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ABSTRACT 

Differential correction can be applied in certain cases, to the determina­

tion of the attitude of space vehicles. Choosing the parameter sets and prediction 

functions are two of the most critical considerations. 

Parameter sets should be complete and independent. They may include 

instrument calibration constants, moments of inertia, attitude control system 

specifications, residual magnetic moments, drag moments, as well as the 

parameters which describe the motion itself. Numerous quantities besides 

those directly specifying the motion may, therefore, be calculated using this 

approach.
 

Prediction functions are used to predict the observed signals from the 

attitude sensing devices. Although the foundation of prediction function Is a 

coordinate transformation, this simple foundation usually needs varying amounts 

of augmentation depending on the complexity of the sensing instruments. When 

the Euler coordinate transformation is used as the foundation of a prediction 

function, the results given in standard treatises on mechanics are readily adapted 

to the problem of attitude determination. For example, the Euler angles are 

given as continuous functions of time for passive torque-free rigid spacecraft. 

In the balanced case the equations are simple. For nonbalanced bodies 

the expressions for the Euler angles are complicated, involving elliptic functions 

and quadratures. In the presence of torques the forms of the solutions are gener­

ally not known and in such cases numerical integration of the inhomogeneous 

equations of motion is required. But if the inhomogeneous terms are sufficiently 

small or periodic, the resulting motion may be modelled with empirical formulae 

and numerical integration may not be necessary. 

One of the advantages of the approach considered here is the absence of 

any requirement concerning the simultaneity of instrumental observations. This 

means that the three components of each vector, such as the solar and magnetic 
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vectors, need not be known simultaneously or even nearly so. Moreover 

there is neither a requirement as to orthogonality of vector-component-sensing 

instrument axes nor a requirement that all three components of a vector be 

measured. Sometimes it is sufficient to know merely the time coordinate of a 

sensor's output to establish correct attitude. 

This approach permits simple solutions to several problems posed by 

hardware malfunctions, hardware deterioration, residual magnetic moments, 

and other signal degrading phenomena. It also permits simple solutions to 

problems posed by sensors whose output signals are somehow singular, such 

as pulse signals, for example. Two useful devices for dealing with "difficult" 

sensor signals are "functional replacement" and "artificial sensors." 
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I. PREFACE 

This discussion is concerned with certain specific questions arising in 

the application of least squares differential correction to the problem of space­

craft attitude determination. That is to say, the attitude determination problem 

is stated as a least square problem in several variables to which the method of 

differential correction is applied. The mathematical principles involved are 

identified and the correct variables are chosen and discussed. It is not intended 

to present either an explanation of the motion of space vehicles or an exposition 

of the methods of differential correction per se. Nor is it intended to fully 

discuss sensors, coordinate systems, least squares curve fitting, numerical 

techniques, error analysis, and other subjects germane to the problem. These 

subjects are discussed briefly only when necessary to sustain the train of thought. 

References have been included for the reader interested in further clarification. 

The nomenclature employed conforms to the following conventions . 

Scalar quantities are shown in -lower case Roman except for those having special 

significance .which are denoted by letters of the Greek alphabet. Roman capitals 

are used for vectors and matrices. Absolute differentiation with respect to time 

is in some cases denoted by the popular dot over the variable inquestion. 

The following symbols have permanent significance throughout this 

paper and represent concepts with which the reader is assumed to have some 

familiarity. 

L - angular momentum 

M - moment of force (torque) 

I - inertia tensor 

B - geomagnetic field 

S - solar line-of-sight vector 

a - right ascension 

6 - declination
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6~, 4) - the Euler angles 

- instantaneous angluar velocity 

v - gradient operator: 

(1 ,- , - , orsometimes 
xa;y z 

- a a ... I. 
bu; u'u2 'u 'u' Au 

A a prefix denoting a small quantity 

T - transpose of a matrix T 

Ej - statistical expectation of a random variate E 
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II. INTRODUCTION 

A. Empiricism and Attitude Determination 

The determination of the orientation of a space vehicle may be 

accomplished with varying degrees of empiricism as well as speed and accuracy. 

The most direct empirical approach is to plot the data and measure amplitudes, 

phase relationships, mean values, and apparent frequencies. From these 

quantities it is often possible to establish the orientation of vectors, such as 

the geomagnetic field and solar line of sight vectors, with respect to the body­

fixed system of coordinates. Algebraic methods using independent ephemeris 

knowledge of the magnitude and direction of such vectors can then be applied to 

obtain the orientation of the vehicle [43, 44, 58]. Since only two observations 

of non-collinear vectors suffice to establish orientation at any given instant of 

time, the algebraic method, when automated, is the fastest way to compute 

attitude. When computed in this way, the attitude is defined as a discrete 

sequence; however, each calculation is subject to errors, mostly those of 

instrumental origin. Obviously filtering according to some suitable empirical 

formula should then be applied to attenuate the fluctuations. Presmoothing of 

raw data is sometimes preferable but hazardous owing to the nonlinear relation­

ship between sensor outputs and orientation angles [28, 53,.68, 69. (In [68] 

see page 303.)
 

B. Some Optimization Methods 

When speed can be somewhat sacrificed, the smoothing is better 

accomplished with the aid of dynamical and statistical knowledge. An approach 

to attitude determination employing a minimum variance statistical filter (Kalman 

filter) is reported in reference [283. This approach is well suited to real time 

applications because experimental data are processed in a stepwise fashion (hence 

the name "sequential estimation"). Processing occurs in a manner called mini­

mum variance estimation so that this method constantly provides "best" estimate 

of the system parameters based on all accumulated data [28, 37, 38, 46, 53, 68. 
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The method discussed here is based on the classical optimization 

procedure of differential correction which has been applied since the eighteenth 

century to the computation of orbital elements [14, 53, 55]. In this approach 

it is preferable to have an abundance of observations evenly distributed over an 

extended time interval. One endeavors to "fit" these observations with a set 

of formulae which represent our knowledge of the dynamics and measuring 

devices. 

C. The Model 

Such a set of formulae are called a model or a prediction function. 

(See pages 47, 73, reference [463). With a model one endeavors to simulate 

with the utmost fidelity the important behavior of the spacecraft. One might 

then say that the problem is to devise a predictor which actually predicts. The 

laws of motion should, therefore, be applied with care. The parameters which 

define the model are adjusted until a certain measure of agreement is achieved 

between predicted and observed values. 

D. Correction of the Model 

Initially a model is built based on the best available knowledge, 

both theoretical and laboratory measurements. Then a series of adjustments 

or corrections to the model is performed until the required agreement is obtained. 

While judicious application of trial and error could succeed, systematic correction 

methods are available. The most powerful modern methods come under the headings 

of gradient methods [14, 17, 23, 32, 46, 51], relaxation methods [17, 40], and 

differential correction methods [41, 46, 51, 54]. Sometimes the latter are called 

Taylor methods [32, 33). 

E. Differential Correction 

Differential correction methods have evolved from Newton's method 

for calculating the roots of a polynomial and are a generalization of his scheme 

for solving functional (rather than function) equations in several variables and higher 
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order 	derivatives. As in Newton's method, the corrections are estimated with 

the help of the derivatives. Under modestly favorable conditions these corrections 

converge rapidly. The parameters suitable in applying differential correction 

to attitude determination, their properties, and the problems of convergence are 

considered below. 

F. 	 The Model as a Vector Transfer Function 

The model will be treated below as a mathematical operator 

denoted by the symbol 3. In mathematical terms, we say that a function 3 

is sought which, operating upon certain space environmental variables, predicts 

the observed data to a high degree of approximation. 

As illustrated in figure 1, the observed data may derive from 

more than one sensor. Evidently 3 is a vector operator and hence requires 

a vector differential correction process. The application of such a process, more­

over, places certain analytical requirements on 3. These requirements are also 

discussed in this paper. 

Since we deal with signals from a piece of hardware, we should 

allow the model to be viewed from the point of view of impulse and transfer 

functions [18]. For the spacecraft and the telemetry it generates can be con­

sidered an open loop system whose input is the space environment (radiation, 

plasma, gravity, geomagnetism) Refer to figure 1. (Closed loop attitude con­

trols do not affect the open loop status of our model unless the controls are a 

function of the said telemetry and are transmitted from a ground station on a 

real time basis.) Furthermore, since a spacecraft is a complex electro­

mechanical device usually capable of functioning in several distinct modes, it 

is clear that the form of the operator 3 may be time dependent. 

G. 	 An Elementary Example 

As an elementary example, suppose we wish to determine the 

attitude of a rigid spacecraft equipped with a trio of perfectly linear, ortho­

gonally mounted x, y, z magnetometers and suppose B is the geomagnetic 
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field vector in the vicinity of the spacecraft. Let f , fy, f represent the pre­

dicted output functions of the three magnetometers, respectively. Now, since 

all three sensors are to be equal partners in this attitude determination task, 

their output functions are considered as components of a vector so that we define 

the vector function 

F =_ [f , f . 11.1 

Recalling that F is the function of the predictor operator, we have 

F = 3 (B). 11.2 

Equation 11.2 is to be regarded as the definition of a predictor operator. [In 

the more complicated cases considered below, 3 will likewise be defined as 

an operator relating the predicted sensor output functions to various physical 

quantities of the space environment. ] 

Several properties of this operator are apparent upon consideration 

of equation 11.2. First, its vector nature is illustrated. Although F happens to 

be a three-dimensional (cartesian) vector in this case, the dimensionality of the 

predictor operator is in general determined by the number of sensor output 

functions being predicted. Second, the arguments may be vectors and scalars. 

Also, since in this example F is the geomagnetic field expressed in the body­

fixed coordinate system, it follows from equation 11.2 that 3 is merely a 

(memory-less) coordinate transformation. The simplicity of the operator in 

this example derives from the fact that the three sensors were assumed to be 

ideal, i. e., linear, with zero bias and unit gain with instantaneous response, 

and orthogonal. In practical applications, however, departures from the 

ideal are important to the attitude determination problem and it is for this 

reason that the predictor concept is approached here in a generalized fashion. 

The approach to be described resembles the method of "separation of variables" 

employed in partial differential equations. 
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H. Separation of Variables 

The heart of any prediction function in attitude determination is, 

of course, a coordinate transformation. But, as pointed out, our predictor 

must account for the characteristics of both the hardware and the motion. Hence 

the prediction function is written as the product 

- qX. 11.3 

This expression shows the three fundamentally different functions performed 

by 3. The first, symbolized by 8, is to express mathematically the motion 

of the vehicle's coordinate axes by means of an orthogonal coordinate transfor­

mation. The second function, symbolized by X, accounts for the position or 

mounting of the sensing instruments. (In a typical case the operation X repre­

sents a vector "dot" product involving some vector, such as B, and the unit 

vector collinear with the instrument "sensitive axis".) The purpose of the two 

operators HP, then, is to predict the ideal or perfect input functions being 

sensed by the instruments. For instance, the quantity 

f = jj8S H K.8S 11.4 

could be the theoretical amount of solar radiation reaching the sensitized sur­

face of a solar cell whose surface normal is given, in the body frame of refer­

ence, by the unit vector K. Hence X P, will be called the "ideal predictor." 

The third function, symbolized by Q, is to account for the instrument trans­

fer functions, residual electric and magnetic moments, and any other signal 

degrading effects operating on the ideal signal f. 

It will be seen presently that the three operators on the right 

hand side of 1.3 are independent in the sense that they have no common argu­

ments. This "separation of variables" helps to simplify the attitude determina­

tion problem. In Section VI it will also be seen that ill-defined normal equations 

are likely to result from attempts to apply differential correction with a set of 

parameters which include arguments of two or-more of the aforementioned operators. 
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I. The Dependences 

Consider now the parameter dependence of these operators. 

Clearly Q depends on the instrument physical design parameters such as cali­

bration constants and time delays. Let us denote these parameters by c1 , c2," 

c3, ... and let T represent the predicted sensor output function. A typical 

sensor behaves according to the expression 

n i-1 
"=Z c H.51 

i=1 

where C is a function of f, the ideal signal as in equation II.4. (For instance, 

= f or sin (f).) Rewriting H. 5 with the help of operator notation, 

T = ((C 1, c2 , c0, ... t) f. II.6 

Let us identify in, a similar fashion, the arguments of Xl. Suppose 7, 1 2 , ,3 

...are the various parameters, such as direction cosines for instance, which 

define the orientation of the sensor sensitive axis or surface with respect to the 

vehicle's coordinate axes. (We include among these parameters those required 

to handle geometric shadowing.) Then, for a solar cell sensor, 

f = 3{(y 1 , Y 2 ... t) S' 11.7 

where S ' is the sun's vector also expressed in the body-fixed system. Notice 

that the parameter time is included in 11 6 and H.7. One reason was given in 

IIF. Other reasons will become evident when the problems of sensor deterio­

ration and changing space environment are considered. Refer to Section VI. 

Finally let us try to identify the arguments of the ideal predictor 

which has already been recognized as a coordinate transformation. There are 

various ways to do this since there are various ways to express (parametrize) 

coordinate transformations. The method herein adopted and discussed below 
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uses the angles a, 6 ,, 6, i. Hence we write 

5, = 8(a, 8,oP, 0, 0)s 11.8 

where the time is not shown because its role is strictly implicit, in contrast 

to the preceding cases, 

Equations 11.6, H.7, 11.8 show the separated parameter dependences. 

Observe that these parameters are not necessarily constants. They are not, 

therefore, necessarily suited for roles as parameters of differential correction. 

As explained in section VI, moreover, it is sometimes impossible to isolate 

the arguments of q from those of 8. This situation arises when one or more 

of the sensor output signals T employed in the attitude determination problem 

occurs inside an active attitude feedback control loop on board the space vehicle. 

In such cases the angles a, 6 , 9 , 0, and 4 are obviously affected by 7, i. e. 

they are functions of T. Numerical integration of the equations of motion may 

then be the only alternative in calculating the predicted functions. 

J. The Ideal and Modified Prediction Functions 

To the best of our ability to design it, the operator q modifies the 

ideal signal f in the same way that, through their nonlinear and delayed response, 

real sensors modify the ideal quantities they are designed to detect. If we were 

to limit ourselves to perfect sensors whose outputs were vector components along 

the vehicle coordinate axes, e would be a satisfactory prediction function and 

there would be no need for QX. Hence q X8 is said to be the "modified pre­

diction function". Before 4 and H are discussed, the fundamentally important 

coordinate transformation P, is discussed. 

K. The Auxiliary Reference Frame 

Coordinate transformations are, of course, expressible (para­

metrized) in diverse ways. In this approach 8 is rewritten in the form 

8 = QS. 11.9 
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£ is simply a transformation from the inertial coordinate system of our choice 

to some other system whose only purpose is to simplify calculations. For ex­

ample, in the case of a simple spinning spacecraft, such a system is the angular 

momentum coordinate system. This trihedral is so called because its z axis 

is collinear with the spin angular momentum, L, and is generally an inertial 

system (or nearly so) [52]. (The vector L is constant unless it is forced to 

change under the influence of external torques or through the reaction of escap­

ing matter [1, 2, 3, 4].) In this case, if the base reference frame is the usual 

vernal equinox system, then 

-sin a cos a 0

[=-cos a sin 6 -sin a sin 6 cos 6 I.10 

cos cCos 6 sin a cos 6 sin 6 

(This expression is derived in Appendix D.) 

For gravity gradient stabilization, however, the auxiliary system might be 

aligned with the gradient of gravity [28] while for a vehicle with active attitude 

control devices, the auxiliary system is the one to which the control laws refer. 

Consult Section IV. G.1. In each case the onus of the auxiliary reference frame 

is to simplify the mathematics. 

L. The Euler Transformation 

Having thus defined the transformation £, we may identify G2 

as a transformation from an inertial system whose z axis is aligned with L 

to vehicle coordinates. This is the same purpose for which the Euler trans­

formation is employed in standard treatises on mechanics. 

The Euler angles are illustrated in figure 2. The reader is 

cautioned to observe the lack of unanimity in the definition of these angles. 

In this discussion the modern version of reference [13 is employed. The 

equations governing the evolution of the Euler angles as functions of time are 

considered below and are also discussed in the references. 
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Writing P, as the product of G £ has several advantages. When 

a spacecraft is stabilized primarily by means of large angular momentum, the 

"fast" variables p, 6, and 40 are segregated from the "slow" variables a and 

6 . Computational efficiency is thereby improved. Moreover, it may be justi­

fiable to carry out the prediction of forced motion by means of a series of force­

free approximations or "osculating solutions" (to borrow a phrase from the 

literature of orbit determination). Thus it will be seen in section IV that the 

form G £ is well suited to the determination of the osculating motion and also 

to the application of the technique called "rectification" [531. 

Similar arguments can be made for non-spinning vehicles. In 

each case, the arguments a and 6 are the right ascension and declination of 

the z coordinate axis of an auxiliary reference frame to which one can con­

veniently refer when using Euler's transformation. 

The form thus chosen for P_ also affords one of the most con­

venient and plausible of methods for visualizing the motion of rigid bodies. We 

are able, moreover, to borrow from the wealth of existing treatises on the dynamics 

of motion with scarcely any modifications beyond matters of definition. References 

[1, 2, 3, 4] are recommended. 

The Euler transformation is obtained from the product of three 

successive and ordered rotations corresponding to the angles p , 6 , and 4, 

respectively. Thus if 

Cos* sin* 01 

Sll sin Cos 0 1. 1a 

0 0 1 



0 01
 
c [0 cos 0 sinG] and II.lb 

0 - sin cos01 

= sing( cosg( 0! then I. llc 

0 0 1 

a = C P. 11.12 

Carrying out the multiplications, we have 

cos cosp -cos 0 sinp sine cos sing +cos cos sine sin sin 

= -sin cosg -cosS sin ccos4 -sin@ sin( +cos6 cos ocos cos sinel 

sin e sin gP - sin 0 cosq, cos J 
II13 
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Ill. THE LEAST SQUARES ESTIMATION OF THE ATTITUDE 

A. Squared Error Risk Function 

Let us number the attitude sensing devices on board a space 

vehicle from 1 through m. Then the least square definition of the attitude 

problem may be stated as follows: find the minimum quantity 

jm n
2q 1: 1> W'(t.) ('(t.) -Y i) 1 

j i 
where 

Y. xt h observation obtained from jth sensor, 

r(t.) it predicted output for j sensor, 

wj(t.) weight factor for Yi 

.th 
t. = i observation time,1 

m total number of sensors, 

.th 
n total number of observations for j sensor.

3 

Because the observations are random variates (they possess a statistical 

distribution), the attitude determination problem is an estimation problem. 

That is to say, the objective is to estimate certain parameters and establish 

measures of confidence. Since it is possible to regard the estimation of 

parameters from the powerful standpoint of decision theory [46], we do not 

hesitate to mold our problem at once in the dies of that theory. For this 

reason q is called the "risk" function. 
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According to equations M. 1, the risk can be thought of as a mean 

squared error function. In section VI the reader will find the risk more formally 

defined as the expected value of the "loss" where the loss is a measure of demerit 

assigned to a given observation. As our "loss", therefore, we have adopted the 

squared error. This type of loss function is not the only one that can be defined 

but is the most convenient for the present application [46] . Nor is our definition 

of the least squares loss unique - refer to £59]. 

Notice that since the outputs from the sensing devices are con­

sidered to be scalar quantities, each with its own sample time t,, no assumption 

has been made about the simultaneity of observations. The value of this feature is 

apparent upon considering the problem of establishing the magnitude and direction 

of the magnetic field, for example, from an orthogonal trio of magnetometers 

which are sampled at different times by means of a commutator. If we depend on 

knowing the field vector in body coordinates, we encounter difficulties for rapidly 

spinning and, especially, tumbling vehicles. In employing equation IL.1, however, 

there is no need for us to know the on-board direction and magnitude of the field; 

only components along arbitrary (though non-collinear) axes sampled arbitrarily 

need be known. Nor is there need to know all three components. 

Assumptions and restrictions placed on the function q arise below 

where Taylor's expansion formula is applied. It will then become evident that 

certain kinds of sensors require extra care when included in a least square 

formulation. 

The weight functions w.. serve several purposes and their importance 

cannot be overemphasized. First, the weight functions are used to regulate the 

weight (importance) of the observations. When a given observation is considered 

"good" or "important", it should be weighted high and vice-versa. Second, the 

weight functions help to balance the amplitudes of the various signals. The outputs 

from solar sensors are apt to be numbers between -1 and +1, while a magneto­

meter will normally read several hundred gammas (10 . 5 Gauss). For a proper 

balance, the solar sensors should then be weighted proportional to the field if 
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their contribution to attitude is considered on equal footing with the magneto­

meters. For complete flexibility, therefore, the weight functions are shown 

as functions of the time as well as of the sensor index j [641. 

It is argued (Chapter 5, reference [46] that the "best" weighting 

matrix, in the sense of minimum system parameter variance, is the inverse 

observational error covariance matrix. This choice results in the minimum 

variance estimate, but, unfortunately, exact knowledge of observational errors 

is seldom available. 

Let us note, parenthetically, that the use of summation signs 

to sum over sensors is not to be interpreted literally. The group of sensors 

designated by the summation are not necessarily a fixed physical group. In 

automatic attitude determination, these groups are defined (formed) at will, 

depending on circumstances, as an aid in program organization. In the 

shadow of the earth, for example, the group of sensors would not include solar 

sensors while in the sunlight it would. This illustrates the time dependence of U. 

B. Matrix vs. Scalar Notation 

The notation simplifies if the matrix product is employed to indi­

cate summation over the observed data points [39, 46, 541. Suppose the following 

definitions are made: 

[)I3? Y ll.2a 

112Y2 11. 2b 

=r I .3 Ill. 2c 

1-2
-T T T2 ... III.2d 
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wJ-= IIL2e 

W W2 m. 2f 

( WW II. 2g 

D M T-Y Ml. 2h 

Equation III. 1 can now be written 

q = Y) (T -Y), or Ill. 3a 

q= D DD. III. 3b 

This method of notation is convenient but it has two disadvantages: i) it may be 

confusing in the presence of cartesian vectors such as B and S which are 

ubiquitous in this report and ii) it does not promote understanding of the mechani­

zation of the computations shortly to be considered. Consequently we do not ad­

here to the matrix formulation whenever this understanding may be jeopardized. 

Hence, in the remainder of this paper, the symbols L. and Z. will always 

mean summation over data points and over sensors, respectively. 
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C. The System Parameters 

Let us now introduce the parameters or variables of our problem. 

These parameters are designated by the array 

U =-(u 1 ,u2'u3 , ...]u


The quantities u are the arguments of the attitude problem. 

Their role in the expression for the squared error appear through T-,the 

predicted sensor output: 

T (ti) = 3B 

where 

a = 3 (U, t). 

That is, the attitude determination problem consists in adjusting U so that 

q is minimized. Although, as pointed out in the introduction, there are several 

applicable and powerful approaches to this optimization problem, our differential 

correction method is a second order Newton iteration scheme employing Taylor's 

expansion formula in several variables. 

D. The Computational Scheme 

1. Iteration Functions 

As is often done in solving nonlinear problems, we employ 

the concept of an "iteration function." Briefly, if U is a vector and 5 is a 

vector function of equal dimension, then the recursive relation 

Ui+,=U i - -E(Ui) 11.4 

is called an iteration function. That is, an iteration function is a recipe for 

obtaining a series. See references [8, 9, 10, 46, 553. 
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The order of an iteration function is related to its con­

vergence properties. For example, if near convergence the rate of change of 

q (U) is of second order in the rate of change of U, the iteration function is 

said to be of second order. It is evident that the order of an iteration function 

is the order of the first nonvanishing gradient of q (U) near convergence. 

In this discussion we limit ourselves to the "second 

order one point [83" Newton iteration function and briefly introduce it in the 

following paragraphs in order to help the discussion of Lagrange multipliers. 

2. The Normal Equations 

As far as the method is concerned, it is irrelevant that 

our problem is an attitude problem. What is relevant is the fact that the quantity 

q given by equation Ill.1 is a function of u1 , u2 , u3 .... and that the u's are to 

be so adjusted that q is minimized. If q is regarded as a hypersurface in the 

variables u, then one may think of the minimization problem geometrically as 

that of finding the lowest point on the surface. 

The procedure for locating the minimum is to assume 

approximate starting values for the parameters u. This set of values is desig­

nated by U0' Then the differential corrections 

AU =- (AnAu2 ,  n 3 ... 1 111.5 

are defined so that an improved value of U is given by 

U1 = U0 + AU 1.6 

It is tacitly assumed that U1 is an improvement over U0 if q(U1 ) <q(U0). 

Hence the next step is to calculate AU. In differential correction that is 

accomplished with the aid of Taylor's expansion formula for vector functions 

[26, 46] and the standard procedure for minimax problems [7, 16, 17, 20, 23, 

46, 51, 653. First, Taylor's formula states that 
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T (U1) = '(UA) + 4UV-(U 0)+M... 7 

where small quantities of order higher than the first have been neglected. 

Substituting expression Il1 7 into 11. 1, we have 

q z (Uo ) - (U 111.8.((rT Yi+AUVr 3 

j i\ 0 1 0 1/0 

In this expression it is understood that T iis computed for t., the observation 

time corresponding to " 

In the neighborhood of a minimum, the first order 

gradient of q vanishes. That is 

q 6 = 0; k 1, 2, 3, ... nu111.95qA uk u 

where n is the number of parameters u. Performing the differentiation, 

we have 

j +A+ A V 0; k=1, 2, 3, ... n. 111.10 

where E, called residual, is defined as 

In order to obtain an expression for the iteration function 

, let us derive the normal equations in matrix form. For brevity define the 

gradient of a vector as 

19
 



u aU2 

aS 2 a S2 
VaS a uI 2 ,u in1.12 

so that, to a second order approximation, 

T(U) = T(U0) + VTAU. 111.13 

Hence, in view of equation II. 2h, 

D T 0 + VTAU-Y, M.14 

where To T (U0 ). 11.15 

For convenience, define the residual vector as 

E = T0 -Y. II.16 

With the help of these definitions, the error function m. 3b becomes 

q = (E+AUvT)(E+VTAU). m.17 

The normal equations are obtained upon differentiating with respect to AU: 

0 2(v T E + V TvT 4U.) 1.1S 

Upon transposing we have: 

V T VTAU =- VT E. 111.19 
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Our iteration function may therefore be written as: 

= (VDVT)- 1 vTq _E. 111.20 

Equations M1.10 or 1I. 19 are a system of 7a linear 

equations in- n unknowns, namely Au k . The array solution, AU, if it 

exists, can then be applied as prescribed by equation 111. 6 and the foregoing 

calculation is repeated again and again. When circumstances are favorable, 

this recursive process will converge to the required minimum. 

The subject of convergence is too large to discuss here, 

as may be inferred from the references dealing with numerical techniques. Some 

practical comments pertaining to convergence in attitude determination problems 

are offered in Appendix B, however. For the present, suffice it to say that 

various iteration functions have differing regions of convergence and hence. 

certain methods will converge when others fail. Gradient methods [17, 46) 

(the method of steepest descent) and the method of conjugate directions [17, 

311 exemplify techniques directed at increasing the region of convergence. 

None can match the computational efficiency of the Newton iteration function 

near convergence, however. For a method combining the best qualities of the 

gradient method with those of the Newton function, see references [ 32 and 33]. 

3. The Notation of Gauss 

It is convenient at this point to introduce simplified 

notation due to Gauss.47]. Define the quantities 

(aa)j B w 111.22ai Bu1 1 Ba 1 

(ab)= w 21.22b-

(ac) = .......... III. 22c
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and 

(ac)J Cj .wi - III.22d 
2 1i i uI 

Next, suppose there is but one sensor. Hence the j designator may be dropped. 

Now the normal equations may be expressed as 

(aa) (ab) (ac) . . (ac) 

(ba) (bb) (be) . . . (bE) 

(ca) (ob) (cc) . . . AU=- (cE) 111.23 

If the matrix of coefficients is denoted by N and the column matrix on the 

right by r , the normal equations are 

N A U =-r. 1I.24a 

In the presence of several sensors, the normal equations are succinctly 

expressed as 

u =-Lr 3 . M.24b 

For convenience below, let us note that 

N = vTDVT IU.25a 

r = v TlE, In.25b 

as can be readily seen by inspection of 11. 19. 

22
 



4. The Normal Equations and Generalized Vector Spaces 

An interesting interpretation of equations M. 22 and m. 23 

is achieved with generalized linear vector spaces [16, 463. (In Appendix E the 

reader will find the concept of a linear vector space concisely defined.) The 

vector manifold presently to be discussed as an aid in understanding the normal 

equations is also applied advantageously in the probabilistic approach to error 

estimation. This approach is considered in section VI. 

Our vector manifold is considered generated by the 

random variates (a random variate is a variable for which a probability 

density function is said to exist [66]) defined in section III.A. It is immediately 

apparent that, since these experimental observations represent highly nonlinear 

functions of the system parameters, their probability density functions are 

dependent on the index i as well as j. That is to say, if the variates yi are 

taken as the components of a random vector 

1 

y U3 11I. 26a 

where 

Y 

- Y2 5 11. 26b 

then each element (component) of Y has a generally distinct probability density 

function. 
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We have thus defined a vector space having one dimension 

per random variate (observable) so that the dimensionality is En.. Evidently
j J 

the predicted functions J. are the components of a vector in this space and, 
consequently, the derivatives of this vector, b T/buk also belong to the same 

space. 

Let us denote the derivatives of T as follows: 

BT A, In. 27a 

T B, II.27b
 

...etc. 

Hence the quantities (aa), (ab), defined earlier, are regarded as inner products: 

(aa) = A A M. 28a 

(ab) = A B ILI.28b 

If the mean values of A, B, .. vanish, then, in the statistical sense, A - A, 

A * B, . are interpreted as sample covariances [191. Terms like A - A,
 

B • B, .. are called autocovariances and, if normalized, they are considered
 

correlations. Normalization is achieved by first defining the "norm" (length)
 

of a vector:
 

1 

A) 2 .  JAI =-(A - II. 29 

The autocorrelation of A is 

-aa(aa)/IA I,2 
1I.3Oa 

and the crosscorrelation of A and B is 

'ab - (ab)/(IAI IBI ), etc. 11.3Ob 

..................
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(Notice that ga = 1 and - < ab < +1.) 

Consider also the inverse covariances obtained by inverting N: 

* =N-I
 
(aa) -N (1, 1), I1.31a 

* N-1 1131 
(ab) a (1, 2) Il.S3b 

These covariances may also be normalized. The resulting correlations are 

perhaps more interesting since they provide a direct measure of the correlation 

between system parameters: 

a (aa)*/ IA*12 11I.32aaa 

o-b = (ab)*/(IA*l IB*I) 111. 32b 

where 
1 

IA*l (aa)*32 , etc. 111.33 

:Pursuing further the vector interpretation, the quantity 

pa4E - (A- E) / IAI D1.34 

is the projection of the residual E on the derivative vector A. 

Now, if in applying a scheme as outlined in section 111.C. 1, 2, 

convergence is not achieved, the geometric and vector interpretations may be 

helpful in correcting the difficulty. The magnitudes of the a Is and gIs calculated 

in the first iteration contain strong hints as to the nature of the difficulty. 
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For example, if the correlations gkI,1 k, are near­

+1 or -1, then the parameters uk and u1 may be poorly chosen. That is, 

they may be correlated, or at least they give rise to skewed angle derivative 

vectors. Skewed conditioning (ill-conditioning) is discussed in references 

[203 and [461. Even in the absence of skew-conditioning, difficulties may be 

due to exceptionally large projection of the residual vector on one or more of 

the derivative vectors. This situation can arise legitimately (see Appendix B) 

and calls for special handling. Suspicion toward computational or analytical 

errors should, of course, be aroused by identically vanishing correlations. 

Situations giving rise to perfectly correlated parameters are discussed in 

section VI while Appendices B and E are recommended for further discussion 

concerning the ideas presented here. 

5. Existence of the Inverse 

Existence of N- 1 is, of course, a necessary condition 

for the application of our computational scheme. Unfortunately it is not a 

sufficient condition to guarantee convergence to the absolute minimum nor 

does it guarantee that the iteration process will converge at all. (See 

Section 7.5, reference [46]. See also references [32, 333.) In the pre­

ceding section, certain correlation coefficients are defined which are useful 

in-determining if the normal equations are well posed. The best circumstances 

for inverting N are those in which ai, (or P,); k $1 are small. See reference 

[533, page 89. As will be seen later, the matrix will not be singular if the 

attitude determination problem is well posed according to the precautions to be 

developed in Section VI. 

Suppose two system parameters, say uI and u2 , give rise 

to derivatives that are correlated (proportional). That is to say, suppose that 

Tr. 16r.
I= k-1 ; i=, 2, 3, ... n II.35a 

26
 



or B = kA. I.35b 

Then (bb) = B B =k2A. A III. 36a 

=(ab) B • A=kA•A I1.36b 

.......... ..... ... III. 360
 

k2or (bb) = (aa), III. 37a 

(ab) = k (aa), Ill. 37b 

.... .... .......... II.37c
 

If III. 27a, b, a ... are substituted into M1.34, it is immediately apparent 

that the first two rows (or columns) are proportional with proportionality k 

and the determinant vanishes [161. 

The relationship 111. 35 means that parameters u1 and 

u2 give rise to derivatives whose ratio remains constants for all observation 

times. While this may seem a remote possibility when the parameters are 

independent, observe that condition I. 35 is satisfied whenever a derivative 

vanishes altogether. (In this instance it is immediately clear that N contains 

a column and a row of zeros.) A case in point is that of a dynamically balanced 

vehicle having only one magnetometer collinear with its axis of dynamical 

symmetry. Should one attempt to determine the three Euler angles and two 

rates, the normal equations become singular because b T / B 4 0. This 

will become clearer when the balanced vehicle is discussed below. Proportional 

derivatives may arise in a number of ways. Some specific cases are discussed 

in Section VI. 
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E. Constraints 

1. The Meaning of Constraint 

The case of the dynamically balanced vehicle also serves 

to illustrate an elementary problem with side conditions or constraints. It is 

explained later that, for such a vehicle, the two Ruler rates are functionally 

related. This functional relationship is the constraint in the attitude problem 

and can be employed to remove the singularity of N mentioned above. But 

more important is the fact that the constraint equation defines a path on the 

hypersurface q to which the "iteration path" ought to be confined in order 

to achieve the fastest convergence. Even when, because 

of the appropriate mounting sensors, the normal equations are nonsingular, 

failure to account for a constraint makes it more likely that a false minimum 

will be attained. Figure 4 shows the output of the x magnetometer of the 

dynamically balanced EPE-D (83-C) satellite during precessional motion. The 

curve shows the presence of two superimposed sinusoids with angular rates 

and 4), respectively. Without knowledge of the constraint equation or other 

data, we could fit this curve employing 

P= t+p,0 I.38a 

= 4t+4 0 III. 38b 

or
 

(= t+4 o0 Io 39a 

0 = t+ 0 . III.39b 

The second set of equations lead to the "false minimum." 

It is also clear that the constraint equation can be used 

advantageously in guiding the iteration path by reducing the number of independent 

variables. This is accomplished by solving the constraint for one variable and 
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applying the chain rule of differentiation. Let u,v, and w be the three para­

meters in a certain attitude problem. Then, in Gauss' notation, the normal 

equations are: 

(aa) (ab) (ac) u1 (Ei 

(ba) (bb) (b) Av 1([)[11.40
 
(ca) (cb) (cc) AwJ (CE) J 

Let a constraint relation be 

h (u, v, w) = 0. 11.41 

If it is possible to solve 111.41 for, say w, then the expressions 

d - BT dw BT­d' =-~+ III.42a 
du u du Bw 

-Tb + d TIll. 42b 
dv v dv Nw 

dw du + "-v d 11L42cau -w dv 2 

may be used to reduce the system of three equations 111.40 to a system of only 

two equations: 

-w 

F(aa)
t (ab)' An] [(aE)'Mj4 

(ba) '(bb)' IAv J [(bE)lj114 

where 

(aa' .(Bu du bw '(aa)I + -Lw 2 11.44a 

(ab)' -= (Au du Bu drv v DH.44b 

__T+dw E[ 

(aE' - i (;)u du aw 
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This system of 2 normal equations is obviously more 

efficient than the larger system of 3 equations. When 111.43 is solved, Au 

and Av will be the best corrections possible under our straight forward 

Newton iteration approach. For other approaches with better results, refer 

to Appendix B. 

It is interesting to note that if equations M1. 42 are 

substituted into all three expressions 11. 40, the determinant vanishes 

identically--the resulting three equations have only two unknowns. That is, 

it is nonsense to work with constrained parameters if the differentiation is 

carried out exactly and, conversely, it is necessary to work with constraints 

when differentiation is not done exactly. This is illustrated in section V. G. 2. 

2. The Dynamically Balanced Vehicle 

As a simple illustration, consider the case of an unper­

turbed dynamically balanced spinning spacecraft. Once the orientation of the 

angular momentum is specified, say by means of a and 6, the Euler para­

meters p , 6 , and 0, and their rates ) and 4 satisfy the relations [1, 441: 

P = I.45amt+po 

6 = I.45b0 . 

0 = 4 .t+ Ill.45c 

As discussed again below, the attitude relative to the angular momentum is 

solved when the five constants (p0, 0, 0, , are determined and, as demon­

strated with the EPE-D satellite, fitting equations mH.45 to the instrument out­

puts is feasible provided it is recognized that these five constants are dependent. 

It is readily shown [44] that the following equation of constraint exists: 

(a c os 111.46 
a 0 
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In this case we are eliminating * from the array of parameters. Following 

the chain rule as in expressions 111.42, the complete set of total derivatives 

becomes 

d ' Il. 47a 
det aC 

d III. 47b 
d6 

d III. 47c 

100 

d a +/I. 47dd % FdO a+d 

d a II. 47e 

In view of equation m1.46, we have 

d_$_ - (a ) sil I I.48a 
dO0 W a s 

- (ac) Cos e 11I.48b 
~a 

The motion of dynamically balanced rigid body may now be determined employing 

the parameters 

U = fa, PO, e0 , 00, P 1[1.49 

and the gradients as given in equations M. 47 and M1. 48. 

Further commentary here would anticipate the discussion 

of the balanced spacecraft as a special case of the general problem discussed 

below in section V. G. 1. 
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F. Differential Correction With Constraints 

The foregoing example was presented to illustrate the problem 

of a constraint that can be removed by reducing the number of variables. As 

shown below in connection with the nonbalanced spacecraft, it is often impossible 

to solve the equation of constraint. One may then resort to the method of un­

determined Lagrange multipliers if the constraint relation can be stated in a 

way which renders it compatible with the least squares normal equations. 

Compatibility is assured when the constraints are holonomic [1, 653, that 

is if they are of the form 

h(u u 2 ... ) 0• 111.50 

The method of undetermined multipliers consists of introducing 

new variables X sufficient in number to offset the over-determining effect of 

the constraints. The equations of condition are then derived from the fact that 

the gradients of q and each of the constraint relationships h must be collinear 

(linearly dependent) [7). Hence we wish to minimize the composite 

function 

_y) 2 m 
q* (T -. y + 1; X h .n.51 

1 rl r r 

The approach here is similar to that employed in deriving the normal equations 

111. 40. We must now keep in mind that the parameter array U is augmented. 

Thus 

u , .... Xm 131.52Ur u2 , ... .

Af* = An1 , A 2 , .. .Au1 , AX1... AX) . 11. 53 

Evidently the AXIs are to be equal partners with the Au's in the expansion of q 

in a Taylor series. 
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For simplicity let 

A = Xj, X2 ,  Xm... Ill.54a3 

H = [h1,h2 ,... hIn ].54b 

uU=TAl HL.54c 

AU* = lA, AA3. m.54d 

Hence we can write 

T = T(U0 ) + vTAU m11.55a 

H = H(U 0 ) + vHAU I.55b 

so that q* may be expressed as 

q* = (E + AtUvT) D(E + VTAU) + (A+ AA) (H + VHAU). 1.56 

Then the first 1 normal equations are 

0o 27(E + 2VT VTAU + AVH + AXvH I.57a 

h I+Ihtn th 
and the + 1-- through 1 + m equations are 

0 = H0 + VHAU. 11.57b 

Equations I. 57 are a system of 1 + m equations in 1 + m unknowns 

namely AU*. To illustrate, the three variable system 1. 30 with one constraint 

like 111. 31 would read: 
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Ah 2(aE) ,,hAu2(aa) 2(ab) 2(ac) bu b-,
 

2(ba) 2(bb) 2(bc) 6h AV 2(bE) 

111.58 

2(ca) 2(cb) 2(cc) aw wh 2(cE) aww0 

6h b___hh0 AX 0 hau av bw
 

These equations provide a method of solution to system fH.40 in 

the presence of a constraint. This system has four instead of two independent 

variables and is called an augmented system. Because of the increased number 

of variables, the method of Lagrange multipliers should obviously be avoided 

if possible. Another reason to avoid this approach is the need to estimate initial 

values for the X's. This quantity relates the relative absolute magnitudes of 

the gradients of the constituent functions in q*, the augmented error fumction. 

The X's may sometimes be available in analytical form. Refer to page 44 of 

Goldstein's text [1a. Generally one must calculate the X's employing special 

techniques. Computer simulation, for example, may provide tabular functions 

of X. 
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IV. THE EULER ANGLES AS A FUNCTION OF TIME 

A. Introduction - The Equations of Motion 

Figure 2 illustrates a suitable definition of the three Euler 

angles. They serve to define the orientation of one frame of reference with 

respect to another. Notice that when S = 0, (P is not defined. This circum­

stance can be troublesome if ignored [28, 40, 62 3. For an example dealing 

with this case, see [413. Refer also to Section IV. G. I below. These angles 

play a key role in attitude determination for they are the arguments of the ideal 

operator C. See Section II.L Hence it is important to obtain the Euler angles 

as a function of time. For a moving vehicle these expressions are obtained 

upon solving the Euler differential equations of motion which are derived from 

the fundamental law of angular momentum: 

dL =M' IV. 1 
dt 

Refer to[1, 2, 3, 43. 
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B. The State Vector Form 

In order to apply numerical integration techniques it is desirable 

to put equation IV. 1 in the "state variable" form [28, 37, 38, 46, 61, 653. 

(This can be done in several ways as discussed in [1, 2, 3, 4, 40) .) The 

state variable form is 

dV= F(V(t), t) IV.2
 
dt 

where V is the array of six variables and F is a vector function with six components. 

(When t appears only through V(t) as in the force - free case, the system IV. 2 

is said to be autonomous [4, 61].) 

It is shown in the references [1, 2, 3, and 4 ] that when the orienta­

tions of all vectors are expressed in the moving (body-fixed) system of coordinates, 

equation IV. 1 becomes 

a x = 2y Q, (b-c) +M x IV. 3a 

bQy = nz nx(c-a) +My IV. 3b 

eA =nx n y (a-b) + Mz IV. So 

where for convenience we have set Ix = a, Iy =b, Iz= c. 

It is also shown i the references [4, 45 that 

=x sin Cos'6+ y cos 0 cosG IV.3d 

= x cos -y sin IV. 3e 

= Qxsinocot6-n y C°SOcot0+ Oz ' IV.3f 
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C. The Force-Free Case 

Equations IV.3a through f are in state variable foryn (IV.2) and 

are a system six first order nonlinear simultaneous differential equations. The 

solutions are available in special cases. For example, if M 0, references 2, 

3, and 4 give 

x(t) =P =po en (s, k) IV.4a 

y (t) = q=q0 sn (s, k) IV.4b 

z(t) = r =r 0 dn (s, k) IV. 4c 

cos e= cr/u IV.4d 

cos @=bq/ap IV. 4e 

ft 2 2 r 2 t- Iv. 4f 
= t4 r22 

4A -Cr 
to
 

s = (t-t 0 ) a IV. 4g 

2
(b -c (2a - I') IV. 4h 

abc 

k2 ( a - 2b ) (9 - 2cul IV. 4i 

(b - c) (2a0 - 42) 

2 = (apO)2 + (bqo)2 + (CrO)2 IV. 4j 

21) = ap20 + bq20 +cr20. IV. 4k 
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In these expressions p0, q0, r 0 are constants; A and u are the absolute 

magnitudes of L and the kinetic energy of rotation, reppectively; en, sn, and 

dn are the Jacobi elliptic functions [21, 56, 57, 67 ]; k is the modulus of the 

elliptic functions; a, b, and c are the three principal moments of inertia. 

To derive these equations an inertial reference frame whose z 

axis is collinear with the angular momentum is chosen [4 ]. This choice 

engenders no loss of generality but it is responsible for our need to work 

with an intermediate reference frame which we have previously designated 

as the "auxiliary reference frame." 

As given by these equations, the Euler angles describe the 

general motion of a passive rigid spacecraft subject to no external forces. 

No assumption regarding dynamical balance has been made. Substitution of 

expressions IV. 4 into II. 11 and I. 13, therefore, enables one to predict (calculate) 

the attitude of a spacecraft of the type stated. 
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D. The Constraints of Energy and Angular Momentum 

Consider equations IV. 4j and k. These expressions are 

the equations of three-dimensional ellipsoids, namely the momental and energy 

ellipsoids [3 ]. Since and u are constant in the passive torque-free case, these 

expressions would also be tire if p0, q0, r 0 were replaced by p(t), q(t), r(t) and, 

hence, may be regarded as constraints. When the system parameters include 

p0 , q0 , r 0 , these equations may be carried as constraint relations in the form 

h (P =p02 a+q 2b+r 0 2c-2=0, IV. 5.a 

h2 (TU) = (p0a)2 + (qob)2 + (r 0 c)2 - 1 = 0 IV. 5.b 

If A and t are not known accurately, they must, of course, be included in the 

array of system parameters. Refer to Section V. A similar argument can be 

made for expressions IV. 4. h and i. The advantages of dealing with equations of 

constraint may outweigh the disadvantages induced by the Lagrange multipliers. 

For, as will be observed in Section V. G. 2, the calculations of analytical 

derivatives r-/u may be simplified. 
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E. A Note Concerning the Assumptions 

The choice of the inertial z axis collinear with L 

deserves a word of caution. According to relations IV. 4 which results from 

this choice, the orientation of the vehicle is defined with respect to a special 

coordinate system, previously called the angular momentum system. (See 

section IIK) Hence, the angles given by expressions IV. 4d, IV. 4e, V. 4f 

are not necessarily equivalent to those in the equations of motion IV. 3. The 

latter system of equations may refer to an arbitrary frame of reference, such 

as the equatorial vernal equinox system. The significance of this observation 

becomes apparent upon considering initial conditions. In system IV. 3, which 

is in "state variable form", we may arbitrarily assign six initial values of the 

six components of the state vector. In applying the formulas IV. 4 however, 

it is not possible to assign values arbitrarily to the said state vector. For in 

employing these formulas, we are not dealing with a system of differential 

equations but a solution to such a system. Hence the assumptions employed 

in the solution must be respected. 

For example, if the angular velocity G is taken as an 

initial condition, then the three Euler angles are uniquely determined. This 

means that the orientation of the vehicle is determined with respect to the 

vector L. It remains, therefore, to supply more information in order to 

define the orientation of L in the inertial coordinate system of our choice. 

Two parameters are necessary and sufficient for this purpose. Finally, one 

more parameter must be specified in order to define the orientation of the 

angular momentum reference frame with respect to a fixed rotation about L. 

These considerations are important in choosing an appropriate, independent, 

and complete set of parameters of the motion. Specific examples are given 

in Section V. 
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F. Force-Free Dynamical Balance 

If the spacecraft is dynamically balanced, that is if two 

principal moments of inertia are equal, the foregoing expressions simplify. 

Without loss of generality, let c be the unique moment of inertia. Then the 

modulus k of the elliptic functions vanishes and these functions degenerate into 

ordinary circular functions. See E21], paragraph 16.6. Hence we may write: 

x= P0 cos (s) IV. 6a 

nY= q0 sin (s) = p0 sin (s) IV. 6b 

Qz = r 0 IV. 6c 

= IV.6d 

'= (t-t 0 ) IV. 6e 

cot O= cot (s) IV. 6f 

s = (t-t 0 ) (a - c) r 0 /a IV. 6g 

k = 0 IV. 6h 

where p0 , q, r0 , 0' to, are constants. Equation IV. 6f may be replaced 

by: 

4 = (t - to) IV.7a 

where 

4= (a - c) (cos 60)/a IV. 7b 
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Equation IV.'7b is derived in [23; section 64, and in £443, page 5. There 

are several additional interesting relationships in this case. Refer to [23 

section 64, 31 ; section 69, and £42; sections 5 and 6. 

The equations necessary to construct a predictor for 

calculating the attitude of a rigid spacecraft subject to no torque, be it balanced 

or not, have now been stated. Needless to say, when torques are small these 

equations are still useful provided one does not attempt to fit sensor output 

data defined over too large an interval of time. This follows from the fact 

that the force-free parameters of the motion actually drift in time under the 

influence of the torque. No such fixed set of parameters could, therefore, be 

expected to provide a satisfactory fit to the raw data over large intervals of 

time. Parametrization of the attitude determination problem is, in this instance, 

better envisioned in terms of the parameters which characterize the driving 

terms M. 
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G. Inhomogeneous Cases 

In the presence of torques it is often necessary to integrate 

the equations of motion IV. 3 numerically. Integration is possible when the nature 

of the torques is known so that mathematical expressions for the driving terms 

can be written. These expressions may be functions of time, the six param­

eters of the motion and their time derivatives, engineering or calibration con­

stants (design parameters), and well defined control signals. A well defined 

control signal is one which can be mathematically reconstructed as a function 

of time. This does not imply that they must be continuously differentiable 

functions of time. Like the driving terms, the control signals are often 

characterized by the square wave; they are "on" or "off". Due care must be 

given to the integration of the equations of motion subject to driving terms 

with discontinuous time derivatives. 

In the examples to follow, we discuss several types of 

driving terms. Quantities are identified according to their suitability for 

numerical integration, i.e., according as to whether or not they are well defined. 

43
 



Example 1. An Active Control System 

Consider an, attitude control system designed to align the body x 

axis with the solar line of sight. Let the body-fixed coordinate system be de­

signated x, y, z and, for convenience, let the inertial reference frame X, Y, Z 

be chosen so that the solar line of sight is the X axis. The control law could 

be stated as: 

x x X = o IV.8 

In order for this expression to hold, a control torque must be applied to the 

space vehicle which tends to make this expression true. Such a torque might 

be: 

M=-kIx x X+H IV. 9 

where k1 is a proportionality factor and H represents a damping torque. 

(Without damping or momentum removal, as it is sometimes called, the result­

ing motion would be oscillatory, of course). A damping torque of mathematical 

simplicity is provided by a set of gas jets activated by rate sensing gyros. 

The rate sensing gyros provide electrical signals proportional to the components 

of the vehicle angular velocity C. In order to neturalize f, the gas jets 

should exert a torque 

H = -k2 IV. 10 

where k2 is also a constant. Our control torque may now be expressed 

M=klxX X-k 2 Q. IV. 11 

In order to integrate M, it is expressed in the same coordinates 

as system IV. 3, the vehicle coordinate system. Hence 
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M=-k 0] -k2 [f i] IV.12 

(In this expression Q,, the roll rate, could be ignored insofar as damping the 

control torque is concerned.) Now every quantity in this expression is well 

defined. kI and k2 are design constants; l'Y C2 C3 are measured by gyros; 

X2 and X are the y, z components of solar radiation in the vehicle system and 

may be measured by two cosine solar sensors. (The components of Q need not 

be telemetered or known for, as it happens, they are parameters of motion and 

are automatically well defined.) 

A Note Concerning the "Gimbal Lock" and Auxiliary Reference Frame. 

It is clear that the auxiliary reference frame in this problem is chosen 

so that solar radiation is parallel to the X or the Y axes. (The Z axis is 

excluded because, at acquisition, the correct attitude results in a vanishing 

second Euler angle. This implies that the Euler line of nodes is ill-defined (see 

Figure 2) and the equations of motion IV. 3 cannot be integrated as is evident 

upon inspection of the coefficients in system IV. 3d, e, f. (This occurrence is 

sometimes called the "gimbal lock" effect [28 3.) The foregoing choice of 

the auxiliary reference frame results in the simplest expressions possible 

for the driving terms. It may also be said to coincide with the terrmnal 

"angular momentum system" defined for spin stabilized vehicles. See SectionlL.k. 

Example 2. A Passive Torque Model 

A space vehicle with at least two distinct principal moments of 

inertia experiences a torque of gravitational origin. In the case of a central 

inverse square gravitational field and for a spacecraft of arbitrary shape but 

negligible size, this torque may be expressed as: 
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Mx =3y 2 mz' y' (c - b)/R 5 IV. 13a 

My =3y 2 mex' z' (a - c)/R 5 IV. l3b 

Mz =3y 2 m y'x'(b - a)/R 5 IV. 13c 

where y m is the gravitational constant of the attracting body, R is the orbit 

radius vector; x ', y ', z ', its components in the body frame of reference. 

See chapters 18, 19 and 20, reference[4]. 

Expressing R in the body frame of reference by means of the coordinate 

transformation 8 , we have 

R' = P R = aZR, IV. 14 

For example, with the help of equations 11. 10 and 11 .13. 

x' = (cos cos (p - cos e sin ) (-xsina + y cosc 

+ (cos 4sinp+cos 8cos) (-xcosansin-ysin sin+zcos 

+ (sin 4 sin 8) (x cos a cos 6 + y sin a cos 6 + z sin 6). 
DI.15 

In a similar manner, the reader may obtain expressions for y' and z I 

Thus, substituting in equations IV. 13, we have a force model 

describing the torque acting on a vehicle in a central gravitational field. 

Every term in equation IV. 15 is well defined: p, 6, 0 are the Euler angles of 

equations IV. 3 and x, y, z are available from independent knowledge of the 

ephemeris. 

In the event that several attracting centers must be taken into 

account, their associated torques M are additive. In near earth orbits, the 

noncentral gravitational terms may acquire importance and the principle of 

linear superposition (addition) also applies to them [4]. 
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Notice that equations IV. 13 have an interesting interpretation when 

a = b. That is, in the case of dynamical symmetry, the gravitational torque 

about the axis of dynamical symmetry vanishes. Then, if one recalls that the 

vector cross product of the body symmetry axis and R is 

/xx 

0 IV. 16 

we can say that equations IV. 13 become 

M=3my 2 (a-c) z'/ X R'/R5 IV. 17 

which indicates that the instantaneous torque is normal to the plane containing 

the radius vector R and the axis of dynamical symmetry. 

Equation IV. 17 shows how "gravity capture" works: the stable 

orientation of a nonspinning spacecraft is one for which R and k are collinear. If, 

on the other hand, the spacecraft spins about its axis of symmetry, the projection 

of R on this axis is constant causing it to precess about R. 

In near earth orbits the vector R cannot be considered constant, 

of course, and hence, for such orbits, the overall effect of the gravitational 

torque is more complicated. The net effect of this torque is obtained upon 

averaging over the period of an orbital revolution. See the article by R. J. Naumman 

in [712. It is found that the rotational angular momentum precesses about the orbital 

angular momentum (or the normal to the orbit plane). In the absence of spin, i. e., 

for "gravity capture", the stable orientation is one for which the principal axis of 

greatest moment of inertia is aligned with the orbital angular momentum; the 

axis of least inertia, with the orbit radius vector. Consult [4, 29, 35, 36, 42, 

70, 71, 72, 73, 74, 75, 76, 79]. 
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Two important observations can be made about this type of 

perturbation. First, the gravitational effects are apt to be negligible in the 

presence of other forces such as aerodynamic, magnetic, and control forces 

E70, 71). Second, because they are conservative, gravitational forces do not 

net work on a rigid spacecraft. This means that the total combined kinetic 

energy and angular momentum of the orbit and the attitude are conserved. The 

orbit attitude problems are, strictly speaking, no longer independent but are 

said to be coupled as a single 12-degree-of-freedom problem. Refer to [421. 

Furthermore, because of their weakness and conservative nature, it is clear 

that 1) their effects on the motion about the center of mass should be periodic, 

2) the first integrals El, 2, 3, 4, 5) should be recognizable, though perturbed 

[4, 701, 3) the number of first integrals unchanged, and 4) the number of 

constants of integration unchanged. These observations are helpful in designing 

a prediction functionwithout numerical integration. Refer to section V. E.3. 

Example 3. Torque Model for the On-board Flywheel 

The driving 	terms M in equations IV. 3 are now presented for the 

case of a vehicle possessing momentum storage devices such as flywheels and tape 

reels. The vehicle is otherwise assumed to be rigid. Here again, the basic 

principle is the constancy of the total angular momentum vector, L. 

Let the main body inertia tensor and angular velocity be I and 

respectively, Likewise, denote the inertia tensor and angular velocity of the 

kth flywheel by Ik and 0k , respectively. These quantities are all referred 

to one coordinate reference frame, such as the main body coordinates. The 

total angular momentum is the sum of the angular momenta: 

I kL = ICt+ 	r nk IV. 18 
k 
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Hence 

dL = Id+n xI+Q (Ikk+ k x Ik k )  IV.19 
dt
 

If we invoke the principle of vector addition for angular velocities EI], then 

nk = Q + k IV.20 

which states that the angular velocity of flywheel k is the vector sum of the angular 
k 

velocity of the main body and the velocity, W* , of the wheel with respect to the 

main body. Substituting IV.20 into IV. 19, we have 

dL k k -k-= (I+Ik )6+ a X(I+ZI k) a+ rI wdt
 

+wkx ln+.wkxx I k 
+n X twk 

IV. 21 

Let us identify the coefficient of 6 as the modified inertia tensor. Then, except 

for the last four terms, equations IV. 21 resemble equations IV. 3. It follows 

that the driving terms are provided by the said four terms. 

In applying these equations, however, we-should point out that 

the inertia tensor which results from 

1* IV2 
I = I + E I kIV. 22 

is not necessarily diagonal. Hence, the equations which would result form the 

vector relation IV. 21 would be complicated. For example, if I is diagonal, then 

the first equation reads: 

dLl k k k
1 

d- 1 1 + E (11 1 + I 12 2 13 

+ n2 a3 (I3 - I2)+ etc, 
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This system is not convenient for numerical integration since the derivatives of the 

state variables are not isolated. Evidently it is necessary to find a reference 

frame in the main body which diagonalizes I*. When this is done, we obtain: 

dL
dt 1 ~i t h +a a(I-I + (ik 

+n ( I* )*x ,l 

+ (DX E k ) + etq. 

IV. 24 

Strictly speaking the Ik s are now in a different reference frame, and, like I*, 

they should also have asterisks. If the masses of the flywheels are small compared 

to that of the main body, there will be little difference between the two coordinate 

systems. It could be that the axes of the wheels are parallel, or at least nearly 

so, to the assembled vehicle body principal axes. Hence, it may sometimes be 

justifiable to ignore from the start the non-diagonal terms in equation IV. 23. 

In equations IV. 24 the W's and do Is are known from the tachometer 

telemetry for these are the wheel rates and accelerations with respect to the main 

body. The driving terms are left in vector notation for brevity. 

Several examples of vehicles with on-board torques have been solved 

analytically so that numerical integration may be avoided. Consult Chapter 10 in 

reference [4]. The case of an on-board tape recorder has been integrated with 

analog computers by personnel at Allied Research. See reference [45]. 
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H. Additional Material on Torques 

Additional material about forces acting on spacecraft 

may be found in the following references: 

Gravitational forces: [4, 29, 35, 36, 42, 53, 70, 71, 72, 73, 74, 75, 76, 78, 79] 

Magnetic forces: [34, 40, 45, 49, 53, 61, 78, 79 

Electric forces: [53, 77, 78, 793 

Aerodynamic forces: [53, 70, 71, 78, 80 yolume VIHI and XI) 3 

Self-Excitation: [4, 78, 79, 80] 

Radiation: [533 
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V THE SYSTEM PARAMETERS 

A. Properties 

We have seen that the differential correction method leads to a 

set of linear simultaneous equations requiring, a set of independent parameters. 

See Section Ill. C. There are two additional conditions which should be satisfied. 

The computational scheme implies that the parameters are constants of the motion. 

Furthermore, since it is sought to find the minimum of a function q (u., u2 ... 

one must insure that a sufficient number of parameters have been taken into 

account. Should an important parameter be overlooked, the computational scheme 

cannot be expected to locate the true minimum. Thus we have our third property: 

the parameters should be a complete set. Examples of complete and independent 

parameter sets are discussed below. 

B. Cascading 

It is not implied, however, that all parameters ought to be 

adjusted simultaneously. If a given parameter is known accurately, it may 

be held constant during the computation. In actual practice this procedure 

is sometimes indeed necessary. At first, those parameters known accurately 

are held constant in order to relax (obtain approximate values for) others not 

so accurately known. Then the procedure is repeated, allowing freedom to all 

parameters for final vernier adjustment. This technique is sometimes called 

"cascading. ,1 

C. Constants of Integration and the First Integrals 

The parameters have thus been found to be a complete and 

independent set of constants of the motion appearing in the expression for the 

squared error function q. That is, they appear in the predictor operator, 3. 
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Notice that since the predictor embodies the solutions of the differential equations 

of motion, the constants of integration are candidates for out set of parameters U. 

It follows that, in the torque-free case at least, the first integrals 

are likewise elligible. (First integrals are defined in [5] and discussed in 

[ 1, 2, 3, 4].) Whether one chooses to work with the six initial conditions to 

the equations of motion or the independent first integrals, depends on the 

circumstances. Initial conditions are easier to estimate and visualize. But 

the physical interpretation of the equations of motion is most natural in terms of 

the first integrals. 

To illustrate in the absence of an external torque, L is constant 

and the expression for angular momentum L is a first integral [1, 4]. Should 

our predictor need to account for a small external torque M, it is advantageous 

to interpret the resulting motion in terms of the fundamental dynamical law of 

angular momentum. 

dL =M• V. la 
dt 

This equation is approximated by the finite difference form 

AL V. lb 
At
 

Now consider the attitude problem divided into several parts each covering a 

(possibly overlapping) time period A t so small that A L is also small. The 

solutions L are then obtained as a discrete sequence of "osculating solutions" 

which can be smoothed. This method provides both the attitude of the spacecraft 

and an empirical determination of M. Conversely, if M is known, the force-free 

parameters of the motion may be expressed as function of time in order to 
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construct a closed form prediction function which continuously "follows" the 

forced motion. Such a prediction function might be called one of "constant 

osculation." Refer below in section V. E. 3 for an illustration. 

D. On the Number of Independent Parameters 

It is known [1] that six arbitrary (independent) constants exactly 

determine the unperturbed motion of a rigid body about its center mass. (This 

is the same number of constants that determine the orbit.) This is not to say, 

however, that an attitude problem may not include more than six parameters. 

While in the zero-torque case there cannot be more than six parameters of the 

orientation, there are numerous other constants of the motion which may be 

included in our set of parameters. In other words, it is possible to choose quantities 

to be adjusted besides merely those associaged with the motional degrees of 

freedom of a rigid body. The two independent ratios between the three principal 

moments of inertia, for example, which serve to define the distribution of mass, 

maybe included. Thus, the number of degrees of freedom in the definition of the 

least square formulation of the problem may be equal to or greater than six; the 

degrees of freedom of the differential equations of motion. 

Notice that the number of parameters adjusted in the example 

discussed with equations 1I. 45 was six. Had we overlooked the equation of 

constraint, seven orientation parameters would have appeared. The existence 

of a constraint could, therefore, have been inferred. 

Eugene Leimanis [43 states that the equations of motion have but 

five independent first integrals or arbitrary constants of integration. This 

statement is reconciled with the foregoing discussion in Appendix A. 
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The reader may be interested to note the distinction between 

various types of degrees of freedom appearing in this paper. First, we have 

the three degrees of freedom of a rigid body [1, 3 about its center of mass. 

Second, there are said to be six degrees of freedom in the differential equations 

of motion. Third, there may be six or more degrees of freedom in the statement 

of the least squares problem. That is, q may be thought of as aifunction of 

six or more parameters. 
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E. Specific Parameter Sets 

1. General Case 

a. nhomogeneous Equations of Motion 

We state several possible sets of independent 

parameters suitable for our Eulerian definition of the attitude problem. The 

simplest set is the set of six initial components of the "state vector" V 

in equation IV. 2. This amounts to stating the initial angular velocity vector in 

body coordinates and the three Euler angles at that instant of time. This approach 

is most convenient when equations of motion IV. 3 are to be integrated numerically. 

In applying this set of initial conditions, we should note that the assumption 

that L is collinear with the inertial z axis is not made. (This assumption is made 

to simplify the integration. See page 17, reference [4], Therefore, the Euler 

angles '0 ,o'and 00 in equations IV,4 are not equivalent to those in equations IV.3. 

In this case we have: 

u1 = 01(0) V.2a 

V.2bu2 =Cl2 (0) 


Us = 03 (0) V.2c
 

V. 2d= ' 0u4 

U5 = 00 V. 2e 

u6 = 00 V. 2f 

b. Homogeneous Equations of Motion 

In the event we wish to apply the torque-free solutions 

IV.4, a suitable set of parameters is given by the following set: 
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u1 I(O) = (0) V. 3a 

u2 Q 2 (O) = q(0) V.3b 

u3 a (0) = r(O) V. 3c 

V. 3d
114 =a 

V. 3e=6 

u6 =P V.3f 

u5 

In contrast to the preceeding case, we have refrained from specifying the Euler 

angles because they are uniquely determined by equations IV. 4 once the 

angular velocity is defined. As already explained in section IV. E, although 

they dynamical aspects of the motion are defined with respect to L, it is also 

possible to arbitrarily assign the orientation of L as well as a fixed rotation 

about L. Hence a, 6, and 0 are the last three parameters. 

The parameter set V. 3 is equivalent to the 

following set: 

U = a (0) V.4a 

U =-Q- 0 v.4b 

V. 4c 

u4 = a V.4d 

u3 = t0 

V. 4eu= 

u6 = V.4f 
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In this set of parameters, the time t0 is adjusted independently. This amounts 

to seeking the instant of time when the angular velocity lies in the vehicle x, z 

plane. It is erroneous, therefore, to select both n2 and to as parameters 

of the motion because they are related by the equation 

02 (t0) = 0. V.5 

Refer to Page 20 in the work by Eugene Leimanis [4 3. 

Parameters of special physical interest are the 

first integrals of equations IV. 2. (For the definition of a first integral consult 

pageS, reference [5 3.) 

In the homogeneous case, two first integrals are 

the expressions for the kinetic energy of rotation, u, and the magnitude, A, 

of the angular momentum: 

2 u = a p2 +bq 2 +cr2 V.G6a 

2 2 2 2 
= (ap) + (bq) +(cr)V 

where p, q, and r are the components of Q. 

If u and g are specified, expressions of V. 6 are two 

equations in three unknowns p, q, and r. With one more equation, the unknowns 

would be determined and the motion with respect to the angular momentum would, 

therefore, also be determined. The third equation could be: 

q(t 0 ) = a 2 (t 0) = 0. V.7 

It follows that t 0 is a third parameter. Arguing as before, the remaining three 

parameters are those specifying the orientation of the angular momentum 
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reference frame. Thus, we have a possible set of parameters: 

u1 = M 	 V.8a 

V.8b
=tu2 

u3 = t0o V.8c 

u4 = a V.8d 

u5 =6 V.8e 

u6 =P V.8f 

(First integrals can sometimes be found also for the nonhomogeneous case 

[4, 703. In [70]see page 47.) 

2. 	 Dynamical Balance 

In this case the preceding parameter sets are also applicable. 

But if the equations of motion are homogeneous, i.e. if M = 0, then the Euler 

angles are given by the simple equations IV. 6 and IV. 7. Hence the most plausible 

set of parameters becomes: 

U1I = 10 V.9a 

u2 = e0 V.9b 

u1 = 0 0 V.9c 

u4 = @ V.9d 

u5 =a V.9e 

u6 =6 V.9f 
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As stated above, (P and 4 are related by the equation of constraint; equation 

111. 46. It is sufficient to include only one rate in the array U , the other rate 

being computed from the equation of constraint. 

3. A Predictable Inhomogeneous Case 

We wish to find a parameter set suitable for the deter­

mination of the attitude of a spinning space vehicle subject to torques having 

a known overall effect upon the motion. For instance, gravitational torque 

causes regular precession of L about the orbit normal P for earth centered 

circular orbits. We would like, therefore, to calculate the coordinates of L, 

a (t) and 6 (t), in order to construct our prediction function 8= QS (t). We 

use the coordinate transformation r which transforms a vector L from the 

vernal equinox system to the orbit oriented system (see Appendix D). Let 

N rL V.10 

N, (N2 + N2 )2. V. 11 
1 x y 

Then, for circular orbits, the rate of precession w of L about P is constant 

so that 

N = Ncos (wt +) ]
N Nsn (wt+ 0)V. 12 

N 

We can now write 
-L =r N V. 13 

a (t)= arctan (L/)y x . 14b 

6 (t)= arcsin (L,/ILI). V. 14c 
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If the functions V. 14 are used with a set of parameters like V. 3, 4, 5, 8 or 

9, the resulting prediction function is one of "constant osculation. Such 

a set enables us, in the absence of other perturbations, to construct a 

prediction function without recourse to numerical integration. 

The rate of precession w can be calculated from 

the fact that 

W X L = dL/dt = average £M] V. 15 

where M is the gravitational torque IV. 17. The phase angle is determined 

from geometrical considerations. For example, if L is known at some instant 

of time, say t 0 , then 

V. 16= arctan (N/N)wt -0 

61
 



F. The Gradients 

Expressions for an ideal attitude prediction function P based 

on the Euler transformation have now been stated. In the torque-free case the 

Euler angles have been given as continuous functions of time. We consider 

next the gradients which are needed in the computational scheme of differential 

correction. This scheme requires knowledge of the gradients of the quantities 

,r which represent the predicted values of observed variables. Refer to section 

IIIoD. According to that discussion, we require 

u£ uVT = 

The primary purpose of this section is to exhibit in detail the 

differentiation needed to solve the force-free attitude problem based on the 

ideal prediction function 8 for both the balanced and nonbalanced cases. One 

way to do this is to write down the explicit form of P and proceed undaunted 

with the laborious differentiation. We wish, however, to steer the approach 

toward a system capable of handling more complicated attitude problems. 

The present discussion will, moreover, suggest a foundation for the mechani­

zation of the general attitude problem. 

Let 3 be an operator and S' its formal (vector) operand both 

of which may be functions of the "system parameter" U. As in section II.H, 

we have 

T (u) = 3(u) 0 S, (U) V. 17 

where 0 emphasizes the operator-operand relationship. In analogy with the 

definition of V (see Preface), let the symbol 0 denote partial differentiation 

of 3 with respect to its formal operand so that the following equation shall 

be true 

V T a Cv3®S' + E0®VS'. V.18 
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When an operator is differentiated, a new operator is formed. Hence it is con­

venient to define the new operators 

=1 11 a, V. 19a 

= [V3l V. 19b 

so that 

Vr = I@®VS'+a2S'. V.20 

Notice that if the system parameters are arranged so that those affecting S' 

appear before those which affect 3 alone, then equation V.20 becomes 

0 

VIr = 31 ® vS' + V.21 

32 ®S' 

When there are no modification parameters the second member vanishes. 

That is to say, the first member represents the ideal differentiation while 

the second member alone accounts for nonideal effects. 

In view of equations H.3, 4, 6, we have 

VT q 1 ®f f ++ 2 ®f V.22a 

Vf X1I0VS' + 2®S' V.22b 

vS'= P ®VS+ 20S V.23 

Equations V.22, 23 suggest the way in which the differentiation of nonideal 

attitude problems can be analyzed. In most cases several terms will reduce 

to zero or, alternatively, to the identity operation. We are interested here 

mainly in calculating the last term in equation V.23, the only one needed to 
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handle a force-free spacecraft equipped with ideal sensors. (The first term in 

this equation can be nonzero for a force-free spacecraft equipped with optical, 

infrared, or other pulsed output instruments. Refer to section VI.E) 

G. Calculation of the Gradients of the Ideal Prediction Function 

1. Dynamical Balance 

We consider first the case of dynamical balance because 

of its simplicity and because it serves as a model for the laborious case of a 

nonbalanced body which follows. This discussion is limited to the parametrization 

recommended in section V.E .2. For simplicity, the derivative of e with 

respect to a certain variable u is denoted by 8 and the derivative of a trans­u 

formation, "say B, with respect to its only argument is denoted by 8'. Recalling 

equations 11.10, I.11, H.12, we have: 

9 !(V. 24a 

e 6 CL9£6 V. 24b 
aa
 

eCP a C h,'Y V, 24c 
6d 

&[a + VV.24d 

P, SC£ V. 24e 

. [aC + _] V.24f 

Equations V.24a, b, c, and e are trivial to evaluate. In equations V.24d and 

V. 24f, however, we have used the chain rule. The reason for the chain rule is 

explained in sections TI.E and I1.F. 

In order to evaluate V.24d and V.24f explicitly, recall 

the equation relating (a and b, namely equation 11.46 or IV.7b. Upon differen­

tiation we obtain 
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-	 0 sin 6 (a- c)/a V.25a 

- Cose (a 	-c)/a. V.25b 

Furthermore, in view of equation IV. 6e, we may write 

da 	 "o =' t&' V.26a 

and similarly, in view of equation IV.7a, 

d03
 - = 	 tS'. V.26b 

As far as the six parameters of the orientation are concerned, we have now 

stated all the gradients needed in the case of dynamical balance without torques. 

2. 	 Nonbalanced Force-Free Case 

To begin with, observe that if our array of system 

parameters is like V.2, then the following gradients are trivial: 

& = Qz V.27a 

6 a z 6 V.27b 

= '£zCa V.27c 

P, 8 B x V. 27d 

= z V.27e 

l =aal'' V.27f 
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where 8 1 is a transformation like II. Ila with 0 in place of 0 . But if our 
array of system parameters contains p0 . q0 , r 0 , or to, the derivatives are 

very much more complicated. For in this case the force-free expressions 

for the Euler angles are given by equations IV.4. Consider, for example, the 

total derivative of 6 with respect to r0: 

_c o s da + s dk c d 

= -csc6(dn(s) -+r 0 [ s Az ± d ] d (s)-r c2 dr 
r00A ac r0 0a d 0rA 

The most expedient approach seems to be to regard ar, k, g, u as independent 

parameters so that the chain rule can be relaxed. 

We propose, therefore, to adopt expressions IV.4h 

through IV.4k as constraints. For simplicity the subscripts "0" are deleted 

from the ensuing equations whenever there Is no confusion between the system 

parameter, say p0 I and.the corresponding function p(s). Hence our arrays 

of constraints and system parameters are, respectively, 

hi=2_*2 29a(7=0V. 

h =-k 22 -k *22 = O V.29b 

2 *2 
h - -M = V.29c 

h 2u - 2u* = 0 V.29d
4 

H tfh, h2, h3 , h42 V.29e 

and 

U fp, r, t, 04 8, a,a k, u,, X) V.30 
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where the array 

A 1' X 3' X4 V.31 

is the array of Lagrange multipliers. In equations V. 29, the asterisk is to 

remind us that the symbol in question represents the appropriate expression 

from the set IV.4h, i, j, and k. 

Our aim is to set up explicit expressions for equations 

III. 57a, b which are the normal equations in the presence of constraints. Since 

in the torque-free case £ is not a function of p, q, r, and t, its derivatives 

are trivial and therefore we concentrate our attention on the Euler transformation 

CL. Let u stand for any one of our system parameters. Upon differentiating 

this transformation, we obtain 

Su = ht + aC'G9a + I'CAO . V.32 

Evidently we are to calculate the derivatives of the Euler angles with respect 

to each parameter in the system V.30. We are also required to calculate the 

derivatives of H. The differentiation is simplified if we adopt the following 

definitions: 

w 2au*-p*2 V.33a 

X 2 -,2_c * V.33b 

y 2* - c r V33c 

2 r 2z - ,2 _ c V. 33d 
z c 

J(m, n) =f r - dt V.33e 
to 

Notice that the partial derivatives of w, x, y, z satisfy the following relationships: 
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wp = w t = x x =0 V.34a 

w = 2cr (a-c) V,34b 

x = 2ap (a-c) V.34c 

yp = 2ap(s) V.34d 

yr = 2cr(s) (I - dn(s)) V.34e 

zp = ayp V. 34f 

zr = cy r V.34g 

Ys= 2cr0 r ds- dn(s) V.8STh 

zs 

Yk 

= cy s 

=y ds 

V.34i 

V. 34jv.k4 

Zk cYk. V.34k 

The derivatives of the elliptic functions are: 

d cn(s) = -sn dn. s 
du u 

d-du sn(s) = cn dn su 

d 2 

d dn(s) = -k 2 . sn • cn 
68u 

ss 

V.36a 

V. 36b 

V.36c 
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where the symbol u stands for p0 ' r0 , to, k. Refer to [21, 56, 57, 673. 

The partial derivatives of s are readily obtained from equation IV.4g. 

The nonvanishing derivatives of s are: 

s =-a V.37a 

to 

S =-t 0 . V.37b 

(It is worthwhile to notice here that the derivatives of s would have been singularly 

complicated had k, ij, and p. not been taken as independent parameters. For 

example, the total derivative of s with respect k Is given by Arthur Cayley 

[56, paragraph 743 as 

ds _ 1 (e - k '2 f) k sn cn V.38-
k' 2 = k k' 

where k' is the complementary modulus of the elliptic functions, e and f 

are the Jacobi elliptic integrals of the second and first kinds, -respectively, 

taken from t0 to t.) 

We are now ready to write the derivatives of the Euler 

angles given by IV.4. The required derivatives are: 

= = 0 V.39ap 0 

6 = -cse 2. dn(s) V.39b r 

6= -csc C.S rs u= ta V.39cU JL 51 0 

cscs= . 2 -r V. 8d 
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Op csc 2 0. ba *- qp-2 -cn(s) V.39e 

=Or 0 = 0 V.39f 

O1 = -s2 b p s - qPu 
)s; u--t0 , a V,39gcc ' a 2 

= u A J (Yzu ); u p, r V. 39h 

( jYL+ z) s v. 39i 

a = LLJ(Ys, zs) s V.39j 

(P + A J(y, z V.39k 

P = A J(YU, zl). V. 391 

This completes the expressions required to evaluate equation V. 32, namely 

the derivatives of the Euler transformation. 

In order to apply equations III. 57, we are further asked 

to evaluate the matrix v H. Again we avail ourselves of the definitions V.33 

and the results V.34, Then the matrix VH is: 
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H P0 r0 t0 a8 a kk1 "2X1 \ X4 

hI 0 0 

1-0 
h0-2r (b-c)(a-c) 

b 
0 
0 0 

00 
0 0 

0 

2-a 0 
0Q 

0 0 0 0 
0 

0 0 

h a (cx-a-a-b)a2cr 

h2 20 w (b-c) 2cr0 w 2<b-c) 0 0 0 0 0 2k 0 0 0 0 0 

li2 2 

h3 -2a P0 -2c r 0 0 0 0 0 0 0 20 0 0 0 0 0 

h4 -2ap0 -2cr 0 0 0 0 0 0 0 0 2 0 0 0 0 

V.40 
This completes the derivatives needed to carry out differential correction with 

constraints in the case of the force-free rigid spacecraft. 
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VI. THE NONIDEAL ATTITUDE PROBLEM AND SPECIAL TOPICS 

A. Preface 

The preceding chapters describe the basic needs for solving an 

attitude problem defined in terms of the Euler angles, the Euler coordinate 

transformation, Gauss least squares, and Newton differential correction. In 

this chapter, the effect of nonideal sensor output functions are considered. 

This subject is distinct from the former because it is concerned with sensors 

and the ways in which their properties affect the computations. It is not con­

cerned with our understanding of the motion itself or the definitive prediction 

of it. Thus it is conceivable to have near perfect knowledge of the dynamics of 

the motion and yet be unable to determine the motion because of unsatisfactory 

knowledge of sensor functions. The present discussion, therefore, is concerned 

with the "what, " "when," 'Where" instead of the "why" and "how." Other topics 

of special interest are also considered. 

Sensor output functions are nonideal for several reasons i) they 

are subject to errors, ii) they are often complicated (nonlinear) functions of 

the quantities they are supposed to measure, and iii) they can lead to intractable 

mathematical expressions. These difficulties are illustrated in these para­

graphs and methods for dealing with them are suggested. But first we consider 

how nonideal factors affect the normal equations. 

B. The Normal Equations in the Presence of Modification Parameters 

Let U = (u1, u2 ... u6J represent the array of six system 

parameters, such as those discussed in section V.E, which define the force­

free motion of the spacecraft and define the array C fcl, c2 ' .... C 3 of 

m modification parameters which characterize the operator q or X. Our 

new array of system parameters becomes 

U* = U, C3 WI.I 

and the gradient operator becomes 
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-V£ V, c VI.2 

We wish to obtain the normal equations M.1 24 when the modification parameters 

are included in the computations. For the sake of brevity, let us recall equations 

111.25: 

NV T(V T VI.3 
u U 

r v u T E. VI.4 

In a similar fashion, let us define 

M -v V T(v cT VI. 5 
c c 

A =-v T¢E v. 
C 

PE--V T'>V T. 'VI. 
u1 0 

Drawing on the arguments leading to equation 111.24, we may write the modified 

normal equations as 

SAU VI 8 

M AC] 

Recalling the relationships V.21, 22, 23 and keeping in mind the partioning 

shown in equation VI. 1, let us calculate these arrays. For instance, 

0 0 
MI e2S]+L OJ+[ ~ +J HP1 [ J7E 
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and the corresponding expression for the matrix of coefficients in VI,8 is 

obtained upon replacing E in this expression with the transposed premulti­

plier of (b. As already pointed out in section V.F, the first term in VI,9 

represents the ideal problem in which our knowledge of the sensor transfer 

functions is assumed perfect, The second and third terms are concerned 

with the correction of sensor transfer functions. The fourth term takes into 

account the possibility that the "sensor operand" S may not be a '!pure" 

environmental variable but may be a function of U*. Refer to section VI.E. 

Notice that the partitioning of variables recommended by equations VI. 1, 2 

leads to the "separation of variables" illustrated in VI,9. The accuracy of 

the results are, of course, independent of the chosen method of partitioning, 

but our method leads to simplification in the mechanization of the calculations. 

C. The Modified Prediction Function 

Consider the problem of predicting the signals from sensors 

whose characteristics deviate appreciably from the ideal. The most common 

problems are those concerned with calibrations (zero point bias, slope, non­

linearity), misalignment of sensor axes, time delays, residual magnetic 

moments, and the like. The modifier q (see equation H.3) represents the 

mathematical operations that simulate the operation of the non-ideal sensor. 

Hence q is modelled ina similar sense as the torque terms. Parameters 

appearing in these models can be included in the array U and corrected as 

though they were parameters of the motion, Several examples are presented 

here in order to illustrate how the procedure works. 

Example 1 - Linear Response 

Suppose a given magnetometer has the following calibration 

curve: 

®f amf+b. VI.10 

(This expression defines the operator Qt) 
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Here T is the predicted transmitted signal having the units of pure number. 

Such a calibration curve contains two parameters: the slope m and the 

intercept b or bias. The calibration here is viewed in reverse, of course, 

for one would normally think of a calibration curve as 

f = (r- b)/m. VI.Il 

But, owing to the resulting mathematical symmetry, we prefer to deal in 

"telemetry space, " to coin an expression, In this way the predicted field f 

is transformed by means of q into dimensionless telemetry counts compatible 

with the vehicle's actual observed telemetry. In this example f is given by 

an expression like 1.I4 with B in place of S and where the significance of 

Y and K are unchanged. 

Since we are interested in adjusting b and m , our 

array of parameters, equation VI.1, becomes 

* = fUl, u2 , .. u6 , b, mI. VI.12 

Then, from equations 11.4 and VI. 10, it follows that 

ql®vf = mvf VI.13a 

q (f = (-- f) VI. l3b 

X1VB'=K - v&B VI.13c 

X2 = 0. VI.13d 

Substituting into equations VI.9, we find that the normal equations are 
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14 1m2 


m VFOvF mvF(l mvFsIF AU VV1E 

VI. 14 
trace 0 TOF Ab TO E 

F(FAm FDOE 

where 1 represents a column vector of 1's and where the periods are reminders 

of the fact that the matrix N* is symmetric. 

Example 2 - Nonlinear Response 

Suppose next that the sensor in the preceding example has 

a nonlinear response so that the calibration curve VI. 10 is replaced by 

m 
r

T = Q®fs Lc (f). VI.15 
r=O r 

Then 

q f=EEV rc vf VI, 16a 
rr=O 

q2 0fm=-i, f, (f)2, °,(f)m) VI. 16b 

and the normal equations are 
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-j AJ 22
2- .. AU EvFDEDvF F cDFr vFvFeDF 

I
1oEtracet IDF IF Ac I 

FI)EF DF FibF 2 Ac 2 


"22
2 
.. F2 E VI. 17
F 2 eF Ac 3 


a a a 



where the symbol , represents the factor in front of vf in VI, 16a and terms 

like F2 represent column vectors like 0(ti)]° 

Equations VIol7 enable us to adjust, in a least square 

sense, the various coefficients in the power expansionVI. 15. 

Example 3 - Residual Magnetic Dipole Moment 

When the space vehicle possesses a residual magnetic 

moment, each magnetometer detects both the field due to the moment and that 

due to the environment according to the principle of linear superposition. (We 

exclude from this discussion those magnetometers insensitive to constant fields.) 

If Be and BP denote the fields due to the environment and the magnetic moment 

P, respectively, then the resulting field sensed by the magnetometer is 

BeB = + BP, VI. 18 

Let us limit the discussion to a dipole moment, denoted 

by P, whose direction and magnitude are to be determined and let J denote 

the position vector of the magnetometer with respect to the dipole. (That is, 

let the origin of body coordinates be at the dipole.) Then the magnetometer is 

in a potential field [26, 273 

0(J) P " J VW.19 

where C is a constant which reduces to 1 in the Gaussian system of units [26]. 

Hence we shall drop it from the rest of this discussion. 

Taking the cartesian gradient of %,we have the field 

Bp v $ = - 2 + 3 J VI.20
JJ3 J5 

so that the component of Bp actually sensed by the magnetometer is 

Bp - K= P K + 3 (P " J)(J " K) VI.21 

58 
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Since our aim is to determine P, our array of system parameters is 

U* = fu 1, u2 , ... u6 , Px Py Pz]. VI.22 

For brevity, define the vector Q with components X, Y, Z, so that 

Q r[X,Y,Z _ K + 3 (J'K) J VI.23 
j3 j5 

Evidently we have 

P ' K (Pr= q®f-f- +3 J)(J- K) VI.24j3 	 j5
 

l Vf-Vf 	 VI 25 

VI.262 ®f Q , 

Substituting once again into VI. 9, we have the normal equations:
 

VF(V F vF(1X vFllY vF IZ AU vF&E
 

x -	 VI. 27
1b1 !2 IXY I(DIXZ AP 	 X ITE 

X1X 

*T iy2 "1Iyz AP YIbE 

AP ZI6ESIZ. z 

This system of normal equations enables us to use the magnetometers to compute 

the attitude of a space vehicle despite the perturbing effect of a magnetic dipole. 

79
 



D. Singular Normal Equations 

In section IME it is pointed out that the normal equations are 

singular when a parameter gives rise to an identically vanishing gradient or 

when two or more parameters result in proportional gradients. These singula­

rities can disappear when there are two or more sensors contributing to the 

raw data. Suppose that we have a two-sensor, two-parameter system. In 

GaussI notation, let the matrix of coefficients associated with the first sensor 

be 

N(1)= 	 [(aa) (ab) 1
L(ba) (bb) J VI. 28 

(See equation 111. 23.) Suppose that the parameters give rise to proportional 

gradients so that, as shown in equations 111.37, N 1) can be written as 

Nk2) = k2(aa)Jk 	 VI.29 

where k 	 is the proportionality factor. Now suppose that the second sensor 

likewise 	gives rise to a singular matrix of coefficients N(2): 

N(2 ) =  (xx) (XY)] VI.30 
(yx) (yy) 

N(2)= (xx) 2 p 	 31 

The complete system is 

(11) + N(.)) Au = - r 	 VI.32 
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N(2 ) , It is immediately apparent that N(1+ though the sum of two singular 

matrices, is not generally singular. 

In the examples to follow a sensor is called a z-sensor if its 

axis of sensitivity coincides with the body z-axis. We wish, moreover, to 

recall equation H. 13 which describes the motion of the body axes with respect 

to the auxiliary frame. (See section II.K.) 

Example 1 - Vanishing Gradient 

An obvious example of a vanishing gradient leading to a singular 

matrix of coefficients is r / 4 for linear or nonlinear z-sensors. This 

is evident from equation II. 13. Hence any attempt to determine 0 or 

directly from the raw data using a z-sensor alone will fail. (This angle and 

spin rate could be obtained indirectly from, say, knowledge of the angular 

momentum, velocity, kinetic energy, and the principal moments of inertia. 

See equations IV.4.) 

Example 2 - Proportional Gradients 

Consider also a force-free spacecraft dynamically balanced 

about its z-axis and equipped solely with a linear z-solar sensor. From 

equations 11.4, 11.9, and VI.10, we have 

7 = mf + b VI.33 

f = [13 VI.34 

where the 3 identifies the 3rd row of the Euler transformation. For simplicity 

let the components of the vector £ S be fX. Y Z]. Thus, in view of H. 13, 

f = sin 6 (X sin(p- Y cos 9) + Z cos 8 VI.35 

where 0 is a constant (See section IV.F). It is easily shown that 
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f - (f- Zcos ) cot 6- Zsin6. VI.36 

Hence 

ff/f = cot e - Z/(fsn 6). VI.37 

This shows that f (and consequently rT correlates with In and Tb if Z = 0, 

i. e., if solar radiation is normal to the angular momentum. In this instance, 

an attempt to adjust any two of the three parameters 6, bias b, or slope m, 

results in a singular matrix of coefficients. 

Consider further the case of vanishing inclination 6: 

lim (f/f) = f in e/(f cos - z). VI.38 
6-0 

Thus we see that, for a balanced vehicle with vanishing inclination, the z sensor 

slope and bias cannot be determined solely from the output of the said sensor. 

This example illustrates the possibility that parameters taken 

from two or more operators result in proportional derivatives. Inspection of 

equation VI.24, for instance, also reveals that an attempt to adjust at once 

the bias level of a magnetometer and the residual magnetic moment can lead 

to proportional derivatives and singular normal equations. 

Example 3 - Inertial Platform OAO 

Suppose we wish to apply least square differential correction to 

an "inertial platform" spacecraft (like the Orbiting Astronomical Observatory) 

with vanishing angular momentum. Clearly, the gradients associated with 

the output of any one sensor are constants (in so far as the sensor operands 

are constants) and therefore lead to singular matrix of coefficients. But, as 

explained by equation VI.32, the singularity disappears when other sensors 

are included. 
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E. Analytical Requirements for 3 

Because Taylor's formula is employed to expand r in terms 

of the parameters, it is clear that our expression r should be continuous and 

should possess continuous derivatives up to the highest order appearing in the 

expansion. These requirements must be met in the neighborhood of the correct 

point of convergence. As observed in section V. F, S itself is not generally 

a function of the parameters. Hence the stated conditions apply to 3. The 

resulting error function will then be well behaved in the same domain. 

1. Functional Replacement 

Unfortunately the functions encountered in attitude deter­

mination do not always conform to these- requirements. One approach to this 

difficulty is that of "functional replacement. I This strategy is one of recog­

nizing that the actual non-analytic sensor output may be approximated by 

another suitable analytic function. In order to do this it is merely necessary 

to insure that i) the shape of the new curve yieid zero average squared error 

near convergence and ii) the derivatives and, above all, their algebraic signs 

contribute correctly toward the task of minimizing the squared error. Another 

approach is to disregard the sensor output function altogether and regard its 

time coordinate as the new function. This type of functional substitution is 

most natural in dealing with sensors which record events as opposed to those 

which measure intensive quantities. If the time coordinate replaces the function 

or ordinate, then the new abscissa is the "event number." This outlines the 

technique by which infra-red and digital counter outputs can be employed in a 

differential correction scheme without the extensive preprocessing which is 

otherwise needed to transform their pulsed outputs into suitable analytical 

quantities. 

Sensors whose outputs are characterized by the word 

"event" are referred to as "event sensors" and their outputs will be referred 

to as "event functions. " Several examples are offered to illustrate the 

suggested method of approach. 
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Example I - The Tuned Oscillator Magnetometer 

Consider a magnetometer whose output is characterized 

by the equation 

r = 0 VI. 40a 

T = k1 1K. B'I IKXB'I/B12 - k2 VI.40b 

whichever is greater [50] k and k are constants, If p denotes the angle 
1 2 

between the sensor axis K and the magnetic field B, then 

T = 0 VI.41a 

T" = k 1 1cos pi sinp - k2 VI.41b 

whichever is greater. 

This function possesses discontinuous derivatives at 

several places. See Figure 5. The simplest way to handle this case is to 

screen raw data to remove all the T = 0 values. Next, the function VI.41b 

is replaced by 

r k 1 cosp sinp-k 2 VI.42 

where negative r are retained. Then, in order to insure that the signs of the 

derivatives and those of the errors E combine effectively, the following test is 

performed: If o is in the range [0, IT/4 1, E is set equal to E . That is, it 

is left unchanged. In the range [7v/4, f/Z', the "replaced" function is reflected 

in the x axis and, therefore, the sign of E is reversed. The intervals 

[f/2, 31T/4] and [37r/4, 7T] are handled in the same way. 
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Example 	2 - An Event Sensor Function (Time as a Function) 

Consider an infrared scanner on board a dynamically bal­

anced vehicle spinning about its axis of dynamical symmetry. The line of sight 

of the scanner axis can be imagined to describe a smooth surface as it sweeps 

the sky, Ideally this surface is a cone, If the sensor is mounted exactly per­

pendicular to the axis of rotation, the cone becomes a plane. At certain times, 

this imaginary surface will intersect the horizon. When the sensor performs 

properly, an electrical pulse is generated each time the horizon crosses the 

field of view of the scanner. The time intervals between pulses convey infor­

mation, though indirectly, as to the orientation of the spin axis and the spin 

phase. Computation of attitude from this information can involve a considerable 

amount of intermediate calculations [441. Sometimes it may also involve pre­

processing and transformation of raw data [493. 

The principle advanced here is to rely on raw data as 

much as possible. But the signal generated by the scanner is an "event function" 

and is not suitable for differential correction since it is not, in principle, 

differentiable. The time of the pulse signal, however, is a piecewise differen­

tiable function of the parameters of the motion. To see this, refer to Figure 6. 

A small continuous displacement in, say ot, will cause a similar displacement in 

the intersection of the horizon and the imaginary cone. 

The problem, therefore, is to find an analytical expression 

for the pulse times in terms of the parameters of the motion. We proceed as 

follows. First make the following definitions: 

p 	 orbit radius vector VI. 43a 

L 	 spin.axis vector VI,43b 

c 	 half angle subtended by the earth at 
the vehicle VI.43c 

X 	 a cartesian vector in space with 
components x, y, z. VI.43d 

7 - the angle between L and the sensor 
axis. VI. 43e 
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The origin of coordinates is chosen at the vehicle center of mass and the 

dimensions of the latter are considered negligible. Hence the earth is located 

at - p and its horizon defines a cone with apex at the origin, The expression 

for this cone is 

h(x, y, z) =h(X) c=os C. VI.44 

Similarly, the expression for the cone described by the sensor line of sight is: 

-) X Lg(x, Y, z) g(X- IX ILI cos 11V. VI.45 

These two imaginary conic surfaces have a common apex at the spacecraft center 

of mass. 

The vectors X satisfying equations VI.44 and VI.45 

simultaneously are the intersections of these surfaces when, or if, they intersect. 

In order to solve these equations simultaneously, a third condition is required. 
2 2 2

Such a condition might be that x + y + z = 1. Hence our system of equations 

can be written as: 

X'
 V. 46aXO PIcs 

V. 46bX = ILl cos 

X X = 1 VL46c 

Let p ( -p, -q, -r) VI. 47a 

L [a, b, cI VI.47b 

jp Cos E VI.47c1 
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- ILI cos 7. VI. 47d 

Hence we have 

px + qy = i - rz VI,48a 

ax + by = - cz VI.48b 

2 y2 2 v.8 
(1-x - ) = z . VI.48c 

The determinant of the first pair is 

A a pb-qa. VI.49 

Then 

u-rx q 
x =VI. 50a 

1-cz b 

Y= I-z VI.50b
/A 

2 21 
z= + (1-x -y ) VI. 50c 

When VI.50a and VI. 50b are substituted into VI.50c, the standard method of 

solving quadratics yields solutions for z whence x and y may then be 

obtained via equations VI. 50a and VI. 50b. 

We have thus obtained the predicted direction of the 

sensor axis at the instants of time when the horizon is intersected. These 

solutions are functions of the known orbital position vector and the estimated 

spin direction which is given by: 
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L1 = cos 6 cos a VI.51a 

L - cos 6sina VI.51b
2 / 

L3 = sin 6. VI. 51c 

In order to predict the pulse times, the predicted sensor line of sight X' is 

computed as a function of time according to 

X t (t) = K"I(U(t)). VI, 52 

As a is advanced in sizeable time increments, the inner product 

X'(t) - X VI. 53 

is surveiled. When it approaches its maximum value of +1, the step size is 

reduced somewhat and the time of the maximum is obtained. (Linear inter­

polation could conceivably be accurate enough to establish the crossing time.) 

This outlines an approach to the calculation of an error 

function based on the squared time differences between observed and predicted 

pulses. No essential transformation of raw data has been assumed. Certain 

precautions would be required. This method expects reasonably good esti­

mates of the orientation to begin with. Ambiguities arising in connection with 

the use of I. R. scanners would still have to be resolved prior to differential 

correction. Consult references [441 and [49). 
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2. An Artificial Function and Differentiable Sensor Operand 

Instead of replacing the "event sensor function" by its 

time coordinate, there is another approach which is more interesting. In this 

next method, the sensor and its function are replaced by an artificial sensor 

and an artificial function. We now avail ourselves of the fact that the inter­

sections X of the two conic surfaces are normal to the cartesian gradients of 

these surfaces everywhere along the said intersections, This means that if the 

spacecraft were equipped with a device capable of measuring the vector inner 

product between its line of sight and the gradient of the imaginary cone h, it 

would register zero at the same time that an I. R. scanner generates its pulse. 

We propose, therefore, to replace the original nonanalytic square wave by an 

ordinary ideal cosine function, T . It is implied, however, that the only times 

when we have any raw knowledge of the new artifical function r is when T = 0. 

Hence the predicted values themselves are the residuals. 

The cartesian gradient of our surface is obtained as 

follows: 

Vh = h ay' azAhax' 6 h VI.54 

where 

h = px+qy+rz = u VI.55 

Vv1h = (0 *I5)T, Ix31 

which is evidently normal to X as claimed. The vector Vh is now taken 

as that part of the vehicle environment which is detected. Detection is 

accomplished by a hypothetical sensor whose output is 
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f = K" 8vh VI.57 

which now replaces the I. R. scanner square wave. The new function is seen 

to be similar to that of, say, a magnetometer. Refer to equation 11.4. Here 

vh plays the role of B. Thus, the original pulse output of the 1. R. scanner 

is replaced by a vector inner product which satisfies the analytical conditions 

for differential correction. The new function f is, in fact, differentiable in 

terms of elementary functions. In calculating these derivatives, we observe 

a simple precaution: the new operand, vh, is a predicted vector function 

and admits differentiation according to equation V.23. 

The differentiation is as follows: 

df = K. -dg vh + K.8 dVh VI.58 
du du du 

The first member is recognized as the usual differentiation 

discussed in sections V.G, F. The second member accounts for the fact that 

vh is a predicted vector dependent on the right ascension and declination of 

the spin axis. Suppose that, without loss of generality, the gradient vh is 

taken at IX I= 1. Then 

vh = -p + (p "X) X VI.59 

dvh - dX dXdu( )X+( X) dX VI.60 
dvdu
 

In order to calculate d v h it is evident that dX/dudu' 

is to be evaluated. This calculation may be carried out by first differentiating 

equations VI.46 and then solving dX/du. Carrying out the differentiation and 

maintaining I = 1, we have 
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dd (X.iP)= du p = 0 VI.61a 

d dX •L + X dL -

u (X •L) = du + du 0V.61b 

d_ dX 
du(X'X) = 2X -= 0 VI.61c 
dii dui 

That is, 

dX 
-- dui 0 = 0 VI. 62a 

dX •KL = -X. dLdu V1. 62b 

dX 
° X

dui 
= 0 VI.62c 

This is a system of three linear equations in three unknowns, 

dx
duu' dv

du dzand 7 . The determinant is: 

p q r 

JAI L L L3. VI.63 

x y z 

Thus 

dx d!L / x A VI. 64 
du= du 
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Substituting into equation VI.60, we can now proceed 

with differential correction. This is an example of a nonvanishing sensor 

operand gradient discussed in sections V.F and VI.B. 

F . Mechanization of the Calculations 

Granted that a given attitude problem is to be solved by means 

of least square differential correction, we wish to know the principal steps 

in the calculations. It is assumed that we have the various algorithms or 
"subprograms" needed to calculate trigonometric functions, Jacobi elliptic 

functions, quadratures, matrix inversion, and the like. We also assume below 

that we have certain subprograms especially useful in attitude determination. 

One such subprogram is a generalized vector differential correction algorithm. 

Another important program is a generalized n-degree-of-freedom integration 

package for n-coupled first order differential equations. 

Still more specialized subsystems are those needed to calculate 

the sensor transfer functions q and the geometric operator X. In the dis­

cussion to follow, the statement "CALL q " and "CALL X " are understood 

to mean that the designated operation is called for and performed on the 

appropriate operand. It is also understood that these subprograms test a 
"status indicator" L in order to determine whether the primitive operation 

or one of the derivative operations is sought. That is, the statement "CALL q" 

results in q0®f, q 1®f, orq2®vf, depending on whether L= 0, 1, 2, 

respectively (we are saying that q0 is identical with Q). 

It is assumed, finally, that the participating sensors and para­

meters are selected and that environmental data are available for the entire 

time interval under consideration. 

We look at the computational process first from a high level, 

namely the differential correction loop level. The important steps, illustrated 

in Figure 7, are as follows: The first is calculation of the predicted vector 

function T(I, J) for all I, J. The indices I and J refer to ith observation time 
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and jth component (sensor), respectively. The second step is calculation of 

the gradients vT(I,J,K) where K pertains to the kth parameter. The third 

step is to solve the normal equations; the fourth step, to test for convergence. 

We consider next the processes taking place within the first box, 

figure 7. The object is to calculate the sensor output functions T(I,J) corres­

ponding to r j(ti). Prior to the start of the I loop (time), the appropriate sen­
sor (J) related data are set up for ready and efficient access. Then, if the 

nature of the circumstances require, the sensor status and environment are 

tested for each sample time. This step is necessary, for instance, to account 

for an eclipse. It is, more generally speaking, a test for the possibility that 

the operators q and X and their operands may have suffered a change that 

entails a new logical flow. The first order of business in calculating the 

sensor functions is to predict the attitude itself. This is accomplished by 

calculating the five angles a, 6, (p, 6, 0. 

Five distinct possibilities exist for calculating these angles, 

depending on the type of motion. The type of motion is designated by the 

index M. See Figure 8. There are three force-free cases: i) force-free 

simple spin (M = 1), ii) force-free balanced precessional motion (M = 2), 

and iii) force-free nonbalanced general motion. The case of forced but pre­

dictable motion, like that discussed in section V.E .3, is handled in case 

M - 4. On the other hand, all situations calling for numerical integration of 

the differential equations of motion are handled in case M = 5. When the 

angles are computed, the attitude is obtained upon substituting into equations 

11.10 and 11.13, Then it is a simple matter to transform the environmental 

variable S into the body system of coordinates by means of S' = 8S, namely 

equation 11.8. 

The next important consideration is the geometry of the sensor 

mounting. This problem is handled by the operator X operating on S'. See 

equation 11.7. With L = 0, CALL X gives us the ideal sensor input, f. 
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Hence the next step is CALL q which obtains the sensor output function Tr in 

a telemetry counts. See equation 11.6. 

The next important process, box 3 in Figure 7, is calculation 

of the gradients. The simplest method for calculating gradients in all but the 

first few types of motion (M = 1, 2), is to estimate them by finite differences. 

If we choose to calculate gradients from analytical expressions, we follow the 

"separation of variables" guidelines of section V.F and VI.B 0 which lead to 

modular processing illustrated in Figure 9. Calculations proceed from top 

to bottom along a column, the column chosen depending on the type of para­

meter being processed. The left-most column is for the fundamental para­

meters of the motion, discussed in section V.E, such as 0 , Po, 0, 00 0, 80, 

4', a, b, c, p0, q0 , r0 , p, u, to. The second column leads to the gradient of 

- with respect to 71 ,y2' y3 "... namely the "mounting" or geometric para­

meters affecting X. Similarly, the third column leads to the gradient of r 

with respect to sensor calibration constants cl, c2 , c3 .... 

We have mentioned the most important considerations. 

Questions concerning the organization of raw data, access to environmental 

data, preprocessing, and output calculations belong to the data processing 

problem which the author is considering separately. One of the most interesting 

aspects of the latter task is the mechanization of sensor data (sensor definition). 
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G. Optimization and Error Estimation 

1. Preface 

Because we have observational data in excess of the mini­

mum needed to solve the problem, we wish to find the best estimate of the system 

parameters. Hence, the task is a dual one: to design a good prediction function 

J (U, t) and to optimize the estimate of U. The purpose of the following para­

graphs is to outline a definition of the optimization problem from the standpoint 

of probability and to consider measures of confidence. In order to avoid the 

proliferation of subscripts, the following conventions are adopted. The symbol 

U is reserved for the true system parameters which are always unknown to the 

observer. His estimate of U is designated by W. V, on the other hand, refers 

to the entire range of possibilities for the system parameters. It is said that 

W is the estimate of U, the estimand. Quantities like dV stand for dv1 . dv2 .... 

Since our problem inherently involves arrays, our argument is in matrix form 

and we speak of U as the "system parameter" and E as "the error", etc. Finally 

we let Z be defined as V-U. 

2. Methods of Approach 

In Section II, the least square observational error is 

adopted as the criterion for the optimization of the estimate of U. Although it 

can be accepted as an ad hoc postulate, it can also be related to more funda­

mental approaches under special conditions. (Refer to "maximum liklihood" 

and "minimum variance" estimation methods [46, 81, 82] ). 
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3. Definition of Loss, Risk, Covariance 

a. The Loss 

The "loss" is a measure of disapproval assigned 

to V on the basis of an observation. The square of the observational error is 

such a function. Other types of loss can be defined but there are several reasons 

why the squared error is used most frequently. (See pages 11, 12, 13, 17, 18, 

19 and 136, reference [46].) Notice that, although the loss has been defined in 

terms of observational error, it is nevertheless a criterion of optimality for V. 

Hence, if we wish to estimate the mean value U of a random but otherwise con­

stant signal V, the loss is 

(V,U) - (V-U) 2 
VI. 65a 

while in problems where the parameter is not directly observed the loss becomes 

e(V,U) (3 (V) + E - 3(U) )2 VI.65b 

E(Y- 2(U))2. VI. 65c 

--(Y,U) VI.65d 

b. The Risk 

Let us now define a quantity r, called the risk 

(sometimes cost) as the expected value of the loss with respect to the entire 

range of possible observational error: 

r ( U )J A(V, )p (V, J) dV V.66a 

where p (V , U) is the (joint) probability that the observation V will occur when 

the true system parameter is U. Of course, when the observable Y is a function 

of V, then 

r (U) -f(Y, p (Y, U ) dY. V. 66b 
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821 

(In the following discussion, no further mention need be made of the special 

loss VI. 65a since the nonlinearity of our problem demands the more general 

form VI. 65b. 

Because exact knowledge of U is impossible, the experi­

menter can neither compute the loss nor the risk. Even with the help of U he 

would still find that his knowledge of p is approximate, at best. On the other 

hand, he can estimate them on the basis of experimental data. 

Notice that the loss and risk functions can be considered 

as functions of Y, W'intaad of Y, U. Then one of the purposes of the theory 

is to show that, under certain simple conditions, r (W) has an absolute mini­

mum when W = U. The estimation problem is, consequently, equivalent to the 

minimization of r () . ( The argumentation for the method of "maximum 

liklihood" is similar. In that method a function, called the liklihood, is maxi­

mized.) Subtle and lengthly arguments are needed for a full discussion C46, 81, 

By the time we consider minimization of the risk, we are 

coerced into several assumptions. First we must assume that, if the observed 

data were free of errors to begin with, then the iteration function - (see Section 

I. D. 1.) would converge on U. . Our second assumption follows a fortiori: 

the prediction function 3 is "perfect" in the sense that the random errors have 

zero means. That is 

Y=T+E VI.67a 

T =3( U, t) VI. 67b 

tExpected value of E -E 1=0. VI. 67c 

In order to carry out specific calculations it is often necessary to assume further 

that Ei is gaussian (normal) and that E. and E. satisfy
1 3 

SEi , Ej =0 ;i$ j, VI.68 
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i. e. uncorrelated. For the time being, however, we assume merely equation 

Vt.67c. 

c. Covariance 

We now define the covariance matrix C as 

follows 

C.. Ei ;i,j1, 2, 3, ... n VL69 

where n is the number of observations. Notice that, ifEi I i = 1, 2, 3, ... , are 

normal variates, then the error matrix E has the multivariate normal distribution 

(E) = --- exp (:11 VI. 70 

(In this instance the diagonal elements of C are sometimes called "the minimum 

variances.) We have defined 1 here as the inverse of C. 

4. Optimization Procedure 

The method for optimizing W (or minimizing r ) has been 

described in Section I. We first estimate r (W): 

r (W) = (T(W)-Y)C(T(W)-Y). 

The second step is to assume thut T is analytic in the neighborhood of U and 

that the linear terms of Taylor's formula are an adequate representation. The 

resulting expressions are linear in AW and are solved by standard methods. 

Considered as a function, the 4 algorithm transforms a random variable Y 

into another random variable W. (We say that W is a random variable of a 

nonrandom function of a random variable.) In order to calculate confidence 

measures, we wish to know the statistical distribution of W 
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5. The Sampling Distribution of W . 

Perhaps the most useful result provided by the theory 

of statistical estimation is that the sampling distribution of W is asymptoti­

cally normal under certain mild requirements. If it is granted that E is a 

normal variate, then this claim is easy to make. Regarding W as an analytic 

function of E = T - Y, we have by Taylor's formula, 

W= U+V WE+... VI.71aE 

Thus W is a linear transformation of a normal vector( for sufficiently small 

error dispersion). According to Peter Swerling [821 , the expression for VW is 

-1 

VW = (VT (VT) VT .• VI. 71b 

(This is the author's version of Swerling's equation (7)). 

In order to write the expression for the probability density 

of W , we calculate (or estimate) the covariance matrix D of W 

D = ( (W-, (W-U I . 

This calculation can be found in [46] and [8A for the maximum liklibood 

estimation which is, for normal variates, equivalent to least squares. We state 

without proof that 

D = VT4vT VI. 72 

It follows that, for normal E , the probability density of W obeys, 
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p(W-U) = 1/2 exp 2 

VI.78 
- 1 

-=D 

where k is the number of elements (system parameters) in W. 

6. Multidimensional Confidence Region 

We now ask for the equation of a curve (in the k-dimen­

sional Euclidean space spanned by W) which gives a constant probability, say 

c. This curve is defined when equation VI.73 is set equal to c. This request 

is tantamount to asking for the equation 

Xre X=q VI.74 

where X S W-U 

and q = -21n(c(2ff)k/2/ IeI ) 

Equation IV.74 is the equation of a k-dimensional ellipse, 

sometimes called the error ellipsoid. If the parameters give rise to perfectly 

uncorrelated gradients (if e happens to be diagonal) then the semiaxes of the 

ellipse are given by the diagonal elements. Their inverses are sometimes 

called parameter variances [333. When q is not diagonal it may be diagonalized 

by means of a principal axis transformation [46]. 

7. Measures of Confidence 

Notice that if X is assumed to be a normal k-dimensional 

variate, it follows that q is a chi-square variate with k degrees -of-freedom. 

Hence, with the help of the chi-square tables of marginal probability distributions, 

we can compgte the "confidence probability" that U lies inside the error ellipsoid 

defined by q = ql; that is, the "probability" that U lies inside the ellipsoid 

equal to 
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)prob. (q ! q f1 (qf) dq 

0 

= 'r, 7 )/r(k/2), VI. 75 

where r and y are the gamma and incomplete gamma functions,, respectively. 

This expression gives a measure of confidence to the hypothesis that the estimand 

U lies somewhere inside the error ellipsoid defined by qI centered at W 

Consult Section 10.5 in [461 The reader will find the chi-square distribution 

tabulated in [841 table XIV, page 286. 

As already stated, the diagonal elements of 6-1 are 

sometimes regarded as parameter variances. This and other measures of 

confidence are given in [333 But perhaps the best single measure of confidence 

is simply a plot showing the predicted curves superimposed over the observed 

data. See Figures 4 and 5. 

Finally, notice that equations VI. 71 are to be regarded 

as "parameter sensitivity equations" for they relate the rate of change of W 

with respect to the observational error E. References [461 and [82) are 

recommended for further discussion. 
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H. Special Problems 

1. Distinction between the Laboratory and the Dynamical 

Body-Fixed Frames of References (An Application of the Geometric Operator). 

A subtle application of X is as follows. Consider the case 

of a non-balanced rigid body, such as POGO. There exists a certain frame of 

reference fixed in the body in which the inertia tensor I is diagonal. Thus 

I - 0 0 - VI.76 

0 0 c 

There is another reference frame also fixed in the body, to which the sensor 

mountings are related. The first system is of dynamical importance because 

of equation 1I.76, the second system is of geometrical importance because it is 

the one employed in bench measurements and the only one in which the sensor 

mountings are known. But these two frames are not necessarily the same. 

Thus a discrepancy arises if the prediction function estimates the sensor out­

put as expected from the geometrical location of the sensor when the orientation 

of the vehicle is given by 8 (a, 6, cp, 6, 4) where 

'p q(p, q, r, t0, a, b, c) VI.77a 

(p,(= q, r, to, a, b, c) VI.77b 

= p, q, r, t0 , a, b, c). VI.77c 

That is, (p, e, 0 give the orientation of the dynamical coordinate system, not 

the geometrical system as desired. This discrepancy may be dealt with in the 

following way. 
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The two aforementioned coordinate systems are related 

by a constant transformation, say C, which is expressible as a product of 

three simple rotations. (Three parameters exactly determine a general rota­

tion matrix.) Let the sensor's axis K' in the geometric (laboratory) system 

be related to the said axis K in the dynamical system according to 

K' = C K. VI.78 

The three parameters which define the fixed rotation C are included in the 

array of system parameters and are adjusted in the differential correction 

scheme in a manner analogous to the correction of the three Euler angles 

(P 00' and 00 , The geometric operator then becomes 

= K' • C. VI.79 

In this expression K' is measured in the laboratory prior to launch. Hence 

we have an approach to the problem posed by inexact knowledge of the orientation 

of the principal axes of inertia. Because of the similarity in the definitions of 

C and the Euler transformation G , certain precautions are needed to avoid 

singular normal equations arising from proportional gradients as discussed in 

section VI.D. 

2. Closed Attitude Control Feedback Loop 

Example 1, section IV.G, exemplifies a closed loop atti­

tude control system. The Euler angles are obtained by means of numerical 

integration of the inhomogeneous equations of motion. The driving terms are 

functions of the solar sensor outputs which are, in turn, functions of geometric 

and calibration constants. Consequently we cannot in this instance claim 

independence of q and X. This presents no extra difficulties in calculating 

gradients, however, because no attempt would be made to calculate them 

analytically - gradients are calculated numerically as shown in figure 9. 
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The derivatives can be computed by the straight-forward 

method of perturbations which is implied in the flowchart, in that figure. When 

the prediction function is time consuming to compute, however, it is desirable 

to devise a way to avoid the double computations. This problem is especially 

pressing when the prediction function is generated by integration of the differential 

equations of motion. Several approaches are available. For example, one may 

capitalize on the results of previous iterations to obtain an estimate of the 

derivative. (Refer to the methods of (i) secants [22, 24, 30], (ii) regula falsi 

[54], (iii) Whittaker [54], and Muller [54).) An ingenious approach to this 

problem in the case of numerical integration of equations of motion subject to 

constraints is reported in [393. 

3. A Ground Based Sensor 

Because of the nonuniform nature of antennae patterns, 

the intensity of the telemetry received from a space vehicle varies with its 

orientation. This variation can be used to infer the motion in much the same 

fashion as on-board instruments are used [83]. 
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APPENDIX A 

ON THE NUMBER OF INDEPENDENT CONSTANTS OF THE MOTION 

A rigid body with one point fixed is known to possess three degrees free­

dom. See page 93, reference [i]. (This is the same number of degrees of free­

dom as in translational motion.) Because the fundamental laws of motion lead 

to a second degree differential equation for each degree of freedom, six arbitrary 

(independent) constants of integration appear. Hence, six parameters are required 

to define the motion of a rigid body with one point fixed. 

It is known [4], however, that the Euler-Poisson equations of motion for 

a rigid body with one point fixed have but five arbitrary constants of integration. 

We wish now to reconcile this fact with the foregoing remarks. 

Let us state the dynamical equations according to the Iagrangian formu­

lation. In this formulation one constructs a function h, called "the Lagrangian," 

[12 possessing certain properties. One of these properties is that h is a 

function of the three parameters, xi, associated with the three degrees of free­

dom of motion. According to Lagrange [13, the differential equations of motion 

are: 

_h d hA 
B x. dt ( -k. )=r.; i=12,3. A-1 

1 1 

In this expression r. is a force function which appears when not accounted for in 
I 

the design of the Iagrangian. Equation (A-i) leads to a system of three simultaneous 

second order equations: 

x. = L(X, X, t); i=1, 2, 3;. A-2 
1 1 

where X - xl, x 2 , x3). System (A-2) can be replaced by the "state variable system," 
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w. = gi (W, t); i1, 2, ... 6 A-3 

where W = x, x2, x 3' *, x2 Y.c' 

From system (A-3) it is clear that six arbitrary constants of integration are 

admitted, namely the six initial conditions wi(t0); i = 1, 2, ... 6. 

In the event that there exists a constraint relation between the w's, 

however, the number of arbitrary constants of integration would be corre­

spondingly reduced. As we shall observe below, this is the case with the Euler-

Poisson equations. 

Let W = QI A-4a 

w2 = n 2 A-4b 

w 3 = 03 A-4c
 

w4 = roll A-4d 

w 5 = pitch A-4e 

w 6 yaw A-4f 

Then we have a system like (A-3) with six arbitrary constants of integration. 

Our equations IV.3 are equivalent to this system. 

On the other hand, the Euler-Poisson equations are derived in a different 

fashion. In this case, as before, the three Euler equations PV.3a are adopted. 

But instead of defining the state variable W, three equations, known as the Poisson 

kinematical equations, are appended to the Euler equations. These are derived 

as follows. Let K be a constant vector. It follows (see reference [II, 

chapter 4) that, in the b6dy system of coordinates, 
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at K+f x K=0. A-5dt
 

Hence we have the six Euler-Poisson equations: 

dt + XLn M A-6a 
at 

dK + n X K=0. A-6b 
dt 

This system of six first order simultaneous differential equations is not in 

state variable form. Moreover, since K was assumed a constant vector, we 

have a constraint relation: 

K1 22 +K 32 = IKI2 A-7 

This constraint reduces the number of independent constants to five. (It is also 

possible to show that, according to Jacobi's "theory of the last multiplier", once 

we have obtained four independent first integrals of system (A-6), the fifth may 

be obtained by means of a quadrature. See reference [4], chapter 1, and 

reference [5], chapter 8. Also note that a first integral is a constant of the 

motion. See reference [1, page 47 and reference [5], page 8.) 

It is worthwhile to understand how two systems of equations of motion 

can lead to different numbers of arbitrary parameters. In equations IV.3, the 

orientation of the vehicle is uniquely defined with respect to the inertial space0 

In the Euler-Poisson system, however, the orientation of the vehicle is defined 

with respect to some fixed direction K. No information regarding the outside 

world is contained in equations (A-6) save for the direction cosines of K in the 

vehicle coordinate system. This means that these equations admit an ambiguity 

with respect to rotations about K. Hence the Euler-Poisson equation alone would 

not suffice in determining the attitude of a vehicle with respect to, say, the vernal 

equinox system. If, for example, K was chosen as the north star line of sight, 
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an attitude determination predictor based on the Euler-Poisson equations of 

motion would require that the right ascension of L be adjusted together with 

the initial values of 21' a2' n3, K1 , K2' K3 while carrying A-7 as a constraint. 

In designing predictors and choosing the parameters of the motion, there­

fore, one must note what information each parameter provides and avoid both 

the duplication, of information and the ambiguity of insufficient information. For 

example, as we have seen, the Euler-Poisson variables are ambiguous with 

respect to rotations about K. On the other hand, in section V.E we had chosen 

the initial conditions p0, q0 , and r0 , as our initial conditions. These variables 

uniquely define q , 6, and 0 . (They define the kinetic energy of rotation and 

the angular momentum as well. See Section IV.D.) Hence, the orientation of 

the vehicle is thus far defined with respect to the angular momentum vector. 

As explained in Section IV.E, two parameters, such as a and 8, maybe em­

ployed to define the direction of this vector. The last parameter must, therefore, 

be a fixed rotation D about L. 
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APPENDIX B 

SOME PROBLEMS OF CONVERGENCE 

The discussion in this paper has been largely concerned with posing well 

defined minimization attitude determination problems. When this has been 

accomplished, the problems of convergence are likely to be important. The 

following comments are offered to the prospective practioner as an appendix 

since the subject of convergence is not the main issue in this paper. The 

subject of convergence is extensive. Consult references [9, 12, 20, 22, 23, 

24, and 46.3 

From the practical standpoint, the outstanding questions are (i) what 

reasonable precautions must be taken to assure convergence ? (ii) when con­

vergence has been achieved, is it a minimum, a maximum, a global minimum, 

or a global [23] maximum? (iii) when convergence seems unattainable, how 

can the cure be prescmbed ? 

If it is granted that the problem is well posed, the first question is pri­

marily the question of initial conditions--initial conditions must be inside the 

region of convergence. Now the minima of highly nonlinear functions are apt 

to be at the bottom of long, narrow, and curving trough-like depressions. It 

is no surprise, therefore, to discover the inadequacy of Newton's method in 

which Taylor's formula is truncated after the first order gradients. For if we 

regard the computed corrections AU as a string of vectors pointing along the 

direction of travel, it may happen that some of these AU's are too large to 

follow the bends in the said trough. For an approach to this problem, see 

page 103 in [46]. 

In attitude determination problems, the steepest gradients encountered 

are those associated-with angular velocities for these derivatives contain time 
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as a factor. Refer to equations V.26a, b. Hence, one should endeavor to 

determine angular velocities as accurately as possible prior to initiating 

differential correction. 

A minimization problem may be well posed and the initial conditions may 

be inside the region of converge and yet convergence will not necessarily obtain. 

This is the case when the contribution to the error function from a certain variable 

or sensor is highly attenuated. It is, so to speak, too weak. The associated 

gradient may be insignificant in comparison to those effects arising from the 
"noise level" in other sensors. This type of problem is readily overcome by 

means of weighting factors. 

The preceding situation has a strong resemblance to the ill-posed 

problem where it is sought to determine attitude solely from solar data. The 

solution to such a problem is mathematically ambiguous with respect to rotations 

about the solar line of sight. In such a situation, the error function does not 

have a well defined minimum. 

There are some well defined error functions which are only piece-wise 

continuous with respect to certain parameters of the motion. From a geometri­

cal point of view, it is clear that a broken error surface could defeat a scheme 

to locate its minima. During the convergence process, the argument U of q(U) 

must not stray into a region where q(U) and its first derivatives are not defined. 

Consider the case of a stably spinning weather satellite which is equipped 

with horizon pulse sensors. As already pointed out, the pulse itself is not suit­

able for differential correction. It is the time of the pulse which conveys the 

useful information. Consider then an error function which is a sum of the 

squared time differences between the predicted and observed pulse times. 

Such a function is a well defined error function, being continuous with continuous 

first derivatives, in the neighborhood of the solution or correct attitude. If the 

parameters of the motion a and 6, which define the orientation of the predicted 

spin axis wander too far from their correct values, then the predicted line of 

sight of the I. R. sensor will fail to intersect the horizon. Clearly, the error 
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function is then ill defined. It is then said to be piece-wise defined with respect 

to a and 6 . Each such type of problem can be handled individually by observing 

straight forward precautions. 

) , Since they are often functions of orientation angles (aZ, 8, (, 10,00 

the error functions of attitude determination are likely to be periodic. For 

example, a and a :L 2n ir are equivalent if n is an integer. An interesting 

example is the pair (a, 8) and the equivalent pair (a-: ir, 7T- 6). Innumerable 

such examples can readily be found. This means that when non-orientation 

parameters are well known (and preferably held constant), there is a 100% 

likelihood that convergence will take place. Moreover, it requires a small 

number of iterations, usually less than five, for the argument U to "land" 

inside a region of fast convergence. This is true even when all five orientation 

phase angles are being adjusted. In constrast to the preceding example, there 

exists a type of periodicity which arises when a sinusoidal signal is sampled 

uniformly. It is known [19, 273 that a uniformly sampled sinusoid has a 

mathematically ambiguous frequency. This phenomenon, sometimes called 

aliasing [19], may be encountered when processing the outputs of solar 

sensors [41]. No iteration scheme alone can ascertain when an aliased 

frequency has been located--independent considerations must be invoked. See 

Figure 10. 

As mentioned, the second order Newton method is prone to diverge in 

highly nonlinear problems owing to its tendency to "overshoot" and its poor 

"cornering." The method of gradients (steepest descent) is an example of an 

attempt to circumvent these difficulties. Unfortunately their convergence 

properties are poor. In references [32] and [33] the method of gradients 

and the Newton method are effectively combined to provide the best pefformance 

of which each is capable. Other techniques include the method of conjugate 

ditections, [11] the variable metric method, [31] the random walk method, 

[403 and the method of relaxation [40, 46]. For a comprehensive survey of 

methods, consult references [25), [46), and [65]. 
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APPENDIX C 

NON-EULERIAN METHODS OF DEFINITION 

The discussion in this paper has adhered to the Eulerian representation 

of the motion, i. e. to the use of Euler angles. It should be mentioned that 

the entire discussion could be applied to several other methods of representing 

the motion of rigid bodies. 

Boll. Pitch, and Yaw 

It is often desirable to employ the angles sometimes called yaw, pitch, 

and roll. In this case the transformation £ remains as before. Instead of the 

Euler transformation, C , however, one would employ a transformation obtained 

as a product of the three successive rotations defined by the said angles. Since 

the Euler transformation is constructed in like manner, the distinction between 

the two methods is negligible until it is desired to compute the angles as a 

function of time. In this situation one would see whether the definitions of the 

angles conform to alternate definitions of Euler angles. If so, the analysis would 

carry over. Otherwise the methods employed in deriving the formulas IV.4 

could be imitated. Alternate definitions of Euler angles are shown in references 

[2 and 3). 

Euler Symmetrical Parameters and Cayley - Klein Parameters 

Other methods of specifying the orientation of rigid bodies are available. 

Of particular interest are those avoiding the difficulties which accompany the use 

of Euler angles. These difficulties are i) the equations of motion IV.3 are not 

symmetrical, ii) when 0 = 0, we have the "gimbal lock effect" in which the line 

of nodes is ill-defined and the coefficients in the equations of motion are singular. 

and iii) trigonometric functions must be evaluated. These difficulties are over­

come with the aid of Euler's four symmetrical parameters [3, 40) (sometimes 
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appearing as Hamilton quaternions [42, 63] ) or with Cayley-Klein parameters 

[1, 42). Unfortunately these parameter sets exceed the number of rotational 

degrees of freedom and therefore lead to the use of Lagrange multipliers [62). 

Ambiguities arising in connection with the Cayley-Klein parameters are ex­

plained in reference [1. One could, of course, also employ the nine direction 

cosines of the vehicle's axes [40]. Since they satisfy several constraint relation­

ships, they present special difficulties [ 61). 
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APPENDIX D
 

BASIC TRANSFORMATION BETWEEN TWO
 

INERTIAL SYSTEMS OF COORDINATES
 

We wish to obtain the coordinate transformation relating an inertial 

(cartesian) system to a second (cartesian) system for which merely the z 

axis direction is specified. This direction is specified by two angles. The 

first two Euler rotations fulfill these requirements and, hence, the desired 

expression is bbtained by multiplying equations II.12b and H. 12c. The result 

is 

r=co= -scocos 0 cosqpcos e sin @I D.1 

sin f sin 6 - cos p sin 0 cos ej 

Referring to figure 3, it is clear that, if the first system is a vernal equinox 

equatorial system, the right ascension and declination are related to the first 

two Euler angles according to 

a = (P - V/2 D.2a 

6 = ff/2 -6. D.2b 

Substituting these expressions into D.1 we obtain equation 11.4. 

Notice that equation D.1 occurs often in the literature of celestial 

mechanics and orbit theory. To see this, replace ( with Q and 8 with i; 

the longitude of the ascending node and the orbital inclination, respectively. 
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APPENDIX E
 

DEFINITION OF LINEAR VECTOR MANIFOLD
 

Let = be a ring containing the multiplicative identy 1, the elements of 

being a, b, c ... Then a class of objects X, Y, Z ... are called a linear 

vector manifold or vector space M if and only if for any X in M and ' a in 

I a X isinM 

2. (ab)X- = a(bX) 

3. (a +b)X = aX+bX 

4. a(X+Y) = aX+aY 

5. X+Y = Y+X 

6. X+(Y+Z) = (X+Y)+Z 

7. X+O = X 

8. X+(-X) = 0. 

Properties 5, 6, 7, 8 are recognized as the definition of a group with the binary 

operator of vector addition. That is to say, M is a commutative group with 
the null vector 0 and -X acting as the inverse of + X. See Reference [661. 
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X. INDEX
 

-A­

A-23 
G - 9, 10, 12, 35 
Aerodynamic forces - 51 
Algebraic methods - 3 
Aliasing - Appendix B, figure 10 
Ambiguities with IR scanners - 88 
Ambiguity of frequency - see aliasing 
Analog computation - 50 
Analytical derivatives - 39, 62 ff 
Analytical requirements for 9 - 85 ff 
Angular momentum - 1, 10, 30, 38, 47, 58, 81, 82 
Angular momentum, constancy of - 48 
Angular momentum ellipsoid - 39 
Angular momentum system - 9, 40, 44 
Angular momentum, law of - 35, 53 
Angular velocity, 2, 56 ff 
Angular velocity, vector addition of - 49 
Antennae patterns - 104 
Artificial sensor - see sensors 
Ascending node - Appendix D 
Ascension, right - 1, 10 
Attitude control - 44, 103 
Augmented array of parameters: 

in methods of Lagrange multipliers - 32 
in modified prediction function - 74 ff 

Augmented system - 34 
Autocovariance - 24 
Autonomous equations - 36 
Auxiliary reference frame - 9, 10, 38, 44, 81 
Axes transformation, principal - 100 

-B-

B - See geomagnetism (also see 23, 72) 
B - 11, 74 

- Appendix A, 57 
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Bench measurements - see laboratory measurements 
Bias, zero point, 74, 82. 

-C-

C - 72, 99 
C - 12, 102 
Calibration constants - 8, 43, 74 
Calibration curve - 74 
Cartesian gradient - 78, 89 
Cartesian transformation - Appendix D 
Cartesian vector - 6, 16 
Cascading - 52 
Cayley - Klein parameters - Appendix C 
Chain rule - 29, 31, 64 
Chi-square distribution - 101 
Closed loop - 5, 44 if, 102 
Completeness - 52 
Confidence - 100 
Conic surfaces - 85 
Conjugate directions - see minimization methods 
Constant osculation - 61 
Constants, calibration - see calibration 
Constants, design - see design constants 
Constants, mounting - see mounting constants 
Constants of motion - 52 
Constants of integration - 52 
Constraint, equation of - 30, 41, 54, 58, 60, 66 
Constraints - 28 if, 104, Appendix A 
Constraints, holonomic - 32 
Constraint of energy and momentum - 38 
Continuity of error surface - Appendix A 
Control signals - 43 ff 
Convergence - Appendix B 
Convergence properties of iteration functions - 18 
Convergence, region of - 21, 28 ff 
Correlated derivatives - see derivatives 
Correlated parameters - see derivatives 
Correlations - 24 ff 
Cosines, direction - Appendix C 
Cost - 96 
Covariance - 15, 27, 74, 96 ff 
Crosscorrelation - 24 ff 
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-Di-

D - 15, 99 
h - 12 
6 - 1, 11, 88 
Damping torque - 44 
Decision theory - 13 
Declination - 1, 11, 88 
Definitive prediction - 72 
Degrees of freedom - 54, Appendix A, C 
Design constants - 43 
Design parameters - 43 
Derivatives, correlated - 26 if, 81 
Diagonalization - see principal axis transformation 
Differentiable sensor operand - 91 
Differential correction - 4, 92 
Dipole - see magnetic moment 
Direction cosines - Appendix C 
Drift, parameter - 42 
Driving terms - 43 
Dynamical balance - 27 if, 30, 38, 40 
Dynamical balance, definition of - 40 
Dynamical coordinate system - 102 
Dynamical symmetry - see dynamic balance 

E - 97 ff 
8 - 10 if, 46, 88, 102 
Earth shadow - 15 
Elliptic functions - 38 
Elliptic functions, derivatives of - 68 
Elliptic integrals - 69 
Ellipsoid, error - 100 ff 
Ellipsoids of energy and angular momentum - 39 
Empirical attitude - 52 
Energy - 38, 58, 91 
Energy ellipsoid - 39 
EPE-D - 28, 30, figure 4 
Error covariance - 15, 95 ff 
Error function 18, 52, 83, 88, 95, Appendix B, also see risk 
Error function, periodicity of - Appendix B 
Error, sensor - 72, 95 ff 
Estimand - 95 
Estimation problem - 13, 95 ff 
Estimation, sequential - 3 
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Euler - 35, Appendix C 
Euler angles - 2, 9, 10, 35, 38, 40 ff 
Euler angles, derivatives of - 69, 70 
Euler symmetrical parameters - Appendix C 
Euler transformation - 10, 72 
Event function - see sensors, event 
Expected value - 14, 96 

-F-

False minimum - 28 
3- 5, 6, 16, 93 
3, dimensionality of - 6, 15 
3, time dependence of - 5, 6, 15, 16, 93 
Fast variables - 11 
Filtering fluctuations in attitude - 3, 53 
Finite difference method - 53, 94 
First integrals - 48, 53, 58, Appendix A 
Freedom, degrees of - see degrees of freedom 
Frequency ambiguity - see aliasing 
Functional replacement - 83 ff 
Functional substitution - 83 ff 

-G­

-, 8, 72, 74 ff, 93 
Gamma - 14 
Gamma functions - 101 
r- Appendix D - 22, 60, 73 
Gauss - 14, 21, 29, 78, 80 
Gauss least squares - 72, 95 
Gaussian system of units - 78 
Geomagnetism - 1, 5, 6, 14, 16, 17, 84 
Gimbal lock - Appendix C -

Global minimum or maximum - Appendix B 
Gradient, cartesian - 78, 89 
Gradient of gravity - 10 
Gradient methods - 4, 21, Appendix B 
Gradient operator - 2, 73 
Gradient, proportional - 80, 81, 103 
Gradient, vanishing - 81 
Gradient,of vector - 20 

Gravity - 10, 44 
Group - Appendix E 
Gyro - 40 
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-H-

H - 66, 71 
Hamilton quaternions - Appendix C 
Holonomio constraint - 82 
Horizon - 85, Appendix B 
Hypersurface - 18, 52, also see error function 
Hypothesis - 101 

-I-

I- 1, 49, 102 
Ideal prediction function - 7, 9 
Ill-conditioning - 26, Appendix B 
Ill-definition- 7 
Ill-defined line of nodes - 3, 5, 44, Appendix C 
Impulse functions - 5 
Inclination - Appendix D 
Independence of operators - 7 
Independence of parameters - 52 
Inertia Tensor - see I 
Inertial platform - 82 
Inertial coordinate systems - Appendix D 
Infrared sensor - see sensors 
Iteration functions, convergence of - 17, 18 
Iteration functions, order of - 17 

-J-

Jacobi - 37 if, 69, Appendix-A 
Jacobi's last multiplier - Appendix A 

-K-

K 
- 7, 72, 93 ff 

Kalman filter - 3 
Klein - see Cayley-Klein parameters 
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L - 9, 40, 54, 56, 60 
£ -9 
Laboratory frame of reference - 102 
Laboratory measurements - 102, 103 
Lagrange multipliers - 32, 39, 67, Appendix C 
lagrangian formulation - Appendix A 
Lambda (X) - 32 ff 
Lambda (A) - 66, 73 
Least squares estimation - 13, see also Gauss least squares 
Least square observational error - 13, 95 
Linear superposition - 46, 78 
Linear vector manifold - Appendix E 
Line of nodes - see figure 2 
Loss - 14, 96 

-M-

M - 1, 53, 73 
Magnetic field - see geomagnetism 
Magnetic moment - 78 
Magnetometer - 6, 14 
Manifold,-vector - 2;, Appendix E 
Mathematical operator - 5 
Memoryless operator - 6 
Metric - see minimization 
Minimization, methods of: 

Conjugate directions - Appendix B 
Gradient methods - 4, Appendix B 
Random walk - Appendix B
 
Relaxation - 4, Appendix B
 
Taylor method - 4, Appendix B
 
Variable metric - Appendix B 

Minimum variance - 3, 15, 95 
Misalignment of sensor axes - 74 
Model - 4 
Modified prediction function - 9, 74 
Modulus of elliptic functions - 41 
Momental ellipsoid - 39 
Moment of force - see M 
Momentum removal - 44 
Momentum storage - 48 
Mounting constants - 8, 102 
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Muller's method - 104 
Multidimensional confidence region - 100 ff 
Multidimensional probability - 100 ff 
Multiplier, theory of Jacobi's last - Appendix A 

-N-

N - 22, 60, 73, 76 
Newton - 5, 17, 30, 72, Appendix B 
Noise level - Appendix B 
Nodes, line of - see line of nodes 
Nodes, longitude of ascending - Appendix D 
Nonideal sensor - 72 
Norm - 24 
Normal probability distribution - 100 ff 
Numerical integration - 43, 61 
Numerical integration subject to constraints - 104 

-0-

OAO- 82 
Observations, simultaneity - 14 
Observational error - 96,ff 
Omega (f) - 40, 44 ff 
Open loop - 5 
Optical sensor - see sensors 
Optimization methods - 4, 17, 95 ff 

least squares - 13, 95ff 
maximum liklihood - 95, 99 
minimum variance - 3, 95 ff 
minimum risk - 13 if, 95 ff 

Orbit normal - 60 
Order of iteration function - 17 
Ordered rotations - 11 
Osculating solutions - 11, 53, 61 

P - 60, 73, 78 
Parameter correlation - 25 
Parameter covariance - 25, 100, 101 
Parameter dependence for operators - 8 
Parameter drift - 42 
Parameter sensitivity equations - 101 
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Parameter variance - 100, 101 
Parametrization of rotation - 8, 9, Appendix C 
Periodicity of error function - see error function 
Phi (<3) - see covariance, 16, 74, 98 ff 
Piecewise continuity - 85, Appendix B 
Pitch - see yaw, pitch and roll 
Poisson - Appendix A 
Precession - 47, 60 
Prediction function - 4 
Predictor - see prediction function 
Preprocessing - 3, 85, 89 
Presmoothing - 3 
Principal axis transformation - 100 
Probability - see normal probability 
Probability density - 23 
Pulsed sensors - see sensors 

-Q­

q - 15, 18, 100 ff 

Q - 79 
Quaternions - Appendix C 

-R­

r - (risk) - see risk 
Random variates - 13, 23, 98 
Random variates, transformation of - 98 
Random walk - see minimization methods 
Real time - 3 
Rectification - 11 
egula falsi - 104 

Relaxation - see minimization methods 
Residual magnetic moment - 74, 78, 82 
Residuals - 19, 89 
Ring - Appendix E 
Risk - 13, 96 ff 
Roll, pitch and yaw - Appendix A, C 
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S - 1, 8, 16, 44, 75, 82 
SC - see EPE-D 
Secants, method of - 104 
Sensitivity, parameter - 101 
Sensor Operand - 74, 85, 90 
Sensors: 

artificial - 89 
event - 64, 83, 85 ff 
IR - see event 
ground based - 104 
non-ideal - 72 
optical - 64 
solar - 14 
tuned oscillator - 84 
z - 81" 

Separation of variables - 6, 7, 74, 94 
Sequential estimation - see estimation 
Simulation - 34 
Simultaneity of observations - 14 
Skewed conditioning - see ill-conditioning 
Slow variables - 11 
Smoothing - 53 
Square wave - 43 
State variable - 36, 40, Appendix A 
Sun line-of-sight - see S 
System parameters - 17 

-T-

T - see tau 
Taylor - 19, 32, 83, Appendix B 
Tau (r) - 13, 15, 97 ff 
Telemetry "space" - 75 
Theory of last multiplier - see Jacobi 
Theta (e) - see covariance - 99 ff 
Time as a function - 85 
Time dependence of a - 5, 93 
Torques - 44, 48 
Torques, well defined - 43 
Transfer function - 5, 7, 74 
Transformation of random variates - 98 
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-U-


U - 17, 95 ff 

V- 95 ff 
Variable metric - see minimization methods 
Variance, parameter - see parameter variance 
Vector manifold - 23, Appendix E 
Vector space - 23, 24 
Vernal equinox system - 10, 40, 60 
Visualization of the motion - 11 

w - 14 
W - 95ff 
Weight factors - 14, 16, Appendix B 
Well posed minimization - 26 if, 95 if, Appendix B 
Whittaker - 104 

-I-

X - 100 ff 
Xi ( )- 17, 21, 97, Appendix E 

-y-

Y- 15, 23, 97 ff 
Yaw - see roll, pitch, and yaw 

-Z-

Z -

Z sensor - 81, 95 ff 
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