Lever $\left(\delta_{\text {cp }}\right.$, in $)$	± 128	Same as ATT 2	Same as ATT 2
Longitudinal Side Arm Controller ($\delta_{\text {ep }}$, deg)	± 10	Not Used	$\begin{aligned} & \mathrm{v}_{\mathrm{cx}}^{\mathrm{h}}=20\left(\frac{\delta_{\mathrm{ep}}-20}{80}\right)+4 \int\left(\frac{\delta_{\mathrm{ep}}-20}{80}\right) \mathrm{dt}, \\ & \delta_{\mathrm{ep}} \geqslant 20^{\circ} \\ &=0,-20^{\circ}<\delta_{\mathrm{ep}}<20^{\circ} \\ &=20\left(\frac{\delta_{\mathrm{ep}}+20}{80}\right)+4 \int\left(\frac{\delta_{\mathrm{ep}}+20}{80}\right) \mathrm{dt} \\ & \delta_{\mathrm{ep}} \leqslant 20^{\circ} \end{aligned}$
Lateral Side Arm ($\delta_{\text {ap }}, \mathrm{deg}$)	± 10	Not Used	$\begin{aligned} & \mathrm{v}_{\mathrm{cy}}^{\mathrm{h}}=20\left(\frac{\delta_{\mathrm{ap}}-20}{80}\right)+4 \int\left(\frac{\delta_{\mathrm{ap}}-20}{80}\right) \mathrm{dt} \\ &, \quad \delta_{\mathrm{ap}} \geqslant 20^{\circ} \\ &=0,-20^{\circ}<\delta_{\mathrm{ap}}<20^{\circ} \\ &=20\left(\frac{\delta_{\mathrm{ap}}+20}{80}\right)+4 \int\left(\frac{\delta_{\mathrm{ap}}-20}{80}\right) \mathrm{dt} \\ & \delta_{\mathrm{ap}} \leqslant 20^{\circ} \end{aligned}$

\qquad

TABLE III-6 COMMANDS DISPLAYED

Mode	Display ARU-2B/A Fight Drector Indicator		
	Horizontal Needle	Vertical Needie	Collective Bug (Glide Slope Index)
SAS	Incremental differential collective pitch rate command	Incremental cychic roll rate command	Incremental collective command
ATT 1	Incremental differential collective pitch attitude command	Incremental cyclic roll command	Same as SAS
ATT 2	Same as ATT 1	Same as ATT 1	Incremental vertical velocity command
VEL 1	Incremental forward velocity command in Headng Vertical Frame	Incremental lateral velocity command in Heading Vertical Frame	Same as ATT 2
VEL 2	Same as VEL 1	Same as VEL 1	Same as ATT 2
VEL 3	Same as VEL 1	Same as VEL 1	Same as ATT 2
AUTO	Forward velocity error in Heading Vertical Frame	Lateral velocity error in Headng Vertical Frame	Vertical velocity error

TABLE III-7
FDI DISPLAY SENSITIVITIES

Figure III-3. Longitudınal Flight Control Laws

TABLE III-8

PITCH DIFFERENTIAL COLLECTIVE FCS LAWS

$\Delta \delta_{\mathrm{cc}}$	$=\mathrm{K}_{\theta \mathrm{H}}\left(1+\frac{02}{\mathrm{~s}}\right) \mathrm{F}$		
\mathbf{F}		$\Delta \delta_{\mathrm{ep}}-65 \mathrm{q}$	
	$=20 \Delta \delta_{\mathrm{cp}}-65 \mathrm{q}+135\left(\theta_{\mathrm{o}}-\theta\right)$		for SAS
	$=\left(02+\frac{036}{\mathrm{~s}}+\frac{0034}{\mathrm{~s}^{2}}\right) \Delta \delta_{\mathrm{ep}}-65 \mathrm{q}+135\left(\theta_{\mathrm{o}}-\theta\right)+02\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{xo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{x}}^{\mathrm{h}}\right)$		for VEL 1
	$=\left(135+\frac{041}{\mathrm{~s}}+\frac{0027}{\mathrm{~s}^{2}}\right) \Delta \delta_{\mathrm{ep}}-65 \mathrm{q}+135\left(\theta_{\mathrm{o}}-\theta\right)+02\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{xo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{x}}^{\mathrm{h}}\right)$		for VEL 2
			for ATT $\& 2$
	$=\left(162+\frac{324}{\mathrm{~s}}+\frac{032}{\mathrm{~s}^{2}}\right) \Delta \delta_{\mathrm{eps}}-65 \mathrm{q}+135\left(\theta_{\mathrm{o}}-\theta\right)+02\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{xo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{x}}^{\mathrm{h}}\right)$		for VEL 3
	$=\left(02+\frac{002}{\mathrm{~s}}\right) \Delta \mathrm{V}_{\mathrm{g} \lambda}^{\mathrm{h}}-65 \mathrm{q}+135\left(\theta_{\mathrm{o}}-\theta\right)$		for AUTO

Symbols (in order of appearence above)
$\Delta \delta_{\mathrm{ec}}$, - meremental differentral collective command (nches)
$\mathrm{K}_{\theta \mathrm{H}}$, hysteresis compensation gan in pitch (see text)
$\Delta \delta_{\text {ep }}$, incremental electric stick pitch mput (inches)
q. angular rate about the Y body axis (rad/sec)
θ_{0}, \quad intral value of θ (radians)
θ, Euler pitch attutude (radians)
$\mathrm{V}_{\mathrm{x},}^{\mathrm{h}}$, initral value of $\mathrm{V}_{\mathrm{X}}^{\mathrm{h}}(\mathrm{ft} / \mathrm{sec})$
$\mathbf{V}_{\mathbf{X}}^{\mathbf{h}} \quad$ forward velocity in vertical heading frame ($\mathrm{ft} / \mathrm{sec}$)
$\Delta \delta_{\text {eps }} \quad$ meremental side arm controller putch input (max ± 05 inches)
$\mathrm{V}_{\mathrm{gX}}^{\mathrm{h}}$, forward velocity error from guidance laws in vertical heading frame ($\mathrm{ft} / \mathrm{sec}$)

TABLEIII-9

ROLL CYCLICFCS LAWS

$\Delta \delta_{\mathrm{ac}}$	$=\mathrm{K}_{\phi \mathrm{H}}\left(1+\frac{02}{\mathrm{~s}}\right) \mathrm{F}$
F	$=\Delta \delta_{\mathrm{ap}}-75 \mathrm{p}$
	$=45 \Delta \delta_{\mathrm{ap}}-75 \mathrm{p}+150\left(\phi_{\mathrm{o}}-\phi\right)$
	$=\left(023+\frac{04}{\mathrm{~s}}+\frac{004}{\mathrm{~s}^{2}}\right) \Delta \delta_{\mathrm{ap}}-75 \mathrm{p}+150\left(\phi_{0}-\phi\right)+023\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{yo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{y}}^{\mathrm{h}}\right)$
	$=\left(023+\frac{0.4}{\mathrm{~s}}+\frac{0 \mathrm{O4}}{\mathrm{~s}^{2}}\right) \frac{\mathrm{V}_{\mathrm{a}}^{\prime}}{60} \Delta \delta_{\mathrm{ap}}-75 \mathrm{p}+150\left(\phi_{\mathrm{o}}-\phi\right)+023\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{yo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{a}}^{\prime} \xi\right)$
	$=\left(15+\frac{045}{\mathrm{~s}}+\frac{003}{\mathrm{~s}^{2}}\right) \Delta \delta_{\mathrm{ap}}-75 \mathrm{p}+150\left(\phi_{\mathrm{o}}-\phi\right)+023\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{yo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{y}}^{\mathrm{h}}\right)$
	$=\left(15+\frac{045}{\mathrm{~s}}+\frac{003}{\mathrm{~s}^{2}}\right) \frac{\mathrm{V}_{\mathrm{a}}}{60} \Delta \delta_{\mathrm{ap}}-75 \mathrm{p}+150\left(\phi_{\mathrm{o}}-\phi\right)+023\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{yo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{a}}^{\prime} \xi\right)$
	$=\left(54+\frac{16}{\mathrm{~s}}+\frac{001}{\mathrm{~s}^{2}}\right) \Delta \delta_{\mathrm{aps}}-75 \mathrm{p}+150\left(\phi_{\mathrm{o}}-\phi\right)+023\left(1+\frac{01}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{yo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{y}}^{\mathrm{h}}\right)$
	$=023\left(1+\frac{01}{\mathrm{~s}}\right) \mathrm{V}_{\mathrm{y}}^{\mathrm{h}}-75 \mathrm{p}+150\left(\phi_{\mathrm{o}}-\phi\right)$

for SAS
for ATT $1 \& 2$
for VEL $1, V_{\mathrm{a}}^{\prime}<35$ knots for VEL $1, \mathrm{~V}_{\mathrm{a}}^{\prime}>35$ knots for VEL 2, $\mathrm{V}_{\mathrm{a}}^{\prime}<35$ knots for VEL $2, \mathrm{~V}_{\mathrm{a}}^{\prime}>35$ knots for VEL 3
for AUTO

-	Symbois (in order of appearance above)
$\Delta \delta_{\text {ac }}$,	neremental roll cyclic command (nches)
$\mathrm{K}_{\phi} \mathrm{H}$,	hysteresis compensation gam in roll (see text)
$\Delta \delta_{\text {ap }}{ }^{2}$	meremental electric stick roll input (inches)
p,	angular rate about X body dxis (radıans $/ \mathrm{sec}$)
ϕ_{0},	intinal value of ϕ (radians)
$\phi_{\text {, }}$	Euler roll attitude (radians)
$\mathrm{v}_{\mathrm{yo}}^{\mathrm{h}}$	mutal value of $V_{y}^{h}(\mathrm{ft} / \mathrm{sec})$
$\mathrm{v}_{\mathrm{y}} \mathrm{h}$,	lateral velocity in vertical heading frame ($\mathrm{ft} / \mathrm{sec}$)
$\mathrm{V}_{\mathrm{a}}^{\prime}$,	effective speed ($\mathrm{ft} / \mathrm{sec}$)
ξ	$\arctan \left(V_{y}^{a n} / N_{\mathrm{x}}^{\mathrm{an}}\right)$, course (radıans)
$\mathrm{V}_{y}^{\mathrm{an}}$	lateral velocity in approach navigation frame ($\mathrm{ft} / \mathrm{sec}$)
$\mathrm{V}_{\mathbf{x}}^{\mathrm{an}}$	forward velocity in approach navigation frame ($\mathrm{ft} / \mathrm{sec}$)
$\Delta \delta_{\text {aps }}$,	meremental side arm controller roll input (max ± 125 inches)

TABLE III-10
YAW CYCLIC FCS LAWS

TABLE III-11

COLLECTIVE FCS LAWS

> For SAS
> $\Delta \delta_{c c}=\Delta \delta_{c p}$
> For ATT 2, VEL 1, VEL 2, VEL 3 Modes,
> $\Delta \delta_{\mathrm{cc}}=-02\left(1+\frac{1}{\mathrm{~s}}\right)\left(\mathrm{V}_{\mathrm{zo}}^{\mathrm{h}}-\mathrm{V}_{\mathrm{z}}^{\mathrm{h}}+625 \Delta \delta_{\mathrm{cp}}\right)+3(1-\cos \Phi)$
> For AUTO Mode ,
> $\Delta \delta_{c c}=-02\left(1+\frac{1}{s}\right) \Delta V_{2}^{\mathrm{h}}+3(1-\cos \phi)$
> Symbols (in order of appearance above)
> $\Delta \delta_{c C}$, incremental collective command (nehes)
> $\mathrm{V}_{\mathrm{zo}}^{\mathrm{h}}$, imital value of $\mathrm{V}_{\mathrm{z}}^{\mathrm{h}}(\mathrm{ft} / \mathrm{sec})$
> $\mathrm{V}_{\mathrm{Z}}^{\mathrm{h}}$, vertical vclocity in Vertical Headıng Frame (ft/sec)
> $\Delta \delta_{c \mathrm{cp}}$, incremental collective stick input (inches)
> Φ, Euler roll attitude (radans)
> $\Delta V_{2}^{\mathrm{h}}$, vertucal velocity error from guidance ($\mathrm{ft} / \mathrm{sec}$)

In these laws, reference is made to $\mathrm{K}_{\theta \mathrm{H}}, \mathrm{K}_{\phi} \mathrm{H}, \mathrm{K}_{\psi} \mathrm{H}$, hysteresis gan compensations With the level of hysteresis assumed for the EISS and power boost, the limit cycle amplitude (as * high as ± 15 degrees of pitch in the differential collective channel) was unacceptable Figure III-5 shows the pitch attitude loop without hysteresis compensation being stepped by successive $\pm 2^{\circ}$ steps The 140 knot condition is illustrated to bring out the effect since it is more pronounced at higher air speed

To ieduce the amplitude of the limit cycle, a Tustin method difference equation for a conventional lead/lag hysteresis compensator of the form, $(00625 s+1) /(00125 s+1)$, was developed and included in the simulation However, it was found that the difference equation for this compensator had undeidamped characteristics at all sdmpling rates below about 80 updates/ sec As a result of this when a run was made at an update rate of 32 times $/ \mathrm{sec}$, this compensator actually increased the amphtude of the limit cycle

Since it was not desired to increase the required sampling rate for the arrborne system, other forms of difference equations were investigated It was found that by using a first backwards difference method, a difference equation for the lead/lag compensator could be developed that was not underdamped at update rates of 32 times $/ \mathrm{sec}$ However, when this difference equation was programmed in the simulation and a run was made, it was found that only a 20% reduction in the amplitude of the limit cycle was obtaned and this was still unacceptable

At this point, conventional lead/lag compensators were abandoned and a look was taken at variable gan compensation techniques Basically, these techniques are ones where the gan is increased as required to overcome the deadzone that is causing the hysteresis

Theoretically, the gain required to compensate for pure hysteresis is,

$$
\mathrm{K}_{\mathrm{H}}=\frac{\left.\right|^{\Delta \delta_{c \mid}+\Delta \delta_{\mathrm{H}}}}{\left|\Delta \delta_{\mathrm{c}}\right|}
$$

where $\quad \Delta \delta_{\mathrm{C}}=$ command input
$\Delta \delta_{\mathrm{H}}=$ half the width of the hysteresis deadzone
However, in order to obtain exact compensation with this technique, there must be no system lags between the compensation and the hysteresis and the hysteresis must be pure hysteresis Since this is never the case in real physical systems, the gain must be limited to prevent stability problems In the simulation, this type of gain was mechanized on the incremental pitch command (proportional part of proportional plus integral term) and was himited to a maximum value of two

$$
\mathrm{k}_{\delta_{\mathrm{e}} / \mathrm{H}}=\frac{\left|\Delta \delta_{\mathrm{e}}\right|+\Delta \delta_{\mathrm{e}} / \mathrm{H}}{\left|\Delta \delta_{\mathrm{e}}\right|} \leqslant 20
$$

A run was then made with this variable gain hysteresis compensator and it was found that it significantly reduced the amplitude of the limit cycle as shown in Figure III-6 which repeats the conditions of Figure III-5 with the compensator To insure that an exact knowledge of the actual hysteresis in the vehicle is not required with this technique, additional tests were made, one with the hysteresis in the vehicle set to zero and one with it set to double the expected value No delcterious effects to imperfect compensation resulted and the technique was incorporated into the FCS laws

Figure III-5 Pitch Limit Cycle with No Hystersis Comp

Figure III-6 Pitch Limit Cycle with Variable Gain Comp

In these tables, reference is made to Va ; the effective speed Va 'is defined as :

$$
\begin{array}{rlrl}
\mathrm{V}_{\mathrm{a}} & =\mathrm{V}_{\mathrm{af}}, & \text { if } \mathrm{V}_{\mathrm{af}} \leqslant \mathrm{~V}_{\mathrm{x}}^{\mathrm{h}} \\
& =\mathrm{V}_{\mathrm{A}}^{\mathrm{h}}, & & \text { if } \mathrm{V}_{\mathrm{af}} \leqslant \mathrm{~V}_{\mathrm{h}}^{\mathrm{h}}
\end{array}
$$

The pitch attitude commands are limited in all modes except SAS This is iequitid. not only by safety considerations, but because step changes in forward velocity resulted in unaceprd, de pitch fianstents The pitch angle command was limited to ± 0174 radians about the trim pitch difitide The pitch trm altitude is approximated by,

$$
\begin{aligned}
\theta_{\text {trim }} & =01438, \text { if } \mathrm{V}_{\mathrm{af}} \leqslant 35 \text { knots } \\
& =0165-0297\left(\frac{\mathrm{~V}_{\mathrm{af}}}{236}\right)^{2}, \text { if } \mathrm{V}_{\mathrm{af}}>35 \text { knots }
\end{aligned}
$$

The FCS laws are expressed in the Tables III-8, 9, 10, and III-11 in terms of Laplacian operator, s Since difference equations are requred for digital mechanization, Tustm's method is employed In this method, the Laplacian operator, s , is approximated by a difference equartion of the form

$$
s=\frac{\cdot 2}{\Delta t}\left(\frac{1-\Delta}{1+\Delta}\right),
$$

where Δt is the update interval and Δ is the backwards difference operator This method was sulucted becauce its accuracy is more than adequate for that required in the flight control and gudance law, it is easy to program, it is guaranteed to preserve stability and it has the cascading property This last felture is important in the development of control laws since it permits the difference equation ior any function in a loop to be modified independently of the difference equations for any other functions that might exist in the loop

Using this method, difference equations were derived for the integrators, filters, and lead/lag networks in the flight control laws The resulting difference equations are as follows
(1) Integrator

$$
\begin{aligned}
& y=\left(\frac{1}{s}\right) x \\
& =y_{n-1}+5 \Delta t\left(x_{n}+x_{n-1}\right)
\end{aligned}
$$

(2) Filter

$$
\begin{aligned}
y & =\left(\frac{1}{\tau S+1}\right) x \\
y_{n} & =\left[x_{n}+x_{n-1}+(-1+b) y_{n-1}\right] /(1+b) \\
b & =2 \tau / \Delta t
\end{aligned}
$$

where
(3) Lead/lag

$$
\begin{aligned}
y & =\left(\frac{\tau_{\text {lead }} s+1}{\tau_{\operatorname{lag}} s+1}\right) \\
y_{n} & =\left[(1+a) x_{n}+(1-a) x_{n-1}+(-1+b) y_{n-1}\right] /(1+b)
\end{aligned}
$$

where $\quad a=2 \tau_{\text {lead }} / \Delta t$
$\mathrm{b}=2 \tau_{\mathrm{lag}} / \Delta \mathrm{t}$

Rell Rerompace Campany

c. GUIDANCE LAWS

1 Gudañce Requrements and Disien Approach
a Generd
As discussed im Section I, the primary emphasis in this study was on the development Of flight control laws for a Digital Fight Control and Landing System (DFCLS) The emphasis on the deyelopment of gudance laws was secondary and the prmary purpose of it was to obtain laws whech would be adequate for evaluating the flight control laws on a typical landing mission in both ground based simulators and arborne flight tests. In the arrborne system, the laws developed in this study will be used in the Guidance If Modc of operation of the DFCLS For this purpose, the following general requirements for the guddnce laws were established
(1) The guidance laws must be adequate to evaluate the flyght control laws on a - typical landing mission but need not be optamum llowever, the gudance profile must be one from which a safe and satisfactory landing of the helicopter can be made
(2) The gudance ldws must be compatible with the baseline system They must accept their mputs from the radar updated strapdown system and output velocity error commands to the flight control laws in the heading vertical frame (HVF)

Based on these requirements, the basic design approdch was to develop a nommal profife gudance system, This approach was selected over the more complex predictive guldance and terminal guidance approaches for the following reasons
(1) Nominal profiles of the constant speed glade type are the standard type currently flown by heltcopters to make safe and satsistactory landings
(2) Nominal profile guadance systems are sumple to develop, generally have small com--puter requirements relative to predictive and terminal gudance systems and are adequate for evaluding flight control laws during landing

For the selected nommal gudance system approach, a nommal guidance profle type wa: sefected and the detaled characteristics of this profile in the ANF were developed A method for gener: mg the velocity error commands between the total ANF profile commands and the actual helicopter flight conditions were developed To obtan compatability with the flight control system transformations were also developed for converting the velocity command errors to the IIVF A detaled descriptun of the design approach in each of these areas is discussed in the following sections.
b. . Selection of Nominal Profile

A profile of the constant speed glade type was selected for the gudance laws since it is the standard type flown by heicopters during landing and is adequate to evaluate flight control laws For this profile, the following detaied requirements were established
(1) The profile will begin at any acceptable conditions the helloopter is acquired at and end at the toukdown point The helicopter will not be required to fly to a fixed acquisition point
(2) The profile will not require the helicopter to fly up or down to a fixed glide slope interception point
(3) The profile will not requre the helicopter to slow down prematurely such that

- excessive time and fuel is requined during the landing
(4) There will be no discontinuities in the commands along the profile

The basic design approach in developing a detanled characteristics of a nommal constant speed glide profile was to develop one that was contmuous from acquistion to touchdown and not fixed to any specific acquisition conditions To do this, the profile was divided into the following phases in the ANF longitudinal plane (1) acquisition, (2) level flight deceleration, (3) glide acquisition, (4) glide tiansition, (5) glide, (6) flare, (7) hover, and (8) land These phases are illustrated in Figure III-7 In this figure, the solid portions of the profile axe fixed and the dotted portions float depending on the conditions the helicopter is acquired at The desired profile characteristics for all phases are histed in Table III-12 A descuption of each phase and its purpose is as follows
(1) Land - The land phase profile is a straight vertical descent from hover to touchdown For a given desired hover attitude and desired sink rate at touchdown, the profile for this phase is fixed The purpose of this phase is to smoothly accelerate the helicopter from the zero hover sink rate to the desired sink rate for touchdown
\therefore and hold it at this rate until touchdown occurs
(2) Hover - The hover phase profile is a constant altitude forward deceleration flight from the end of flare to stationary hover over the pad For a given hover attitude and forward speed at the end of flare, this phase is fixed The purpose of this phase is to smoothly decelerate the helicopter from the specified range rate at the end of flare to stationary hover over the pad and to provide time to satisfy acceptable conditions for landing in the presence of disturbances
(3) Flare - The flare phase profile is a constant forward and constant vertical deceleration flight from the desired forward speed and sink rate at the end of glide to the desired forward speed and zero sink rate at the end of flare For given desired conditions at the end of glide and end of flare, this phase is fixed The purpose of this*

- phase is to smoothly brake the forward speed and sink rate of the helicopter at decelera-
- tion rates that are acceptable to the pilot
(4) Glide - The glide phase profile is a constant speed, constant glide slope glide from the glide slope interception point to the beginning of flare The length of this
\because phase is not fixed sunce its purpose is to bring the helicopter from the altitude at which it is acquired to the beginnmg of flare at an acceptable glide slope
(5) Glide Transition - The glide transition phase profile is a constant speed, constant
- vertical acceleration flight from level flight at the acquisition altitude to the sink rate for the desired glide slope For a given desired vertical acceleration, this phase
. * is fixed relative to the floating glide interception point The purpose of this phase is to provide a smooth transition from level flight to glide
(6) Glide Acquisition - The glide acquisition phase profile is a constant speed, constant altitude flight from the end of the level flight deceleration phase to the glide transi-
.. tion point The length of this phase is fixed relative to the ghde transition point. The purpose of this phase is to allow for a reasonable length of constant speed flight prior to glide transition
Report No 6200-933013

Figure III-7 Normal Profile Phases

TABLE IH-12
DESIRED NOMINAL PROFILE CHARACTERISTICS

Characteristic	Description	Nommal Vabue
$\mathrm{X}_{\mathrm{sl} 1}$	Desired range at start of hover	200 ft
X_{g}	Desired forward glde speed	$71 \mathrm{ft} / \mathrm{sec}$
$\mathrm{X}_{\text {sh }}$	Desired forward speed at start of hover	$71 \mathrm{ft} / \mathrm{sec}$
\ddot{x}_{d}	Desired forward deceleration rate during level flight decelelation and flare	$2 \mathrm{ft} / \mathrm{sec}^{2}$
$\Delta X_{g a}$	Desired fange increment for ghde acquistion at glde speed	1000 ft
z_{h}	Desired hover altitude	-50 ft
2_{1}	Desred smh rate at touchdown	$4 \mathrm{ft} / \mathrm{sec}$
\ddot{z}_{1}	Desired vertical acceleration during landing	$2 \mathrm{ft} / \mathrm{sec}^{2}$
Z_{d}	Desired vertical acceleration durng glde transition	$2 \mathrm{ft} / \mathrm{sec}^{2}$
γ_{g}	Desired glide slope angle durng glide	6 deg

(7) Level Flight Deceleration - The level flight deceleration phase profile is a constant altitude, constant forward deceleration flight from the velocity at acquisition to the speed desired for glide Since the velocity the helicopter -

- can be acqurred at, is not fixed, the lengths of this phase is not fixed
(8) Acquisition - The acquisition phase flight profile is a constant altitude, constant speed flght from the conditions at acquisition to the begmong of the level flight deceleration phase Since the iange at acquistion is not fixed, the length of the phase is not fixed The purpose of this phase together with the level flight deceleration and ghde transition phases is to prevent the helicopter from being slowed down prematurely at long distances pior to the glide transition point

The desired profile in the ANF lateral plane was defined as simply a straight centerlne projected outward from the centerlme of the iunway
c Development Nominal Command Generation Method
In developing a method for generating the total ANF commands along the nominal profile as a function of ANF range, the basic design approach was to develop equations which could be used to generate the commands along the nominal profile in flight from the desired profile characternstics, instead of developing stored fixed profile commands This approach was selected for several reasons
(1) The in flight computed profile approach enables the helicopter to be acquired at any acceptable altitude and held at this altitude until the gide slope is intercepted it does not requare the helicopter to fly up or down from the acquisition altitude to a fixed glide slope interception point
(2) This approach also enables the helicopter to be acquired at any acceptable forward speed and range and to be decelerated at a desired rate to a desired glide speed at a fixed distance and time prior to glide slope interception This insures that the helicopter will not be decelerated prematurly to a slow speed which would result in excessive time and fuel consumption during the landing
(3) This approach allows the desired nominal profile characteristics to be updated in flight through the Manual Communication Unit This eliminates the need for reading new profile programs into the arborne computer when it is desired to change the nominal profile characteristics as would be required with a stored fixed profile approach

Although not an objective during this study, the in-flight computed profile approach is also readily adaptable to predictive guidance systems In such systems, the equations for computing the nominal profile commands from the desured profile characteristics could be readily adapted to predict best new profiles from the current helicopter flight conditions

The equations necessary to compute the nommal profile commands from the desired profile characteristics were developed by first deriving the equations for computing the required range and altitude at the start of each phase from the desired profile characteristics This was done by obtaning the closed form solutions to the integrals of the desired accelerations and/or velocities during each phase These closed form solutions were then algebracally manipulated to obtain new equations for computing commands along the profile as a function of the current ANF range
\therefore For example, for a constant forward deceleration flare along the ANF x axis, the range along the flare is,

$$
\begin{aligned}
\dot{x} & =\int_{0}^{\Delta t_{f}} \int_{\int_{0}}^{\Delta t_{f}} x_{d} d t d t \\
& =05 \dot{x}_{d} \Delta t_{f}^{2}+\dot{x}_{s h} \Delta t_{f}+X_{s h}
\end{aligned}
$$

The time sequired for flare is,

$$
\Delta t_{\mathrm{f}}=\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right) / \dot{\mathrm{X}}_{\mathrm{d}}
$$

Substituting this into the range equation gives the following equation for computing the range at the start of the flare as a function of the desured profile characteristics

$$
\mathrm{X}_{\mathrm{sf}}=05 \frac{\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)^{2}}{\mathrm{X}_{\mathrm{d}}}+\dot{\mathrm{X}}_{\mathrm{sh}} \frac{\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)}{\mathrm{X}_{\mathrm{d}}}+\mathrm{X}_{\mathrm{sh}}
$$

- Algebraic mampulation of this equation gives the following equation for computing the forward velocity command during the flare as a function of the current range

$$
\begin{aligned}
\left(X_{c}-X_{s h}\right) & =\frac{\frac{-X_{s h}}{X_{d}}+\sqrt{\left(\frac{\dot{x}_{s h}}{\dot{X}_{d}}\right)^{2}+\frac{2\left(X-X_{s h}\right)}{X_{d}}}}{1 / \ddot{X}_{d}} \\
& =-\dot{X}_{s h}+\sqrt{\dot{X}_{s h}+2 \ddot{X}_{d}\left(X-X_{s h}\right)} \\
& \quad \dot{X}_{c} \quad
\end{aligned}
$$

The equations for the remaning phases of the nominal profile were derived in a similar manner
d. Development of Gudance Laws

Guidance laws were developed using a simple control law of the following form

$$
\Delta \dot{\mathrm{x}}=\mathrm{k}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}\right)+\left(\dot{\mathrm{x}}_{\mathrm{c}}-\dot{\mathrm{x}}\right)
$$

where
x_{c} is a commanded ANF flight variable
x, is a current ANF flight variable
For the forward ANF yelocity law the first term was not necessary since the forward ANF range is used as the independent variable in generating the total ANF commands along the nominal profile

Nommal gains for these guidance laws were selected based on Bell's experience with automatic landing systems and the response characterastics of the flight control laws These gains were updated by simulator evaluation runs On these runs it was found that the lateral gain required to meet acceptable conditions for landing at hover resulted in unnecessarily large and rapid roll maneuvers for correcting lateral errors at longer ranges As a result of this, this gain was made a function of range All other gams remaned constant

Since the commands along the nominal profile in the ANF longitudinal plane are continuous from the point of acquisition, no limits were required on the forward and vertical velocity guidance laws since large errors will not develop under normal operating conditions However, in the lateral ANF plane, the lateral position command is simple projection of the runway centerline and will not intercept the hehcopter when it is laterally offset at acquisition As a result of this, this command is not continuous from acquisition and large errors can result To prevent large errors from resulting in an oubitmg situation, it was necessary to develop limits for limiting the magnitude of the lateral ANF velocity error that can be commanded by the lateral position error term in the lateral guidance law This was done by lmiting the lateral ANF velocity command to a value equivalent to that for a 30° heading at high speeds

To obtain compatability with the flight control system, transformations were developed to transform the ANF velocity errors to HVF velocity errors Although this could always be done simply by resolving the ANF velocity errors through the heading angle, it was not deemed desirable to do this at high speed sunce it would make the commanded forward speed of the helicopter in the HVF a function of the heading required to correct for lateral errors and disturbances To prevent this, it was decided to command the ANF velocity errors directly in the HVF coordinate system at high speeds This causes the actual ANF velocities of the helicopter to be lower than the commanded velocities any time that it is a heading relative to the runway centerline However, this does not affect the ability of the helicopter to fly the range and altitude profile for each phase since it only increases the flight time for each phase. An added advantage of this feature is that it lowers the forward deceleration rates required when the helicopter as at a heading relative to the centerline for correcting lateral errors

2 Detaled Description of Guidance
a. Nommal Profile

When the helicopter is first acquired, the acquisition speed and altitude are saved
, $\dot{\mathrm{X}}_{\mathrm{O}}{ }^{\prime}=\sqrt{\dot{\mathrm{X}}^{2}+\dot{\mathrm{Y}}^{2}}$

$$
Z_{0}{ }^{"}=Z
$$

The initial acquisition and desired profile characteristics are then used to compute the required range and altitude at the start of each phase in the longitudinal plane of the profile that is not defined by either the desired characteristics or the acquisition conditions The range and altitude at the start of the flare are computed as

$$
\begin{aligned}
& X_{\mathrm{Sf}}=-05 \frac{\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)^{2}}{\dot{X}_{\mathrm{d}}}+\frac{\dot{X}_{\mathrm{g}}\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)}{\dot{\mathrm{X}}_{\mathrm{d}}}+\mathrm{X}_{\mathrm{sh}} \\
& \mathrm{Z}_{\mathrm{sf}}=\mathrm{Z}_{\mathrm{h}}-05 \frac{\dot{\mathrm{X}}_{\mathrm{g}} \tan \gamma_{\mathrm{g}}\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)}{\dot{X}_{\mathrm{d}}}
\end{aligned}
$$

The range at the start of ghde is computed as

$$
X_{\mathrm{Sg}}=X_{\mathrm{sh}}-\left(\mathrm{Z}_{\mathrm{O}}-\mathrm{Z}_{\mathrm{sf}}\right) / \tan \gamma_{\mathrm{g}}
$$

The range at the start of the glide transition is computed as

$$
\mathrm{X}_{\mathrm{st}}=\mathrm{X}_{\mathrm{sg}}+\frac{\dot{\mathrm{X}}_{\mathrm{g}}{ }^{2} \tan \gamma_{\mathrm{g}}}{\mathrm{Z}_{\mathrm{t}}}
$$

The range at the start of gide acquisition is computed as

$$
X_{\text {sga }}=. X_{\text {st }}+\Delta X_{\text {ga }}
$$

The range at the start of the level flight deceleration phase is computed as

The total forward velocity, altitude, and altitude rate commands for the approrate flight phase in the longitudinal plane of the profile are then computed If the helicopter is in the initial acquistion phase ($|\mathrm{X}|>\mathrm{X}_{\mathrm{sd}}$), the commands are,

$$
\begin{aligned}
& \dot{X}_{\mathrm{c}}=\dot{\mathrm{X}}_{\mathrm{O}} \\
& \mathrm{Z}_{\mathrm{c}}=\dot{\mathrm{Z}}_{\mathrm{O}} \\
& \dot{\mathrm{Z}}_{\mathrm{c}}=0
\end{aligned}
$$

If the helicopter is in the level flight deceleration phase ($X_{\text {sga }}<|X| \leqslant X_{s d}$), the total commands are computed as

$$
\begin{aligned}
& \dot{X}_{c}=\sqrt{\dot{X}_{\mathrm{g}}^{2}+2 \ddot{\mathrm{X}}_{d}\left(|\mathrm{X}|-\mathrm{X}_{\mathrm{sga}}\right)} \\
& \mathrm{Z}_{\mathrm{c}}=\mathrm{Z}_{0} \\
& \dot{Z}_{c}=0
\end{aligned}
$$

If the helicopter is in the gide acquisition phase ($\mathrm{X}_{\mathrm{st}}<|\mathrm{X}| \leqslant \mathrm{X}_{\mathrm{sga}}$), the total commands are

$$
\begin{aligned}
& \dot{\mathrm{x}}_{\mathrm{c}}=\dot{\mathrm{x}}_{\mathrm{g}} \\
& \mathrm{z}_{\mathrm{c}}=\mathrm{z}_{0} \\
& \dot{\mathrm{z}}_{\mathrm{c}}=0
\end{aligned}
$$

If the helicopter is in the ghee phase ($\mathrm{X}_{\mathrm{sf}}<|\mathrm{X}| \leqslant \mathrm{X}_{\mathrm{sg}}$) The total commands are comproted as

$$
\begin{aligned}
& \dot{\mathrm{X}}_{\mathrm{c}}=\dot{\mathrm{X}}_{\mathrm{g}} \\
& \mathrm{Z}_{\mathrm{c}}=\mathrm{Z}_{\mathrm{sf}}+\left(|\mathrm{X}|-\mathrm{X}_{\mathrm{sf}}\right) \tan \delta_{\mathrm{g}} \\
& \dot{\mathrm{Z}}_{\mathrm{c}}=-\dot{\mathrm{X}}_{\mathrm{g}} \tan \delta_{\mathrm{g}}
\end{aligned}
$$

If the helicopter is in the glide transition phase ($\mathrm{X}_{\mathrm{sg}}<|\mathrm{X}| \leqslant \mathrm{X}_{\mathrm{st}}$), the total commande are computed as

$$
\begin{aligned}
\dot{x}_{c} & =\dot{x}_{g} \\
\dot{Z}_{c} & =Z_{o} \\
\dot{Z}_{c} & =-\left[\frac{|X|-X_{s g}}{X_{s t}-X_{s g}}\right] \dot{x}_{g} \tan \gamma_{g}
\end{aligned}
$$

To be totally correct, the altitude command in this phase should be a parabolic functon of tame However, since the purpose of this phase, which is to proved a smooth transition to the glide without discontinuities, can be accomplished with just a linear altitude rate term, the altitude command is left constant

If the helicopter is in the flare phase ($\mathrm{X}_{\mathrm{sh}}<|\mathrm{X}| \leqslant \mathrm{X}_{\mathrm{sf}}$), the total commands are computed as

$$
\begin{aligned}
& \dot{X}_{\mathrm{c}}=\sqrt{\dot{\mathrm{X}}_{\mathrm{sh}^{2}}+2 \dot{\mathrm{X}}_{\mathrm{d}}\left(\mid \mathrm{XI}-\mathrm{X}_{\mathrm{sh}}\right)} \\
& \mathrm{Z}_{\mathrm{c}}=\mathrm{Z}_{\mathrm{sh}}-05 \frac{\dot{\mathrm{X}}_{\mathrm{g}} \tan \gamma_{\mathrm{g}}\left(\dot{\mathrm{X}}_{\mathrm{c}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)^{2}}{\left.\ddot{\mathrm{X}}_{\mathrm{d}} \dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)} \\
& \dot{Z}_{\mathrm{c}}=\frac{\dot{\mathrm{X}}_{\mathrm{g} \tan \gamma_{\mathrm{g}}\left(\dot{\mathrm{X}}_{\mathrm{c}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)}^{\ddot{\mathrm{X}}_{\mathrm{d}}\left(\dot{\mathrm{X}}_{\mathrm{g}}-\dot{\mathrm{X}}_{\mathrm{sh}}\right)}}{}
\end{aligned}
$$

If the helicopter is in the hover phase ($|X|<X_{\text {sh }}$), the total commands are computes
as

$$
\begin{aligned}
\dot{X}_{\mathrm{c}} & =-\left(\frac{\mathrm{X}}{\mathrm{X}_{\mathrm{sh}}}\right) \dot{\mathrm{X}}_{\mathrm{sh}} \\
\mathrm{Z}_{\mathrm{c}} & =\mathrm{Z}_{\mathrm{h}} \\
\dot{\mathrm{Z}}_{\mathrm{c}} & =0
\end{aligned}
$$

If the plot selects the Land Mode and conditions are acceptable for landing, the total commands are generated as follows

$$
\begin{aligned}
& \dot{X}_{c}=-\left(\frac{X}{X_{s h}}\right) \dot{X}_{s h} \\
& \dot{Z}_{c}=f_{o}^{t} \ddot{Z}_{1} d t \leqslant \dot{Z}_{1} \\
& Z_{c}=\int_{t_{o}}^{t} Z_{c} d t+Z_{h}
\end{aligned}
$$

where $\quad t_{0}=$ time at point that land phase is started
The total lateral commands in all phases are of course zero in the ANF system
$Y_{C}=0$

- $\quad \dot{Y}_{c}=0$
b Guidance Laws
The forward velocity guidance law is

$$
\Delta \dot{\mathrm{X}}=\dot{\mathrm{X}}_{c}-\mathrm{X}^{1}
$$

where

$$
\begin{aligned}
\dot{X}^{1} & =\dot{X}^{h} \text { in HVF at high speed } \\
& =\dot{X} \text { at low speed }
\end{aligned}
$$

The lateral velocity guidance law is,

$$
\Delta \dot{Y}=k_{y}\left(Y_{c}-Y\right)+\left(\dot{Y}_{c}-\dot{Y}^{1}\right)
$$

where

$$
\begin{aligned}
\mathrm{k}_{\mathrm{y}}= & 03-000002|\mathrm{X}| \\
& 01 \leqslant k_{y} \leqslant 02
\end{aligned}
$$

$$
\begin{aligned}
\dot{\mathrm{Y}}^{1} & =\dot{\mathrm{X}} \sin \psi \text { at high speed } \\
& =\dot{Y} \text { at low speed }
\end{aligned}
$$

To prevent orbiting, the first term in the lateral law is limited

$$
-X_{1} \sin \psi_{\max } \leqslant k_{y}\left(Y_{c}-Y\right) \leqslant \dot{X}_{l} \sin \psi_{\max }
$$

where

$$
\begin{aligned}
\dot{\mathrm{X}}_{1} & =\left|\dot{\mathrm{X}}_{\mathrm{C}}\right|, \text { if } \dot{\mathrm{X}}_{\mathrm{c}}>\dot{\mathrm{X}}_{\mathrm{sh}} \\
& =\dot{\mathrm{X}}_{\text {sh }}, \text { if } \dot{\mathrm{X}}_{\mathrm{c}} \leqslant \dot{\mathrm{X}}_{\text {sh }} \\
\psi_{\max } & =\underset{ }{\text { maximum desired heading for correcting lateral errors pior to hovei }} \begin{array}{l}
\left(30^{\circ} \text { nominally }\right)
\end{array}
\end{aligned}
$$

This limit limits the ANF lateral velocity command due to the first term to that corresponding to a nominal heading of 30° prior to hover and to a fixed value of about $85 \mathrm{ft} / \mathrm{sec}$ during the hover and land phases

The vertical velocity law is,

$$
\Delta \dot{\mathrm{Z}}=02\left(\mathrm{Z}_{\mathrm{c}}-\mathrm{Z}\right)+\left(\dot{\mathrm{Z}}_{\mathrm{c}}-\dot{\mathrm{Z}}\right)
$$

As mentioned previously, these velocity errors are commanded drectly in the HVF at high speed

$$
\begin{aligned}
\Delta \dot{X}^{h} & =\Delta \dot{X} \\
\Delta \dot{Y}^{h} & =\Delta \dot{\mathrm{Y}} \\
\Delta \dot{\mathrm{Z}}^{h} & =\Delta \dot{\mathrm{Z}}
\end{aligned}
$$

At low speeds, these errors are transformed into the HVF through the heading angle, ψ

```
\(\Delta \dot{\mathrm{X}}^{\mathrm{h}}={ }^{\prime} \Delta \dot{\mathrm{X}} \cos \psi+\Delta \dot{\mathrm{Y}} \sin \psi\)
\(\Delta \dot{Y}^{h} \quad=-\Delta \dot{X} \sin \psi+\Delta \dot{Y} \cos \psi\)
\(\Delta \dot{Z}^{h}=\Delta \dot{Z} \quad \cdot\).
```

The speed used to make this switch is total ground speed $\left(\sqrt{X^{2}+\dot{Y}^{2}}\right)$ unless the filtered arspeed is less than this, in which case the filtered arspeed is used The speed at which the switch is made is 35 knots This speed was selected sunce it is the same speed at which the flight control laws in the Automatic Mode can start yawing the hehcopter into the wind. In this case, large heading angles can develop and the ANF velocity errors must be transformed through the heading angles to insure that the HVF velocity errors will correspond exactly to the ANF errors relative to the ANF profile

To prevent discontunuties from occuring in the HVF velocity errors when a switch occurs, the differences between the derect and transformed HVF velocity errors at the time of switch are washed out This is done by computing these differences at the point of switch and linearly washing these out to zero over a 10 second period after the switch

3. Guidance Implementation

The gudance equations for Gudance II Mode of the Digital Fhight Control and Landing System have been designed to be implemented in a duect manner on the arrboine digital computer A general flow diagram of the implementation requied is shown in Figure III-8 A description of the implementation shown in this fugure and its operation is as follows The required gudance inputs are obtained fiom the radar updated strapdown navigational system 'A logical test on the gudance mode is then required to determine if the helicopter is first being acquired If it is, the acquisition conditions are stoled and the ranges at the start of each profile phase are computed from these and the desired profile characteristics A test on the helicopter range is then required to deter mine the phase that the hellcopter is currently in If it is in any phase prior to hover, the total commands along the profile are then generated as a function of current range for the appropriate phase If the helicopter range is less than the required value at the start of hover, further tests are required to determine if the flight conditions are acceptable for going into the land phase, if the helicopter is not already in the land phase The condrthons that must be met for landing are as follows

If these conditions are not met, a "Ready to Land" discrete which activates the "Ready to 'Land" hght in the cockpit is left off and the total hover commands are computed If the conditions for landing are satisfied, this discrete is turned on to indicate to the plot that the Land Mode can now be selected A further test on the Land Mode discrete input is then required to determine if the pilot wants to land If the Land Mode is not selected, the system contmues to use the total hover commands -If the Land Mode is selecled, the system computes the total commands for landing

- If the helicopter is already in the land phase when the range is less than the required value at the start of hover, the system contmues to compute the total commands for landing unless the plot disengages the Land Mode This prevents flight conditions which are temporarily outside of the acceptable values durmg the landing from causing the system to "chatter" between the land and hover commands

In all phases, the gudance laws are then used to generate velocity errors from the total commands and the current helicopter flight conditions These errors are then converted into velocity errors in the HVF which are the required system outputs
Figure III-8 Flow Diagram of Gudance Il Laws

IV SIMULATION

A GENERAL

To evaluate the performance of the Digital Flight Control and Landing System a comprehensive piloted hybrid simulation was developed The smulation contans a model of the CH-46C hehcopter, the digital flight control and gudance laws, error models for the flight data systems, and a cockpit simulator To develop this simulation, a data base was first established from data provided by NASAERC and from data obtaned and/or developed under this contract A detaled description of this data is contamed in the following section of this report

Based on this data and the simulation requirements, a hybrid simulation design was developed and mechanized on hybrid computing equipment early in the study In this design, all of the equations of motion for the helicopter were mechanzed on analog computers since they are fast moving and it appeared that they could not be smulated in real time on a digital computer The stability derivatives, which are slow moving but complicated functions of flight conditions, were mechanized on the digital computer The digital flight control and guidance laws were mechanized on the digital computer smce they were designed for mechanization on an airborne digital computer The flight data systems error models were also mechanized on the digital computer

During the study, an all digital simulation of the helicopter was also developed It was origmally mintended that this simulation would only be used to check the hybrid simulation and to make some prelıminary non-piloted evaluation studies on the digitized control laws However, in checking the hybrid simulation it was rapidly found that the reliability and repeatability of the digital simulation was so much better than that for the hybrid version that it became desirable to use the digital version for all evaluation studies To determine if this could be done in real time, the Bell Aerospace Company Simulation Analyzer Program was used to determme the largest integration intervals that could be used with several numerical integration techniques while maintaning fined bounds on roundoff, truncation, and propagated errors

From this it was found that the allowable integration intervals with a second order Adams integration method were large enough to permit the helicopter equations to be digitally solved in real time As a result of this, the hybrid mechanization of the helicopter equations in the hybrid smulation was replaced by an all digital mechanization This form of hybrid simulation was then used for all final evaluation studies A detarled description of the final mechanization of this smulation is contained in Section IV C of this report

B DATA USED IN SIMULATION

1 Bare Helicopter
。r
a. Equations of Motion

The equations of motions used to represent the bare helicopter were obtained by modifying a set of linearized 6 DOF body axis equations provided by NASA-ERC A description of the modified equations is contained in the following paragraphs

The equations are linearized about nominals for the vehicle body axis velocites, angular rates, attitudes, and control deflections at the rotor Of these, the vehicle longitudinal and vertical body axis velocities (U and W), pitch attitude (θ) and control deflections at the rotor (δ_{er}, $\delta_{\mathrm{cr}}, \delta_{\mathrm{ar}}$, and δ_{rr}) yary over large ranges where ther effects are nonlinear Since these nonlinearities would result in sizeable errors if the peiturbations in these variables became excessively large, the nominals for these varrables must be updated with changing flight conditions to prevent this To allow for this, these nommals are made varmbles in the equations of motion All other nommals are constants

Winds ate included in the equations of motion They are introduced in the ANF coordinate system and tiansformed to body axis winds through the Euler angles The body axis winds are then added to the peiturbational body axis velocities to obtain perturbational body axis airspeeds These perturbational arspeeds are used to compute all aerodyanmic and rotor forces and moments

Provisions are included for handling large Euler attitude angles in the following transformations (1) gravity to components along body axis, (2) body angular rates to Euler attitude rates, (3) body axis velocities to ANF velocities, and (4) ANF winds to body axis winds This is necessary since the pitch trim attitude has a large range and since large roll and yaw attitudes are required for correcting typical lateral errors

In the equations of motion, the following assumptions are made-
(1) All second order terms are zero except where large angles are involved. *
(2) $\mathrm{V}_{\mathrm{o}}=0 \quad \cdot \Delta \mathrm{~V}=\mathrm{V}$

$$
\mathrm{R}_{\mathrm{o}}=0 \cdot \Delta \mathrm{R}=\mathrm{R}
$$

$$
P_{0}=0 \quad \because \quad \Delta \mathrm{P}=\mathrm{P}
$$

$$
\psi_{0}=0 \quad \cdot \quad \Delta \psi=\psi
$$

$$
Q_{0}=0 \quad \cdot \quad \Delta Q=Q
$$

$$
\phi_{0}=0 \cdot \quad \cdot \quad \Delta \phi=\phi
$$

With these assumptions, the body axis equations are,

$$
\begin{aligned}
\Delta \dot{U} & =-W_{o} Q-g\left(\sin \theta-\sin \theta_{0}\right)+X_{A} / m \\
\dot{V} & =W_{o} P-U_{o} R+g \sin \phi \cos \theta+Y_{A} / m \\
\Delta \dot{W} & =U_{o} Q+g\left(\cos \phi \cos \theta-\cos \theta_{0}\right)+Z_{A} / m \\
\dot{P} & =\left(-J_{X Z} \dot{R}+\Delta L_{A}\right) / I_{X X} \\
\dot{Q} & =\Delta M_{A} / I_{Y Y} \\
\dot{R} & =\left(-J_{X Z} \dot{P}+\Delta N_{A}\right) / I_{Z Z}
\end{aligned}
$$

The aerodynamic and rotor forces and moments are,

$$
\begin{aligned}
& \Delta X_{A}=X_{U} \Delta U_{A}^{\prime}+X_{W} \Delta W_{A}+X_{Q} Q+X_{\delta} \quad \Delta \delta_{e r}+X_{\delta}{ }_{c} \Delta \delta_{c r}^{\prime} \\
& \Delta Y_{A}=Y_{V} V_{A}+Y_{P} P+Y_{R} R+Y_{\delta} \quad \Delta \delta_{a r}+\dot{Y}_{\delta} \quad \Delta \delta_{r}{ }_{r r} \\
& \therefore \Delta Z_{A}=Z_{U} \Delta U_{A}+Z_{W} \Delta W_{A}+Z_{Q} Q^{Q}+Z_{\delta_{e}} \Delta \delta_{e r}+Z_{\delta_{c}} \Delta \delta_{\mathrm{cr}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta L_{A}=L_{V} V_{A}+L_{P} P+L_{R} R+L_{\delta_{a}} \Delta \delta_{a i}+L_{\delta_{r}} \Delta \delta_{r i r}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta N_{A}=N_{V} V_{A}+N_{P} P+N_{R} R+N_{\delta} \quad \Delta \delta_{a r}+N_{\delta_{r}} \quad \Delta \delta_{r r}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \Delta U_{A}=\Delta U-U_{W} \\
& \Delta V_{A}=V-V_{W} \\
& \Delta W_{A}=\Delta W-W_{W}
\end{aligned}
$$

The Euler angle rates equations are,

$$
\begin{aligned}
\dot{\psi} & =\frac{1}{\cos \theta} \quad(\mathrm{R} \cos \phi+\mathrm{Q} \sin \phi) \\
\Delta \dot{\theta} & =\mathrm{Q} \cos \phi-\mathrm{R} \sin \dot{\phi} \\
\dot{\dot{\phi}} & =\mathrm{P}+\dot{\psi} \sin \theta
\end{aligned}
$$

These Euler angles are used in two transformations The ANF axis winds to body axis winds transformation is,

$$
\left[\begin{array}{l}
\mathrm{U}_{\mathrm{W}} \\
\mathrm{~V}_{\mathrm{W}} \\
\mathrm{~W}_{\mathrm{W}}
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{C} \theta \mathrm{C} \psi & \mathrm{C} \theta \mathrm{~S} \psi & -\mathrm{S} \theta \\
\mathrm{C} \psi \mathrm{~S} \theta \mathrm{~S} \phi-\mathrm{S} \psi \mathrm{C} \phi & \mathrm{~S} \psi \mathrm{~S} \theta \mathrm{~S} \phi+\mathrm{C} \psi \mathrm{C} \phi & \mathrm{C} \theta \mathrm{~S} \phi \\
\mathrm{C} \psi \mathrm{~S} \theta \mathrm{C} \phi+\mathrm{S} \psi \mathrm{~S} \phi & \mathrm{~S} \psi \mathrm{~S} \theta \mathrm{C} \phi-\mathrm{C} \psi \mathrm{~S} \phi & \cdot & \mathrm{C} \theta \mathrm{C} \dot{\phi}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathrm{X}}_{\mathrm{W}} \\
\dot{\mathrm{Y}}_{\mathrm{W}} \\
\dot{\mathrm{Z}}_{\mathrm{W}}
\end{array}\right]
$$

The body axis velocities to ANF velocities transformation is,

$$
\left[\begin{array}{c}
\dot{\mathrm{X}} \\
\dot{\mathrm{Y}} \\
\dot{\mathrm{Z}}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{C} \psi \mathrm{C} \theta & \mathrm{C} \psi \mathrm{~S} \theta \mathrm{~S} \phi-\mathrm{S} \psi \mathrm{C} \phi & \mathrm{C} \psi \mathrm{~S} \theta \mathrm{C} \phi+\mathrm{S} \psi \mathrm{~S} \phi \\
\mathrm{~S} \psi \mathrm{C} \theta & \mathrm{~S} \psi \mathrm{~S} \theta \mathrm{~S} \phi+\mathrm{C} \psi \mathrm{C} \phi & \mathrm{~S} \psi \mathrm{~S} \theta \mathrm{C} \phi-\mathrm{C} \psi \mathrm{~S} \phi \\
-\mathrm{S} \theta & \mathrm{C} \theta \mathrm{~S} \phi & \mathrm{C} \theta \mathrm{C} \phi
\end{array}\right]\left[\begin{array}{l}
\mathrm{U} \\
\mathrm{~V} \\
\mathrm{~W}
\end{array}\right]
$$

In the above equations, the perturbations for those flight variables whose nominals change with flight conditions are defined as follows

$$
\begin{aligned}
\mathrm{U} & =\int \Delta \dot{\mathrm{U}} \mathrm{dt}+\mathrm{U}_{\mathrm{I}} \\
\dot{W} & =\int \Delta \dot{\mathrm{W}} \mathrm{dt}+\mathrm{W}_{\mathrm{I}} \\
\theta & =\int \Delta \dot{\theta} \mathrm{dt}+\theta_{\mathrm{I}} \\
\Delta \mathrm{U} & =\mathrm{U}-\mathrm{U}_{\mathrm{o}} \\
\Delta \mathrm{~W} & =\mathrm{W}-\mathrm{W}_{\mathrm{O}} \\
\Delta \theta & =\theta-\theta_{\mathrm{O}}
\end{aligned}
$$

The control perturbations are defined as,

$$
\begin{aligned}
\Delta \delta_{\mathrm{er}} & =\delta_{\mathrm{eI}}-\delta_{\mathrm{ero}} \\
\Delta \delta_{\mathrm{cr}} & =\delta_{\mathrm{cr}}-\delta_{\mathrm{cro}} \\
\Delta \delta_{\mathrm{ar}} & =\delta_{\mathrm{ar}}-\delta_{\mathrm{aro}} \\
\Delta \delta_{\mathrm{rr}} & =\delta_{\mathrm{rr}}-\delta_{\mathrm{rro}}
\end{aligned}
$$

The nommal values for the vehicle pitch attitude and the control trim positions are determined as functions of the flight conditions from the tables of stability derivatives and nominals.

$$
\left|\begin{array}{l}
\theta_{0} \\
\delta_{\text {ero }} \\
\delta_{\text {cro }} \\
\delta_{\text {aro }} \\
\delta_{\text {rro }}
\end{array}\right|=f\left(\mathrm{~V}_{\mathrm{H} / \mathrm{A}}, \dot{\mathrm{~h}}_{\mathrm{eq}}, \mathrm{~h}, \mathrm{cg}, \mathrm{~m}\right)
$$

.. The nominal values for the vehicle longitudinal and vertical body axis velocities are then defined as,

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{o}}=\mathrm{V}_{\mathrm{H} / \mathrm{A}} \cos \theta_{\mathrm{o}}-\dot{\mathrm{h}}_{\mathrm{eq}} \sin \theta_{\mathrm{o}} \\
& \mathrm{w}_{\mathrm{o}}=\mathrm{V}_{\mathrm{H} / \mathrm{A}} \sin \theta_{\mathrm{o}}+\dot{\mathrm{h}}_{\mathrm{eq}} \cos \theta_{\mathrm{o}}
\end{aligned}
$$

b Stability Derıvatıves
The linearized stability derivatives for the $\mathrm{CH}-46 \mathrm{C}$ helicopter were partly provided by NASA-ERC and partly obtaned from Boeing Vertot under this contract These are presented in Tables IV-1 through IV-14 The flight conditions for and the source of the data in each table are as follows

WEIGHT
13400 L.8.
C.G. POSITION

RATE OF EESCENT
altitude
*Extrapolated Data

WEIGHT	13400 LB.
C.G. POSITION	NORNAL
RATE OF DESCENT	1500 FPM
ALTITUDE	-0 FT

*Extrapolated Data

VELOCITY		0	20	-	40	60	80	80*	100*	120*	140\%
XU / M		0.01143	0.02237		-0.01281	-0.03179	-0.04306	-0.04600	-0.05400	-0.06100	-0.07300
XH / M		0.04368	0.05111		0.10637	0.10919	0.10653	0.12600	0.11500	0.10900	C. 68100
XO/N		1.02536	0.93903		L. 55534	1.45965	1.37043	2.12500	1.89700	1.60800	0.78100
XDE/M	-	0.16625	0.12347		0.08223	0.12593	0.14599	-0.09250	-0.07000	-0.06100	-0.04200
XDC/M	,	1.13928	0.94352		C. 82126	0.88028	0.82702	1. 16550	1.08800	0.91800	0.62900
ZU/M		-0.13435	-0.2364C		-0.12619	-0.02151	0.01777	C. 03650	0.06100	0.07000	0.06500
ZW/M		-0.28748	-0.26321		-0.82254	-0.90575	-0.98052	-0.93400	-0.97200	-1.07500	-1.12100
ZQ/M		-0.79039	0.30060		-2.45731	-2.40596	-2.42975	-3.25950	-2.67400	-2.50400	-2.44600
2OE/M		0.00615	0.19996		0.94841	0.77315	0.71536	0.79550	0.5850 C	0.50300	0.42000
ZDC/M		-7.45257	-7.38250		-6.35173	$-8.009 \mathrm{C4}$	-9.05358	-8.78200	-10.14700	-11.11500	-11.87700
MU/IYY		0.01308	0.01863		-0.00906	-0.00696	-0.00635	-0.00150	-0.00200	-0.00300	-C.00100
MH/IYY		0.00368	0.03420		0.00228	0.00469	0.00683	0.60600	0.01000	0.00900	0.00900
MQ/IYY		-0.58241	-0.81810		-1.48310	-1.56553	-1.62304	-1.75200	-1.72500	-1.71600	-1.63000
MDE/IYY		0.34363	0.30612		0.43861	0.47166	0.50338	0.52550	0.5380 C	0.55700	0.56800
MDC/IYY		-0.05591	-0.16472		0.15368	0.11620	0.10884	0.11650	0.07500	0.65600	0.64600
theta 0		8.98810	8.13867		6.99471	5.34340	3.21352	5.11780	2.35420	-1.06300	-5.78600
deltae 0		0.03060	-1.69234		-0.56816	0.11550	0.60565	-0.76200	-0.28500	-0.05000	0.11600
DELTAC 0		3.89872	$3.25 C 38$		1.25071	0.90347	1.15981	1.24850	1.94800	3.18800	5.42200
YV/A		-0.08635	-0.04068		-0.11126	-0.15170	-0. 18262	-0.18950	-0.21700	-0. 23900	-0.22900
YP/M		-1.10440	-1.30270		-1. 78540	-1.86236	- 1073270	-1.64750	-1.51600	-2.30400	-1.23200
YR/K		-0.18435	-0.10798		-0.30137	-0.22815	-0.19244	0.19300	0.14800	-0.00900	0.38300
YDA/H		0.98054	0. 97047		0.92561	- 0.09687	0.87675	0.85300	0.84800	0.85900	0.98700
YOR/M		0.14250	0.11217		C.09751	0.07301	0.07008	0.07400	0.07900	0.09100	0.69700
LV/IX:		-0.00996	-0.00799		-0.00448	-0.00371	-0.00284	0. 20450	-0.00200	-0.01600	-0.05000
LP/IXX		-0.63036	-0.71659		-C. 86876	-0.87455	-0.79734	-0.78450	-0.70200	-0.58400	- -0.54600
LR/18X		-0.05234	-0.02797		-0.10977	-0.07677	-0.05688	0.66650	0.06600	0.03100	0.24500
LDA/IXX		0.45903	0.45705		0.44170	0.43230	0.42630	0.41550	0.41700	0.42000	0.46600
LDR/IXX		-0.12454	-0.13516		-0.13185	-0. 0.13554	-0. 13256	-0.12700	-0.12400	-0.12000	-0.14300
NV/izz		0.00122	-0.00016		-0.00236	-0.00456	-0.00706	-0.00700	-0.00900	-0.01000	-0. 00700
NP/IZZ		-0.02085	-0.01101		-0.02424	-0.04001	-0.05921	-0.04500	-0.06800	-0.09400	-0. 10600
NR/IZZ		-0.04986	-0.02575		-0.03287	-0.03310	-0.03704	0.02200	-0.00400	-0.05200	-0. 111000
NDA/IzZ		0.02925	0.02744		0.02580	0.02385	0.02313	$0 . C 2100$	0.02200	0.02300	C. C2600
NDR/IZZ		0.17285	0.17149		0.16373	0.15966	0.15540	0.15050	0.15000	0.15200	0.17400
DELTAA 0		0.09255	0.04445		0.01404	0.05177	0.09882	0.10550	0.18300	0.26000	0.63400
DELTAR O		-0.07915	0.32928		0.06118	-0.19696	-0.43185	-0. 10900	-0.49200	-0.94300	-1.61300

HEIGHT 13400 LB.
C.G. POSITION NORMALRATE OF CESCENT

VELOCITY		- 0	20	40	60	80	80\%	100	120	140
XU/M		-0.02000	0.01200	-0.01200	-0.03300	-0.04300	-0.04650	-0.05500	-0.06200	-0.07200
KH/M		0.04300	0.05700	0.09400	- 0.099 CO	0.09000	0.12150	0.11200	0.10200	0.07400
XQ/M		0.85400	0.94300	1.37200	1.3100c	1.16500	1.89700	1.65700	1. 32200	C.66700
XDE/H		0.17400	0.12700	0.08200	0.12600	0.15500	-0.08900	-0.06700	-0.05200	-0.03200
XDC/ $/$		- 1.21400	0.94500	0.79500	0.82100	0.78000	1.12650	1.01600	0.83600	0.57200
ZU/M	,	0.0430 C	-0. 19700	-0.16200	-0.03600	0.00600	0.03650	0.06100	0.66800	0.06100
ZH/M		-0.29000	-0.35400	-0.72300	-0.848c0	-0.89800	-0.91450	-0.98400	-1.07300	-1.10400
ZQ/M		-0.48300	-0.42300	-3.39800	-2.73100	-2.18200	-2.77750	-2.48400	-2.44600	-2.39500
LDE/M		-0.00800	0.22600	1.02000	0.83300	0.63100	0.68750	0.54700	0.45800	0.39600
ZOC/M		-7.53000	-7.19800	-6. 36000	-7.8880C	-9.28600	-9.C5100	-10.19600	-11.08800	-11.84300
MU/IYY		0.01000	0.01300	-0.01200	-0.00800	-0. 00700	-0.00250	-0.00200	-0.00200	-0.c0100
MW/IYY		-0.00200	0.02400	0.01100	0.01000	0.01300	0.00900	0.01000	0.00900	C. 00800
MQ/IYY		-0.60600	-0.89000	-1.51800	-1.58100	-1.58600	-1.69100	-1.68600	-1.67100	-1.60200
MDE/IYY		0.34800	0.32700	0.44400	0.47600	0.49400	0.51300	0.53100	C. 54900	0.56000
MDC/IYY		-0.04800	-0.09800	0.15300	0.12600	0.09100	0.69100	0.06600	0.05100	0.04400
THEYA O		9.27300	8.11000	6.83400	5.10800	2.88700	4.92440	2.03860	-1.51200	-6.11700
DELTAE O		0.69500	-0.98600	-0.88100	-0.02700	0.62100	-C.61750	-0.19400	0.00500	0.19800
DELTAC O		4.31600	3.52300	2.28800	1. 07500	2.00700	2.10500	2.86400	4.17000	6.79400
YV/M		0.13200	-0.04700	-0.08800	-0.13000	-0.16500	-0.17750	-0.20400	-0.22200	-0.22900
YP/N		-0.99900	-1.22400	-1.51400	-1.62800	-1.58600	-1.47050	-1.35200	-1.15700	-0.62900
YR/H		-0.14500	-0. 10100	-0.27100	-0.22200	-0.15100	C. 00600	0.04100	0.04000	0.23400
YDA/M		0.99400	0.95800	0.94200	0.92000	0.90600	0.88300	-0.88900	0.91500	1.02000
YDR/M		0.14900	0.12000	0.10100	0.08200	0.07800	0.69500	0.09600	0.10200	0.12100
LV/IXX		-0.00900	-0.01000	-0.00600	-0.00500	-0.00700	-0.00100	-0.01100	-C.02900	-0.c5600
LP/IKX		-0.58800	-0.68100	-0.77000	-0.79300	-0.75100	-0.71450	-0.64100	-0.53600	-0.40000
LR/IXX		-0.04000	-0.02300	-C.09500	-0.07200	-0.03700	0.00500	0.03500	0.05000	C. 17700
LDA/IXX	\cdots	0.46300	0.44200	0.44800	0.44100	0.43600	0.42800	0.43000	0.43900	0.47600
LDR/IXX		-0.12400	-0.13300	-0.13400	-0. 13600	-0.13500	-0.12450	-0.12500	-0.12700	-0.14000
NV/ILI		0.0	0.0	-0.00300	-0.00500	-0.00700	-0.00700	-0.00800	-0.00800	-0.00500
MP/IZZ		-0.02300	-0.01500	-0.02400	$-0.037 \mathrm{CC}$	-0.05500	-C.C5000	-0.06900	-0.08900	-0. 10100
NR/ILZ		-0.04800	-0.03000	-0.03600	-0.03700	-0.04100	-0.00850	-0.02800	-0.06300	-0. 10000
NOA/ILZ		0.03000	0.03000	0.02600	0.02400	0.02400	0.02350	0.02400	0.02500	0.02800
NDR/12Z		0.17400	0.17200	0.16700	0.16300	0.16100	0.15550	0.15700	0.16200	0.18000
deltan o		0.10200	C. 03000	0.03500	0.07500	0.12500	0.11100	0.20500	0.33900	0.58400
DELTAR O		-0.16000	0.16000	0.10700	-0.17700	-0.47600	-0.22050	-0.5840C	-1.01200	-1.43800

WEIGHT	13400 LB.
C.G. POSITION	NORMAL
RATE OF CESCENT	500 FPM
ALTITUOE	0 FT.
*Extrapolated Data	

VELOCITY	0	- 20	40	60	80	80*	100	120	140
XU/M	-0.02200	0.00400	-0.01700	-0.03400	-0.04500	-0.04700	-0.05600	-0.06300	-0.07100
XH/M	0.04800	0.06200	0.08200	0.08900	0.08700	0.11 .700	0.10900	0.09500	0.06700
XQ/M	0.73400	0.87900	1.07000	1.06700	0.94400	1.66900	1.41700	1.03600	0.553 CO
XDE/M	0.1760 C	0.13300	0.11700	0.13900	0.16100	-0.c8550	-0.06400	-0.04300	-0.02200
XDC/M	1.20300	0.96900	0.86600	0.82800	0.73100	1.C8750	0.94400	0.75400	0.51500
ZU/M	0.05000	-0. 16200	-0.11900	-0.03500	0.00900	0.03650	0.06100	0.06600	C. 65700
2K/M	-0.32700	-0.43200	-0.60800	-0.782CO	-0.90900.	-0,89500	-0.9960C	-i.07100	-1.C8700
ZQ/M	-0.60100	-0.93000	-1.87300	-2.030 CC	-1.93300	-2.29550	-2.29400	-2.38800	-2.34400
ZDE/A	-0.01200	0.22200	0.60500	0.63900	0.57400	0.57950	0.50900	0.43300	0.37200
ZOC/N	-7.45300	-7.153c0	-7.35900	$-8.366 \mathrm{CC}$	-9.40000	-9.32000	-10.24500	-11.06100	-11.80900
MU/IYY	0.00800	0.00900	-0.00800	-0.00800	-0.00600	-0.00350	-0.00200	-0.00100	-0.00100
NH/IYY	-0.00300	0.01500	0.02000	0.01500	0.01200	0.01200	0.01000	0.00900	0.00700
MQ/IYY	-0.67000	-0.92600	-1.34400	-1.50000	-1. 55500	-1.63000	-1.64700	-1.62600	-1.57400
MDE/IYY	0.35000	0.34200	0.40600	0.45700	0.48700	0.50050	0.5240 C	0.54100	0.55300
MDC/IYY	-0.04700	-0.06200	0.06400	0.08500	0.07900	0.06550	0.05700	0.04600	0.04200
THETA 0	9.33500	8.18800	6.71900	4.93400	2.60200	4.73100	1.72300	-1.96100	-6.44800
deltae 0	0.73000	-0.41900	-0.57600	0.10800	0.68500	-0.47300	-0.10300	0.06000	0.28000
deltac o	4.63300	3.96000	3.02200	2.70000	2.96500	2.96150	3.78000	5.15200	7.16600
YV/M	0.18900	-0.04900	-0.082C0	-0.12000	-0.15700	-0.16550	-0.19100	-0.20500	-0.22900
YP/A	-0.91200	-1.08100	-1.33300	-1.4400c	-1.40700	-1.29350	-1.18800	-1.01000	-0.42600
YR/H	-0.11700	-0.06130	-0.22300	-0.18000	-0.10500	-0.18100	-0.06600	$0 . C 8900$	0.08500
YDA/M	0.99400	0.98600	0.95400	0.04200	6.93500	0.91300	0.93000	0.97100	1. 05300
YDR/M	0.1590 C	0.13200	0.10400	0.09000	0.08400	0.11600	0.11300	0.11300	0.14500
LV/IXX	-0.00800	-0.01100	-0.01000	-0.01000	-0.01500	-0.00650	-0.02000	-0.04200	-0.05400
L.P/IXX	-0. 5580 C	-0.61900	-C. 70300	-0.72400	-0.68700	-0.64450	-0.5800C	-0.48800	-0.25400
LR/IXX	-0.02500	-0.00300	-C.07000	-0.05000	-0.01400	-0.05650	0.0040 C	0.08900	0.10900
LDA/IXX	0.4630 C	0.46200	0.45400	0.44800	0.44600	0.43650	0.4430 C	0.45800	0.46600
LDR/IKX	-0.12100	-0.13100	-0.13600	-0.13800	-0.13800	-0.12200	-0.12600	-0.13400	-0.13700
NV/IZZ	0.0	0.0	-0.00200	-0.00400	-0.00500	-0.00700	-0.00700	-0.00600	-C. 00300
NP/IZZ	-0.02500	-0.02100	-0.02500	-0.03800	-0.05400	-0.05500	-0.07000	-0,08400	-C. 69600
NR/I ZZ	-0.05200	-0.03300	-0.04200	-0.04200	-0.04600	-0.03900	-0.05200	-0.07400	-0.09000
NDA/IZL	0.03000	0.02900	0.02700	- $0.0 .8260 C$	0.02500	0.62600	0.02600	0.02700	C. 03000
NDR/IZZ	0.17500	0.17400	0.17000	0.16700	0.16600	0.16050	0.16400	0.17200	0.18600
DELTAA 0	0.12000	0.06500	0.05600	0.091 CO	0.12100	0.11650	0.22700	0.41800	0.53400
DELYAR 0	-0.18800	0.04000	0.00600	-0.25400	-0.53760	-0.33200	-0.67600	-1.08100	-1.26300

WEIGHT	, 13400 LB.
C.G. POSITION	NORMAL
RATE OF CESCEAT	-500 FPM
ALTITUDE	0 FT.

VELOCITY	0	20	40	60	80	80*	100	120	140
XU/M	-0.02800	-0.00800	-0.02700	-0.03900	-0.04900	-0.05050	. -0.05900	-0.06600	1-0.07400
XW / M	0.06200	0.07300	0.08000	0.08400	0.07800	0.10450	0.09400	0.07900	0.05200
XQ/F	- 0.46600	0.59300	0.66900	0.65200	0.48800	1.29750	0.98400	0.52100	-C. 11700
KDE/M	0.18000	0.14700	0.12900	0.14800	0.16900	-0.06500	-0.04700	-0,03200	-0.00700
XDC/M	1. 20800	0.99200	0.89700	0.79300	0.65400	0.99900	0.85100	0.69400	0.46700
ZU/M	0.06800	-0.09200	-0.05700	-0.00700	0.02100	0.05000	0.06400	0.06400	0.04700
ZW/M	-0.41500	-0.53000	-0.67400	-0.80500	-0.91100	-0.89800	-0.98100	-1.04100	-1.11000
2Q/M	-0.74200	-1.23600	-1.51200	-1.64200	-1.62200	-2. 13200	-2.14800	-2. 20000	-2.35500
ZOE/M	0.0	0.20000	0.45300	0.504 CC	0.48200	0.47150	0.43700	0.39000	0.33400
ZDC/M	-7.44800	-7.34900	-7.86500	-8.74100	-9.63200	-9.51050	-10.33400	-11.09000	-11.63600
MU/ IYY	0.00500	0.00400	-0.00400	-0.0060C	-0.00500	-0. $\operatorname{Col} 50$	-0. 00100	-0.00100	0.0
MH/IYY	-0.00200	0.00700	0.01200	0.01100	0.01000	0.00900	0.00300	0.00700	0.00600
MQ/IYY	-0.79500	-0.98900	-1.27900	-1.42700	-1.48700	-1.56150	-1.58000	-1.55700	-1.49300
MOE/IYY	0.3600 C	0.36400	0.39900	0.44500	0.47600	0.48400	0.5090 C	0.52800	0.53900
MDC/IYY	-0.04800	-0.03400	0.03400	0.05600	0.05900	0.03950	0.03900	0.03500	0.03500
Theta 0	9.34300	8.19300	6.54000	4.53500	2.02700	4.14900	1.09500	-2.50500	-6.64400
deltae o	0.68600	0.15400	0.04500	0.44200	0.83500	-0.24100	0.04100	0.21200	C. 37100
DELTAC 0	5.47900	5.03100	4.46200	4.34300	4.71700	4.74650	5.5900 C	6.90300	8.79600
YV/M	-0.30700	-0.06100	-0.08500	-0.1160C	-0.14800	-0.14550	-0.17500	-0.20200	-C. 23700
YP/M	-0.69300	-0.81200	-C. 98800	-1.065C0	-1.04200	-0.97500	-0.83300	-0. 57200	-0.63400
YR/M	0.03000	-0. 13500	-0.16400	-0.11200	0.11100	-0. 0.12700	0.03000	0.12100	0.22700
YDA/M	1.01200	1. 00700	0.99700	0.991 CO	C. 99900	0.98950	1.01400	1.05500	1.15400
YDR/H	0.15700	0.13800	0.12700	0.116 CC	0.10000	0.13700	0.13600	0.15000	C. 16300
LV/IXX	-0.00600	-0.61500	-0.02600	-0.02100	-0.03000	-0.03050	- -0.03800	-0.04400	-0.00500
LP/IXX	-0.48000	-0.52300	-0.58000	-0.59300	-0.56400	-0.52800	-0.46100	-0.35600	-0.15200
LR/IXX	0.04600	-0.02200	-0.03400	-0.0100C	0.09100	-0.01750	0.0650 C	0.12900	C. 21000
LDA/IXX	0.47000	0.47000	0.46700	0.48500	0.46900	0.46350	0.47300	0.48800	C. 52500
LDR / IXX	-0.12500	-0.13100	-0.13400	-0.13700	-0. 14400	-0.12850	-0.13300	-0. 13500	-0.15000
NY/12Z	0.0	0.0	0.0	-0.00100	-0.00200	-0.00300	-0.00300	-0.00200	-0.00100
NP/IZ2	-0.02400	-0.02100	-C.C2500	-0.03500	-0.04700	-0.05500	-0.06300	-0.06700	-C.C6800
NR/İI	-0.04900	-0.05900	-0.05600	-0.05700	-0.05100	-0.06550	-0.07500	-0. 10000	-0.13300
NDA/122	0.03000	0.02900	0.02800	0.02800	0.02700	0.02950	0.02900	0.02900	0.63000
NDR/IZZ	0.17800	0.17800	0.17600	0.17500	0.17700	0.17450	0.17900	0.18600	0.20400
DELTAA 0	0.14000	0.10400	0.10800	0.14600	0.21000	0.25750	0.33000	0.41100	0.47900
OELTAR O	-0.20600	-0.11200	-0.14200	-0.35100	-0.64500	-0.52600	-0.7710C	-0.96700	-1.cs900

HELGHT
G.G. POSITION

ALTITUDE
*Extrapolated Data

13400 LB

ACPMAL

$-15 \% 5$ =\%
0 FT .

VELOCITY	0	20	40		60	80		80*	100*	120*	140*
XU/M	-0.02649	-0.01935	- -0.03260		-0.04491	-0.05277	,	-C.05907	-0.06542	-0.06888	-C.C7788
XH/M	0.07505	0.08122	0.08209		0.07521	0.06568		0.08448	0.07514	0.06654	C. 04268
XQ/M	0.15633	0.20875	0.26690		0.17058	0.09717		0.81857	0.46456	0.61098	-C.85466
XDE/M	0.17842	0.16228	0.14484		0.16227	0.18105		-0.05612	-0.03770	-0.02048	0.01808
XDC/M	1. 16992	1.04008	0.90570		0.78861	0.62563	,	0.95222	0.78900	0.64120	0.43418
ZUIM	0.04316	-0.02959	-0.00971		0.00737	0.02520		0.06903	0.07046	0.06108	0.04140
LH/M	-0.52217	-0.60121	-0.72925		-0.85332	-0.94171.		-0.85666	-0.94174	-1.03196	-1.11968
2Q/M	- 1.07268	-1.20010	-1.25010		-1.38662	-1.47426		-2.00024	-2.00322	-2.08090	-2.10630
LDE/V	0.05444	0.16010	0.36218		0.41296	0.41472		0.39614	0.38418	0.34040	0.26714
LDC/M	-7.53650	-7.64C41	-8.24770		-8.95410	-9.70900		-9.78649	$-10.4700 \mathrm{C}$	-11.C9520	-11.48580
MU/IYY	0.00251	0.00163	0.00321		-0.00458	-0.00467		0,00073	0.00070	-0.00060	0, 00178
M / I Y	-0.00148	0.00327	0.00726		- 0.00765	0.00730		0.00397	0.00488	0.00552	0.00418
MQ/IYY	-0.93433	-1.03020	-1.24040		-2.37428	-1.42430		-1.47731	-1.49994	-1.48966	-1.44760
MDE/IYY	0.37472	0.37930	0.40095		0.43815	0.46558		0.46932	0.49556	0.51730	0.52570
MDC/IYY	-0.04570	-0.03118	0.01909		0.03637	0.04212		0.01626	0.02286	0.02604	0.03490
THETA 0	9.09615	9. 24561	6.51804		4.3468 C	1.74707		3.44935	0.41726	-2.98158	-6.66580
DELTAE 0	0.56611	0.45249	0.38166		0.63183	1.02115		0.11378	0.24538	0.30816	0.42704
DELTAC 0	6.51301	6.30131	5.94168		5.94845	6.38886		6.59408	7.41446	8.60934	10.34750
YV/M	-0.02060	-0.08482	-0.10455		-0.12256	-0.14842		-0.12594	-0.16420	-0.21068	-0.24216
YP/M	-0.40249	-0.48197	-0.63817		-0.68143	-0.63180		-0.60751	-0.45310	-0.18362	0.48544
YR/M	-0.04204	0.04052	-0.06921	,	-0.04096	0.01514		-0.58732	-0.17760	0.11272	0.23850
YDA/M	1. 03950	1.04228	1.04066	*	1.04266	1.06287		1.07623	1.09954	1.13274	1.25750
YDR/M	0.14982	0.14802	0.12894		0.11875	0.12938		0.19326	0.17518	0.17234	0.18376
LV/IXX	-0.02127	-0.01846	-0.01978		-0.02294	-0.02866		-0.05032	-0.05024	-0.03752	0.68660
LP/IXX	-0.37496	-0.40345	-0.45470		-0.46318	-0.42905		-0.40c83	-0.33814	-0.24532	0.01352
LR/IXX	0.02907	0.06798	0.02113		0.03740	0.07088		-0.18742	0.00438	0.15382	0.23090
LDA/IXX	0.48113	0.48228	0.48271		0.48417	0.49124		0.49174	0.5026C	0.51692	0.56444
LDR/IXX	-0.13312	-0.13406	-0.14131		-0. 14556	-0.14455		-0.12396	-0.13388	- 0.14004	-0.16134
NV/IZZ	0.00108	0.00098	0.00044		0.00052	0.00041		0.00206	0.00172	0.00154	-0.00180
NP/IZZ	-0.02133	-0.02122	-0.02478		-0.02754	-0.03693		-0.05102	-0.05172	-0.04506	-0.05458
NR/IZZ	-0.07653	-0.06348	-0.07218		-0.07450	-0.c8262		-0.11476	-0.12344	-0.16716	-0.14666
NDA/IZ2	0.03076	0.03053	0.02924		0.02856	0.02918		0.03589	0.03308	0.02986	C. 03060
NOR/ILZ	0.18338	0.18355	C. 18366		0.18425	0.18730		0.18954	0.19408	0.19934	0.22128
DELTAA 0	0.16567	0.15081	0.14181		0.15535	0.20065		0.36607	0.39492	0.34992	0.44130
DELTAR O	-0.23383	-0.21772	-0.28008		-0.42585	-0.61869		-0.63910	-0.80506	-C.80674	-1.01154

C. G. POSITION

RATE OF DESCENT
NGRMAL
0 FPM
ALTITUOE
2000 FT.
*Extrapolated Data

VELOCITY	. 0	20	40	60	BO	80\%	100	120	140
XU/M	-0.02600	-0.00300	-0.02100	-0.03400	-0.04400	-0.04400	-0.0530c	-0.06100	-0. 06700
XH/M	0.05100	0.06300	0.07500	0.08000	0.07600	0.10300	0.09300	0.07700	C. 65400
XQ/M	0.69800	0.85400	. 0.96900	0.972 CC	0.84900	1. 71700	1.39300	0.86800	0.19400
XDE/A	0.16700	0.13400	0.11800	$0.1360 C$	0.15800	-0.06350	-0.04400	-0.02700	$0 . C 1700$
XDC/M	1.13900	0.91100	0.80300	0.71500	0.59200	C. 91400	0.77800	0.62900	0.41900
ZU/A	0.05700	-0. 12100	-0.68300	-0.0270C	0.00800	0.63100	0.05100	0.65600	C. 64200
ZW/M	-0.34900	-0.45500	-0.59100	-0.7450C	-0.85800	-0.85500	-0.93200	-0.97300	-1.02200
ZQ/M	-0.5750C	-1.00900	-1.41500	-1.63000	-1.64800	-2. 23550	-2.18900	-2.27800	-2.34200
ZDE/M	-0.00700	0.18500	0.46700	0.51900	0.48300	0.48250	0.43800	0.38500	0.29000
ZDC/M	-7. C 1900	-6.83700	-7.21000	-7.98100	-8.85c00	-8.76100	-9.56700	-10.31000	-1C.90200
MU/ IYY	0.00600	0.00600	-0.00500	-0.00600	-0.00500	-0.00300	-0.00200	-0.00100	0.1
MK/IYY	-0.0030C	0.60900	0.01500	0.0130 C	0.01000	0.01100	0.00900	0.00800	C.cc700
MQ/IYY	-0.69700	-0.90400	-1.22200	-1.36800	-1.42700	-1.49300	-1.51100	-1.48800	-1.43800
MDE/IYY	0.3340 C	0.33200	0.37300	0.41900	0.44700	0.45800	0.48000	0.49600	0.50200
MDC/IYY	-0.04500	-0.04100	0.03900	0.06200	0.06400	0.04750	0.0460 C	0.04100	0.03700
theta 0	$\therefore \quad 9.30600$	8.16800	6.60700	4.77300	, 2.43800	4.59700	1.66800	-1.85500	-6.63300
dettae 0	0.70400	-0.63300	-0.25900	0.24400	0.69400	-0.29900	-0.08200	-0.09800	0.31300
DELTAC 0	5.31900	4.78800	4.03600	3.7710 C	4.65600	4.04600	4.83500	6.12800	7.98800
YV/M	-0.26600	-0.05300	-C.07700	-0.111CC	-0.14200	-0.14650	-0.17000	-0.18600	-0.21900
YP/M	-0.85600	-1.C5100	-1.25700	-1.34600	-1.34000	-1.25850	-1.13600	-0.89700	-0.45000
YR/A	-0.16200	-0.02700	-0.19400	-0.15200	-0.07400	-0. 13800	-0.03800	0.08400	0.67400
YDA/M	0.99900	1.00000	0.97900	0.96600	C. 96760	0.95150	0.97100	1.00900	1.09100
YDR/M	0.14800	0.13400	0.11500	0.10000	0.10500	0.11000	0.11500	0.12000	0.15700
LV/IXX	-0.00800	-0.01300	-0.01400	. -0.01700	-0.02400	-0.01950	-0.03000	-0.04400	-0.c4800
LP/IXX	-0.55800	-0.62700	-0.69300	-0.706CC	-0.69000	-0.64100	-0.5800 C	-0.47400	0.32800
LR/IKX	-0.04200	0.01700	-0.05300	-0.0340C	0.00500	-0.09900	-0.02000	0.09900	0.12200
LDA/IXX	0.46600	0.46600	0.46000	0.45700	0.45800	0.45050	0.45800	0.47200	0.50200
LOR/XXX	- -0.12600	-0. 13200	-0.13500	-0.13900	-0.12900	-0. 13500	-0.13300	-0.13900	-C. 13800
NV/IZ2	0.0	0.0	-0.00100	-0.00300	-0.00400	-0. 00500	-0.00500	-0.00400	0.0
NP/LZZ	-0.01900	-0.02200	-0.02700	-0.04000	-0.051c0	-0.06000	-0.07100	-0.08200	-C.06500
NR/122	-0.05800	-0.03900	-0.04900	-0.05000	-0.05400	-0.04650	-0.06100	-0.08600	-C. 11000
NOA/IZZ	0.03000	0.02900	0.02800	0.02700	0.02600	0.02700	0.02700	0.02800	$0 . C 2900$
NDR/IZZ	0.17600	0.17600	0.17300	0.17100	0.16900	0.16800	0.17100	0.17900	C. 19100
deltan 0	0.13100	0.08700	0.08600	0.1340 CC	0.17100	0.19200	0.28100	0.42200	0.47900
DELTAR C	-0.18200	-0.052c0	-0.07100	-0.318c0	-0.58000	-0.42350	-0.70200	-0.99700	-1.067c0

WEIGHT	13400 LB.
C.G. PCSITION	NORMAL.
RATE OF DESCENT	0 FPM
ALTITUDE	10000 FY.

VELOCITY	0	$\cdots 20 \times$	40	60	80	80\%	100	120		140
XU/X '		-0.0067				,				
$X U / K$		-0.00676	-0.02061	-0.C3070	. -0.03842		-0.04362			
XW/M	;	*. 0.04884	0.05402	0.05667	0.05294	-	0.06963			
XQ/M		$1.18274{ }^{\text {, }}$	1.27562	1. 32450	1.14199		1.34635			
KDE/M		$0.11734^{\prime \prime}$	0.10497	0.11848	0.14261		-0.01534			
XDC/*		0.73082	0.60937	0.49189	0.38684		- 0.55796			
ZU/M		-0.10428	-0.08311	-0.04169	-0.01031		0.02650			
24/4		-0.37109	-0.46709	, 00.57955	-0.66699		-0.72884			
ZQ/M		~0.78808	-0.96859	-1.36562	-1.54862		: -2.08103			
ZDE/M		0.11878	C. 32587	0.38735	0.36668		0.33936			
ZDC/M		-5.67725	-5.89510	-6.38311	-6.97350		-7.51348			
MU/IYY		0.06596	-0.00287	-0.00468	-0.00422		- -0.00138			
MH/IYY		0.00590	$0 . C 1208$	0.01080	0.00926		0.00793			
MQ/IYY		-0.74532	-0.98093	-1.10175	-1.13867		-1.20757			
MDE/IYY		0.273 CE	C. 29324	0.32647	0.34753		0.37460			
MDC/IYY		- -0.03340	C. 02056	0.04493	0.05195		0.03905			
THETA 0		8.00202	6.46507	4.68920	2.57070		2.26076			
deltae 0		0.05410	-0.34992	0.0602 C	0.53133		-0.18911			
DELTAC 0		5.95C60	5.14708	4.79474	4.94500		5.50703			
YV/M		-0.05154	-0.06699	-0.09351	-0.11708		-0.13950			
YP/M		- -1.33193	-1. 55740	-1.66600	-1.64439		-1.38640			
YR/M		-0.22077	-0.24355	-0. 29212	-0.10401		-0.09258			
YDA/M		1.00068	0.98003	0.97069	0.96968		0.96484			
YOR/M		0.14586	0.10337	0.08838	0.06990		0.10034			
LV/IXX		-0.01407	-0.01428	-0.01753	-0.02225		-0.02571			
LP/IXX		-0.79973	-0.87323	-0.89489	-0.86718		-0.74691			
LR/IXX		-0.05877	-0.06995	-0.04734	-0.00437		0.00036			
L.DA/IXX		0.46831	0.46156	0.45907	0.45556		0.45648			
LDR/IXX		-0.11646	-C. 14031	-0.14358	-0.15117		-0.13794			
NV/IZZ		0.00038	-0.00027	-0.002c6	-0.00295		-0.00412			
NP/ILZ		-0.02177	-0.02632	-0.03826	-0.05C89		-0.06622			
NR/122		-0.06558	-0.05846	-0.05641	-0.06007		-0.06532			
NOA/EZZ		0.02844	0.02707	0.02597	0.02512		0.02637			
NDR/IZL		0.17277	0.17349	$0.172 \mathrm{C6}$	0.17250		- 0.17075			
DELTAA 0		0.08287	0.08326	0.10213	0.16207		0.25359			
DELTAR O		-0.07643	-0.03872	-0.22665	-0.48305		-0.54755			

WEIGHT	13400 LB.
COG. PCSITION	FORE
RATE OF CESCEAT	0 FPM
ALTITUDE	0 FT.

HEIGHT,	13400 LB.
COG. POSITION	AFT
RATE OF CESCENT	0 FPM
ALTITUDE	0 FT.

VELOCITY	0	20	40	60	80	80*	100	120	140
XU/M	-0.02493	-0.00110	-0.02275	-0.03752	-0.04765	-0.0477)	-0.05681	-0.06428	-0.07333
XW/M	0.05444	0.06882	0.08376	0.09073	0.08680	0.11660	0.10490	0.08542	0.05598
XQ/*	0.47278	0.55272	0.60550	- 0.56542	0.41751	1.13276	0.86280	C. 47075	-0.01182
XDE/M	0.16867	0.14460	0.14875	0.18508	0.21903	-0.01350	0.00654	0.01268	0.00927
XDC/M	1.19776	0.96257	0.87920	0.80702	0.69438	1.03548	0.89080	0.71347	C. 47301
ZU/M	0.05728	-0. 13227	-0.08444	-0.01892	0.61727	0.04298	0.06281	0.06627	0.05181
2W/M	-0.36903	-0.48373	-0.64000	-0.80500	-0.92252	-0.92290	-1.00337	-1.04679	-1.10586
20/M	0.01643	-0.0.657	-0.16377	-0.18063	C. 07086	-0.33864	-0.20274	-0. 1.8242	-0.23794
20E/M	0.05155	0.25933	0.52725	0.54601	0.48526	0.48132	0.41256	0.33578	0.27515
ZDC/N	-7.42881	-7.16977	-7.58999	-8.48846	-9.46673	-9.35842	-10.25280	-11.06330	-11.69450
MU/IYY	0.00589	0.00715	-0.00660	-0.00731	-0.00664	-0.00360	-0.00308	-0.00270	-0.00214
MH/IYY	0.00159	0.01613	0.02374	0.02296	0.02246	0.02273	0.02199	0.02101	0.02094
MQSIYY	-0.73522	-0.96234	-1.31160	-1.47449	-1.53709	-1.61597	-1.63302	-1.60451	-1.55425
MDE/IYY	0.35489	0.35223	0.39700	0.44308	0.47375	0.48682	0.5107 C	0.52775	0.54186
MDC/IYY	0.03084	0.03478	0.14221	0.17395	0.18611	0.17165	0.18021	0.18517	C. 19008
THETA 0	8.98247	7.85991	6.30389	4.39564	1.99886	4.44258	1.39503	-2.30329	-6.65586
DELTAE O	-0.36082	-1.09382	-1.11713	-0.54350	-0.00194	-1.09732	-0.73354	-0.54753	-0.33376
DELTAC 0	5.02277	4.44246	3.71503	3.53057	3.86946	3.79599	4.65598	6.03707	8.C1568
YV/M	-0.02666	-0.05394	-0.08087	-0.11800	-0.15031	-0.15491	-0.17946	-0.19624	-0.23226
YP/*	-0.76750	-0.95746	-1.17144	-1.24159	-1. 18989	-1.17602	-1.00044	-0.70098	-0.11992
YR/A	-0. 17598	-0.21630	-0.09120	-0.14219	-0.06046	-0.13231	-0.04396	0.05101	0.10332
YDA/M	0.97274	0.96771	0.95283	0.94157	0.94110	0.92364	0.94483	0.98767	1.07454
YDR/M	-0.07735	-0.09021	-0.10613	-0.1255C	-0.13279	-0.09158	-0.09264	-0.08746	-0.C5750
LV/IXX	-0.00804	-0.01329	- 2.01462	-0.01789	-0.02527	-0.02076	-0.03194	-0.04693	-0.05016
LP/IXX	-0. 55296	-0.61900	-0.68329	-0.68850	-0.64693	-0.64014	-0.55556	-0.42797	-0.2.1699
LRFIXX	-0.05590	-0.06586	-0.01732	-0.03768	0.00165	-0.03870	0.01286	0.07665	0.13713
LDA/IXX	0.46883	0.46762	0.46306	0.46017	0.46062	0.45209	0.46011	0.47570	0.50657
LDR/1XX	-0. 21032	-0.21491	-0.21801	-0.22321	-0.22555	-0.20645	-0.21088	-0.21739	-0. 22255
NY/I2L	-0.00289	0.00000	-0.00200	-0.00405	-0.00566	-0.00721	-0.00735	-0.00601	-0.00337
NP/IZZ	0.01290	0.00620	-0.00675	-0.02075	-0.03427	-0.03456	-0.04439	-0.05053	-0.c3555
NRSIEZ	-0.05254	-0.05195	-0.03292	-0.04546	-0.04884	-0.04448	-0.05704	-0.07878	-0.11367
NDA/12R	0.03011	0.02915	0.02773	0.02634	0.02584	0.02727	0.02769	0.02902	0.03251
NORFILE	0.1752\%	0.17461	0.17191	0.17010	0.16995	0.16675	0.17065	0.17872	Q. 19453
DELTAA 0	0.09501	0.10597	0.12051	0.12314	0.16061	0.24992	0.30244	C. 37102	0.35378
DELTAR 0	0.07237	0.16972	0.05877	-0.20105	-0.47659	-0.32097	-0.57733	-0.74952	-r.iscou

TABLEIV-11 DATABASE

HEIGHT	13400 LB.
C.G. POSITION	AFT
RATE OF DESCENT	0 FPM
ALTITUDE	10000 FT.

*Extrapolated Data

HEIGHT	L5500 LB.
O\&G. POSINION	NOAMAL
RATE OF DESCENT	0 FPM
ALTITUOE	0 FT
*Extrapolated Data	

WE IGHT
15500 LB

＊Extrapolated Data

YFl \＃nlty	9	70	10	60）	180	BCA	100		
11／ $1 / 1$	9.91484						（J）	2フィ	440
/ii!	$1.7 \% 1,1$	$/ / l_{1}, k 1 / 4$	$\begin{aligned} & 14+1 / 14 i \\ & 4+1,1,1 \end{aligned}$	$\cdots \neq 4 彡 46$ $4,111,4$	93F9\％37\％	$-6 \times 6 \%$ 为		＊＊＊${ }^{\text {\％}}$	－rnowromm
（17）	fr，＂＇	$61 / 1 / 4$	i， $1 / 1 / 1 /$	\％r11\％	1／4012012\％	夺サーノ゙	くッハイ゙	$*, ~+~$	
$31 /$	ti M\％		，\％		＂サ＝，	＊	シャバべ	．	\cdots
＇fi／s	F1，\％\％	佼it	$1 / 1 / 10$	＂	＂，半＂	＇大＂＇	＂\％゙ジ	$\cdots \cdots$	
$i!/ 1$	\％ $1 / 111$	\％／31．	，111	，m $/$／／	\cdots	＂，＊）			＂
AV／i	1．0．4180	J．1行年		＂，\％／1／	＋1．614		cry	＋	
LH／M	－0．32505	-0.4272	－0．54786	－0．68511	－0．78イ9ス	－0．73349	－0．02159	ーフッシアをご	－6， 5 292c
ZQ／M	0.12677	－0．05132	0.03559	－0．02299	0.13032	－0．26841	－0．19933	－0．27448	－0．39822
ZOE／M	0.04201	0.19703	0.41244	0.42949	0.37432	－0．05086	0.03874	0．27272	0.21815
ZDC／M	－6．55027	－6．33758	－6．63904	－7．30928	－8．08660	－7．96648	－8．70262	－9．39757	－9．92681
MU／IYY	0.00614	0.00315	－0．00560	－0．00710	－0．00644	－0．00374	-0.00315	－0．00263	－0．00229
MW／1F	0.00171	0.01533	0.67366	0.02349	0.02328	0.02319	0.02258	0.02157	Q． 02109
nestiy	－0．75031	－0．95580	－1．29310	-1.46145	－1．52768	－1．57150	－1．59824	－1． 58550	－1．51057
MOE／IYY	0.3590%	0.35551	0.39110	0.43617	0.46456	0.47487	0.49842	0.52712	0.53171
MDC／IYY	0.03115	0.03512	0.13519	0.17373	C． 19120	0.17344	0.18455	0.18930	C． 19198
THETA 0	9.00799	7． 76850	6.22388	4.40978	2.15831	4.60549	1．83185	－1．46397	－5．45226
deltae o	－0．41030	－1．18490	－1．31662	－0．78754	－0．22026	－1．36225	－0．96325	－0．73252	－0．51740
DELTAC O	5.68575	5.14427	4．36250	4.10901	4.35952	4.32010	5.03387	6.21091	7.99168
YV／M	－0．02651	－0．05233	－0．07348	－0．10462	－0．13268	－0．13760	－0．15866	－0．17272	－0．20268
YP／M	－0．86509	－1．02720	-1.21260	－1．2906C	－1．25260	－i．22084	－1．0698C	－0．80571	－0． 0.36599
YR／M	－0．18178	－0．22615	－0．20130	－0．15699	－0．08640	－0．17919	－0．09768	－0．00525	0.03705
YOA／M	0.97234	0.96963	0.95188	0.94199	0.94038	0.92918	0.94186	0.76882	1.02314
YOR／M	－0．07733	－0．09725	-0.10843	－0．13169	－0．13814	－0．11050	－0．10985	－0．10209	－0．C8288
LV／IXX	－0．00993	－0．01567	－0．01660	－0．0202C	－0．02736	－0．02152	－0．03279	－0．0ヶ827	－0．05221
L．P／IXX	－0．64712	－0．71217	－C．77872	－0．79201	－0．74964	－0．72823	－0．64377	－0．54722	－0．34287
LR／IXX	－0．05326	－0．06908	－0．06305	－0．04144	－0．00306	－0．06172	－0．00718	0.06353	C． 12367
LDA／IXX	0.52316	0.52322	0.51670	0.51396	0.51396	0.50706	0.51301	0.52491	0.54577
LDR／IXX	－0．24485	－0．25386	－0．25470	－0．26285	－0．26499	－0．25039	－0．25272	－0．25523	－0． 26023
NV／12Z	－0．00331	0.00009	－0．00151	－0．00391	－0．00558	－0．00708	－0．00746	－0．00554	－C．00412
NP／IZZ	0.01247	0.00606	-0.00536	－0．01946	－0．03654	－0．04354	－0．05332	－0．05580	－0．0304B
NR／12I	－0．06677	－0．065c5	－0．05712	－0．05511	－0．05837	－0．04935	－0．06303	－0．68712	－0．12256
NDA／ILZ	0.03452	0.03305	0.03147	0.02969	0.02915	0.03061	0.03067	0.03133	0.03506
mbR／ILZ	0.20236	0.20220	0.19860	0.19881	0.19643	0.19405	0.19673	0.20247	0.21526
deltan 0	0.10521	0.10938	0.12754	0.14089	0.15969	0.22022	0.26998	0.35070	0.38744
CELTAR 0	0.08426	0.17930	0.10222	－0．15547	－0．42583	－0．25776	－0．48124	-0.65784	－0．67194

WEIGHT	15500 LB.
C.C. POSITICN	AFT
RATE OF CESCENT	500 FPM
ALTITUDE	0 FT.

VELOCITY	- 0
XUPM	-0.02300
XH/M	0.04200
X07\%	0.74800
XDE/M	0.14500
XOC/M	1.05500
ZU/M	0.04300
ZH/M	-0.29100
ZO/M	0.07800
ZDE/M	0.04400
ZDC/H	-6.56900
MU/IYY	0.00800
M / / IYY	0.00100
MQ/IYY	-0.69700
MDE/IYY	0.35500
MDC/IYY	0.03100
THETA O	8.94100
DEltaE 0	-0.42300
DELTAC 0	5.31800
YV/M	0.18900
YP/M	-0.96600
YR/M	-0.18700
YDA/M	0.97000
YOR/ ${ }^{\text {H }}$	-0.07900
LV/IXX	-0.01000
L.P/IXX	-0.68400
LR/IXX	-0.0580C
LDA/IXK	0.52200
LDR/IXX	-0.24500
NV/ILZ	0.00200
NP/IZZ	0.00600
NR/122	-0.06300
NDA/IZZ	0.0340 C
NOR/ILZ	0.20200
deltan o	0.11600
deltar o	0.05900

20	40	60	8 C	80\%	100	120	140
0.60100	-0.01800	-0.03200	-0.04200	-0.04200	-0.05000	-0.65600	-0.06200
0.05400	0.06900	0.07200	0.06900	0.09100	0.08500	0.07600	0.05800
0.81500	0.88300	0.882 Co	0.76600	1.35250	1.13200	0.80700	C. 26500
0.12500	0.12900	0.16300	0.19400	-0.00800	0.01100	0.01800	C .0
0.81600	0.70200	0.64100	C. 52900	0.82800	0.69900	0.55300	C. 41200
-0.14800	-0.11400	-0.04100	0.0	0.02100	0.04400	0.04900	0. 04200
-0.37800	-0.52900	-0.67300	-0.77900	-0.76200	-0.84900	-0.91700	-0.93200
0.23800	-c. 12800	-0.19800	-0.04400	-0.39600	-0.30600	-0.28000	-0.27900
0.21000	0.48400	0.49400	0.42500	0.42500	0.35600	0.28700	0.23300
-6.25600	-6.39100	-7.10000	-8.01400	-7.54100	-8.69800	-9.37800	-10.C0900
0.01200	-0.00800	-0.00800	-0.00700	-0.00350	-0.00300	-0.00300	-0. 00200
0.01900	0.02800	0.02500	0.02400	0.02350	0.02300	0.02300	C. C 2200
-0.92400	-i. 33400	-1.49900	-1.55900	- 1.64500	-1.85600	-1.61800	-1.56300
0.34500	0.39500	0.44100	0.47100	0.48200	0.5060 C	0.52400	0.54000
0.01500	0.14900	0.18800	0.20200	0.18450	0.19300	0.19600	0.19800
7.74900	6.30700	4.59300	2.46700	4.89250	2.17100	-2.14600	-5.15100
-1.54500	-1.65900	-0.94300	-0.26500	-1.45450	-1.02100	-0.83200	-0.57400
4.64700	3.65100	3.2890 C	3.48100	3.38400	4.09200	5.31600	7. 09440
-0.04700	-0.07400	-0.1060C	-0.13800	-0.14650	-0.16900	-0.18200	-0.19800
-1.17600	-1.36600	-1.45900	-1.43900	-1.35550	-1.24400	-1.04100	-0.57600
-0. 12200	-0.11700	-0.18300	-0.12000	-0.08400	0.00700	0.12600	0.06800
0.96200	0.93700	0.92100	0.91400	C. 88900	0.90100	0.93200	C. 98800
-0.10200	,-0.11600	-0.13800	-0.13700	-0.11850	-0.12000	-0.12400	-0.C9700
-0.01400	-0.01400	-0.01400	-0.01800	-0.c1100	-0.02200	-0.04000	-0.05700
-0.78200	-C.83900	-0.85800	-0.82300	-0.78850	-0.71800	-0.61200	-0.40500
-0.02900	-0.03400	-0.05000	-0.02500	-0.02200	0.03200	0.11500	C. 11000
0.5200 c	0.51100	0.50600	0.50200	0.49100	0.49600	0.51000	0.53200
-0.25500	-0.25500	-0.261c0	-0.25900	-0.24450	-0.2480C	-0.25700	-0.25800
0.0	- -0.00200	-0.00500	-0.00700	-0.00800	-0.00900	-0.00900	-c. 00600
0.00700	-6.01000	-0.0250C	-0.04200	-0.04050	-0.05300	-0.06100	-c.C5400
-0.04300	-0.03400	-0.04806	-0.05200	-0.02600	-0.03900	-0.06100	-0.C9600
0.033 co	0.03100	0.02900	0.02800	0.02550	0.0290 C	0.02900	0.03200
C. 20000	0.19600	0.19300	0.19100	0.18550	0.18800	0.19500	C. 20700
0.09700	0.11400	0.11000	0.14200	0.14600	0.21400	0.31800	0.40900
0.24000	0.14300	-0.13100	-0.41800	-0.17500	-0.4480C	-0.70700	-0.81900

The tables for the fore and aft cg locations are for a cg that is 13 mehes ahead and 25 inches behind the nommal cg location respectively For all of these tables, the vehicle inertias, are as follows

$$
\begin{array}{l|ll}
\mathrm{I}_{\mathrm{XX}}=9203 & \text { slug } \mathrm{ft}^{2} & \cdots \\
\mathrm{I}_{\mathrm{YY}}=75,914 & {\operatorname{slug~} \mathrm{ft}^{2}}^{2} & \mathrm{I}_{\mathrm{ZZ}}=71,786 \\
\text { slug } \mathrm{ft}^{2}
\end{array}
$$

The nomenclature and units for all of these tables is as follows.

XU/M	$\mathrm{X}_{\mathrm{U}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$	YV / M	$\mathrm{Y}_{\mathrm{V}} / \mathrm{m}$	$\mathrm{ft} / \sec ^{2} / \mathrm{ft} / \mathrm{sec}$
XW/M	$\mathrm{x}_{\mathrm{W}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$	YP / M	$Y_{\mathrm{P}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$
XQ / M	. $\mathrm{X}_{\mathrm{Q}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$	YR/M	$\mathrm{Y}_{\mathrm{R}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$
XDE/M	$\mathrm{X}_{\delta} / \mathrm{m}$	$\mathrm{fl} / \mathrm{sec}^{2} / \mathrm{m}$	YDA/M	$\mathrm{Y}_{\delta_{\mathrm{a}}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{m}$
XDC/M	$\mathrm{X}_{\delta} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{m}$.	$\mathrm{YDR} / \mathrm{M}$	$\mathrm{Y}_{\delta_{\mathrm{r}}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{n}$.
ZU / M	$\mathrm{Z}_{\mathrm{U}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$	LV/IXX	$\mathrm{L}_{\mathrm{V}} / \mathrm{I}_{\mathrm{XX}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$
ZW/M	$\mathrm{Z}_{\mathrm{W}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$	LP/IXX	$L_{P} / I_{X X}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$
ZQ/M	$\mathrm{Z}_{\mathrm{Q}} / \mathrm{m}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$	LR/IXX	$\mathrm{L}_{R} / \mathrm{I}_{\mathrm{XX}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$
ZDE/M	$\mathrm{Z}_{\delta} / \mathrm{m}$	$\mathrm{ft} / \sec ^{2} / \mathrm{m}$.	LDA/IXX	$L_{\delta}{ }_{a} / I_{X X}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{nm}$.
ZDC/M	$\mathrm{Z}_{\delta} \mathrm{c}^{\mathrm{m}}$	$\mathrm{ft} / \mathrm{sec}^{2} / \mathrm{ln}$	LDR/IXX	${ }^{\mathrm{L}} \delta_{\mathrm{r}}{ }^{/ \mathrm{I}_{\mathrm{XX}}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{m}$.
MU/IYY	$M_{U} / I_{Y Y}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$	NV/IZZ	${ }_{\mathrm{N}} / \mathrm{I}_{\mathrm{ZZ}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$
MW/IYY	$\mathrm{M}_{\mathrm{W}} / \mathrm{I}_{\mathrm{YY}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{ft} / \mathrm{sec}$	NP/IZZ	$\mathrm{N}_{\mathrm{p}} / \mathrm{I}_{\mathrm{ZZ}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$
MQ/IYY	$M_{Q} / I_{Y Y}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$	NR/IZZ	$\mathrm{N}_{\mathrm{R}} / \mathrm{I}_{\mathrm{ZZ}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{rad} / \mathrm{sec}$
MDE/IYY	${ }^{M} \delta_{\delta} / \mathrm{I}_{\mathrm{YY}}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{m}$	NDA/IZZ	${ }^{N}{ }_{\delta} / \mathrm{I}_{\mathrm{a}} \mathrm{ZZ}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{m}$
$\mathrm{MDC} / \mathrm{IYY}$	$\mathrm{M}_{\delta_{\mathrm{c}}} / \mathrm{I}_{Y Y}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{n}$	NDR/IZZ	$N_{\delta}{ }_{\mathbf{r}} I_{Z Z}$	$\mathrm{rad} / \mathrm{sec}^{2} / \mathrm{m}$.
THETA O	θ_{0}	degrees	DELTAA O	$\delta_{\text {a/o }}$	m.
DELTAE O	$\delta \mathrm{e} / 0$	1 n	DELTAR 0	$\delta_{\text {r/o }}$	in.
DELTAC O	${ }^{\delta}$ c/o	m.			

The data at the velocity points marked with an asterisk in these tables is data that was established from the basic data by curve fitting techmques The data at the 80^{*} velocity point was extrapolated from the data at speeds greater than 80 knots, which reflects a rear rotor axis trim change, to determine the effect of this trim change alone at 80 knots This was done by averagng the slope of the data between the 60 and 80 knot points and the slope between the 100 and 120 knot points and using this average slope to extrapolate fiom the 100 knot point, which reflects the rotor axis trim change, back to the 80 knot point

The data at the $100^{\star}, 120^{\wedge}$, and 140^{*} velocity points for the $\pm 1500 \mathrm{ft} / \mathrm{mm}$ rate of descent conditions was established by extrapolating data for other rates of descent of these velocity points

2 Actuator and Rotor Dynamics

The functions used to represent the actuator and rotor dynamics in each channel of control are shown in Figure IV-I As shown an this figure, each channel is represented by a position limit on the mput command, a second order EISS response, a rate hmit on the EISS response, hysteresis in the mechanical linkage to the rotor, and a record order rotor response

- 3. Wind Model

- The wind model was developed by Bell Aerospace Company under this contract from data obtained from AN/SPN-42 landing dispersions at Patuxent River, Maryland and from gust data taken from towers and low flying aircraft, Reference IV-1 Based on this data, the horizontal wind spectrum is assumed to be of the form,

It is assumed that the gusts are made up of a primary component in the direction of the average wind and a secondary component normal to the direction of the average wind The component in the direction of the average wind is assumed to have an rms value that is a function of the average wind velocity

$$
\begin{aligned}
& \sigma_{\mathrm{X}}=01 \mathrm{~V}_{\mathrm{w}} \geqslant 2 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{W}}=\text { average horizontal wind velocity }
\end{aligned}
$$

where
The component normal to the avcrage wind is assumed to have an rms value of 10% of the prımary component

The horizontal velocity of the helicopter in the direction of the average wind is,

$$
\mathrm{V}_{\lambda}^{\mathrm{W}}=\mathrm{V}_{\mathrm{h}} \cos \Delta \xi
$$

where $\quad \mathrm{V}_{\mathrm{h}}=$ total horizontal ground speed of helicopter

$$
\left(\sqrt[4]{\dot{X}^{2}+Y^{2}}\right)
$$

$\Delta \xi \quad=\quad$ angle between course of helicopter ground speed velocity vector and direction of wind

By using these definitions and resolving the wind spectrum through the angle $\Delta \xi$, the wind spectrum along the arrcraft x and y body axes are,

$$
\begin{aligned}
\Phi_{\mathrm{x}} & =\frac{\left(\sigma_{\mathrm{x}} \cos \Delta \xi+\sigma_{\mathrm{y}} \sin \Delta \xi\right)^{2}}{\pi} \frac{100}{\left(\mathrm{~V}_{\mathrm{h}} \cos \Delta \xi+10\right)}\left[\frac{1}{\left(\frac{100}{\mathrm{~V}_{\mathrm{h}} \cos \Delta \xi+10}\right)^{2} \omega^{2}+1}\right] \\
\Phi_{\mathrm{y}} & =\frac{\left(-\sigma_{\mathrm{x}} \sin \Delta \xi+\sigma_{\mathrm{y}} \cos \Delta \xi\right)^{2}}{\pi} \frac{100}{\left(\mathrm{~V}_{\mathrm{h}} \cos \Delta \xi+10\right)}\left[\frac{1}{\left(\frac{100}{\mathrm{~V}_{\mathrm{h}} \cos \Delta \xi+10}\right)^{2} \omega^{2}+1}\right]
\end{aligned}
$$

The wind spectrum for vertical turbulence along the z body axis is assumed to be of the form

$$
\Phi_{\mathrm{Z}}=\frac{\sigma_{\mathrm{Z}}^{2}}{\pi} \frac{\mathrm{Z}}{\mathrm{~V}_{\mathrm{h}}}\left[\frac{1}{\left(\frac{\mathrm{Z}}{\mathrm{~V}_{\mathrm{h}}}\right)^{2} \omega^{2}+1}\right]
$$

where $\quad \sigma_{\mathrm{z}}=$ rms value of vertical turbulence (nominally $15 \mathrm{ft} / \mathrm{sec}$)

4 Strapdown Navigational System

The attitude and velocity sensor error models were suppled by NASA/ERC Both a general definition of the gyro model and attitude equations and simplified definitions of the attitude and velocity sensor errors for the purposes of simulation were provided The simulation model for the velocity errors was developed from the simplified definition However, since the general definition of the gyro model and attitude equations contaned more information on form of the errors that are expected in the attitude data, it was used to develop the simulation model for the attitude errors Therefore, for completeness, both the defintions supphed by NASA-ERC will be included here
a - General Defintion of Gyro Model and Attitude Equations
(1) Mathematical Model
,
The mathematical model for the simulation gyro is given by

$$
\left(\mathrm{Is}^{2}+\mathrm{Cs}\right) \mathrm{A}=\mathrm{H}\left(\mathrm{~W}_{\mathrm{IA}}-\mathrm{W}_{\mathrm{tg}}\right)+\mathrm{N}
$$

where $\quad I=$ gyro float Output Axis (OA) moment of mertia
' C • $=$ gyro damping constant
$s=$ Laplace Transform operator
$A=$ gyro float angle about OA
$\mathrm{H}=$ gyro spin angular momentum
$\mathrm{W}_{\mathrm{IA}}=$ Input Axis (IA) component of angular velocity vector W
$\mathrm{HW}_{\mathrm{tg}}=$ electrically generated torque about OA
$\mathrm{N}=$ an error torque embodying all gyro nondeal performance
($\mathrm{N}=0$ for this study)
$\because \cdot$
(2). Functional Model

The functional model for the sımulation gyro is shown in Figure IV-2 where the following identifications are made in terms of the gyro mathematical model

Flgure IV-2 Functional Model for the Simulation Gyro

$$
\begin{aligned}
& \mathrm{K}=\mathrm{H} / \mathrm{C} \\
& \mathrm{~T}=\mathrm{I} / \mathrm{C} \\
& \mathrm{~W}_{\mathrm{e}}=\mathrm{N} / \mathrm{H}
\end{aligned}
$$

The functional model for the currently used GG334A rebalance loop is shown in

Figure JV-3 Functional Miodel for GG334A Rebalance Loop
$\Delta T=$ sampling interval
$\mathrm{D}=$ rebalance signal level
$\delta=$ float angle threshold
$\Delta \theta=$ output pulse weight (rad/pulse)
The voltage level W_{tg} of the zero order hold is observed once between sampling instants $A+\Delta \theta, \mathrm{O}$, or a $-\Delta \theta$ data pulse is transmitted to the digital computer if $\mathrm{W}_{\mathrm{tg}}=+\mathrm{D}, \mathrm{O},-\mathrm{D}$, respectively
(3) Performance Model

The simulation gyro is intended to model the performance of the Honeywell GG334A used in the V/STOL Phase II Inertal Sensity Unit (ISU) In order to duplicate the GG334A's dynamic performance, the following relationships must be observed

Decide upon $W_{I A, ~ M A X ~(M a x i m u m ~ p e r m i s s i b l e ~} W_{I A}$)
Set

$$
\mathrm{D}^{-}=\mathrm{W}_{\mathrm{IA}, \mathrm{MAX}}
$$

Decide upon $\Delta \theta=$ (desired resolution)
Solve for $\quad \Delta T=\Delta \theta / \mathrm{W}_{\text {IA }}, \mathrm{MAX}$
Solve for $\tau=18 \Delta T \quad$.
Solve for K such that if a unity feedback loop were closed in Figure IV-2, the resulting system would have a damping ratio of 02 Thus

$$
K=\frac{1}{016}
$$

Set $\delta=\mathrm{K} \Delta \theta$
float dynamics)
Then when $\int \mathrm{W}_{\mathrm{IA}} \mathrm{dt}=\Delta \theta$, A has made an excursion equal to δ (neglecting
(4) Direction Cosme Update Equations

In order to compute both angular velocity and attitude, the $\Delta \theta$ pulses from the gyros are accumulated in the digital computer The drection cosine matrix is updated using a 2 nd order Runge-Kutta algorithm

$$
C^{N B}\left(t_{n+1}\right)=C^{N B}\left(t_{n}\right)\left(I+[\theta x]+5\left[\theta_{1} x\right]\left[\theta_{2} x\right]-\frac{3}{2}\left[\theta_{1} x\right]^{2}-\frac{3}{2}\left[\theta_{2} x\right]^{2}\right)
$$

where C^{NB} is the direction cosine matrix fiom the body to the navigational coordinate frame

$$
\begin{aligned}
\Delta t & =\mathrm{i}_{\mathrm{n}+1}-\mathrm{t}_{\mathrm{n}} \\
\underline{\theta}_{1} & =\Sigma \Delta \underline{\theta} \text { ovel the 1st half of } \Delta \mathrm{t} \\
\underline{\theta}_{2} & =\Sigma \Delta \underline{\theta}_{\text {over the second half of } \Delta \mathrm{t}}^{\underline{\theta}}
\end{aligned}=\underline{\theta}_{1}+\underline{\theta}_{2} \quad\left[\begin{array}{ccc}
0 & -\theta_{\mathrm{Z}} & \theta_{\mathrm{Y}} \\
\cdot\left[\underline{\theta}_{\mathrm{x}}\right] & =\left[\begin{array}{ccc}
\theta_{Z} & 0 & -\theta_{\mathrm{x}} \\
-\theta_{\mathrm{Y}} & \theta_{\mathrm{x}} & 0
\end{array}\right]
\end{array}\right.
$$

The attitude drift rate $W_{d}(\mathrm{deg} / \mathrm{sec})$ induced by this particular choice of update algorithm is given by

$$
\mathrm{W}_{\mathrm{d}}=37 \times 10^{-5} \frac{\mathrm{~W}^{3}}{\mathrm{f}_{\mathrm{c}}^{2}}
$$

where W is the magnitude of the angular velocity vector

- f_{c} is the frequency of the drection cosine matrix update

This equation is applicable in the case where W is essentially constant over the update interval Δt
(5) Body Rate Computation

- The algorithm for extracting body rates from the gyro data is

$$
\underline{W}=\left[\begin{array}{l}
\mathrm{P} \\
\mathrm{Q} \\
\mathrm{R}
\end{array}\right]=\left(-\frac{1}{2} \underline{\theta}_{1}+\frac{3}{2} \underline{\theta}_{2}\right) \frac{1}{\Delta \mathrm{t}}
$$

where P, Q, and R, are the x, y, and z axis body frame components respectively of angular velocity W, $\underline{\theta}_{1}, \underline{\theta}_{2}$, and $\Delta \mathrm{t}$ are as defined above This procedure fits a straight line through the angular velocity measured in the two halves of the interval Δt

6) Euler Angle Computation

The Euler angles are extracted from the drection cosines

圆晠

Since

$$
\therefore C^{N B}=\left[\begin{array}{cc}
\cos \theta \cos \psi & \sin \phi \sin \theta \cos \psi-\cos \phi \sin \psi \\
\cos \theta \sin \psi & \sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi^{\prime} \\
\sin \theta & \cos \theta \sin \phi \\
& \cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi \\
\cos \phi \sin \theta \sin \psi-\sin \phi \cos \psi \\
\cos \theta \cos \varnothing
\end{array}\right]
$$

and since from physical considerations

$$
\begin{aligned}
-\pi / 2 & <\phi<\pi / 2 \\
-\pi / 2 & <e<\pi / 2 \\
0 & <\psi \leq 2 \pi
\end{aligned}
$$

the Euler angles are computed as follows

θ Computation

$$
\begin{aligned}
& C_{31} \\
&=\sin \theta \\
& \text { so } \theta=\sin ^{-1} C_{31}
\end{aligned}
$$

\emptyset Computation

$$
\begin{aligned}
C_{32} & =\sin \emptyset \cos \theta \\
& =\sin \emptyset\left(1-\left(C_{31}\right)^{2}\right)^{1 / 2} \\
\text { so } \quad \emptyset= & \sin ^{-1}\left[c_{32}\left(1-\left(C_{31}\right)^{2}\right)^{-1 / 2}\right]
\end{aligned}
$$

Computation

$$
\begin{aligned}
c_{21} & =\cos \theta \sin \psi \\
& =\left(1-\left(C_{31}\right)^{2}\right)^{1 / 2} \sin \psi
\end{aligned}
$$

Bell

Let

$$
\psi^{i}=\sin ^{-1}\left[c_{21}\left(1-\left(c_{31}\right)^{2}\right)^{-1 / 2}\right]
$$

Then

$$
\begin{aligned}
& \psi=\psi^{\prime} \quad \text { if } c_{11} \geq 0 \\
& \psi=\pi-\psi^{\prime} \quad \text { if } c_{11}<0
\end{aligned}
$$

b Simplified Definition of Velocity and Attitude Sensor Error Models
The simplified velocity and attitude sensor error models are shown in Figures IV-4 and IV-5, respectively

5 Aur Speed ${ }^{\text {I }}$ Indicator With Pitot Head

The error model for a typical arspeed sensol was developed by Bell Aerospace Company under this contract A discussion of the source and expected magnitudes of the errors in this sensor as contaned in the following paragraphs

For a typical arrcraft moving forward with a speed V, the air speed is determined by measurement of the static pressure of the undisturbed ant p, and the total, or stagnation, pressure p_{t} 1 e , the pressure at a point on the vehicle which has been brought to rest, eg at the bellows of the air speed indicator, or at the measuring head

The relationship between the true arr speed V and these piessures, assuming adrabatic conditions in a compressible medium may be given as

$$
\begin{equation*}
p_{t}=p\left\{1+\frac{(\gamma-1)}{2 \gamma} \frac{\rho V^{2}}{p}\right\}^{\gamma /(\gamma-1)} \tag{1}
\end{equation*}
$$

where $\quad \gamma \quad$ is the coefficient of adiabatic expansion
and $\quad \rho \quad$ is the density of the arr
-
American practice is to calibrate air speed indicators using this formula with γ as a constant and assuming International Commission for Air Navigation (ICAN) Standard Atmosphere values p_{0} (for p) and ρ_{O} (for ρ) yielding the equation
where $\quad V_{r}$ is the rectifed air speed

$$
\Delta_{p}=\left(p_{t}-p\right)
$$

Significant differences do not arıse between these two formulae untal sonic speeds are approached

An alternative to this equation is to drectly expand equation (1) and neglecting all but the first two terms to yeld

$$
\Delta_{\mathrm{p}}=\frac{\rho_{o}}{2} \mathrm{~V}_{\mathrm{r}}^{2}\left(1+\frac{\mathrm{V}_{\mathrm{r}}^{2}}{4 \mathrm{c}_{\mathrm{o}}^{2}}\right)
$$

Figure IV-4 Velocity Sensor

Notes- (1) Angular Rate Resolution within estimated quantization of $01 \frac{\mathrm{deg}}{\mathrm{sec}}$
(2) Attitude quantization less than 001 deg should be no problem

Figure IV-5. Attitude Sensor
where c_{o} is the velocity of sound in the Standard Atmosphere At low speeds the second term in this equation may be neglected and the true air speed and rectified an speed are then related by the expression related by the expression

$$
\because \rho_{\mathrm{O}} \mathrm{~V}_{\mathrm{r}}^{2}=\rho \mathrm{V}^{2}
$$

Thus to a first approximation the air speed is pioportional to the square root of the difference between the pressure at the pliot head and the static pressure.

The manufacturing tolerances at normal temperatures for a typical low air speed indicator with a range of 30 to 150 knots do not exceed ± 4 knots over the whole iange However, when used on helicopters the downwash from the rotors increases this error substantally as speeds typically below 50 knots

In addition to the instrumental errors, errors in the total and static pressures at the measurng head, known as position errors, will occur These vary with the tape of aircraft and the pressure head installation, but with a carefully selected position, the average values can be reduced to about 3 to 4 knots

Hysteresis effects in the instrument will also contribute errors, but these will in general be small, of the order of 1 or 2 knots

Errors will also be mtroduced if the axis of the pilot tube does not concide with direction of air flow The magnitude of these errors will depend on the angle of incidence, γ, of the pitot tube axis and also upon the ratio d/D where d is the diameter of the pitot aperture, and D is the overall diameter of the pitot tube For example for a ratio of $\mathrm{d} / \mathrm{D} \leqslant 03$ and angles not exceeding $\pm 10^{\circ}$, the error, expressed as a percentage of the pressure difference $\Delta \mathrm{p}$ (not of the arr speed) which is the operating pressure for the airspeed indicator does not exceed 15%, although for angles up to $\pm 25^{\circ}$ this error may increase to about 10%

The pitot tube is connected to the air speed indicator by means of metal tubing, usually about $3 / 16 \mathrm{in}$ inside diameter The length of the tubing will vary with the installation, but lengths exceeding 50 feet are not uncommon Due to this length, there will be a finite pressure drop between the pitot head and the instrument bellows, and therefore the transient response of the system to pressure changes at the head position will be an exponential motion with a finite time constant τ Thus if the external pressure is suddenly decreased at time τ at a uniform rate $\mathrm{dp} / \mathrm{dt}$, the instrument pressures will, after the decay of any transient conditions, change at a similar rate, but the pressures will lag by an amount equal to $\tau \mathrm{dp} / \mathrm{dt}$ where τ is the time constant of the system A typical value of τ for a 50 foot length of $3 / 16$ in diameter tubing will be about 02 second

Thus the accuracy of the air speed indicator is not high, but it is generally adequate for the pulot's use If this information is to be used for navigation purposes then an order of improvement in accuracy is required This is usually calculated when required, using calibration information, etc.

A mathematical error model of the arspeed indicator and pitot tube is thus illustrated in Figure IV-6,

Figure IV-6 Pitot Tube Model

6 Alpha and Beta Vanes

The error model for typical Alpha Bete Venes was developed by Bell Aerospace Company, under this contract A discussion of the sourca and expected magnitudes of the errors in these vanes is contamed in the following paragraphs

The Alpha and Beta Vanes are smply vas mounted on the arcraft, one in the horizontal axis, the other in the vertical ands, such that $\bar{L}-\mathrm{F}$ are free to swivel and lie in the plane of the arstream The angles that these planes makes with the baiz axes are thus the measures of alpha, the angle of attack and Beta, the sideshp angle Since they are boimentical instruments, only one needs to be described

The vane is mounted on the vehicle in the تorm of a "flag," its vertical "post" being free to turn in its mounting The angular position of the par relative to the body axis is measured through a synchro (which does not significantly impede $t e$ movement of the post) and the angular information thansmitted back to the followup servo and porter mechanism The instrument dynamics are such that the pointer is almost critically damped so as to -ivord pointer chatter The vane itself, being virtually free mounted is influenced by ar turbulence 2 an other noise effects as well as the primary ar flow, but this noise component is largely filtered out in the followup servo.

A mathematical error model of a typical vene may therefore be constructed as illustiated in Figure IV-7.

Figure IV-7. α, β Vane Model

In this figure the vane and synchro are represented by an underdamped second order transfer function to simulate a relatively free pivot The second quadratic transfer function represents the followup servo and the ponter mechanism whin is much better damped and has a smaller bandwidth The errors introduced into such an instrument are usually constant at about $\pm 025^{\circ}$ and this error may be simulated by introducing a band limited nose signal as illustrated in the figure

At speeds below 30 knots (approximately) the accuracy of this instriverert decreases consuderably In particular the natural frequency of the Vane and Syncho decreases and: $=$ amplitude of the noise error increases Since in practice the instrument is switched out at low speritin the errors introduced below 30 knots need not be considered

7 GSN-5 Radar Model
a Generd
The error model for the Bell Aerospace Company GSN-5 raw-- wrstem was developed by Bell under this contract A discussion of the source and expected magros of the errors in this system is contamed in the following paragraphs

The GSN-5 radar system as illustrated in block dagram for = Figure IV-8, is a K_{a} band, conical sudn type employng a parabolic antenna for propagation are signal The range of the target is determined by the spacings between the $=-$ minter and corresponding reflected K_{d} band pulses The radar antenna is mounted on a two axis gina wimch continuously rotates as the iudar automatically tracks the target A resolver unt, gearec = ze gimbal, determines the arrcraft's position in rectangular coordinates Translation of the coorcitines system from antennd to TD point is accomplished by analog summation Derivatives are also obtaraz by differentiation in the analog computer The resulting analog information is finally multiplex converter for transmission to the vehicle via the data link (13 bits of informanor)

Figure IV-8 Block Diagram of the GSN-5 Radar System

Each of the blocks illustrated in Figure IV-8 will be discussed.
b GSN-5 Radar
The radar illuminates the target and, due to its scanning mechanism, forms a spin error from the reflected signal This error is electronically split into corresponding elevation and azimuth error angles. This split is not, however, perfect, so that a 10% crosstalk is assumed to remain It is assumed that no dynamic effects occur through the electronics, although a certam amount of noise is generated The resultant error signals then drive two positioning servo motol/gearbox combinations - with tachometer feedback, which physically move the antenna such as to mimmize these error angles The two serios mivolved (one for each axis) may for simulation purposes be represented by the closed loop transfic muction,

$$
\frac{\theta_{c}(s)}{\theta_{e^{(s)}}}=\frac{\psi_{c}(s)}{\psi_{e}}=\frac{w_{0}^{2}}{\left(s^{2}+2 \delta w_{o}+w_{o}^{2}\right)}
$$

where θ_{e} is the elevation angle error, and ψ_{e} is the azinuth angle error The approprate coefficients have been expermentally determined is $w_{0}=50 \mathrm{rads} / \mathrm{sec}, \delta=07$ Various nonlinear effects such as backlash, hysteresis etc, present in the position servos may safely be neglected (This is confirmed by expermentation')

The range signal is not affected by any dynamics, but is subject to electronic and system noise The various noise levels, mcluding electronic noise, backscatter, scintilation effects, etc have been found to be approximately 03 milliradian rms for the elevation and dzimuth angles, and is distributed unformily over the antenna servomechanism bandwidth of $50 \mathrm{rads} / \mathrm{sec}$ The radar slant range nose content is 15 feet rms up to a range of 1500 feet and 1 percent of the range thereafter. These figures apply when the antenna is pointing farly accurately towards the corner reflector which is positioned in the nose of the vehicle Under certain conditions, skin tracking predominates and the rms content of the noise signals will merease substantally For example, if the velucle's onentation with respect to the antenna varies by more than approximately 15° in elevation or appioximately $20^{\circ} \mathrm{m}$ azimuth, the radar ieceived signal will be reduced by around 3 db so that the noise level will increase by a similar amount Further if no corner reflector is incorporated into the vehicle, the noise level can increase by 10 or 12 db The noise figures given above will also deteriorate with a tmospheric conditions such as rain or snow, but at short range this effect is not considered to be too important compared to the other norse sources

Taking all of these factors into account, block diagram of the GSN-5 model may be constructed as illustrated in Figure IV-9

As far as the elevation and azimuth angles are concerned, the resulting nose spectrum will be further shaped by the positioning dynamics to finally become the desired spectrum The variable potentiometers representing the rms noise amplitude are varied according to vehicle orrentation and absence of corner reflector so that the variations in notse level due to these factors are accurately modeled
c The Resolvers
The resolver unit is geared to the gimbals and translates coordinates of the arrcraft's position from polar to rectangular axes There are no significant dynamic effects present in this unit and so they may be ignored. From experience, however, it has been found that since the radar unit spends most of its lifetime looking at one particular "homing" window, the resolvers tend to become a little nosier with age, especially at these particular angles This extra noise could be incorporated into the model by using logic to recognize when these offending angles are being tracked, subsequently adding this noise However, due to the other norse sources present in the system, this effect may be safely neglected

- The resolution of the resolver unit is such that a quantizing error of 04 muliradian is introduced. This is quite a significant error, but since this error is less than the quantizing error produced by a 14-bit A-D converter. (13 bits information, one bit sign) this particular source of error will be, for convenience, translated uwwnstream into the data link block (Figure IV-12)

. Figure IV-9. GSN-5 Radar

The resolver unt may therefore be smply smulated as illustrated in Figre 解-10

Figure IV-10 Resolver Unit
d. Analog Computer

The analog computer in the GSN-5 system is used to translate the X-Y-Z coordinate -system produced by the resolver unit to the appropriate runway axes This may be simply accomplished by adding (or subtracting) the required offsets X_{0}, Y_{0}, and Z_{o} between the touchdown point and the antenna focus point It is normal practice to align the radar unit parallel to the runvay so as to elimmate any further angular translations

The analog computer is also used to calculate the necessary derivatives in each axis These are achieved in the usual manner with 1 second filtering on the X and Z axis, and 05 second filtermg on the Y axis It is not considered that the GSN- 5 computer rates will be used but this information is included for completeness The resulting model is shown in Figure IV-11

e Data Lmk

' The resulting information is finally multiplexed through a 14 bit A-D converter for -transmission to the vehicle via the data link The converter word contans 13 bits of information and a plus sign and is accurate to within 0017 , plus or minus one half the least significant bit In addrtion to this error, an error also exists due to the time delay between conversions This error is equivalent to a lag of one half the sampling period The resulting block dagram of the data link error model is shown in Figure IV-12, for any particular channel This configuration completes the description of the GSN-5 radar unit model

- '8. Radar Altmeter - Honeywell YG7091B

The error model for a typical radar altimeter was developed by Bell Aerospace Company under this contract This model is based on specifications and flaght tests on the Honeywell YG7091B radar altimeter A discussion of these and the resulting error model is discussed in the following paragraphs

The operation of the Honeywell Pulse Radar Altimeter is based upon the precise measurement of time required for an electromagnetic energy pulse to travel from the arcraft to the ground terram, and return to the arrcraft

Fenl

Figure IV-11 Analog Computer Model

Figure IV-12 Data Link Error Model

Feil

The receiver detects the leading edge of the reflected signal After "lock on" to this signal, the recerver rejects all other signals untal the next pulse is recerved This ensures that the closest point of contact within the radar "window" is detected The time of arrival of the pulse is compared with the time of pulse transmission, the resulting time difference being dinectly proportional to the requied altitude

Fiom the specifications for the $Y G 7091 B$, the nommal altitude response time for a small change in altatude is 01 second This is defined as the time taken to reach 90% of the find steady state value The shape of this step response is indicated by flight tests taken over the flight deck of an arrcraft carrier From these results it may be concluded that a transfer function that will reasonably satisfy the given data is

$$
G(s)=\frac{(848-1905 s)}{\left(848+446 s+s^{2}\right)}
$$

which may be simplified to a first order lag with a 01 sec time constant without too much inaccuracy. The quoted accuracy of the radar system is (gnoring the pointer mechanism) 15 feet $+05 \%$ of altitude to the one sigma point Any antenna parallax error is considered to be generally too small to be sigmificant and is therefore ignored The spectrum of the error signal is not known and so is assumed to be Gaussian and distributed uniformly over a bandwidth of 10 Hz This is an arbitrary choice of bandwidth A model for the radar altimeter is therefore illustrated in Figure IV-13

Figure IV-13 Radar Altımeter

Note that if the scale errors of the pointer mechanism are included, the total system errors merease to approximately 20 feet $+075 \%$ of altitude This is of significance for display purposes but the smaller error is valid for the automatic control functions These error values will also change depending upon the vehicle orientation For example, the YG7091B specifications state that the above accuracy will hold for pitch and roll angles to approximately ± 25 degrees, and the system will still work but with decreased accuracy for pitch and roll angles to ± 45 degrees This feature can be simply buit in to the model of Figure III-8 by recognizing when the pitch and roll angle of the vehicle exceeds ± 25 degrees and increasing the noise (or maccuracy) levels by a factor of five (say) and by a factor of ten or more if the velucle attitude angles exceed ± 45 degrees These multiplication tactors are abitranly chosen and may be modified

C SIMULATION MECHANIZATION

1 General Description

The smulation is a modular hybrid type with modules for the CH-46C helicopter, the flight data systems, the guidance and flight control laws, and the cockpit The heicopter module contains models for the actuator and rotor dynamics, the linearized equations of motion for the bare helicopter, the stability derivatives, and a wind model The flight data systems module contams error models for an mertal measurement unt, an arspeed sensor, a Beta vane, and the GSN-5 radar update system The guidance and flight control law module contams the digital control laws for the Digital Flight Control and Landing System The cockpit module contans the displays and controls necessary to use all the modes of operation of the Digital Flight Control and Landing System In addition to these basic modules, the simulation also contans several control modules for operating and control purposes

The simulation modules are mechanized on hybrid computing equipment shown in Figure IV-14 As shown in this figure, all of the basic modules, except for the wind model and cockpit module, are mechanized on the IBM 7090 digital computer The wind model is mechanized on a PACE23IR analog computer This computer is also used to interface with the cockpit which is mechanized on a modified X-22A cockpit sımulator

The smulation input/output provisions are mechanized on both the analog and digital computers For operating convenience, the simulation mode control and initial condition mputs are mechanized on the analog computer All other inputs are mechanized on the digital computer since they do not normally change from run to run The recording of all flight varables in the time doman is done on analog strip chart recorders However, digital print is used to record the initial conditions, performance index, and touchdown conditions for each run since it provides a concise record of the system performance

The necessary interface between the analog and digital modules is mechanized on Bell interface equipment. The vaniables and discretes which are transmitted over this equipment are also shown in Figure IV-14

In addition to the functional modules shown in Figure IV-14, a main program control module is also used to control the operation of the digital modules in real time This module is described in the following paragraphs

The helicopter sımulation main program (Figure IV-15 and Table IV-15) controls the operational aspects of the digital simulation modules As shown in this figure, the program loads input data into core and performs all mitial computations which can be made outside of the main simulation loop Discrete data commands are then read from the analog These include flight control mode, guidance mode, landing mode, analog mode and a group of function switches controlling input, output and termination The analog mode is tested In the IC (Initial Condition) mode, time is set to zero and all imtialization is performed In the Operate mode, a test is made to determine if the pilot commanded a mode switch, in which case a fhght control imitialization procedure is performed The helicopter module is then entered, after which tests are made to determine whether it is time to enter the Guiance or Flight Control subroutines Guidance is normally entered 8 times per second while flight control is normally entered 32 times per second The program is set up so that both guidance and flight control will be entered on the iteration at which a mode switch is detected This insures that all imitialization will occur at once In the Hold mode, all computational loops are bypassed

Figure IV-15. Hehtopter Simulation Program

Timing is accomplished by using a real time clock which interrupts the program at a determmed frequency, nommally once every 0003 second When an interrupt is received, real time is updated in the operate mode The program then resumes at the point of interruption At the end of each iteration, real time is compared with problem time and the program halts until real time is equal to the problem tume simulated on the current iteration

Several forms of proted output are avalable The program automatically prints on-lme the initial conditions, pefformance index, and landing conditions for each run At any time durmg the run, an on-line print of key problem variables may be obtaned A time history of these variables may also be recorded on tape for later offline printing In addition certain D/A outputs are always transmitted to the analog for stup chart recording and display indicators

A switch is provided to read data cards on-line if any corrections must be made while the simulation is running A termmate switch on the analog side is provided to end the program

TABLE IV-15
DEFINITION OF SYMBOLS USED IN FLOW CHART
DTRUPT Incremental time between interrupts in seconds '
IFC Number of iterations between calls to flight control subroutine
IG Number of iterations between calls to guidance subroutine
$\mathrm{N} \quad$ Iteration counter
NFC Iteration when next call to flight control subroutine is to be made
NG Iteration when next call to gurdance subroutine is to be made
RTIME Real time in seconds as computed by counting interrupts from a real time clock

- TIME Problem time in seconds as computed in helicopter module.
:2 Helicopter Module
a Flow Diagram
All of the helicopter module except for the wind model, is mechanized as a subroutine on the digital computer The digital flow diagram for this subroutine is illustrated in Figure IV-16 As shown in the figure, this subroutine is divided into different sections which can be updated at different rates In the order of the frequency (from highest to lowest) at which they are updated, these sections are (1) actuator and rotor dynamics, (2) body axis equations, and (3) ANF equations and stability derivatives

Notes
(1) Basce Entry Rate - $3<$ unmes/sec
(2) NDT = Helicopter Simulation Cycle Counter
(3) NDTMX = Number of Helicopter Simulation Cycles per Entry
(4) NBA $=$ Body Axis Equatión Counter
(5) NBAMX = Number of Helicopter Simulation Cycles Between Update of Body Axis Equations
(6) NANF = ANF Equation and Stability Derivalive Counter
(7) NANFMX = Number of Helicopter Simulation Cycles Between Updates of ANF Equations and Stabhlity Dervatives
b Actuator and Rotor Dynamics

- All of the actuator and rotor dynamic equations presented in Section IV B 2 are mechamzed in the simulation. The position limits on the stick inputs are mechanized in the following form.

$$
\begin{aligned}
\delta_{\mathrm{cl}} & =\delta_{\mathrm{c}}, \text { If } \delta_{\min } \leqslant \delta_{\mathrm{c}} \leqslant \delta_{\max } \\
& =\delta_{\min }, \text { if } \delta_{\mathrm{C}}<\delta_{\min } \\
& =\delta_{\max }, \text { if } \delta_{\mathrm{c}}>\delta_{\max }
\end{aligned}
$$

The second order actuator and rotor response transfer functions are mechanized by difference equations of the following form

$$
\delta_{\mathrm{y} 1}=\mathrm{a} \delta_{\mathrm{x} 1}+\mathrm{b} \delta_{\mathrm{x} 1-1}+\mathrm{c} \delta_{\mathrm{x} 1-2}+\mathrm{d} \delta_{\mathrm{y} 1-1}+\mathrm{e} \delta_{\mathrm{y} 1-2}
$$

where- a to e are difference equation coefficients x denotes input of transfer function
y denotes output of transfer function
idenotes current value
1-1 denotes value from first previous update
1-2 denotes value from second previous update
The difference equation coefficients are defined as

$$
\begin{aligned}
\mathrm{a} & =\Delta \mathrm{t}^{2} / \mathrm{f} \\
\mathrm{~b} & =2 \Delta \mathrm{t}^{2} / \mathrm{f} \\
\dot{c} & =\Delta \mathrm{t}^{2} / \mathrm{f} \\
\dot{\mathrm{~d}} & =\left(8 / \omega^{2}-2 \Delta \mathrm{t}^{2}\right) / \mathrm{f} \\
\mathrm{e} & =\left(4 £ \Delta \mathrm{t} / \omega-4 / \omega^{2}-\Delta \mathrm{t}^{2}\right) / \mathrm{f} \\
\mathrm{f} & =4 \delta \Delta \mathrm{t} / \omega+4 / \omega^{2}+\Delta \mathrm{t}^{2}
\end{aligned}
$$

where $\quad \dot{\Delta t}=$ update period
ω - = natural frequency
$\mathcal{L}^{-}=$damping ratıo
The rate limits on the actuator are mechanized in the following form

$$
\begin{aligned}
\delta_{\mathrm{y}} & =\delta_{\mathrm{x}}, \text { if } \delta_{\mathrm{y} 1-1}-\dot{\delta}_{\max } \Delta \mathrm{t} \leqslant \delta_{\mathrm{x}} \leqslant \delta_{\mathrm{y} 1-1}+\dot{\delta}_{\max } \Delta \mathrm{t} \\
& =\dot{\delta}_{\mathrm{y} 1-1}-\dot{\delta}_{\max } \Delta \mathrm{t} \text {, if } \delta_{\mathrm{x}}<\delta_{\mathrm{yi}-1}-\dot{\delta}_{\max } \Delta \mathrm{t} \\
\therefore & =\delta_{\mathrm{y} 1-1}+\dot{\delta}_{\max } \Delta \mathrm{t}, \text { if } \delta_{\mathrm{x}}>\delta_{\mathrm{y} 1-1}+\dot{\delta}_{\max } \Delta \mathrm{t}
\end{aligned}
$$

where $\quad \dot{\delta}_{\text {max }}$ is the maximum rate Δt is the update period

- x denotes input to rate limit y denotes output of rate limit

The hysteresis in the mechancal linkages in each channel are mechanized as shown in
Figure IV-17
The nomenclature in this figure is as follows
$\Delta \delta_{\mathrm{H}}$ is the half width of the hysteresis
x denotes hysteresis inpui
y denotes hysteresis output
c. Body Axis Equations

The body axis equation section contains (1) the linearized 6 DOF equations for the translational and angular body axis accelerations, (2) the integration of these to obtain translational and angular body axis rates, (3) the transformation of the body axis angular rates to Euler attitude rates, and (4) the integration of these to obtam Euler attitudes These equations are mechanized directly in the form in which they are presented in Section IV B I A second order Adams numerical integration formula is used for all integrations The form of this formula is,
$=y_{1+1}=y_{11}+15 \dot{y}_{1} \Delta t-05 \dot{y}_{1-1} \Delta t$
where $\quad \dot{y}$ is the integration input
y is the integration output
Δt is the update period
d ANF Equations
The ANF Equation section contains the transformation of body axis velocities to ANF velocities and the integration of these to obtain ANF positions These equations are mechanized directly in the form in which they are presented in Section IV B 1 A second order Adams numerical - integration formula is again used for all integrations in this section
e. Stability Derivatives Routine

This section computes the stability derivatives, nommals, and trims datums for the helicopter as functions of the flight conditions For any given helicopter weight and $\mathrm{c} g$ position, the equilibrium flight stability derivatives, are functions of the forward airspeed, and altitude rate, the altitude, and the rear rotor axis tilt The stability derivatives that are computed are the partial derivatives of the time derivatives of the body axis translational and angular accelerations with respect to the body axis translational and angular velocities and the rotor deflections The nommals that are computed -are the reference points about which the linearzed body axis equations are referenced The trim datums
" that are computed are the equibrium trim positions for the rotor collective, differential collective, cyclic, and differential cychic commands

Before this section was developed, it was first necessary to determine how to use the equibbrium stability derivative data to smulate transient flight conditions since non-equilibrium data could not be obtained Three methods of simulating non-equilibrium flight conditions were considered

- Figure IV-17 Hysteresis Mechanization

(1) Use the equilibrum C. of whether they are $=$
(2) Develop a procedure: • "stored nominal fhight s" conditions
(3) Develop a procedure current flight condst" "

Although the first approar neous rate of descent and velocity may : * ${ }^{6}$ ting and attitude.

The second approach requ. thions for each point along a stored norn'r niequilibrium phases such as decelerat. atermined it could also be apphed to th? "ot have any of the disadvantages assocm"' ine third approach was selected as the best

This approach requires der 'tneous operating condition By "closer" hose (unknown) dervatives which actua/

Using the equilibrium dat ${ }^{4}$. lelocity and a rate of descent (neglectins:** tate can be specified by specifying enther ; tate can be specified by specifying enther
thed of these two quantities is then mphist

Investigations indicated $\hbar_{5} 5^{\circ}$ Ftifect on the stability and control derivaty selected for determining the closest equmrs the one which would exist if angle-of-dll it faneous velocity and collective power sellm,"

The mechanization and spet ation velocities, wind components along ith ward airspeed, $\mathrm{V}_{\mathrm{A} / \mathrm{H}}$, in the plane of the *

The rotor collective power setting, alilith, equibrnum altitude rate, $\hat{h}_{e q}$, corresprimimit ffiuch this is done can best be described all lernvatives, nominals, and trim datums ind

The stabinty denvatuec, pill 2 forward airspeed, the equilibrum athtith setting, attitude, and rear rotor axis (ill linear interpolation is first used to delm" lorward alrspeed and the equiliblum sim" seltung. In general,
gle-of-attack (or vertical velocity) will have a smaller didn collective power setting Hence, the approach ,if condition to a given nonequilibrium point is to use // re adjusted for translational equilibrium at the instan-
-rresponding to the current fight conditions regardless tibrum conditions or not
leterminug the closest equibrum conditions along a use the equibrium data corresponding to nominal
setermming the closest equibriurn conditions to the
the simplest, it can result in large errors, since the instan20 different fiom the equilibrium values for the same power

Bquilibrum point is specified by specifying a forward de effects) For a given velocity, an equilibrium chmb .active power setting or an angle-of-attack, the unspecsiefined by the requirement for equilibrium
a procedure for determining the closest equilibrum contight However, since the nominal flight itself will invoive Ass, it became apparent that, once such a procedure is al fhght conditions This is the third approach, and does , irh operating about a fixed nommal flight As a result, ,rnative
\%ning the equilibrum point closest to any given instan, aeant the one whose derivatives are most nearly equal to $/$ sit at the instantaneous point
\qquad
1 hifin of this subroutme is as follows The helicopter body ; i/y axes, and pitch attitude are used to compute the forlity axis
$(11 / \sqrt{w}) \sin \theta$
1119 rear rotor axis trim change are used to compute the is the rotor collectuve power setting The manner in i he procedure that is used for computing the stability i 1 l described
ilflids, and trim datums are then computed as functions of
f1. yorresponding to the current fotor collective power ih this a two dimensional table lookup procedure with h心 stability derivatives, ete as functions of the current fate corresponding to the current rotor collective power

$$
\mathrm{C}^{\prime}(\mathrm{I})=\mathrm{f}\left(\mathrm{~V}_{\mathrm{A} / \mathrm{I}}, \ddot{\mathrm{~h}}_{\mathrm{eq}}\right)
$$

where C^{\prime} (1) is a stability derivative, etc
A" one dimensional table lookup procedure with hnear interpolation is then used to determine the effect of altitude on these denvatives as a function of forward airspeed

$$
\begin{aligned}
& \partial \mathrm{C}(1) / \partial \mathrm{h}=\mathrm{f}\left(\mathrm{~V}_{\mathrm{A} / \mathrm{H}}\right) \\
& \Delta \mathrm{C}_{\mathrm{h}}(1)=(\partial \mathrm{C}(1) / \partial \mathrm{h}) \mathrm{h}
\end{aligned}
$$

Since the pilot normally retrims the rear rotor at speeds gieater than 80 krots, the effect of this trim change on the derivatives, etc is also computed by looking up the effect of the trim change on each derivative, etc at 80 knots and multiplying it by the rear rotor axis tilt, δ RR, which is read from the cockpit over an A/D conversion channel

$$
\Delta \mathrm{C}_{\mathrm{RR}}(1)=\Delta \mathrm{C}(1)_{\max }\left(\delta_{\mathrm{RR}} / \delta_{\mathrm{RR}, \max }\right)
$$

The altitude and rear rotor tim change effects are then added to the derivatives, etc - that were computed as functions of forward arspeed and equilibrium altitude rate to obtain the total derivatives, etc

$$
C(1)=C^{\prime}(1)+\Delta C_{h}(1)+\Delta C_{R R}
$$

The stability derivatives, nommals, and trim datums that are computed in this manner are as follows, (1) stability derivatives $\mathrm{XU}_{\mathrm{U}} / \mathrm{m}, \mathrm{X}_{\delta_{\mathrm{C}}} / \mathrm{m}, \mathrm{X}_{\delta_{\mathrm{e}}} / \mathrm{m}, \mathrm{ZU} / \mathrm{m}, \mathrm{ZW} / \mathrm{m}, \mathrm{Z}_{\delta_{\mathrm{C}}} / \mathrm{m}, \mathrm{Z} \delta_{\mathrm{e}} / \mathrm{m}, \mathrm{MU} / \mathrm{lYY}$,
 $\mathrm{Np} / \mathrm{I}_{\mathrm{ZZ}}, \mathrm{N}_{\mathrm{R}} / \mathrm{I}_{\mathrm{ZZ}}$, and $\mathrm{N}_{\delta_{\mathrm{T}}} / I_{\mathrm{ZZ}},(2)$ nominals θ_{O}, and (3) trim datums $\delta_{\text {cro }}, \delta_{\text {ero }}, \delta_{\text {aro }}$, and $\delta_{\text {rro }}$

In addition, the nominal pitcl attitude computed by the above procedure is used along with the current forward arrspeed and the equilibrium altitude rate corresponding to the current rotor collective power setting to compute the nommal body axis velocities along the x and z body axes

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{o}}=\mathrm{V}_{\mathrm{A} / \mathrm{H}} \cos \theta_{\mathrm{o}}+\mathrm{h}_{\mathrm{eq}} \sin \theta_{\mathrm{o}} \\
& \mathrm{~W}_{\mathrm{o}}=\mathrm{V}_{\mathrm{A} / \mathrm{H}} \sin \theta_{\mathrm{o}}-\hat{\mathrm{h}}_{\mathrm{eq}} \cos \theta_{\mathrm{o}}
\end{aligned}
$$

It is apparent at this point that the equilibrium trim datum for the rotor collective power setting, $\delta_{\text {cro }}$, is one of variables that is computed as a function of forward arspeed and equilibrium altitude rate in the two dimensional table lookup procedure Because of this, it is possible, through a reverse lookup procedure, to enter this table with the current forward arrspeed and collective power setting and determine the equilibrium altitude rate that corresponds to that collective power setting

$$
\mathrm{h}_{\mathrm{eq}}=\mathrm{f}^{\prime}\left(\mathrm{V}_{\mathrm{A} / \mathrm{H}}, \delta_{\mathrm{cro}}^{\prime}\right)
$$

However, before this can be done, the altitude and rear rotor trim change effect on the rotor collective setting must be computed and subtracted from the current rotor collective setting since the table being used is for sea level, no trim change conditions

$$
\begin{aligned}
\partial \delta_{\mathrm{c}_{\mathrm{O}}} / \partial \mathrm{h} & =\mathrm{f}\left(\mathrm{~V}_{\mathrm{A} / \mathrm{H}}\right) \\
\dot{\Delta \delta_{\mathrm{c}_{\mathrm{O}}} / \mathrm{h}} & =\left(\partial \delta_{\mathrm{c}_{\mathrm{O}}} / \partial \mathrm{h}\right) \mathrm{h} \\
\Delta \delta_{\mathrm{c}_{\mathrm{O}}} / \mathrm{RR} & =\Delta \delta_{\mathrm{C}_{\mathrm{O} \text { max }}}\left(\delta_{\mathrm{RR}} / \delta_{\mathrm{RR} \max }\right) \\
\delta_{\mathrm{cro}}^{\prime} & =\delta_{\mathrm{cro}}-\Delta \delta_{\mathrm{c}_{\mathrm{O}} / \mathrm{h}}-\Delta \delta_{\mathrm{c}_{\mathrm{O}} / \mathrm{RR}}
\end{aligned}
$$

This is the procedure that is used to compute the equilibrium altitude rate corresponding to the current rotor collective power setting in the stability derivative subroutine

3 Fhght Data Systems Module
a Strapdown System
This section describes the simulation models developed for the strapdown system from data supplied by NASA-ERC on this system These error models were used during the evaluation of the Digital Flight Control and Landing System

(1) Gyro Pulses

A prome error in the accumulated attitude pulses from the pulse rebalanced gyros in the strapdown system is due to roundoff The magnitude of this error is dependent on the quantization level used and the rate at which the gyros are rebalanced If there were no other errors in these pulses, the distribution of this error would depend only on the actual magnitude and direction of change of the attitude being measured and would be a sawtooth type function for a constant attitude rate How-- ever, since the pulses will contain other errors, due to such things as vibration, that will probably be of the same order of magnitude as the roundoff error, the error after roundoff will probably be noisy and somewhat random in nature Therefore, in the simulation, this error is simulated by an evenly distributed \checkmark random error of the following form (pitch axis used for example),

$$
\begin{aligned}
\Delta \theta^{\prime} & =\left(\frac{Q_{\text {low }}}{N_{\mathrm{G}}}\right)\left(\Delta \theta^{\prime}\right)_{\mathrm{ED}}^{\infty}, \text { if } \mathrm{Q} \leqslant \mathrm{Q}_{\text {low }} \\
& =\left(\frac{\mathrm{Q}_{\text {high }}}{N_{\mathrm{G}}}\right)\left(\Delta \theta^{\prime}\right)_{\mathrm{ED}}^{*}, \text { if } Q>\mathrm{Q}_{\text {low }}
\end{aligned}
$$

.where $\quad \mathrm{Q}_{\text {low }}=$ maxımum measurable attitude pulse rate at low scalıng
$\mathrm{Q}_{\text {high }}=$ maxımum measurable attitude pulse rate at high scaling
$\mathrm{N}_{\mathrm{G}}=$ gyro rebalance rate
$\left(\Delta \theta^{\prime}\right)_{\mathrm{ED}}^{*}=$ an evenly distributed random number with an amplitude of one

- (2) Body Axis Angular Rates

In the strapdown system, the accumulated attitude pulses are numerically differentrated to obtain the body axis angular rates A typical difference equation for performing this differentiation was provided by NASA-ERC and is of the form (pitch axis used for example),

$$
\mathrm{Q}=\left[15 \theta_{2}^{\prime}-05 \theta_{1}^{\prime}\right] 2 N_{A R}
$$

where

$$
1
$$

$0^{\prime}{ }_{2}=$ pulses accumulated over second half of update period

- $\theta^{\prime}{ }_{1}=$ pulses accumulated over first half of update period
$\mathrm{N}_{\mathrm{AR}}=$ update rate of angula late computation
Fiom this difference equation, it can be seen that the noise error in the accumulated gyro pulses will cause a noise error in the computed anguiar rates that will be of the following form

$$
\Delta \mathrm{Q}_{\mathrm{N}}=\left[15 \Delta \theta_{2}^{\prime}-05 \Delta \theta_{1}^{\prime}\right] 2 \mathrm{~N}_{\mathrm{AR}}
$$

This error is computed in this mannes in the simulation It is then added to the angular rates to form the angular rates that are used in the fhght control laws

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{FC}}=\mathrm{P}+\Delta \mathrm{P}_{\mathrm{N}} \\
& \mathrm{Q}_{\mathrm{FC}}=\mathrm{Q}+\Delta \mathrm{Q}_{\mathrm{N}} \\
& \mathrm{R}_{\mathrm{FC}}=\mathrm{R}+\Delta \mathrm{R}_{\mathrm{N}}
\end{aligned}
$$

(3) Euler Angles

In the strapdown navigational system, the accumulated gyro pulses are also integrated to update the direction cosme matrix for the Euler angles. The appropriate terms in this matrix are then inversely resolved to obtain the Euler angles A typical numerical integration procedure (second order Runge-Kutta) for updating the direction cosme matrix was provided by NASA-ERC and is of the following form
where

$$
C_{n+1}^{N B}=C_{n}^{N B}\left(1+\left[\theta_{x}^{\prime}\right]^{\prime}+5\left[\theta_{1}^{\prime} x\right]\left[\theta_{2}^{\prime} x\right]-15\left[\theta_{1}^{\prime} x\right]^{2}-15\left[\theta_{2}^{\prime}{ }_{2}\right]^{2}\right)
$$

$\left[0^{\prime}{ }_{1} \mathrm{x}\right]=$ matrix summation of attitude pulses over first half of update penod
$\left[\theta^{\prime}{ }_{2} \mathrm{x}\right]=$ matrix summation of attitude pulses during second half of update period

$$
\left[\theta_{\mathrm{x}}^{\prime}\right]=\left[\begin{array}{ccc}
0 & -\theta_{\mathrm{z}} & \theta_{\mathrm{y}} \\
\theta_{\mathrm{z}} & 0 & -\theta_{\mathrm{x}} \\
-\theta_{\mathrm{y}} & \theta_{\mathrm{x}} & 0
\end{array}\right]
$$

This integration procedure was analyzed for error propagation and it was found that the rms value of the noise error propagated through all terms is only about 5% greater than that propagated through the [$\left.\theta^{\prime} \mathrm{x}\right]$ term alone Therefore, for simulation purposes, only this term is considered It was further found that the resulting noise error in the direction cosine matrix transforms into a nouse error in the Euler angles through the normal Euler rate transformation. In the simulation, this error is computed as,

Belf Reraspace Company

$$
\begin{aligned}
\Delta \psi_{\mathrm{N}} & =\left(\Delta \theta^{\prime} \sin \phi+\Delta \psi^{\prime} \cos \phi\right) / \cos \theta \\
\Delta \theta_{\mathrm{N}} & =\Delta \theta^{\prime} \cos \phi+\Delta \psi^{\prime} \sin \phi \\
\Delta \phi_{\mathrm{N}} & =\Delta \phi^{\prime}+\Delta \psi_{\mathrm{N}} \sin \theta
\end{aligned}
$$

In addition to the noise error in the Euler angles, there is also a drift error which results from the propagation of the errors in the accumulated attitude pulses and from eirors in the integration procedure itself In the smulation, this crror is computed as (pitch axis used for example)
where

$$
\Delta \theta_{\mathrm{D}}=\left(\mathrm{k}_{\mathrm{D}} \mathrm{Q}^{3} / \mathrm{N}_{\mathrm{DC}}{ }^{2}\right) / \mathrm{s}
$$

$\mathrm{k}_{\mathrm{D}}=$ drift constant ,
$\mathrm{N}_{\mathrm{DC}}=$ update rate of direction cosine matrix integration
The noise and drift errors are then added to the Euler angles to obtain the angles that are used in the flight control laws
$\psi_{\mathrm{FC}}=\psi+\Delta \psi_{\mathrm{N}}+\Delta \psi_{\mathrm{D}}$
$\theta_{\mathrm{FC}}=\theta+\Delta \theta_{\mathrm{N}}+\Delta \theta_{\mathrm{D}}$
$\phi_{\mathrm{FC}}=\phi+\Delta \phi_{\mathrm{N}}+\Delta \phi_{\mathrm{D}}$

(4) Body Axıs Accelerations

The error model for the accelerometers was provided by NASA-ERC and consists of Gaussian white noise shaped through a $100 \mathrm{radian} / \mathrm{sec}$ filter In the simulation, this noise error is being represented simply by a normally distributed iandom number of the following form (longitudinal acceleration used for example)

$$
\Delta \dot{\mathrm{U}}_{\mathrm{N}}=\sigma_{\mathrm{N}} \Delta \dot{\mathrm{U}}^{*} \mathrm{ND}
$$

where

$$
\begin{aligned}
& \sigma_{N} \quad=\text { standard deviation } \\
& \Delta \dot{U}^{*} N D=\text { normally distrbuted random number with mean of zero and standard } \\
& \text { deviation of one }
\end{aligned}
$$

The $100 \mathrm{rad} / \mathrm{sec}$ filtel is not included since this error is generated at a rate that excludes frequencies greater than $100 \mathrm{rad} / \mathrm{sec}$

(5) Body Axis Velocities

In the strapdown system, the sensed accelerations are integrated to obtain the body axis velocities For a typical trapezordal numerical integration method, the noise error in the sensed accelerations will be propagated through the integration into an error in the body axis velocities in the following manner (longitudinal velocity sed for example)

$$
\Delta \mathrm{U}_{\mathrm{N}}=05\left(\Delta \dot{\mathrm{U}}_{\mathrm{N} / \mathrm{n}}+\Delta \mathrm{U}_{\mathrm{N} / \mathrm{n}-1}\right) / \mathrm{N}_{\mathrm{V}}+\Delta \mathrm{U}_{\mathrm{N} / \mathrm{n}-\mathrm{l}}
$$

where $\quad N_{v}=$ update rate of velocity integration

A drift error is also computed as,

$$
\Delta \mathrm{U}_{\mathrm{D}}=\Delta \dot{\mathrm{U}}_{\mathrm{D}} / \mathrm{s},
$$

where

$$
\Delta \dot{U}_{\mathrm{D}}=\text { drff rate }
$$

The noise and drift errors are then added to the body axis velocities to obtain the body axis velocifies that are used in the flight control laws

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{FC}}=\mathrm{U}+\Delta \mathrm{U}_{\mathrm{N}}+\Delta \mathrm{U}_{\mathrm{D}} \\
& \mathrm{~V}_{\mathrm{FC}}=\mathrm{V}+\Delta \mathrm{V}_{\mathrm{N}}+\Delta \mathrm{V}_{\mathrm{D}} \\
& \mathrm{~W}_{\mathrm{FC}}=\mathrm{W}+\Delta \mathrm{W}_{\mathrm{N}}+\Delta \mathrm{W}_{\mathrm{D}}
\end{aligned}
$$

(6) Inertal Velocities

In the strapdown system, the body axis velocities are transformed into inertial velocities through an Euler resolution This resolution is of the form

$$
\left[\begin{array}{c}
\dot{\mathrm{X}} \\
\dot{\mathrm{Y}} \\
\dot{\mathrm{Z}}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{C} \psi \mathrm{C} \theta & \begin{array}{l}
\mathrm{C} \psi \mathrm{~S} \theta \mathrm{~S} \phi \\
\\
\\
\mathrm{~S} \psi \psi \mathrm{C} \phi
\end{array} & \begin{array}{l}
\mathrm{C} \psi \mathrm{~S} \theta \mathrm{C} \phi \\
\mathrm{CS} \psi \mathrm{~S} \phi \\
\\
\\
\mathrm{~S} \theta
\end{array} \\
\begin{array}{l}
\mathrm{S} \psi \mathrm{~S} \theta \mathrm{~S} \phi \\
+\mathrm{C} \psi \mathrm{C} \phi
\end{array} & \begin{array}{l}
\mathrm{S} \psi \mathrm{~S} \theta \mathrm{C} \phi \\
-\mathrm{C} \psi \mathrm{~S} \phi \\
\mathrm{~S} \phi \mathrm{C} \theta
\end{array} & \mathrm{C} \theta \mathrm{C} \phi
\end{array}\right]\left[\begin{array}{l}
\mathrm{U} \\
\mathrm{~V} \\
\mathrm{~W}
\end{array}\right]
$$

From this transformation, it can be seen that the errors in both the body axis velocities and Euler angles will be propagated into errors in the inertial velocities For small angle approximations on pitch and roll, the errors in the inertial velocities are of the form

$$
\begin{aligned}
\Delta \dot{\mathrm{X}}_{\mathrm{E}}= & \mathrm{C} \psi \Delta \mathrm{U}_{\mathrm{E}}-\mathrm{S} \psi \Delta \mathrm{~V}_{\mathrm{E}}+(\mathrm{C} \psi \theta+\mathrm{S} \psi \phi) \Delta \mathrm{W}_{\mathrm{E}} \\
& -\left(\mathrm{US} \psi+\mathrm{VC} \psi+\mathrm{W}(\mathrm{~S} \psi \theta-\mathrm{C} \psi \phi) \Delta \psi_{\mathrm{E}}+\mathrm{WC} \psi \Delta \theta_{\mathrm{E}}+\mathrm{WS} \psi \Delta \phi_{\mathrm{E}}\right. \\
& = \\
\Delta \dot{\mathrm{Y}}_{\mathrm{E}}= & \mathrm{S} \psi \Delta \mathrm{U}_{\mathrm{E}}+\mathrm{C} \psi \Delta \mathrm{~V}_{\mathrm{E}}+(\mathrm{S} \psi \theta-\mathrm{C} \psi \phi) \Delta \mathrm{W}_{\mathrm{E}} \\
& +(\mathrm{UC} \psi-\mathrm{VS} \psi+\mathrm{W}(\mathrm{C} \psi \theta-\mathrm{S} \psi \phi)) \Delta \psi_{\mathrm{E}}+\mathrm{WS} \psi \Delta \theta_{\mathrm{E}}-\mathrm{WC} \psi \Delta \phi_{\mathrm{E}} \\
\therefore \quad & \\
\Delta \dot{\mathrm{Z}}_{\mathrm{E}}= & -\theta \Delta \mathrm{U}_{\mathrm{E}}+\phi \Delta \mathrm{V}_{\mathrm{E}}+\Delta \mathrm{W}_{\mathrm{E}}-\mathrm{U} \Delta \theta_{\mathrm{E}}+\mathrm{V} \Delta \phi_{\mathrm{E}}
\end{aligned}
$$

These errors are computed in this manner in the simulation They are then added to the inertial velocities to obtain the inertial velocities that are used in the flight control laws

$$
\begin{aligned}
& \dot{\mathrm{X}}_{\mathrm{FC}}=\dot{\mathrm{X}}+\Delta \dot{\mathrm{X}}_{\mathrm{E}} \\
& \dot{\mathrm{Y}}_{\mathrm{FC}}=\dot{\mathrm{Y}}+\Delta \dot{\mathrm{Y}}_{\mathrm{E}} \\
& \dot{\mathrm{Z}}_{\mathrm{FC}}=\dot{\mathrm{Z}}+\Delta \dot{\mathrm{Z}}_{\mathrm{E}}
\end{aligned}
$$

(7) Ineital Postions

In the strapdown system, the mertial positions are obtained by integrating the inertal velocities For a typical trapezoidal numerical integration method, the noise error in the inertial velocities will be propagated through the integration into noise errors in the inertal velocities in the following manner (longitudinal position used for example)

$$
\Delta \mathrm{X}_{\mathrm{N}}=05\left(\Delta \dot{\mathrm{X}}_{\mathrm{N} / \mathrm{n}}+\Delta \dot{\mathrm{X}}_{\mathrm{N} / \mathrm{n}-1}\right) / \mathrm{N}_{\mathrm{P}}+\Delta \mathrm{X}_{\mathrm{N} / \mathrm{n}-1}
$$

where $\quad N_{p}=$ update rate of position integration
The dift error in the inertial velocities will also be propagated though the integration into diff errors in the mertial positions in the following manner (longitudinal position used for example)

$$
\Delta \mathrm{X}_{\mathrm{D}}=\Delta \mathrm{X}_{\mathrm{D} / \mathrm{n}-1}+05\left(\Delta \mathrm{X}_{\mathrm{D} / \mathrm{n}}+\Delta \dot{\mathrm{X}}_{\mathrm{D} / \mathrm{n}-1}\right) / \mathrm{N}_{\mathrm{P}}
$$

These equations are used to compute the noise and drift eriors in the inertial positions in the simulation These errors are then added to the inertial positions to obtain the positions that are used in the guidance laws

b Radar Update System

In the arborne system, the mertal position data from the strapdown system is updated by a precision GSN-S radar system This reduces the errors in the updated positions to those in the radar mformation at the update points This is simulated by resetting the initial conditions ($\Delta \mathrm{X}_{\mathrm{D} / \mathrm{n}-1}, \Delta \mathrm{Y}_{\mathrm{D} / \mathrm{n}-1}$, and $\Delta \mathrm{Z}_{\mathrm{D} / \mathrm{n}-1}$) on the mertial position dift error integrators to the errors that exist in the radar information at the update points A specified number of discrete updates per flight are smulated and these occur as a function of range Therefore, instead of computing the radar errors on line in the simulation, they are computed off line and stored in a table for several discrete range points Whenever the range, $X X \mid$ in the simulation first becomes equal to or less than a stored update value, the intial conditions on the inertal position drift error integrators are set equal to the stored radar position errors

$$
\begin{aligned}
& \text { If } \mathrm{X} \mid \leqslant X_{1} \\
& \Delta \mathrm{X}_{\mathrm{D} / \mathrm{n}-1}=\Delta \mathrm{X}_{\mathrm{R} 1} \\
& \Delta \mathrm{Y}_{\mathrm{D} / \mathrm{n}-1}=\Delta \mathrm{Y}_{\mathrm{R} 1} \\
& \Delta \mathrm{Z}_{\mathrm{D} / \mathrm{n}-1}=\Delta \mathrm{Z}_{\mathrm{R} 1}
\end{aligned}
$$

The initial conditions on the integrators are set only once when an update point occurs and then are allowed to integrate up until the next update point is reached

In the arborne system, the radar information will gradually be blended with the strapdown system information when an update occurs to prevent sharp discontinuities This is simulated by rate hmiting the updated inertial position errors from the integrators as follows (longitudinal position used for example)

$$
\begin{aligned}
& \Delta X_{D \max }-\Delta X_{\left[y^{\prime}, / n-1\right.}+\dot{X}_{\max } \Delta t \\
& \Delta X_{D} \operatorname{mn}=\Delta X_{f+1 / n+1}-\dot{X}_{\max } \Delta t \\
& \Delta X_{\mathrm{DU}} \cong \Delta X_{i f / 3 ; 1}, \text { if } \Delta \mathrm{X}_{\mathrm{D} \text { min }} \leqslant \Delta \mathrm{X}_{\mathrm{D} / \mathrm{n}-1} \leqslant \Delta \mathrm{X}_{\mathrm{D} \text { max }} \\
& =L X_{1 /} \text { is } x^{, i f} \Delta X_{D / n-1}>\Delta X_{D \max } \\
& =\Delta \lambda_{[j} m_{m} \text {, if } \Delta X_{D / n-1}<\Delta X_{D ~ m i n} \\
& \Delta \mathrm{X}_{\mathrm{DU} / \mathrm{n}-1}=\Delta \mathrm{X} \mid \mathrm{HI}
\end{aligned}
$$

From the ellor intiol presented for the prot tube in Section IV B 5, it can be seen that the final noise error in hee sellul arspeed is always about ± 3 knots at speeds greater than about 50 knots regardless of the nagminhs of the individual errors that make up this final noise error Below this speed, the final noise eifor mitwises due to the downwash effect of the rotors but its magnitude is primarily a function of fort and anpled As a result of this, the final noise error in the sensed forward arspeed is computed in the smulaition. The equations used for this are
where $\quad \sigma_{\mathrm{Va}} \quad=\operatorname{stan}^{2}+1$ deviation
$\begin{aligned} \mathrm{k}_{\sigma / \mathrm{V}} & =\text { clictof dirspeed on standard deviation } \\ \Delta V_{a}^{\times} / \mathrm{ND} & =\text { no } \\ & \text { delitly distributed random number with zero mean and standard }\end{aligned}$
In the smbeation shaping that is included in tie erri model

In addition, when melicopter is at an angle of attack or sideslip angle, a bias error will exist in the sensed arsperd spハ the axis of the pitot tube will not be ahgned with the velocity vector In the simulation, Ehis binury is computed as,

$$
\Delta V_{a / B}=-0 s(1-\cos \tau) V_{a}
$$

where $\tau \quad=$ thersid angle of incidence between the pitot tube axis and the
These errorm are ${ }^{2}$ unded to the computed arspeed to obtan the arrspeed that is used in the flight control laws

$$
V_{a / F C}=V_{a}^{r-\lambda k_{3} / N}+\Delta V_{a / B}
$$

d Sideslıp (β) Vane
From the error model that was developed for the " β " vane during the first quarter and presented in the first quarterly report, it can be seen that the final noise error in the sensed sidesip is always about $\pm 025^{\circ}$ for speeds greater than about 30 knots Since thas covers the range over which it is planned to use the " β " vane m the flight control laws, the stdeslip error in the simulation is represented sumply by a normally distributed random number with a standard deviation of 025° Agan, this enor is generated at a rate that approximates the $62 \mathrm{rad} / \mathrm{sec}$ filter shaping that is included in the error model

4 Guidance and Flight Control Module

This section contams the guidance and flight control laws described in Section III These are mechanized in a form that is functionally identical to that presented in the Final Flight Control and Guidance Software documents and, therefore, will not be repeated here

Cockpit Module
A cockpit simulator is incorporated into the total simulation of the helicopter The cockpit panel display and control functions are patterned after the CH- 46 C helicopter

The cockpit simulator consists of three units, the cockpit, the electronic cabinet, and the hydrauhic unit The cockpit stick and pedal controls have hydraulic force opposition There is pitch and roll trimming for the stick and yaw trimming for the pedals The hydraulic feel forces may be vared from the control panel of the electronic cabinet A collective stick is provided that has a controllable drag adjustment

The cockpit display layout is shown in Figure IV-18 The arrspeed is shown in knots from -40 to +160 The heading indicator is in degrees from -180 to +180 The flight path angle is calibrated from +40 to -20 degrees The angle of attack meter also ranges from +40 to -20 degrees The attitude reference indicator will show +60 to -60 degrees of pitch and +60 to -60 degrees of bank The turn rate meter will show a maximum of 1 minute turn The vertical and horizontal bars of the indicator display command or velocity errors The scope display of the cockpit is used to display X, Y position by a variable positioned dot The altimeter is a standard arcraft instrument The vertical speed meter is scaled in feet per second

A push button control display is attached to the right side of the cockpit panel There are eight modes of operation selectable from the display. These are

1.	SAS	5	VEL 2
2	ATT 1	6	VEL 3
3.	ATT 2	7	AUTO
4	VEL 1	8.	LAND

A sidearm controller has been added to the cockpit for mnvestigation of the velocity modes The sidearm controller is a NASA 3-axis unit obtained from Houston for another NASA program

Figure IV-18 Cockpit Displays

V RESULTS OF EVALUATION

A GENERAL

The evaluation criteria used are discussed in Section III B 1 e After optimization of the plot's controls sensitivities and the scaling of the FDI display, a test procedure was set up Table V-1 shows the mital conditions whech were employed with all modes Table V-2 shows additional mitial conditions used with the AUTO, VEL 1 and ATT 2 modes These modes were singled out for additional testing with 30 knot winds and the full amplitude of wind gusts (sec Data Base in Section IV) because they were the most flyable modes

After indoctrination in the cockpit routine and instrumentation, and several familiarization runs by the pilot, any small disciepancies noted by the pilot were corrected, before the beginning of the final or "official" ploted runs

The pilot operated the simulator in each mode, subject to the initial offsets and wind conditions listed in Tables V-1 and 2 The profile of the fixed path, which the pilot was directed to fly is discussed in Section III C Each run was repeated twice and the results were averaged to obtan a numerical value of the Performance Index (PI), touchdown velocity (Z_{TD}), forward velocity ($\dot{\mathrm{X}}_{\mathrm{TD}}$), lateral velocity (Y_{TD}) and radial error (R_{TD}) for the respective mode and mitial condition After each run, the pilot numerically rated the handling qualities during the simulated flight, based on the Cooper rating scale discussed in Section III B 1 e A sample computer printout of initial conditions, the operational mode, landing conditions, and PI, obtaned after each run, is shown in Figure V-1

The simulator was operated in the AUTO mode with the pilot in the seat During the prehmmary optımizing, the pilot was directed to supply stick inputs during the AUTO runs, to evaluate the feasibility of pilot assists during AUTO landings This feature was deleted from the program, after it appeared that the PI was being degraded by pilot inputs and the philosophy was adopted that switching to a manual mode was preferable to mixing AUTO and manual inputs

B DATA COMPILED

Table V-3 lists the forward speed, \dot{X}_{TD}, lateral speed, Y_{TD}, sink rate, $\dot{\mathrm{Z}}_{\mathrm{TD}}$, radial offset error, R_{TD}, and the roll angle, ϕ, observed at touchdown Defining a good landing as $\left|\mathrm{X}_{\mathrm{TD}}\right|<3$ $\mathrm{ft} / \mathrm{sec},\left|\mathrm{Y}_{\mathrm{TD}}\right|<3 \mathrm{ft} / \mathrm{sec}, \mathrm{Z}_{\mathrm{TD}}<5 \mathrm{ft} / \mathrm{sec}$ (note $3 \mathrm{ft} / \mathrm{sec}$ was programmed desired value), $|\phi|<25^{\circ}, \mathrm{R}_{\mathrm{TD}}<30 \mathrm{ft}$, Table V-3 shows
$1 \quad\left|\dot{X}_{\mathrm{TD}}\right|>3 \mathrm{ft} / \mathrm{sec}$

one case	ATT 1
one case	SAS

Condition 8
Condition 8
$2 \quad\left|\mathrm{Y}_{\mathrm{TD}}\right|>3 \mathrm{ft} / \mathrm{sec}$
two cases SAS
Condition 8, 14
(Continued on page V-5)

TABLE V- 1
FLIGHT TEST CONDITIONS - ALL MODES

Ran Number Condition	Intial Conditions		Winds		
	Y	,	Veloctity (knots)	Drection	Gusts
1	0	0	0	0	No
2	0	- 0	0	0	Yes
3	0	0	15	0°	Yes
4	0	0	15	90°	Yes
5	0	0	15	180°	Yes
6	1000	0	0	0	No
7	1000	0	15	0°	Yes
8	1000	0	15	90°	Yes
9	1000		15	180°	Yes
10	0	30°	0	0	No
11	0	30°	0	-0	Yes
12	0	30°	15	0°	Yes
13	0	30°	15	90°	Yes
14	0	30°	15	180°	Yes

TABLE V-2
ADDITIONAL FLIGHT TEST CONDITIONS - AUTO, VEL 1, AND AY多 KODES

Run Number - Condition	Intial Conditions		Wimds		
	Y	ψ	Velocity (knots)	Drection	Gusts
15	0	0	30	0°	
16	- 0	0	30	90°	\%es

Bell

Figure V-I Sample Computer Output

TABLE V-3
IOUCHDOWN CONDITION DATA

		Mode	$\begin{gathered} \dot{\mathrm{X}}_{\mathrm{TD}} \\ (\mathrm{f} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \dot{\hat{Y}}_{\mathrm{TD}} \\ (\mathrm{f} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} Z_{\mathrm{TD}} \\ (\mathrm{ft} / \mathrm{sec}) \end{gathered}$	R_{TD} (ft)	$\begin{gathered} \phi \\ (\mathrm{deg}) \end{gathered}$
	1	AUTO VEL 1 VFL ATT 2 ATT 1 SAS	$\begin{gathered} 094 \\ 088 \\ 068 \\ -031 \\ 096 \\ 033 \end{gathered}$	$\begin{aligned} & 001 \\ & -0025 \\ & -011 \\ & .088 \\ & -062 \\ & -025 \end{aligned}$	$\begin{aligned} & 389 \\ & 285 \\ & 312 \\ & 115 \\ & 405 \\ & 400 \end{aligned}$	$\begin{array}{r} 171 \\ 94 \\ 154 \\ 32 \\ 196 \\ 165 \end{array}$	$\begin{array}{r} 014 \\ 007 \\ -006 \\ -030 \\ -189 \\ -000 \end{array}$
	2	AUTO VEL 1 ATT I SAS	$\begin{aligned} & 15 \\ & 071 \\ & 15 \\ & 101 \end{aligned}$	$\begin{array}{r} 003 \\ -003 \\ 055 \\ -009 \end{array}$	$\begin{aligned} & 388 \\ & 29 \\ & 387 \\ & 425 \end{aligned}$	$\begin{gathered} 1663 \\ 170 \\ 221 \\ 71 \end{gathered}$	$\begin{aligned} & 004 \\ & 017 \\ & 027 \\ & 088 \end{aligned}$
	3	AUTO VEL 1 VEL 3 ATT 2 ATT: SIS	$\begin{array}{r} 080 \\ 193 \\ 1.18 \\ 119 \\ -050 \\ -220 \end{array}$	$\begin{aligned} & 002 \\ & 111 \\ & -10 \\ & -025 \\ & .095 \\ & 060 \end{aligned}$	$\begin{aligned} & 311 \\ & 506 \\ & 225 \\ & 325 \\ & 425 \\ & 49 \end{aligned}$	$\begin{gathered} 846 \\ 218 \\ 996 \\ 1308 \\ 209 \\ 158 \end{gathered}$	$\begin{array}{r} 007 \\ -042 \\ 037 \\ 009 \\ 050 \\ 076 \end{array}$
	4	AUTO VLL 1 VEL 3 ATT 2 ATT 1 SAS	$\begin{aligned} & 129 \\ & 010 \\ & 072 \\ & 028 \\ & 142 \\ & 009 \end{aligned}$	$\begin{array}{r} 002 \\ 055 \\ -123 \\ -085 \\ 104 \\ -233 \end{array}$	268 27 237 235 29 463	$\begin{aligned} & 212 \\ & 1019 \\ & 136 \\ & 117 \\ & 1405 \\ & 188 \end{aligned}$	$\begin{aligned} & 004 \\ & 180 \\ & 070 \\ & 069 \\ & 100 \\ & 007 \end{aligned}$
	5	AUTO VEL 1 VEL 3 ATT 2 ATT 1 SAS	$\begin{aligned} & 154 \\ & 05 \\ & 035 \\ & 064 \\ & 153 \\ & 042 \end{aligned}$	$\begin{aligned} & -07 \\ & -05 \\ & -065 \\ & -061 \\ & -033 \\ & -045 \end{aligned}$	$\begin{aligned} & 369 \\ & 362 \\ & 36 \\ & 336 \\ & 44 \\ & 47 \end{aligned}$	$\begin{gathered} 66 \\ 72 \\ 133 \\ 138 \\ 97 \\ 904 \end{gathered}$	$\begin{gathered} -01 \\ 035 \\ 003 \\ 035 \\ 018 \\ 029 \end{gathered}$
	6	AUTO VEL 1 VEL 3 ATT 2 ATT 1 SAS	$\begin{aligned} & 102 \\ & 040 \\ & 009 \\ & 064 \\ & 129 \\ & 055 \end{aligned}$	-003 039 -057 085 -002 005	$\begin{aligned} & 40 \\ & 275 \\ & 30 \\ & 35 \\ & 39 \\ & 389 \end{aligned}$	$\begin{aligned} & 306 \\ & 179 \\ & 121 \\ & 112 \\ & 181 \\ & 142 \end{aligned}$	$\begin{array}{cc} -008 \\ -043 \\ -010 \\ -017 \\ 00 \\ 041 \end{array}$
	7	AUTO VEL 1 VEL 3 ATT 2 ATT 1 SAS	$\begin{aligned} & 102 \\ & 005 \\ & 071 \\ & 162 \\ & 225 \\ & 094 \end{aligned}$	$\begin{array}{r} -012 \\ 060 \\ 024 \\ 035 \\ -015 \\ -053 \end{array}$	$\begin{aligned} & 320 \\ & 375 \\ & 39 \\ & 384 \\ & 463 \\ & 444 \end{aligned}$	$\begin{array}{r} 337 \\ 72 \\ 143 \\ 118 \\ 180 \\ 185 \end{array}$	$\begin{array}{r} -010 \\ 003 \\ -020 \\ 010 \\ -003 \\ -081 \end{array}$
	8	AUTO VEL 1 VEL 3 ATT 2 ATT 1 SAS	$\begin{array}{r} 114 \\ 095 \\ 1.30 \\ 091 \\ 816 \\ -4087 \end{array}$	$\begin{array}{r} 073 \\ 104 \\ 079 \\ 138 \\ 030 \\ -2248 \end{array}$	$\begin{aligned} & 416 \\ & 425 \\ & 40 \\ & 34 \\ & 394 \\ & 323 \end{aligned}$	$\begin{aligned} & 151 \\ & 139 \\ & 132 \\ & 121 \\ & 175 \\ & 537 \end{aligned}$	$\begin{array}{r} 024 \\ 108 \\ 072 \\ 122 \\ 010 \\ -1041 \end{array}$

In reviewing these fanlures, all were marginal falures within the given definition of a good landing, except ATT 1, Condition 8 where the forward speed was $82 \mathrm{ft} / \mathrm{sec}$, VEL 1, Condition 9 where the sink speed was $63 \mathrm{ft} / \mathrm{sec}$; and SAS Condition 8 which was very pooi in almost all categones The two cases of AUTO landing slightly beyond 30 ft appear surprising and suggests a 14 foot system bias existed (see Table V-4)

Table V-3 has been reduced to show the essential statistics of the data Table V-4 shows the average value and the standard deviation (rms deviation from the average) of $\mathrm{X}_{\mathrm{TD}}, \mathrm{Y}_{\mathrm{TD}}$ and Z_{TD} Reviewing this tends to confirm the belief that a system bias of 14 ft in X existed due to tolerances in forward speed for the LAND condition

Table V-5 lists the average and the rms value of the Performance Index (PI) under the various flight conditions and for the different modes

Review of the results shown in Tables V-3, 4, 5 indicates that the AUTQ mode is best and SAS the poorest in terms of performance The pilot was capable of adapting to all modes and the performance criteria indicate little to choose between any of the manual modes except SAS SAS exhbited a tendency to get away from the pilot which was considered dangerous This point clearly showed up in the Cooper rating

Table V-6 hists the consensus Cooper rating for the modes The velocity modes which used the stick were preferred by the pilot with the ATT 2 mode following ATT 2, it should be remembered, is still a velocity control on the collective stick VEL 3 was the mode using the side arm con-- troller and some problems were experienced The only available side arm controller was a bang-bang design with a relatively heavy spring load The pilot had to hold this off-center at an uncomfortable elbow angle for prolonged periods while the VEL 3 velocity trimming integrator caught up Though his performance was about as good as in the other velocity modes, the pilot's discomfort led him to give it a lower Cooper rating

TABLE V-4
MEAN TOUCHDOWN CONDITIONS

Mode	Run Conditions	$\mathrm{X}_{\mathrm{TD}}{ }^{(\mathrm{ft})}$		$\left.\mathrm{Y}_{\mathrm{TD}}{ }^{(\mathrm{ft}}\right)$		$\mathrm{Z}_{\mathrm{TD}}(\mathrm{ft} / \mathrm{sec})$	
		avg	rms	avg	1 ms	avg	rms
AUTO	1-14	141	47	04	113	38	06
VEL 1	1.14	132	45	21	35	39	10
VEL 3	1-14	114	34	22	42	34	09
ATT 2	1-14	126	36	02	19	35	10
ATT 1	1-14	165	35	16	80	39	05
SAS	$1-14$	143	41	02	12	43	07
VEL 2	12-13	172	0.9	27	21	49	11
AUTO	15-16	60	14	77	89	46	02
VEL 1	15-16	162	56	17	02	39	01
ATT 2	15-16	145	39	01	03	54	02
			\cdots				

TABLE V-5
PERFORMANCE INDEX MEANS

Mode	Run Conditions	PI avg	PI RMS
AUTO	$1-14$	004	0.01
VEL 1	$1-14$	008	003
VEL 3	$1-14$	009	004
ATT 2	$1-14$	009	007
ATT 1	$1-14$	009	006
SAS	$1-14$	012	005
VEL 2	12.13	009	003
AUTO	$15-16$	005	002
VEL 1	$15-16$	010	005
ATT 2	15.16	009	004

TABLE V-6
COOPER RATING

Mode $:$	Ratıng
VEL 1	2
VEL 2	2
ATT 2	3
VEL 3 1	4
ATT 1	4
SAS	8

An observation with respect to the SAS mode must be noted Though the pilot managed to make numerous successful landings with SAS, his Cooper rating of the mode was very low and it was evident that the pilot work load was very high The success in acheving landings suggested that it might serve as a backup emergency mode This hypothesis was tested and is false The pilot's success depended on early adaption A number of tests were made where the pilot started in one of the other manual modes and the SAS mode was suddenly switched in The drastic change in work load (CR 2 to $C R 8$) resulted in an excessive readaptation time during which the pilot essentally lost the vehicle. It is concluded that SAS without attitude hold cannot be used as a backup mode

The data presented in Tables V-3 through V-6 tested the control system and the prlot's ability to follow the displays They were essentrally performed with idealized sensors simulated The effect of errors was determined by 18 runs (2 each, 15 knot winds of Table V-1) in the AUTO mode with the sensor error models simulated This gives the additional errors which must be root-sumsquared with the previous numbers to obtain the composite system performance These are histed in Table V-7 The principal conclusion to be reached is that total performance is affected as follows
a Modified PI $=\sqrt{(\mathrm{PI})^{2}+(008)^{2}}$ where PI is the "no instrumentation errors" PI
Note that in all cases the Modified PI is still very satisfactory
$\therefore \quad \mathrm{Z}_{\mathrm{TD}}$ no change
c " Total $\mathrm{X}_{\text {TD }}$ error will be almost entrely due to mstrumentation and not pilot

- or FCS. Since this number is large (45 ft), the error model indicates more frequent update is required
d Total YTD, same comments as for c above but with a magnitude less than
, one-half as large

TABLE V-7
ERROR MODEL AUTO

PI avg	009	$\mathrm{ft} / \mathrm{sec}$
PI rms	002	$\mathrm{ft} / \mathrm{sec}$
Z_{TD} avg	38	$\mathrm{ft} / \mathrm{sec}$
$\mathrm{Z}_{\mathrm{TD}} \mathrm{rms}$	062	$\mathrm{ft} / \mathrm{sec}$
$\mathrm{X}_{\mathrm{TD}} \mathrm{avg}$	-45	ft
$\mathrm{X}_{\mathrm{TD}} \mathrm{rms}$	105	ft
$\mathrm{Y}_{\mathrm{TD}}^{\text {avg }}$	-19	ft
$\mathrm{Y}_{\mathrm{TD}} \mathrm{rms}$	5	ft

Since the instrumentation error iesults are based on the error and update model, these results could have been easily modified to attan any degree of accuracy and, therefore, these results were simply used to deteimme the instrumentation accuracies required for FCS inputs

C SUMMARY OF EVALUATION CONCLUSIONS

1 Primitive SAS, defined as SAS with body rate feedback and no attitude hold, is not suitable as a flight mode or as a backup mode

2 The velocity modes are the best manual modes
3 The side arm controller required human factors engmeering but did well enough to suggest that Conclusion 2 is valid

4 Attitude control, with altitude hold, and velocity control on the collective, is approximately equivalent to the velocity modes
5. Command displays are capable of enabling the pilot to fly the profile in any mode
:
6 The principal system error was excessive dispersion from the touchdown point due .: almost enturely to instrumentation errors This is readily corrected by increased update frequency and better blending algorithms and has no bearing on the FCS design

VI RECOMMENDATIONS FOR FUTURE STUDIES

A GENERAL

The development of the hybrid smulation has proven to be an excellent tool for the evaluation of guidance and control laws applicable to V/STOL type vehicles Results have been obtaned, as has been discussed in previous sections of this report, which are now ready for further evaluation in forthcoming flight test programs To supplement these flight tests there are additional studies and analyses which can and should be performed which would take advantage of the avalable simulation -and would provide continumg mputs for the tests with the CH-46C as well as mputs for flight test with other V/STOL's such as the X-22A and/or XC-142 These studies represent areas of investigation which are a logical extension of the work accomplished and/or areas where time did not permit full optimization under the present contract Conversely, the lesults of the flight test program should be used to upgrade the simulation to enhance its fidelity to the actual vehicle performance and, thereby, permit contmued use of the simulator to evaluate new concepts The recommended studies are given below and discussed in the following subsections
B. Approach Profiles
C. Displays
D. Computation Simplification
E. Other Control Modes
F. Simulation of Other V/STOL Vehicles
G. Examuation and Evaluation of Performance Criteria

B. APPROACH PROFILES

In the present contract a landing profile, as described in Section III C, was used to evaluate the guidance and control laws However, there may be other profiles which may be easer to fly, provide better obstacle clearance, with better fuel economy For example, the final portion of the present approach profile which calls for a hover at 50 ft prior to descent to the pad is very costly in fuel consumption to a V/STOL type of arframe such as the XC-142 or the X-22A Some of the other types of profiles which should be considered and evaluated are as follows
' 1. Fixed Glide Path to the Touchdown Point
For this type of glde path the arcraft flies level until ghde slope intercept and then flies " "down the glide slope" to touchdown Speed is reduced at a constant rate so as to attan zero ground velocity at touchdown. In the lateral plane, guidance would be provided as in the present system including turn into the wind The advantage of this profile is flying simplicity, economy of fuel, guidance law simplicity and guidance sensor simplicity Glide slopes in the range of 6° to 30° could be moluded in the investigation

Segmented Glide Path
As a modification to the above, a segmented glide path could be used wheren the vehicle would approach mitially on a high ghde in the range of $15-30^{\circ}$ and then phase into a shallow gide path on the order of 6° to a touchdown This would have the advantage of good obstacle avoidance coupled with the good stability and ease of flying close to the ground associated with the shallower glde slope The range at which switchover occurs and the technique for smoothly changing ghae slopes would be part of the investigation

3 Exponential or Recomputing Fhght Path

The flight profiles described above are fixed in space with respect to the touchdown point Another type of profile which can be generated involves the recomputation of an exponential flight path to touchdown based on the vehicle's instantaneous states and the desired states at touchdown This could have the advantage of ease of flying in a turbulent or high wind shear environment

4 Modifications to Present Flight Profile

- There are modifications to the present flight path which could be made to enhance overall performance These melude increasing the glide slope from 6° to a higher value and decreasing the hover altitude from 50 ft to some lower value

It should be noted that some flight profiles may be more compatible with different flight control modes. Therefore, it may even be possible to optimize separately for each mode However, performance criteria in terms of such factors as plot workload, fuel consumption and dispersion in velicle state at touchdown under the constrants of turbulence and wind shear have to be established

C DISPLAYS

The cockpit simulation used an ARU-2B/A flight director indicator in conjunction with a cathode ray tube (CRT) situation presentation for the manual flying and monitoring modes This is essentially an extrapolation of what constitutes good control information from fixed wing experrence Repeated simulation and flight tests are required to reveal shortcomings in display layouts or to the displayed information This could be quite time consuming On the other hand, the application of display theory which has been developed in recent years in conjunction with the hybud simulation could lead to a more optimum arrangement

To obtain a good balance between pilot workload and precision, a compromise is requred between purely director type or purely status type of displays Although directors have been shown to improve flying precision, there is also a strong requirement for status information The pilot needs this to assure himself that the primary system is working and for backup in case of director system fallure Therefore, situation and director display arrangements which will provide information for efficient control while minimizing pilot's scanning workload need to be investigated The type of information and symbols to be used and methods for integrating situation and directors are included in the above

The scope of the study would ninclude but not be limited to the following
(1) Detailed study of required display parameters
(2) Use of standard instruments supplemented with range-to-go information
(3) ILS display veisus CRT
(4) Investigation of other types of flight directors including hovering flight director
(5) Perspective type of presentations and/or contact analog

It is recommended that the analytical theory of display/control systems be used to synthesize various arrangements as described above which ale applicable to approach and landing and to utilize the cockpit simulation to evaluate pilot workload and peiformance

D COMPUTATION SIMPLIFICATION

The computation algorithms and sampling rates as presented in the software package have been shown to be satisfactory during the piloted simulation fiom a noise and display-flicker point of view To determine whethei the computational requiements for the arborne digital computer . can be further reduced it is recommended that studies be conducted in two areas
-1 Sampling Rates
The SAS and attitude control laws use update rates of $32 \mathrm{tmes} / \mathrm{sec}$ while the attitude command, 'velocity command and velocity control laws use rates of 8 times $/ \mathrm{sec}$ An investigation through additional analysis and simulation is suggested to determine whether the above rates can be substantially reduced without affecting control performance This is particularly the case for the manual modes Included in the above are the rates at which mput variables are sampled, control and guidance laws computed, and iates at which data are outputted to the displays In particular, with regard to the display, there are other hardware techniques which can be uthized to reduce undesirable needle motion without imposing undue requirements on the digital computer The study would include all the various guidance and control modes

2. ISU Updating

A relatively simple updating and/or blending algorithm was utilized for the simulation There may be othei algorithms which may be more efficient either from a computation point of view or, from an update frequency point of view It is desirable that updates be accomplished on an infrequent basis so that a sensor such as the GSN-5 could provide service to many vehicles on - final approach It is, therefore, recommended that a detaled study consisting of both analysis and simulation to synthesize a more optimum filter be conducted The analysis would use digital-filter technology to formulate concepts for the update of blending filter These would then be compared using the hybrid simulation to select the best one

It is recognized that the update frequency and blending algorithms are heavily tied in with the error model of the ISU or its equivalent and these must be studied together

E OTHER CONTROL MODES

The present simulation has shown the inherent capability of the system to perform either manual or automatic approaches to a touchdown on a landing pad However, under the stress of an actual approach and landing in IFR conditions the plot workload may be excessive for some of the manual modes To relieve this condition a technique called split-axis control can be cmployed In this stuation the pilot manually controls one channel (such as pitch), while an automatic system or even the copilot controls the other The pilot's display scanning and control activity are essentially cut in half and his overall performance is expected to improve Such procedures are also beneficial from a flight safety point of view If permits the need for only limited pilot takeover when a partial failure of the automatic flight control has occurred

An important consideration in the use of automatic flight control during approach and landing is the question of pilot confidence ana acceptance In a technique called "force wheel steering" the pilot is afforded the capability of introducing maneuvering command inputs into the autopilot in the coupled modes This technique is accomplished by generating signals as a function of pilot applied forces and by introducing these force signals into the outer loops of the flight control system This techuque has been tested and evaluated by the Aur Force for fixed wing aircraft with very promising results It permits the pilot to become an integral part of an automatic flight control system. The present study did not indicate any benefits from mixing pilot inputs with the automatic mode. The modifications required to enable a successful mix are recommended as a future study item

F. SIMULATION OF OTHER V/STOL VEHICLES

Although the gudance and control technology being developed is applicable to V/STOL vehicles, the present hybrid simulation was developed around the $\mathrm{CH}-46 \mathrm{C}$ parameters It is desirable to determine whether the guidance and control laws are applicable with minor modifications to V/STOL vehicles- It is, therefore, recommended that a study be performed to design a computer model such that the charactenstics of the vanous V/STOL arframes can be switched from one to another and to determine whether the present hybrid simulation can be modified to accommodate this computer mode This would essentrally give the hybrid simulation a Variable Stability System capability Quick comparisons of vehicle types under automatic or manual fight control can then easily be made Such a system would compliment the flight test programs of such VSS aircraft as the X-22A

G. EXAMINATION OF EVALUATION AND PERFORMANCE CRITERIA

As discussed in Section III B and demonstrated in Section V, the specification of performance criteria is, to a large extent, an art This is particularly true of pilot opinon A mathematical model combining performance and pilot opinion is required Idealy a combination of the two with a model of the "standard" pilot is desired. In this way a large number of runs could be made in evaluating systems by simulator and arriving closer to the optimum before actually introducing a pilot to the program

