M 7110444
 CR 111104
 SN-I68

TRANSONIC FLOW IN A CONVERGING-DIVERGING NOZZLE

FINAL REPORT-CONTRACT NAS7-756

PREPARED BY:
JAY N. LEVINE
DOUGLAS E. COATS

TRANSONIC FLOW IN A CONVERGING-DIVERGING NOZZLE

Final Report - Contract NAS7-756

Prepared by: Jay N. Levine
Douglas E. Coats
Prepared for: National Aeronautics and Space Administration

September 1970

DYNAMIC SCIENCE
A Division of Marshall Industries
2400 Michelson Drive
Irvine, California 92664

FOREWORD

This report describes the work performed at Dynamic Science, a Division of Marshall Industries, under NASA Contract No. NAS7-756, "Study of Transonic Flow in a Converging Diverging Nozzle."

The technical manager is Dr. Robert Cuffel of Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

The authors would like to acknowledge the contributions of Dr . James. R. Kliegel, who suggested this study, and Dr. Thomas J. Tyson. Their many helpful suggestions during the course of this study were appreciated.

Abstract

The transonic equations of motion for a converging diverging nozzle, including the effect of variable gamma, have been solved in toroidal coordinates using a combination of an asymptotic small parameter expansion and a double coordinate expansion. The analysis was kept general so that high order solutions could be recursively calculated. It was found that the use of toroidal coordinates and different expansion parameters did not significantly extend the range of normalized throat wall radii of curvature for which expansion solutions could be accurately calculated. An explanation of why expansion methods fail for small R is given. Calculations made, including the effect of variable gamma (for a homogeneous unstriated flow), indicate that its effect is negligible in the transonic region. A new technique for solving the subsonic portion of the nozzle flow is also described.

TABLE OF CONTENTS

Page No.
FORWARD ii
ABSTRACT iii
NOMENCLATURE v
I. INTRODUCTION 1
II. TRANSONIC EQUATIONS 3
III. TRANSONIC SOLUTIONS 25
IV. SUBSONIC SOLUTION 43
V. SUMMARY AND CONCLUSIONS 52
VI. REFERENCES 54
APPENDIX A A-1
APPENDIX B B-1
APPENDIX C C-1
APPENDIX D D-1
APPENDIX E: Computer Program E-1
APPENDIX F: Distribution List F-1

NOMENCIATURE

a	-	sound speed
a_{n}	-	coefficients in η_{W} expansion, eq. (37)
$\mathrm{a}_{\mathrm{N}, \mathrm{m}, \mathrm{n}}$	-	coefficients in the series expansion of U_{N}, eq. (51)
A_{i}	-	known coefficients in subsonic difference equations, eq. (91)
${ }^{A_{N, ~ m}}$	-	coefficients in the $\eta_{W}{ }^{\mathrm{N}}$ expansion, eq. (45)
b_{n}	-	coefficients of the $1 / \eta_{\mathrm{W}}$ series, eq. (46)
B_{i}	-	known coefficients in the subsonic difference equations, eq. (93)
B_{p}	-	used in trig. and hyperbolic function expansions, eq. (41)
$\overline{\mathrm{B}}_{\mathrm{p}, \mathrm{~m}}$	-	eq. (62)
C_{p}	-	used in velocity derivative expansions, eq. (42)
$\overline{\mathrm{C}}_{\mathrm{p}, \mathrm{~m}, \mathrm{n}}$	-	eq. (60)
D_{k}	-	groups of terms in the transonic momentum equation, eq. (43)
$\bar{D}_{T, u, v}$	-	eq. (59)
θ	-	parameter introduced to account for variable γ effects
e_{n}	-	coefficients in coth n series, eq. (47)
E_{Q}	-	eq. (44)
$\bar{E}_{Q, K, L}$	-	eq. (57)
$F_{N, M, Q, P}$	-	used to represent products of velocity series multiplications, eq. (61)
$\mathrm{G}_{\mathrm{i}, \mathrm{j}}$	-	matrix of coefficients in the transonic equations
$\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}$	-	metrics
h	-	step size in x direction, $\Delta \mathrm{X}$
H_{j}	-	column vector of unknowns is transonic equations
K	-	step size in y direction, $\Delta \mathrm{y}$
L_{i}	-	homogeneous terms in transonic equations

M	\cdots	molecular weight
P	-	pressure
\underline{P}	-	eq. (26)
q	-	velocity
r	-	radial coordinate
r_{C}	-	throat radius of curvature
R	-	nondimensional throat radius of curvature, $\mathrm{r}_{\mathrm{C}} / \mathrm{r}^{*}$
$\mathrm{R}_{1}, \mathrm{R}_{2}$	-	homogeneous terms in subsonic difference equations
R	-	Universal Gas Constant
S	-	entropy
$S_{\text {R }}$	-	eq. (44)
$\overline{\mathrm{S}}_{\mathrm{R}, \mathrm{~s}, \mathrm{~m}}, \overline{\mathrm{~S}}_{\mathrm{R}, \mathrm{q}}$	-	eq. (58)
T	-	temperature
u	-	longitudinal velocity
v	-	transverse velocity
u^{\prime}, v^{\prime}	-	velocity perturbations
$\overline{\mathrm{u}}, \overline{\mathrm{v}}$	-	nondimensional velocities
$\mathrm{u}_{\mathrm{N}}, \mathrm{v}_{\mathrm{N}}$	-	Nth order velocities
$u_{t r}$	-	velocity on the subsonic "start line"
x, y	-	cartesian coordinates, also transformed coordinates in subsonic analysis
z	-	longitudinal coordinate
α	-	equals ($1+D$ / $/ \Gamma_{2}$
$\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$	-	constants, eq. (48)
γ	-	ratio of specific heats
δ	-	special function, eq. (49)
ϵ	-	expansion parameter
η	-	toroidal coordinate
$\bar{\eta}$	-	normalized coordinate
θ	-	angle used in derivation of coordinate transformation
v	-	special function, eq. (50)

```
\overline{% - normalized coordinate}
\rho - density, complex variable in eq. (A-1)
\sigma - direction cosine
Superscript
* - at the sonic condition (except r* is the throat radius)
```


Subscripts

```
\begin{tabular}{ll}
w & \(-\quad\) at the nozzle wall \\
0 & \(-\quad\) at the throat axis point
\end{tabular}
```


I. INTRODUCTION

The transonic flow region in convergent divergent rocket nozzles has been widely studied, however, completely satisfactory solutions have yet to be achieved. The problem has been attacked by various expansion techniques (Refs. l-6) ranging from double power series expansions to small parameter asymptotic expansions about the sonic condition. All of these expansion methods are similar, in the sense that they calculate perturbations about the one-dimensional flow solution. The deviation from one-dimensional flow is determined by the normalized throat wall radius of curvature, $\mathrm{R}, \mathrm{i} . \mathrm{e} .$, the ratio of the throat wall radius of curvature, r_{C}, to the throat radius, r^{*}. Although these techniques have been successfully applied to a variety of transonic flow problems, they have a common shortcoming; their inability to handle nozzles having small normalized throat radii of curvature, $\mathrm{R}<\mathrm{l}$.

Another class of transonic solutions (actually combined subsonictransonic solutions) consists of numerical solutions of the exact partial differential equations of motion, (e.g., Refs. 7-9). While such solutions are not subject to the limitation on R, they are subject to varying degrees of numerical instability and must go through lengthy iterations to satisfy the throat choked flow singularity. As a result, the numerical methods achieve solutions only at the cost of large amounts of computer time and money, and currently cannot be considered to be economically feasible engineering design aides.

In Reference 10, it was conjectured that the limitation of the expansion methods to $\mathrm{R} \geq 1$ was due to the coordinate system employed (cylindrical) rather than a fundamental limitation of the method itself. In cylindrical coordinates, the nozzle wall boundary condition requires the flow angle to be equal to the local wall slope. The wall boundary is not a coordinate line in cylindrical coordinates and the boundary condition cannot be exactly satisfied. Also, the radial velocity, v, is proportional to the boundary slope, which can become large for $R<1$. It was suggested that one could reasonably expect the accuracy of the solution to be improved by seeking a solution in toroidal coordinates, wherein both the wall and axis are coordinate lines and the boundary condition is reduced to its simplest form and can be exactly satisfied.

In addition, the normal coordinate lines would be approximately streamlines and the radial velocity would everywhere be small. It was also hypothesized that changing the expansion parameters from $1 / R$ to $1 /(1+R)^{+}$would result in series expansions which were better behaved at small R, because the latter parameter does not become greater than unity for R less than one. Hall's solution was recast as series in $1 /(1+R)$ in Reference 10 and the results, which were claimed to be the toroidal coordinate solution transformed to cylindrical coordinates, were very encouraging when compared to the data of Reference 11 for $R=.625$. These results provided the impetus for the current study to try and extend the region of applicability of the expansion technique by obtaining the transonic solutions directly in toroidal coordinates. It was also decided to formulate the equations so that the general nth order solution could be recursively generated.

The main thrust of the current effort was then directed towards obtaining nth order transonic expansion solutions in toroidal coordinates using a combination of an asymptotic parameter expansion and a double coordinate power series expansion. The development of the transonic equations and their solution is presented in Sections II and III and the computer program developed to perform the calculations is described in Appendix E.

In Section IV, a novel way of finding the flow field in the subsonic regime is developed, based on the assumption that a local transonic expansion solution can be used to generate a subsonic "start line" thereby eliminating the need to iterate to satisfy the mass flow singularity at the throat.

[^0]
II. TRANSONIC EQUATIONS

Transformation to Toroidal Coordinates

In order to write the equations of motion in toroidal coordinates, the transformations from cartesian and cylindrical coordinates to toroidal coordinates are required. The relationship between r, z and ξ, η (the toroidal coordinates) is given in the following; together with the transformations for converting velocities in toroidal coordinates back to cylindrical coordinates. The derivations of these transformations and the metrics of the coordinate system, which are also needed, are outlined in Appendix A.

A circular arc throat forms a coordinate line in toroidal coordinates ($\eta=$ const.) , hence, for a throat of height, r^{*}, and normalized radius of curvature, $R\left(=r_{C} / r^{*}\right)$, the transformation from cylindrical to toroidal coordinates becomes

$$
\begin{align*}
& \frac{r}{r^{*}}=\frac{(1+2 R)^{\frac{1}{2}} \sinh \eta}{\cos \xi+\cosh \eta} \tag{1}\\
& \frac{z}{r^{*}}=\frac{(1+2 R)^{\frac{1}{2}} \sin \xi}{\cos \xi+\cosh \eta}
\end{align*}
$$

and the location of the throat wall is given by

$$
\begin{equation*}
\eta_{\mathrm{w}}=\frac{1}{2} \ln \left[\frac{1+\frac{(1+2 R)^{\frac{1}{2}}}{1+R}}{1-\frac{(1+2 R)^{\frac{1}{2}}}{1+R}}\right] \tag{2}
\end{equation*}
$$

If v_{r} and v_{z} are used to denote the velocities in the r and z directions, respectively, and u and v are the velocities in the ξ and η directions; then

$$
\begin{align*}
& \mathrm{v}_{\mathrm{r}}=u \frac{\sinh \eta \sin \xi}{(\cos \xi+\cosh \eta)}+\mathrm{v}\left[\cosh \eta-\frac{\sinh ^{2} \eta}{(\cos \xi+\cosh \eta)}\right] \\
& \mathrm{v}_{\mathrm{z}}=\mathrm{u}\left[\cos \xi+\frac{\sin ^{2} \xi}{(\cos \xi+\cosh \eta)}\right]-\mathrm{v} \frac{\sin \xi \sinh \eta}{(\cos \xi+\cosh \eta)} \tag{3}
\end{align*}
$$

Sound Speed Expansion

In order to account for the effects of variable gamma, the sound speed is expanded around the sonic condition as a function of pressure. However, the equations of motion will be written in terms of velocities, so Bernoulli's Equation is used to find pressure as a function of velocity. It is assumed that the equation of state is

$$
\begin{equation*}
P=\frac{P \mathrm{ZTT}}{M} \tag{4}
\end{equation*}
$$

where $\not \subset$ is the Universal Gas Constant and M is the molecular weight of the gas. The sound speed is given by

$$
\begin{equation*}
a^{2}=\left.\frac{\partial P}{\partial \rho}\right|_{S}=\frac{Y P}{\rho} \tag{5}
\end{equation*}
$$

where γ is the ratio of specific heats, and is a function of the thermodynamic state of the gas. Since the nozzle flow is assumed to be irrotational and homentropic, y is a function of only one state variable.

Let $\underline{P}=\int_{P *}^{P} \frac{d P}{\rho}$

$$
\begin{equation*}
\frac{\partial \underline{P}}{\partial P}=\frac{1}{\rho} \quad \frac{\partial P}{\partial \underline{P}}=\rho \quad \frac{\partial^{2} P}{\partial \underline{P}^{2}}=\frac{\rho}{a^{2}} \tag{6}
\end{equation*}
$$

Expand P as a function of \underline{P} in a power series

$$
\begin{align*}
P & =P *+\left.\frac{\partial P}{\partial \underline{P}}\right|_{*} P+\left.\frac{\partial^{2} P}{\partial \underline{P}^{2}}\right|_{*} \underline{P}^{2}+\ldots \tag{7}\\
& =P *+\rho * \underline{P}+\frac{\rho *}{a *^{2}} \underline{P}^{2}+\ldots
\end{align*}
$$

Bernoulli's equation is

$$
\begin{equation*}
\frac{q^{2}}{2}-\frac{a *^{2}}{2}+\int_{P *}^{P} \frac{d P}{P}=0 \tag{8}
\end{equation*}
$$

or

$$
\underline{P}=\frac{a *^{2}-q^{2}}{2}
$$

Therefore, pressure as a function of velocity is

$$
\begin{equation*}
P-P *=\frac{\rho *}{2}\left(a *^{2}-q^{2}\right)+\frac{\rho *}{4 a *^{2}}\left(a *^{2}-q^{2}\right)^{2}+\ldots . \tag{9}
\end{equation*}
$$

Expanding the square of the sound speed, a^{2}, as a function of P gives

$$
\begin{equation*}
a^{2}=a *^{2}+\left.\frac{\partial a^{2}}{\partial P}\right|_{*}(P-P *)+\left.\frac{\partial^{2} a^{2}}{\partial P^{2}}\right|_{*}(P-P *)^{2}+\ldots \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{\partial a^{2}}{\partial P}=\frac{\gamma-1}{\rho}+\frac{a^{2}}{\gamma} \frac{\partial \gamma}{\partial P} \\
& \frac{\partial^{2} a^{2}}{\partial P^{2}}=-\frac{(\gamma-1)}{\rho^{2} a^{2}}+\frac{(2 \gamma-1)}{\gamma \rho} \frac{\partial \gamma}{\partial P}+\frac{a^{2}}{\gamma} \frac{\partial^{2} \gamma}{\partial P^{2}} \tag{11}
\end{align*}
$$

Substituting (9) into (10) yields the desired sound speed expansion

$$
\begin{align*}
a^{2}=a *^{2} & +\frac{(\gamma *-1)}{2}\left(a *^{2}-q^{2}\right)+\frac{\Gamma \frac{a *^{2} \rho *}{\gamma^{*}}\left(\frac{a^{2}-q^{2}}{2}\right)}{} \tag{12}\\
& \left.+2 \rho *\left(\frac{a *^{2}-q^{2}}{2}\right)^{2}\right]\left.\frac{d \gamma}{d P}\right|_{*}+\left.\frac{a *^{2} \rho *^{2}}{\gamma *}\left(\frac{a^{2}-q^{2}}{2}\right)^{2} \frac{d^{2} \gamma}{d P^{2}}\right|_{*}
\end{align*}
$$

Equations of Motion in Toroidal Coordinates

For inviscid, homentropic (and, therefore, irrotational) flows, the general equations of motion can be simply written in vector form as

$$
\begin{align*}
& \nabla \times \overrightarrow{\mathrm{q}}=0 \tag{13}\\
& \overrightarrow{\mathrm{q}} \cdot \frac{\nabla \mathrm{~g}^{2}}{2}-\mathrm{a}^{2} \nabla \cdot \overrightarrow{\mathrm{q}}=0 \tag{14}
\end{align*}
$$

Equations for the curl, divergence and gradient in a general orthogonal coordinate system are given in Appendix A. Applying equations (A-17-A-19) to the velocity vector $\vec{q}=u \vec{\alpha}_{\xi}+v \vec{\alpha}_{\eta}$, with the metrics and their derivatives given by equations ($A-14-A-16$); and noting that $\partial / \partial \psi=0$, yields the equations of motion in toroidal coordinates.

$$
\begin{gather*}
\frac{\sin \xi}{\cos \xi+\cosh \eta} v+v_{\xi}+\frac{u \sinh \eta}{\cos \xi+\cosh \eta}-u_{\eta}=0 \tag{15}\\
\left(u^{2}-a^{2}\right) u_{\xi}+\left(v^{2}-a^{2}\right) v_{\eta}+u v\left(u_{\eta}+v_{\xi}\right)-a^{2} \frac{2 \sin \xi}{\cos \xi+\cosh \eta} u \\
-a^{2} v\left[\operatorname{coth} \eta-\frac{2 \sinh \eta}{\cos \xi+\cosh \eta}\right]=0 \tag{16}
\end{gather*}
$$

where a^{2} is computed from (12), keeping only the first correction term

$$
\begin{equation*}
a^{2}=a *^{2}+\frac{(\gamma *-1)}{2}\left(a *^{2}-q^{2}\right)+\left.\left[\frac{a *^{2} p *}{\gamma^{*}}\left(\frac{a *^{2}-q^{2}}{2}\right)\right] \frac{d \gamma}{d P}\right|_{*} \tag{17}
\end{equation*}
$$

It is better to work with nondimensional variables when series solutions are being sought, therefore, equations (15-17) have been nondimensionalized by assuming the following forms:

$$
\bar{u}=\frac{u}{a^{*}} \quad \bar{v}=\frac{v}{a^{*}} \quad \bar{P}=\frac{P}{\rho^{*} a^{*}{ }^{2}}
$$

and a parameter, D, which incorporates the effect of variable, γ, has been defined

$$
\begin{equation*}
\theta=\left.\frac{1}{\gamma^{*}\left(\gamma^{*}+1\right)} \frac{d \gamma}{d \stackrel{P}{P}}\right|_{*} \tag{18}
\end{equation*}
$$

Inserting these relations into (15) ∞ (17) results in the following nondimensional equations:

$$
\begin{gather*}
\frac{\sin \xi}{\cos \xi+\cosh \eta} \bar{v}+\bar{v}_{\xi}+\frac{\sinh \eta}{\cos \bar{\xi}+\cosh \eta} \bar{u}-\bar{u}_{\eta}=0 \tag{19}\\
{\left[(1+\theta)-(1+\theta) \bar{u}^{2}-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right) \bar{v}^{2}\right] \bar{u}_{\xi}+\left[(1+\theta)-(1+\theta) \bar{v}^{2}-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+D\right)^{2} \bar{u}^{2} \bar{v}_{\eta}\right.} \\
-\frac{2}{\gamma^{*}+1} \bar{u} \bar{v}\left(\bar{u}_{\eta}+\bar{v}_{\xi}\right)+\left[(1+\theta)-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right)\left(\bar{u}^{2}+\bar{v}^{2}\right) \frac{2 \sin \xi}{\cos \xi+\cosh \eta} \bar{u}\right. \tag{20}\\
+\left[(1+D)-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta,\left(\bar{u}^{2}+\bar{v}^{2}\right)\right]\left(\operatorname{coth} \eta-\frac{2 \sinh \eta}{\cos \xi+\cosh \eta}\right) \bar{v}=0\right.
\end{gather*}
$$

The equations are then specialized to the transonic regime by assuming that the velocity components can be written as

$$
\begin{align*}
& \bar{u}=1+u^{\prime} \\
& \bar{v}=v^{\prime} \tag{21}
\end{align*}
$$

Substitution of (21) into (19) and (20) gives the transonic equations of motion

$$
\begin{align*}
& \frac{\sin \xi}{\cos \xi+\cosh \eta} v^{\prime}+v_{\xi}^{\prime}+\frac{\sinh \eta}{\cos \xi+\cosh \eta}\left(1+u^{\prime}\right)-u_{\eta}^{\prime}=0 \tag{22}\\
& {\left[-(1+D)\left(2 u^{\prime}+u^{\prime 2}\right)-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+D\right) v^{\prime} 2^{\prime}\right] u_{\xi}^{\prime}} \\
& +\left[\frac{2}{\gamma^{*}+1}-(1+\theta) v^{\prime 2}-2\left(\frac{\gamma^{*-1}}{\gamma^{*+1}}+\theta\right) u^{\prime}-\left(\frac{\gamma^{*}-1}{\gamma^{*+1}}+D\right) u^{\prime}\right) v_{\eta}^{\prime}-\frac{2}{\gamma^{*+1}}\left(v^{\prime}+u^{\prime} v^{\prime}\right)\left(u_{\eta}^{\prime}+v_{\xi}^{\prime}\right) \\
& +\left[\frac{2}{\gamma^{*}+1}-2\left(\frac{\gamma^{*}-2}{\gamma^{*}+1}+\not\right)^{\prime} u^{\prime}-3\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right) u^{\prime 2}-\left(\frac{\gamma^{*-1}}{\gamma^{*+1}}+D\right) v^{\prime}\right] \frac{2 \sin \xi}{\cos \xi+\cosh \eta}
\end{align*}
$$

$$
\begin{aligned}
& +\left[-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+D\right) u^{\prime 2}-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right) v^{\prime 2} \frac{2 \sin \xi}{\cos \xi+\cosh \eta} u^{\prime}\right. \\
& +\left[\frac{2}{\gamma^{*}+1}-2\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right) u^{\prime}-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right) u^{\prime 2}-\left(\frac{\gamma^{*}-1}{\gamma^{*}+1}+\theta\right) v^{\prime}\right]\left[\operatorname{coth} \eta-\frac{2 \sinh \eta}{\cos \xi+\cosh \eta} \cdot v^{\prime}=0\right.
\end{aligned}
$$

Parameter Expansion

The solution of equations (22) and (23) will be sought by a combination of an asymptotic parameter expansion and a double coordinate power series expansion. In carrying out these expansions, it is desirable to normalize the coordinates so that the scaled coordinates are of the same order. The proper forms for the velocity series must also be found.

Following Hall (Ref. 1) an expansion parameter involving the nondimensional throat radius of curvature, R, will be used. The form of the expansion parameter, ϵ, is dictated by the boundary condition at the throat wall.

$$
\begin{equation*}
\mathrm{v}=0 \text { at } \eta=\eta_{\mathrm{w}} \tag{24}
\end{equation*}
$$

Without choosing ε it is shown in Appendix B that, in general, in order to obtain a nontrivial solution, the coordinates must be scaled as

$$
\begin{equation*}
\bar{\xi}=\frac{\xi}{\epsilon^{2}} \quad \bar{\eta}=\frac{\eta}{\epsilon} \tag{25}
\end{equation*}
$$

and the velocity expansions are of the form

$$
\begin{align*}
& u^{\prime}=\varepsilon^{2} u_{1}(\bar{\xi}, \bar{\eta})+\varepsilon^{4} u_{2}(\bar{\xi}, \bar{\eta})+\ldots \\
& v^{\prime}=\varepsilon^{3} v_{1}(\bar{\xi}, \bar{\eta})+\varepsilon^{5} v_{2}(\bar{\xi}, \bar{\eta})+\ldots \tag{26}
\end{align*}
$$

For large R, equations (25) and (26) should reduce to Hall's (Ref.1) results if transformed back to cylindrical coordinates.

From equation (2) it can be shown that

$$
\begin{equation*}
\eta_{W} \stackrel{\circ}{=} \frac{1}{R^{\frac{T}{2}}} \tag{27}
\end{equation*}
$$

for large R, hence,

$$
\begin{equation*}
\operatorname{Lim}_{R \rightarrow \infty} \varepsilon \frac{1}{=} \frac{1}{R^{\frac{1}{2}}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=0\left(\frac{1}{R^{\frac{1}{2}}}\right) \quad \xi=0\left(\frac{1}{R}\right) \tag{29}
\end{equation*}
$$

The order of r / r^{*} and z / r^{*} may then be found using equation (i)

$$
\begin{equation*}
\frac{r}{r^{*}}=0(1) \quad \text { and } \quad \frac{z}{r^{*}}=0\left(\frac{1}{R^{\frac{3}{2}}}\right) \tag{30}
\end{equation*}
$$

and the velocity expansions become

$$
\begin{align*}
& u^{\prime}=\frac{u_{1}}{R}+\frac{u_{2}}{R^{2}}+\ldots \\
& v^{\prime}=\frac{1}{R^{\frac{1}{2}}}\left[\frac{v_{1}}{R}+\frac{v_{2}}{R^{2}}+\ldots\right] \tag{31}
\end{align*}
$$

As expected, Hall's results are reproduced in the limit of large R .
Hall treated only the case where $\varepsilon=1 / R^{\frac{1}{2}}$, in cylindrical coordinates and his analysis was not applicable to nozzles with $R<1$. Based on the favorable results presented in Ref. 10, it was felt that the use of toroidal coordinates, together with an expansion parameter which was well behaved for small R, would allow Hall type solutions to be extended to small values of R. Equation (28) represents the only restriction on allowable forms for ε and the solution to be outlined below does not add any additional constraints While the method of solution will be valid for any ε (satisfying (28)) particular attention will be paid to the following two forms,

$$
\begin{equation*}
\varepsilon=\frac{(1+2 R)^{\frac{1}{2}}}{1+R} \tag{32a}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon=\frac{1}{(1+R)^{\frac{1}{2}}} \tag{32b}
\end{equation*}
$$

The first form is immediately suggested by the equation for η_{w} (equation (2)), while the latter seemed to be a good choice based on the results of Ref. 10 . Using equations (2) and (32a), the wall expansion becomes

$$
\begin{equation*}
\eta_{W}=\frac{1}{2} \ln \frac{1+\varepsilon}{1-\varepsilon}=\varepsilon+\frac{\varepsilon^{3}}{3}+\frac{\varepsilon^{5}}{5}+\ldots . \tag{33}
\end{equation*}
$$

while equations (2) and (32b) give

$$
\begin{equation*}
\eta_{w}=\varepsilon\left[2^{\frac{1}{2}}+\sum_{n=1}^{\infty} a_{n} \varepsilon^{2 n}\right] \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{2^{\left(n+\frac{1}{2}\right)}}{2 n+1}+\sum_{\alpha=0}^{n-1} \frac{2^{\left(\alpha+\frac{1}{2}\right)}}{2 \alpha+1}\left[\frac{\left(\alpha-\frac{1}{2} n^{n-\alpha}\right.}{(n-\alpha)!}\right]^{n=0} \prod_{j=0}^{(\alpha-1)}\left[\alpha-\left(\frac{2 j-1}{2}\right)\right] \tag{35}
\end{equation*}
$$

Equations (33) and (34) both show that $\eta_{w}=0(\varepsilon)$, in agreement with equation (25). Since η_{w} and ε are the same order, it was decided to first seek solutions with the coordinates normalized as follows:

$$
\begin{equation*}
\bar{\xi}=\frac{\bar{\xi}}{\varepsilon \eta_{w}} \quad \bar{\eta}=\frac{n}{\eta_{w}} \tag{36}
\end{equation*}
$$

so that the wall is always at $\bar{\eta}=1$ and the resulting solution is universal for all R.

The nth order differential equations are obtained by expanding all of the terms in equations (22) and (23) and equating like powers of ε. The velocities are expanded as in equation (26), the wall boundary, equation (2), is expanded in the form

$$
\begin{equation*}
\eta_{w}=\varepsilon \sum_{n=0}^{\infty} a_{n} e^{2 n} \tag{37}
\end{equation*}
$$

where the a_{n} 's depend upon the choice of ε (equations (33)-(35) give the a_{n} 's for two possible choices for ε). In addition to the above expansions, trigonometric and hyperbolic function expansions, products, and powers of series occur, and general formulae are required for expressing the resultant expansions in a form where all of the terms containing like powers of ε are accumulated.

Given two series of the form

$$
\sum_{n=c_{2}}^{\infty} b_{n} \varepsilon^{\left(c_{3}^{\prime}+c_{4} n\right)} \text { and } \sum_{m=c_{1}}^{\infty} a_{m} \varepsilon^{\left(\bar{c}_{3}+c_{5} n\right)}
$$

A general formula has been derived for computing their product, wherein all terms of equal powers of ε are explicitly determined. The formula is

$$
\begin{equation*}
\sum_{P=\alpha}^{\infty} c_{4}^{c_{4} P-\beta_{1}} \sum_{m=c_{1}}^{P-\beta_{2}}\left[\left(\frac{c_{4} P-\beta_{1}-c_{3}}{c_{4}}\right)-m\right]^{a_{m}} \tag{38}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{3}=c_{3}^{\prime}+\bar{c}_{3}^{\prime} \\
& \alpha=c_{3}+c_{4}\left(c_{1}+c_{2}\right) \\
& \beta_{1}=\alpha\left(c_{4}-1\right) \\
& \beta_{2}=a-c_{1}
\end{aligned}
$$

and $\quad c_{4}=c_{5}$
If $c_{4} \neq c_{5}$, as occurs in the expansion of $\sin \xi$ and $\cos \xi$, a special function, δ, can be defined which allows those expansions to be written in the same form as equation (38).

The diligent application of equation (38) to all of the terms in equations (22) and (23) yields the general, nth order, toroidal coordinate, differential equations. In order to make the analysis more practicable, several intermediate variables have been defined (A's, B's, C's, etc.). Appendix C has been included so that these variables may be more readily related to the terms appearing in equations (22) and (23).

The irrotational equation (22) contains only odd powers of ε, say $\varepsilon^{\alpha}, \alpha=1,3,5 \ldots \infty$. If $P \equiv(\alpha+1) / 2$, then $P=1,2,3 \ldots \infty$ is the order of the equation. The Pth order irrotational equation (containing all terms with $\varepsilon^{2 \mathrm{P}-1}$) is

$$
\begin{align*}
v(\mathrm{P}-3) & \sum_{\mathrm{R}=1}^{\mathrm{P}-2} \mathrm{~B}(\mathrm{P}-1-\mathrm{R})_{3} \mathrm{v}_{\mathrm{R}}+\sum_{\mathrm{R}=1}^{\mathrm{P}}\left(\mathrm{~B}(\mathrm{P}-\mathrm{R})_{4}+\mathrm{B}_{(\mathrm{P}-\mathrm{R})_{2}}\right)\left(\mathrm{C}_{R_{1}}-\mathrm{C}_{R_{4}}\right) \\
+ & \mathrm{B}_{\mathrm{P}_{1}}+v(\mathrm{P}-2) \sum_{\mathrm{R}=1}^{\mathrm{P}-1}{ }^{\mathrm{B}}(\mathrm{P}-\mathrm{R})_{1} \mathrm{u}_{\mathrm{R}}=0 \tag{39}
\end{align*}
$$

The P th order momentum equation, $P=1,2,3 \ldots \infty$, contains all terms of order $\epsilon^{2 P}$, and is given by

$$
\begin{aligned}
& \sum_{K=1}^{P} E_{(P-K)} D_{K_{1}}+I_{2} E_{P_{2}}+\nu(P-2) \sum_{K=1}^{P-1} E_{(P-K)} D_{K_{2}}-\nu(P-2) \Gamma_{2} \sum_{K=1}^{P-1} E_{(P-K)} D_{K_{3}} \\
& +2 \Gamma_{2} B_{P_{3}}+2 \nu(\mathrm{P}-2) \sum_{\mathrm{K}=1}^{\mathrm{P}-1} \mathrm{~B}(\mathrm{P}-\mathrm{K})_{3} \mathrm{D}_{\mathrm{K}_{4}}+2 \nu(\mathrm{P}-3) \sum_{\mathrm{K}=1}^{\mathrm{P}-2} \mathrm{E}_{(\mathrm{P}-\mathrm{K})_{4}} \mathrm{D}_{\mathrm{K}_{5}} \\
& +\Gamma_{2} E_{P_{5}}+\nu(P-2) \sum_{K=1}^{P-1} E_{(P-K)} D_{K_{6}}=0
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{P_{1}}=\sum_{m=1}^{\infty} \frac{A^{(-1+2 m)}(P-m)^{-1}{ }^{-(-1+2 m)}}{(-1+2 m)!} \\
& B_{P_{2}}=\sum_{m=0}^{P} \frac{\bar{\eta}^{2 m} A_{2 m,}(P-m)}{2 m!} \\
& B_{P_{3}}=\sum_{n=0}^{P-1} \frac{\delta(P-1-n)(-1)^{(P-1-n) / 2 \xi^{(P-n)} A}(P-n), n}{(P-n)!} \\
& B_{P_{4}}=\sum_{n=0}^{P} \frac{\delta(P-n)(-1)^{(P-n) / 2} \bar{\xi}^{(P-n)} A(P-n), n}{(P-n)!} \\
& B_{P_{5}}=\sum_{m=0}^{P} e_{m} \bar{\eta}^{2 m-1} A_{(2 m-1),(P-m)} \\
& C_{P_{1}}=\sum_{n=1}^{P} b_{(P-n)} v_{n \bar{\xi}} \quad C_{P_{3}}=\sum_{n=1}^{P+1} b(P+1-n) u_{n \bar{\xi}} \\
& C_{P_{2}}=\sum_{n=1}^{P} b_{(P-n)} v_{n-}^{\eta} \quad C_{P_{4}}=\sum_{n=1}^{P} b_{(P-n)} u_{n-}^{\eta} \\
& D_{K_{1}}=-(1+\theta)\left[2 u_{K}+\nu(K-2) \sum_{n=1}^{K-1} u_{(K-n)} u_{n}\right]-\nu(K-3) \Gamma_{I} \sum_{n=1}^{K-2} v_{(K-1-n)} v_{n} \\
& D_{K_{2}}=-(1+\theta) \nu(K-3) \sum_{n=1}^{K-2} v_{(K-1-n)} v_{n}-2 \Gamma_{1} u_{K}-\Gamma_{1} \nu(K-2) \sum_{n=1}^{K-1} u_{(K-n)} u_{n} \\
& D_{K_{3}}=v_{K}+\nu(K-2) \sum_{n=1}^{K-1} u(K-n) v_{n}
\end{aligned}
$$

$$
\begin{align*}
& D_{K_{4}}=-\Gamma_{3} u_{K}-\nu(K-2) 3 \Gamma_{1} \sum_{n=1}^{K-1} u_{(K-n)} u_{n}-\nu(K-3) \Gamma_{1} \sum_{n=1}^{K-2} v_{(K-1-n)} v_{n} \\
& D_{K_{5}}=-\nu(K-2) \Gamma_{1} \sum_{n=1}^{K-1} u_{(K-n)} u_{n}-\nu(K-3) \Gamma_{1} \sum_{n=1}^{K-2} v_{(K-1-n)} v_{n} \\
& D_{K_{6}}=-2 \Gamma_{1} u_{K}-\nu(K-2) \Gamma_{1} \sum_{n=1}^{K-1} u_{(K-n)} u_{n}-\nu(K-3) \Gamma_{1} \sum_{n=1}^{K-2} v_{(K-1-n)} v_{n} \\
& E_{Q_{1}}=\sum_{R=0}^{Q} C_{(Q-R)_{3}}\left(B_{R_{4}}+B_{R_{2}}\right) \\
& E_{Q_{2}}=\sum_{R=0}^{Q=1} C_{(Q-R)_{2}}\left(B_{R_{4}}+B_{R_{2}}\right) \\
& E_{Q_{3}}=\sum_{R=0}^{Q-1}\left(C_{(Q-R)_{4}}+C_{(Q-R)}\right)\left(B_{R_{4}}+B_{R_{2}}\right) \tag{44}\\
& E_{Q_{4}}=\sum_{R=1}^{Q-1} u_{(Q-R)} B_{R_{3}} \\
& \mathrm{E}_{\mathrm{Q}_{5}}=\sum_{\mathrm{R}=0}^{\mathrm{Q}-1}{ }^{\mathrm{V}}(\mathrm{Q}-\mathrm{R}) \mathrm{S}_{\mathrm{R}}-2 \nu(\mathrm{Q}-2) \sum_{\mathrm{R}=1}^{\mathrm{Q}-1}{ }^{\mathrm{V}}(\mathrm{Q}-\mathrm{R}) \mathrm{B}_{\mathrm{R}_{1}} \\
& S_{R}=\sum_{j=0}^{R} B_{(R-j)_{5}}\left(B_{j_{4}}+B_{j_{2}}\right) \\
& A_{0, n}=1 \\
& A_{1, n}=a_{n} \\
& A_{N, n}=\sum_{i=0}^{n} a_{(n-i)} A_{N-1, i} \quad N=2 \ldots \infty \tag{45}\\
& A_{m 1, n}=b_{n}
\end{align*}
$$

$$
\begin{aligned}
& b_{0}=\frac{1}{a_{0}} \\
& b_{n}=-\frac{1}{a_{0}} \sum_{m=0}^{n-1} a_{(n-m)} b_{m} \quad n=1,2, \ldots \infty \\
& e_{0}=1 \\
& e_{n}=\frac{1}{(2 n)!}-\sum_{m=0}^{n-1} \frac{e_{m}}{[2(n-m)+1]!} \quad n=1,2 \ldots \infty \\
& \Gamma_{1}=\left(\frac{\gamma *-1}{\gamma^{*}+1}+D\right) \quad \Gamma_{2}=\frac{2}{\gamma^{*}+1} \\
& \Gamma_{3}=2\left(\frac{\gamma *-2}{\gamma *+1}+\theta\right) \\
& \delta(s)=-\frac{1}{2}\left[(-1)^{s+1}-1\right] \\
& \text { i.e., for s even } \delta(s)=1 \\
& \text { for } s \text { odd } \delta(s)=0
\end{aligned}
$$

and

$$
\begin{align*}
\nu(s) & =0 \text { for } s<0 \tag{50}\\
& =1 \text { for } s \geq 0
\end{align*}
$$

Coordinate Expansion

To solve the differential equations for a given order, each of the velocity coefficients (i.e., $u_{1}, u_{2} \ldots ; v_{1}, v_{2} \ldots$) is expanded in a double power series in $\bar{\xi}$ and $\bar{\eta}$. From the symmetry of the problem, the u coefficients must be even functions of $\bar{\eta}$ and the v coefficients odd functions. Thus,

$$
\begin{align*}
& u_{N}=\sum_{m=0}^{N} \sum_{n=0}^{N-m} a_{N, m, n} \bar{\xi}^{m} \bar{\eta} 2 n \tag{51}\\
& v_{N}=\sum_{m=0}^{N} \sum_{n=0}^{N-m} b_{N, m, n} \bar{\xi}^{m} \bar{\eta}^{(2 n+1)}
\end{align*}
$$

In the course of expanding equations (39) and (40), many series multiplications must be carried out and the resultant product series expressed in a form wherein all of the terms involving like powers of $\bar{\xi}$ and $\bar{\eta}$ are explicitly collected. The use of the general formula (38), properly defined v functions, and the following general formulae for interchanging the order of summations make this long and difficult task a bit more practicable.

Given a double summation of the form

$$
\sum_{\mathrm{m}=\mathrm{A}}^{\mathrm{B}} \quad \sum_{\mathrm{n}=\mathrm{C}}^{\mathrm{m}-\alpha}
$$

it is equivalent to

$$
\begin{equation*}
\sum_{n=C}^{B-\alpha} \sum_{m=n+\alpha}^{B} \nu(m-A) \tag{52}
\end{equation*}
$$

since $A-\alpha \geq C$
Also, for $A \geq K$

$$
\begin{equation*}
\sum_{m=0}^{K} \sum_{n=0}^{A=m}=\sum_{n=0}^{A} \sum_{m=0}^{A-n} \nu(K-m) \tag{53}
\end{equation*}
$$

Using the formulae given by (38), (52), and (53), all of the series multiplications required in expanding equations (39) and (40) were carried out. Again, several new variables have been introduced to avoid writing long strings of summations. Appendix D has been included to indicate the origin of these variables. In solving the Pth order differential equations, it can be seen from equation (51) that there are a total of $(P+1)(P+2)$ unknown coefficients in the velocity expansions ($a_{P, m, n} n^{\prime}$ and $b_{p, m, n} n^{\prime}$). Upon collecting terms having like powers of $\bar{\xi}$ and $\bar{\eta}$, it is found that the Irrotational Equation (39) generates ($P / 2$) $(P+1)$ equations, the Momentum Equation (40) yields $.5(P+1)(P+2)$ equations and the remaining $(P+1)$ equations come from the boundary condition (24).

The $(P+1)(P+2)$ equations that result from expanding the P th order differential equations are presented below in a format in which all of the unknowns appear on the left hand sides of the equations.

Irrotational Equations

$$
\begin{aligned}
& \sum_{K=0}^{P-1} \sum_{L=0}^{P-1-K}\left[\frac{2(K+1)}{a_{0}} b_{P, K+1, L}-\frac{4(L+1)}{a_{0}} a_{P, K, L+1}\right]= \\
& \sum_{K=0}^{P-1} \sum_{L=0}^{P-1-K}\left\{-\nu(K-1) \nu(P-3) \sum_{M=0}^{P-2-L} \nu(K-1-M) \sum_{R=M+L}^{P-2} \nu(R-1) \nu(P-1-R+M-K)\right.
\end{aligned}
$$

$$
\bar{B}(P-1-R),(P-1-R+M-K)_{3} b_{R, M}, L-\sum_{M=0}^{P-1-L} \nu(K-M) \nu(P-2-M-L)
$$

$$
\sum_{R=M+L+1}^{P-1} \nu(P-R+M-K) \bar{B}(P-R),(P-R+M-K)_{4} \sum_{i=M+L+1}^{R} A_{-1,(R-i)}(M+1) b_{i, M+1, L}
$$

$$
-2 \nu(P-2-K-L) \sum_{i=K+L+1}^{P-1} A_{-1},(P-1)(K+1) b_{i,(K+1), L} \sum_{M=0}^{L} \nu(P-2-K) \quad .
$$

$$
\begin{align*}
& \sum_{R=K+1}^{P \infty} \nu(R-1-K-M) \nu(P-R-L+M) \bar{B}_{(P-R),(L-M)}^{2} \sum_{i=K+M+1}^{R} A_{-1,(R-i)}(K+1) b_{i, K+1, M} \\
& +\sum_{m=0}^{P-1-L} \nu(K-M) \nu(P-2-M-L) \sum_{R=M+L+1}^{P-1} \nu(P-R+M-K) \bar{B}(P-R),(P-R+M-K)_{4} \\
& \sum_{i=M+L+1}^{R} A_{-1,(R-i)} 2(L+1) a_{i, M, L+1}+2 \nu(P-2-K-L) \quad . \\
& \sum_{i=K+L+1}^{P-1} A_{-1,(P-1)} 2(L+1) a_{i, K, L+1}+\sum_{M=1}^{L+1} \nu(P-2-K) \tag{54}\\
& \sum_{R=K+1}^{P-1} \nu(R-K-M) \nu(P-R-L-1+M) \bar{B}(P-R),(L+1-M)_{2} \\
& \sum_{i=K+M}^{R} A_{-1,(R-i)}(2 M) a_{i, K, M}-v(-K) \bar{B}_{P,(L+1)} \\
& \left.-\sum_{M=0}^{L} \sum_{R=K}^{P-1} \nu(R-1) \nu(R-K-M) \nu(P-R-L-1+M) \bar{B}(P-R),(L+I-M){ }_{1}{ }^{a} R, K, M\right\}
\end{align*}
$$

Momentum Equations

$$
\begin{align*}
& \sum_{G=0}^{P} \sum_{H=0}^{P-G}\left\{\frac{4 \Gamma}{\sum_{2}(H+1)}\right. \\
& a_{0} \tag{55}\\
& b_{P, G, H}-2(1+, \theta)\left[\frac{2 a_{1,1}, 0}{a_{O}} a_{P, G, H}+\right. \\
& \left.\left.\sum_{K=0}^{G} \nu(P-1-K) \sum_{L=0}^{H} \nu(P-1-K-L) \nu(1+K+L-G-H) a_{1, G-K, H-L}\left(\frac{2(K+1)}{a_{O}}\right) a_{P, K+1, L}\right]\right\}= \\
& \sum_{G=0}^{P} \sum_{H=0}^{P-G}\left\{-\nu(P-3) \sum_{T=2}^{P-1} \sum_{K=0}^{G} \nu(P-T-K) \sum_{L=0}^{H} \nu(P-T-L) \nu(T-G+K-H+L)\right.
\end{align*}
$$

$$
\begin{aligned}
& \bar{E}_{(P-T), K, L_{1}} \bar{D}_{T,(G-K),(H-L)}+\frac{2 a_{1}, 1,0}{a_{0}}\left[\nu(P-2)(1+\theta)\left(\sum_{j=1}^{P-1} F_{(P-j), j, G, H_{1}}\right)+\right. \\
& \left.\nu(P-3) \nu(H-1) \nu(P-1-G) \Gamma_{1} \sum_{j=1}^{P m} F^{2}(P-1-j), j, G, H_{2}\right]+2(1+\theta) \cdot \sum_{k=0}^{G} \nu(P-1-K) \\
& \sum_{L=0}^{H} \nu(P-1-L) \nu(I+K+L-G-H) a_{1,(G-K),(H-L)} \bar{E}^{\prime}(P-1), K_{\varepsilon} L_{1}- \\
& \Gamma_{2} \bar{E}_{\dot{P}, G, H_{2}}-2 \Gamma_{2} \nu(P-1-G-H) \sum_{i=G+H}^{P-1} \nu(i-1) b_{(P-i)}(2 H+1) b_{i, G}, H \\
& \sum_{T=1}^{P-1} \sum_{K=0}^{G} \nu(P-T-K) \sum_{L=0}^{H} \nu(P \cdots-m) \nu(T m G+K-H+L)\left[\bar{E}_{(P-T), K, L_{2}}\right. \\
& \text { (55) Cont. } \\
& \overline{\mathrm{D}}_{\mathrm{T},(\mathrm{G}-\mathrm{K}),(\mathrm{H}-\mathrm{L})_{2}}+\overline{\mathrm{E}}_{\left.(\mathrm{P}-\mathrm{T}), \mathrm{K}, \mathrm{I}_{5} \overline{\mathrm{D}}_{\mathrm{T}},(\mathrm{G}-\mathrm{K}),(\mathrm{H}-\mathrm{L})_{6}\right]+\nu(\mathrm{P}-1-\mathrm{G}) \nu(\mathrm{H}-1) \Gamma_{2} \quad .} \\
& \sum_{T=1}^{P-1} \sum_{K=0}^{G} \nu(P-T-1-K) \sum_{L=0}^{H-1} \nu(P-T-1-L) \nu(T-G+K-H+1+L) \bar{E}(P-T), K, L_{3} \\
& \overline{\mathrm{D}}_{\mathrm{T},(\mathrm{G}-\mathrm{K}),(\mathrm{H}-1-\mathrm{L})_{3}-\nu(\mathrm{G}-\mathrm{I}) \nu(-\mathrm{H}) 2 \Gamma}{ }_{2} \overline{\mathrm{~B}}_{\mathrm{P}},(\mathrm{P}-\mathrm{G})_{3}-\nu(\mathrm{G}-\mathrm{I}) 2 \quad . \\
& \sum_{\mathrm{K}=0}^{\mathrm{P}-1-\mathrm{H}} \nu(\mathrm{G}-\mathrm{K}) \nu(\mathrm{P}-1-\mathrm{H}-\mathrm{K}) \sum_{\mathrm{T}=\mathrm{H}+\mathrm{K}}^{\mathrm{P}-\mathrm{I}} \nu(\mathrm{~T}-\mathrm{I}) \nu(\mathrm{K}+\mathrm{P}-\mathrm{T}-\mathrm{G}) \overline{\mathrm{D}}_{\mathrm{T}, \mathrm{~K}, \mathrm{H}_{4}} . \\
& \left.\bar{B}(P-T),(X+P-T-G)_{3}\right\}
\end{aligned}
$$

Boundary Condition
The boundary condition $V_{N}(\xi, 1)=0$ becomes

$$
\begin{equation*}
\sum_{m=0}^{P}\left[\sum_{n=0}^{P-m} b_{P, m, n}\right]=0 \tag{56}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{E}_{Q, K, L_{1}}=\sum_{M=0}^{Q-L} \nu(K-M) \sum_{R=0}^{Q-M-L} \nu(Q-R-M) \nu(N+R-K) \bar{C}_{(Q-R), M, L_{3}} \bar{B}_{R},(M+R-K)_{4} \\
& +\nu(Q-K-L) \sum_{R=0}^{Q-K} \sum_{M=0}^{L} \nu(Q-R-K-M) \nu(R-L+M) \bar{C}_{(Q-R), K, M_{3}} \bar{B}_{R},(L-M)_{2} \\
& \bar{E}_{Q, K, L_{2}}=\sum_{M=0}^{Q-L} \nu(K-M) \sum_{R=0}^{Q-M-L} \nu(Q-1-R) \nu(Q-R-M-L) \nu(M+R-K) \bar{C}_{(Q-R), M, L_{2}} \\
& \overline{\mathrm{~B}}_{\mathrm{R},(\mathrm{M}+\mathrm{R}-\mathrm{K})_{4}} \\
& +\nu(Q-K-L) \sum_{R=0}^{Q-K} \nu(Q-1-R) \sum_{M=0}^{L} \nu(Q-R-K-M) \nu(R-L+M) \bar{C}_{(Q-R), K, M_{2}} \bar{B}_{R,(L-M)} \\
& \bar{E}_{Q, K, L_{3}}=\sum_{M=0}^{Q-1-L} \nu(K-M) \sum_{R=0}^{Q-1-M-L} \nu(Q-R-1-M) \nu(M+R-K) \\
& \overline{\mathrm{B}}_{\mathrm{R},(\mathrm{M}+\mathrm{R}-\mathrm{K})_{4}}\left[\overline{\mathrm{C}}_{(\mathrm{Q}-\mathrm{R}), \mathrm{M}, \mathrm{~L}+\mathrm{I}_{4}}+\overline{\mathrm{C}}_{(\mathrm{Q}-\mathrm{R}), \mathrm{M}, \mathrm{~L}_{1}}\right] \\
& +\nu(Q-1-K-L) \sum_{R=0}^{Q-1-K} \sum_{M=0}^{L} \nu(Q-1-R-K-M) \nu(R-L+M) \\
& \overline{\mathrm{B}}_{\mathrm{R},(\mathrm{~L}-\mathrm{M}){ }_{2}}\left[\overline{\mathrm{C}}_{(\mathrm{Q}-\mathrm{R}), \mathrm{K}, \mathrm{M}+1}{ }_{4}+\overline{\mathrm{C}}_{(\mathrm{Q}-\mathrm{R}), \mathrm{K}, \mathrm{M}_{1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{Q, K, L_{4}}=\sum_{M=0}^{Q-L-1} \nu(K-M) \sum_{R=0}^{Q-M-L-1} \nu(Q-2-R) \nu(Q-R-M-1) \nu(M+R-K) \\
& { }^{\mathrm{a}}(\mathrm{Q}-\mathrm{R}-1), \mathrm{M}, \mathrm{~L}{ }^{\bar{B}}(\mathrm{R}+1),(\mathrm{M}+\mathrm{R}-\mathrm{K})_{3} \\
& \bar{E}_{Q, K, L_{5}}=\nu(Q-K-L)\left[\sum_{R=0}^{Q-1} \sum_{C=0}^{K} \sum_{d=0}^{L} \nu(Q-R-C-d) \nu(R-K+C-L+d) \bar{S}_{R,(K-C)},(L-d)\right. \\
& { }^{b}(Q-R), C, d \\
& +\sum_{R=0}^{Q-K} \nu(Q-1-R) \sum_{d=0}^{L} \nu(Q-R-K-d) \nu(R-L+d) \bar{S}_{R,(L-d)}{ }^{b}(Q-R), K, d \\
& -2 \nu(L-1) \sum_{R=0}^{Q-1-K} \nu(Q-2-R) \sum_{d=0}^{L-1} \nu(Q-1-R-K-d) \nu(R+1-L+d) \\
& \left.\bar{B}_{(R+1),(L-d)}{ }^{b}(Q-1-R), K, d\right] \\
& \overline{\mathrm{E}}_{\mathrm{Q}, \mathrm{~K}, \mathrm{~L}_{1}}=\sum_{\mathrm{M}=0}^{\mathrm{Q}-\mathrm{L}} \nu(\mathrm{~K}-\mathrm{M}) \sum_{\mathrm{R}=\mathrm{I}}^{\mathrm{Q}-\mathrm{M}-\mathrm{L}} \nu(\mathrm{Q}-\mathrm{R}-\mathrm{M}-\mathrm{L}) \nu(\mathrm{M}+\mathrm{R}-\mathrm{K}) \overline{\mathrm{C}}_{\mathrm{Q}-\mathrm{R}, \mathrm{M}, \mathrm{~L}_{3}} \\
& \bar{B}_{R,(M+R-K)_{4}}+\nu(Q-K-L) \sum_{R=1}^{Q-K} \sum_{M=0}^{L} \nu(Q-R-K-M) \nu(R-L+M) \quad . \\
& \bar{C}_{Q-R, K, M_{3}} \bar{B}_{R,(L-M)_{2}}+\nu(Q-K-L) 2 \sum_{i=K+L+1}^{Q} b_{(Q+1-i)}^{(K+1) a_{i, K+1, L}} \\
& \bar{E}_{Q, K, L_{2}}=\bar{E}_{Q, K, L_{2}} \text { with sums on } R \text { beginning at } 1 \text { instead of } 0 \text {. }
\end{aligned}
$$

$\bar{E}_{Q, K, L_{5}}=\bar{E}_{Q, K, L_{5}}$ with sums on R beginning at 1 instead of 0 , in the (57) Cont. first two sums only.

$$
\begin{align*}
& \bar{S}_{R, s, m}=\sum_{n=0}^{R-s-m} \bar{B}(R-n-s), m_{5}{ }^{\bar{B}}(n+s), n_{4} \\
& \bar{S}_{R, q}=\sum_{n=0}^{q} \sum_{j=0}^{R} \nu(j-n) \nu(R-j-q+n) \quad \bar{B}_{(R-j),(q-n)} \bar{B}_{j, n_{2}} \tag{58}\\
& \bar{D}_{T, u, v_{1}}=-(1+\mathscr{D})\left[2 a_{T, u, v}+\nu(T-2) \sum_{j=1}^{T-1} F_{\left.(T-j), j, u, v_{1}\right]}\right] \\
& -\nu(T-3) \nu(v-1) \nu(T-1-u) \Gamma_{1} \sum_{j=1}^{T-2} F_{(T-1-j), j, u, v_{2}} \\
& \bar{D}_{T, u, v}=-\nu(T-3) v(v-1) \nu(T-1-u)(1+\theta) \sum_{j=1}^{T-2} F_{(T-1-j)_{i} j, u_{,}, v_{2}-2 \Gamma_{1} a_{T, u}, v} \\
& -\nu(T-2) \Gamma_{1} \sum_{j=1}^{T m} F_{(T-j), j, u, v_{l}} \\
& \bar{D}_{T_{s}, u, v_{3}}=b_{T, u, v}+v(T-2) \sum_{j=1}^{T-1} F_{(T-j), j, u, v_{3}} \tag{59}\\
& \bar{D}_{T_{s,}, v_{\ell}}=-\Gamma_{3} a_{T_{\imath}, v, v}-\nu(T-2) 3 \Gamma_{1} \sum_{j=1}^{T m-1} F_{(T-j), j, u_{\ell} v_{1}} \\
& -\nu(T-3) \nu(v-1) \nu(T-1-u) \Gamma_{1} \sum_{j=1}^{T \sim 2} F_{(T-1-j), j, u, v_{2}} \\
& \bar{D}_{T, u, v_{5}}=-\nu(T-2) \Gamma_{1} \sum_{j=1}^{T-1} F_{(T-j), j, u, v_{1}} \\
& -\nu(T-3) \nu(v-1) \nu(T-1-u) \Gamma_{1} \sum_{j=1}^{T m 2} F_{(T-1-j), j, u, v_{2}}
\end{align*}
$$

$$
\begin{align*}
& \bar{D}_{T, u, v_{6}}=-2 \Gamma_{1} a_{T, u, v}-\nu(T-2) \Gamma_{l} \sum_{j=1}^{T-1} F_{(T-j), j, u, v_{1}} \tag{59}\\
& -\nu(T-3) \nu(v-1) \nu(T-1-u) \Gamma_{1} \sum_{j=1}^{T-2} F_{(T-1-j), j, u, v_{2}} \\
& \bar{C}_{P, m, n_{1}}=\sum_{i=m+n+1}^{P} b_{(P-i)} b_{i, m+1, n}(m+1) \\
& \overline{\mathrm{C}}_{\mathrm{P}, \mathrm{~m}, \mathrm{n}_{2}}=\sum_{\mathrm{i}=\mathrm{m}+\mathrm{n}}^{\mathrm{P}}{ }^{\nu}{ }_{(\mathrm{i}-1)}{ }^{\mathrm{b}}(\mathrm{P}-\mathrm{i})(2 \mathrm{n}+1) \mathrm{b}_{\mathrm{i}, \mathrm{~m}, \mathrm{n}} \\
& \bar{C}_{P, m, n_{3}}=\sum_{i=m+n+1}^{P+1} b_{(P+1-i)}(m+1) a_{i, m+1, n} \tag{60}\\
& \bar{C}_{P, m, n}=\sum_{i=m+n}^{P} b_{(P-i)}(2 n) a_{i, m, n} \\
& F_{N, M, Q, P_{1}}=\sum_{m=0}^{Q} \sum_{n=0}^{P} \nu(N-m-n) \nu(M-Q+m-P+n) a_{N, m, n} a_{M},(Q-m),(P-n) \\
& F_{N, M, Q, P_{2}}=\sum_{m=0}^{Q} \sum_{n=0}^{P-1} v(N-m-n) \nu(M-Q+m-P+1+n) b_{N, m, n} b_{M,(Q-m),(P-1-n)} \\
& F_{N, M, Q, P_{3}}=\sum_{m=0}^{Q} \sum_{n=0}^{P} \nu(N-m-n) \nu(M-Q+m-P+n) a_{N, m, n} b_{M,}(Q-m),(P-n) \tag{61}\\
& \bar{B}_{P, m_{1}}=\frac{A_{(-1+2 m),(P-m)}}{(-1+2 m)!} \\
& \overline{\mathrm{B}}_{\mathrm{P}, \mathrm{~m}_{2}}=\frac{\mathrm{A}_{2 \mathrm{~m}_{1}(\mathrm{P}-\mathrm{m})}}{(2 \mathrm{~m})!} \tag{62}
\end{align*}
$$

$$
\begin{aligned}
& \overline{\mathrm{B}}_{\mathrm{P}, \mathrm{~m}_{3}} \frac{\delta(\mathrm{P}-1-\mathrm{m})(-1)^{(\mathrm{P}-1-\mathrm{m}) / 2} \mathrm{~A}(\mathrm{P}-\mathrm{m}), \mathrm{m}}{(\mathrm{P}-\mathrm{m})!} \\
& \overline{\mathrm{B}}_{\mathrm{P}, \mathrm{~m}_{4}}=\frac{\delta(\mathrm{P}-\mathrm{m})(-1)^{(\mathrm{P}-\mathrm{m}) / 2} \mathrm{~A}_{(\mathrm{P}-\mathrm{m}), \mathrm{m}}}{(\mathrm{P}-\mathrm{m})!} \\
& \overline{\mathrm{B}}_{\mathrm{P}, \mathrm{~m}_{5}}=e_{m}{ }^{\mathrm{A}}(2 \mathrm{~m}-1),(\mathrm{P}-\mathrm{m})
\end{aligned}
$$

(62) Cont.
and the $A^{\prime} s, a^{\prime} s, b^{\prime} s, e^{\prime} s, \Gamma^{\prime} s, \delta$ and ν have all been defined earlier.

III. TRANSONIC SOLUTIONS

First Order Solutions

The first order solution must be known before the higher order solutions can be recursively solved; since, in general, the Nth order solution depends on the velocity coefficients up to the $(\mathbb{N}-1)$ st order.

The first order differential equations can either be obtained directly from the original differential equations (19 and 20). through the use of the general Nth order differential equations (39 and 40) with $P=1$, or from equations (54) and (55). The equations depend upon the choice of the expansion parameter, ε. For ε, given by equation (32a) they are

$$
\begin{align*}
& v_{1 \bar{\xi}}-u_{1-}^{\eta}+\frac{\bar{\eta}}{2}=0 \tag{63}\\
& -2 \alpha u_{1} u_{1 \bar{\xi}}+v_{1-\bar{\eta}}+\bar{\xi}+\frac{v_{1}}{\bar{\eta}}=0 \tag{64}
\end{align*}
$$

where $\alpha=(1+\theta) / \Gamma_{2}$. While for $\&$ given by equation (32b) the first order equations are

$$
\begin{align*}
& \mathrm{v}_{1 \bar{\xi}}-\mathrm{u}_{1-}+\bar{\eta}=0 \tag{65}\\
& -2 \alpha u_{1} u_{1-}+v_{1-}^{\eta}+2 \bar{\xi}+\frac{v_{1}}{\bar{\eta}}=0 \tag{66}
\end{align*}
$$

The boundary condition is:

$$
\begin{equation*}
v_{1}(\bar{\xi}, 1)=0 \tag{67}
\end{equation*}
$$

The first order equations are solved using the same method that will be used to solve the higher order equations, i.e., expanding the velocities in double power series in $\bar{\xi}$ and $\bar{\eta}$ and equating the resultant terms in the differential equations and boundary condition which contain like powers of
$\bar{\xi}$ and $\bar{\eta}$. For illustrative purposes, the solution of equations (63 and 64) is worked out below.

The solution proceeds as follows:

Let

$$
\begin{align*}
& u_{1}=a_{00}+a_{01} \bar{\eta}^{2}+a_{10} \bar{\xi} \tag{68}\\
& v_{1}=b_{00} \bar{\eta}+b_{01} \bar{\eta}^{3}+b_{10} \bar{\xi} \bar{\eta}
\end{align*}
$$

Then inserting (68) into (63) and (64) and equating like powers of $\bar{\xi}$ and $\bar{\eta}$ yields

$$
b_{10}=2 a_{01}-1 / 2
$$

and

$$
\begin{align*}
& -\alpha a_{00} a_{10}+b_{00}=0 \\
& -a\left(a_{01} a_{10}\right)+2 b_{01}=0 \tag{69}\\
& -a a_{10}^{2}+b_{10}+1 / 2=0
\end{align*}
$$

The boundary condition (67) supplies the remaining two equations

$$
\begin{align*}
& b_{00}+b_{01}=0 \\
& b_{10}=0 \tag{70}
\end{align*}
$$

Equations (69) and (70) are easily solved and give

$$
\begin{align*}
& \mathrm{u}_{1}=-\frac{1}{8}+\frac{1}{4} \bar{\eta}^{2}+\frac{1}{2 \alpha)^{\frac{1}{2}}} \bar{\xi} \tag{71}\\
& \mathrm{v}_{1}=-\frac{1}{8}\left(\frac{\alpha}{2}\right)^{\frac{1}{2}} \bar{\eta}+\frac{1}{8}\left(\frac{\alpha}{2}\right)^{\frac{1}{2}} \bar{\eta}^{3}
\end{align*}
$$

Equations (65 and 66) can be solved in a similar manner to give

$$
\begin{align*}
& \mathrm{u}_{1}=-\frac{1}{4}+\frac{1}{2} \bar{\eta}^{2}+\frac{1}{(\alpha)^{\frac{1}{2}}} \bar{\xi} \tag{72}\\
& \mathrm{v}_{1}=-\frac{(\alpha)^{\frac{1}{2}}}{4} \bar{\eta}+\frac{(\alpha)^{\frac{1}{2}}}{4} \bar{\eta}^{3}
\end{align*}
$$

For comparative purposes, the transonic solution has also been worked out assuming the coordinates are normalized as

$$
\begin{equation*}
\bar{\xi}=\frac{\bar{\xi}}{\varepsilon^{2}} \quad \text { and } \quad \bar{\eta}=\frac{\eta}{\varepsilon} \tag{73}
\end{equation*}
$$

instead of as in equation (36). When the coordinates are normalized in this manner, the η_{w} expansion enters the solution only through the boundary condition

$$
\begin{equation*}
\mathrm{v}^{\prime}=0 \quad \text { at } \quad \eta=\eta_{\mathrm{w}} \tag{74}
\end{equation*}
$$

hence, it does not directly enter into the differential equations and the differential equations remain the same for all ε. To first order, the resulting differential equations are the same as (63) and (64), however, the boundary condition is changed to

$$
\begin{equation*}
\mathrm{v}_{1}(\bar{\xi}, 1)=0 \text { at } \bar{\eta}=\bar{\eta}_{\mathrm{w}}=\frac{\eta_{\mathrm{w}}}{\mathrm{c}} \tag{75}
\end{equation*}
$$

and the solution becomes

$$
\begin{align*}
& u_{1}=-\frac{1}{8} \bar{\eta}_{w}^{2}+\frac{1}{4} \bar{\eta}^{2}+\frac{1}{\sqrt{2 \alpha}} \bar{\xi} \tag{76}\\
& v_{1}=-\frac{1}{8}\left(\frac{\alpha}{2}\right)^{\frac{1}{2}} \bar{\eta}_{w}^{a} \bar{\eta}+\frac{1}{8}\left(\frac{\alpha}{2}\right)^{\frac{1}{2}} \bar{\eta}^{3}
\end{align*}
$$

The effect of using different e^{\prime} 's is reflected in the value of $\bar{\eta}_{w}$.

Higher Order Transonic Solutions

With the first order solutions given previously, higher order solutions can be found recursively, using equations (54) - (56). In general, the Pth order solution depends only upon the previous solutions up to ($\mathrm{P}-1$) st order and contains ($\mathrm{P}+1$) $(\mathrm{P}+2$) unknown velocity coefficients. For second, and higher orders, the equations are all linear and may be conveniently written in matrix form as

$$
\begin{equation*}
G_{i, j} H_{j}=L_{i} \tag{77}
\end{equation*}
$$

where G is a $(P+1)(P+2) \times(P+1)(P+2)$ matrix consisting of the coefficients of the unknown $a_{P, i, j}$ and $b_{P, i, j} \quad H_{j}$ is the column vector of unknowns and L_{i} contains the homogeneous terms which depend upon the lower order solutions. These equations are easily solved, and in principle, there is no limit on the maximum order of solution which can be obtained. In practice, however, one is limited by the core size and machine time required to invert a $(P+1)(P+2) x$ $(P+1)(P+2)$ matrix, for large P. Also, the parameter expansion is asymptotic, hence, one would not expect the velocity series (equation 26) to be infinitely convergent. It can be expected that after an initial convergence trend, higher order solutions will begin to diverge. The number of terms that can be calculated before divergence occurs should be a function of the expansion parameter, ϵ.

It is not computationally feasible to obtain high order solutions of equations (54)-(56) by hand, so a computer program, described in Appendix E, was written to solve the equations. Since the equations are so lengthy, and so difficult to both derive and program without error, every effort was made to continually check intermediate results. As part of this effort, the second order equations were derived and solved, by hand, two different ways (from the original differential equations and using equations (54)-(56)) to serve as a standard for checking out the computer program.

For $=1 /(l+R)^{\frac{1}{2}}$, the second order solution was found to be

$$
\begin{aligned}
u_{2} & =\left[\frac{10 \gamma+57}{288}+\frac{5}{144}(\gamma+1) \theta\right]-\left[\frac{4 \gamma+11}{24}+\frac{1}{6}(\gamma+1) D\right] \bar{\eta}^{2}+\left[\frac{2 \gamma+5}{24}+\frac{1}{12}(\gamma+1) \theta\right] \bar{\eta}^{4} \\
& -\frac{11}{24} \frac{1}{\alpha^{\frac{1}{2}}} \bar{\xi}+\frac{\bar{\xi}^{2}}{2 \alpha^{\frac{1}{2}}}-\frac{1}{\alpha}\left[\frac{2 \gamma-3}{6}+\frac{(\gamma+1) \theta}{3}\right] \bar{\xi}^{2} \\
v_{2} & =\alpha^{\frac{1}{2}}\left[\frac{28 \gamma+81}{288}+\frac{7}{72}(\gamma+1) D\right] \bar{\eta}-\alpha^{\frac{1}{2}}\left[\frac{20 \gamma+47}{96}+\frac{5}{24}(\gamma+1) \theta\right] \bar{\eta}^{3} \\
& +\alpha^{\frac{1}{2}}\left[\frac{8 \gamma+15}{72}+\frac{(\gamma+1) \theta}{9}\right] \bar{\eta}^{5}-\left[\frac{2 \gamma+3}{6}+\frac{(\gamma+1) \theta}{3}\right] \bar{\xi} \bar{\eta}+\left[\frac{2 \gamma+3}{6}+\frac{(\gamma+1) \theta}{3}\right] \bar{\xi} \bar{\eta}^{3}
\end{aligned}
$$

These second order results are also of interest because the numerical results require Y to be specified and do not show its effect explicitly.

The results obtained using the computer program are presented in
Table 1. These results were computed with $Y=1.4$ and have been rounded off to five significant figures. The velocity coefficients for four separate solutions are given to fifth order in the table. The first solution was obtained with $\epsilon=(1+2 R)^{\frac{1}{2}} /(1+R)$ and $\theta=0$, the second and third with $\epsilon=1 /(1+R)^{\frac{1}{2}}$ and $\theta=0$ and $\theta=0.05$, respectively. The last set of results is the solution of the transonic equations in cylindrical coordinates and represents an extension of Hall's (Ref. 1) results to higher order ${ }^{+}$. The second order solution,

[^1]TABLE 1
VELOCITY EXPANSION COEFFICIENTS $-\gamma=1.4$

	$\bar{\eta}=\eta / \eta_{w}$	$\bar{\xi}=\bar{\xi} / \varepsilon \eta_{\mathrm{w}}$		Cylindrical Coordinates
	$\varepsilon=(1+2 R)^{\frac{1}{2}} /(1+R)$	$\varepsilon=1 /(1+R)^{\frac{1}{2}}$		$\varepsilon=1 / \mathrm{R}$
	$\theta=0$	$D=0$	$D=0.05$	- $D=0$
$a_{1,0,0}$	-. 125	-. 250	-. 250	-. 250
$a_{1,0,1}$. 250	. 500	. 500	. 500
$a_{1,1,0}$. 64550	. 91287	. 89087	. 91287
$\mathrm{a}_{2,0,0}$. 092882	. 24653	. 25069	. 24653
$\mathrm{a}_{2,0,1}$	-. 23542	-. 69167	-. 71167	-. 85833
$\mathrm{a}_{2,0,2}$. 08125	. 32500	. 33500	. 49167
$\mathrm{a}_{2,1,0}$	-. 22861	-. 41840	-. 40832	-. 57054
$\mathrm{a}_{2,1,1}$. 16137	. 45644	. 44544	. 91287
$\mathrm{a}_{2,2,0}$. 013889	. 027778	-. 005291	. 027778
$\mathrm{a}_{3,0,0}$	-. 071174	-. 42861	-. 45340	-. 36764
$\mathrm{a}_{3,0,1}$. 25622	1.6227	1.7442	1.7368
$\mathrm{a}_{3,0,2}$	-. 20716	-1.3807	-1.4934	-1.8519
$\mathrm{a}_{3,0,3}$. 048034	. 38427	. 41796	. 63566
$\mathrm{a}_{3,1,0}$. 15904	. 88048	. 90869	. 84894
$\mathrm{a}_{3,1,1}$	-. 51039	-2.4685	-2.5721	-2.3103
$\mathrm{a}_{3,1,2}$. 19345	1.0943	1.1495	1.1894
$\mathrm{a}_{3,2,0}$	-. 039352	-. 14352	-. 12147	-. 15278
$\mathrm{a}_{3,2,1}$	-. 065972	. 26389	. 24735	-. 70833
$\mathrm{a}_{3,3,0}$. 15809	. 44714	. 42070	-. 23752
$\mathrm{a}_{4,0,0}$. 11883	1.3003	1.4521	. 85344
$\mathrm{a}_{4,0,1}$	-. 53961	-6.2954	-7.0860	-4.7325
$\mathrm{a}_{4,0,2}$. 58098	7.3272	8.2722	6.7616
$\mathrm{a}_{4,0,3}$	-. 26795	-3.7012	-4.2025	-4.3085

TABLE 1 (Continued)
$a_{4,0,4}$
$a_{4,1,0}$
$a_{4,1,1}$
$a_{4,1,2}$
$a_{4,1,3}$
$a_{4,2,0}$
$a_{4,2,1}$
$a_{4,2,2}$
$\mathrm{a}_{4,3,0}$
$a_{4,3,1}$
$\mathrm{a}_{4,4,0}$
$a_{5,0,0}$
$a_{5,0,1}$
$a_{5,0,2}$
$a_{5,0,3}$
$a_{5,0,4}$
$a_{5,0,5}$
$a_{5,1,0}$
$a_{5,1,1}$
$a_{5,1,2}$
$a_{5,1,3}$
$a_{5,1,4}$
$a_{5,2,0}$
$a_{5,2,1}$
$a_{5,2,2}$

$\bar{\eta}=\eta / \eta_{w}$	$\bar{\xi}=\bar{\xi} / \mathrm{g} \eta_{\mathrm{w}}$		Cylindrical Coordinates
$\varepsilon=(1+2 R)^{\frac{1}{2}} /(1+R)$	$\varepsilon=1 /(1+R)^{\frac{1}{2}}$		$\varepsilon=1 / \mathrm{R}$
$\theta=0$	$D=0$	$\theta=0.05$	- $\theta=0$
. 045212	. 72379	. 82768	1.0528
-. 42932	-3.5030	-3.8162	-2. 2306
1.3353	12.450	13.700	8.5123
-1.0032	-10.178	-11.256	-8.0230
. 23597	2.6697	2.9656	2.4097
. 30257	2.2688	2.3883	1.1321
-. 86077	-6.5688	-6.9569	-. 68020
. 39619	3.1695	3.3707	-1.1245
. 032929	. 065190	. 077326	. 15542
. 079865	. 45179	. 43307	-1.3879
.018836	. 075345	. 042857	. 0059002
-. 26076	-6.2108	-7.3586	-2.9262
1.3451	32.267	38.367	17.218
-1.7472	-42.729	-50.775	-28.052
1.1086	28.617	34.068	23.990
-. 36103	-10.178	-12.172	-10.903
. 047950	1.5344	1.8463	2.0676
1.0135	18.301	21.197	8.4791
-4.1995	-76.419	-88.797	-38.727
4.3112	82.177	95.594	49.529
-1.8928	-38.604	-45.030	-28.108
. 31500	7.1279	8.3556	6.1628
-1.1129	-15.103	-16.970	-6.2714
3.8406	53.753	60.698	18.055
-2.9542	-43.584	-49.334	-10.544

TABLE 1 (Continued)

	$\bar{\eta}=\eta / \eta_{w}$	$\bar{\xi}=\bar{\xi} / \mathrm{c} \eta_{\mathrm{w}}$		Cylindrical Coordinates
	$\varepsilon=(1+2 R)^{\frac{1}{2}} /(1+R)$	$c=1 /(1+R)^{\frac{1}{2}}$		$\varepsilon=1 / \mathrm{R}$
	$\theta=0$	$\theta=0$	$D=0.05$	- $D=0$
$a_{5,2,3}$. 68911	11.026	12.527	. 71944
$a_{5,3,0}$. 46961	4.7614	5.0979	1.1050
$\mathrm{a}_{5,3,1}$	-1.2087	-13.201	-14.270	1.3930
$\mathrm{a}_{5,3,2}$. 57090	6.4590	7.0012	-3.1781
$a_{5,4,0}$	-. 014991	-. 086253	-. 087224	-. 017270
$\mathrm{a}_{5,4,1}$. 015994	. 12795	. 10344	. 60503
$\mathrm{a}_{5,5,0}$. 066452	. 37591	. 33671	. 085568
$\mathrm{b}_{1,0,0}$	-. 96825	-. 27386	-. 28062	-. 27386
$\mathrm{b}_{1,0,1}$. 96825	. 27386	. 28062	. 27386
$\mathrm{b}_{1,1,0}$	0.0	0.0	0.0	1.0
$\mathrm{b}_{2,0,0}$. 11713	. 45720	. 48158	. 50284
$\mathrm{b}_{2,0,1}$	$-.18760$	-. 85582	-. 90501	-1.0384
$\mathrm{b}_{2,0,2}$. 070467	. 39862	. 42343	. 53555
$\mathrm{b}_{2,1,0}$	-. 24167	-. 96667	-1.0067	-1.7167
$\mathrm{b}_{2,1,1}$. 24167	. 96667	1.0067	1.9667
$\mathrm{b}_{2,2,0}$	0.	0 .	0 。	. 91287
$\mathrm{b}_{3,0,0}$	-. 12536	-1.0168	-1.1143	-. 99582
$\mathrm{b}_{3,0,1}$. 31826	2.6729	2.9409	2.9889
$\mathrm{b}_{3,0,2}$	-. 25080	-2.3112	-2.5575	-3.0004
$\mathrm{b}_{3,0,3}$. 057906	. 65513	. 73091	1.0073
$\mathrm{b}_{3,1,0}$. 51138	3.0407	3.2794	3.4737
$\mathrm{b}_{3,1,1}$	-. 76521	-5.0713	-5.5021	-7.4078
$\mathrm{b}_{3,1,2}$. 25383	2.0306	2.2228	3.8140

TABLE 1 （Continued）

	$\bar{\eta}=\eta / \eta_{w}$	$\bar{\xi}=\bar{\xi} / \varepsilon \eta_{\mathrm{w}}$		Cylindrical Coordinates
	$\varepsilon=(1+2 \mathrm{R})^{\frac{1}{2}} /(1+\mathrm{R})$	$\varepsilon=1 /(1+\mathrm{R})^{\frac{1}{2}}$		$\varepsilon=1 / \mathrm{R}$
	$\theta=0$	$\theta=0$	$\mathscr{O}=0.05$	－$\theta=0$
$\mathrm{b}_{3,2,0}$	－． 33579	－1．8995	－2．0101	－2．3103
$\mathrm{b}_{3,2,1}$	． 33579	1.8995	2.0101	2.3788
$\mathrm{b}_{3,3,0}$	0 。	0 。	0 ．	－． 47222
$\mathrm{b}_{4,0,0}$	． 22280	3.3718	3.8736	2.5174
$\mathrm{b}_{4,0,1}$	－． 64770	－10．375	－11．953	－9．1796
$\mathrm{b}_{4,0,2}$	． 69790	12.058	13.955	12.907
$\mathrm{b}_{4,0,3}$	－． 33012	－6．3474	－7．3910	－8．2785
$\mathrm{b}_{4,0,4}$	． 057121	1.2926	1.5156	2.0340
$\mathrm{b}_{4,1,0}$	－． 99216	－11．999	－13．555	－9．4649
$\mathrm{b}_{4,1,1}$	2.1474	27.377	31.028	27.046
$\mathrm{b}_{4,1,2}$	－1．4958	－20．825	－23．718	－25．851
$\mathrm{b}_{4,1,3}$	． 34051	5.4470	6.2460	8.4222
$\mathrm{b}_{4,2,0}$	1.2101	11.570	12.799	8.5123
$\mathrm{b}_{4,2,1}$	－1．8601	－18．924	－21．001	－16．046
$\mathrm{b}_{4,2,2}$	． 64999	7.3538	8.2027	7.2291
$\mathrm{b}_{4,3,0}$	－－． 48064	－3．8451	－4．1038	－． 45347
$\mathrm{b}_{4,3,1}$	． 48064	3.8451	4.1038	－1．4993
$\mathrm{b}_{4,4,0}$	0 。	0 。	0 ．	－． 69395
$\mathrm{b}_{5,0,0}$	－． 49971	－15．871	－19．269	－8．4867
$\mathrm{b}_{5,0,1}$	1.6273	52.142	63.264	33.285
$\mathrm{b}_{5,0,2}$	－2．1107	－69．990	－84．992	－55．514
$\mathrm{b}_{5,0,3}$	1.3841	49.046	59.742	49.215
$b_{5,0,4}$	－． 46366	－18．163	－22．239	－22．913
$\mathrm{b}_{5,0,5}$	． 062654	2.8358	3.4954	4.4144
$\mathrm{b}_{5,1,0}$	2.6444	63.083	75.123	34.436

TABLE 1 (Continued)

	$\bar{\eta}=\eta / \eta_{w}$	$\bar{\xi}=\bar{\xi} / e \eta_{\mathrm{w}}$		Cylindrical Coordinates
	$\mathrm{E}=(1+2 \mathrm{R})^{\frac{1}{2}} /(1+\mathrm{R})$	$c=1 /(1+R)^{\frac{1}{2}}$		$\varepsilon=1 / \mathrm{R}$
	$D=0$	$\mathcal{D}=0$	$\mathcal{D}=0.05$	$\cdots=0$
$\mathrm{b}_{5,1,1}$	-6.6742	-164.06	-195.40	-112.21
$\mathrm{b}_{5,1,2}$	6.3278	164.17	195.90	143.94
$\mathrm{b}_{5,1,3}$	-2.7566	-77.875	-93.327	-87.221
$\mathrm{b}_{5,1,4}$. 45862	14.676	17.697	20.676
$\mathrm{b}_{5,2,0}$	-4.0157	-73.881	-86.063	-38.727
$\mathrm{b}_{5,2,1}$	8.1822	156.58	182.65	99.057
$\mathrm{b}_{5,2,2}$	-5.3603	-109.71	-128.34	-84.323
$\mathrm{b}_{5,2,3}$	1.1938	27.011	31.746	24.651
$\mathrm{b}_{5,3,0}$	2.3864	33.824	38.338	12.036
$\mathrm{b}_{5,3,1}$	-3.6644	-54.272	-61.661	-14.058
$\mathrm{b}_{5,3,2}$	1.2780	20.448	23.323	1.4389
$\mathrm{b}_{5,4,0}$	-. 50714	-5.7376	-6.2511	. 69652
$\mathrm{b}_{5,4,1}$. 50714	5.7376	6.2511	-3.1781
$\mathrm{b}_{5,5,0}$	0.	0 .	0 .	. 24201

$$
\begin{aligned}
& u_{N}=\sum_{m=0}^{N} \sum_{n=0}^{N-m} a_{N, m, n} \bar{\xi}^{m} \bar{\eta} 2 n \\
& v_{N}=\sum_{m=0}^{N} \sum_{n=0}^{N-m} b_{N, m, n} \bar{\xi}^{m} \bar{\eta}_{n}(2 n+1)
\end{aligned}
$$

equation (78) proved to be a valuable aid in checking out the computer program and is exactly reproduced by the corresponding results in Table 1. The numerical results have also satisfied every other cross check that has been carried out, including the correct reproduction of the previously known first three orders of Hall's solution, and are believed to be accurate. The reason for limiting the results presented in Table 1 to fifth order is discussed below.

Since it is difficult, if not impossible, to assess the relative merits of these solutions from the tabular results, the velocities at two selected points, the throat axis (u_{o}) and wall (u_{w}) points, have been computed from the tables and are presented in Figures l-3.

It can be seen from these figures that, as indicated previously, the velocity series give results characteristic of asymptotic expansions. If a series which alternates in sign (like the current velocity series) is convergent, the results for each succeeding order should lie between the values obtained for the two previous orders. The present results show convergence initially for small values of the expansion parameter, however, after a certain value of is reached, which depends upon the order of the solution and the form of ε, the series begin to diverge.

For $\varepsilon=1 /(I+R)^{\frac{1}{2}}$, the third order solution begins to diverge for R small than about 0.66 . For $\epsilon=(1+2 R)^{\frac{1}{2}} /(1+R)$, the third order solution does not diverge, while the cylindrical coordinate (Hall's) third order solution diverges for R less than about 1.5. For all of the higher order solutions, divergence occurs for R less than about 2. For higher than fifth order the velocity coefficients get very large and the divergence rates become extreme. While the degree to which the various solutions diverge varies, none of them appear to be capable of yielding valid, accurate solutions for small R.

The toroidal coordinate solutions presented in Table l were obtained using coordinates normalized with η_{w}. As shown in the section on first order solutions, solutions can also be obtained with the toroidal coordinates scaled by ε instead of η_{w}. Higher order solutions were found using the alternate scaling by setting all of the a_{n} in equation (37), except a_{0}, equal to zero; a_{0} was set equal to one and the boundary condition was changed to agree with equation (74). These solutions turned out to be much worse than the original ones, and hence, were not presented. The reason these

Figure 1. Throat Wall and Axis Velocities

$$
\varepsilon=1 /(1+\mathrm{R})^{\frac{1}{2}} \text { Toroidal Coordinates }
$$

Figure 2. Throat Wall and Axis Velocities
$\varepsilon=(1+2 R)^{\frac{1}{2}} /(1+R)$ Toroidal Coordinates

Figure 3. Throat Wall and Axis Velocities
$\varepsilon=1 / R_{A}^{\frac{1}{2}}$ Cylindrical Coordinates.
latter solutions were so poor, can be attributed to the fact that they implicitly contain $\bar{\eta}_{W}=\eta_{W} / \varepsilon$ as a parameter and $\bar{\eta}_{W} \rightarrow \infty$ as $R \rightarrow 0$.

Figure 4 shows the third order results for u_{w} from Figures $1-3$ compared to experimentally measured values. Also shown in Figure 4 are the results of Reference 10. It can be seen that as R becomes smaller all of the theoretical results begin to diverge from the experimental data. The results obtained using the method of Reference 10 show excellent agreement with the data for R down to approximately. 4 , however, this must be considered fortuitous in view of the following. It is claimed in Reference 10 that the solution presented therein represented the solution in toroidal coordinates (with $s=1 /(1+R)^{1 / 2}$) transformed back into cylindrical coordinates. The current results show that contention to be false. A reexamination of the results of Reference 10 also show that the proposed series do not satisfy the differential equations of motion in cylindrical coordinates. It appears then that the method of Reference 10 is actually an empiricism which agrees quite well with the data. While this method must now be viewed in a different light, it shouldn't inhibit its use, since it still represents a useful and unique engineering tool for cheaply and accurately (within its limits) calculating transonic flows.

Having extended Hall's method of solution to fifth order, it was possible to extend the method presented in Reference 10 to higher orders, just to see what would happen. It turns out that the fourth order results that are obtained are significantly worse than third order and the fifth order results are seriously divergent.

The results obtained in this study, as outlined above, refute the contention of Reference 10 that the inability of previous expansion solutions to yield good solutions for small R was a limitation imposed by the coordinate system, rather than a fundamental limitation of the method itself. Further reflection upon this matter has given rise to the following explanation for the inapplicability of expansion methods for small R. All of the expansion methods including the present solution, assume that the transonic solution is completely determined by the local geometry of nozzle throat. Experimental evidence, and theroretical results obtained by other means, show that the

Figure 4. Third Order Throat Wall Velocity
throat geometry does essentially determine the transonic flow, for large to medium values of R. For small R, however, there is some evidence (Ref. 8) that the upstream nozzle geometry begins to noticeably affect the transonic flow, while for $R \approx 0$ the local throat geometry essentially disappears and the transonic flow cannot possibly be treated as a local expansion problem (see Reference 9). Thus, it appears that the expansion methods fail for small R because a basic premise upon which they rely begins to degenerate as $R \rightarrow 0$, and at $R=0$ the premise becomes untenable.

Table 1 also contains the results of a calculation that was carried out to assess the effect of variable gamma on the transonic flow. This effect is incorporated in the parameter, \mathcal{D}, and represents the change in gamma due to real gas effects only, and does not account for specific heat variations due to flow striations which can occur in real engines. D is given by

$$
A=\left.\frac{1}{\gamma^{*}\left(\gamma^{*}+1\right)} \frac{d \gamma}{d \bar{P}}\right|_{*}
$$

and sample calculations were carried out which indicated that D should be less than 0.05 for the conditions of interest in rocket engines. The calculation shown in Table 1 was performed with $D=0.05$ and as such should represent an approximate upper bound on the effect of variable, Y. Again, it is difficult to assess the differences between the solutions with $D=0$ and $D=0.05$ from the velocity coefficients of Table 1 , so Table 2 comparing u_{o} and u_{w} for the two solutions is presented. From Table 2 it can be seen that the effect of variable γ is quite small even at a value of R and at orders for which the solution is diverging. In the range where the solutions are most applicable, i.e., $R \geq 1.5$, the effect of variable gamma appear to be completely negligible.

$$
\text { TABLE - } 2
$$

Comparison of U_{0} and U_{w} With and Without The Effect of Variable Gamma

U_{0}				
Order of Solution	$\mathrm{D}=0$		$\mathrm{D}=0.05$	
	$\mathrm{R}=2$	$\mathrm{R}=.625$	$\mathrm{R}=2$	$\mathrm{R}=.625$
1	.9167	.8462	.9167	.8462
2	.9441	.9395	.9445	.9411
3	.9282	.8396	.9277	.8354
4	.9442	1.0261	.9457	1.0437
5	.9187	.4780	.9154	.3943

Order of Solution	U_{w}			
	$D=0$		$D=0.05$	
	$\mathrm{R}=2$	$\mathrm{R}=.625$	$\mathrm{R}=2$	$\mathrm{R}=.625$
1	1.0833	1.1538	1.0833	1.1538
2	1.0700	1.1083	1.0693	1. 1061
3	1.0773	1.1544	1.0773	1. 1563
4	1.0693	1.0619	1.0682	1.0507
5	1.0829	1.3531	1.0846	1. 4015

IV. SUBSONIC SOLUTION

The combination of the equations of motion being elliptic in subsonic flow, of mixed type in transonic flow, and the throat choked flow singularity, seriously complicates the task of obtaining numerical subsonic-transonic solutions in rocket nozzles. Attempts to solve this problem have either encountered insurmountable numerical difficulties, or frequently, complex methods have been developed which can achieve solutions only at the cost of large amounts of computer time. Recognition of the need for a relatively simple and economical subsonic-transonic method has led us to develop the following new approach to the problem.

It is fairly well known that the nature of the transonic flow in the region of the throat, including the mass flux for choked flow, is governed almost completely by the local geometry and is essentially free of upstream influence from the convergent section. ${ }^{+}$In view of this fact, it is suggested that the subsonic and transonic solutions be obtained separately, in the following manner. First, a transonic solution is obtained either with the method presented herein, or another method which depends only upon the local geometry. With a known transonic solution, the problem of solving the elliptic subsonic equations is simplified in two related ways. First, the transonic solution determines the proper choked flow mass flux, thereby eliminating the need for lengthy iterations of the subsonic numerical method in order to integrate through the throat singularity. Second, the transonic solution can be used to generate a subsonic "start line," so to speak, thereby providing boundary conditions for the subsonic flow on a completely closed contour.

When approached in the above manner, the subsonic regime should be amenable to solution in a fraction of the time currently required. A properly conceived and executed relaxation technique appears to be ideally suited to the task and one such approach is outlined below.

[^2]In cylindrical coordinates, the equations describing the flow in the subsonic region of the nozzle are (from (13) and (14))

$$
\begin{align*}
& \frac{\partial v}{\partial z}=\frac{\partial u}{\partial r} \tag{79}\\
& \left(a^{2}-u^{2}\right) \frac{\partial u}{\partial z}-2 u v \frac{\partial u}{\partial r}+\left(a^{2}-v^{2}\right) \frac{\partial v}{\partial r}+\frac{a^{2} v}{r}=0 \tag{80}
\end{align*}
$$

where a^{2} is known explicitly in terms of velocity for an ideal gas, and implicitly, through the equation of state and Bernoulli's Equation, for a real gas, u, v, and a have been normalized by the critical sound speed, a^{*}, and z and r by the throat radius, r^{*}. The boundary conditions are, in general
a. On a solid boundary

$$
\vec{v} \cdot \vec{n}=0
$$

b. On the center line

$$
\begin{equation*}
v=0 \tag{81}
\end{equation*}
$$

C. At $z=-\infty$
$\mathrm{v}(\mathrm{r})=0$
d. On the transonic "start line"
$u(r, z)=u_{t r}$
where $u_{t r}$ is computed from the transonic expansion solution.
The reasons for specifying the upstream boundary condition (c in the above) as shown are not immediately obvious. A given rocket nozzle is finite in length and one might, at first, feel that the proper boundary condition should be uniform parallel flow at the head end, or some other station in the combustion chamber, with the velocity selected so as to match the known choked mass flux (from the transonic solution). There are, however, several faults with such a boundary condition, two of which are as follows: uniform parallel flow implies that $v, \partial v / \partial r$ and $\partial u / \partial r$ all equal zero, however, equations (79) and (80), then imply that $\partial u / \partial z$ and $\partial v / \partial z$ also equal zero, which in turn implies the
erroneous conclusion that the velocity will remain uniform and parallel as long as the nozzle cross-sectional area remains constant. Secondly, the uniform parallel flow boundary condition: censtrains the mass flux into the solution domain to be equal to the mass flux out, for all time. As a result, the mass M inside the domain remains constant. The value of M corresponding to the proper solution of the equations of motion is not known a priori, and, in general, the initial guess from which the relaxation solution proceeds will yield an inconsistent value for M.

The boundary condition, $\mathrm{v}=0$, however, does not lead to either of these paradoxical results. The velocity profiles may vary even in a straight channel and the mass flux in, at the upstream boundary is not constrained, so that during the relaxation procedure mass can flow into or out of the domain until the proper value is achieved. The reason for specifying the boundary condition at $-\infty$ rather than at a finite distance is touched on by Moretti (Ref. 13) and can be heuristically stated as follows: the boundary conditions on the axis and on solid walls are fixed, and the downstream boundary condition is set by the transonic flow solution (or by the throat singularity if other techniques are used); fixing the remaining boundary condition, $\mathrm{v}=0$, at a finite distance may not yield a solution compatible with the equations of motions. Using the current technique, this would show up as differences between the values of v along the transonic start line as found by the transonic and subsonic solutions.

The equations of motion may be written in many different forms by employing potential functions, stream functions, changes in independent variables, etc. Bearing in mind that the solution is to be sought via the method of relaxation, the advantages and drawbacks of the alternative formulations were considered. It was concluded that changes in the dependent variables did not result in simplifications significant enough to warrant their use. However, computationally, it is convenient to map as many of the physical boundaries on to constant transformed coordinate lines as possible. This type of mapping reduces the amount of special differencing required at the physical boundaries. Without specifying particular forms of the transformations, it is assumed that
a. $\quad x=x(r, z)$
b. $y=y(r, z)$
c. $\frac{\partial}{\partial z}=\frac{\partial}{\partial x} \frac{\partial x}{\partial z}+\frac{\partial}{\partial y} \frac{\partial y}{\partial z}$
d. $\frac{\partial}{\partial r}=\frac{\partial}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial}{\partial y} \frac{\partial y}{\partial r}$

The above transformations can be made to allow the z coordinate to be mapped into a finite region and the wall boundary onio a constant coordinate line. This mapping leaves only the region near the throat to be handled in a special manner.

Substitution of equation (82) into (79) and (80) yields

$$
\begin{align*}
& v_{x} x_{z}+v_{y} y_{z}=u_{y} y_{r}+u_{x} x_{r} \tag{83}\\
& \left(a^{2}-u^{2}\right)\left\{u_{x} x_{z}+u_{y} y_{z}\right\}-2 u v\left(u_{y} y_{r}+u_{x} x_{r}\right) \tag{84}\\
& \quad+\left(a^{2}-v^{2}\right)\left(v_{y} y_{r}+v_{x} x_{r}\right)+\frac{a^{2} v}{r}=0
\end{align*}
$$

where the subscripts denote partial differentiation with respect to the subscripted variable.

Prescribing appropriate transforms for r and z into x and y will allow constant mesh spacing to be used in the transformed plane. Second order central difference formulas can then be used to evaluate the derivatives in equations (83) and (84). The applicable central difference formulas are

$$
\begin{align*}
& \frac{\partial u}{\partial x} \approx \frac{\delta u}{\delta x}=\frac{u_{1+1}, j-u_{i-1, i}}{2 \Delta x} \\
& \frac{\partial u}{\partial y} \approx \frac{\delta u}{\delta y}=\frac{u_{i, i+1}-u_{i, i-1}}{2 \Delta y} \\
& \frac{\partial v}{\partial x} \approx \frac{\delta v}{\delta x}=\frac{v_{i+1, i}-v_{i-1, i}}{2 \Delta x} \tag{85}\\
& \frac{\partial v}{\partial y} \approx \frac{\delta v}{\delta y}=\frac{v_{i, i+1}-v_{i, i-1}}{2 \Delta y}
\end{align*}
$$

with the diagram below illustrating the mesh spacing.

Substitution of the difference analogs into equations (83) and (84) gives

$$
\begin{align*}
& x_{z}\left(v_{i+1, j}-v_{i-1, j}\right)+y_{z} \frac{h}{K}\left(v_{i, j+1}-v_{i, j-1}\right) \tag{86}\\
& \quad=x_{r}\left(u_{i+1, j}-u_{i-1, j}\right)+y_{r} \frac{h}{K}\left(u_{i, j+1}-u_{i, j-1}\right) \\
& \left\{\left(a_{i, j}^{2}-u_{i, j}^{2}\right) x_{z}-2 u_{i, j} v_{i, j} x_{r}\right\}\left(u_{i+1, j}-u_{i-1, j}\right) \\
& \quad+\left\{\left(a_{i, j}^{2}-u_{i, j}^{2}\right) y_{z}-2 u_{i, j} v_{i, j} y_{r}\right\} \frac{h}{K}\left(u_{i, j+1}-u_{i, j-1}\right) \tag{87}\\
& \quad+\left(a_{i, j}^{2}-v_{i, j}^{2}\right) x_{r}\left(v_{i+1, j}-v_{i-1, j}\right)+\frac{h}{K}\left(a_{i, j}^{z}-v_{i, j}^{2}\right) y_{r}\left(v_{i, j+1}-v_{i, j-1}\right) \\
& \quad+2 h \frac{a_{i, j}^{2} v_{i, j}}{r}=0
\end{align*}
$$

Since equation (86) does not involve values of $u_{i, j}$ or $v_{i, j}$, a point by point relaxation solution of equations (86) and (87) is impossible. However, a solution can be found if $v_{i, j}$ is evaluated by numerically integrating equation (86), i.e.,

$$
v_{i, j}=\int_{0}^{x_{i, j}}\left(u_{y} y_{r}-v_{y} y_{z}\right) d x
$$

or if all the values of u and v are coupled, and solved for, along a coordinate line. The latter method is known as line relaxation and has several advantages over point by point techniques. They are:

1. All the values of u and v along a coordinate line are solved for simultaneously and therefore the domain of influence of each point is extended.
2. The differenced equations can be solved for values which include the derivatives of the functions instead of just the functionals at a given point. This type of differencing gives the best assurance that the differenced equations are indeed analogs of the differential equations.

When equations (86) and (87) are cast in the line difference form, a banded matrix is generated involving values of u and v along the line $\mathrm{x}=$ constant or $\mathrm{y}=$ constant. The line difference equations in the y direction are:

$$
\begin{align*}
y_{r} \frac{h}{K} u_{i, j-1} & -y_{z} \frac{h}{K} v_{i, j-1}+-y_{r} \frac{h}{K} u_{i, j+1} \tag{89}\\
& +y_{z} \frac{h}{K} v_{i, j+1}=x_{z}\left(v_{i+1, j}-v_{i-1, j}\right)+x_{r}\left(u_{1+1, j}-u_{i-1, j}\right)
\end{align*}
$$

which may be conveniently written as

$$
\begin{equation*}
A_{1} u_{i, j-1}+A_{2} v_{i, j-1}+A_{3} u_{i, j}+A_{4} v_{i, j}+A_{5} u_{i, j+1}+A_{6} v_{i, j+1}=R_{1} \tag{90}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}=y_{r} h / K \\
& A_{2}=-y_{z} h / K \\
& A_{3}=A_{4}=0 \tag{91}\\
& A_{5}=-A_{1} \\
& A_{6}=-A_{2} \\
& R_{1}=x_{z}\left(v_{i+1, j}-v_{i-1, j}\right)+x_{r}\left(u_{i+1, j}-u_{i-1, j}\right)
\end{align*}
$$

Equation (87) is conveniently written as

$$
\begin{equation*}
B_{1} u_{i, j-1}+B_{2} v_{i, j-1}+B_{3} u_{i, j}+B_{4} v_{i, j}+B_{5} u_{i, j+1}+B_{6} v_{i, j+1}=R_{2} \tag{92}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{1}=-\frac{h}{K}\left\{\left(a_{i, j}^{2}-u_{i, j}^{2}\right) y_{z}-2 u_{i, j} v_{i, j} y_{r}\right\} \\
& B_{2}=-\frac{h}{K} y_{r}\left(a_{i, j}^{2}-v_{i, j}^{2}\right) \\
& B_{3}=-u_{i, j} x_{z}\left(u_{i+1, j}-u_{i-1, j}\right)-v_{i, j} x_{r}\left(u_{i+1, j}-u_{i-1, j}\right) \\
& B_{4}=2 h \frac{a_{i, j}^{2} v_{i, j}}{r}-u_{i, j} x_{r}\left(u_{i+1, j}-u_{i-1, j}\right)-v_{i, j} x_{r}\left(v_{i+1, j}-v_{i-1, j}\right) \\
& B_{5}=-B_{1} \\
& B_{6}=-B_{2} \\
& R_{2}=a_{i, j}^{2} x_{z}\left(u_{i+1, j}-u_{i-1, j}\right)+a_{i, j}^{2} x_{r}\left(v_{i+1, j}-v_{i-1, j}\right)
\end{aligned}
$$

The line difference equations for the $\mathrm{y}=\mathrm{constant}$ line are similar to equations (90) and (92). In order to actually solve equations (90) and (92), two relations which either specify u and v at the boundaries, or relate their values to those at adjacent points, are needed. Since the boundary conditions can only fix one velocity component, or derivative on each boundary, the other
relation must be found by using one of the differential equations in finite difference form. Without going into the details of the numerics, the boundary conditions for the difference equations are:
a. On a solid boundary

$$
\vec{v} \cdot \vec{n}=0 \rightarrow u_{w} \sin \theta+v_{w} \cos \theta=0 \quad \theta=\tan ^{-1} \frac{d r}{d z}
$$

and $\quad v_{y} y_{z}-u_{y} y_{r}=v_{x} x_{z}$ which in finite difference form yields a relation between u_{w}, v_{w} and adjacent points.
b. On the centerline

$$
v=0
$$

and the irrotational equation which implies $\frac{\partial u}{\partial y}=0$
c. at $z=-\infty$
$\mathrm{v}=0$
and the momentum equation which implies $\frac{\partial u}{\partial x}=0$
d. On the "start line"

$$
\mathrm{u}=\mathrm{u}_{\mathrm{tr}}
$$

and the irrotational equation which relates v on the boundary to the velocity values at neighboring points.

Central difference quotients cannot, in general, be used to evaluate derivatives on the boundaries. Therefore, in order to retain second order accuracy at the boundaries, three point forward (or backward) difference quotients and interpolation formulas should be used.

In order to begin the relaxation procedure, initial values must be assigned at each mesh point. These can be calculated from one-dimensional theory up to a specified axial station and then interpolated to fair smoothly into the start line, or, if necessary, more sophisticated starting procedures can be devised. With known initial values at each point, equations (90) and (92)
can be solved line by line, using the usual techniques for inverting banded matricies, until a complete set of new values at each point has been calculated. The calculation is then repeated until the new and old values of the velocities at each point differ by less than an assigned error criterion. Various modified forms of the above procedure, such as over and under-relaxation and the method of alternating displacement (see Ref. 14), have been developed which, in many cases, significantly increase the solution convergence rate. If one proceeds. properly, many of these variations can be easily tested to find the one most suitable for the current problem.

The technique outlined above holds promise of being able to provide combined subsonic-transonic solutions much more economically than other currently available methods, and efforts to implement it appear to be warranted. However, since the transonic solutions obtained herein are not accurate enough for small radii of curvature nozzles, the above technique will be limited to nozzles having normalized radii of curvature greater than about one, unless accurate local transonic expansion solutions can be found for small R, in the future.

V. SUMMARY AND CONCLUSIONS

The transonic equations of motion for a converging-diverging nozzle, including the effect of variable gamma, have been solved in toroidal coordinates using a combination of an asymptotic small parameter expansion and a double coordinate expansion. The series expansions were carried out in general for nth order terms so that high order solution could be found recursively.

Various related solutions were obtained using different expansion parameters and coordinate normalizations, however, all of these efforts failed to yield a series solution which was convergent for small R. After an initial region of convergence all of the series begin to diverge in a manner typical of asymptotic expansions. The degree of divergence and the value of R where it begins is a function of the expansion parameter utilized and the order of the solution. These results refute the contentions of Reference 10 in regards to the applicability of expansion techniques to nozzles with small throat radii of curvature. It is currently felt that the failure of expansion techniques for small R is due to the following reason. The expansion solutions assume that the local throat geometry completely determines the transonic flow field and that there is no significant influence from the upstream flow. This assumption is certainly wrong at $R=0$ where there is no throat geometry to determine the flow, and recent evidence from several sources suggests that upstream influence on the transonic region becomes more significant as R gets smaller. Thus, the expansion methods probably fail due to a breakdown in one of the premises upon which they are based.

An expansion solution which included the effect of variable gamma (for a homogeneous unstriated flow) was also calculated, and it appears that the effect of variable gamma in the transonic region is negligible. The analysis and resultant computer program were also modified slightly to enable them to extend the method of Hall to higher orders by solving the equations in cylindrical coordinates. This enabled the technique proposed in Reference 10 to be extended, and the results were found to grow progressively worse for higher orders.

A novel, and potentially useful method (although it is probably limited to $R>1$ in view of the previous conclusions) for calculating the subsonic portion of the flow is also described. The method is based on the assumption that a local transonic expansion solution can be used to generate a subsonic "start line" and eliminate the need to iterate to satisfy the mass flow singularity at the throat.

1. Hall, I. M., "Transonic Flow in Two-Dimensional and Axially" Symmetric Nozzles," Quarterly Journal of Mechanics and Applied Mechanics, Vol. XV, Pt. 4, 1962, pp. 487-508.
2. Sauer, R., "General Characteristics of the Flow Through Nozzles at Near Critical Speeds," TM1147, June 1967, NACA.
3. Oswatitsch, K. and Rothstein, W., "Flow Pattern in a Converging ${ }^{-}$ Diverging Nozzle," TM1215, March 1949, NACA.
4. Mendelsor, R. S., "A General Transonic Flow Analysis for AxiallySymmetric Rocket Nozzles," TR HSM-R037, Feb. 1964, Chrysler Corp. Space Division, Huntsville, Ala.
5. Sims, Jo L., "Calculation of Transonic Flow," TMX-53081, Oct. 1964, NASA.
6. Kliegel, J. R. and Quan, Vo, "Convergent-Divergent Nozzle Flows," Rept. 02874-6002-R000, Dec. 1966, TRW Systems, Redondo Beach, Calif.
7. Saunders, L. M., "Numerical Solution of the Flow Field In The Throat Region of A Nozzle," NASA CR 82601 , Aug. 1966, Brown Engineering Co., Huntsville, Ala.
8. Prozan, R. J., "Transonic Flow In A Converging-Diverging Nozzle", Lockheed Missile and Space Center, Huntsville, Ala., Report No. Dl62177, May 1970.
9. Wehofer, S., and Moger, W. C., "Transonic Flow In Conical Convergent and Convergent-Divergent Nozzles with Nonuniform Inlet Conditions," AIAA Paper No. 70-635 presented at 6th Propulsion Joint Specialists Conference, San Diego, Calif., June 15-19, 1970.
10. Kliegel, J. R., Levine, J. N., "Transonic Flow In A Small Throat Radius of Curvature Nozzles," AIAA Journal Vol. 7, No. 7, July 1969, pp. 1375-78.
11. Cuffel, R. F., Back, L. H., and Massier, P. F., "The Transonic Flowfield in a Supersonic Nozzle with Small Throat Radius of Curvature " AIAA Journal, Vol. 7, No. 7, July 1969, pp. 1364-1366.
12. Cuffel, R. F., Private Communication.
13. Moretti, G., "The Importance of Boundary Conditions In The Numerical Treatment of Hyperbolic Equations. Polytechnic Institute of Brooklyn, Department of Aerospace Engineering, Report No. 68-34, Nov. 1968.
14. Fox, L., Numerical Solution of Ordinary and Partial Differential Equations, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962.

REFERENCES (Continued)

15. Smith, R.E., and Matz, R. J., "A Theoretical Method of Determining Discharge Coefficients for Venturi's Operating at Critical Flow Conditions," Journal of Basic Engineering, Dec. 1962.

APPENDIX A

This appendix contains a brief derivation of the coordinate and velocity transformations, the metrics and their derivatives in toroidal coordinates, and the general orthogonal coordinate forms of the divergence, curl and gradient operators.

Toroidal Coordinate Transformation

Let x, y, z be the usual cartesian coordinates, r, z, Φ, the usual cylindrical coordinates and ξ, η, ψ the toroidal coordinates. Then if the complex variable, ρ, is defined as

$$
\begin{equation*}
\rho=r+i z \tag{A-1}
\end{equation*}
$$

$$
\begin{equation*}
r=\frac{\rho+0^{*}}{2} \quad z=\frac{i}{2}\left(0^{*}-\rho\right) \tag{A-2}
\end{equation*}
$$

Figure A-1
+In this Appendix, an asterisk denotes the complex conjugate.

The coordinates of a point with respect to points 1 and 2 of Figure $A-1$ are:

$$
\begin{align*}
& \rho-a=-r_{1} e^{-i \theta_{1}} \\
& \rho^{*}+a=r_{2} e^{-i \theta_{2}} \tag{A-3}
\end{align*}
$$

The toroidal coordinates $\bar{\xi}, \eta$ are defined as

$$
\begin{align*}
& \eta=\ln \frac{r_{2}}{r_{1}} \tag{A-4}\\
& \xi=\theta_{1}-\theta_{2}
\end{align*}
$$

which, when combined with equation ($A-2$) yields

$$
\begin{align*}
& r=\frac{a \sinh \eta}{\cos \xi+\cosh \eta} \tag{A-6}\\
& z=\frac{a \sin \xi}{\cos \xi+\cosh \eta}
\end{align*}
$$

Using the previous results, the equations of the coordinate lines are found to be

$$
\begin{array}{ll}
\xi=\text { constant } & r^{2}+(z+a \cot \xi)^{2}=a^{2} \csc ^{2} \xi \\
\eta=\text { constant } & (r-a \operatorname{coth} \eta)^{2}+z^{2}=a^{2} \operatorname{csch}^{2} \eta \tag{A-8}
\end{array}
$$

The $\xi=$ constant lines are circles with centers at $z=-a \cot \xi$ and radii equal to a $\csc \xi$; while the $\eta=$ constant lines are circles with centers at $r=a \operatorname{coth} \eta$ with radii of a csch η.

If the throat wall is taken to be part of a circle of radius R_{W}, and if the throat radius is r^{*}, it follows from $(A-7)$ and $(A-8)$ that

$$
\begin{align*}
& R=\frac{1}{\cosh \eta_{W}-1} \tag{A-9}\\
& a=r^{*}(1+2 R)^{\frac{1}{2}} \tag{A-10}
\end{align*}
$$

$$
\begin{equation*}
\eta_{\mathrm{w}}=\frac{1}{2} \ln \left[\frac{1+\frac{(1+2 R)^{\frac{1}{2}}}{1+\mathrm{R}}}{1-\frac{(1+2 R)^{\frac{1}{2}}}{1+R}}\right] \tag{A-11}
\end{equation*}
$$

where $R=R_{W} / r^{*}$ is the nondimensional throat wall radius of curvature.

Metrics

In addition to the coordinate transformation, the metrics, $\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}$, in toroidal coordinates, and their derivatives, are also required. The third toroidal coordinate, ψ, is defined as

$$
y / x=\tan \psi
$$

or

$$
\begin{equation*}
x=r \cos \psi \quad y=r \sin \psi \tag{A-12}
\end{equation*}
$$

The metrics are given by

$$
\begin{align*}
& h_{1}=\left(\frac{\partial x^{2}}{\partial \xi}+\frac{\partial v^{2}}{\partial \xi}+\frac{\partial z^{2}}{\partial \xi}\right. \\
& h_{2}=\left(\frac{\partial x^{2}}{\partial \eta}+\frac{\partial v^{2}}{\partial \eta}+\frac{\partial z^{2}}{\partial \eta}\right)^{\frac{1}{2}} \tag{A-13}\\
& h_{3}=\left(\frac{\partial x^{2}}{\partial \psi}+\frac{\partial v^{2}}{\partial \psi}+\frac{\partial z^{2}}{\partial \psi}\right)^{\frac{1}{2}}
\end{align*}
$$

The required derivatives can be found using $(A-6)$ and ($A-12$) and, after much simplification, lead to

$$
\begin{align*}
& h_{1}=h_{2}=\frac{a}{\cos \xi+\cosh \eta} \tag{A-14}\\
& h_{3}=\frac{a \sinh \eta}{\cos \varepsilon+\cosh \eta}
\end{align*}
$$

The following derivatives of the metrics are required in order to find the curl, gradient and divergence in toroidal coordinates.

$$
\begin{align*}
& \mathrm{h}_{1_{\xi}}=\frac{\sin \xi}{\cos \xi+\cosh \eta} h_{1} \\
& \mathrm{~h}_{1_{\eta}}=-\frac{\sinh \eta}{\cos \xi+\cosh \eta} h_{1} \\
& \mathrm{~h}_{1} h_{3}=\frac{a^{2} \sinh \eta}{(\cos \xi+\cosh \eta)^{2}} \tag{A-16}\\
& \left(h_{1} h_{3}\right)_{\xi}=\frac{2 \sin \xi}{\cos \xi+\cosh \eta} h_{1} h_{3} \\
& \left(h_{1} h_{3}\right) \eta_{\eta}=\frac{\operatorname{coth} \eta-\frac{2 \sinh \eta}{\cos \xi+\cosh \eta}-h_{1} h_{3}}{} \begin{aligned}
=\frac{1+\cosh \eta \cos \varepsilon-\sinh n^{2} \eta}{\sinh \eta(\cos \xi+\cosh \eta)} ; h_{1} h_{3}
\end{aligned}
\end{align*}
$$

Curl, Divergence and Gradient in General Curvilinear Coordinates

In order to write the equations of motion in toroidal coordinates, the curl, divergence and gradient operators must be defined. In general othogonal coordinates x_{1}, x_{2}, x_{3} with metrics h_{1}, h_{2}, h_{3} and unit vectors $\vec{\alpha}_{1}, \vec{\alpha}_{2}, \vec{\alpha}_{3}$; a general vector \vec{A} is

$$
\vec{A}=A_{1} \quad \vec{\alpha}_{1}+A_{2} \vec{\alpha}_{2}+A_{3} \vec{a}_{3}
$$

The divergence, gradient and curl of \vec{A} are

$$
\begin{align*}
\nabla \cdot \vec{A}= & \left.\frac{1}{h_{1} h_{2} h_{3}}\left(h_{2} h_{3} A_{1}\right)_{x_{1}}+\left(h_{1} h_{3} A_{2}\right)_{x_{2}}+\left(h_{1} h_{2} A_{3}\right)_{x_{3}}\right] \tag{A-17}\\
\nabla= & \frac{1}{h_{1}} \frac{\partial A_{1}}{\partial x_{1}}+\frac{1}{h_{2}} \frac{\partial A_{2}}{\partial x_{2}}+\frac{1}{h_{3}} \frac{\partial A_{3}}{\partial x_{3}} \tag{A-18}\\
\nabla \times \vec{A} & =\frac{\vec{x}_{1}}{h_{2} h_{3}}\left(h_{3} A_{3}\right)_{x_{2}}-\left(h_{2} A_{2}\right)_{x_{3}}+\frac{\vec{a}_{2}}{h_{3} h_{1}}\left[\left(h_{1} A_{1}\right) x_{3}-\left(h_{3} A_{3}\right) x_{1}-\right. \\
& \vec{\alpha} \\
& +\frac{3}{h_{1} h_{2}}\left(h_{2} A_{2}\right)_{x_{1}}-\left(h_{1} A_{1}\right)_{x_{2}} \tag{A-19}
\end{align*}
$$

To find these operators in toroidal coordinates, set $x_{1}=\xi, x_{2}=\eta, x_{3}=\psi$ and use the metrics and their derivatives given by $(A-14)-(A-16)$. As a result of the axial symmetry of the present problem $\partial / \partial x_{3}=\partial / \partial \psi=0$.

Transformation of the Velocities to Cylindrical Coordinates
The direction cosines between toroidal and cartesian coordinates are given by Table $A-1$ below.

TABLE A-1

ξ	x	y	z
η	$\frac{1}{h_{1}} \frac{\partial x}{\partial \xi}$	$\frac{1}{h_{1}} \frac{\partial y}{\partial \xi}$	$\frac{1}{h_{1}} \frac{\partial z}{\partial \xi}$
$\frac{1}{h_{2}} \frac{\partial x}{\partial \eta}$	$\frac{1}{h_{2}} \frac{\partial y}{\partial \eta}$	$\frac{1}{h_{2}} \frac{\partial z}{\partial \eta}$	
$\frac{1}{h_{3}} \frac{\partial x}{\partial \psi}$	$\frac{1}{h_{3}} \frac{\partial y}{\partial \psi}$	$\frac{1}{h_{3}} \frac{\partial z}{\partial \psi}$	

Using the metrics and the tranformations $x, y, z \rightarrow \xi, \eta, \psi$, it is found that if σ is used to denote the direction cosine between the subscripted axes, then

$$
\begin{align*}
& \left.\sigma_{\xi, x}=-\frac{\sinh \eta \sin \xi}{(\cos \xi+\cosh \eta)}\right] \cos \psi \\
& \sigma_{\xi, y}=\left[\frac{\sinh \eta \sin \xi}{(\cos \xi+\cosh \eta)}\right] \sin \psi \\
& \sigma_{\xi, z}=\cos \xi+\frac{\sin ^{2} \xi}{(\cos \xi+\cosh \eta)} \tag{A-20}\\
& \sigma_{\eta, x}=\left[\cosh \eta-\frac{\sinh ^{2} \eta}{(\cos \xi+\cosh \eta)}\right] \cos \psi
\end{align*}
$$

$$
\begin{aligned}
& \sigma_{\eta, y}=\left[\cosh \eta-\frac{\sinh ^{2} \eta}{(\cos \xi+\cosh \eta)}\right] \sin \psi \\
& \sigma_{\eta, z}=-\frac{\sin \xi \sinh \eta}{(\cos \xi \sinh \eta)}
\end{aligned}
$$

(A-20) Cont.

In cylindrical coordinates, $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$, so the components in the r direction are given by

$$
\begin{align*}
& \left(\sigma_{\xi, x}^{2}+\sigma_{\xi, y}^{2}\right)^{\frac{1}{2}} \\
& \left(\sigma_{\eta, x}^{2}+\sigma_{\eta, y}^{2}\right)^{\frac{1}{2}} \tag{A-21}
\end{align*}
$$

Then if v_{r} and v_{z} are used to denote the velocities in the r and z directions, respectively, then

$$
\begin{align*}
& \mathrm{v}_{\mathrm{r}}=\mathrm{u} \frac{\sinh \eta \sin \xi}{(\cos \xi+\cosh \eta)}+\mathrm{v}\left[\cosh \eta-\frac{\sinh ^{2} \eta}{(\cos \xi+\cosh \eta)}\right] \tag{A-22}\\
& \mathrm{v}_{\mathrm{z}}=\mathrm{u}\left[\cos \xi+\frac{\sin ^{2} \xi}{(\cos \xi+\cosh \eta)}\right]-\mathrm{v} \frac{\sin \xi \sinh \eta}{(\cos \xi+\cosh \eta)}
\end{align*}
$$

Since the transonic equations are to be solved by an expansion technique, it is desirable to have all of the variables of order unity. A general derivation of the proper scale transformations and series forms is outlined below.

The following general scaling and series forms are assumed:

$$
\begin{array}{cc}
\bar{\xi}=\frac{\xi}{\varepsilon^{a}} & \bar{\eta}=\frac{\eta}{\varepsilon^{b}} \\
u^{\prime}=\varepsilon^{c_{1}} u_{1}(\bar{\xi}, \bar{\eta})+\varepsilon^{c_{2}} u_{2}(\bar{\xi}, \bar{\eta})+\ldots \\
v^{\prime}=\varepsilon^{d} v_{1}(\bar{\varepsilon}, \bar{\eta})+\varepsilon^{d} v_{2}(\bar{\xi}, \bar{\eta})+\ldots \tag{B-2}
\end{array}
$$

(Note: $\bar{\xi}, \bar{\eta}, u_{1}, u_{2} \ldots, v_{1}, v_{2} \ldots$ are then all of order unity) where ε is the expansion parameter. As discussed in the text, $\operatorname{Lim} \varepsilon \doteq \frac{1}{R^{\frac{1}{2}}}$, and $\eta_{W}=0(\epsilon)$; therefore, from equation ($B-1$),

$$
\begin{equation*}
b=1 \tag{B-3}
\end{equation*}
$$

To determine $a, c_{1}, c_{2}, d_{1}, d_{2}$, equations ($B=1$)- $(B-3)$ are substituted into equations (22) and (23). The unknown coefficients are found by requiring first the lowest order terms, and then the next lowest order terms to yield nontrivial solutions. The following expansions will be needed:

$$
\begin{array}{ll}
\cosh x=1+\frac{x^{2}}{2}+\ldots & \cos x=1-\frac{x^{2}}{2}+\ldots \\
\sinh x=x+\frac{x^{3}}{6}+\ldots & \sin x=x-\frac{x^{3}}{6}+\ldots . \tag{B-4}\\
\operatorname{coth} x=\frac{1}{x}+\frac{x}{3}-\frac{x^{3}}{45}+\ldots &
\end{array}
$$

The lowest order terms from equation (22) are: (Note: In the following, the constant arithmetic coefficients are ignored since they do not affect the ordering of terms).

$$
\begin{equation*}
\varepsilon^{d_{1}-a} v_{1 \bar{\xi}}+\varepsilon \bar{\eta}+\varepsilon^{c_{1}-1} u_{1 \bar{\eta}}=0 \tag{B-5}
\end{equation*}
$$

The lowest order terms from equation (23) are:

$$
\begin{equation*}
\varepsilon^{2^{c_{1}-a}} u_{1} u_{1}+\varepsilon^{d_{1}-1} v_{1}+\varepsilon^{a \bar{\eta}}+\frac{\varepsilon^{d_{1}-1}}{\bar{\eta}} v_{1}=0 \tag{B-6}
\end{equation*}
$$

Since the boundary conditions are homogeneous

$$
\begin{array}{ll}
\bar{\eta}=0 & v^{\prime}=0 \\
& \frac{\partial u^{\prime}}{\partial \bar{\eta}}=0 \tag{B-7}\\
\bar{\eta}=\bar{\eta}_{w} & v^{\prime}=0
\end{array}
$$

at least one nonhomogeneous term must remain in the lowest order equations; otherwise the trivial solution, $u^{\prime}=$ constant and $v^{\prime}=0$ results. Thus, equating powers of ε, the conditions

$$
d_{1}-a=1=c_{1}-1
$$

and

$$
\begin{equation*}
2 c_{1}-a=a=d_{1}-1 \tag{B-8}
\end{equation*}
$$

must be satisfied. These conditions lead to

$$
\begin{equation*}
\mathrm{a}=2, \quad \mathrm{c}_{1}=2, \quad \mathrm{~d}_{1}=3 \tag{B-9}
\end{equation*}
$$

In order to check for the possible occurrence of fractional intermediate powers of ε in the velocity expansions, the second order terms in the expansion of equations (22) and (23) have been examined.

Equation (22) gives:

$$
\begin{equation*}
\varepsilon^{d_{2}-2} v_{2}+\varepsilon^{3} \bar{\eta} u_{1}+\varepsilon^{3} \bar{\eta}^{3}+\varepsilon^{c_{2}-1} u_{2-}^{\eta}=0 \tag{B-10}
\end{equation*}
$$

for which the condition

$$
\begin{equation*}
d_{2}-2=c_{2}-1=3 \tag{B-11}
\end{equation*}
$$

must be satisfied. Thus,

$$
\begin{align*}
& d_{2}=5 \tag{B-12}\\
& c_{2}=4
\end{align*}
$$

The second order terms from equation (23) give exactly the same result.
Thus, from ($B-3$) and ($B-9$) it can be seen that the toroidal coordinates scale as

$$
\begin{equation*}
\bar{\xi}=\frac{\xi}{\varepsilon^{2}} \quad \text { and } \quad \bar{\eta}=\frac{\eta}{\varepsilon} \tag{B-13}
\end{equation*}
$$

and ($B-9$) and ($B-12$) show that the velocity series should be written as

$$
\begin{align*}
& u^{\prime}=\varepsilon^{2} u_{1}(\bar{\xi}, \bar{\eta})+\epsilon^{4} u_{2}(\bar{\xi}, \bar{\eta})+\ldots \tag{B-14}\\
& \mathrm{v}^{\prime}=\varepsilon^{3} \mathrm{v}_{1}(\bar{\xi}, \bar{\eta})+\epsilon^{5} \mathrm{v}_{2}(\bar{\xi}, \bar{\eta})+\ldots
\end{align*}
$$

The $D_{K_{i}}$'s appear in the momentum equation (23) and contain velocity expansions and the products of velocity expansions, such as

$$
\begin{align*}
& u^{\prime}=\sum_{K=1}^{\infty} \varepsilon^{2 K} u_{K}=\sum_{K=1}^{\infty} e^{2 K+1} v_{K} \tag{C-1}\\
& u^{\prime} 2=\sum_{K=2}^{\infty} \varepsilon^{2 K} \sum_{n=1}^{K=1} u_{K-n} u_{n}=v(K-2) \sum_{K=0}^{\infty} \varepsilon^{2 K} \sum_{n=1}^{K-1} u_{K-n} U_{n} \tag{C-2}\\
& v^{\prime 2}=\sum_{K=3}^{\infty} \epsilon^{2 K} \sum_{n=1}^{K-2} v_{K-1-n} v_{n}=v(K-3) \sum_{K=0}^{\infty} e^{2 K} \sum_{n=1}^{K=2} v_{K-1-n} v_{n} \tag{C-3}
\end{align*}
$$

The expansions of the trigonometric and hyperbolic functions require that the series expansion of η_{w} be raised to integral powers.

$$
\begin{align*}
& \eta_{W}=e \sum_{n=0}^{\infty} a_{n} \epsilon^{2 n}=\varepsilon R \tag{C-4}\\
& R^{N}=\sum_{n=0}^{\infty} \varepsilon^{2 n} A_{N, n} \tag{C-5}
\end{align*}
$$

The $A_{N, n}$ are given in equation (45).
Using equation ($\mathrm{C}-5$) the trigonometric and hyperbolic functions can be expressed as

$$
\begin{align*}
& \sinh \eta=\sinh \eta_{\mathrm{w}} \bar{\eta}=\sum_{\mathrm{P}=1}^{\infty} \epsilon^{2 \mathrm{P}-\mathrm{I}} \mathrm{~B}_{\mathrm{P}_{1}} \\
& \cosh \eta=\cosh \eta_{\mathrm{w}} \bar{\eta}=\sum_{\mathrm{P}=0}^{\infty} e^{2^{P}} \mathrm{~B}_{\mathrm{P}_{2}} \tag{C-6}\\
& \sin \xi=\sin \epsilon \eta_{\mathrm{w}} \bar{\xi}=\sum_{\mathrm{P}=1}^{\infty} \epsilon^{2 \mathrm{P}} \mathrm{~B}_{\mathrm{P}_{3}}
\end{align*}
$$

$$
\begin{aligned}
& \cos \xi=\cos \varepsilon \eta_{w} \bar{\xi}=\sum_{P=0}^{\infty} \varepsilon^{2^{P}} \mathrm{~B}_{\mathrm{P}_{4}} \\
& \operatorname{coth} \eta=\operatorname{coth} \eta_{W} \bar{\eta}=\sum_{\mathrm{P}=0}^{\infty} \varepsilon^{2^{P-1}} \mathrm{~B}_{\mathrm{P}_{5}}
\end{aligned}
$$

where the B_{P} 's are given by equation (41).
The velocity derivatives require the velocity series to be divided by the η_{w} series and can be conveniently written as

$$
\begin{array}{ll}
u_{\xi}^{\prime}=\sum_{P=0}^{\infty} \varepsilon^{2 P} C_{P_{3}} & v_{\xi}^{\prime}=\sum_{P=1}^{\infty} \varepsilon^{2 P-1} C_{P_{1}} \tag{C-7}\\
u_{\eta}^{\prime}=\sum_{P=1}^{\infty} e^{2 P-1} C_{P_{4}} & v_{\eta}^{\prime}=\sum_{P=1}^{\infty} \varepsilon^{2 P} \quad C_{P_{2}}
\end{array}
$$

The C_{P} 's are given in equation (42).
The E variables result from the various products of velocity derivatives and trigonometric or hyperbolic functions .

APPENDIX D

The $\overline{\mathrm{B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}$, and $\overline{\mathrm{E}}$ variables (equations $57,59,60,62$) are derived from the B, C, D and E 's (equations 41-44), respectively, by expanding the latter in powers of $\bar{\xi}, \bar{\eta}$ and collecting terms. The two sets of variables are related as follows.

$$
\begin{align*}
& \mathrm{B}_{\mathrm{P}_{1}}=\sum_{m=1}^{P} \bar{B}_{P, m_{1}} \eta^{(-1+2 m)} \\
& \mathrm{B}_{\mathrm{P}_{2}}=\sum_{m=0}^{P} \bar{B}_{P, m_{2}} \bar{\eta}^{2 m} \\
& \mathrm{~B}_{\mathrm{P}_{3}}=\sum_{m=0}^{P-1} \bar{B}_{P, m_{3}} \bar{\xi}^{(P-m)} \tag{D-1}\\
& { }^{B_{P_{4}}}=\sum_{m=0}^{P} \bar{B}_{P, m_{4}} \bar{\xi}^{(P-m)} \\
& { }^{B_{P_{5}}}=\sum_{m=0}^{P} \bar{B}_{P, m_{5}} \bar{\eta}^{(2 m-1)} \\
& C_{P_{1}}=\sum_{m=0}^{P-1} \sum_{n=0}^{P-1-m} \bar{C}_{P, m, n_{1}} \bar{\xi}^{m} \bar{\eta}^{(2 n+1)} \\
& C_{P_{2}}=\sum_{m=0}^{P} \sum_{n=0}^{P-m} \bar{C}_{P, m, n_{2}} \bar{\xi}^{m} \bar{\eta}^{-2 n} \tag{D-2}\\
& C_{P_{3}}=\sum_{m=0}^{P} \sum_{n=0}^{P-m} \bar{C}_{P, m, n_{3}} \bar{\xi}^{m} \bar{\eta}^{2 n}
\end{align*}
$$

$$
C_{P_{4}}=\sum_{m=0}^{P-1} \sum_{n=1}^{P-m} \bar{C}_{P, m, n} \bar{\xi}^{m} \bar{\eta}^{(2 n-1)}
$$

The $\overline{\mathrm{C}}_{\mathrm{P}, \mathrm{m}, \mathrm{n}}$'s, themselves, make use of the following relations for the velocity derivatives.

$$
\begin{align*}
& u_{N \bar{\xi}}=\sum_{m=1}^{N} \sum_{n=0}^{N-m} a_{N, m, n} m_{\xi}^{m-1} \bar{\eta}^{2 n} \\
& u_{N-}=\sum_{m=0}^{N-1} \sum_{n=1}^{N-m} a_{N, m, n} 2 n \bar{S}^{-m} \bar{\eta}^{(2 n-1)} \tag{D-3}\\
& v_{N_{\bar{\xi}}}=\sum_{m-1}^{N} \sum_{n=0}^{N-m} b_{N, m, n} m \bar{\xi}^{m-1} \bar{\eta}^{(2 n+1)} \\
& \mathrm{v}_{\mathrm{N}-\bar{\eta}}=\sum_{\mathrm{m}=0}^{\mathrm{N}} \sum_{\mathrm{n}=0}^{\mathrm{N}-\mathrm{m}} \mathrm{~b}_{\mathrm{N}, \mathrm{~m}, \mathrm{n}} 2 \mathrm{n}+1 \bar{\xi}^{\mathrm{m}} \bar{\eta}^{2 \mathrm{n}} \\
& E_{Q_{1}}=\sum_{K=0}^{Q} \sum_{L=0}^{Q} \bar{\xi}^{K} \bar{\eta}^{2 L} \bar{E}_{Q, K, L_{1}} \\
& \mathrm{E}_{\mathrm{Q}_{2}}=\sum_{\mathrm{K}=0}^{\mathrm{Q}} \sum_{\mathrm{L}=0}^{\mathrm{Q}} \bar{\xi}^{\mathrm{K}} \bar{\eta}^{2 \mathrm{~L}} \overline{\mathrm{E}}_{\mathrm{Q}, \mathrm{~K}, \mathrm{~L}_{2}} \tag{D-4}\\
& \mathrm{E}_{\mathrm{Q}_{3}}=\sum_{\mathrm{K}=0}^{\mathrm{Q}-1} \sum_{\mathrm{L}=0}^{\mathrm{Q}-1} \bar{\xi}^{\mathrm{K}} \bar{\eta}^{(2 \mathrm{~L}+1)} \overline{\mathrm{E}}_{\mathrm{Q}, \mathrm{~K}, \mathrm{~L}_{3}} \\
& \mathrm{E}_{\mathrm{Q}_{4}}=\sum_{\mathrm{K}=0}^{\mathrm{Q}-1} \sum_{\mathrm{L}=0}^{\mathrm{Q}-1} \bar{\xi}^{\mathrm{K}+1} \bar{\eta}^{2 \mathrm{~L}} \overline{\mathrm{E}}_{\mathrm{Q}, \mathrm{~K}, \mathrm{~L}_{4}}
\end{align*}
$$

$$
\mathrm{E}_{\mathrm{Q}_{5}}=\sum_{\mathrm{K}=0}^{\mathrm{Q}} \sum_{\mathrm{L}=0}^{\mathrm{Q}-\mathrm{K}} \bar{\xi}^{\mathrm{K}} \bar{\eta}^{2 \mathrm{~L}} \overline{\mathrm{E}}_{\mathrm{Q}, \mathrm{~K}, \mathrm{~L}_{5}}
$$

The $\overline{\mathrm{D}}$'s are related to the D's through the equations for the products of velocities (which are expressed in terms of the F^{\prime} s). All of the velocity multiplications are of one of the three following types.

$$
\begin{align*}
& u_{N} u_{M}=\sum_{Q=0}^{M+N} \sum_{P=0}^{N+M-Q} \bar{\xi}^{Q} \bar{\eta}^{-2 P} F_{N, M, Q}, P_{1} \\
& v_{N} v_{M}=\sum_{\sum^{M}=0} \sum_{P=1}^{N+M+1-Q} \bar{\xi}^{Q} \bar{\eta}^{2 P} F_{N, M}, Q, P_{2} \tag{D-5}\\
& u_{N} v_{M}=\sum_{Q=0}^{M+N} \sum_{P=0}^{N+M-Q} \bar{\xi}^{Q} \bar{\eta}^{(2 P+1)} F_{N, M}, Q, P_{3}
\end{align*}
$$

Computer Program

The philosophy used in writing the transonic computer program was to make the program listing correspond as closely as possible to the equations of section II of this report. To this end, each of the functions in the equations were programmed as F \varnothing RTRAN functions using the following naming conventions:
a) functions beginning with lower case lette:s are pretended with the letter s for small. Capital letters were left unchanged
b) the number of arguments to the function is always the last character of the function name
c) for numbered functions names the number immediately follows the letter identifying the function and the letter A separates the function number and the number of arguments
hence:

$\bar{E}_{Q, K}, L_{1}$	becomes	$\operatorname{E1A} 3(Q, K, L)$
$b_{P, M, N}$	becomes	$\operatorname{SB} 3(P, M, N)$

Since zero indexing was required, a dynamic storage allocation technique known as bucketing was used to compute indexes and also to conserve storage. The use of the bucket also allowed most functions to be evaluated only once.

The following gives a brief description of the subroutines and functions used in the program:

Program TRANS \varnothing N
Main program which controlled overall logic
Subroutine INPUTM
Reads the input data
Subroutine GETADD
Calculates the indexes for each array in the bucket

Subroutine INIT

Calculates constants and initializes some variables

Function FAC

Returns the factorial of its argument
Function SAl
Returns a_{i}
Function SE1
Returns e_{i}
Function A2
Returns $A_{i, j}$
Function $L \varnothing K$
Computes the position in the bucket of 3 dimensional variables
Subroutine DEBUG
Supplies some Namelist debug print out
Function B1A2
Entry Point Returns
B1A2
B i, ${ }_{1}$
B2A2
$B_{i, j}$
B3A 2
$\mathrm{B}_{\mathrm{i}, j_{3}}$
B4A 2
$B_{i, j}$
B5A2
$B_{i, j_{5}}$
Function SA3
Returns $a_{i, j, k}$
Function SB3
Returns $\mathrm{b}_{\mathbf{i}, \mathrm{j}, \mathrm{k}}$
Function DELTA
Returns $\delta(s)$E-2

Function SBl
Returns b_{i}

Function ClA3

Entry point
ClA3

C2A3

C3A3

C4A3

Returns
$\bar{C}_{i, j, k}$
$\overline{\mathrm{C}}_{i, j, k_{2}}$
$\overline{\mathrm{C}}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}^{3}$
$\overline{\mathrm{C}}_{i, j, k_{4}}$

Function S2
Returns $\bar{S}_{i, j}$
Function S3
Returns $\overline{\mathrm{S}}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}$
Function D1A3
Entry Point
DIA3

D2A3

D3A3

D4A3

D5A3

D6A3

Returns
$\bar{D}_{i, j, k_{1}}$
$\bar{D}_{i, j, k_{2}}$
$\bar{D}_{i, j, k_{3}}$
$\bar{D}_{i, j, k_{4}}$
$\bar{D}_{i, j, k_{5}}$
$\bar{D}_{i, j, k_{6}}$

Function FIA4
Entry Point
FlA4

F2A4

F3A4
Returns
$F_{N, M, ~}, P_{1}$
$F_{N, M, Q}, P_{2}$
$F_{N, M}, Q, P_{3}$
E-3

Function ElA3

Entry Point
E1A3

E2A 3

E3A3

E4A3

E5A 3

Returns
$\bar{E}_{Q, K, L_{1}}$
$\bar{E}_{Q, K, L_{2}}$
$\bar{E}_{Q, K, L_{3}}$
$\bar{E}_{Q, K, L_{4}}$
$\bar{E}_{Q, K, I_{5}}$

Function EP1A3
Entry Point
Returns
EPIA3

EP2A3

$$
\bar{E}_{\mathrm{Q}, \mathrm{~K}, \mathrm{I}_{\mathrm{l}}}
$$

$$
\bar{E}_{Q}, K_{1} L_{2}
$$

EP5A3

Subroutine C \varnothing EFF
Generates the coefficients matrix for the transonic solution.
Subroutine RHSIDE
Controls the calculation of the right hand sides of the transonic equations Subroutine M \varnothing MEN

Calculates the right hand sides of the momentum equations Subroutine IRR ØT

Calculates the right hand sides of irrotational equations
Subroutine INVRT
Inverts the coefficient matrix
Subroutine SゆLN
Calculates the coefficients in the solution to the transonic equations

The computer program input is standard FøRTRAN IV NAMELIST. Familiarity with this standard input procedure is assumed.

The input list of variables are as follows:
\$DATA

GAMMA $=$,
$\mathrm{D}=$

PMAX = ,
RCURV $=$,

EFLAG $=$
ratio of specific heats
$\theta=\frac{1}{\gamma(\gamma+1)} \quad \frac{\mathrm{d} \gamma}{\mathrm{d} \stackrel{\mathrm{P}}{ }} \psi_{*}$
maximum order of solution destred
throat radius of curvature, only used for EFLAG >2, but a value must always be input.
boundary condition flag
$\operatorname{EFLAG}=1, \quad \varepsilon=\frac{(1+2 R)^{\frac{1}{2}}}{1+R}, \bar{\eta}=\eta / \eta_{\mathrm{w}}$
EFLAG $=2, \quad \epsilon=1 /(1+R), \eta=\eta / \eta_{\text {w }}$
$\operatorname{EFLAG}=3, \quad \epsilon=\frac{(1+2 \mathrm{R})^{\frac{1}{2}}}{1+\mathrm{R}}, \eta=\eta / \varepsilon$
EFLAG $=4, \quad \epsilon=1 /(1+R), \eta=\eta / \varepsilon:$
for EFLAG ≥ 3, RCURV is used
\$END
One note on conversion, different F \varnothing RTRAN IV compilers treat multiple entry points to function subprograms differently. The CDC 6000 series, RUN compiler uses the following conventions:
a) a value is assigned to every entry point of a function subprogram
b) the argument list for each entry point is implied to be identical with that of the main entry point. Hence, each entry point must be called with the same number of argument as the main entry point, but that argument list must only appear on the main entry point

Output from the program consists of the coefficients of the velocity expansions up to order PMAX. The output is in the form $A(I, J, K)$ $B(I, J, K)$ which correspond to $a_{i, j, k}$ and $b_{i, j, k}$ in equation (5l). A sample of the output (up to third order) for the following input conditions is given below.

INPUT: $\quad G A M M A=1.4, D=0.05, \operatorname{EFLAG}=2.0, \operatorname{PMAX}=5$,

$$
\mathrm{RCURV}=0.25
$$

OUTPUT:

A (2, 0, 0) =	.25069	- 0 (2, 0, 0) =	.48158
A $2,0,1)=$	-. 71167	$\square(2,0,1)=$	-.90501
A $(2,0,2)=$. 33500	B (2, 0, 2) =	.42343
4(2, 1, 0)=	-.40\$32	$0(2,1,0)=$	-1.0007
A $2,1.1)=$. 44344	B (2, 1, 1) $=$	1.0007
A (2, 2, 0) $=$	-5.29101t-03	日. 2, 2, 0) =	0.

(1300, 0) =	-. 45340	B(3:0, 0) =	-1.1143
A (3, 0. 1) =	1.7442	B (3.0. 1$)=$	2.9409
A(3.0. 2) $=$	-1.4934	- $3,0,2)=$	-2.5575
A1 $3: 0,3)=$.41796	B(3, 0, 3) =	. 73091
A $13,1: 0)=$.90869	B(3, 1, 0) $=$	3.2794
$A(3,1,1)=$	-2.5721	8(3, 1: 1) $=$	-5.5021
A (3, 1, 2) $=$	1.1495	B $2,2,2)=$	2.2228
A $3,2,0)=$	-. 12147	B(302, 0) $=$	-2.0101
A $(3,2,1)=$.24735	8(3,2, 1)=	2.0101
A $13,3,0)=$.42070	B(3, 3, 0) =	0.

000001 000002 000003 000004 000005 000006 000007 000008 000009 000010 000011 000012 000013 000014 000015 000016 000017 000018 000019 000020 000021 000022 000023 000024 000025 000026 000027 000028 000029

IPROGRAM TRANSON(TAPE1:INPUT, OUTPUT, TAPE5末 INPUT,TAPEG:OUTPUT)
COMMO'V LA(100).B(20000)
COMMON/INDEXS/PMAX, NSTOR
COMMON/POINTS/INPMAX
INTEGER PIAX
KSTART=0
C
c
C
CALL GETADO
CALL INIT
CALL DEBUG
c
$N P=(P M A X+1) *(P M A X+2)$
$001001=2, P \ln A$
$I P_{1}=\operatorname{La}(32)+1$
1P2:LA(33)+1
$1 P 3=L A(34)+1$
CALL COEFF(E(IP1),B(IP3),R(IP2):,$N P)$
C

100 CONTINUE
KSTART=1
60 TO 10
C

C
CALL OUTS
END

LSUBROUTINE INPUTM(KS)
COMMON/WALLEC/ETAW: RCURV, EPSIL COMMON/EPSFLG/EFLAG
COMMON/GAMS/GAM,G1,G2,G3:D
COMMON/INDEXS/PMAX, NSTOR
INTEGER PriAX
NAMELIST/CATA/GAMMA,D,EFLIG.A100,A101,A110,B100,B101,PMAX
1 : RCURV
IF (KS.NE,O)GO TO 100
RCURVE10.0
100 READ (5,DATA)
PMAX=MAXO(PMAX 3)
WRITE (G,DATA)
GAM=GAMMA
RETURN
END

000047
000048 000048 000050 000051 000052 000053 000054 000055 000056 000057 000058 000059 000080 000061 000062 000063 00006 4 000065 000066 000067 000068 000069 000070 000071 000072 000073 000074 000075 000076 000077 000078 000079 000080 000081 000082 000083 000084 000085 000086 000087 000088 000089 000090 000091 000092 000093 000094 000095 000096 000097 000098

ISUBROUTINE GETADD
COMMON/TNDEXS/PMAX, NSTOR
COMNON LA(100), B(1)
INTEGER PMAX
DIMENSION IB(1)
EQUIVALENCE (IB(1):B(1))
DATA NCALC/5HNCALC/

NSTOREPMAX +3

THIS ROUTINE CALCS THF STARTIHG INDEX IN THE B ARRAY FOR THE STORAGE OF VALUES OF EACH OF THE FUNCTIONS

000099 000100 000101 000102 000103 000104 000105 000106 000107 000108 000109 000110 000111 000112 000113 000114 000115 000116 000117 000118 000119 000120 000121 000122 000123 000124

```
    LA(1)=0
    LA(2)=LA(1)+NSTOR
    LA(3):LA(z)+NSTOR
    LA(4):LA(3)*NSTOR
    bA(S)=LA(A)+L2
    LA(6)aLA(5)+L2
    LA(7)=LA(6)+L2
    LA(8)=LA(7)+L?
    LA(9)=LA(O)+L2
    LA(10)=LA(9)+L2
    LA(11)=LA(10)mL3
    LA(12)=La(11)+L2
    DO 50 1=13,31
    LA(I): LA(I-1)+L3
50 CONTINUE
    LA(32)=LA(31)*L3
    LA(33)=LA(32)*(LI*(L1+1))**2
    LA(34)=LA(33)+L1*(LI+1)
    LMAX=35
    LA(35)=LA(34)+L1*(L1+1)
    NMAX=LA(LMAX)
    00 500 I=1, NmAX
    IR(I)mNCALC
500 CONTINUE
RETURN
END
```

ISUBROUTINE INIT
COMMON/EPSFLG/EFLAG
COMMON/GAMS/GAM,G1,G2,G3,
COMMON/INDEXS/PMAX, NSTUR
INTEGER-PMAX,ALPHA
COMMON LL(100):B(1)
COMMON/POINTS/NPMAX
COMMON/WALLEC/ETAW, RCURV, EFSIL
DIMENSIDN T(50):RS(50)
NAMELIST/BUG/T, RS, PMAX,NPIIAX
NSTOR=NSTOR-1
$G P_{1}=G A M+1,0$
$G M 1=G A M-1$, 0
$G 1=G M 1 / G P_{1}+D$
G2: 2.016P1
G3= 2.0*((GAM-2.0)/GP1 +D)
CON1=SQRT(1.0+2.0\#RCURV)
CON2=1, OHRCURV
EPSIL=1.D
IF(EFLAG,EQ.3,) EPSILICON1/CON2
IF(EFLAG,EQ,4,)EFSIL=1,0/SQRT(CON2)
ETAW=3,5 ALOGe(CON2+CON1)/(CON2-CON1))/EPSII.
LE=LA(2)
$B(L E+1)=1.0$
$B(1)=1.0$

100590
100151 300152 j00153 j0018委 30015 300156 300157 300158 300139 300160 300161 000162 000163 300164 000165 000166 000167 00018% 000169 000170 000171 000172 000173 000174 000175 000176 000177 000178 000179 000180 000181 000182 000183 000184 000185 000186 000187 000188 000189 000190 000191 000192 000193 000194 000195 000196 000197 000198 000199 000200 000201 000202 00020 \% 000204 000205 000208 000207 00020 8 000209
$\operatorname{SQRT2GSGRT}(2,0)$
IF(EFLAG EQ, 2.0) B(1)=SQRT2
$\mathrm{N}, 0$
KIII
K2:LE+1
WRITE(6,900)N:B(K1):B(K2)
G
DO 100 I=1,NSTOR
$\mathrm{KI}: I+1$
$K 2=L E+1+1$
Ne!

SUM=0.0
$\mathrm{SM} 1=\mathrm{N}-1$
DO $20 \mathrm{j}=1 . \mathrm{V}$
Maj=1

CONTINUE
$B(K 2)=1.0 / F A C(2 * N)$-SUM
BRANCH AND CALC SMALL A S
IF(EFLAG GT.1.) GO TO 50
$B(K 1)=1,0 /(1,0+2,0 * F L O A T(N))$
WRITE(6,970)N,B(K1):B(K2)
GOTO 100
$50 \quad$ Sumiza.0
XNEN
B(K1) $\quad 2.0$ *N*SQRT2/(2.0*XN +1.0)
DO $70 \mathrm{~J}=1 \mathrm{~N}$
ALPHA=J-1
XAALPHA
PROD=1.0
NMA = N-ALPHA
$0060 \quad K=1$,NMA
XJこK-1
PRONaPROD ($x \Delta-(x J-0,5)$)
CONTINUE
$S U M=S U M+S Q R T 2 * 2, O * * A L P H A *(-, 5) * *(N-A L P H A) /((2, O * A L P H A * 1,0) *$
1 FAC(N-ALPHA))*PRDD
70 CONTINUE
$B(K 1)=B\left(K_{1}\right)+S U M$
IF (EFLAG ,GT, 2.0) B(K1) = 0.0
WRITE(6,900)N, B(K1),B(K2)
100 CONTINUE
LB: LA(3)
B0 $61,0 / B(1)$
$B(L B+1)=80$
C
DO 200 Iz1.NSTOR
N. 1

SUM $=0.0$
$00180 \mathrm{JE1.N}$
Mad-1
$K_{1}=N-M+1$
$K 2=L B+M+1$
SUM SUM * B(K1) \#B(K2)
180 GONTINUE

000210
000211
000212
000213
000214 000215
000216 000217 000218 000219 000220 000221 000222 000223 000224 000225 000226 000227 000228 000228 000230 000231 000232 000233 000234 000235 000236 000237 000238 000239 000240 000241 000242 000243 000244 000245 000246 000247 000248 000249 000250 0,00251 000252 000253 000254 000255 000256 000257 00025 d 000259 000260 000261 000262 000263 000264 000265 000266 000267 000268 000269 000270

```
    B(K2+1)=mBO&SUM
    W?1TE(6:910)N,8(K2+1)
    200 CONTINUE
        LCA=LA(4)
C
C
            CALC A(O,N) THRU A(2,N)
        NPMAX = PMAX+1
        00 250 J=1,NPMAX
        NC=\-1
        KO= NC*NPMAX +LCA+1
        B(KO)=1.0
        IF( EFLAG.GT. 2,0) B(KO)=0,0
        K1= NC*NPMAX+ LCA+2
        S(K1)= B(J)
        K2=NC:NFMAX +LCA+3
        N:NC
        SUM=0.0
        NP1=N+1
        00240 K=1,NP1
        M=K-1
        SUM=SUM +SA1(V-M)*SA1(M)
    240 CONTINUE
        B(K2)= SUM
        NEITE(6,920) NC,B(KO),B(K1),日(K2)
    920 FORMAT(10X,2HN=,I4, 9H A(O,N)=,G17,E,9H A(1,N)E,G17,5,8H A(2,N)
    1 1H=,G17,5)
    250 CONTINUE
C
C
                                    CALC A(3,N) THRU: A(N,N)
        00 400 N=3.PMAX
        DO 360 J=1, NP:MAX
        SUN=0.0
        LN=J-1
        00 35U K=1, J
        I#K-1
        SUN:SINN+SA1(LN-I)*A2(N-1,1)
    350 CONTINUE
        1BA= LN#NFMAX + N+1 +LCA
        B(IBA)=SUM
        WRITE(6,930) N.LN,SUM
        CONTIUUE
    400 CONTINUE
    930 FOFMAT(10X, 2HA(,12,1H,12,2H)=,G17,5)
        00 500 I=1, NPMAX
        |P=|-1
        00 450 J=1, NPMAX
        ME.J-1
        IF((IP-M).LT, 0) 60 TO 50C
C CALCFOINTERS
    IRI= M*NPMAX +IP +1 + LA(5)
    1B2= M*NPMAX +!P * 1 + LA(6)
    1P3= M*NPMAX +IP +1 + LA(7)
    1B4= !&NPMAX +IP +1 + LA(R)
    \B5= M#NPMAX +IP +1 + LA(O)
C Bi
    IF( M ,EQ. O) GO TO 4?0
    B(|B1)=AD(2MM-1,|P-M)/FAC(2MMM1)
C B2
    420 B(IB2)= A2(2*N,IP-M)/FAC(2*M)
```

	0271
00	0272
00	0273
00	0274
00	0275
00	0276
	0277
	0278
00	0279
00	0280
00	0281
00	0282
00	0283
	0284
0	0285
00	0286
00	0287
00	0288
00	0289
00	0290
00	0291
00	0292
	0293
00	0294
00	0295
00	0296
00	0297
00	0298
00	0299
00	0300
	0301
0	0302
00	0303
00	0304
00	0305
00	0306
00	0307
00	0308
00	0309
00	0310
	0311
	0312
	0313
00	0314
00	0315
00	0316
00	0317
	0318
	0319
00	0320
	0321

```
C. B3
    DELIDELTA(IP=4.-M)
        B(183)=0.0
        IF(DEL,NE, O,O) B(IA3)= A2(IPm(M,M)
            B4
        DEL=DELTA({P-3)
        B(IB4)=0.0
        IF(DEL .NE: O.O)B(IB4)=DELNA2(IP-M,M)/FAC(IP-M)
            B5
        B(1B5)=SE1(9)*A2(2*M-1,IP-M)
        CONTINUE
        CONTINUE
            GALCC & ST ORDFR SULN
        SQRTAL=SGRT((1.0+D)/G2)
        IF(EFLAG.FG.2.0)GO TO 550
        CON=1.0
        &F(EFLAG.3T,2) CONmETAW##?
        A100=-CON/ठ,D
        A101=.25
        A110.1,0/SQRTHL/SQRT2
        B110:0,0
        BMD1=SQRTAL/SMRT2/8.0
        B100=-8101*CO:
        60 TO 600
    550 A100=-.25
        4101:.5
        A110:1.0/SQRTAL
        B101=0.25*5QRTAL
        B1]0=-B101
        B110=1,0
            PUT IY FIRST ORDER SOLIN
        IP=LOK(1,0,0,27)
        B(!P)=A100
        IP=LOK(1,0.1.27)
        B(IP)=A10:
        1P=LOK(1,1,0,27)
        B(1P)=A110
        1P%LOK(1,0,0,28)
        B(JP)=B100
        IP=LOK(1,0,1,28)
        B(IP)=B101
        IP=LOK(1,1,0,28)
        B(|P)=B110
        RETURN
    910 FORMAT(1m0,20x,*B(* (2:*)=W17.5)
    900 FORMAT(10X.###15,* A(N)=#617.5,#E(N)=#G17.5)
        END
```

IFUNCTION FAC(M)

FAC RETUFNS WITH M FACTORIAL

 USES STERLINGS APPROX AFTER I FACTORIAL```
DIMENSION F(15)
```

DATA $F / 1,1$, $2,2,6,24,120,720,9040,40320,1362880,3628800,1$
1 39916800:14790016:0E中2,62270208:0E $+2: 871782912,0 E+2 /$
\&F( M.LT. 0)GO TO 800
\&F ( M.GT.14)60 90500
FACmF(M+1)
500 Nam
RETURN
$X N \neq N$

RETURN
800 PRINT 900.M
$F A C=1.0$
900 FORMAT ( $1 \mathrm{H} 0,5 \mathrm{X}, 110(1 \mathrm{H} / \mathrm{F} / 30 \mathrm{X}, 34 \mathrm{HERROR}$ MESSAGE FROM FACTORIAL FUNCT: 1 10HION. FAC 130 X . L2HARGUMENT WAS,110.5X.16HFAC WAS SET TO 1/
26x.110(1H*))
RETURN
END
(FUNCTION SA1(INDX)
C SAI= SMALL A W!TH 1 ARGUMENT
COMMON LA(100), B(1)
$1 P=I N D X+1$
SA1= $B(I P)$
RETURN
END
FUNCTION SEI(INDX)
SE1= SMALL E WITH 1 ARGUMENT
COMMON Li (100):B(1)
IPE LA(2) +IMOX +1
SE1: $R(1 P)$
RETURN
END

000380 000361 000362 000383 000364 000365 000366 000367 000368 000369 000370 000371 000372 000373 000374 000375 000376 000397 000378 000379 000380 000381 000382

000383 000384 000385 000386 000387 000388 000389 000390 000391 000392 000393 000394 000395 000396 000397 000398 000399 000400 000401 000402 000403 000404

```
 IFUNCIION A2(N.J)
```

    IFUNCIION A2(N.J)
    C AL=CAP A WITH 2 ARGIIMENTS
C AL=CAP A WITH 2 ARGIIMENTS
COMMON LA(100):B(1)
COMMON LA(100):B(1)
COMMON/POINTS/NPIMAX
COMMON/POINTS/NPIMAX
IF( J,LT. O) GO TO 800
IF( J,LT. O) GO TO 800
IF(N,EG,-1)G0 TO 300
IF(N,EG,-1)G0 TO 300
IF( N.LT, O) GO TO 800
IF( N.LT, O) GO TO 800
IP= J*NPMAX+N+1 +LA(4)
IP= J*NPMAX+N+1 +LA(4)
A2= B(IP)
A2= B(IP)
RETURN
RETURN
300 A2% SEI(N)
300 A2% SEI(N)
RETURN
RETURN
cONT INUE
cONT INUE
C FORCE TRACE BACK
C FORCE TRACE BACK
PRINT 900:1.2
PRINT 900:1.2
900 FORMAT(1HO,21HFROM A2 - N AND J ARE,2:10)
900 FORMAT(1HO,21HFROM A2 - N AND J ARE,2:10)
Z=-10.0
Z=-10.0
Qa SGRT(Z)
Qa SGRT(Z)
CALL EXIT
CALL EXIT
RETURN
RETURN
END

```
 END
```

    IFUNCTION LOK(I,J,K,L)
    COMMON LA(100)
    $C$
$C$
$C$
C
C
IP=NPMAX*(NPMAX*K+J) +I+1+LA(L)
$C$
$c$
$c$
c
ERROR CHECK
IF (IP.LE,LA(L) OR, IP,GT.LA(L+1))G0 T0 800
LOK=I?
RETURN
800 PRINT 900:IPd.K:L
C FORCE TRACE BACK
$Z=-10.0$
GaSQRT(Z)
CALL EXIT
RETURN
900 FORMAT (1H0.5X:25HFROM LOK I: J.K ANC L ARE: 4I10)
END

000405
000406 000407 000408 000409 000410 000411 000412 000413 000414 000415 000416 000417 000418 000419 000420 000421 000422 000423 000424 000425 000426 000427 000428 000429 000430 000431 000432 000433 000434 000435 000436 000437 000438 000439 000440 000441 000442 000443 000444 000445 000446 000447 000448 000449 000450 000451 000452 000453 000454 000455 000456 000457 000458 000458 000460 000461 000462 000463 000464 000465

Isugroutine debug
NAMELIST/IDBUG/B1A00,B1A11,B1A21,E1A22,B2A10,82A00,B2A11,
1 B3A21, B3a11,B3A10,83A20
2 , B4A0n, B4A11, B4A10, B5A00.B5A10.P5A11
$3 . A 01$
4 , F1A1100,F1A1101,F1A1102,F1A1110,F1A1111,F1A1120
5 .S00, S10.,511,S000,5100, S101,5110
6 . 4100,4101:4110,8100,B101,8110
7 .D1A100,D1A200:D1A101,D1A201,01A202,01A110.D1A210
8,024100, D2A101,02A110,03A100,03A101, D3A110.
904A10., D4A101, D4A110,06A100.D6A101, 06A110.
*E3A100, E5A100, E5A101, ESA110, E5A111,
1EP1A100, EP1A101,EP1A110,EP1A000, EP1A111, E2A100, E2A101,E2A110,
2E2A111,E2PA200,E2PA201, E2PA202,E2PA210,E2PA220,E5PA200,E5PA201,
3E54ア02.ESPA210,E5P4211,E5PA220,E2PA211
4 , C1A100, C2A100,C2A000,C2A110.C34000.C4A101,C2A101
c
$B 1 A 11=B 1 A 2(1,1)$
$B 1 A 21=B 1 A 2(2.1)$
$B 1 A 22=B 1 \Delta 2(2,2)$
c
B2A00=B2A2(0,0)
B2A10=B2A2(1.0)
B2.A11=B2A2(1.1)
C
$B 3 A 10=B 3 A 2(1,0)$
B3A11=3342(1,1)
U3A20=B3A2(2,0)
D3A21=B3A2(2.1)
c
c
$B 4 A D O=B 4 A 2(0,0)$
b $4411=B 4 A 2(1,1)$
$64 A 10=6442(1,0)$
c
$B 5 A 00=B 5 A 2(0,0)$
$85 A 10=85 A 2(1,0)$
$B 5 A 11=B 5 A 2(1,1)$
c
$F_{1} A_{110}=F_{1} A 4(1,1,0,0)$
$F_{1} A_{1101}=F_{1} A 4(1,1,0,1)$
$F_{1} 11102=F_{1} A^{4}(1,1,0,2)$
FiA1110=F1AA $(1,1,1,0)$
FiA1111=F1.44(1,1,1,1)
$F_{1} A 1120=F 1 A 4(1,1,2,0)$
$c$
S00 $=52(0.0)$
$510=52(1,0)$
$51.1=52(1,1)$
c
$5000=53(0,0.0)$
$5100=53(1,0.0)$
S101=53(1,0.1)
$5110=53(1,1,0)$
c
$\mathrm{BI} 00=\operatorname{sen} 3(1,0,0)$
B101:583(1.0.1)
$B 110=6 B 3(1,1,0)$
c
A1005543(1,0.0)
$\Delta 101=5 A 3(1,0,1)$

000466 000467 000468 000489 000470 000471 000472 000473 000474 000475 000476 000497 000478 000479 000480 000481 000482 000483 000484 000485 000486 000487 000488 000489 000490 000491 000492 000493 000494 000495 000496 000497 000498 000499 000500 000501 000502 000503 000504 000505 000506 000507 000506 000509 000510 000511 000512 000513 000514 000515 000516 000517 000518 000519 000520 000521 000522 000523 000524 000525
$A 110=5 A 3(1,1,0)$
$A 01=A 2(0,1)$
C
$01 A 100=D 1 A 3(1,0,0)$
D1A101=01.A3(1,0.1)

E5PA202=EPSA3(2.0.2)
ESPA200=EOSA3(2,0:0)
ESPA2)1-EPSA3(2,0,1)
E5PA210 $=E P 5 A 3(2,1 ; 0)$
ESPA211=EPSA3(2,1,1)
ESPA22U=EP5A3(2,2:0)
$02 A 100=D 2 A 3(1,0.0)$
$024101=0243(1,0,1)$
D2A110=D2A3(1,1,0)
D3A100=03A3(1.0.0)
$034101=03 A 3(1,0.1)$
D3A110=D3A3(1,1:0)
$D 4 A 100=0443(1,0,0)$
D4A1 $11=0443(1,0,1)$
$D 4 A 110=04 A 3(1,1,0)$
D6A100=D6A3(1,0.0)
$D 6 A 101=06 A 3(1,0,1)$
$D 6 A_{110}=D_{6} 3(1,1,0)$
c
$E 3 A 100=E 3 A 3(1,0,0)$
$E 5 A 100=E 5 A 3(1,0,0)$
$E 5 A 101=E 5 A 3(1,0,1)$
E5A110=E5A3(1,1,0)
$E 5 A_{111}=E 5 A 3(1,1,1)$
C
$E P 1 A 100=E F 1 A 3(1,0,0)$
$E P 1 A 101=E P 1 A 3(1,6,1)$
EP1A110=EF1A3(1:1,0)
$E P 1 A 0 \cap 0=E P 1 A 3(0,0,0)$
EP1A111=EP1A3(1,1,1)
$c$
E2A100=E2A3(1,0,0)
E2A101=E2A3(1,011)
$E 2 A 110=E 2 A 3(1,1,0)$
E2A111=E2A3(1,1,1)
C
$E 2 F A 2 O D=E F 2 A 3(2,0,0)$
E2PA201=EP2A3(2:0,1)
E2PA202=EP2A3(2,0,2)
E2PA21.0=EP2A3(2,1,0)
E2PA22O=EF2A3(2:2,0)
E2FA211-EP2A3(2:1:1)
$c$
C1A100 $=C 1 A 3(1,0,0)$
C2A100= C2A3(1,0,0)
C2ADONE C2A3 $(0,0,0)$
C2A101=C2A3(1,0.1)
C2A11U= C2AB(1,1,0)
C3ADOO= C3A3(0,0.0)
C4A101= $44 A^{3}(1,0,1)$ WRITE(G:IDBUG)
RETURN
END

000526 000527 000528 000529 000530 000531 000532 000533 000534 000535 000536 000537 000538 000538 000540 000541 000542 000543 000544 000545 000546 000547 000548 000549 000550 000551 000552 000553 000554 000555 000556 000557 000558 000559 000560 000561 000562 000563 000564 000565 000566 000567 000568 000569 000570 000571 000572 000573 000574 000575 000576 000597

```
 [F|NCTION R1A2(l:J)
 COimO! LA}(100), B(1
 CO|OI/POINTS/NPIIAX
 DATA VNCALC/SHNCALG/
 1B-LA(5)
 ASSIGM10 TO NPATH
 GOTO 600
 10 B&A2= TERM
 RETUR::
C
 ENTF.Y B2A?
 IR=LA(6)
 G5SIG: 20 TO SPATM
 60 10 600
 20 B2A2= TEPM
 RETURN
C
 ENTFY B3A2
 IR= LA(7)
 ASSIG% 30 TO NPATH
 GO TU 600
 30 B3A2=TEPM
 RETUFN
C
 ENTEYY B4A?
 IA=LA(B)
 ASSIGH 40 TO MPATH
 60 TC }60
 40 B4Aर= TER,
 RETUFN
C
 ENTEY H5AZ
 IG=LA(\vartheta)
 ASSIGV 50 TO NPATH
 60 10 600
 50 3542= TERM
 RETUNO
 GOO IF(I.LT.O.OR. N.LT. O) GO TO }80
 IP= NHMFMAX +1 +1 +18
 TERH=W(IF)
 IF(TERM EQ, XNGALCJGO TO 8OO
 GO TO NPATH
 PRJHT 900:I:N
C
C
 Z=10.
 SmORT(Z)
 CALL FXIT
90O FORMAT(1HO.31HFROM B WITH 2 ARGS, I AND J ARE,Z110)
 RETURM
 ENO
```

000578 000579 000580 000581 000582 000583 000584 000585 000586 000587 000588 000589 000590 000591 000592 000593 000594 000595 000596 000597

000598 000599 000600 000601 000602 000603 000604 000605 000606 000607 000608 000809 000610 000611 000612 000613 000614 000615 000616 000517

LFUNCTION SA3(1, J.K)
C SMALL A WITH 3 ARGUMENTS COMMUN LA(100):B(1)
COMHON/POINTS/NPMAX
DATA XNCALG/5HNCALC/
IF I.LT. O ,OR, N.LT: O OR, K.LT: O)GO TO 800
1P=LOK(1, J,K,27)
SA3= $B(I P)$
IF ( $A A 3$. NE, XNCALC) RETURN
ROC PQIIT 900. I. J.K
C
c
c
$2=-10.0$
QESQRT(Z)
CALL EXIT
RETURN
FORMAT(1HO,21H FROM SA3 l.J.K ARE, 3110 )
END
(FINCTION SBS(I, N.K)
C SMALL B WITH 3 ARGUMENTS
COMMON LA(100), B(1)
COMMON/POLINTS/NPMAX
c
data xncalc/5hncalc/
IFC I.LT. H. OR, J.LT, O.OR. K.LT, O)GO TO 900
IP=LOK(I, J, K,28)
$S B 3=B(I F)$
IF ( SS3 , NE, XNCALC) RETURN
800 PRINT 900. 1, J.K
C
c
c
Z $=-17.0$
(ASQRT(Z)
CALL EXIT
RETURN
900 FORMAT (1H0,21H FROM SE3 I, NK ARE, 3110)
END

IFUNCTION DELTAGNUM)
N.IABS(NUM)

MnN/2
IN=Nm M N
$N D=0$
IF(IN.NE.0)GO TO 10
[ $N=1$ - ( $1 / 2$ ) * 2
NO -1
JF(IN,EQ, O)ND:1
10 DELTA= ND
RETURV
END

000630 000631 000632 000633 000634 000635 000636

000637 000638 000639 000640 000641 000642 000643 000644 000645 000646 000647 000648 000649 000650 000651 000652 000653 000654 000655 000656 000657 000658 000659 000660 000661 000662 000663 000664 000665 000666 000667 000668 000669 000670 000671 000672 000673 000674 000675 000676 000677 000678 000679

```
C SB1=SMALLE B WITH I ARGUMENT
 COMMON LA(100),B(1)
 !P= LA(3) % ! SDX & %.
 SA1= 3(1P)
 RETURN
 EMO
```

```
 IFUNCTION C1AS(P,MAN)
 C CIA3= CAP C 1 WITH 3 ARGS
 INTEGER P
 COMMON/POINTS/NFMAX
 COmMON LA(100):8(1)
 OATA XNCALC/5HNCALC/
 C
 v=1.
 LC=12
 GO TO }70
 10 NSTART= M+N+1
 XMP1=M+1.
 SUM=0,0
 C
 0O50 I=NGTART,P
 SUM= SUM * SB1(P*I)*XMP1*SB3(I,M+1,N)
 50 CONTINUE
 E(IF)=SUM
 100 C.A3mSUM
 - CETURN
 C
 C
 NC=2
 LC=13
 GO TO }70
 110 NSTARTm M+N+1
 NEND=P+1
 SUM=0.0
 TNP1=2*N+1
 C
 QO 150 J=NSTART NEND
 I=\-1
 IF(I.LT, 1)60 TO 250
 SUM= SUM + SB1(P=1)*TNP1*SB3(I,M,N)
 150 CONTINUE
 G(IP)=SUM
 200 C2A3=SUM
 RETURN
C
 ENTRY CSA3
 SC=3
 LC=14
```

000680 000681 000682 000683 000684 000685 000686 000687 000688 000689 000690 000691 000692 000693 000694 000695 000696 000697 000698 00069 000700 000701 000702 000703 000704 300705 000706 300707 300708 300709 300710 300711 300712 300713 300714 300715 J00715 300717 300718 000719 000720 000721 000722 000723

```
 G0 T0 700
 210 KMP1:M+1
 NSTART=M+N+1
 NPPq: Pक1
 SUMm0.0
C
 DO 250 I=NSTART:NPPI
```



```
 250 CONTINUE
 B(1P)=SUM
 300 C343=SUM
 RETURN
C
 ENTRY C4A3
 NC=4
 LC:15
 GO TO 70口
 310 NSTART=M+N+1
 INEVD=P+1
 SUM=0.0
 TN=2*N
C
 00 350 J=NSTART,NEND
 \:J-1
 SUM=SUM + TNSSE1(Pol)*SA3(I,M&N)
 350 CONTINUE
 B(IP)=SUM
 400 C*AZ= SUM
 NETURN
 700 IF(P.LT.O.OR,M.LT: O,OR:N.LT: O) GOTO 800
 IP=LOK(P,M,N,LC)
 SUM= B(IP)
 IF(SUM,EQ, XNGALC)GO TO(10,110,210,310),NC
 G0 TO(100,200,300,400),NC
 PR!NT 90J:NC:P,M,N
 FORCE TRACE BACK
 z=-12.0
 3# SOPT(Z)
 CALL EXIT
 RETURN
 FORMAT(1HO,10X, 6HFROM C,IZ. 20HA3 - D,M, AND N ARE ,3110)
 END
```

000724 000725 000726 000727 000723 000729 000730 000731 000732 000733 000734 000735 000736 000737 000738 000739 000740 000741 000742 000743 000744 000745 000746 000747 000748 000749 000750 000751 000752 000753 000754 000755 000756 000757 000758 000759 000760 000761 000762

LFINCTION S2（RAQ）
INTEGER R： 0
COMMDN LA（100）：B（1）
COAMON／POINTS／NPMAX
DATA XNCAL／5ANGALC／
CAP S WITH 2 ARGS
IF（ R．LT．O ，OR．Q．LT．0）GO TO 800
IP＝JnNPMAX $+R$＋1＋LA（11）
S2：B（IP）
IF（ 32 ．NE，XNGAL）RETURN
$c$
$40=8+1$
$2 R=R+1$
c
Зиリニ3．0
DO $100 \quad 1=1, \mathrm{Na}$
del－1
DO $¥ D^{\prime} K=1, N R$
J $=k-1$
JF（J．LT．N）GO TO 90
IF（ $R+N-J-G \quad$ LT： $0, j G 0$ T0 90
SUM＝SUM＋B5A2（R－J，Q－N）\＃B2A2（J，N）
on covtinue
$B(1 P)=3(4)$
100 contivue
$\mathrm{S} 2=5 \mathrm{M}$
RETJRV
PRINT 900．R：Q
force trace back
$2=-10.0$
Q．Sア2T（2）
CALL EXIT
RETURN
900 FORMAT（1HR， $10 \mathrm{X}, 22 \mathrm{H}$ FROM 52 －R AND Q ARE，2110）
END

LFINCTION $S 3(R, S, M)$
INTEGER A：
COMMON LA（100）：B（1）
COMMON／POINTS／NPMAX
DATA XNCALC／5HNCALG！
$c$
$e$
0
6
IFS R．LT．O ．OR，SILT．O ．OR：MILT，01G0 TO 800 IP＝LOK（R，S，M，10）
33：B（IP）
IF（ $\$ 3$ ．NE，XNCALC）RETURN
c
NEND：R＝Sm＊ 1
SUM＝0．0
DO 100 1：1，NEND

000779 000780 000781 000782 000783 000784 000795 000786 000787 000788 000799 000790 000791 000792 000793 000794

000795 000796 000797 000798 000799 000800 000801 000802 000803 000804 000805 000806 000807 000808 000809 000810 000811 000812 000813 000814 000815 000816 000817 000818 000818 000620 000821 000822 000823 000824 000825 000826 000827 000828 000829 000830 000831 000832 000833 000834 000835 000836 000837 000838

N: 101
SUM=SUM +BSA2(P-Smiv.M) B4A2(N+S,N)
100 CONTINUE

53:5um
RETIJRN
PRINT 970, , R, G.4
Force trace back
Z=-10.3
Qmsert ( 2 )
CALL EXIT
RETリア'
FORIMAT(1HO,10X,36HFROM S UITH 3 ARGS - RIS, AND M ARE ,3110)
END
$c$
data Xncalc/shivalc/
$\mathrm{ND}=1$
LD=16
GO TO 700
NEI $=T-1$
NE $2=T-2$
$O P D=1.0+D$
Sumit=0.0
$514 \mathrm{M}=0.0$
JF(T-2)80,20,20
DO $30 \mathrm{~J}=1$, NE1
SUM1 = SUM1 + F1AA(T-J, J,U,V)
30 continue
IF (T.LT, 3)G0 TO 80
IF ( V.LT, 1)G0 TO 30
IFE T-U ,LT. 1 IGO TO 80
DO $40 \mathrm{~J}=1, \mathrm{NE} 2$
SUM2: SUM2 +F2A4(T-1.-J.J. (U,V)
continue
C
BO $B(1 P)=-O P D(2 W S A(T, U, V)+S U M 1)-G 1 * S U M 2$
100 D1A3= $B(1 P)$
RETIIRN
c
02
ENTRY D2A3
ND:?
L0:17
6010700
$110 \mathrm{NE}=\mathrm{T}-2$
NE2=T-1
SUM1:0.0
sum2.0.0
1FI T.LT, 3160 TO 150
IF ( V.LTT, 1)GO TO 150
1F(T-U MT. 1 ) GO TO 150
c
DO 130 J=1:NE1

000838 000840 000841 000342 000843 000844 000845 000846 000847 000848 000849 000850 000851 000852 000853 000854 000855 000856 000857 000858 000859 000880 000861 000862 000863 000864 000865 000886 000867 000868 000869 000870 000871 000872 000873 000874 000875 000276 000877 000878 000898 000880 000882 000882 000883 000884 000885 000886 000887 000888 000889 000890 000891 000892 000893 000894 000895 000896 000897 000898

```
 SUHI= SLIMI + F2A4(T-1-N, dBU,V)
 130 CONTINUE
 150 lF(T.LT. 2)GO T0 100
 C
 DO 160 J=1,NE?
 SUFR= SUM2 +FIA4(T-J,J,U,V)
 COMTI JUF
 C
```



```
 200 02\triangle3= E(IF)
 RETLRN
 C EM
 ENTFY 03A3
 C
 voa3
 L0:18
 6070700
 210 NENR=T-1
 Sliv=0.0
 IF(T.LT. 2) 60 TO 250
 C
 OO <4,j J=1,NEND
 SlMESUPM + F3A4(T-J,J,U.V)
 240 CCNTIIUE
 250 E(JF)e SE3(T,U,V) +SUM
 300 D3A3=B(IP)
 RETUP:
 C O4
 ENTPY D4A3
 C
 NO=4
 L0=19
 G0 T0 700
 310 SUM1=0.0
 SUM2=0.0
 IF(T,LT, 2)G0 TO 370
 NENO=T-1
 DO 320 J=1, NENC
 SUM1= SUM1 + F1A4(T-J,J:U.V)
 320 CONTINUE
 IF(T.LT.B)G0 TO 370
 IF(V,LT,1)GOTO 370
 IF(T-U ,LT. 1)GO TO 370
 WEND = T-2
 C
 DO 340 J:1,NEND
 SMM2= SUM2 + F2A4(T-\m1:J:U.V)
 340 contINUE
C
379 B(IP)=-G3*SA3(T,U,V)-3,0*G1*SUM1 -Gt*SUM2
400 04A3mR(IP)
 AETURN
C DS
 ENTRY DSA3
c
 4D)=5
 Ln:20
 OOTO 700
 410 SU"1: 0.0
 SuN2=0.0
```

000899
000900 000901 000902 000903 000904 000905 000906 000907 000908 000909 000910 000911 000912 000913 000914 000915 000916 000917 000918 000919 000920 000921 000922 000923 000924 000925 000926 000927 000928 000929 000930 000931 000932 000933 000934 000935 000936 000937 000938 000939 000940 000941 000942 000943 000944 000945 000946 000947 000948 000949 000950 000951 000952 000953 00095 000955 000956 000957 000958
(5(T.LT.2) 50 T0 480
NENDT-1
c
00420 J. 1. NEND
SUM1=SUM1 $\$$ FiA4 (TmdediU,V)
420 CONTINUE
c
IF(T,LT. 3 ) 60 TO 480
IF V.LT.1)60 TO 480
IF(T-U ,LT. I ) GO TO 480
NEND=T-2
c
$00440 \mathrm{~J}=1$. NE D
SUA2=SUM2 + F2A4(T-J-1, J,U,V)
440 CONTINUE
$480 \quad B(1 P)=-G 1 * S U M 1-G 5$ SUM2
500 D5A3= $B(1 P)$
RETUKN
c
ENTRY D6\&3
ND=6
LD:21
G0 TO 700
510 Sum1=0.0
$\operatorname{sum} 2=10.0$
IF ( T .LT, 2) G0 TO 580
NEND $=T-1$
c
$00520 J=1$ NEND
SlM1: SUM1 + F1AA(T-J, J.U.V)
520 cont inue
1F(T.LT, 3) GO TO 580
IF(V.LT. 1) 60 TO 580
IF ( T-U .LT, 1 ) 60 TO 580
AEND $=T-2$
c
$00540 \mathrm{~J}=1$, NEND
SUM2 $=$ SUM2 +F2A4(T-J-1.J.U.V)
coivtinue.

600 D6A3=B(IP)
RETURM
70 O IFC T.LT, O ,OR, U.LT, O ,OR, V.LT: 0)G0 TO 800
c
$c$
$C$
$C$
1P=LOK(T,U,V,LD)

G0 TO(100,200,300,400,500,600), NO
PRINT 900,ND,T,U,Y
FORCE TRACE BACK
Z=10.0
Qissirt (2)
CALL EXIT
RETURN
900 FORMAT(1HO.10X: 7H FROM D.12: 3OHWITH 3 ARGS * T:U. AND V ARE 13110 )
END

000939 000860 000981 000882 000983 00098 4 000965 000966 000967 000968 000989 000970 000971 000972 000973 000974 000975 000976 000977 000978 000979 000980 000981 000982 000983 000984 000985 000986 000987 000988 000989 000990 000991 000992 000993 000994 000995 000996 000997 000998 000999 001000 001001 001002 $00100 \%$ 002004 001005 001006 001007 001008 001009 001010 001011 001012 00103 001014 001015 001016 001017 001018

C F S WITH A ARGUMENTS COMNOH LA(1OD): B(1)
dNTEGER G.P
C
WF: 1
GOTO 600
$10 \quad 10=0+1$
$5 U M=0.0$
N $P=P \neq 1$
C
00100 Im1, No
$L_{m} \operatorname{mon}^{-1}$
$c$
$0090 \quad \mathrm{~J}=18 \mathrm{NP}$
6NE J-1
IF (N-LM-LN) $90,20,20$
20
30
90 CONTIJUF
100 CONTINUE
F1A4:SUM
GETUFA
$c$
ElITPY F2AA
$\mathrm{NF}=2$
$60 T 0600$
$110 \quad N Q=Q+1$
$\mathrm{HP}=\mathrm{P}$
SUM $=0,0$
C
$002001=1, \mathrm{NO}$
Lim I-1
10 $190 \mathrm{~J}=1, \mathrm{NP}$
$L N=J-1$
1F(N-LM-LU)190.120.120

130 SUA=SUM + Sb3(N:LN:LN)*SB3(M, Q-LM,F-LN-1)
190 CONTINUE
200 CONTINUE
F244=5UM
RETUKN
C
ENTRYF3a4
$N F=3$
60 TO 000
210 M2 $0+1$
$N P=P+1$
SUM=0.0
c
00300 I 1.10
bM:I-1
DO $290 \mathrm{~J}=1, N \mathrm{~N}$
LN $N=1$.
IF (N-LM=LN $290,220.220$
IF $(M-Q+L M=P+L N) 2910.230 .230$
SUM: SUM $+5 A 3(N, L M, L N) * S B 3(M, Q-L M, P-L N)$
CONT INUE
GOMT INUE
F3A4= SUM

001019 009020 001021 001022 001023 001024 001023 004026 001027 001028 001029 001030 001031 001032

001033
001034 001035 001036 001037 001038 001039 001040 001041 001042 001043 001044 001045 001046 001047 001048 001049 001050 001051 001052 001053 001054 001055 001056 001057 001058 001059 002080 009062 001062 001083 001064 001065 001066 001067 004068 001086 001070 001071 001072 009093 004074 001075 001096 001097 001098

RETURN
600 IFS N.LTT, O .OR, MILT.O .OR, Q.LTT.O ,OR, P.LTT, OIGO TO 800
1F(NF-2)10.110.210
800 PRINT 903.NF:NAMOQP
FORCE TRACE BACK
2x=10.
QmSART(Z)
GALL EXIT
RETURN
OOO FORMAT(1HO,10X, GHFRON F, $12,30 \mathrm{H}$ WITH ARGS NBM, G AND F ARE, 14 (10)
END

```
 LFUNCTION EIAB(G,K,L)
C
C CAFEI WITH 3 ARGS
 COMMON LA(100):B(1)
 COMMON/POINTS/NPMAX
 INTEGER Q,R
 INTEGER D,C
c
c
 NE:1
 LE=22
 GO TO 700
 10 SUM1:0.0
 Sum2=0.0
 NE1:Q-L+1
c
 DO 50 |=1,NE1
 M= !-1
 IF(K=M ,6T, O)GO TO 50
 NE2=Q M M- Lo+1
C
 00 40 J.1,NE2
 Rmy-1
 IF(GmR=M .LT, 0)G0 T0 40
 1F(M+R-K .LT, O)GO TO 40
 SUM1: SUM1 + G3A3(O-R:M*L)*BAAE(R&M*R*K)
 40 CONTINUE
 so cONTINUE
G
 {f(QmK-L,LT, O)G0 T0 80
 NE1: Q K K+1
 NE2: L巾1
 0070151,NE1
 R是-1
 DO60 J.1.NES
 M* N-1
 1F(Q-R-K-M .LT, 0)G0 T0 60
 IF(R-L*M,LT, 0) GO TO 60
 SUM2# SUM2 + C3A3(Q*R:K:M)*B2A2(R,LmM)
 60 CONTINUE
 70 CONTJNUE
 80 B(IP)= SUM1 tSUM2
 100 E\A3= B(IP)
 RETURN
```

001079
001080 00108. 001082 001083 001084 001085 001086 001087 001088 001089 001090 001091 001092 004093 001094 001095 001096 001097 001098 001099 001100 001.101 001102 001103 001104 001105 001106 001107 001108 001108 001110 001111 001112 001113 001114 001115 001116 001117 001118 001119 001120 001121 001122 001123 001124 001125 001126 001127 001128 001129 001130 001131 001132 001133 001134 001135 001136 001137 001138
$c$
$c$
$\stackrel{\square}{c}$ E?
NE $m$
$\mathrm{LE}=23$
60 TO 700
110 SHM1. 1.0
Sunc=1,0
ivE $1=W-L+1$
$c$
00150 I $=1$, NE1
I $=1-1$
IF (K=A , LT, 0) GO TO 155
C
$V E 2=Q-M-L+1$
$00140 \mathrm{~J}=1, \mathrm{NE}$
解 $\downarrow$ - 1
IF ( $4-R-1 \cdot \operatorname{LT}, 0)$ GO TO 140
IF ( $Q$-F-M, LT, O) GOTO 140
IF ( $\mathrm{F}+\mathrm{R}-\mathrm{K}$.LT. O) GO TO 140
SUM1 $=$ SUM1 $+C 2 A 3(Q-R, M, L) * B 4 A C(R, N+R-K)$
140 CONTINUE
150 OONTI VUE
155 IF (Q-K-L ,LT, O) 60 TO 130
NE $1=6-k+1$
C
$001701=1 . \mathrm{NE}$
$\mathrm{B}=1-1$
IF (Q-R-1.LT, O) GO TO 180
$c$
, $E 2=L+1$
00160 Ja 1, 价 2
$t=J-1$
IF ( $\mathrm{G}-\mathrm{R}-\mathrm{K}-\mathrm{M}, \mathrm{LT}, 0) 6010160$
IF $(R-L+M, L T, 0)$ CO TO 100
SUA2 = S JM $2+C 2 A 3(Q-R, K, M)=B 2 A 2(R A L-N)$
160 CONTINUE
170 CNTTINUE
$180 \quad B(I P)=S U M 1+S U M 2$
200 E?A3 2 (19)
RETURH
$c$
c EltTRY E3A3 CAP E3
NE: $=3$
LEE 24
BO TO 700
$210 \quad 5111=0.0$
$31142=0.0$
NE1=G-L
$c$
$00250 \quad I=1$ NE 1
$4 \geq l-1$
IF $K=11$, LT, D)GO TO 255
NE2= 9 Mm
00240 J1.NE2
$\mathfrak{i}=J=1$
IF $(U-R-Y-1 \quad L T, 0) G 0$ TO 240
IF (M+R-K , LT, O) GO TO 240

001339 001140 001141 001142 001143 001144 001145 001146 001247 001148 001149 001150 001151 001152 001153 001154 001155 001156 001157 001158 001159 001160 001162 001162 001163 001164 001165 001166 001167 001168 001169 001170 001171 001172 001173 001174 001175 001176 001177 001178 001179 001180 001181 001112 001483 001184 001185 001186 001187 001188 001189 001190 001191 001192 001193 001194 001195 001196 001197 001198

240 CONTINUE
250 CONTINUE
255 IFG G-1-KML .LT, 0)G0 TO 280
CHE1: マ - K
DO 270 1:1.ME
R 1-1 $_{1}$
CNE $2=1 .+1$
00 ZOL Jこ1, NEZ
$\mathrm{M}: \mathrm{y}=1$
IF ( $\mathrm{A}-1-\mathrm{R}=\mathrm{K}-\mathrm{M}, \mathrm{LT}, \mathrm{O}$ )G0 TO 200
1FP R-L+M.LT, OJGO TO 260

continue
CONTINUE
B(IP) $=\operatorname{SUM} 1+\operatorname{Sum} 2$
E3A3= B(IF)
QETUFA
$c$
c
EITRY EAA3
CAP E 4
$\mathrm{NE}=4$
LE: 25
GO TO 700
$310 \quad \operatorname{sum} 1=0.0$
NE1=6-L
$003501=1$, NE
A=1-1
IF $K=4$. LT, 0$) G 0$ TO 350
CE $2=\mathrm{G}-\mathrm{M}-\mathrm{L}$
e
$00340 \mathrm{~J}=1 \mathrm{NE} 2$
F=1-1
IF (0-Ri-2 LT, 0) 60 TO 340
IF (Q-R-MMI , LT, Ø) GO TC 340
IF(M+R-K.LT, O) GO TO 340

340 continue
350 contlinue
355 E(IP) $=5 U_{M 1}$
400 EAA3: B(IF)
return
ENTRY ESA?
c
CAP E 5
vE=5
$L F=20$
6070700
$410 \quad 51 \mathrm{M}_{1}=1.0$
SuM2=1,0
$51933=0,0$
IF ( G-K-L .LT, O)GO TO 435
NE1=0
NE $2=k+1$
$N E 3=L+1$
DO $430 \quad 1=1$ NE1
R=1-1
00 425 J=1, NE 2
C. $=1$

DO $420 \quad 13=1$ 10E 3
$\mathrm{D}=13-1$

001199
001200 001204 001202 001203 001204 001205 001208 001207 002208 001209 001210 001211 001212 001213 001214 001215 001216 001217 001218 001218 001220 001221 001222 009223 001224 001225 001226 001227 001228 001229 001230 001231 001232 001233 001234 001235 001236 001237 001238 001239 001240 001241 001242 001243 001244 0012.5 001246 001247 001248 001249 001250

IFI GOFI-C-D.LT, O)GOTO 420
IF(R-K+C-L+D:LT, O)GO YO 420

420 CONTINUE
425 CONTINUE
430 continle
435 NE1=6-k+1
NER $=\mathrm{L}+1$
C
DO 450 1=1. ME1
$\mathrm{F}=$ !-1
IFi ( $\mathrm{H}-1 \mathrm{mR}$. LT: 0)60 TO 850
C
10) $440 \mathrm{~J}=1, \mathrm{NE} 2$
$\mathrm{D}=\mathrm{J}=1$
1F(Q-R-K-D .LT. O) 60 TO 440
IF(R-L+D :LT. U)GO TO 440

440 CONTINUE
450 CONTINLE
NE1=GM
NE2=L
IF (L-1 .LT, OJC0 T0 480
c
00470 1:1, NE1
f: $=$ ! -1
IF (G-2-R .LT: O)GO TO 480
c
DO 460 J=1, ME2
$\mathrm{D}=\mathrm{J}-1$
IF ( $Q-1-R-K-D . \operatorname{TH}, 0) G 0 T 0460$
IF ( R+1-L+0.LT, O)GO TO 460

460 cointinue
470 CONTINUE
480 E(JP) $=5$ SM1 +5 MM2 -2.0 SUM3
500 E5A3: A (P)
RETURN
700 IFS Q.LT, O.OR, KILT. O .OR, L. .LT, 0160 TO 800
IP=LOK(Q,K,h,LE)
IF E E (IF) , EQ, XNCALC)GO TO(10,110,210,310,410), NE
60 TO(100.200,300:400.500), NE
800 PRINT 900, NE, GOK,L
c
c
c
FORCE TRACE BACK
2x-10.0
QAESORT(Z)
CALL EXIT
RETURN
900 FORMAT (1HO,10X, 7H FROM E:I2, 15H Q, K, AND L ARE, 3I1N) END

LFUNCTION EPIAB(QoKBh)
$C$ CAPE PR\&ME WITH 3 ARGS
INTEGER ROD:C:O
common La(100): B(1)
COMMOIJPOINTS/NPMAX
data xncalg/5hncalc/
c
NEP=1
$L E P=27$
GO TO 700
10 Sul1=0.0
5um?: 0.0
SlM $3=1.0$
NE1 $=Q-L+1$
DO 30 I=1, NEI
M=1-1
IF (K=N.LT, o) Co TO 30
NEZ $=0-M-L$
D0 $20 \mathrm{R}=1$ : NE2
IFC $\alpha-$ F-MML LT, OIG0 TO 20
IF ( M+R-K .LT: O)CO TO 20
SUM1:SUM1 + C3A3(G-R,M,1)*B4A2(R,N+R-K)
cont inlue
CONTINUE
IF ( Q-K-L ,LT: OJCO TO BG
NE1=0-K
NE2 $=1+1$
DO 50 R=1.NF1
$00401=1$ NE 2
M=1-1
IF (GーR-K-i M LT, 0)G0 TO 40
IF ( F-LCN , LT: 0)GO TO 40

continue
continue
IF(Q-K-L-1 :LT. O) GO TO 80
$\times K P_{1}=K+1$
HSTAKT $=1+K+L$
DO $601=$ NSTART, $O$

60

100 EPIA3 $=B(T P)$
RETURN
C
EMTRY EPZA3
$C$ CAP E PRIME ?
NEP=2
$\angle E P=30$
6070700
$110 \operatorname{sum} 1=0,0$
SuM2:0.0
NE $1=0-L_{0}+1$
$c$
DC 150 I=1. NE:
$M=1-1$
IFKKM. LT. GIGOTO 155
$c$
NE $2=$ Q-MmL
$00140 \mathrm{R}=1 . \mathrm{NE}$ ?
IF ( $(G-R-1$,LT, (1) GO TO 140

IF (MoR-K.LT, D) GO TO 140

140 CONTINUE
150 CONTINUE
155 IF (O-K-L ,LT, 0) GO TO 180
NE1:0.-K

001319
001320
$00 \pm 321$
001322 001323 001324 001325 001326 001327 001328 001329 001330 001331 001332 001333 001334 001335 001336 001337 001338 001339 001340 001341 001342 001343 001344 001345 001346 001347 001348 001349 001350 001351 001352 001353 001354 001355 001356 001357 001358 001359 001360 001361 001362 001363 001364 001365 001366 001367 001368 001369 001370 001371 001372 001373 001374 001375 001376 001377 001378

C
OO 171) R=1. NES
IF (Q-7-1,LT: 0) G0 TO 2 00
C
$\mathrm{NF} 2=\mathrm{z}=1$
00160 J: N. NE?
$M=J-1$
IF (G-R-K-M.LT, O)GOTO 160
IF( R-L+M ,LT, O) GO TO 160
SUM2= SUM2 + C2. 3 (Q=R,K,M) WR242(K:L-M)
160 CONTINUE
170 CONTINUE
$180 \quad B(1 P)=S U 11+5 U 12$
200 EP2A3=B(IP)
RETUHN
C
C CAP EPRIME 5
$N E P=5$
$L E P=31$
GOTO 700
410 SUM $1=0.0$
SUM2=0.0
$\operatorname{sum} 3=0.0$
IF ( O-K-L LT: O)SO TO 435
NE1 m Q-1
NE2 $=K+1$
NE $3=L+1$
DO 430 R=1, NE 1
DO $425 \quad J=1$ NE2
C $m-1$
OO 423 13-1, NE3
0:13-1
IF $(Q-R=C-D, L T: O) G O T O 420$
IF (R-K+C-L+D LLT: O)GOTO 420

420 CONTIVUE
425 CONTINUE
430 CONTINUE
435 NE1 $=0-K$
NE2 $=L+1$
C
DO $450 \mathrm{R}=1$, NE1
IF( Q-1-R.LT, 0)G0 TO 450
C
$0044 J J=1, N E 2$
Das-1
IF (Q-R-K-D ,LT. O)GO TO 440
IF (R=L中D LT, O)G0T0 440
SUM2 $=S U M 2+S 2\left(R_{1} L-D\right) * S B 3(Q-R, K: D)$
440 CONT INUE
450 CONTINUE
NE1=Q-K
NE2:L
IF (L-1 :LT: 0)GOT0.480
C
DO 470 I=1, NE1
Ra!-1
IF $\quad 0-2-R, L T, 0\rangle 60$ TO 480
$c$

001403 001404 001405 001406 001407 001408 001409 001410 001411 001412 001413 001414 001415 001416 001417 001418 001419 001.20 001421 001422 001423 301424 301425 301426 301427 J09428 301429

```
 00 46E J=1,NE?
 D%\-1
 IF{ (4-1-8-K-D :LT, 0)60 T0 460
 IF(Fw1mL+D,LT, U)GO TO 460
```



```
 460 CONTINUE
 470 CONTINUE
 480 B(IP)= SUH1 +SUM2 -2.0.SUM3
 500 EPSA3=B(1P)
 RETUFN
 700 IF(G.LT. O ,OR, K,LT: O,OF, L .LT, O)GO T0 800
 IP=LCK(O,K,L,LEP)
 IF(B(IF) EO, XNCALC) GO TO(10,11%,900,800:41O):NEP
 GO TO(100,200,800,800,500), AEP
 PRINT 900:NEP:Q&K:L
 FORCE TRACE EACK
 2m-10.0
 MOESURT(Z)
 CALL EXIT
 RETUR:N
 900 FOKNAT(1HO.10X, 8HFF:ON E PI2: 15H: FAK, ANU L ARE,3I:10)
 END
```

        LSUBROUTINE CUEFF(CF,FHS, X,P,NP)
    INTEGEF F:GAH
    CORMON/GAMS/GAM:G1:G2.G3:
    COMMON/WALLEC/ETAW, RCURV, EPSIL.
    COMMON/EPSFLG/EFLAG
    OIMENSION CF(UP, NP):RHS(1): X(1)
    \(c\)
    \(c\)
        THIS ROUTINE CALCULATES THE COEFF MATRIX
        \(\triangle 0\) OSA1 (0)
        \(\triangle 110=S A 3(1,1, C)\)
        \(N B E=(P+1) *(P+2) / 2\)
        DO 10 Im1,NF
        \(\mathrm{RHS}(1)=0.0\)
        \(x(1)=0,0\)
        0010 J=1,NP
        \(C F(N, 1)=0.0\)
        CONTINUE
        \(e^{1}\)
    \(C\)
    $C$
$C$
IRROTATIONAL EQNS
NROW=0
DO $100 \mathrm{~N}=1, \mathrm{P}$
$K=N=1$
NEND: PoK
DO $90 \mathrm{M}=1, \mathrm{NEND}$
L $\mathrm{m}=1$

00480 001431 001432 00153 001434 00143 001436 001437 001438 001439 00140 0014 ${ }^{4} 1$ 001442 001443 001444 004445 00446 001447 001480 001489 001450 001451 001452 001453 001454 001455 001456 001457 001458 001459 001460 001461 001462
001463 001464 001465 001466 001467 001488 001489 001470 001471 001472 001473 001474 001475 001476 001477 001478 001479 001480 001481 001482 001483 00148 001485 001486 001487 001488 001489 001890

NROWI NROW +1
NCOL: $L(P+1) \neq N \neq 1$ * $L\left(L_{-1}-1\right) / 2+M B A$
CF(NROW:NCOL) 2, OBFLOAT(N)/AO
NCOL: $M=(P+1)+K+1$ M* $(M \times 1) / 2$
CF(NROW: NCOL) m $m$, O\&FLOAT(M)/AO
CONTINUE
CONTINUE
MOMENTUM EQR:
C
C
C
NE1=F+1
$00300 \quad i=1 . \mathrm{NES}$
Gw1-1
$N E 2=P-G+1$
00250 J $1 . N E 2$
H: J-1
NROW:NROW+1
NCOL: $H *(P+1)+6 \infty 1-H(H m 1) / 2$

NCOL $=N C O L+N B B$
CF(NROW,NCOL): 4.OBG2*FLOAT(N)/AO
$c$
DO 220 Mm1.!
K $M=1$
1F ( P-1m K LTa 0160 T0 220
$c$
00. $200 \mathrm{NaI}: \mathrm{J}$

LIN $\mathrm{m}-1$
1FP $\mathrm{P}-1=\mathrm{L}, \mathrm{LT}, 0) 60$ T0 200
IF ( $1+K+L-G-H: L T: 0) G 0$ TO 200
IF $P=1-K-L$ LT, OS GOTO 200
NCOL $=L *(P+1)+M+1=L^{*}(L-1) / 2$
TERM $=-4,0 *(1,0+0)$ \#FLOAT $(M)=S A 3(1,6 \times K, H=L) / A O$
CF (NROW, NCOL) TERM WCF (NROW, NCOL)
CONTINUE
CONTINUE
CONTINUE
CONT INUE
NEND $=P+1$
00 A00 I=1. NENO
Mel-1
NE2 $=p-M+1$
NROW=NROW 11
C
00350 小 $=1 . \mathrm{NE}^{2}$
$\mathrm{N}=\mathrm{J}=1$
$N C O L \equiv N *(P+1) * M+1=N *(N+1) / 2$ 中 $N B P$
CF (NROW, NCOL) : 1,0

350
400
CONTINUE
CONTINUE
GET R: H: SIDE
GALL RHSIOE (RHS:P)
DO 700 Im 1 NROW
WRITE(6:900)I, (K,CF(I,K),KEI,NROW)
WRITERG:910JRWS(I)
700 CONTINUE
900 FORMATI $140,28 H C O E F F$ MATRIX AND RHS FOR ROW: $\$ 51$
$1 \quad(10 \times 8(15,616,5))$

001491
001492 001493 001494 001495 001496 001497 001498 001499 001500 001501 001502 001503 001504 001505 001506 001507 001508 001509 001510

```
910 FORMAT(10X,AMRHS㽞,617.6)
 RETURN
 END
 SUBROUTINE RHSIDE(RHS,F)
 INTEGER P
 DIMENSION RHS(1)
 NMAX:(P&1)若2
 NRBaP#(P+1)/2
 NROW=0
 CALL IRROT(RHS,P&NROW)
 IF(NROW NE, NBR)GO TO 800
 GALL MOMEN(RHS,P%NROW)
 IF\NROW NE, NMAXIGO TO 800
 RETURN
 PRINT 900: NROW&P:NBB,NMAX, (I,RHS(!:,Im1:NRON)
 CAILL EXIT
900 FORMAT(1HI.10X:2OHYMPROPER NUM OF ROWS.
 1 20H NROW, P NBE,NMAX ARE:417/10X&
 2 16HTHE RH SIDES ARE/(10X,15,G17,8),
 END
```

$\stackrel{C}{C}$
c
LSUEROUTINE MOAEN(RHS, P, NROW)
c
ROUTINE TO CALC R:H. SIDE OF MOMENT EON
DIMENSION RHS(1)
INTEGER $P$ T:H.G
COMMON/GAMS/GAM:G1,G2,G3.0
NAMELIST/日UGSI/ SUM1,SUM2.SUM3:SUM4, SUM5:SUMG:
1 SUM7, SUMB STERM2 SERM3
$c$
NEND1 $=P+1$
C
DO 1000 11:1, NEND
G: 11*1
NENO2 $=P=G+1$
DO $980 \quad 12=1$ NEND2
Hal 201
NROW\#NROWゅ⿳
SUM1:0.0
SUM2:0.0
SUM3=0.0
SUM4 ${ }^{2} 0: 0$
SUM5:0.0
SUM6 ${ }^{2} 0.0$
SUM $=0.0$
Sum8:0.0
$\mathrm{NE}=\mathrm{F}_{\mathrm{m}} \mathrm{g}$
NE2要G1
DO 100 TR2.NEI
[FPPOS , 6T: 0) 60 70100

0018 高 $0015{ }^{1} 2$ 001543 0015 ${ }^{5}$ 0018穆 001546 001547 001846 001549 001550 001551 001552 001553 001554 00155 001556 001957 001558 001559 001580 001561 001582 001563 00158 001585 001566 001567 001586 001569 001570 001571 001572 001573 001574 001575 001576 001577 001578 001579 001580 001581 001582 001583 001584 001585 001586 001587 001588 001589 009590 001591 001592 001583 00159 䓪 001595 001596 001597 001596 201596 001600 301601

0080 Jw 1．NE2
Kajmi

NE3： 4 \＆
DO 60 I： $1 . N E S$
bmin 1
1FPP＝T＝L $\mathrm{LT}: 0) 607060$

SUMI $\operatorname{SUM} 1+E 1 A 3\left(P \infty W_{i} K, L\right)=01 A 3(T, G \omega K, H=L)$
CONTINUE
CONTINUE
GONTINUE
IF $(P=2 \cdot 6 T: 0) G O T O \quad 155$
NEI：P $\mathrm{Pa}_{1}$
DO 150 J：1：NE1
SUM2：SUM2 $2+F 1 A 4(P-d: J, G: H)$
CONTINUE
SUM2：（1．0 +D ）\％SUM2
IF $(P=3, L T: 0) G 070201$
IF（H－1 $1 \mathrm{LT}, 0) 60$ T0 201
IF（F－1－G LTT，0） 00 TO 201
NE $2=\mathrm{P}=2$
SUM22：0．0
00190 JE1．NE2

CONTINUE
SUM2 $=$ SUM 2 －G1＊SUM22
NE1 ${ }^{5}$ G 1
NE 2＝H1
DO 300 Im1，NE1
$K=1 \times 1$
IF（P－1－K LT，0） 60 TO 300
DO 280 JE1．NE2
L＂Jel
IF $(P=1=L \quad L T, 0) 60$ T0 280


CONTINUE
GONTINUE
4 TH SUM
（F $F(P=1-G=H, L T, O) G O T O 400$
NST1：G中H＊1
WE1：P
DO 380 JENSTI NEI
！ $5 \mathrm{~d}=1$
IF（Im1 LT，0）60 TO 380

380 CONT I NUE

C
$\stackrel{C}{C}$
6
5 TH SUM
NE1 $2 P_{m} 1$
$\mathrm{NE} 2=G+1$
NE3wH． 1
C


001602 001803 001604 001605 001606 001607 009808 002809 001610 001611 001612 001613 001614 001615 001616 $00161^{7}$ 001618 001618 001620 001621 001622 001623 001624 001625 001626 001627 001628 001629 001630 001631 001632 001633 001634 001635 001636 001637 001638 001639 001640 001641 001642 001.643 001644 001645 001646 001647 001648 001649 001650 001651 001652 001653 001654 001655 001656 001659 001658 001659 001660 001662 001662
$c$

DO A60 Jai.NES
Loulel
IF (PaToL , WT, 0) 60 T0 460



460 CONTINUE
480 CONTINUE
500 CONTINUE
c
C
6 TH SUM
IF(P-1-G .LT, 0)60 T0601
IF(HM1 LT: OJGO PO 601

NE2mG ${ }^{2} 1$
NE 3 m
c
DO 600 Tะ1, NEI
DO 580 1:1, NE 2
Kal-1
1F(PmT-1-K $\operatorname{LT}, 0) G 070580$

Lival
IF( $\mathrm{P}-\mathrm{T}-1 \mathrm{~L} \mathrm{~L}, \mathrm{LT} \mathrm{T}, \mathrm{D}) 60 \mathrm{TO} 560$


560 CONTINUE
580 CONTINUE
600 CONTINUE
$\stackrel{c}{c}$
601 TERM2 2000
IF(G-1.LT:0)60 T0 710

6
6
6
7 TH SUM
NE1 $m$ Ponk
NE2ゅP
D0700 1\%1.NE1
$\mathrm{K}=1 \mathrm{~m}$
NST $2=H+K+1$
1F(GmK $\mathrm{LT}, ~ D) 6070700$
IF(Pw1-H-K ©6T, 0)60 T0 700
DO 880 JENST2, NEZ

IF(T-1 \&TT. 0 ) 6090630
\$F(K巾P-TMG AT, 0560 TO 680

680 CONTINUE
700 CONTINUE
c
$\stackrel{C}{c}$ 710

1F(Pom,LT.0)60 10810
IF (Go1.LT:0)60 T0 810
1F(P-1-GgLT:O)GOTO 810
NEI mPan 2

001663 001664 001665 001666 001667 001668 001669 001670 001671 009672 001673 001674 001675 001676 001677 001678 001679 001680 001681 001682 001683 001684 001685 001686 001687 001688 001689 001690

NE2:G
NE3*H+1
C
DO 800 T 目, NE1
DO 780 1E1,NE2
K요 I-1
1F ( $P=T-1-K, L T, O) G 0 T O 780$
C
DO 760 J=1:NE3
LTV1
IF $(F-T-1 \mathrm{~mL} \quad$ I.T, O)GO TO 760
IF $(T-G+1+K-H+L$, T. 0)GO TO 760
SUMB=SUMB $+05 A 3(T, G-1-K, H-L) \neq E 4 A 3(P=T, K, L)$
76 CONTINUE
780 CONTINUE
800 CONTINUE
810 TERM3aEP5A3(P,G.H)
$c$
C COLLECT TERMS
c
910 RHS (NROW)=-SUM1 $2.0 * S A 3(1,1,0)$ SUM2/SA1(0)
$1+2.0$ (1.O O D) SUM $3-$ G2 2 SUM $4-$ SUM 5
2 + 22 *SUM6-TERM2-2,C\#SUM 7
$3-2.0$-SUMB-G2*TERM3
$9 B 0$ CONTINUE
1000 CONT INUE
RETURN
END

001691
001692
001693 001694 001695 001696 001697 001698 001699 001700 001701 001702 001703 001704 001705 001706 001707 001708 001709 001710 001711 001712 001713 001714 001715 001716

LSUGROUTINE IRROT(RHS, P,NROW:
DIMENSION RHS(1)
INTEGER PIRATIGIH
$C$
$C$
$C$
C
CALC RIGHT HAND SIDES
$B P M 1=5 B 1(P-1)$
DO 1000 11 $=1, P$ $k=11-1$
NEND $2=\mathrm{P}-\mathrm{K}$
DO 980 12"1 NEND2
6: 12-1
TYLP1\#2* (L+1)
NROW=NROW +1
SUM1 $=0.0$
SUM2E0.0
SUM3=0.0
SUM4:G,0
SUM5 $=0.0$
SUM6:0.0
SUM7=0.0
SUMB $=0,0$
IF (Kwi , TT,0)G0 TO 101
1F( $\mathrm{P}-3 . \mathrm{LT}$. 0160 TO 101
NE2mP-1


001717
001718
001719
001720
001721
001722
001723
001724
001725
001726
001727
001728
001729 001730
001731
001732
001733
001734
001735
001736
001737
001738 001739 001740
001741
001742
001743
001744
001745
001746
001747
001748
001749
001750
001751
001752
001753 001754 001755 001756 001757 001758 001759 001760 001761 001762 001763 001764 001765 001766 001767 001768 001769 001770 001771 001772 001773 001774 001775 001776 001777

DO 100 I $=1$, NE：
M＊1－1
1F（ K－1－M．LT．O）GO TO 100
NST：M＊虫中1
DO 80 Jinstinez
R ${ }^{2} \mathrm{~J}=1$
1F（R－1．LTT，0）G0 70 80
1F（P－1－R＋MmK GT，O）GO TO 80

80 CONTINUE
100 CONTINUE
c
$c$
$c$
101 NET：P－L
c
DO $200 \mathrm{~J}=1 . \mathrm{NE} 1$
M：J－1
IF（K．M．LT，O）G0 T0 200
IF（F－M＝L－2．LT：0）G0 TO 200
NST：M＋L＋1
NE2 $\mathrm{P}=1$
DO 180 R＝NST，NE？
SUM22：0．0
IF（P－R＋M－K ，LT．0）G0 TO 180
NST2＝1中 1 ＋1
DO 160 IENST2．R
SUM22：SUM22＊FLOAT（M＋1）＊SB1（R－i）＊S53（1，M＊1：W）
160 CONTINUE
SUM2 $=$ SUM $2+B 4 A 2(P-R, P-R+M-K) * S U M 22$
180 CONTINUE
200 CONTINUE
C
$c$
$c$
$c$
3 RD SUM
NSTART：K＋L＋1
NEND：P－1
$B P M 1=S B I(P-1)$
DO $300 \mathrm{I}=\mathrm{GSTAFT}$ NEND
IFPP－K－L－2 ，LT：Z） 60 TO 300

300 continue
4 TH SUM
NE1＝Lわ1．
NE $2=\mathrm{P}_{\mathrm{m}} 1$
NST2＝K\＄1
00 ． 00 J． 1 ．NE：
May－1
IF（P－K－2．LT，0）G0 T0 400
DO 380 RaNST2，NE？
SUM44简0．0
IF（R－1－K－11，LT，O）GO 10380
IF $\left(F-R=L \phi M, L_{M} T, O\right) G 0 T 0380$
c
NST $3=K+M+1$
DO 350 1mNST3．R

350．CONTINUE


380 CONTINUE
$\$ 00$ CONTINUE.
$N E I=P-L$
NE.2:P-1
DO 500 J=1. NEI
Mm-1
IF $(K-M$.LT, g) 60 TO 500
IF $(\mathrm{P}=\mathrm{M}-\mathrm{L}-2 . \mathrm{LT}, 0) 60$ T0 500
NST2:M+L+1
DO 480 R=NST2:NE2
SUM55=0,0
IF (F-R+M-K .LT, O)GO TOO 480
NST3:M+L+1
DO 450 I =NST3.R
SUM $55=$ SUMS5*SE1 (R-I)*TTLP1*SA3(1.M.L*1)
continue
SUM5 $=$ SUMS $+B 4 A 2(P-R, P-R+M-K) * S U M 55$
48 C CONTINUE
500 CONTIMUE
c
$c \quad 6 \mathrm{TH}$ SUM
NST1:K+L+1
NE1=F-1
DO $600 \mathrm{I}=\mathrm{NE}$, NST1
IF (P-K-L-2 .LT. O) GO TO 600
SUMG $=$ SUMG *EPMI*TTLF1*SA3(I,K,L+1)
continue
7 TH SUM
NE1: $=L+1$
NE2=P-1
NST $2=K+1$
DO $700 \mathrm{M}=1$, NE1
$c$
IF (P-K-2.LT,0)GO TO 7C0
DO 6BO RENST2,NE2
SUM77 $=0.0$
IF (R $\mathrm{m}-\mathrm{K}-\mathrm{M}, \mathrm{LT}$. 0$) G 0$ TO 680
IF $F P=R-L-1+M, L T, 0) G C$ TO $6 B 0$
NST3 $=K+M$
TWOM=2*M
DO 650 I EVST3,R
IF(R-1 •bT, O) GO TO 650
SUM77 = SUM77*SE1(R-I)*TWOM*SA3(I:K,M)
650 CONTINUE
SUM7 $=$ SUM $7+B 2 A 2\left(P-R_{1} L+1-M\right)$ SUM77
680 CONTINUE
700 CONTINUE
B TH SUM
IF(K, EQ, O) SUM\&mB1A2(P:L*1)
NE1 $=1+1$
NE2=P
NST2wK+1
C
60
C
$c$
C
C
c
C

001890
001891
001892 001893 001894 001895 001896 001897 001898 001899 001900 001901 001902 001903 001904 001905 001906 001907 001908 001909 001910 001911 001912 001913 001914 001915 001916 001917 001918 001919 001920 001921 001922 001923 001924 001925 001926 001927 001928 001929 001930 001931 001932 001933 001934 001935 001936 001937 001938 001939 001940 001941 001942 001943 001944 001945

M(K) $m, ~ J$
120 CONTINUE JROW=L(K)
(F(LL(K) $\quad$ K)1 35.135 .125
12500130 Im1.N
HOLD=-A( $\left.K_{a} \|\right)$
$A(K, 1)=A(J R O L, B)$
130 a(JRON:I)mmoto
135 (COL $\mathrm{CH}(\mathrm{K})$
IF(M(K)-K)145,145,137
$13700140 \quad \mathrm{~J}=1 \mathrm{~N}$
HOLD= $-A(J, K)$
$A(J, K)=A(J, I C O L)$
$140 A(J, I C O L)=H C L ?$
145 1F $(A(K, K)) 147,143.147$
143 TEST =1.
GO TO 235
14700155 IC=1,N
dF( $1 C-K) 150,155,150$
$150 \quad A(\mathbb{C}, K)=A(\| C ; K) /(=A(K, K))$
155 CONTINUE
DO 165 I\#1,N
DO $165 \quad J=1, N$
156 IF $(1-K) 157.165 .157$
$157 \mathrm{IF}(J-K) 160,165,160$
$160 \quad A(I, J)=A(I, K) A(K, J)+A(I, J)$
165 COIT INLE
DC $175 \mathrm{JR}=1 \mathrm{~N}$
$168 \mathrm{IF}(\mathrm{JR}-\mathrm{K}) 170$ 175:170
$170 A(K, J R)=A(K, J F) / A(K, K)$
175 CONTINUE
DETER=DETER*A(K, K)
$A(K, K)=1,0 / A(K, K)$
180 CONTINUE
$\mathrm{K}=\mathrm{N}$
$200 K=K-1$
IF $(K) ? 35,235,203$
203 IFL(K)
IF $(I-K) 220,220,205$
20500210 J=1,N
HOLDEA(J,K)
$A(J, K)=-A(J, I)$
210 A(J.I) m HOLD
220 JmM(k)
IF (J䍝K)200.200.225
$22500230 \quad 1=1 . \mathrm{M}$
HOLDEA $K: I)$
$A(K, 1)=-A(J,!)$
230 A(J.I) $=40 \mathrm{LO}$
GO TO 200
$235002401=1, N$
DO $240 \mathrm{~J}=1, \mathrm{~N}$
$A(I \cdot J)=A(!\cdot J) / R(J) / C(!)$
240 CONTINUE
RFTURN
END

001946 001947 001948 001949 001950 001951 001952 001953 001954 001955 001956 001957 001958 001959 001960 001961 001962 001963 001964 001965 001966 001967 001968 001969 001970 001971 001972 001973 001974 001975 001976 001977 001978 001979 001980 001981 001982 001983 001984 001985 001986 001987 001988 001989 001990 001991 001992 001993 001994 001995 001996
(SUBRQUTINE SOLN(CF:RHS; $X, P$, NP)
DIMENSION CF(NP,NP):PHS(1): X(1):6L(144),MM(144):CC(144) COMMON LA(100): B(9)【NTEGER P

ROUTINE TO CALC SOLN VECTOR AND MAP IT INTO THE SA3 ARRAY

NORDER $=(P+1)(P+2)$
GALL INVRT(CF,LL,MM, X,CC,NP,NORDER,CET)
C
c CALC SOLN VECTOR
00100 IIINORDER
$S U M=0.0$
$0090 \mathrm{~J}=1$, NORDER
SUM $=$ SUM $+C F(I, J)$ *RHS(J)
90 CONTINUE
$X(1)=S U M$
100 GONTINUE
c
C MAP SOLN VECTOR
$N=P+1$
$N \mathrm{~N}=\mathrm{N}+1$
NBEm $\mathrm{N} * \mathrm{NN} / 2$
DO 200 11云1, N
$N N: N N-1$
I. II-1

DO 150 JJII:NN
$J=J J-1$
NCI=J\#N+1+1mJ*(J-q)/2
NC2 $=N C 1+N B B$
LOC1=LOK (P,I, J,27)
LOC2mLOK(P, i, ل28)
$B(L O C 1)=X\left(N_{1}\right)$
B(LOC2) $=x(N C 2)$
WRITE (6,900)P,I, J.X(NC1),P,I:J,X(NC2)
CONT INUE
200 CONTINUE


1. $\left.5 \mathrm{X}, 2 \mathrm{HB}, 12,1 H, 12,1 \mathrm{H}_{1}, 12,2 H\right)=016,51$

RETURN
END
1TDATA
GAMMA $1: 4$,
0 0.05.
EFLAG 2:
PMAX $=5$.
RCURV 0.25 .
\$END

## APPENDIX F

## DISTRIBUTION LIST FOR FINAL REPORT

CONTRACT NAS7-756

| Copies | Recipient | Designee |
| :---: | :---: | :---: |
|  | NASA Headquarters |  |
|  | Washington, D.C. 20546 |  |
| 1 | Contracting Officer | X |
| 1 | Patent Office | X |
|  | NASA Lewis Research Center |  |
|  | 21000 Brookpark Road |  |
|  | Cleveland, Ohio 44135 |  |
| 1 | Office of Technical Information | X |
| 1 | Contracting Officer | X |
|  | NASA Manned Spacecraft Center |  |
|  | Houston, Texas 77001 |  |
| 1 | Office of Technical Information | X |
| 1 | Contracting Officer | X |
| 1 | Patent Office | X |
|  | NASA Marshall Space F1ight Center Huntsville, Alabama 35812 |  |
| 2 | Office of Technical Information, MS-IP | X |
| 1 | Purchasing Office, PR-EC | X |
| 1 | Patent Office, M-Pat | X |
| 1 | Technology Utilization Office, MS-T | X |
|  | NASA Pasadena Office |  |
|  | 4800 Oak Grove Drive |  |
|  | Pasadena, California 91103 |  |
| 1 | Patents and Contracts Management | X |
| 3 | Contracting Officer, F. Abbott | X |
|  | Jet Propulsion Laboratory |  |
|  | 4800 Oak Grove Drive |  |
|  | Pasadena, California 91103 |  |
| 20 | R. F. Cuffel | X |
| 3 | Chief, Liquid Experimental Engineering, RPL Office of Advanced Research and Technology NASA Headquarters | X |
|  | Washington, D.C. 20546 |  |
| 1 | Director, Technology Utilization Division | X |
|  | Office of Technology Utilization |  |
|  | NASA Headquarters |  |
|  | Washington, D.C. 20546 |  |



## Government Installations

1 Aeronautical Systems Division
Air Force Systems Command
Wright-Patterson Air Force Base Dayton, Ohio 45433

1 Air Force Missile Test Center Patrick Air Force Base, Florida

1 Space and Missile Systems Organization
Air Force Unit Post Office
Los Angeles, California 90045
1 Arnold Engineering Development Center
Arnold Air Force Station
Tullahoma, Tennessee 37388

1

1

1. U.S. Army Missile Command Redstone Arsenal
Alabama 35809
Bureau of Naval Weapons
Department of the Navy
Washington, D.C. 20546
Defense Documentation Center Headquarters
Cameron Station, Building 5
5010 Duke Street
Alexandria, Virginia 22314
Attn: TISIA
Headquarters, U.S. Air Force
Washington, D.C. 20546

Picatinny Arsenal
Dover, New Jersey 07801
Air Force Rocket Propulsion Laboratory
Research and Technology Division
Air Force Systems Command
Edwards, California 93523
U.S. Naval Ordnance Test Station China Lake
California 93557
Air Force Missile Development Center Holloman Air Force Base
New Mexico 88330
D. L. Schmidt

Code ASRCNC-2
L. J. U11ian

Col. Clark
Technical Data Center

Dr. H. K. Doetsch
J. Kay

RTMS-41

Co1. C. K. Stambaugh AFRST
I. Forsten, Chief Liquid Propulsion Lab

RPRPD 'Mr. H. Main

Mr. Walter Wharton

Code 4562
Chief, Missile Propulsion Division

Maj. R. E. Bracken

## Industry Contractors

1 Aerospace Corporation 2400 East E1 Segundo Boulevard
P.O. Box 95085

Los Angeles, California 90045
1 Atlantic Research Corporation Edsall Road and Shirley Highway Alexandria, Virginia 22314
Aerojet-General Corporation P.O. Box 1947

Technical Library, Building 2015, Department 2410
Sacramento, California 95809

Be11 Aerospace Company
P.O. Box 1

Buffalo, New York 14240
Be11com
955 L'Enfant Plaza, S.W.
Washington, D.C.
Boeing Company
P.O. Box 3707

Seattle, Washington 98124
Wright Aeronautical Division
Curtiss-Wright Corporation
Wood-Ridge, New Jersey 07075
Republic Aviation Corporation
Fairchild Hiller Corporation
Farmingdale, Long Island, New York
General Dynamics, Convair Division
Library \& Information Services (128-00)
P.O. Box 1128

Missile and Space Systems Center
General Electric Company
Valley Forge Space Technology Center
P.O. Box 8555

Philadelphia, Pennsylvania
Gruman Aircraft Engineering Corporation R. Stiff
H. S. London
J. D. Alexander
G. Kelley

Library
F. Mezger
F. E. Schultz

Joseph Gavin
New York 11714

1 Honeywe 11, Inc.
Aerospace Division 2600 Ridgway Road Minneapolis, Minnesota

1 Hughes Aircraft Company
Aerospace Group
Centinela and Teale Streets
Culver City, California 90230

1. Walter Kidde and Company, Inc.

Aerospace Operations
567 Main Street
Belleville, New Jersey
1 Lockheed Missiles and Space Company
Attn: Technical Information Center
P.O. Box 504

Sunnyvale, California 94088
1 Lockheed Propulsion Company
P.O. Box 111

Redlands, California 92374
1 The Marquardt Corporation
16555 Saticoy Street
Van Nuys, California 91409

1 McDonne1-Douglas Aircraft Corporation P.O. Box 516

Municipal Airport
St. Louis, Missouri 63166
1

1
Denver Division
Martin Marietta Corporation
P.O. Box 179

Denver, Colorado 80201
1 Astropower Laboratory
McDonne11-Doug las Aircraft Company
2121 Paularino
Newport Beach, California 92663

Missile and Space Systems Division McDonne11-Douglas Aircraft Company 3000 Ocean Park Boulevard
Santa Monica, California 90406
Space and Information Systems Division
H. L. Thackwe 11

Howard McFarland

Dr. Morganthaler
A. J. Kullas

Dr. George Moc Director, Research
R. A. Herzmark

Mr. R. W. Hallet Chief Engineer Adv. Space Technology

North American Rockwell
12214 Lakewood Boulevard
Downey, California 90241

| Copies | Recipient | Designee |
| :---: | :---: | :---: |
| 1 | Rocketdyne (Library 586-306) 6633 Canoga Avenue Canoga Park, California 91304 | Dr. R. J. Thompson <br> S. F. Iacobellis |
| 1 | Northrop Space Laboratories 3401 West Broadway Hawthorne, California 90250 | Dr. William Howard |
| 1 | Rocket Research Corporation 520 South Portland Street Seattle, Washington 98108 | Foy McCullough, Jr. |
| 1 | Sunstrand Aviation 2421 11th Street Rockford, I11inois 61101 | R. W. Reynolds |
| 1 | TRW Systems Group <br> TRW Incorporated <br> One Space Park <br> Redondo Beach, California 90278 | G. W. Elverum |
| 1 | Thiokol Chemical Corporation Huntsville Division Huntsvi11e, Alabama 35807 | John Goodioe |
| 1 | Research Laboratories <br> United Aircraft Corporation <br> 400 Main Street <br> East Hartford, Connecticut 06108 | Erle Martin |
| 1 | Hamilton Standard Division United Aircraft Corporation Windsor Locks, Connecticut 06096 | Mr. R. Hatch |
| 1 | United Technology Center <br> 587 Methilda Avenue <br> P.O. Box 358 <br> Sunnyvale, California 94088 | Dr. David Altman |
| 1 | Florida Research and Development <br> Pratt and Whitney Aircraft <br> United Aircraft Corporation <br> P.O. Box 2691 <br> West Palm Beach, Florida 33402 | R. J. Coar |
| 1 | Lockheed Missiles and Space Company Huntsville Research and Engineering Center 4800 Bradford Drive <br> Huntsville, Alabama 35807 | Mr. R. Prozan |

$$
F-6
$$CopiesRecipientDesignee

CPIA1 Chemical Propulsion Information Agency Tom ReedyApplied Physics Laboratory8621 Georgia AvenueSilver Spring, Mary1and 20910


[^0]:    ${ }^{+}(1 / R)^{\frac{1}{2}}$ and $(1 / R+1)^{\frac{1}{2}}$ is the terminology used herein.

[^1]:    'In order to extend Hall's results, the analysis and computer program were modified as follows. The different equations of motion in cylindrical coordinates can be recovered from equations (15) and (16) by letting $\overline{5}=\mathrm{z}$, $\eta=r, \sin \xi=\cos \xi=\sinh \eta=0, \cosh \eta=1$ and $\operatorname{coth} \eta=1 / \eta$. These modifications were incorporated into the computer program by setting all of the $\bar{B}^{\prime} s=0$ except for $\bar{B}_{0,0_{2}}=1$, and $e_{0}=1$ and the other $e_{n}^{\prime} s=0$. In addition, all of the terms in the coefficient matrix $G_{i, j}$ (equation (77)) were halved, and a was set equal to one and the other $a^{i_{1}}{ }_{j}$ to zero in order to eliminate the ${ }^{\mathrm{O}} \eta_{\text {, }}$ normalization of the coordinates. $\mathrm{n}_{\text {The boundary condition }}$ also had to be modified to reflect the change to cylindrical coordinates. In cylindrical coordinates, the boundary condition contains nonhomogeneous terms. Results were calculated to fifth order, and the calculations to third order checked identically with Hall's results (as corrected in Ref. 10 ). In comparing the two solutions, the slight differences in the definition of the axial coordinate and transverse velocity were accounted for.

[^2]:    +Recent results of References 8 and 9, appear to indicate that for small normalized throat radii of curvature, upstream influences become apparent.

