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FOREWORD 

An exploratory experimental and theore t ica l  investigation of gaseous nuclear 
rocket technology i s  being conducted by the United Aircraft  Research Laboratories 
under Contract SNPC-70 with the jo in t  AEC-NASA Space Nuclear Propulsion Office. 
The Technical Supervisor of the Contract fo r  NASA is  Captain C. E. Franklin (USAF). 
Results of portions of the investigation conducted during the period between 
September 16, 1969 and September 15, 1970 are  described i n  the following eight 
reports  (including the present report)  which comprise the  required f i rs t  Interim 
Summary Technical Report under the Contract: 

1. 

2. 

3. 

4. 

5. 

6 .  

7. 

8.  

Klein, J. F. and W. C. Roman: Results of Experiments t o  Simulate Radiant 
Heating of  Propellant i n  a Nuclear Light Bulb Engine Using a D-C Arc Radiant 
Energy Source. 
September 1970. 

United Aircraft  Research Laboratories Report 5-910900-1, 

Jami.net, J. F. and A. E. Mensing: Experimental Investigation of Simulated-Fuel 
Containment i n  R-F Heated and Unheated Two-Component Vortexes. United Aircraft  
Research Laboratories Report 5-910900-2, September 1970. 

Vogt, P. G.: Development and Tests of Small  Fused S i l i c a  Models of Transparent 
Walls fo r  the  Nuclear Light Bulb Engine. United Aircraft  Research Laboratories 
Report J-910900-3, September 1970. 

Roman, W. C.:  Experimental Investigation of a High-Intensity R-F Radiant Energy 
Source t o  Simulate the  Thermal Environment i n  a Nuclear Light Bulb Engine. 
United Aircraft  Research Laboratories Report J-910900-4, September 1970. 

Bauer, H. E. ,  R. J. Rodgers and T. S. Latham: Analytical Studies of Start-up 
and Dynamic Response Characterist ics of the Nuclear Light Bulb Engine. United 
Aircraft Research Laboratories Report J-910900-5, September 1970. 

Latham, T. S. and H. E. Bauer: Analytical Studies of In-Reactor Tests of a 
Nuclear Light Bulb Unit Cell. United Aircraft  Research Laboratories Report 
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Palma, G. E. and R. M. Gagosz: Optical Absorption i n  Transparent Materials 
During 1.5 MeV Electron Irradiat ion.  United Aircraft  Research Laboratories 
Report J-990929-1, September 1970. 

Krascella, N. L.: 
the  Fuel Region of a Nuclear Light Bulb Engine. 
Laboratories Report J-910904-1, September 1970. 
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Report J-910900-6 

Analvtical Studies of In-Reactor Tests of a 

Nuclear Light Bulb Unit C e l l  

SUMMARY 

Analytical studies were conducted t o  determine the performance and design 
character is t ics  of a small model of a nuclear l i g h t  bulb uni t  c e l l  sui table  f o r  
tes t ing  i n  a nuclear reactor. Three nuclear t e s t  reactors were considered: Pewee 
and the Nuclear Furnace, which are  solid-core nuclear rocket fuel  element test 
reactors, and the High Flux Isotope Reactor (HFIR). 
mal neutron f lux  levels  i n  the t e s t  region which range from 2.0 t o  5.0 x 1015 
neutrons/cm2-see. 
would create thermal radiation fluxes corresponding t o  black-body radiating tempera- 
tures  of 12,500 t o  14,600 R f o r  models having ref lect ing w a l l s  and operating pres- 
sures of 500 a t m .  

These t e s t  reactors have ther- 

Demonstration t e s t s  w i t h  these thermal neutron flux environments 

Preliminary design analyses of the t e s t  region pressure vessel, ref lect ive 
l iner ,  fue l  handling system, and instrumentation w e r e  performed. Three types of 
t e s t s  of increasing complexity were considered: 
fue l  can be contained f l u i d  dynamically w h i l e  f issioning i n  a gaseous cloud; (2) a 
demonstration tha t  internal ly  cooled transparent walls are capable of withstanding 
both the nuclear radiation and thermal environments anticipated fo r  a nuclear l i g h t  
bulb engine; and (3) a demonstration tha t  seeded propellant can be heated t o  exhaust 
temperatures i n  excess of those presently attained i n  the solid-core nuclear rocket. 

(1) a demonstration tha t  nuclear 

The resu l t s  of the analyt ical  study indicate tha t  meaningful in-reactor demon- 
s t r a t ion  t e s t s  of fue l  containment, transparent-wall performance, and propellant 
heating could be conducted. In  addition, it appears t ha t  the models could be 
thoroughly developed and tes ted  using the UARL r-f induction heater and d-c a rc  
f a c i l i t i e s  a t  performance levels  similar t o  those anticipated f o r  in-reactor demon- 
s t r a t ion  t e s t s .  
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RESULTS AND CONCLUSIONS 

1. 
was selected: 
LT = 8.40 in.;  (3) U-235 f u e l  injected i n  the form of submicron par t ic les ;  (4)  argon 
buffer gas; (5) fuel- to- tes t  region radius r a t i o ,  R F / ~ T  = 0.6; (6) t e s t  region 
pressure, PT = 500 atm; (7) average pressure of nuclear f u e l  within the f u e l  cloud, 
&6 = 167 atm; and (8) surface r e f l e c t i v i t y  of inner periphery of t e s t  region, 

A reference t e s t  configuration with the  following pr incipal  charac te r i s t ics  
(1) t e s t  region diameter, DT = 3.15 in.;  (2) t e s t  region length, 

a= 0.9. 

2. The t e s t  performance calculated for  th i s  configuration on the bas i s  of a 
(1) mass of 

of U-235; (2) average thermal neutron 
thermal neutron f lux  l eve l  of 2.5 x 1015n/cm2-sec was a s  follows: 
nuclear f u e l  i n  t es t  region, MF = 8.3 g 
f i s s ion  cross section, Cf = 323 barns; (3) t o t a l  t e s t  region power level ,  QT = 
456 Btu/sec; (4) net radiated heat f lux ,  €&/SF = l l 9 O  Btu/sec-ft2 (8.81 kw/sq i n . ) ;  
(5)  equivalent black-body radiat ing temperature, T* = 7040 R; (6) outward thermal 
radiat ing f lux  of l l , g O O  Btu/sec-ft2 (88.1 kw/sq in . )  and inward re f lec ted  f lux  of 
10,710 Btu/sec-ft2 (79.5 kw/sq in.)  (difference equals net  radiated heat f lux ,  
Q R / S ~  = l lgO Btu/sec-ftz (8.81 kw/sq i n . ) ) ;  and (7) f u e l  surface radiat ing temperature, 
T 6  = 12,500 R .  

3. Test performance could be increased by approximately a factor  of two by 
employing Pu-239 f u e l  instead of U-235. 
section fo r  Pu-239 i n  the t e s t  region neutron f lux  environment would be Of = 678 barns. 

The average thermal neutron f i s s ion  cross 

4. It would be feas ib le  t o  place in te rna l ly  cooled, fused s i l i c a ,  transparent- 
w a l l  configurations against the re f lec t ive  aluminum l i n e r  and thereby expose them t o  
both the nuclear radiat ion and thermal environments of the t e s t  region. The t o t a l  
thermal radiat ion energy f lux  (incident plus re f lec ted)  would be 22,610 Btu/sec-ft2 
(166 kw/sq in.)  compared with 20,600 Btu/sec-ft2 (151 kw/sq in . )  f o r  the  reference 
nuclear l i g h t  bulb engine. 

5. It would be feasible  t o  conduct in-reactor propellant heating demonstration 
t e s t s .  The addition of a propellant duct would require a reduction i n  the t e s t  
cavi ty  diameter t o  approximately 2.5 in.  i f  the pressure vessel inner diameter re- 
mains constant. The e f fec ts  of the addition of the propellant heating duct on the 
uni t  cavity operating coriditions have not been determined. It would be preferable 
t o  perform f u e l  region and transparent-wall in-reactor t e s t s  before attempting 
propellant heating demonstrations . 

2 
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6 .  It was concluded tha t  t e s t  region pressures up t o  500 atm could be 
contained within a f iberglass  pressure vessel  employing heat-resistant phenolic 
res in  binder t o  prevent deterioration of the pressure vessel  strength due t o  thermal 
and radiation environments. 
hydrogen coolant flowing past  the outer periphery of the pressure vessel. Pressure 
vessel  end walls were designed t o  be reusable t o  allow replacement of the f iberglass  
pressure vessel  when the radiation dosage reaches 5 x 109 rads ( - 50 percent of the 
dosage level  a t  which tens i le  strength begins t o  deter iorate) .  It i s  estimated tha t  
each pressure vessel  could be used for 1 t o  2 hours of full-power operation of the 
t e s t  reactor.  

The pressure vessel  can be adequately cooled by the 

7. A highly polished ref lect ive aluminum l ine r  could be fabricated which 
would have an average surface r e f l ec t iv i ty  of a= 0.90. 
upon a black-body spectrum a t  12,500 R with corrections for surface area l o s t  t o  
end-wall injection and thru-flow exhaust duct areas. 

This r e f l ec t iv i ty  i s  based 

8. Nuclear fue l  would be injected i n  the form of a particle-carrier-gas 
mixture. The fue l  system would include a spent-fuel scrubber and collector system. 
Experimental research i s  required t o  determine the fuel-to-carrier gas mass flow 
ra t io s  achievable and the geometry and flow conditions required t o  remove spent fue l  
from the vortex region w i t h  minimum deposition of nuclear fue l  i n  the exhaust ducts. 

9. Heat balance measurements throughout the system could be made wi th  flow- 
meters and thermocouples similar t o  the instruments employed i n  the solid-core 
nuclear rocket development program. 
obtain spectral  data could be developed through experimental research employing the 
UARL r-f induction heater. 

Instruments t o  view the fissioning plasma t o  

10. 
t i on  t e s t s  could be performed using the UARL 1.2-megw r-f induction heater and d-c 
arc  f a c i l i t i e s  

Simulation of the performance conditions estimated for  in-reactor demonstra- 

3 
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INTRODUCTION 

The present emphasis i n  the nuclear l i g h t  bulb (Ref .  1) f e a s i b i l i t y  research 
being conducted under Contract SNPC-70 is t o  demonstrate radiant heating of a 
simulated propellant by transmitting energy through internal ly  cooled transparent- 
w a l l  models using arc-heated and r-f-heated plasmas as the energy source f o r  the 
thermal radiation. A next possible major s tep i n  the development of a nuclear 
l i g h t  bulb engine, assuming successful resu l t s  from the a rc  and r-f experiments, 
is  a se r ies  of demonstrations i n  which the arc- or r-f-heated plasma is  replaced 
by a fissioning gas as the energy source f o r  thermal radiation. 

The principal requirement f o r  a nuclear t e s t  reactor i n  which t o  perform 
demonstration t e s t s  is  tha t  it have a suf f ic ien t ly  high power-density and thermal 
neutron f lux  leve l  t o  cause vaporization of nuclear fue l  i n  the t e s t  ce l l .  An 
additional requirement is tha t  a t e s t  s i t e ,  such as a beam port o r  f lux  trap,  on 
the order of 3 t o  5 in.  i n  diameter be available. A review of candidate nuclear 
test reactors has indicated that Pewee or the Nuclear Furnace (solid-core nuclear 
rocket fue l  element tes t  reactors) and the High Flux Isotope Reactor (€€FIR) are  
a l l  well suited f o r  in-reactor demonstration experiments. 

The major objectives of the present investigation were directed toward (1) the 
preliminary design of the principal components of a uni t  c e l l  f o r  in-reactor demon- 
s t r a t ion  t e s t s ,  (2)  ident i f icat ion of candiaate t e s t  reactors, (3) prediction of 
the performance levels  of selected t e s t  configurations, (4) conceptual design of 
a fue l  handling system, (5) determination of the complexity of i n i t i a l  demonstra- 
t i o n  tes t s ,  and (6) ident i f icat ion of test  parameters t o  be measured and the t;y-pes 
of instrumentation required. 

4 
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CANDIDATE NUCLE2lR TEST REACTORS 

The performance of in-reactor demonstration tests of a nuclear l i g h t  bulb 
u n i t  c e l l  requires a high-power-density nuclear test reactor  which can provide ther- 
m a l  neutron f luxes of suf f ic ien t  magnitude t o  create a f iss ioning plasma i n  the  
gaseous fue l  region. 
beam port o r  f l u x  t rap)  t o  accommodate the  u n i t  c e l l  should be from 2 t o  5 in.  i n  
diameter with access from both ends if a t  a l l  possible. Finally, t he  frequency of 
operation of the  tes t  reactor  should be high enough t o  run several  tests a year. 
Three candidate t e s t  reactors with the requis i te  power densit ies,  thermal neutron 
fluxes, and possible t es t  si tes t o  accommodate the un i t  c e l l  were considered. 
These reactors are Pewee and the Nuclear Furnace, designed by Los Alamos Sc ien t i f ic  
Laboratory (LASL) t o  tes t  solid-core nuclear rocket f u e l  elements, and the High 
Flux Isotope Reactor (HFIR) a t  the Oak Ridge National Laboratory (Om). Unit c e l l  
demonstration tests could be performed i n  a Pewee reactor, but the run times and 
frequency of operation (runs of one hour i n  duration about once every 18 months) 
ser iously r e s t r i c t  f l e x i b i l i t y  i n  performing d i f fe ren t  types of tests.  The tes t  
reactor  which currently offers  the greatest  potent ia l  i n  f l e x i b i l i t y  of design 
and t e s t ing  frequency appears t o  be the Nuclear Furnace. However, the  construction 
and operation of the Nuclear Furnace is dependent upon the funding l eve l  and pace 
of development f o r  the solid-core nuclear rocket. 
reactor,  is currently operating and should continue t o  be considered as a potent ia l  
t e s t  reactor f o r  u n i t  c e l l  demonstration t e s t s .  

I n  addition, it is estimated t h a t  the  test  s i te  (such as a 

HFIR, as an a l te rna t ive  tes t  

Pewee and the Nuclear Furnace 

Discussions have been held w i t h  staff members of LASL t o  explore the  feasibil- 
i t y  of inser t ing a un i t  c e l l  i n  a Pewee reactor .  Assembly drawings, a one-dimen- 
s ional  model f o r  nuclear analysis, and neutron cross sections were supplied by LASL 
t o  provide a s t a r t i ng  point f o r  determining the  character is t ics  of an in-reactor 
demonstration tes t .  Results of studies i n  which the nuclear environment i n  t e s t  
s i tes  i n  the Pewee reactor w e r e  calculated are reported i n  R e f .  2. There are two 
t e s t  sites of i n t e re s t  i n  Pewee; a central ly  located f l u x  t r a p  and the re f lec tor  
region. Both tes t  s i t e s  would accommodate a un i t  c e l l  about 3.0 in .  i n  diameter. 
The thermal neutron f lux  i n  these s i t e s  could be as 'nigh as 3.0 x 1015 n/cm2-sec. 
The average thermal neutron f i s s ion  cross sections f o r  U-235 and Pu-239 w e r e  cal-  
culated t o  be 323 and 678 barns, respectively, i n  e i t h e r  test  location. 
reactors a l so  have good hydrogen coolant handling f a c i l i t i e s  which could be employ- 
ed i n  demonstration tests. The principal disadvantage of the Pewee reactors is  
the  operating schedule. 

The Pewee 

5 
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The Nuclear Furnace is  a light-water-moderated t e s t  reactor designed f o r  the 
same purpose as Pewee; the  tes t ing  of solid-core nuclear rocket fue l  elements. 
w i l l  be a smaller reactor and more f lex ib le  w i t h  regard t o  run schedules and design 
changes t o  accommodate uni t  c e l l  demonstration tests. The light-water should deve- 
lop a sof te r  thermal neutron spectrum and therefore cause s l i gh t  changes i n  the 
average thermal neutron f i s s ion  cross sections f o r  both U-235 and Fu-239. However, 
f o r  purposes of t h i s  study, it w a s  assumed tha t  the Nuclear Furnace can provide 
the same neutron f lux  environment as tha t  calculated f o r  Pewee and, due t o  i ts  
design f l ex ib i l i t y ,  can accommodate a un i t  c e l l  up t o  4.0 in.  i n  diameter. 

It 

The High Flux Isotope Reactor (HFIR) 

The High Flux Isotope Reactor (HFIR) a t  ORNL has several t e s t  s i t e s  which 
could accommodate a uni t  c e l l  test configuration, 
i n  Ref. 3 and are  l i s t e d  below. 

These t e s t  sites are  described 

Test S i t e  Inside Diameter Thermal Neutron Flux 

2 Central Flux Trap 5.0 in .  3.0 t o  5.0 x 1015 n/cm -see 

Horizontal Beam Tubes 
In  Beryllium Reflector 

4.0 in.  

Engineering Fac i l i t y  Tubes 
In  Beryllium Reflector 

3.5 in .  

3.0 t o  5.0 x n/cm2-sec 

1014 n/cm2-sec 

The average thermal neutron f i ss ion  cross section i n  the tes t  sites f o r  U-235 i s  
E f =  385 barns. The principal advantage of HFIR is tha t  it operates continuously 
during i t s  core l i fe t ime of 23 days. There i s  about one day of down-time t o  load 
a new core between runs. Testing i n  the HFIR reactor would most l i ke ly  interrupt 
the isotope production schedule and would therefore require careful coordination 
and scheduling w i t h  s t r i c t  l imitations on the number of t e s t s  which could be run. 

6 
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UNIT! CELL CONCEFTUAL DESIGN 

The conceptual design of a un i t  c e l l  f o r  in-reactor t e s t s  consists of a cylin- 
d r i c a l  cavity i n  which the conditions of a slngle un i t  cavity of a nuclear l i g h t  
bulb engine would be simulated. This un i t  c e l l  could be inserted i n  a nuclear 
t e s t  reactor t o  examine the character is t ics  of such a c e l l  i n  a nuclear environment. 
The in-reactor t e s t s  would be an intermediate s tep between the e l ec t r i ca l ly  heated 
un i t  c e l l  t e s t s  performed with the d-c-arc o r  r-f-heated plasmas and fu l l - sca le  
engine t e s t s .  
of the e f fec ts  of operation i n  a nuclear reactor environment. 
t i o n  would consist of a cylindrical  cavity w i t h  highly ref lect ing w a l l s .  
t ions  t o  the basic configuration could be made t o  include transparent w a l l s  inside 
the ref lect ing w a l l s  and t o  permit propellant heating experiments. 

It would permit investigation of nuclear-heated vortexes and studies 
The basic configura- 

Modifica- 

Basic Configuration 

The basic  design configuration of the uni t  c e l l  f o r  the in-reactor t e s t s  i s  a 
cylindrical  cavity w i t h  an inside diameter of 3.15 in. and a length of 8.4 in.  The 
cylinder is  made of aluminum w i t h  a highly ref lect ing inner surface. Flow channels 
t o  provide f o r  the injection of buffer gas, fue l  and the required coolants f o r  the 
components are provided, and the en t i re  assembly i s  contained i n  a fiberglass pres- 
sure vessel. A sketch of the assembly is  shown i n  Fig. 1. The outside diameter 
of the pressure vessel is approximately 3.85 in. s o  t ha t  the en t i re  assembly could 
be inserted i n  a b-in.-dia t e s t  port i n  an existing reactor.  Variations of these 
dimensions may be required, depending on the s i z e  of the access ports available 
i n  the tes t  reactor selected f o r  the experiments or the s i ze  of the cavity con- 
f igurat ion required t o  achieve the performance levels  of the t e s t s .  
design would remain the same f o r  these dimensional variations.  

The basic 

A sectional view of the basic configuration i s  shown i n  Fig. 2. The cavity 
region i s  formed by a cylinder w i t h  an inside diameter of 3.15 in .  and a w a l l  thick- 
ness of 0.0625 in . ,  and two end w a l l s  which are  a lso 0.0625-in. thick.  The coolant 
and fue l  injection ducts a re  formed by a ser ies  of concentric cylinders. Beginning 
from the cavity centerline, the flow c i rcu i t s  are: 
(2)  the  inner bypass flow annulus; (3) the outflow port; (4) the outer bypass flow 
annulus; (5) the end-wall coolant outlet;  (6) the end-wall coolant in le t ;  and (7) the 
l i n e r  coolant annulus. The region between the end-wall coolant out le t  and i n l e t  
(ducts (5) and (6)) is not used f o r  coolant flow and t h i s  region may be used f o r  
measuring or monitoring devices. The sketch i n  Fig. 2 is approximately f u l l  scale 
and indicates the amount of space which would be available f o r  instrumentation i n  
t h i s  region. 

(1) the fue l  injection tube; 

7 



J- giogoo-6 

The t o t a l  length of the in-reactor t e s t  un i t  is dependent upon the reactor used 
f o r  the tests. It is preferred tha t  the uni t  be long enough so tha t  the pressure 
vessel end caps can be located away from high neutron o r  gamma-ray fluxes.  
end caps and high-pressure f i t t i n g s  require a large mass of metal which vould have 
t o  be internal ly  cooled if they a re  exposed t o  an intense radiation flux. 
of the actual  length required f o r  use i n  typical t e s t  reactors indicate an overall  
length of the uni t  on the order of 6 f t  . 

The 

Es t imates  

Alternate Configurations 

A number of a l ternate  configurations have been considered, including configura- 
t ions with fue l  injection ports in  the end w a l l  off the cavity centerline, and con- 
figurations which would permit the tes t ing  of transparent w a l l s  and propellant 
heating. 
flow c i rcu i t ry  and do not introduce any major modifications t o  the basic uni t  
design or assembly procedures. 

These a l te rna te  configurations use basical ly  the same type of coolant 

Alternate Location of Fuel Injection Ports 

Fluid dynamics tests t o  determine the best  location f o r  fue l  injection ports 
a re  in  progress. If it is determined tha t  it i s  be t t e r  t o  in jec t  fue l  a t  some loca- 
t i o n  i n  the end w a l l  other than the cavity centerline, the relocation of the fue l  
inject ion port simplifies the t e s t  un i t  configuration. A sketch of an in-reactor 
t e s t  un i t  w i t h  off-center fue l  injection ports i s  shown i n  Fig. 3. In th i s  con- 
figuration, the outflow from the cavity region ex i t s  through a tube rather  than an 
annulus, as i n  Fig. 2, and only one bypass flow annulus is required. The cooling 
requirements and operating conditions a r e  essent ia l ly  the same as i n  the basic 
conf igurat ion. 

Tests of Different Complexity 

The basic configuration is  designed primarily fo r  the study of the effects  of 
the nuclear environment, the character is t ics  of the vortex region and the fue l  
handling problems. With modification, the basic configuration may be adapted t o  
permit the inclusion of transparent structures and propellant heating regions. 

Experiments w i t h  transparent structures can be conducted by inserting a trans- 
parent-wall model i n  the cavity adjacent t o  the cavity l i n e r  as shown i n  Fig. &(a). 
The modifications required f o r  these t e s t s  would be: 
injectors  t o  in jec t  the buffer gas tangent t o  the inner transparent w a l l ;  (2) in- 
clusion of piping and manifolding f o r  the internal coolant i n  the transparent struc- 
ture;  and (3) additional instrumentation, as required, t o  indicate the operating 
conditions i n  the transparent structure.  Feeder manifold pipes f o r  the transparent 
structure could be located i n  the cavity as shown i n  Fig. 4(a) if they were also 
transparent. 

(1) extension of the buffer-gas 

a 
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Investigations of propellant heating i n  an in-reactor t e s t  would require 
modifications t o  the cavity l i n e r  and necessi ta te  a decrease i n  the cavi ty  inside 
diameter i f  the pressure vessel  i s  not changed. 
shown i n  Fig. 4(b) .  
approximately 0.75 in .  so t h a t  the cavity i s  formed by a section of re f lec t ing  l i n e r  
and a section of transparent wall  as  shown. The propellant heating region is  formed 
by the transparent wall and sections of re f lec t ing  l i n e r  wall. The problems of 
supporting the transparent wal l  would be simplified by the configuration shown since 
the transparent-wall feeder and col lector  pipes and the buffer-gas in jec tors  could 
be located behind the inner sections of the r e f l ec t ing  l i n e r  ra ther  than being 
supported by s t ruts  as i n  the  reference engine. I n  t h i s  configuration it i s  neces- 
sary t o  include piping and manifolding for  the transparent-wall coolant and provi- 
sions for  the inject ion and removal of the simulated propellant gas. All of the 
additional piping and instrumentation can be accomodated i n  the region between the 
l i n e r  and the pressure vessel .  

One possible configuration i s  
I n  t h i s  configuration, a section of the l i n e r  i s  moved out 

The modifications necessary t o  accomodate propellant heating t e s t s  e n t a i l  major 
changes i n  the t e s t  uni t  configuration. 
these t e s t s ,  and the major modifications of the unit  heat balance which would be 
caused by the inclusion of a seeded propellant channel, it i s  recommended that a 
se r ies  of t e s t s  of the base uni t ,  w i t h  and without transparent walls, be performed 
before attempting t o  conduct propellant heating t e s t s .  The propellant duct, as  
shown i n  Fig. 4(b) ,  w i l l  introduce an asymmetric heat s ink which may change the 
conditions i n  the vortex and could cause changes i n  the operating conditions i n  the 
cavity.  Tests of propellant heating using the d-c a rc  heater,  such as  those 
reported i n  Ref. 4 and future  t e s t s  which are scheduled which employ an asymmetric 
propellant duct should give some indication of the e f fec ts  of these asymmetric 
configurations. 
in-reactor propellant heating t e s t  configuration and t o  determine the performance 
leve ls  required i n  the t e s t  uni t .  

Because of the increased complexity of 

The d-c arc  tests w i l l  a l so  be used t o  ref ine the design of an 

If the driving reactor selected for  the t e s t s  has an access ib i l i ty  t h a t  would 
permit a number of t e s t  per year,a t e s t  schedule involving a ser ies  of u n i t  cavity 
and transparent-wall t e s t s  pr ior  t o  the propellant heating t e s t s  could be completed 
i n  a reasonable length of time. 

9 
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GENERAL PERFORMANCE ANALYSIS 

The determination of the performance levels  expected i n  an in-reactor demon- 
s t r a t ion  test  involves a combination of analyt ical  predictions of flow conditions 
and heat balance and the incorporation of experimentally measured parameters. 
experimentally measured parameters a re  related principally t o  fue l  containment 
factors  such as average fue l  residence t i m e ,  f ue l  region radius, and fuel-to-buffer 
gas density and partial pressure ra t ios .  

The 

Flow conditions for the argon buffer gas were determined by the methods employed 
i n  Ref. 1 f o r  the fu l l - sca le  engine. The axial  velocity, Vz,  w a s  determined t o  be 
tha t  required f o r  the region between the edge of the fue l  and the peripheral w a l l  
of the test  chamber t o  be two viscous boundary layers thick, 26, using the condi- 
t ions a t  the edge of the fue l  region as reference conditions. Thus, from R e f .  1 

The viscosity, p 6 ,  and density,pg6, of the argon buffer gas varies w i t h  the edge- 
of-fuel temperature, T6. 
taken from R e f .  5 ,  

The argon viscosi t ies  employed f o r  these analyses were 

A s  i n  Ref. 1, it was assumed t h a t  the axial  dynamic pressure was  constant 
between the edge of the fue l  cloud and the peripheral chamber w a l l .  
temperature i n  the buffer gas varies l inear ly  i n  th i s  region, it i s  possible t o  

2 obtain a n  expression f o r  the local  ax ia l  velocity by assuming pBVz /2g = constant. 
The weight flow of the buffer gas can be expressed by 

Assuming the 

R l  

w, = I 2p,vZdA 

R6 

The next step i n  the analysis requires the incorporation of experimental 
resu l t s  from both heated and isothermal two-component gas vortex t e s t s .  
of nuclear fue l  which can be contained i n  the t e s t  c e l l  can be expressed by 

The mass 

10 
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where kF i s  an experimentally measured containment parameter. 
parameter, kF, i s  given by 

The containment 

where p 

t o  0.4. 
analysis . 

i s  the fuel density averaged over the en t i re  vortex chamber volume, 

This range of values w a s  employed i n  the in-reactor t e s t  performance 

. 
The most FI recently measured range f o r  t h i s  parameter given i n  Ref. 6 is  kF = 0. vT 

Another measured parameter, c,  i s  required t o  estimate the fue l  injection flow 
r a t e ,  WF, which i s  given by 

where T 

the r a t i o  of average fuel-to-buffer-gas residence times. 
residence time is  given by 

i s  the average buffer-gas residence time i n  the vortex chamber and c i s  
The average buffer-gas 

B 

where VB i s  the buffer-gas region volume and i s  the average buffer-gas density. B 
i s  calculated from the expression B 

The measured values from Ref. 6 of the average residence time ra t io ,  e, range from 
0.5 t o  1.5. This range of values w a s  a l so  employed i n  the in-reactor t e s t  perfor- 
mance analyses. 

11 
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To obtain a heat balance f o r  the un i t  ce l l ,  it i s  necessary t o  calculate the 
r a t e s  of energy l o s s  by radiation, conduction, and convection and equate the sum 
of these t o  the energy generation r a t e  due t o  f iss ioning of the nuclear fue l .  

The energy radiated from a nuclear fue l  cloud which is  opt ical ly  thick (fuel  
cloud diameter equal -t;o many photon mean-free-paths) 

Q R  = Q [T*4SF- T:Sw] 

is  given by 

( 8 )  

where T* i s  the equivalent black-body radiating temperature of the fue l  region, 
0 is  the Stefan-Boltzmann constant ( (T = 0.48 x 10l2 Btu/sec-ft2-deg R) . 
SF and S 
w a l l  temperature (Tw = 1000 R). The fuel-region surface area, SF, is related 
t o  another measurea quantity, the r a t i o  of fuel-to-cavity radius, RF/BT. 
varied from 0.5 t o  0.9 i n  the experiments reported i n  Ref. 6. For purposes of 
these analyses, R ~ / R ~  w a s  varied from 0.6 t o  0.8. 

a re  the fue l  and wall surface areas respectively, and Tw is  the chamber W 

This r a t i o  

One of the  possible experiments which might be performed i n  an in-reactor 
t e s t  would be t o  place internal ly  cooled transparent w a l l s  such as those envisioned 
f o r  the fu l l - sca le  engine near the uni t  c e l l  inner surface and expose them t o  the 
combined nuclear and thermal radiation environments. A high photon f l u x  could be 
created by l in ing  the cavity walls w i t h  polished aluminum w i t h  a r e f l ec t iv i ty  of 
6i?= 0.9 averaged over the wavelength range encompassing the photons emitted from 
the hot fue l  cloud. In tha t  case, the fue l  reg'on surface radiating temperature, 
T6, would .be increased by the factor  [1/(1-&)1174 = 1.78, (i.e., t o  provide a net 
outflow of radiant energy of one unit, the t rue gross outflow must be 10 uni t s  
t o  make up f o r  the ref lect ion of 9 uni t s  back tovard the fue l ) .  The equivalent 
fuel-region black-body radiating temperature, T", corresponds 
ian t  heat f l u x  which is  a tenth of the gross outward radiated 
however, (see Ref. 7 ) ,  that the t rue edge-of-fuel temperature 
i t y  i s  s l i gh t ly  l e s s  than T* and, f o r  f i n i t e  re f lec t iv i ty ,  is  

T6 - 

then t o  a net rad- 
heat f lux.  Note 
f o r  zero re f lec t iv-  
s l i gh t ly  less than 

The energy conducted away from the f u e l  cloud i s  given by 

AT 
QCOND = K- AR SF 

(9) 

12 
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where K i s  the thermal conductivity of argon buffer gas at the edge-of-fuel tempera- 
ture ,  T6. Thermal conductivity values f o r  argon were taken from Ref.5.  

The energy convected away from the test  region by the flowing buffer gas and 
fue l  i s  given by 

Since the argon and fue l  have approximately equal values f o r  specif ic  heat, the 
fue l  weight flow w a s  assumed t o  be 3 /2  times the value calculated i n  Eq. (5) t o  
include the buffer gas i n  the f u e l  region. 
i s  calculated from 

The buffer gas temperature r ise ,   AT^, 

AT, = T,-T~ 

where TB i s  the temperature of argon of an average density of PB from Eq. (7) fo r  
the operating pressure level .  The fue l  temperature r i se ,   AT^, i s  given by 

where the assumption tha t  the  average fue l  temperature is  approximately three times 
the radiating temperature is  implied. 

The t o t a l  r a t e  of energy release, QT, the  sum of the individual energy release 
rates ,  i s  equated t o  the r a t e  of f i s s ion  energy release by 

where ?' is a constant of proportionality, Nf is the nuclear fue l  atom density, Of 
is the average thermal neutron f i ss ion  cross-section, and 4 t h  i s  the thermal neutron 
f lux .  I n  evaluating the constant of proportionali ty,?,  it was  assumed tha t  the 

13 
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energy release per f i s s ion  w a s  175 MeV. 
takes c red i t  f o r  energy deposition i n  the fue l  cloud from only f i s s ion  fragments 
and a small f rac t ion  of beta par t ic le  and gamma radiation. 

This leve l  of energy release per f i s s ion  

Calculations t o  determine temperature dis t r ibut ion i n  the fuel-containment 
region of gaseous nuclear rocket engines based on the t ransfer  of energy by thermal 
radiation from the fue l  t o  the propellant were reported i n  Ref. 8. Temperature 
dis t r ibut ions were determined for two s e t s  of fue l  opacit ies based on two s e t s  of 
theoret ical  estimates of fue l  ionization potentials ( R e f s .  9 andld) .  Figure 5 
was  constructed from the data contained i n  Ref. 8 and shows the e f fec t  of fue l  
partial pressure on the average fue l  density f o r  d i f fe ren t  amounts of radiative 
heat t ransfer  per un i t  length of fue l  cloud. The resu l t s  shown i n  Fig. 5 are 
based on a diffusion theory analysis of radiation transport  i n  the  fue l  region 
and are val id  f o r  s i tuat ions i n  which the photon mean-free-path is many times 
smaller than the fue l  region diameter, which is  the case f o r  the in-reactor t e s t  
configuration under consideration. The curves i n  Fig. 5 were used t o  obtain fue l  
p a r t i a l  pressures in  the fue l  region f o r  calculated f u e l  densit ies and radiated 
energy per un i t  length of fue l  cloud. 

The equations discussed above were programmed f o r  d i g i t a l  computer solution 
t o  evaluate the performance of in-reactor t e s t  configurations over wide ranges of 
thermal neutron fluxes and operating conditions. 
mance calculations a re  described i n  the following section. 

The resu l t s  of these perfor- 

Reference Design Performance Levels 

A reference uni t  c e l l  w i t h  an inside diameter of 3.15 in. and a length of 
8.40 in .  was selected f o r  preliminary performance analyses and preliminary com- 
ponent design. The operating pressure leve l  w a s  set at  500 atm, the pressure leve l  
envisioned f o r  the fu l l - sca le  nuclear l i g h t  bulb reference engine. 
e f fec ts  on performance due t o  variations of principal parameters such as thermal 
neutron f lux  level,  un i t  c e l l  diameter, fuel-containment factor, aluminum l i n e r  
re f lec t iv i ty ,  and fuel-to-cavity radius r a t i o  were calculated. Specific reference 
parameters and operating conditions were selected from these resu l t s .  
values or ranges of values f o r  the parameters affect ing the performance of the re- 
ference uni t  c e l l  a re  l i s t e d  i n  Table I. 

In i t i a l ly ,  the 

The selected 

Thevariations of power radiated and effective black-body radiating temperature 
w i t h  thermal neutron f lux  level  fo r  the reference uni t  c e l l a r e  shown in  Fig. 6 .  
The two se t s  of curves correspond t o  two different  values of Of, the average thermal 
neutron f i s s ion  cross-section. 
i n  the re f lec tor  of the Pewee reactor.  
assumd f o r  the Nuclear Furnace and HFlR, recognizing tha t  t h i s  assumption may be 

A value of @ = 323 barns w a s  calculated f o r  U-235 
The same value of 52 = 323 barns w i l l  be 

14 
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conservative since light-water moderation w i l l  develop a sof te r  thermal neutron 
spectrum and hence, a s l igh t ly  higher average f i s s ion  cross-section ( for  example, 
O f =  385 barns i n  the HIFR f l u x  t rap) .  Pu-239 has a calculated average f i s s ion  
cross-section of Of = 678 barns i n  the Pewee ref lector .  
be assumed f o r  Pu-239 i n  the Nuclear Furnace and HF’IFL 
fluxes available i n  the Nuclear Furnace, Pewee, and HF’IR a re  shown i n  Fig. 6. 
purposes of fur ther  performance analyses, the thermal neutron f lux  w a s  held constant 
a t  dth = 2.5 x 10’5 n/cm2-sec. 
represents a value at ta inable  i n  any of the three candidate t e s t  reactors.  

- 

Again, the same value w i l l  
The ranges of thermal neutron 

For 

This leve l  of neutron f l u x  was chosen because it 

Ranges of power levels  and radiating temperatures over a wide variation of 
f u e l  pa r t i a l  pressures a re  shown i n  Fig. 7 f o r  the two values of average f i s s ion  
cross-section considered. 
n/cm2-sec f o r  the resu l t s  shown i n  Fig. 7. 
CF6 = 167 a t m  was selected f o r  the reference design performance level .  

i n  the two-component vortex experiments reported i n  Ref.6 f o r  the reference design 
fuel-to-cavity radius r a t i o  of RF/RT = 0.6. The reference design performance level  
w a s  selected f o r  the case in  which U-235 fue l  w a s  employed with an average f i s s ion  
cross-section of Of = 323 barns. The principal performance parameters and operat- 
ing conditions f o r  the reference design case a re  l is ted i n  Table 11. 
increase i n  performaace can be achieved by using Pu-239 w i t h  an average f i s s ion  
cross-section of Of = 678 barns. 
formance fo r  the reference design uni t  c e l l  w i t h  subst i tut ion of Pu-239 f o r  U-23.5 
is  a l so  shown i n  Table 11. 

Thermal neutron f lux  w a s  f ixed a t  $th = 2.5 x 10 15 
An average fue l  partial pressure of 

- 
A value of - 

- 250 a t m  ( i . e . ,  PF6/PT = 0.5) represents an upper l i m i t  on containment achieved 6 -  

A substantial  

For purposes of comparison, in-reactor t e s t  per- 

Several of the parameters affecting performance were varied individually while 
a l l  other reference conditions were held constant t o  determine the sens i t i v i ty  of 
the performance leve l  t o  these parameters. The quantit ies varied were un i t  c e l l  
diameter, aluminum l i n e r  re f lec t iv i ty ,  fuel-containment factor,  and the fuel-to- 
cavity radius r a t io .  
i n  these selected parameters a re  shown i n  Fig. 8. The greatest  variations i n  per- 
formance r e su l t  from changes i n  uni t  c e l l  diameter and the fuel-containment fac tor  
(see Figs. 8(a) and (b) )  principally because these parameters have a d i rec t  e f fec t  
on the amount of nuclear fue l  stored i n  the t e s t  c e l l .  Note that when uni t  c e l l  
diameter i s  varied, the c e l l  length-to-diameter r a t i o  is  held constant such tha t  
the fue l  region volume increases as the cube of the diameter. Variation of the 
aluminum l i n e r  r e f l ec t iv i ty  (Fig. 8 (c) )  has a large effect  on the gross outward 4 photon f lux  which i s  pro2ortional t o  T6 . The s l igh t  rise i n  radiated power as 
the aluminum l i n e r  r e f l ec t iv i ty  decreases resu l t s  from an increase i n  stored nuclear 
f u e l  because the buffer gas-density a t  the edge of the fue l  cloud, pB , increases 
(note that the density containment factor  , F F ~ / ~ ~ ~ ,  i s  held constant i n  t h i s  case). 
For purposes of tes t ing  internal ly  cooled transparent-wall models and propellant 
heating, it is  desirable t o  have high gross outward photon fluxes and therefore, 

The resul t ing e f fec ts  on performance levels due t o  variations 
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a r e f l ec t iv i ty  of a= 0.9 was chosen as the reference design value. 
i s  shown t o  be re la t ive ly  insensit ive t o  changes i n  fuel-to-cavity radius r a t i o  
i n  Fig. 8(d). 
s i t y  containment factor,  p / p  
radius 
(SF) ’I4 under these conditions, there is  l i t t l e  var ia t ion i n  the Gdge-of-fuel t e m -  
perature and buffer-gas density, T6 and pB 

from F$/% = 0.6 t o  0.9. 
as a reference design condition t o  minimize fue l  concentrations near the t e s t  c e l l  
aluminum l i n e r .  

Performance 

This re la t ive  insens i t iv i ty  is  due t o  the constraint tha t  the den- 

Since the equivalent b ack-body radiating temperature, T*, varies as 
is held constant and is  independent of fuel-region 

F1 Bq’ 

and hence l i t t l e  resul tant  variation 

A fuel-to-cavity radius r a t i o  of RF/% = 0.6 w a s  chosen 
i n  stored nuclear fue l  as the fuel-to-cavi 6’ y radius r a t i o  is  changed over the range 

Selection of Fuel Pa r t i a l  Pressure 

The fue l  partial pressure selected f o r  the reference design performance leve l  
w a s  chosen t o  fa l l  within the l i m i t s  of experimental resu l t s  from two-component 
gas vortex t e s t s .  Table I11 contains comparisons of typical  partial-pressure r a t io s  
measured i n  the experiments reported i n  Ref.6 and the partial-pressure r a t io s  
selected f o r  the in-reactar t e s t s .  It can be seen that, i n  a l l  cases, the values 
chosen for the in-reactor tests are  less than those reported f o r  the measurements 
of Ref. 6. 

In the case of the reference design performance level,  the partial pressure 
selected f o r  the  nuclear fue l  affects the fuel-to-carrier-gas mass flow r a t e  r a t i o  
required f o r  fue l  injection. 
0.33 (pF6 = 167 a t m ) ,  a peak local  pressure r a t i o  i n  the fue l  region of PF/PT = 0.50 
would be required. T h i s  value was determined by observing tha t  the peak-to-average 
fue l  pressures measured i n  the simulated fue l  region i n  the experiments of R e f .  6 
w e r e  about P /- = 1.5.  These pressure r a t io s  are f o r  the nuclear fue l  only, Fmax ’~e  
hence FQmax = 250 a m i n  the reference design in-reactor t e s t .  When car r ie r  gas 
is  employed, the carrier-gas pa r t i a l  pressure, PCG, must be added t o  tha t  of the 
fue l  ( i . e . ,  it too must be considered as fue l  f o r  purposes of estimating the t o t a l  
partial pressure in  the fue l  region due t o  gases other than the buffer gas).  
fue l  partial pressures higher than P /P F T  
described i n  Ref. 6. 
is selected as an upper l i m i t  f o r  the in-reactor t e s t s ,  then within the fue l  region, 
Pprnax + PcG = 375 a t m  and P F ~ ~ ~ / P ~ ~  7 2.0. 
the nuclear fue l  is,on the average,singly ionized and the electrons a re  included 
i n  the t o t a l  partial-pressure taken from Fig. 5 .  Therefore, since approximately 
half of the fue l  partial pressure f o r  the reference design performance level is 
due t o  electrons, the r a t i o  of uranium atom-to-carrier-gas partial pressure can be 
reduced t o  Pu/PcG = 1.0. 
fue l  region f o r  the reference design in-reactor tests a re  summarized as follows: 

For the fuel-to-total-pressure r a t i o  of % ~ / P T  = 

Local 
= 0.75 were obtained i n  the experiments 

If t h i s  value of local  pa r t i a l  pressure, ( P F ~ ~ ~  -t PCG)/PT = 0.75 

In the case of the reference performance, 

These average and peak values of pa r t i a l  pressures i n  the 
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Average P a r t i a l  P a r t i a l  Pressures a t  Point of 
Constituent Pressures, a t m  Peak Fuel Concentration, a t m  

U and I? 83.3 125.0 

E l e  c t r ons 83.3 125.0 

Carrier Gas (Argon) 83.4 125.0 

Buffer Gas (Argon) 250.0 125.0 

Total 500 .o 500.0 

When argon with an atomic weight of 40 i s  employed as the  ca r r i e r  gas, the  injected 
mass f iov  rate r a t i o  of fuel- to-carr ier  gas reqyired t o  l i m i t  PU/PcG Z 1.0 must 
be WF/WcGS 6.0. 
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COMPOIIENT DESIGN 

The discussion of the design of the components i n  the in-reactor tes t  uni t  i s  
subdivided in to  f ive  parts, (1) the pressure vessel, (2) the re f lec t ive  l i n e r  and 
end w a l l s ,  (3) the fue l  handling system, (4) the coolant and buffer-gas systems, and 
(5)  the procedures t o  be followed i n  assembling the components. The component 
descriptions apply only t o  the basic design configuration, and the dimensions given 
a re  f o r  a un i t  similar i n  s ize  t o  t ha t  described i n  R e f .  2. 

Pressure Vessel 

The pressure vessel used i n  the in-reactor t es t  i s  a wound f iberglass  cylinder 
approximately 6 f t  i n  length w i t h  an inside diameter of 3.5 in.  and an outside dia- 
meter of 3.85 in.  The w a l l  thickness of 0.175 in .  i s  based on an internal  pressure 
of 500 a t m  and a design stress leve l  of 75,000 p s i  i n  the f iberglass .  
allowable uniaxial  t ens i l e  s t r e s s  f o r  f iberglass  is  on the order of 300,000 psi .  
If it i s  assumed tha t  the pressure vessel is wound so that it has similar t ens i l e  
stress properties i n  both ax ia l  and hoop stress (a l te rna te  circumferential and ax ia l  
f i b e r  directions or 45-deg angle winding), the maximum allowable stress would be 
reduced t o  150,000 p s i .  This value was further reduced t o  the design leve l  quoted 
above t o  provide a safety factor  of 2.0. A type of winding which yields equal 
values of allowable hoop and axial  s t r e s s  was selected s o  tha t  the cross-sectional 
area reductions i n  the fiberglass which are required t o  provide for  metallic 
end pieces would not require increases i n  the outside diameter of the vessel. In 
a cylinder under an internal  hydrostatic load, the r a t i o  of hoop s t r e s s  t o  ax ia l  
stress is 2 t o  1. Therefore, a 50 percent reduction i n  thickness of the f iberglass  
t o  accomaodate the metal end pieces may be made. 

The maximum 

The pressure vessel is  cooled on both sides s o  that the maximum-allowable tem- 
perature of TOO R w i l l  not be exceeded a t  the values of neutron and gamma-ray heating 
which a re  anticipated a t  full-power operation of the t e s t  reactor. 

The r e s in  which is used i n  the fabricat ion of f iberglass  components i s  degraded 
by exposure t o  radiation as discussed i n  R e f .  11. Total operating l i fe t imes a re  on 
the order of 1 t o  3 hours depending upon the neutron and gamma-ray f l u x  levels  i n  
the par t icular  t es t  reactor t o  be used. The other components of the in-reactor t es t  
un i t  a re  not limited by radiation exposure, and a design which would permit replace- 
ment of the pressure vessel is  preferred. 
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Reflective Liner 

The cavity l i n e r  and end walls of the in-reactor t e s t  c e l l  (Fig. 2) a re  made 
from aluminum w i t h  a highly ref lect ing inner surface. The heat deposited i n  these 
components, as given i n  Table IV, is  removed by hydrogen coolant. The l i n e r  cool- 
ant  passes ax ia l ly  between the outer surface of the l i n e r  and the inner surface of 
the pressure vessel. The end-wall coolant enters the t e s t  region through an annulus 
a t  the outer edge of the end w a l l ,  passes rad ia l ly  inwara, and i s  removed through 
an annulus near the ax ia l  centerline as shown i n  Fig. 2. The maximum allowable tem- 
perature i n  the l iner  or  end w a l l  w a s  taken as 1400 R. 
operating conditions of the cavity l i n e r  and end w a l l s  a re  given i n  Table V. 

The specifications and 

The portion of the end w a l l s  which form the ends of the bypass coolant annuli 
(Fig. 2) cannot be cooled by the end-wall coolant, and these regions must be trans- 
pirat ion cooled w i t h  a small portion of the  bypass coolant. The portion of the end 
w ~ l l  which forms the end of the inner bypass flow annulus is  separated from the 
remainder of the end walls by the outflow annulus, and it is necessary t o  support 
t h i s  region by means of struts located i n  the outflow annulus. These supports must 
be located i n  the annulus downstream of the mixing region s o  tha t  they w i l l  not be 
exposed t o  the hot gases leaving the vortex. 

Coolant and Buffer G a s  Systems 

A schematic diagram of the in-reactor t e s t  f low c i r cu i t s  is shown i n  Fig.9. 
The flow c i r cu i t s  are symmetric about the axial centerline of the unit ,  and a l so  
symmetric about the cavity mid-plane with the exception of the l i n e r  coolant, which 
is  a single-pass c i r cu i t .  
Fig. 2 and the operating conditions i n  the various c i r cu i t s  are  l i s t e d  i n  Table V I .  

The annuli which form the  flow c i rcu i t s  a r e  shown i n  

The buffer gas enters the cavity through four ax ia l  tubes (Fig.2) and i s  
injected in to  the vortex through a ser ies  of holes which are tangent t o  the inner 
surface of the l i n e r .  The tube inside diameter necessary t o  maintain a reasonable 
pressure loss  (about 2 a t m )  i n  the buffer-gas in l e t s  is  0.10 in. The annulus be- 
tween the l i n e r  and pressure vessel was  f ixed a t  0.110 in.  t o  provide suff ic ient  
space f o r  the buffer-gas injector  tubes. 

Hydrogen coolant w a s  selected f o r  use i n  the basic in-reactor test  configuration 
because the primary coolant f o r  the driving reactor assumed f o r  this  study (Pewee 
reactor) is hydrogen. 
the flow c i r cu i t s  could be redesigned f o r  use with water without major modification 
of the uni t .  

If the uni t  were employed i n  a water-cooled driving reactor 
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Fuel Handling System 

A f u e l  inject ion system which minimized the  p a r t i a l  pressure of non-fissioning 
gases i n  the u n i t  ce l l  f u e l  region, namely a particle-carrier-gas system, w a s  select-  
ed f o r  the in-reactor tes t  reference design. Factors considered i n  the  design of 
a f u e l  handling system employing particle-carrier-gas mixtures were (1) fuel-to- 
carrier-gas mass flaw r a t i o s  required, (2) heating of t he  nuclear f u e l  during injec- 
t ion,  (3) f u e l  pa r t i c l e  l i fe t imes upon inject ion in to  the  un i t  ce l l ,  (4) methods of 
removal of the  spent-fuel, f i s s ion  fragments, and buffer  gas from %he tes t  region, 
and (5 )  systems f o r  collecting spent-fuel and f i s s i o n  fragments. 

The minimum required fuel-to-carrier-gas flow rate r a t i o  f o r  inject ion in to  
the  un i t  c e l l  i s  established by the peak f u e l  p a r t i a l  pressure required f o r  the 
reference design performance level .  
vious section en t i t l ed  Selection of Fuel Pa r t i a l  Pressure t o  be WF/WCG 2 6.0 
Development of systems t o  achieve particle-to-carrier-gas weight flow r a t i o s  of 
WF/WcG 2 6 .o should be the  ob ject ive of future  experimental research programs. 

That flow rate r a t i o  w a s  calculated i n  a pre- 

Heating of the f u e l  during inject ion w i l l  occur when the f u e l  i s  exposed t o  
the neutron f lux  of the driving reactor.  
core lengths of the driving reactors may be considerably larger.  Therefore, the 
f u e l  w i l l  be exposed t o  the neutron f lux  of the driving reactor for  one or two 
f e e t  pr ior  t o  inject ion,  assuming tha t  the t e s t  cavity i s  centered i n  the reactor.  
The f i ss ion  heating r a t e s  are extremely high (24,800 Btu/sec-lb) due t o  the high 
neutron f lux  levels i n  the driving reactors ,  and calculations were made of the 
t o t a l  temperature r i s e  i n  the fue l  during inject ion as a function of inject ion tube 
diameter. The r e su l t s  of these calculations indicated t h a t  it would be necessary 
t o  reduce the f i s s ion  heating r a t e s  i n  the inject ion tubes by means of neutrop- 
absorbing coatings on the inject ion tubes i f  inject ion temperatures on the order 
of 1000 R were t o  be maintained. It was assumed t h a t  the f u e l  inject ion tube would 
be made from a neutron absorbing ma%erial such as cadmimum or  Bora1 (50-percent 
boron carbide, 50-percent aluminum by weight) so t h a t  the f i ss ion  heating r a t e  
would be reduced t o  approximately 248 Btu/sec-lb. With these heating r a t e s  and two 
0.024-in.-dia inject ion tubes (one i n  each end wal l )  the f u e l  inject ion temperatures 
would be approximately 900 R .  The calculated pressure loss i n  a 3-ft length of the 
injection tube was 1 atm. 

The unit c e l l  length i s  8.4 i n .  and the 

The lifetime of both U-235 and Pu-239 par t ic les  upon inject ion in to  the  f u e l  
region w a s  calculated by dividing the  t o t a l  enthalpy rise required t o  vaporize U-235, 
i n i t i a l l y  a t  room temperature (1150 Btu/lb ( R e f .  1'2 )), by the rate of energy release 
per pound of nuclear f u e l  f o r  the reference design thermal neutron f l u x  leve l  of 
4th = 2.5 x 10~5 n/cm2-sec. 
2.23 x lom2 see f o r  U-235 and Pu-239, respectively. 
zation of Pu-239 xould require the same t o t a l  enthalpy r i s e  as t h a t  f o r  U-235. 
These lifetimes are about two orders of magnitude shorter  than the reference design 
average f u e l  residence-time of T~ = 3.5 see. 

This resul ted i n  vaporization times of 4.6 x 10-2 and 
It w a s  assumed t h a t  the  vapori- 
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A mixture of fuel ,  f i s s ion  fragments, car r ie r  gas, and buffer gas is  removed 
from the cavity through an annular outflow port  i n  each end w a l l .  
of t h i s  mixture i s  on the order of 8000 R pr ior  t o  leaving the cavity and, therefore, 
the mixture must be rapidly cooled and isolated from the w a l l s  of the outflow port. 
The cooling of the mixture is  achieved by injecting a flow of re la t ive ly  cold argon 
gas through the w a l l s  of the outflow duct. The injection geometry f o r  the bypass 
flow must be designed t o  both protect the duct w a l l s  and t o  i n i t i a t e  condensation 
of the entrained f u e l  t o  a so l id  par t ic le  form while minimizing the poss ib i l i ty  of 
fue l  deposition on the duct w a l l .  The required geometric configuration has not 
been determined, but experimental investigations of t h i s  problem w i l l  be undertaken. 
The amount of bypass flow necessary t o  reduce the mixed mean temperature of the mix- 
tu re  exit ing the cavity and the bypass flow t o  below the melting point of uranium 
(2500 R)  i s  1 lb/sec. 
annulus and i s  injected i n  the cavity end-wall region. 

The temperature 

Th i s  flow enters through two annuli surrounding the outflow 

The mixture of f i s s ion  products, spent-fuel, and argon buffer and car r ie r  gas 
can be ducted into a water injection scrubber. Water could be injected i n  suf f ic ien t  
quantity t o  drop the e x i t  temperature below the boiling point of water. 
centrifuging would separate the water, carrying most of the uranium 
products from the argon gas. The water and argon gas would be collected i n  leak- 
t i g h t  containers f o r  subsequent separation and purification. Such a scrubber- 
col lector  system would not be large since, f o r  a typical  run time of 1000 see, the 
t o t a l  masses of argon and uranium passed through the fuel-containing test  region 
would be 7.8 and 5.3 lb, respectively. 

Subsequent 
and f i s s ion  

Assembly of In-Reactor Test Unit 

The in-reactor t e s t  uni t  consists of a ser ies  of concentric cylinders which 
form annular flow passages for  the various coolant c i rcu i t s .  
unit  operates a t  a re la t ive ly  l o w  temperature ( less  than 1200 R )  and i s  constructed 
from aluminum. The bypass flow channels and the outflow annulus may be subjected t o  
temperatures of up t o  2500 R and must be constructed from a high-temperature material 
such as inconel. Although the en t i re  assembly operates a t  approximately 500 atm, 
there i s  no requirement f o r  high-pressure seals  between the f l o w  c i r cu i t s  i n  the 
unit .  The aluminum-to-aluminum jo in ts  may be made by brazing, and the inconel par ts  
may be welded. 
aluminum, a mechanical connection may be used. 
assemblypocedure, thesequence in  which the various par ts  are joined is outlined 
but the exact method of joining i s  not specified. 

The majority of the 

Where it i s  necessary t o  form a connection between inconel and 
In  the following discussion of the 
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The in-reactor test unit i s  divided in to  three major sub-assembles i n  the 
(I) the l i ne r ,  (2)  the end-wall and coolant ducts, and following discussions: 

(3) the end cover plates.  
and the sequence of joining the major sub-assemblies i s  described. 

The assembly sequence for  each sub-assembly i s  discussed 

Liner Assembly 

The l i n e r  i s  an aluminum cylinder w i t h  a highly re f lec t ive  inner surface. The 
argonbuffer-gas i s  injected tangent t o  the inner wall through a ser ies  of injectors  
located i n  four ax ia l  rows. 
pipes which a re  located i n  the annulus between the l i ne r  and the pressure vessel. 
The four buffer-gas injector  pipes are attached t o  the l iner  a s  shown i n  Fig. 10. 
Flow enters from both ends of the Fuffer-gas injector  pipes and passes through the 
l i ne r  wall t o  the inner surface. 

These injectors  are  fed by four Irzuffer-gas injector  

End-Wall and Coolant Ducts 

The cavity end wall  i s  aluminum w i t h  a highly ref lect ing inner surface. 
Provision must be made fo r  the in jec t ion  of fue l ,  removal of buffer f l o w ,  end-wall 
cooling and bypass flow injection. These f l o w  c i r cu i t s  are formed by a ser ies  of 
concentric annuli which must be assembled s t a r t i ng  w i t h  the innermost walls. 
Sketches of the assembly a t  the inner and outer ends are shown in  Figs. 11 and 12, 
respectively . 

The innermost tube i s  the fuel-injectiontube. This tube i s  attached t o  the 
end walls as  shown i n  Fig. 11. The inner bypass flow annulus i s  formed by the fuel-  
injection tube and a concentric wall which i s  also attached t o  the  end wall as shown 
i n  Fig. 11. A t  the outer end (see Fig. 1 2 )  a flange i s  used t o  connect the two 
concentric tubes and form a closed f l o w  passage for  the inner bypass flow. The 
bypass f l o w  i s  injected in to  the annulus a t  the outer end by one or more feeder 
pipes which are  attached t o  the flange as shown i n  Fig. 12. This sub-assembly i s  
separated from the remainder of the end wall  by the outflow duct and it must be 
supported by spacer bars which position the sub-assembly as shown i n  Fig. 11. 

The outer bypass flow annulus i s  formed by attaching two concentric cylinders 
t o  the remaining portion of the end wall as shown i n  Fig. 11. The outer ends of 
these annuli are  a l so  closed and feeder pipes attached as shown i n  Fig. 12. 
time, the fue l  tube and inner bypass tube sub-assembly are inserted and attached t o  
the outer bypass tube sub-assembly a t  the outer end only, thereby forming the outflow 
annulus. The end-wall coolant passages are formed by inser t ing an annular baff le  
assembly between the outer bypass f l o w  annulus wall  and the outer section of the 
l iner .  This baffle assembly i s  formed by two cylinders with flanges on the outer 

A t  t h i s  
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end as shown i n  Figs. 11 and 12. The baf f le  sub-assembly i s  positioned by spacer 
bars which locate the sub-assembly a t  the required distance from the end wall, outer 
l iner,and outer bypass flow tube. This sub-assembly s l ides  over the outer bypass 
flow tube and i s  attached t o  the outer bypass f l a w  tube a t  the  outer end only. 
The outer l i ne r ,  which has the same dimensions as the l i ne r  i n  the cavity region, 
but does not require a highly re f lec t ing  inner surface, surrounds the other sub- 
assemblies, and i s  attached t o  the end wall (Fig. 11) and t o  the and-wall coolant 
baf f le  sub-assembly a t  the outer end. The location of the buffer-gas flow injectors  
i s  shown i n  Figs. 11 and 12, but these par ts  a re  not attached t o  these sub-assemblies. 
The end-wall and coolant duct assemblies are  now attached t o  the cavity l i ne r  
assembly by joining the cavity l iner  and cavity end walls. 

End Cover Plates 

The feeder tubes fo r  fue l ,  coolants, buffer gas and bypass gas and the out le t s  
f o r  coolant and outflow are  a l l  attached t o  the central  portion of the end cover 
plates  as shown i n  Fig. 13. This inner portion of the cover plate  i s  mechanically 
attached t o  the l iners .  The buffer-gas injector  pipes pass through the l i ne r  t o  
the central  portion of the cover plate.  The completed assembly may now be inserted 
i n  the pressure vessel. 

The outer cover plate  i s  used t o  connect the assembly t o  the ends of the 
pressure vessel as shown i n  Fig. 13. F i t t ings  for  connecting feeder and exhaust 
pipes are attached t o  the outer cover plate  and a l l  external piping must be designed 
t o  withstand the f u l l  500 a t m  pressure which ex is t s  i n  the in-reactor t e s t  u n i t  a t  
operating conditions. 
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SlMCTLATION EXPERIp.IENTs IN THE UARL 1.2-MEGW R-F HEATER 

A considerable amount of preliminary non-nuclear tes t ing  of the in-reactor 
t e s t  u n i t  and i ts  components can be performed using the 1.2-megw r-f heater t o  pro- 
duce a radiation source. The discussion of the types of t e s t s  which could be per- 
formed is  divided in to  two sections: (1) a comparison of the performance levels  of 
the in-reactor t e s t  un i t  and the existing 1.2-megw r-f heater configuration, and 
(2) the modifications t o  the present r-f heater configuration which would permit 
the tes t ing  of fu l l - sca le  in-reactor t e s t  uni ts .  I n  general, the type of experi- 
ments which could be performed include ver i f icat ion of analyt ical  heat balance 
calculations, measurements of the r e f l ec t iv i ty  of various l i n e r  materials and sur- 
faces and, with appropriate modifications, could include t e s t s  of ful l -scale  models 
of in-reactor t e s t  un i t s  t o  identify any design problems which might ex i s t  prior 
t o  the start of nuclear tes t ing  of the uni ts .  

Comparison of Performance Levels 

The calculated performance levels  of the in-reactor test uni t  described i n  
t h i s  report  and the performance levels  of the 1.2-megw r-f heater as employed i n  
FY 1970 tests a re  sho-wn i n  Table V I I .  The major differences between the two 
configurations a r i se  from the difference i n  geometry and the operating pressure levels  
The r-f heater i n  i t s  present configuration would accomrnodate t e s t s  of components 
of 2/3-scale re la t ive  t o  the diameter, but of The values 
of radiant heat f lux  per un i t  area which have been obtained i n  the r-f heater a re  
approximately 6 times as high as those anticipated i n  the in-reactor t e s t s  but 
these values were obtained with discharge diameters of 0.5 in.  and discharge lengths 
of 2.0 in.  I f  it is desired t o  increase the discharge volume t o  values closer t o  
tha t  calculated f o r  the fue l  region of the in-reactor t e s t  ( 1.9-in.-dia), the 
radiant heat f lux  levels  f o r  the same power level  would be changed i n  inverse pro- 
portion t o  the surface area. 

a much shorter length. 

Increases i n  the diameter of the plasma discharge cause an increase i n  the 
r a t i o  of plasma diameter t o  co i l  diameter which leads t o  higher coupling efficiency 
i n  the r-f heater. It should be re la t ive ly  easy t o  obtain discharge power levels  
of 456 Btu/sec (432 kw), t o  simulate the U-235-fueled in-reactor t e s t  unit, and 
it may be possible t o  obtain discharge power levels  approaching 840 Btu/sec (797 k w ) ,  
t o  simulate the Pu-239-fueled in-reactor t e s t  unit, with the present 1.2-megw 
input capacity of the power supply. 
power of the r-f heater may be increased t o  2.4 megw by re la t ive ly  simple changes 
t o  the power supply. Calculations indicate l e s s  of a problem with t o t a l  radiated 
powers of 446 kw with a r a t i o  of plasma diameter t o  co i l  diameter of 0.6 than with 
the 223 kw power level  and 0.25 r a t i o  of plasma-diameter-to-coil-diameter as employ- 
ed i n  present r-f heater tests. 

I f  higher power levels  a re  required, the input 
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Even though the length of the present r-f heater is much smaller than t h a t  of 
the in-reactor t e s t  unit ,  a number of experiments on end-wall configurations t o  
determine heat loads, r e f l ec t iv i ty  and desired end-wall geometry can be performed. 
Segments of cylindrical  l i n e r  can a l so  be tes ted i n  the r-f heater t o  study buffer- 
gas inject ion geometries and ver i fy  calculated heat loads. 

Experiments t o  determine the character is t ics  of the fue l  handling system could 
a l so  be performed by injecting uranium in to  the argon plasma. These experiments 
would be used t o  determine injection and extraction methods which would minimize 
f u e l  deposition problems and a l so  indicate any changes i n  the radiation spectrum 
which occur if uranium is present i n  the plasma. 

Instrumentation proposed f o r  the in-reactor t e s t s ,  par t icular ly  i n  the instru- 
mentation required f o r  spectral  emission measurements, could be checked during 
tests i n  the r-f heater. 

Future Simulation Experiments 

In order t o  perform the types of experiments described i n  the preceding section 
w i t h  a fu l l - sca le  in-reactor t e s t  unit, it would be necessary t o  modify the resona- 
t o r  section of the r-f heater. 
s i ze  t o  accommodate a fu l l - s ize  in-reactor t e s t  un i t  (3.15-in.-dia, 8.4-in.-length), 
(2) increases i n  the operating pressure levels,  and (3) modifications t o  permit 
operation w i t h  large-diameter discharges w i t h  high power levels .  If it is possible 
t o  approximate the in-reactor t e s t  conditions i n  the r-f heater, complete non- 
nuclear t e s t s  of the in-reactor t e s t  un i t  can be made t o  include ver i f icat ion of 
heat balances, 
methods. Calibration of a l l  of the instrumentation scheduled f o r  the in-reactor 
tests could be made and the effectiveness of the measuring techniques investigated. 

The modifications necessary are  (1) increases i n  

and preliminary t e s t s  of fue l  handling systems and buffer-gas injection 

The use of the r-f heater with fu l l - sca le  in-reactor un i t s  would make it 
possible t o  identifymanyproblem areas which might ex i s t  i n  the uni t  pr ior  t o  under- 
taking a nuclear tes t  and should providea high confidence level  f o r  successful 
nuclear t e s t s  of the uni t .  
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PERFORMANCE MEASUREMENTS 

The performance of the in-reactor test  uni t  w i l l  be determined by measurement 
of the flow ra t e s  and temperatures in  the various coolant c i r cu i t s  t o  determine the 
enthalpy change i n  each coolant, by spectral  measurement of the radiant heat f l u x  
i n  the cavity and by post-test  inspection of the components of the t e s t  un i t .  
flow c i r cu i t s  i n  the in-reactor test unit ,  as previously described, w i l l  permit 
separate measurements of the t o t a l  heat deposited i n  the cavity l iner ,  end w a l l s ,  
and i n  the mixture of fuel ,  f i s s ion  products, buffer gas, and car r ie r  gas which 
leaves the cavity region through the outflow port. It w i l l  be possible t o  calculate 
the contributions t o  neutron and gamma ray heating which are associated w i t h  the 
tes t  reactor from those of the in-reactor test uni t  by operating an unfueled tes t  
un i t  i n  the reactor w i t h  the design coolant flow ra tes .  

The 

All of the measuring devices which a re  inside of the t e s t  un i t  must be of a 
type which a re  not subject t o  radiation damage a t  the radiation f lux  levels  an t ic i -  
pated i n  the t e s t  un i t  a t  full-power operating conditions. 

Flow Measurements 

The flow rates i n  a l l  of the coolant c i rcu i t s  and the buffer gas c i r cu i t  may 
be measured with conventional flow metering equipment a t  a location external t o  the 
t e s t  uni t .  The l i n e r  coolant and end-wall coolant flow rates may be measured before 
they enter  the t e s t  un i t  or a f t e r  they e x i t  the tes t  un i t  since both c i r cu i t s  are 
separate, closed-loop c i rcu i t s .  The buffer gas, bypass flow and the fue l  and carr ier-  
gas flows must be measured before they enter the t e s t  un i t  since a l l  of these flows 
a re  mixed before exit ing through the outflow port .  Total flow ra tes  i n  the outflow 
port may be measured and compared w i t h  the sum of the buffer, bypass, fuel ,  and 
carrier-gas flows. A minimum of 1.3 flowmeters a re  required t o  monitor the various 
f l a w  rates i n  the t e s t  uni t .  

Further analyt ical  and experimental studies w i l l  be necessary t o  develop and 
tes t  the equipment and techniques necessary t o  control and monitor the fuel  flow 
rates if  the fue l  is injected i n  the form of par t ic les  i n  a car r ie r  gas. Control 
of the fuel-to-buffer-gas r a t i o  w i l l  be necessary t o  insure a consistent fuel  and 
carrier-gas mixture f o r  injection and adequate f l a w  monitoring equipment must be 
available f o r  the measurement of the fue l  flow r a t e  i n  both the fue l  injection sys- 
tem and i n  the outflow port .  It is possible t o  monitor the uranium flow rates i n  
the  uni t  t es t  c e l l  w i t h  alpha par t ic le  counters. This type of measurement is employ- 
ed i n  the gaseous diffusion enrichment operations and can be used t o  detect  very 
small uranium concentrations. 
flow measuring devices and the design of equipment required t o  produce a consistent 
r a t i o  of fuel-to-carrier gas w i l l  require fur ther  studies.  

The e f fec ts  of f i s s ion  product decay on the uranium 
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Temperature Measurements 

The temperature levels  throughout the in-reactor t e s t  uni t ,  with the exception 
of the internal  cavity region, a re  below 2500 R and can be measured with conven- 
t i ona l  types of thermocouples. Monitoring of i n l e t  and out le t  temperatures i n  a l l  
of the coolant c i r cu i t s  is  necessary t o  calculate the enthalpy r i s e  i n  the c i r cu i t s  
and the overall  un i t  heat balance. I n  addition t o  these temperature measurements, 
it i s  necessary t o  monitor the temperature levels  i n  the c r i t i c a l  components such 
as the cavity l iner ,  end w a l l s ,  and pressure vessel t o  insure tha t  the maximum 
allowable temperatures i n  these components a re  not exceeded. It i s  estimated tha t  
a minimum of 20 thermocouples w i l l  be required t o  provide suf f ic ien t  information 
f o r  the uni t  heat balance. 
ou t le t  of each coolant c i r cu i t  and the measured temperature difference would indi- 
cate the enthalpy r i s e  i n  tha t  c i rcu i t .  
insulation between separate coolant c i r cu i t s  t o  minimize heat t ransfer  between the 
c i r cu i t s  if the heat load t o  a specific component i s  t o  be accurately determined. 
A t  l e a s t  10 additional thermocouples w i l l  be required t o  monitor component tempera- 
tu re  levels  through the uni t .  

These thermocouples would be located a t  the i n l e t  and 

Provision must be made f o r  suf f ic ien t  

Spectral Measurements 

The spectral  emission character is t ics  of the fue l  region i n  the in-reactor 
t e s t  w i l l  require visual access t o  the fue l  region. 
mitted, through one or more l i g h t  ducts, from the cavity region, which i s  a t  500 a t m ,  
t o  an externally located monochromator. Light ducts from the end w a l l s  w i l l  pass 
d i r ec t ly  through the region between the end-wall coolant annuli t o  the end cover 
plate .  Light ducts from the cavity mid-plane w i l l  pass through the l i n e r  coolant 
annulus, para l le l  t o  the buffer-gas injection ducts and w i l l  require mirrors inside 
the l i g h t  duct t o  bend the l i g h t  t o  the location where the l i g h t  duct penetrates 
the end cover plate .  A window of some type w i l l  be required which i s  capable of 
withstanding the pressure d i f fe ren t ia l  but w i l l  not attenuate the radiation from 
the cavity. A glass or fused s i l i c a  window w i l l  at tenuate the u l t rav io le t  (u-v) 
radiation but p e m i t  measurements i n  the v is ib le  spectrum: Some preliminary 
measurements of spectral  emission character is t ics  of the plasma i n  the 1.2-megw 
r-f heater a re  described i n  Ref.13 ,Appendix B. 
form of aerodynamic window such as have been developed f o r  lasers  t o  permit trans- 
mission of the en t i re  spectrum t o  the monochromator. 

The l i gh t  must  be trans- 

It may be desirable t o  employ some 

Spectral emission measurements w i l l  be made i n  the end-wall region of the cavity 
and a l so  in  the midplane region. 
wal l  would r e su l t  i n  minimum attenuation due t o  the presence of fue l  or f i s s ion  
fragments i n  the buffer layer. 

The midplane location w i t h  a viewport i n  the l iner  
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Post -Te s t Inspect ion 

The primary purpose of post-test  inspection of the in-reactor test  uni t  would 
be t o  determine if there were any erosion, corrosion, o r  fue l  and f i s s ion  fragment 
deposition problems i n  the t e s t  un i t  which did not cause noticeable changes i n  the 
performance levels  during operation. In  the event of a nonscheduled shutdown of 
the t e s t  unit ,  the post- tes t  inspection would be required t o  determine the cause 
of the shutdown. The e f fec ts  of nuclear radiation on the uni t  components, particur 
l a r l y  the degradation i n  pressure-,vessel strength, w i l l  a l so  be determined by 
post-test  pressure" inspections. 
desired a f t e r  i n i t i a l  t e s t s  t o  determine the amount of degradation i n  strength. 

Destructive tes t ing  of the pressure vessel may be 
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RECOMMENDATIONS FOR l?UTUEE F3SEARCH 

The basic  in-reactor tes t  configuration described i n  t h i s  report  may require 
some modification based on the r e su l t s  of concurrent research and on the f i n a l  
select ion of a driving reactor.  
changes i n  the basic  geometric configuration but may require modifications t o  cool- 
an t  flow rates o r  changes i n  the calculated performance levels .  

These modifications w i l l  probably not require any 

Before the  in-reactor t es t  u n i t  can be ins ta l led  i n  a driving reactor, it w i l l  
be necessary t o  determine the e f fec ts  of the tes t  u n i t  on the driving reactor  and 
t o  ident i fy  any possible personnel or reactor  hazards associated w i t h  the  in-reactor 
tes ts .  This type of analysis w i l l  require an examination of the  nuclear character- 
i s t i c s  of the  t e s t  u n i t  w i t h  respect t o  the  reactor used as a driving reactor  and 
a preliminary analysis of the possible off-design operating conditions and possible 
f a i lu re s  which may occur during operation. 
the equipment and procedures required f o r  removal, disassembly and inspection of 
the in-reactor t es t  un i t  after nuclear t e s t s .  

It w i l l  a l so  be necessary t o  determine 

In  addition t o  the design studies mentioned above, a schedule of component 
fabr icat ion and t e s t ing  should be established t o  estimate the number and types of 
non-nuclear tests which should be performed pr ior  t o  an in-reactor t e s t .  
schedule would aid i n  a determination of the required modifications t o  exis t ing 
equipment which would be required t o  perform the desired non-nuclear t e s t ing  and 
the sequence of t e s t ing  needed t o  develop a l l  of the components required f o r  the 
t e s t s .  

This 

E s t i m a t e s  of the costs of an in-reactor t es t  program, including the costs o2 
using various types of driving reactors, should a l so  be made. 
should include a consideration of the operating times and accessabi l i ty  of various 
dr iving reactors and the reusabi l i ty  of in-reactor tes t  components. 

These estimates 
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LIST OF SYMBOLS 

A 

C 

PB 
C 

C 
PF 

DT 

kF 

LT 

MF 

NF 

pB 

’CG 

pFMAx 
- 
pF6 

pT 

P 
U 

QCOND 

QCONV 

QR 

2 Area, f t  

Ratio of average fue l  residence-time t o  average buffer-gas residence-time 

Specific heat of buffer gas, Btu/lb-deg R 

Specific heat of fue l ,  Btu/lb-deg R 

Unit cavity diameter, in.  

Gravitational acceleration constant, ‘ft/sec2 

Containment parameter 

Unit cavity length, in .  

Nuclear fue l  mass, g 

Nuclear fue l  atom density, atm/cm3 

Pa r t i a l  pressure of buffer gas, atm 

Pa r t i a l  pressure of car r ie r  gas, atm 

M a x i m u m  p a r t i a l  pressure of fue l ,  atm 

Average fue l  p a r t i a l  pressure, atm 

Unit cavity operating pressure, atm 

Par t ia l  pressure of uranium i n  cavity, atm 

Conducted power, Btu/sec 

Convected power , Btu/sec 

Radiated power , Btu/sec 

Total power, Btu/sec 
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LIST OF SYMBOLS (Continued) 

R 1  or RT 

R 6  Or RF 

SF 

sw 

TW 

T6 

T* 

vB 

vF 

vZ 

wB 

'CG 

WF 

Y 

Heat flux from f u e l  region, Btu/sec-ft* 

Reflect ivi ty  

Unit cavity radius,  f t  

Fuel region radius,  f t  

Fuel region surface area, f t2  

Unit cavity surface area, f t 2  

Average buffer-gas temperature, deg R 

Cavity w a l l  temperature, deg R 

Temperature a t  edge of fue l  region, deg R 

Equivalent black-body radiating temperature, deg R 

Buffer-gas region volume , f t3  

Fuel region volume, f t3 

Axial velocity i n  buffer-gas region, f t /sec 

Mass flow r a t e  of buffer gas, lb/sec 

Carrier-gas mass flow ra te ,  lb/sec 

Fuel injection mass flow ra t e ,  lb/sec 

Proportionality constant 

Temperature r i s e  i n  buffer gas, deg R 

Temperature r i s e  i n  fue l ,  deg R 

Viscous boundary layer thickness, f t  
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LIST OF SYMBOLS (Concluded) 

- 
Of 

TB 

7- F 

4 th  

Viscosity of edge of fue l ,  lb/ft-sec 

Buffer-gas density, Ib/ft 3 

Average buffer-gas density i n  volume between R 

Buffer-gas density a t  edge of f u e l  (R = R 6 ) ,  lb / f t3  

Average f u e l  density,  lb/f t3  

Average f u e l  density i n  volume between R = 0 and R = R1, lb / f t3  

3 Average f u e l  density i n  volume between R = 0 and R = R6,  lb / f t  

Stefan-Boltzmann constant , 0.48 x 

Average thermal neutron cross-section, barns 

Average buffer-gas residence -time , sec 

Average fue l  residence-time , sec 

Thermal neutron f lux,  neutrons/cm2-sec 

R1 and R = R6, lb / f t3  

Btu/sec-ftZ-deg R 
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TABIX I 

VALUES SEIXCTED FOR PARAMETERS AFFECTING 
IN-REACTOR 'IIEST PERFORMANCE 

Specifications For Unit C e l l  Shawn I n  Figs. 1 and 2 

I Parameter 

Operating Pressure, PT - atm 

Unit Cell Diameter, DT - in .  

Thermal Neutron F l u ,  r,bth - n/cm -sec 

Average Fission Cross-Section, Gf-barns 

2 

Fuel-to-Cavity Radius Ratio, RT/% 

Density Containment Factor, pF6/pB6 

Ratio of Average Fuel Residence-Time 
t o  Buffer-Gas Residence-Time, 7F/7B 

Aluminum Liner Reflectivity,  bL 

Fuel-to-Buffer-Gas Partial-Pressure 
Ratio, FF6/PB 

Range of 
Values 

0.6 - 0.8 

0.1 - 0.4 

0.5 - 1.5 

0.7 - 0.9 

-- 

Value 

500 

3.15 

2.5 1 0 ~ 5  
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TABLE I1 

PERFORMANCE LEVELS OF IN-REACTOR TESTS 
Specifications For Unit C e l l  Shuwn I n  Figs. 1 and 2 

Fue 1 

Thermal Neutron Fission 
Cross-Section, Of barns 

Surface Reflect ivi ty  & 

Density Containment Factor, 
kF = PF1_/-7B6 

Fuel Loading, % - g 

Total Power, - Btu/sec 

Power Radiated, C& - Btu/sec 

Surface Radiating Temperature, 
T6 - deg R 

Equivalent Black-Body Radiating 
Temperature, W - deg R 

Average Fuel P a r t i a l  Pressure For 
Volume Inside R6,  P - a t m  

- 
F6 

Reference Design 
Performance 

U-235 

323 

0.9 

0.23 

8 -3 

456 

411 

12,500 

7040 

167 

Performance Using 
Pu-239 Fuel 

Pu-239 

678 

0.9 

0.22 

7 92 

840 

756 

14 , 600 

8210 

167 
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TABU I11 

COMPARISON OF FLOW AND CONTAINMENT PARAMETERS FROM 

VALUES SELIECmD FOR IN-REACTOR TEST REFERENCE DESIGN 
TWO-COMPOE3ENT GAS VORTEX EXPERWNTS AND 

See Ref. 6 For Description of Two-Component Gas Vortex Experiments 

Containment Parameter 

Density Containment Factor, 
kF = P ~ ’ I / ~ B ~  

- 

Ratio of Fuel-to-Buffer-Gas 
Residence -Times c = ‘rF/‘rB 

Fuel-to-Cavity Radius Ratio, 

RF/RT 

Fuel-to-Buffer-Gas Part ia l -  
Pressure Ratio, ~ F ~ / P B  

Peak- t o-Aver age Fuel Part i a1 - 
Pressure Ratio, PF/PF6 

Two-Component 
Gas Vortex Test 

0.1 - 0.4 
0.5 - 1.5 

0.5 - 0.9 

0.1 - 0.5 

1.5 

In-Reactor Test 
Reference Design 

0.23 

1.0 

0.6 

0 933 

1.5 
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TABIX I V  

UNIT CELL HEAT BALANCE 
(See Fig. 2 for  Detai ls  of Unit C e l l  Geometry) 

Heat Balance Calculated For Reference Design Employing U-235 Fuel 
Numbers I n  Parentheses Are For Pu-239 Fuel With S i m i l a r  Flow Rates And Geometry 

k g y  Removed From Cavity, Btu/sec 

I Radiation and Convection t o  Liner 

Radiation and Convection t o  End Walls 

Conduction and Convection t o  Buffer Flow 

Total Energy from Fuel Region 

Energy Removed i n  Coolant Flow Circui ts ,  Btu/sec* 

Liner Coolant 

End-Wall Coolant 

Buffer Gas and Bypass Flow 

Total Energy Removed by Coolant 

336 (645) 

64 (120) 

56 ( 75) 

456 (840) 

341 (650) 

34 (124) 

62 ( 81) 

471 (855) 

*Includes Neutron and Gamma-Ray Heating of Components , 15 (15) Btu/sec . 
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!t!ABI;E V 

LINER AND END-WALL SPECIFICATIONS 
(See Figs. 1 and 2 fo r  Details of Unit C e l l  Geometry) 

Liner and End-Wall Material 

Reflectivity of Inner Surface 

Liner Outside Diameter, in.  

Liner Inside Diameter, in .  

Liner Total Length, in .  

Maximum Temperature i n  Liner, deg R 

End-Wall Thickness, in.  

Maximum End-Wall Temperature, deg R 

Ahpinun 

0 .go 

3 e275 

3.15 

8.65 

949 (1364)* 

o ,0625 

900 (1248) 

*Specifications calculated f o r  reference design employing U-235 fue l ,  
Numbers i n  parentheses are fo r  Pu-239 fue l  with similar flow ra t e s  and geometry. 
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TABU3 V I  

COOLANT AND BUFFER-GAS SYSTEM CONDITIONS 
(See Figs. 1 and 2 f o r  Detai ls  of U n i t  Cell Geometry) 

Liner Coolant Flow Rate, lb/sec 

Liner Coolant Annular Width, in .  

Radiant Heat Load t o  Liner, Btu/$ec 

Coolant I n l e t  Temperature, deg R 

Temperature Rise i n  Hydrogen Liner Coolant, deg R 

Film Temperature Difference i n  Liner, deg R 

Wall Temperature Difference Across Liner, deg R 

Maximum Temperature i n  Liner, deg R 

Pressure Loss i n  Liner Coolant Circui t ,  atm 

Hydrogen Coolant Flow Rate i n  Each End Wall, lb/sec 

Radiant Heat Flow t o  Each End Wall, Btu/sec 

Temperature Rise i n  mdrogen End-Wall Coolant, deg R 

'Maximum Film Temperature Difference i n  End-Wall Region, deg R 

Temperature Difference Across End Wall, deg R 

Maximum Temperature i n  End Wall, deg R 

Pressure Loss i n  End-Wall Coolant Circui t ,  a t m  

2 .o 

0.110 

336 (645)* 

500 

48 (93) 

291 (561) 

110 (210) 

949 (1364) 

5.88** 

0.50 

33.5 (62) 

19.5 (35.5) 

267 (500) 

132 (248) 

900 (1248) 

4.04** 

* Specifications calculated f o r  reference design employing U-235 fue l .  
Numbers i n  parenthesis are fo r  Pu-239 f u e l  with similar f l o w  r a t e s  and geometry. 

**Pressure losses  based on 12 f t  of length t o  include entrance and e x i t  piping. 
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TABLE V I  (Concluded) 

'uel-Injector Tube Inside Diameter, i n .  

h-xel-Injector Tube Outside Diameter, in.  

Uel  Flow Rate per Tube, lb/sec 

Irgon Carrier-Gas Flow Rate per Tube, lb/sec 

Fission Heating Rate i n  Fuel, kw/gm 

?uel Injection Temperature, deg R 

4rgon Buffer-Gas Flow Rate, lb/sec 

Bypass Argon Flow Rate, lb/sec 

Temperature of Fuel and Buffer-Gas Mixture 
Zxiting Cavity, deg R 

In l e t  Temperature of Bypass Flow, deg R 

Temperature of Inner Bypass Flow a t  Injection, 
deg R 

Temperature of Outer Bypass Flow a t  Injection, 
deg R 

Mixed Mean Temperature of Fuel, Buffer and 
Bypass Flow, deg R 

Temperature of Fuel, Buffer and Bypass Flow 
a t  Outlet of Active Core Region, deg R 

Mass of Fuel i n  Cavity, g 

0.024 

0 s o 8  

0.00265 

0.000441 

58 (123)* 

926 (1252)** 

0.0635 (0.0725 

1.0 

8350 (9400) 

5 00 

1501 (1720) 

1736 (1933) 

2030 (2380) 

1281 (1245) 

8.3 (7.2) 

*Heat generation i n  fue l  injectors  reduced by factors  of 100 by addition of neutron 
absorbing material i n  tube walls. 

Numbers i n  parenthesis are for  Pu-239 fue l  with similar f l o w  r a t e s  and geometry. 
**Specifications calculated fo r  reference design employing U-235 fuel .  
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TABLF: VI1 

COMPARISON OF TIE PERFORMANCE OF THE 
IN-REACTOR TEST UNIT AND THE 1.2-MEGW R-F HEATER 

Cavity inside diameter, in. 

Cavity length, in .  

Radiant heat flux per uni t  area, 
B t  u/sec- f t2 

Equivalent black-body radiat ing 
temperature, deg R 

Operating pressure, atm 

Buffer gas 

Buffer injection velocity, f t /sec 

Buffer weight flow, lb/sec 

In-Reactor 
Test U n i t  

3 -15 

8.4 

1130 

7040 

500 

Argon 

9.6 

0.064 

1.2-megw 

IFY 1970 Tests) 
R-F Heater * 

2.24 

2 .o 

6660 

10,860 

1-20 

Argon 

10-50 

0.01-0.04 

Data from t e s t s  of Ref. 13 3c 
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IN-REACTOR TEST UNIT C E L L  BASIC CON FIGURATIONS 

TEST C E L L  LENGTH = 8.4 IN. 

A L L  DIMENSIONS IN INCHES 

NUMBERS I N  PARENTHESES DENOTE FLOW 
,CIRCUITS DESCRIBED I N  TEXT 

SEE TABLES v AND V I  FOR ADDITIONAL SPECIFICATIONS 

(a) SECTION A-A 

END-WALLCOOL LOW ANNULUS (5) OUTER BYPASS FLOW ANNULUS (4) 
ID=0.72 IN. 

OD=0.84 IN. 

OUTFLOW ANNULUS (3) 
ID=0.360 IN. 
OD=0.600 IN. 

CENT E RLlNE 
INNER BYPASS FLOW ANNULUS (2) 

OD = 0.288 IN. 

FUEL-INJECTION TUBE (1) 

OD=0.108 IN. 
ID= 0.108 IN. lD=0.024 IN. 

(b) SECTION B-B 

PRESSURE VESSEL r 

BUF FER-GAS INJECTOR 

00=0.110 IN. 
lD=O.lOO IN. 
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U 
I 

TEST C E L L  LENGTH 8.4 IN. 
A L L  DIMENSIONS IN INCHES 

PRESSURE VESSEL 
ID 3.50 IN. Pi4’””’ OD 3.85 IN. 

ID 2.45 IN. 
OD 3.15 IN. OD 3.275 IN. 

IF u E L- I N JECT IO N TUB E 
END-WALL C ID 0.024 IN. 1 OD 0.108 IN. 

I_ AXIAL CENTERLINE 

ID 0,580 IN. 
OD 0.770 IN. OD 0.580 IN. B 

(b) SECTION B-B 

[PRESSURE VESSEL 

F U E L- INJECT I ON T UB E 1 r L l N E R  

r B U F F E R - G A S  INJECT 

A 

ID 0.100 IN. 
OD 0.110 IN. 

r . - . . . - . ._ - 

A 

‘OR 
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IN-REACTOR TEST UN'IT CELL FOR TESTS 
OF TRANSPARENT WALLS AND PROPELLANT HEATING 

(a) TRANSPARENT-WALL TEST 

PRESSURE VESSEL 

BUFFER-GAS INJECTOR 

T RANSPARE NT WALL 

ANSPAR E NT-WA 
FEEDER TUBES 

b- 3.85 IN. 

(b) TRANSPARENT-WALL AND PROPELLANT HEATING TEST 

EFLECT IVE WALLS 

T RAN SP A R E NT-WA L L 
OLLECTOR PIPE 

PRESSURE VESSEL 
ID = 3.50 IN* 
OD = 3.85 IN. 

TRANS? A RE NT-WAL L 
FEEDER PIPE 

RANSPARENT 

BUFFER-GAS 
INJECTORS 

LINER COOLANT 
BAFFLE 
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- 
pF 6 

= AVERAGE FUEL PRESSURE DUE TO NEUTRAL ATOMS, IONS, AND ELECTRONS BASED ON VOLUME WITHIN R6 

I" 

100 10' 10 * 
L ssu - 

F6 

103 

47 



J-9 10900-6 FIG. 6 

ADIATING TEMPE 

SPECIFICATIONS FOR UNIT CELL SHOWN IN FIGS. 1 AND 2 

R T =  1.575 IN. RF/RT = 0.6 

- L T  = 8.40 IN. P F ,  / P B 6  = 0.23 

0- = 0.9 P T  = 500 ATM 

T* 

Q ,  --------- 
0 DENOTES v F 6  FOR REFERENCE DESIGN 
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OPERATING PRESSURE, PT  = 500 ATM 

THERMAL NEUTRON FLUX, 4 t h  = 2.5 X 10’’ dCM2-SEC 

SPECIFICATIONS FOR UNIT CELL SHOWN IN FIGS. 1 AND 2 
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EFFECT OF VARIATIONS OF PARAMETERS 

AFFECTING IN-REACTOR TEST PERFORMANCE 
A L L  PARAMETERS HELD AT REFERENCE DESIGN VALUES EXCEPT FOR INDICATED VARlABLE 
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