# AN APPLICATION OF PREDICTOR DISPLAYS TO AIR TRAFFIC CONTROL PROBLEMS 

William B. Rouse




䍗


 0

Engineering Projects Laiooratory Department of Mechanical Engineering Massachusetts Institute of Technology

Septembex 1970

NASA Gxant
NGL-22-009-002


AN APPLICATION OF PREDICTOR DISPLAYS

TO
AIR 「RRAFFIC CONTROL PROBLEMS
by
WILLIAM BRADFORD ROUSE
B.S., University of Rhode Island (1969)

SUBMITTED IN PARTIAL FULFILLEMNT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIFNCE

AT THE

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY
September, 1970
 Department of Mechanical Engineering August 24, 1970


# AIR TRAFFIC CONTROL PROBLEMS 

by

William B. Rouse<br>Submitted to the Department of Mechanical Engineering

on

August 24, 1970
In partial fulfillment of the requirement for the degree of Mastex of Science

This thesis is concerned with evaluating the feasibility of using a predictor display system to help solve teminal area air traffic control problems. A computer-based predictor display is proposed as an aid for the air traffic controller to use in guiding aircraft to the glidepath.

An air traffic control simulation was designed and constructed using two analog computers. One computer generated the aircraft while the other performed the prediction and display functions.

Two expeximents were performed using this system. The first experiment consisted of guiding a single aircraft through its approach pattern. The second expeximent consisted of guiding three aircraft through their approach patterns simultaneously.

The results of the subjects ${ }^{8}$ pexformance of the experiments wexe used to study the learning process with and without the predictor display. An analysis of vaxiance was performed. The predictor system was assessed considering such task components as exror. errox rate, task completion time, and length of prediction.

It was detexmined that learning, $\dot{\operatorname{jn}}$ most cases, was fastex with the predictor display. However, the difference in pexformance with and without the predictor display decreased as learning proceeded. The predictox display helped to reduce exroxs but not task completion time. A prediction which was too long and displayed more than the necessary amount of information increased task completion time. The prediction display significantly improved performance for the easier tasks while it did not significantly improve performance for the more difficult tasks.

Thesis Supervisor: Thomas B. Shexidan
Title: Professor of Mechanical Engineering

I am indebted to Professor Thomas B. Sheridan who lent supervision and direction to this research. The enthusiasm and constructive suggestions of William L. Verplank during all phases of this work proved not only beneficial but often kept the author's spirit from flaggings. The assistance and suggestions of Richard S. Sidell in programming the analog computer and analyzing the data was invaluable. Also. I would like to thank my wife, Sandra for her typing and patience.

This research was supported by National Aeronautics and Space
Administration Grant No. NGL-22-009-002.
Abstract ..... 2
Acknowledgements ..... 3
Table of Contents ..... 4
Index to Figures and Tables ..... 6
Chapter I. SUMMARY ..... 8
Chapter II. INTRODUCTION ..... 11
Chapter III. THE AIR TRAFFIC CONTROL PROBLEM ..... 16
Chapter IV. EXPERIMENTS ..... 26
IV.A. Experiment I ..... 26
IV.B. Experiment II ..... 31
Chapter V. EQUIPMENT DESIGN ..... 38
V.A. Modeling aircraft ..... 38
V.B. Prediction and display ..... 41
V.C. Measuring performance ..... 43
V.D. Apparatus configuration ..... 46
Chapter VI. RESULTS ..... 53
Chapter VII. DISCUSSION AND CONCLUSIONS ..... 65
VII.A. Learning ..... 65
VII.B. Analysis of variance ..... 66
VII.C. Strategies ..... 68
VII.D. Subjects comments ..... 70
VII.E. A conjecture ..... 71.
VII.F. Air traffic control ..... 73
References ..... 74
Appendix. ..... 76
A. Sample leaming curves ..... 76
B. Computer programs ..... 79
C. Data. ..... 87

## INDEX TO FIGURES AND TABLES

Figure 1. Predictor display system ..... 14
Figure 2. Terminal control area ..... 17
Figure 3. Holding stack ..... 20
Figure : Texminal facility queues ..... 24
Figure 5. Display for experiment I ..... 27
Figure 6. Data sheet for experiment I ..... 30
Figure 7. Display for experiment II ..... 33
Figure 8. Data sheet for experiment II ..... 37
Figure 9. Aircraft schematic ..... 42
Figure 10. Prediction and display program ..... 44
Figure ll. Performance critexia program. ..... 45
Figure 12. ATC simulation. ..... 47
Figure 13, A/C control panel ..... 48
Figure 14. Prediction control ..... 49
Figure 15. Display with $\mathrm{L}=0.0$ ..... 50
Figure 16. Display with $L=20.0$ ..... 51
Figure 17. Display with $L=40.0$ ..... 52
Figure 18. Experiment II strategies ..... 69
Figure 19. Least-squares curve fit. ..... 77
Figure 20. Approximate curve fit ..... 78

| Table I. | Experimental sequences................................. |
| :---: | :---: |
| Table II. | Learning parameters $A_{1}, A_{2}$, and $A_{3}, R M S$ fitting errox, and mean or perebrmance <br> index (experiment I)....................................... 58 |
| Table III. | ```Learning parameters }\mp@subsup{A}{1}{\prime},\mp@subsup{A}{2}{\prime}\mathrm{ , and }\mp@subsup{A}{3}{\prime},RM fitting error, and mean of task completion```  |
| Table IV. | Analysis of variance results (experiment I).* 60 |
| Table V. | ```Learning parameters }\mp@subsup{A}{1}{\prime},\mp@subsup{A}{2}{},\mathrm{ and }\mp@subsup{A}{3}{\prime}, RMS fitting error, and mean of performance```  |
| Table VI. | Learning parameters $A_{1}, A_{2}$ and $A_{3}, R M S$ fitting error, and mean of separation exror (experiment II)................................... 62 |
| Table VII. | Learning parameters $A_{1}, A_{2}$, and $A_{3}$, RMS fitting error, and mean of task completion time (experiment II)................................ 63 |
| Table VIII | Analysis of variance results (experiment II). 64 |

This research was concerned with the use of a predictor display system, an example of a man-computer system, to aid in the guiding of aircraft during their approach to the glidepath of a runway, Such a system would enable an airport to handle a largex volume of aixcraft.

An air iraffic control simulation was constructed using two analog computers. One computer genexated the aircraft while the other computer performed the prediction and display functions.

Two experiments were performed. The first experiment con: sisted of guiding a single aircraft through its approach pattexn. Five subjects performed this task. For each subject there were ninetymsix trials, i.e., all combinations of two initial conditions, three prediction lengths, and sixteen iterations. Performance was based on aircraft position error, error rate, and task completion time.

The second experiment consisted of guiding three aircraft through their approach patterns simultaneously. It was necessary to merge the aircraft into a specified sequence for the approach. Three subjects performed this task. For each subject there were one-hundred and sixty trials, i.e., all combinations of four initial conditions, two prediction lengths, and twenty iterations. Performance was based on aircraft position errox, error rate, task completion time, and error in maintaining the proper spacing between aircraft.

The learning process with each display was studied by
fitting three parameter exponential curves to the data. In most cases, the learning process with the predictor display was fastex than that
with the conventional system. However, the difference in performance with and without the predictor display decreased as learning proceeded.

An analysis of variance was performed to study the differences between the predictor and conventional displays. It was determined that the predictor display helped to reduce errors, but not task completion time which has a lower limit dictated by the dynamics of the system. A prediction which is too long and which displays more than the necessary amount of information can increase task completion times.

The strategies that the subjects used were investigated. It was apparent that the subjects generated their own switch curves (decision time criteria) by which to give commands. Thus, the tasks could be related to optimal control problems.

Examination of the results showed that the predictor display significantly improved performance for the easier tasks while it did not significantly improve performance for the more difficult tasks. Using this result and the subjects's comment that the more difficult tasks often proved taxing, the idea was presented that an upper limit on the applicability of display aids exists. Very difficult tasks tax the operator to the point that he reverts to an intuitive level of performance and disregards the information presented by the display.

The feasibility of using a predictox display system to
10.
help solve air traffic control problems was assessed. It was suggested that a digital computer with some decision making capability might be necessary to make the predictor display generally applicable. This notion was not pursued in this thesis but rather proposed as basis for future research.
II. INTRODUCTION

As technology and the state-of-the-art advances, computers are gaining the capability to perform many tasks that man once considered solely his responsibility. Examples of such tasks include teaching and elementary decision making. However, many complex tasks still require the flexibility of the human decision maker. An example of this arises in the field of air traffic control. This example will be pursued in later chapters.

Although a human operator may be needed as part of a specific system, computer usage must not thereby be excluded from that system. In fact most complex tasks that require a man also have many facets of their operation that are better suited to computer control. Two questions arise from this situation. First, which tasks can man perform better than the computer and vice versa? Second and more important, which allotment of tasks produces the best overall system performance? The answer to these two questions may not be the same.

As an example, consider a task such that the summation of many subtasks produce a result upon which a human operator will base a decision. A computer may easily surpass the man in abiilty to perform most of the subtasks, but the result of summing the products of the subtasks may have little meaning to the human if he has not taken part in the intermediate steps of the process. Thus, performance of some of the subtasks may have to be delegated to the human in order that he can produce a proper decision based on the final result.

In view of the above, the problem can be simply stated as
that of determining the proper man-computer combination for whatever task is under consideration. This problem will not be totally considered within the confines of this thesis. The concern here will be restricted to one type of computer aid with respect to one specific task.

When the human operator controls low frequency high order dynamic systems, he must base his present decisions on what he thinks will be the future state of the system. This situation occurs because the operator's present inputs are subject to the lag in the system so that most of the effects of his present actions are delayed. The length of time that he must think into the future depends upon the speed and dynamic order of the system. The accuracy of his mental predictions depends on his experience with the system and knowledge of the inputs that the system will receive.

Computers far surpass man in the ability to make rapid repetitive calculations. Given a model of a dynamic system and its inputs, the computer could predict future states of the system with much more accuracy and speed. The human could then base his control decisions on the computer's extrapolations. This idea is not (1)
new, it originated with Zeibolz and Paynter and was extensively (2)
pursued by Kelley . The realization of this idea Kelley has termed the "predictor instrument" or "predictor display."

The principles upon which a predictor display is constructed are straight forward. A dynamic model of the system to be controlled is fabricated. Using the present state variables of the actual system as initial conditions, the model is repeatedly operated at a much faster rate than the actual system. Thus, the model predicts future states of the system which can be displayed to the operator in various ways.

This concept may also be called "fast time simulation." The dynamic model of the system is thereby termed the "fast time model."

A predictor display system is illustrated in Figure l. This system assumes that the operator returns his control to zero. This assumption will be discarded in later chapters.

Although the concepts of predictor displays are over fifteen years old, such displays have received little application. Adoption of predictor displavs for use in aerospace control applications has $(3,5,6)$
been considered , but seldom implemented. This may be attributed (4)
to some questions that still exist about these displays .

1. How should two dimensional predictor displays be coded?
2. Is there an optimum prediction span, and if so what determines it?
3. How closely must the fast time model compare to the actual system?
4. How does the operator use such a system in effecting his response?
$(7,8,9)$
Recent research has considered some of these points, but no general answers to all of these questions have been obtained. Answers to these questions will not be specifically pursued in this thesis. The main concern will focus on a different level. However, results of this research will be later discussed as it relates to these questions.

A predictor display can be viewed as an elementary computer
aid. The computer performs calculations and the operator bases his decisions upon these results. At this level of computer aid, the computer performs none of the decision making, However, this


PREDICTOR DISPLAY SYSTEM ${ }^{(4)}$
FIGURE 1.
possibility should not be excluded and will later be discussed.
To investigate this level of man-computer interaction, a single
complex task has been chosen. The concern will be with the air
traffic control task of merging aircraft as they approach an airport
into a safe and efficient line of traffic. Before continuing with
a discussion of this task, some background on the workings of air
traffic control is necessary.
III. THE AIR TRAFFIC CONTROL PROBLEM

It is common knowledge that the Air Traffic Control (ATC) system is having problems, but the specific detaila of the problems and their sources are poorly understood. A recent appraisal of the (10)
state of ATC showed that the problems are of various types and sources. These problems extend from those associated purely with engineering to financial and political considerations.

The problem of concern in this thesis is that of determining the role of the controller. Some solutions now being proposed include automation of the ATC system to the point that the controller becomes a passive and parallel element in the system. Proponents of such a solution, however, are quick to add that a controller is needed to run the system when unusual circumstances occur. Such unusual occurences might include damaged aircraft (A/C) in the approach pattern, stalled $A / C$ on the runway, and pilots new to an airport and unfamiliar with the control system.

It appears that the controller cannot be subjugated to a standby role in ATC. He could not be expected to respond quickly and efficiently to emergency situations if he is not an active part of the system.

The solution seems to be the combining of talents of controller and computer, but the question of what the computer should do and what the man should do remains to be answered.

Before discussing a plan for considering this man-computer question, it is important to be aware of the controller's present role and the general operation of ATC system.

The national system of air routes and airports as it currently
exists is fairly well organized. This organization of the air system was basically accomplished between 1919 (when ATC rules were first considered) and 1945. Minor changes have occurred in the past 20 years, but innovation has seriously lagged behind growth.

The air system consists of several hundred thousand miles of airway defined in the sky by VOR and VORTAC, which are VHF omni range beacons. Currently, enroute $A / C$ use the radial beams emitted by these beacons and fly from beacon to beacon along these radial paths. A/C flying in opposite directions are separated by 1000 feet in altitude.

The U.S. is divided into many Air Route Traffic Control Centers (ARTCC). Each of these has control of a geographical area, e.g., New England. The ARTCC monitors all $\mathrm{A} / \mathrm{C}$ in its area via radio and radar. When an $A / C$ leaves one $A R T C C$ and enters another, the controller of the area which the $A / C$ is leaving "hands-off" the $A / C$ to the controller of the next area via telephone. The $A / C$ then communicates with the new ARTCC and receives such information as communication frequencies, etc. The above procedure applies to enroute $A / C$ (those in transit and away from airport) only, which limits the ARTCC control to those $A / C$ at altitudes over 18,000 feet.

As a subset of each ARTCC and around each airport are Terminal Areas (TMA) which have responsibility for $A / C$ at all altitudes in an area that extends radially for $20-30$ miles around the airport. Figure 2 is a sketch of a TMA. An A/C may enter the TMA through one of several entry fixes which are defined by radio beacons. At these points, the ARTCC controller hands-off the $A / C$ to the TMA approach controller. The approach controller is aware that the $A / C$ is due to arrive because he receives the flight plan of that $A / C$ from its point
18.


TERMINAL CONTROL AREA
FIGURE 2.
of departure. This flight plan contains such information as estimated time of arrival (ETA), cruising altitude, speed, etc. The flight plan is updated enroute if any great changes occur in data originally sent to the TMA. However, since the ETA is by definition only an estimate, the controller experiences random arrivals of $A / C$ into the TMA. Upon entering the TMA, the $A / C$ can be instructed to do one of two things. Either the $A / C$ can be advised to proceed to land, or can be instructed to join one of the holding stacks and wait to be cleared to land.

If he is told to proceed to land, he enters the regulated
"funnel," enters the glide path and descends to the runway.
If he is ordered into a holding pattern, he joins the highest level of the appropriate stack, as shown in Figure 3, and cycles down the stack as the $A / C$ in the lower levels leave the stack to land. When he reaches the lowest level of the stack, it then becomes his turn to land.

There are two basic situations in which an $A / C$ will use an airport. Visual Flight Rules (VFR) are such that A/C fly on a "see and be seen" basis. Instrument Flight Rules (IFR) indicate that A/C are being guided onto the runway with use of various equipment. IRF requires a great deal more use of the ATC system since it must in effect control the $A / C$. In the past, IFR use was limited to weather conditions of poor visibility, but increased density in airspace has resulted in most commercial carriers using $I F R$ all the time when using high density airports. This accelerated use of IFR is one of the biggest problems in ATC. Naturally, this does not mean that IFR use should be reduced, but that the system should be
20.


HOLDING STACK
FIGURE 3.
developed so as to have the capability of handling an ever-increasing IFR use.

When using the TMA under IFR, several aids enable the controlling of traffic. Holding patterns are established using radio beacons. Upon proceeding to land, the $A / C$ uses an Instrument Landing System (ILS) to guide itself to the runway. Radio transponders define the glide path so as to enable the $A / C$ to determine its position.

When an $A / C$ is departing form a TMA, he files a flight plan with departure control, as previously mentioned. Departure control clears the $A / C$ to use a taxiway. When a runway is available, the $A / C$ is cleared to depart. Departure control remains in charge of the $A / C$ until it is handed-off to the next control area as it leaves the TMA.

There are many safety standards which complicate the above procedures. In the air, $A / C$ are required to maintain a 3 mile horizontal and 1000 foot vertical separation from all other $A / C$. When $A / C$ reach the runway, a minimum separation of 1.5 minutes is usually required to allow the runway to be cleared for the next landing. For enroute $A / C$ the minimum spacing requirements are somewhat greater ( 5 miles) because the greater amount of airspace allows a larger margin of safety. Thus, all of these standards as administered by the FAA are for safety's sake.

There are also departure separation standards. If two A/C are planning to fly the same course, their departure must be separated by at least 3 minutes. If their courses will diverge after 5 minutes in the air, the standard is 2 minutes, and, if their courses are completely different, the separation is 1 minute.

A/C could physically be flown much closer than these
standards require, but equipment that the ATC system uses has some inherent uncertainty. Radar is the main system used by ATC in controlling $A / C$. The accuracy possible with this equipment is $\pm .333$ nautical miles for distance and $\pm 2^{\circ}$ for bearing . Using this data and a little trigonometry yields the result that at 20 miles from the airport, the controller knows only that the $A / C$ is somewhere in an area of space 1.40 miles by .77 miles. ATC knows the $A / C$ altitude only by what the $A / C$ tells them. Using these figures, the separation standards seem quite realistic for A/C traveling at a couple of hundred miles per hour.

Often the controllers are skillful in avoiding situations where separation standards hinder operation. An example might be a faster A/C following a slower A/C. Here it is impossible to maintain the minimum standard constantly. When arriving A/C are too close or appear to be heading for that situation, the controllers instruct them to take courses which will delay them for a certain length of time. In other words, the $A / C$ flies some pattern off course for a period of time so that when it redoins the normal pattern, it has lost a desired amount of time andor distance and thus has not violated the (11)
separation standards. Simpson explains these various delaying (12)
patterns and their effectiveness. Porter has studied optimal strategies for these maneuvers. With respect to departures, the controllers usually sequence the departing $A / C$ on the taxiway so that planes going in the same direction do not follow each other. This eliminates needless delay in meeting time separation standards. There are many other pieces of navigational equipment in use today that are not discussed here. Basically, they are simply
variations of the equipment previously explained.

Communications between ATC and $A / C$ is via radio. During IFR situations at peak times, the frequencies available become dangerously overloaded. As an example, on an average flight from Washington to New York with a flying time of 39 minutes, there are 55 separate (13) two-way voice communications on 11 different frequencies . Telephone and teletype are used to communicate between ARTCC's and TMA's. The teletype is used to process flight plans. These are sent on paper "flight strips" which the controller manually handles and arranges in order of expected arrival. As previously mentioned, the telephone is used during the hand-off procedure.

Operation of the system is based on a "first-come first-served" basis with landings given priority over departures. Landings have priority because of the increased costs for delays in the air as opposed to those on the ground, and also for safety reasons. In communications, ground transmissions have priority over A/C transmissions. When the system is extremely busy, A/C are reduced to simply (11) being listeners since there are no channels available (10)

The system may be modeled as a series of queues . The holding, ground and departure queues are displayed in Figure 4. In this context, 'ground' means all those activities which take place on the ground exclusive of landing and departing, such as loading and unloading passengers, fuel, and baggage and performance of any necessary maintenance.

Thus far the discussion has been limited to airports that have only one runway. With a few exceptions, all the rules and procedures are the some regardless of the number of runways available.

terminal facility queves
FIGURE 4.

Many times multiple runways exist simply because of the variations in wind direction. If parallel runways are 5000 feet apart, then they can be used independently for departures and arrivals or for a mixture of both. Under IFR, the runway must have an ILS, but only a few of the busiest of the nation's airports have more than one. Therefore, capacity is lowered considerably when IFR is used in many airports that normally have multiple landing capability.

Thus, the ATC system is fairly complex and ladden with operating rules and restrictions. Many problems could be explored.

This study is concerned with the controllers effect on system performance. The importance of this investigation can be seen if one considers that the greatest cause of inefficiency in the ATC system is error resulting from equipment tolerances and inaccuracies (14) in $A / C$ spacing caused by the controller .

One of the main purposes of this work is to determine how well a human operator can perform under the restrictions that the ATC system imposes and if a computer aid such as a predictor system can improve the operator's performance.

## IV. EXPERIMENTS

The experiments upon which this thesis is based were designed with two goals in mind. First, concern was focused on ATC problems and predictor displays as a possible solution. With respect to this goal, the effect of predictor displays on system performance and the feasibility of such aids were the main considerations. The second and more general goal concerned the question of how the operator uses this computer aid to help make his decisions. In other words, if the operator performs better (worse) with a predictor display, what causes the improvement (degradation)? Answers to this question may allow results obtained from a specific example (ATC) to be generalized to predict the outcome of applying such displays to other complex problems such as high speed merging of automobiles. A. Experiment I

The first experiment performed consisted of guiding a single $A / C$ through the vicinity of the regulated "funnel" to the gate of the glidepath. Beqinning with only one $A / C$ served two purposes. It enabled the five subjects to develop some proficiency with a simplified ATC task. Also, this initial experiment allowed study of the basic ATC task unencumbered by inter-aircraft constraints such as separation standards. Inter-aircraft constraints were studied via an experiment that will later be discussed. Figure 5 illustrates the display arrangement used for this first experiment. The single $A / C$ being considered could have initial states $A$ or $B$ with initial headings of $45^{\circ}, 90^{\circ},-90^{\circ}$, or $-45^{\circ}$ as based on the coordinate system shown in the figure. The initial velocity was always 180 mph . The subject's task was to quide the $A / C$ to point $G$ (the gate) subject to the constraints

that the $A / C$ should cross $G$ at 180 mph with a bearing of 0 . degrees. If the velocity was below 150 mph or above 210 mph , the $\mathrm{A} / \mathrm{C}$ was not permitted to continue its approach. It was assumed that once the $A / C$ crossed $G$, it was guided the remainder of the distance to the runway by an ILS system.

The subject accomplished this task by giving bearing and speed commands to the pilot. The experimenter acted as the pilot in an $A / C$ with a quasiautopilot system. The pilot used commands given to him by the controller to set two dials for thrust and bearing respectively which controlled the $A / C$. These inputs then operated unon the dynamics of the $A / C$ and the commands were achieved. This type of system minimized the use of any strategy on the pilot's part. The reason for including a human operator as a pilot was based on the necessity of the controller being able to use voice commands as he would in any actual ATC system.

The predictor system displayed an $X-Y$ trajectory on the screen. The $Z$ coordinate (altitude) was not considered. For this experiment, predicted trajectories of $0.0,20.0$, and 40.0 seconds were used. A trajectory of length 0.0 seconds simply refers to a consentional system with no predictor. During each run of the experiment, the subject was told the length of predictor that he would use. In other words, he could not choose among them.

The time prediction gave information to the controller in two ways. The shape of the prediction indicated the path of the $A / C$ to a future position. The contours of this path displayed the angular velocity of the $A / C$. The length of the path was relative to the speed of the A/C. Besides the information obtained from the shape and length of the prediction, the operatior also received feedback from the pilot as the commands were executed. 'This feedback consisted of acknowledgement of the
command and verification when the maneuvers were completed, The pilot also answered any specific inquiries by the controller.

For this experiment as well as the next, measures of performance were developed that reflect the relative importance of various aspects of the situation under investigation. Thus, while task completion time was measured, the errors in arriving at the gate were also important. The performance index that the suiject was to minimize for this experiment was

$$
\begin{equation*}
P I=t+\left|X_{f}\right|+\left|\dot{x}_{f}\right|+\frac{X_{f} \dot{x}_{f}}{X_{f}+\dot{x}_{f}} \tag{4-1}
\end{equation*}
$$

where
$t=$ task completion time
$X_{f}=$ erros at the gate
$\dot{X}_{f}=$ error rate at the gate
The error rate is a measure of the angle at which the $A / C$ crosses the gate. Actually, the angle is,

$$
\begin{equation*}
\theta_{\mathrm{f}}=1-\tan ^{-1} \frac{\dot{\mathrm{Y}}_{\mathrm{f}}}{\dot{\mathrm{X}}_{\mathrm{f}}} \tag{4-2}
\end{equation*}
$$

but since $\dot{Y}_{f}$ was constrained to be ir the neighborhood of 180 mph ; $\dot{X}_{f}$ was a reasonable measure. The fourth term of the index is sensitive to the derivative of the error. If error is decreasing then the term subtracts from the score. This occured whenever $X_{f}$ and $\dot{X}_{f}$ were of opposite signs which indicated that the $A / C$ was heading towards the gate.

The units used for $t$ were hundredths of minutes. $X_{f}$ and $\dot{X}_{f}$ were measured in arbitrary error units on a linear scale of -100 to 100 , where 100 equals 3.75 miles and $60^{\circ}$. respectively.

Scores were compiled on data sheets as shown in Figure 6. The $t$, $X_{f}$, and $\dot{X}_{f}$ numerics were qiven to the subject at the end of each run and
30.

| SUBJECT: |  |  |  | DATE: |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| POS. | $\theta_{i}$ | $\mathrm{PRED}_{L}$ | $\mathrm{X}_{\mathrm{f}}$ | $\stackrel{\dot{x}}{\text { f }}$ | $\mathrm{x}_{\mathrm{f}} \dot{\mathrm{X}}_{\mathrm{f}}$ | t | $\|4\|+\|5\|$ | 6/8 | $\mathrm{PI}=7+8+9$ |
| A | 45 | 0. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  | 40. |  |  |  |  |  |  |  |
|  | 90 | 40. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  | 0. |  |  |  |  |  |  |  |
| B | -90 | 0. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  | 40. |  |  |  |  |  |  |  |
|  | -45 | 40. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  | 0. |  |  |  |  |  |  |  |
| A | 90 | 0. |  |  |  |  |  |  |  |
|  |  | $20 .$ |  |  |  |  |  |  |  |
|  |  | 40. |  |  |  |  |  |  |  |
|  | 45 | 40. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  | 0. |  |  |  |  |  |  |  |
| B | -45 | 0. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  | 40. |  |  |  |  |  |  |  |
|  | -90 | 40. |  |  |  |  |  |  |  |
|  |  | 20. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

DATA SHEET FOR EXPERIMENT I (3/4 SIZE)
FIGURE 6.
he then calculated his own PI. In this way the subject was able to see the components of his score immediately after each run.

For this experiment, five subjects were used: three male undergraduates, one male graduate student, and one female secretary. Each worked four evenings and performed the task a total of 96 times. Each subject was allowed as many practice runs as he desired during the first evening. For the remainder of the sessions, only one practice run was permitted before the beginning of scored runs. They were paid $\$ 2.25$ per evening. Thus, their hourly wage depended on how fast they could complete the evening's work. As an incentive, a $\$ 500$ bonus was given to the subject with the lowest average score and the subjects were told that only the best subjects from the first experiment would be retained for the more lucrative second experiment.

The experimental set-up for this experiment was kept very simple. The subject did not sit in a darkened booth. Both he and the experimenter sat near each other in an open room and commands were simply voiced without the aid of any audio equipment. The above atmosphere was consonant with the purpose of this experiment.

The results of this experiment as well as illustrations of the simulation equipment used will be discussed in later chapters.
B. Experiment II

The second experiment was designed to investigate the intexaction of $A / C$ in the terminal area. The controller's task was to merge $3 \mathrm{~A} / \mathrm{C}$ into a given sequence so that they traversed the funnel to the gate in a minimum time subject to the same speed and bearing constraints as used during experiment one and such that no $A / C$ was ever within 3 miles of another $A / C$. Figure 7
illustrates the experimental display. $A / C_{1}$ always had an initial heading of $0^{\circ}$. $A / C_{2}$ had either a $45^{\circ}$ or $90^{\circ}$ initial heading. $A / C_{3}$ had either a $-45^{\circ}$ or $-90^{\circ}$ initial heading. The initial velocity for all $\mathrm{A} / \mathrm{C}$ was always 180 mph. These initial conditions yield 4 combinations of initial states for the system.

The subject was told to guide the $A / C$ in such a way as they would cross the gate in the sequence $A / C_{1}, A / C_{2}, A / C_{3}$. The initial state had an effect on the difficulty of the task; especially the mandatory landing of $A / C_{2}$ before $A / C_{3}$. As will be seen later, it often would have been easier te land $A / C_{3}$ before $A / C_{2}$. However, task difficulty does not always dictate the priorities given to the landing of $A / C$.

The task could be accomplished with predictor trajectories of length 0 . or 20. seconds. Combining the 2 possible predictor lengths (0.0 sec. and 20. sec) with the 4 possible initial states yields 8 variations of the experiment. Four different sequences of these variationswere used as experimental treatments. They appear in Table I. The subjects performed 2 sequences per session.

The subject could give only speed commands to $A / C_{1}$, while he could give speed and bearing commands to $A / C_{2}$ and $A / C_{3}$. As during the first experiment, the $A / C$ were piloted by the experimenter.

The performance index used for this experiment was

$$
\begin{align*}
& P I=t+\left|X_{f}\right|_{2}+\left|\dot{X}_{f}\right|_{2}+\frac{X_{f 2} \dot{x}_{f 2}}{\left|X_{f}\right|_{2}+\left|\dot{x}_{f}\right|_{2}}+\left|X_{f}\right|_{3}+\left|\dot{X}_{f}\right|{ }_{3}+ \\
& { }^{x_{f 3} \dot{x}_{f 3}}+.015 \int_{0}^{\sum_{i, j}^{t}} f\left(d_{i j}\right) d t  \tag{4-3}\\
& \left|x_{f}\right|_{3}+\left|\dot{x}_{f}\right|_{3}
\end{align*}
$$



| SEQUENCE 1 |  |  | SEQuence 2 |  |  | SEquence 3 |  |  | SEQUENCE 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | $\mathrm{A} / \mathrm{C}_{2}$ | $\mathrm{A} / \mathrm{C}_{3}$ | L | $A^{\prime} \mathrm{C}_{2}$ | A/C3 | L | $\mathrm{A} / \mathrm{C}_{2}$ | A/C3 | L | $\mathrm{A} / \mathrm{C}_{2}$ | A/C ${ }_{3}$ |
| 0. | 90 | -90 | 20. | 45 | -90 | 0. | 45 | -45 | 20. | 90 | -45 |
| 20. | 90 | -90 | 0. | 45 | -90 | 20. | 45 | -45 | 0. | 90 | -45 |
| 20. | 45 | -90 | 0. | 45 | -45 | 20. | 90 | -45 | 0. | 90 | -90 |
| 0. | 45 | -90 | 20. | 45 | -45 | 0. | 90 | -45 | 20. | 90 | -90 |
| 0. | 90 | -45 | 20. | 90 | -90 | 0. | 45 | -90 | 20. | 45 | -45 |
| 20. | 90 | -45 | 0. | 90 | -90 | 20. | 45 | -90 | 0. | 45 | -45 |
| 20. | 45 | -45 | 0. | 90 | -45 | 20. | 90 | -90 | 0. | 45 | -90 |
| 0. | 45 | -45 | 20. | 90 | -45 | 0. | 90 | -90 | 20. | 45 | -90 |

EXPERIMENTAL SEQUENCES
TABLE I
where,

$$
f\left(d_{i j}\right)= \begin{cases}3-d_{i j} & d_{i j}<3 \text { miles }  \tag{4-4}\\ 0 & \text { otherwise }\end{cases}
$$

and,
$d_{i j}=$ the distance between the $i^{\text {th }}$ and $j^{\text {th }} A / C$.
The use of the first 7 terms of the index was explained with the first experiment. The final state of $A / C_{1}$ was not included because it would have always been zero since bearing commands could not be given to this A/C. The last term of the index, henceforth called the integral term, penalized the subject whenever any $A / C$ were closer than 3 miles. The .015 was used to scale this term to a reasonable proportion with the other terms. This scale was such that $d_{i j}$ 's of much less than 3 miles penalized the subject to a great extent (because $f\left(d_{i j}\right)$ was large and $t$ was long), and $d_{i j}$ 's slightly less than 3 miles only penalized the subject a small amount. The generation of this numeric will be discussed in the next chapter.

This index allowed the subject several trade-offs. If the $A / C$ are brought in very close trgether, then $t$ is small but $f\left(d_{i j}\right)$ is high. If the $A / C$ are spacedfar apart for the approach, $t$ is large and $f\left(d_{i j}\right)=$ 0. Thus, the subject's task was to develop a strategy that compromised among all of the factors and gave him a low score.

An additional constraint was added to the above PI besides the speed constraints previously discussed. If any $A / C$ crossed the gate with $\left|X_{f}\right|>20$, the run was started over. The reasoning for this addition will be explained in a later chapter as it is contingent on some early results.

Three $A / C$ were used for this experiment because that was the minimum number that retained all of the basic characteristics of the ATC task.

This task essentially amounts to the problem of keeping $A / C_{2} 3$ miles behind $A / C_{1}$ and 3 miles in front of $A / C_{3}$ and performing the whole operation in a minimum of time. More A/C would have certainly complicated the subject's task but they would not have added any new facets of the ATC problem to study.

Scores wexe compiled on data sheets as shown in Figure 8. The variables of the index were given to the subject and he performed the manipulations to obtain PI. Since this data sheet was fairly complicated, a template was made that was placed over the sheet and allowed much quicker calculation of the scores.

Three subjects were used for this experiment: two male undergraduates and one male graduate student. They each worked 10 evenings and performed 2 sequences each evening. Each subject was allowed as many practice runs as he desired during the first evening. For the remaindex of the sessions, only one practice was permitted before the beginning of scored runs. Their pay for each evening equaled $\$ 6.00$ minus their average score for the evening. Thus, their hourly wage was determined by how well they did and how fast they worked. As an additional incentive, a $\$ 10.00$ bonus was given to the subject who most improved his performance over the first experiment.

The experimental atmosphere during this experiment was more formal than that of the first expeximent. The subject sat in a darkened booth with the screen. He relayed his commands to the pilots with a microphone.

The results of this experiment as well as the other will be presented and discussed in a latex chapter. The design of the simulation equipment will be presented in the next chapter.


## V. EQUIPMENT DESIGN

Equipment was needed to perform three functions for this research. A/C had to be simulated and controlled. Trajectory predictions had to be computed and displayed. Also, the integral term of equ. 4-3 had to be generated.
A. Modeling $A / C$

To generate $\Lambda / C$, a simple second-order model was chosen Each direction ( $x$ and $y$ ) was genemated separately and the governing equations were,

$$
\begin{align*}
& M \ddot{x}+\left(F_{D}\right)_{x}=\left(F_{T}\right)  \tag{5-1}\\
& M \ddot{y}+\left(F_{D}\right)_{y}=\left(F_{T}\right)_{y}
\end{align*}
$$

where $\quad \mathrm{F}_{\mathrm{T}}=$ thrust
$F_{D}=$ draq
$\mathrm{M}=$ mass.
Effects of wind were neglected and as can be seen from 5-1, the various control surfaces of an $A / C$ were not considered. The model is a simple secondorder, point-mass, viscously damped system.

To determine the narameters for equation 5-1, a Boeing 707
aircraft was assumed. From Taylor ${ }^{(15)}$, the following characteristics were obtained:

```
w = weight = 247,000 lbf
F
            per engine ( }4\mathrm{ engines)
V
S = wing area }\approx3,650 \mp@subsup{\textrm{ft}}{}{2
```

```
\(M=\) mass \(=7,680 \frac{1 \mathrm{bf} \mathrm{sec}^{2}}{\mathrm{ft}}\)
\(0 \leqslant \mathrm{~F}_{\mathrm{p}}(\mathrm{t}) \leqslant 72,000 \mathrm{lbf}\)
```

The drag was assumed to be linear. A least squares fit of a linear model was used. Using the drag-speed curves as they appear in Fischel and assuming a recommended approach of $1.5 \mathrm{~V}_{\mathrm{S}}^{(16)}$, then for $\frac{W}{S}=67.8$, the following linear model was determined,

$$
\begin{equation*}
F_{D}=131 \mathrm{~V} \tag{5-3}
\end{equation*}
$$

where
$V=$ velocity in the direction of interest.
The reason for using a least squares fit of Fischel's data is not obvious. A Taylor series linearization would be more accurate if an operating point could be defined. However, generating each dimension of the $A / C$ separately does not allow the definition of an operating point. since $\dot{X}$ and $\dot{Y}$ can range from 0. - 240. mph as a turn is being executed, any drag model that is used must allow for $\left(F_{D}\right)_{x}=0$ when $\dot{X}=0$ and similarly for the $y$ direction. Dynamic drag curves are not defined below the stall speed and therefore an operating point below 121 mph could not be, considered. If a point above 121 mph was used, then when one direction of the $A / C$ was operating below 121 mph , it would move backwards. Thus, the least squares technique was used.

The remainder of the development of $5-1$ will consider only the $X$ direction since the $Y$ direction equation will be exactly the same. Combining the above parameters with 5-1,

$$
\begin{equation*}
7680 \dot{x}+13 \dot{x} \dot{x}=F_{x}(t) \tag{5-4}
\end{equation*}
$$

where $\dot{x}$ was assumed to be the indicated airspeed of the $A / C$. This assumed that while Fischel used "calibrated" airspeed for his drag curves, that
the use of indicated airspeed would at most be a translating factor and would not greatly effect the slope characteristics of the drag curves.

To scale 5-4 for simulation, redefine $\mathrm{F}_{\mathrm{x}}(\mathrm{t})$ so that,

$$
\begin{equation*}
0 \leq \mathrm{F}_{\mathrm{x}}(\mathrm{t}) \leq 1.0 \tag{5-5}
\end{equation*}
$$

This changes 5-4 to

$$
\begin{equation*}
7680 \ddot{X}+131 \dot{X}=72,000 \mathrm{~F}_{\mathrm{X}}(\mathrm{t}) \tag{5-6}
\end{equation*}
$$

Dividing,

$$
\begin{equation*}
\ddot{X}+.0171 \dot{X}=9.38 F_{x}(t) \tag{5-7}
\end{equation*}
$$

Assuming,

$$
\begin{aligned}
& \dot{X}_{\max }=220 \mathrm{mph}=320 \frac{\mathrm{ft}}{\mathrm{sec}} \\
& X_{\max }= \pm 2.5 \text { miles }=13,200 \mathrm{ft}
\end{aligned}
$$

and using scale factors,

$$
\begin{aligned}
& a_{v}=\text { velocity scale factor }=320 \\
& a_{p}=\text { position scale factor }=13,200
\end{aligned}
$$

equation 5-7 becomes,

$$
\begin{equation*}
\dot{X}+5.46 \dot{X}=9.38 \mathrm{~F}_{\mathrm{X}}(\mathrm{t}) \tag{5-8}
\end{equation*}
$$

Equation $5-8$ is scaled for simulation without amplifier saturation but the time constant of the system has been lowered considerably. Multiplying the two constants in $5-8$ by $1 / 320$ returns the time constant to the correct value without changing the scaling. Therefore,

$$
\begin{equation*}
\ddot{X}+.0171 \dot{X}=.0293 F_{X}(t) \tag{5-9}
\end{equation*}
$$

The thrust for each direction of $A / C$ operation, $F_{x}(t)$ and $F_{y}(t)$
(or $\left(F_{D}\right)_{x}$ and $\left(F_{D}\right)_{y}$ respectively), follow the equation,

$$
\begin{equation*}
F=\left(F x^{2} t t+E y^{2}(t)\right)^{1 / 2} \tag{5-10}
\end{equation*}
$$

where
$F=$ the magnitude of the total $A / C$ thrust.
Thus, the directions of $A / C$ motion are linked by the interaction of their individual thrust components. The control of each $A / C$ was accomplished with a combination of a linear potentiometer and a sine/cosine potentiometer The linear potentiometer controlled the magnitude of the thrust. The sine/ cosinge potentiometer controlled the angle of the thrust and therefore the bearing of the $A / C$. For example, if the linear potentiometer was set at 50 and the sine/cosine notentiometer was set at $60^{\circ}$ (see coordinate system used on Figures 5 and 7), then $F x(t)=.50 \cos 30^{\circ}$ and $F y(t)=.50$ $\sin 30^{\circ}$ which satisfies $5-10$.

To aid the pilot in flying the $A / C$, an airspeed indicator was used that read airspeed according to

$$
\begin{equation*}
V=\left(\dot{x}^{2}+\dot{y}^{2}\right)^{1 / 2} \tag{5-11}
\end{equation*}
$$

where
$\mathrm{V}=$ airspeed.
A complete schematic of an aircraft appears in Figure 9. Further discussion of some aspects of this circuitry can be found in the philbrick manual ${ }^{(17)}$.

An analog computer was constructed which contained three of the A/C described by Figure 9. Each of these could be operated independently. This constituted the $A / C$ generation portion of the ATC simulation. Illustrations of this equipment will appear at the end of this chapter.
B. Prediction and Display

Prediction and display of $A / C$ were accomplished with an EAI 680
analog computer. Three fast time $A / C$ models were programmed on the 680.
Each of the three were used to predict futune trajectories of one of

of the real time $A / C$. As explained in chapter II, the present state of the real $A / C$ was used as initial corditions upon which the fast time A/C based its predictions. The $A / C$ generator and the 680 where connected by a shielded cable.

It is important to note that only one fast time $A / C$ is needed if sufficient multiplexing capability is available to allow rapid switching of initial conditions of this single model. The need for only one fast time $A / C$ is important if the prediction concept $d s$ to be feasible in a terminal area where there are many $A / C$.

Use of a ring shift register on the 680 allowed sequential display of the $A / C$ on the 680 . The shift register simply sequenced repetitively through the outputs of each $A / C$ ( a position) very rapidly.

The prediction and display program for the 680 appears in Figure 10. The potentiometer settings for inputs and feedback of the $A / C$ were the same as those for the real time $A / C$ since the 680 has an independent time scale control.

The difference between Figures 1 and 10 should be noted. The predictor of Figure 1 assumes that the operator returns his control to the equilibrium point (the exponential portion of the diagram). As previously discussed, there is no equilibrium point for the $A / C$ system. Thus, this portion of a conventional predicter system was eliminated. C. Measuring Performance

The generation of the integral term of $4-3$ was accomplished on the 680. A combination of comparators and gates were used such that the two ranges of $4-4$ were determined and $f\left(d_{i j}\right)$ calculated and integratea. The program to accomplish this appears in Figure 11.

PREDICTION AND DISPLAY PROGRAM



PERFORMANCE CRITERIA PROGRAM
FIGURE II.

## D. Apparatus Configuration

The following photographs illustrate the system and the resulting displays. Figure 12 pictures the entire simulation system. The equipment rack on the left is the $A / C$ generator with the $A / C$ controls to its right. The EAI 680 and the display can be seen in the background. During the second experiment the display pontion of the system was surrounded by a darkened booth and the subject communicated with the pilot by a microphone.

Figure 13 is a close-up of the $A / C$ control panel. Each $A / C$ had independent thrust and bearing control. The thrust knob controlled the magnitude of the thrust and the bearing.knob apportioned it to each A/C dimension. It is important to note that the bearing knob did not indicate the present heading of the $A / C$, but that bearing to which the $A / C$ was nroceeding. The pilot had no feedback concerning his present heading other than that supplied by the controller.

Figure 14 illustrates how the use of the predictor was controlled. The box was connected to the 680 with a shielded cable. The subject operated the box, but the settings were dictated by the experimenter. The length of the predictions were set on the 680 .

Figures 15, 16, and 17 are typical displays of length 0., 20 , and 40 seconds respectively. The nosition of the real $A / C$ is at the bottom of the prediction. The trajectories indicated what would happen to the $A / C$ during the next $0 ., 20$, or 40 seconds if its control was unchanged.

It now remains to discuss how the subjects performed with the equipment during the experiments.


ATC SIMULATION
FIGUPE 12.


A/C CONTROL PANEL
FIGURE 13.


PREDICTION CONTPOL

FIGURE 14.


DISPLAY WITH L=0.0


DISPLAY WITH L=20.0
FIGURE 16.


DISPLAY WITH L=40.0
FIGURE 17.
VI. RESULTS

This chapter presents the results of the analyses performed with the data gathered during the experiments. Discussion of these results and conclusions will follow in the next chapter.

A goal of these analyses was to determine whether a predictor display produces significantly better performance than a conventional display does. A more general goal was that of determining why a predictor display might be different from a conventional display.

With these goals in mind, data was collected by component scores and not as a single score. As discussed in Chapter IV, the subjects calculated their own total score from the components using equations 4-1 and 4-3 during experiments I and II respectively. While this enabled subjects to know how each component of the task affected his final score, it also allowed separate analyses to be pexformed on each of these components. This allowed a determination of the portions of the task which the predictor system was effecting. Task components studied included aircraft position error, position error rate, task completion time, and separation error.

Experiments I and II used two and four different initial conditions respectively. Thus, six different tasks were investigated. The differences between these tasks will later be discussed and they will be ranked in order of difficulty.

The procedure used for this analysis was analysis of variance. This type of analysis was designed to study experiments where several variables can influence the outcome. The towal procedure will not be discussed here as several texts provide good presentations of this
matexial ${ }^{(18,19)}$.
The hypothesis used is that two (or more) samples come from the same normally distributed population. By analyzing the components of variance of the data, we accept or reject this hypothesis. The components of variability for these experiments were:

1. Between displays
2. Between subjects
3. Interaction between displays and subjects
4. Within the groups of displays and subjects.

The hypothesis is tested using variance ratios (F-ratios) of the various components of variability as explained in the references. If the Fratio is large ${ }^{(21)}$, the hypothesis is rejected and it is assumed that the samples came from different normal populations. The magnitude of the F-ratio necessary for rejection depends on the risk of making a wrong decision that the analyst is willing to accept. One minus the probability of error is termed the significance level. Typical significance levels are . $70, .90$, and . 95.

For this analysis, the rejection of the hypothesis meant that the performance with the various display systems was significantly different from what would occur by chance if the two displays were identical. If it was determined thet one display was better than another, the difference between the arithmetic means of the scores with each display was used as a measure of this difference.

A basic assumption necessary to use the analysis of variance is that the data is normally distributed. However, data collected during these expeximents included the learning process through which the subjects went. In fact. the nature of the ATC task was complicated to the point
that the subjects' scores never reached an asymptote. Thus, the luxury of throwing away all data taken before the task was completely learned could not be afforded. This problem was solved by fitting an exponential learning curve to the data and then subtracting it from the data. This served two purposes. It removed the learning bias from what could then be assumed normally distributed data. Also, this process allowed a study of the learning process with each type of display.

A least-squares fit of an exponential curve was used. The exponen-
tial had three parameters,

$$
\begin{equation*}
y=A_{1}+A_{2} e^{A_{3} T_{i}} \tag{6-1}
\end{equation*}
$$

where,
$A_{1}, A_{2}, A_{3}=$ the parameters
$T_{i}=$ the number of the consecutive trial
$y_{i}=$ the data

A combination of two techniques was used to perform the curve fitting. Both were based on minimizing the least-square error given by

$$
\begin{equation*}
\operatorname{RMS}=\left[\left(f\left(T_{i}\right)-y_{i}\right)^{2}\right]^{1 / 2} \tag{6-2}
\end{equation*}
$$

The first technique used produced a least-squares approximation
in closed form. The second technique produced an exact least-squares fit in an iterative mannex ${ }^{(22)}$. This second technique required a first (non-zero) estimate of the parameters. The first approximate technique was used to produce these estimates. As with many iterative numerical techniques, convergence of the result is not guaranteed. This occurred during several of the sixty curve fits that were performed. When this occurred, the parameters produced by the approximate technique were used.

Such instances are indicated in the results. Several sample plots of data and the curves fit to this data appeax in the Appendix. The analyses that were performed with experiment I data included three comparisons of displays with different prediction lengths (L) for each initial condition:

1. $I:=0$. and $L=20$.
2. $L=0$. and $L=40$.
3. $L=20$. and $L=40$.

For each of these analyses, a curve was fit to the combined data for both prediction lengths and then subtracted from the data. If the data for each prediction length as fitted and subtracted separately, the differences in the various displays would not have been preserved and the results of the analysis of varimce would have been erroneous. Curves were $f_{i} t$ to the data for each prediction length individually to use in studying the learning process, but these curves were not used with the analysis of variance.

Only two prediction lengths were used for experiment II. Thus, only one analysis was done for each initial condition As with experiment I, the learning curves that were subtracted were those fit to the combined data for both prediction lengths.

Learning curves were fit to all of the components of the data except $A / C$ position exror and error rate. The scale upon which this data was taken prevented any such fitting. These two components could have values from -100. to 100 ., but the negative signs were only used to indicate direction and the performance indexes used the absolute value of the data. Error scores were reasonably normally distributed about the
origin ( 0.0 ) if the signs were retained and therefore the actual data (with signs) were used for the analysis of variance. Because of the dual roles of this exror data, it was not appropriate to fit learning curves to this data. Fortunately, as previously mentioned, the error data could be assumed to be normally distributed about the origin.

Two computer programs were written to perform the above analyses. These were based on the references cited with the above discussion. The first program, LCURV, performed the least-squares fitting of the data. The second program, ANVAR, performed the analysis of variance. Listings of these programs appear in the Appendix. A complete listing of all experimental data also appears in the Appendix.

The results for the two experiments appear in Tables II - VIII. Conclusions will be drawn from these results in the following chapter.

| Initial Condition | L | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | ${ }^{\text {A }} 3$ | RTS | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | 0 | 132.96 | 35.57 | -. 436 | 2.28 | 137.02 |
|  | 20\% | -37.75 | 177.48 | -. 005 | 3.55 | 133.50 |
|  | !10\% | 11.09 | 135.39 | . 0.011 | 3.75 | 136.81 |
|  | 0,20 | 130.96 | 24.82 | -. 306 | 2.08 | --* |
|  | 0,40* | 24.65 | 127.74 | -. 011 | 3.35 | - |
|  | 20, $40 \%$ | -9.30 | 152.64 | -.007 | 3.19 | - |
| 90 | O* | -53.87 | 217.50 | -.006 | 5.46 | 153.38 |
|  | 20\% | 16.17 | 1410.46 | -. 009 | 2.55 | 1478.95 |
|  | 40 | 143.22 | 36.65 | -. 196 | 2.59 | 1153.32 |
|  | 0,20 | 139.24 | 26.38 | -. 114 | 3.00 | $\cdots$ |
|  | 0,40\% | $-24.20$ | 189.31 | -. 000 | 4.37 | - |
|  | 20,40 | 141.03 | 29.55 | -. 164 | 1.95 | - |

*Approximate Fit
EXPRRIMENT I

(DTT. TOA 16 TRIALS X 5 SUBJECIS PER INITIAL CONDITION)

| Initial Cordition | L | $A_{1}$ | $A_{2}$ | ${ }_{1} \mathrm{~A}_{3}$ | RMS | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | 0 | 126.10 | 19.71 | - 353 | 1.45 | 129.00 |
|  | 20\% | -26.03 | 157.40 | -. 003 | 2.55 | 128.10 |
|  | 40* | 34.48 | 101.35 | -. 008 | 2.70 | 130.06 |
|  | 0,20* | 74.34 | 118.63 | -..005 | 2.31 | --- |
|  | 0,40 | 126.57 | 20.49 | -. 359 | .94 | -- |
|  | 20,40 | 126.46 | 16.19 | -. 326 | 1. 21 | --- |
| 90 | 0* | -2.43 | 155.46 | -. 007 | 3.72 | 145.60 |
|  | 20 | 125.05 | 26.79 | -.040 | 1.62 | 144.57 |
|  | 40 | 1143.57 | 31.94 | -. 301 | 2.16 | 149.21 |
|  | 0,20 | 134.94 | 19.82 | -. 089 | 2.15 | - |
|  | 0,40* | 10.54 | 145.53 | -. 008 | 3.45 | - |
|  | 20,40 | 141.3 .32 | 21.99 | -. 215 | 1.56 | - |

EXPERIMENT I
LEARING PARAMETERS $A_{1}, A_{2}$, AND $A_{3}$, RMS FITTING ERROR, AND MEAN OF TASK COMPLETION TIME ( $t$ ) (DATA FOR 16 TRIALS $\times 5$ SUBJECTS PER INITIAL CONDITION)

| Condition | Comotarisme | I | $\stackrel{\bullet}{\mathbf{X}}$ | + | PI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 45:0,20 |  |  |  | d | \% |
|  | Betwos. Subjo | . 41 | . 30 | 3.91 | 4.32 |
|  | Betmo Displ. | 87 | . 35 | 3.00 | $5.46{ }^{\text {b }}$ |
|  | Interaetion | .63 | .10 | . 14 | .36 |
| 45:0,40 |  |  |  | d | d |
|  | Betw. Subj. | -36 | .12 | 1.33 | 1.55 |
|  | Betw. Displ. | 1.91 | . 02 | .65 | . 02 |
|  | Intersation | 1.20 | . 33 | . 87 | d4 |
| 45:20,40 |  | d |  | ${ }^{\text {d }}$ | O |
|  | Betwo Subj. | 1.50 | . 05 | 1.68 | 2.05 |
|  | Betwo Displ. | . 86 | -29 | 2.75 | 3.89 |
|  | Intoraetion | . 40 | . 89 | .75 | . 57 |
| 90:0,20 |  |  | d | b | b |
|  | Betw. Subjo | . 50 | 1.57 | 3.40 | $6.47 \mathrm{~b}$ |
|  | Betw, Displ. | . 13 | 1.00 | . 52 | 8.22 |
|  | Interaetien | 0.46 | . 32 | 1.04 | $1.46{ }^{\text {d }}$ |
| 90:0,40 |  | d |  | d | d |
|  | Betw. Subje | 1.33 | -86 | 2.79 | 3.97 |
|  | Betw. Displ. | . 07 | $.38$ | 2.79 | $._{d}$ |
|  | Interaction | . 08 | 1.33 | 2,11 | 1.81 |
| 90:20,40 |  |  |  | ${ }^{2}$ | ${ }^{2}$ |
|  | Betw. Subje | 1.00 | 1.17 | 3.54 | $3.54_{b}$ |
|  | Betw. Displ. | . 00 | . 39 | 5.73 | 5.77 |
|  | Interation | . 50 | $1.67{ }^{\text {d }}$ | 1.14 | . 94 |

EXPPERTMENTI I
ANALISIS OF VARTANCE RESULTS
(DATA FOR 16 TRTALS X 5 SUBJECTS PER INITIAL CONDITION)
TABLE IV

| Initial Concition | L | $A_{2}$ | $A_{2}$ | $A_{3}$ | RMS | IEAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90, -90 | 0 | 248.18 | 285.66 | . -362 | 20.57 | 280.86 |
|  | 20 | 231.91 | 191.38 | -. 240 | 7.7.13 | 266.91 |
|  | 0,20 | 240.27 | 233.13 | -. 297 | 17.76 | --- |
| $4.59-90$ | 0 | 209.67 | 148.78 | -. 1145 | 20.66 | 254.75 |
|  | 20 | 215.88 | 129.84 | -. 258 | 8.68 | 237.81 |
|  | 0,20 | 214.02 | 135.12 | -. 186 | 12.29 | --- |
| 20, -4.5 | 0 | 242.89 | 113.35 | -. 129 | 10.47 | 281.01 |
|  | 20 | 242.52 | 113.87 | -. 159 | 13.01 | 274.25 |
|  | 0,20 | 242.39 | 113.17 | -.14I | 9.20 | --- |
| $45,-45$ | 0 | 227.92 | 159.13 | -. 2719 | 8.43 | 259.98 |
|  | 20 | 219\%66 | 129.28 | -. 189 | 10.24 | 250.05 |
|  | 0, 20 | 224.07 | 144.15 | -. 206 | 7.09 | --- |

EXPERIMENT II
Leniding parameters al, A2, and A3, RMS fitting error, and itan of pfrformance index (pi) (DATA FOR 20 TRTALS X 3 SUBJECTS PR INITIAL CONITTION)

| Initial Condition | I | ${ }^{1}$ | $A_{2}$ | ${ }^{4}$ | RMS | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90, -90 | 0 | 14.64 | 751.97 | -1.463 | 16.19 | 25.96 |
|  | 20 | 10.36 | 375.10 | - 1.330 | 9.12 | 17.11 |
|  | 0,20 | 12.49 | 557.45 | --1.406 | 12.03 | $\cdots$ |
| 45, -90 | 0 | 2.09 | 91.47 | -. 239 | 13.39 | 18.86 |
|  | 20 | 2.31 | 30.58: | --222 | 4.70 | 8.38 |
|  | 0,20 | 2.22 | 61.03 | -. 235 | 7.31 | - |
| 90, -45 | 0 | -5.19 | 42.28 | . 060 | 7.45 | 18.75 |
|  | 20 | 9.47 | 62.30 | -. 279 | 8.80 | 19.13 |
|  | 0,20 | 7.60 | 44.41 | -. 174 | 7.06 | --> |
| 45,-45 | $\bigcirc$ | 5.10 | 92.45 | -. 401 | 6.97 | 14.48 |
|  | $20^{\circ}$ | -7.73 | 49.03 | -. 099 | 4.69 | 12.50 |
|  | 0,20 | I. 15 | 59.01 | -. 212 | 5.16 | --- |

EXPERIMENT II
LEARNING PARAMETERS A1, A2, AND A3, RMS FITTING ERROR, AND MEAN OF SEPARATION ERROR (INTEGRAL) (DATA FOR 20 TRIALS X 3 SUBJECIS PER INITIAL CONDITIC

| Initial <br> Condition | L | ${ }^{\text {A }} 1$ | ${ }^{A} 2$ | ${ }^{\text {A }} 3$ | RMS | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90,-90 | 0 | 218.78 | 62.36 | -. 143 | 8.52 | 237.93 |
|  | 20 | 222.63 | 76.69 | -. 248 | 5.52 | 236.15 |
|  | 0,20 | 221.43 | 67.71 | -. 193 | 5.93 | --- |
| 45,-90 | 0 | 209.18 | 50.82 | -. 182 | 9.16 | 221.56 |
|  | 20 | 206. 70 | 70.89 | -. 261 | 10.28 | 218. 50 |
|  | 0,20 | 208. 40 | 59.93 | -. 221 | 8.23 | --- |
| 90, -45 | 0 | 231.03 | 64.94 | -. 193 | 10.90 | 245.93 |
|  | 20 | 232.81 | 56.49 | -. 247 | 7.92 | 242.81 |
|  | 0.20 | 231.70 | 59.89 | -. 209 | 6.66 | --- |
| 45,-45 | 0 | 215.97 | 75. 39 | -. 251 | 8.00 | 229.11 |
|  | 20 | 217.11 | 67.71 | -. 293 | 10.09 | 227.01 |
|  | 0.20 | 216.49 | 71.09 | -. 267 | 7.09 | --- |

EXPERIMENT II
LEARNING PARAMETERS $A_{1},{ }^{\prime}{ }_{2}$, AND $A_{3}$, RMS FITTING ERROR, AND MEAN OF TASK COMPLETION TIME ( $t$ ) (DATA FOR 20 TRIALS X 3 SUBJECTS PER INITIAL CONDITION)

| Condition | Comparison | $\mathrm{X}_{2}$ | ${ }^{\frac{1}{4}}$ | $\mathrm{X}_{3}$ | $\dot{8}_{3}$ | $t$ | $\int d t$ | PI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90, -90 | BETW. SUBJ. | . 72 | $1.83{ }^{\text {d }}$ | $1.25{ }^{\text {d }}$ | $21.25^{2}$ | . 19 | $1.31^{\text {d }}$ | $3.48{ }^{\text {b }}$ |
|  | BETW. DISPL. | . 88 | . 11 | .03 | .15 | .13 | . 89 | $1.52^{\text {d }}$ |
|  | INTERACTION | . 39 | .43 | .03 | .07 | . 30 | . 29 | .01 |
| 45,-90 | BETW. SUBJ. | $1.35{ }^{\text {d }}$ | $4.67^{\text {b }}$ | $1.56^{\text {d }}$ | $3.96{ }^{\text {b }}$ | $1.41^{\text {d }}$ | 1.23 | $1.93{ }^{\text {d }}$ |
|  | BETW. DISPL. | . 79 | .00 | . 45 | - 3 | .29 | $2.17{ }^{\text {d }}$ | $3.99{ }^{\text {b }}$ |
|  | INTERACTION | 1.00 | . 27 | . 13 | . 40 | . 48 | $1.84{ }^{\text {d }}$ | .22 |
| 90,-45 | BETW. SUBJ. | $1.85{ }^{\text {d }}$ | $7.41^{2}$ | .37 | $4.71^{6}$ | .09 | $8.15{ }^{\text {d }}$ | $2.15{ }^{\text {d }}$ |
|  | BETW. DISRL. | .10 | .00 | .11 | .67 | . 23 | . 01 | 1.01 |
|  | INTERACTION | . 43 | . 23 | .90 | . 83 | $2.59{ }^{\text {c }}$ | $1.38{ }^{\text {d }}$ | . 05 |
| $45,-45$ | BETW. SUBJ. | $3.76{ }^{\text {b }}$ | $7.20{ }^{\text {d }}$ | $4.40{ }^{\text {d }}$ | 1.59 | 1.94 | .99 | .13 |
|  | BETW. DISPL. | . 10 | . 22 | .27 | .96 | . 08 | . 17 | 1.02 |
|  | INTERACTION | . 32 | $1.26^{\text {d }}$ | $1.83{ }^{\text {d }}$ | $5.50{ }^{\text {a }}$ | $3.06^{\text {c }}$ | .44 | .64 |
| $\mathrm{a}=99 \%, \mathrm{~b}=95 \%, \mathrm{c}=90 \%$, $\mathrm{d}=70 \%$ |  |  |  |  |  |  |  |  |
| EXPERIMENT II |  |  |  |  |  |  |  |  |
| ANALYSIS OF VARIANCE RESULTS |  |  |  |  |  |  |  |  |

(DATA FOR 20 TRIALS X 3 SUBJECTS PER INITIAL CONDITION)
VII. DISCUSSION AND CONCLUSIONS

The conclusions that can be drawn from the previous analyses will be presented in several sections. A concise statement of these conclusions appeared in Chapter $I$.
A. Learning

The learning process for the ATC tasks was nodeled with a three parameter exponential curve given by equation 6-1. The parameters are $A_{1}$ the asymptote, $A_{2}$ the initial condition, and $A_{3}$ the rate.

During the experiments, each subject performed with all of the various displays. Thus, it is difficult to separate the learning achieved with the predictor display from that achieved with the conventional display. For this reason, any differences between the learning processes with and without the predictor display may not appear as great as they actually are:

By comparing the parameters $A_{3}$ and $A=A_{1}+A_{2}$, the differences between the processes with the various displays can be studied. The most important characteristic of the learning curves can be seen by noting that two curves with laxge $A$ and $A_{3}$ and low $A$ and $A_{3}$ respectively will approach each other as $T$ increases. Whether or not they ever meet depends on the magnitudes of $A$ and $A_{3}$. However, regardless of the magnitudes of these parameters, curves of this type will exhibit less and less difference as $T$ increases.

For the most part, these axe the types of curves that
are found in the tables of Chapter VI. $A$ and $A_{3}$ for the predictor display are smaller than the comparable parameters for the conventional
display. Consequently, the predictox usually yields a lowex mean score, but the usefulness of the predictor decreases as the subject's intuitive feeling for the A/C dynamics increase. The possibility of the predictor becoming completely useless once the learning process is complete will vary with the difficulty of the task and for many instances the learning curves will never converge. The above conclusions agree with those found by Bernotat for a somewhat different task ${ }^{(5)}$. He also found that using the same subjects on both displays will not show as wide a difference in learning curves as would be shown by segregating the subjects into separate grups for each display.

In most cases, it appears that the learning process with the predictor display is faster than that with the conventional system and that the difference in performance with and without the predictor display decreases as leaming proceed.
B. Analysis of vaxiance

In this section, conclusions will be drawn from Tables IV and VII.

Table IV presents the results of the analysis of variance of experiment I. The performance index for experiment I is given by equation 4-1. Reference to this equation shows that PI is affected by $X, \dot{X}, t$, and a composite $X-\dot{X}$ term. Any significant differences that are found between the $P I$ of different displays was necessarily caused by some combination of the above four terms. Considering the $L^{\prime}=0$ and $L=20$. comparison, the analysis indicates that there is a significant difference between the scores
(PI) obtained with each display. Refersing to Table IV, it is seen that the difference must be attributable to the $X-\dot{X}$ term.

The comparison between $L=0$. and $L=40$. indicates no significant difference between scores. Two of the score components indicate a $70 \%$ significant difference, but since the final scores indicate no differences, these results are considered meaningless.

The $L=20$, and $L=40$, comparison shows that the reason the 40. does not improve performance while the 20 . does is that task completion times with 40. are significantly highex. Looking at the means of Table III substantiates this. The conclusion is that the 40. second prediction extrapolates the $A / C$ movement much farther into time than the subject needs. As the subject attempts to use this extra information, he wastes time in making corrections that do not affect his exror score. Thus, he compensates for errors that would never be realized if he ignored them:

Table VIII presents the results of the analysis of variance of experiment II. There is only one initial condition that shows a significant difference between displays. The score component causing this difference was the separation error. Some of the composite $X-\dot{X}$ texms of $4-3$ may also have had an effect.

In general, the predictor display helps to reduce errors, but does not reduce task completion time which has a lower limit dictated by the dynamics of the system. A predictor which displays more than the necessary amount of information can increase task completion time.

Before discussing the results of all of the analyses for
both experiments, a brief discussion of some particular aspects of the experiments will be presented.
C. Strategies

The strategy that subjects used for experiment I was straightforward. They simply tried to guide the single A/C to the gate as quickly as possible. The trade-off between error and time was consistent among the subjects. However, the strategies that were used during experiment II were varied and changed during the course of the experiment.

The task for experiment II was basically one of guiding three A/C in a specified order to the gate. The subjects were faced with with the problem of delaying $A / C_{3}$ in some manner so as to bring $A / C_{2}$ across the funnel first and avoid separation exrors between $A / C_{2}$ and $A / C_{3}$. Figure 18 illustrates some possible strategies.

The subjects used all of these strategies except A. This strategy illustrates why the $|X| \leq 20$ criteria was added to equation 4-3. To avoid separation error and have low task completion times, strategy $A$ might be plausible. Bringing $A / C_{2}$ and $A / C_{3}$ along the opposite sides of the screen keeps them well away from the separation standard of 3 miles and also low task completion times can be obtained if they both cross the top of the screen in the same small time interval. However, large errors of the order of 3 miles result which would be entirely unacceptable in an actual ATC situation. Thus, to keep the PI realistic the extra criterion was added for expeximent II.


Strategy A
Strategy B


Strategies B and C allow the A/C to cross the gate having accumulated zero separation errox, but the task completion time is high for $B$ and the exror rates are high for C. All of the subjects eventually settled on using $D$. Those who found this strategy first obtained the lowest overall score for the experiment. To use strategy $D$, the subject had to allow $A / C_{3}$ to leave the screen. When this happened, the prediction was lost and the subject had to learn through intuition where the $A / C$ would reappear. The perfection of the strategies used for experiments I and II was influenced by the presence of a grid on the CRT. Subjects used the carcesian coordinate syster on the display (it was not numbered or lettered) to remember where to give commands. This closely resembles the use of switch curves in an optimal control task. Miller (9) has investigated this and found human subjects to be capable of reproducing optimal solutions once they are learned.

The subjects during this experiment made various erxors in attempting to find a good strategy for guiding the A/C. These exrors were strictly of an unintentional nature. Once they had settled on strategy $D$, they began to try and find a lower limit. Errors resulted from this testing process, but they were of a more intentional nature. They would not have occurred if the subjects were aware of the actual optimal solution. D. Subjects ${ }^{\text {s }}$ comments

Although the comments of subjects are only qualitative. they can be used as substantiating evidence.

When the experiments First began the subjects were faixly
impressed with the predictor system and felt that it made a great difference. Study of the earlier portions of the learning curves shows that the difference between the predictor and conventional displays was greatest then. As the experiments progressed, the subjects gained more confidence in their intuitive abilities and their praise of the predictor decreased. By the end of the experiments the subjects felt that the guiding process was easier with the predictor but they weren't sure that it made any difference in their performance. Their overall final opinion was that the predictor helped them to learn the dynamics of the process. Once the process is learned, the predictor is good as a check during the execution of commands but isn't necessary. In most cases, the subjects' opinions agree with the results of the data analysis. However, some of the conclusions reached here were not mentioned by the subjects. Considering task complexity, the subjects often commented that they had difficulty keeping track of all of the $A / C$ during the more complex tasks: The frequency of these comments decreased as the experiment proceded, but occasional gross errors on the part of the subjects indicated that the problem of feeling overloaded never completely disappeared.
E. A conjecture

Two tasks were performed during experiment I and four tasks were performed during experiment II. Ranking these tasks according to the mean score obtained, it is noted that for the three tasks with the lowest mean scores the predictor display yielded significantly better performance while for the three tasks with
highest mean scores the predictor did not significantly improve performance.

Order of difficulty can be related to mean score. Tasks which yielded higher scores were those during which the subjects accumulated high error and integral scores. The subjects found the more difficult tasks very taxing. This is evidenced by their comments as well as the numerical results.

The above allows the conclusion that when the subject was highly taxed, his responses were reduced to a very intuitive level. Although the predictor aid was available, the subject apparently lid not use the information that was presented. On the easier tasks which he did not find troublesome, he was able to use the information from the prediction. This conclusion is evidenced by the results of the analyses.

It appears that there is an upper and lower limit on the complexity of tasks that can be benifited by computer aids such as predictor displays. These limits might be quantified in terms of information transmitted. Tasks with very low information content do not need computer aids. Tasks with high information content tax a subject to the point that he will respond on an intuitive level regardless of the presence of an aid.

This particular conclusion is presented in the form of a conjecture because of the lack of supporting evidence available. Many different tasks would have to be investigated before this con jecture could be verified.
F. Air traffic control

The results of this research indicate that the applicability of the predictor display system presented in this thesis depends on the nature of the ATC tasks. Tasks similar to those of experiment I and the easier of experiment II would benefit from a predictor display. Tasks similar to the harder tasks of experiment II would not benefit.

The predictor concept might be made generally applicable if a digital computer was included in the system. Some decision making responsibility could be delegated to the digital computer. A hybrid system of this type could be used to govern the complexity of the tasks that the operator performs. If a task became difficult the computer would take some of the responsibility. In this way the upper limit on task complexity would never be exceeded and the operator's aids would remain useful to him. A man-computer combination of this type would keep the man and his flexibility as a vital link in the system but would allow the system to handle tasks of much more complexity than the man could handle himself.

1. Zeibolz, H. and H.M. Paynter, "Possibilities for a Two-Time Scale Computing System for Control and Simulation of Dynamic Systems," Proc. Nat'1 Electronic Conference, Vol. 9, 1954, pp. 215-223.
2. Kelley, C.R., Developing and Testing the Effectiveness of the Predictor Instrument, Office of Naval Research Tech. Rept. 252-60-1, Dunlap and Associates, Inc., Stamford, Conn., 1960.
3. Kelley, C.R., M.B. Mitchell and P.H. Strudwick, Applications of the Predictor Displays to the Control of Space Vehicles, NASA Tech. Rept., Dunlap and Associates, Inc., Stamford, Conn., 1964.
4. Sheridan, T.B., "The Human Operator in Control and Instrumentation," Progress in Control Engineering-1, Heywood \& Co., London, 1962, pp. 143-187.
5. Bernotat, R., Prediction Display, a Way of Easing Man's Job in Integrating Control System, Institute for Guidance, Control and Air Transportation of the Technical University of Berlin.
6. McCoy, W.K. and G.G. Frost, A Predictor Display for Orbital Rendezvous, AMRL Memorandum P-79, Wright-Patterson Air Force Base, Nhio, 1964.
7. Sheridan, T.B., "Three Models of Preview Control," I.E.E.E. Transactions on Human Factors in Electronics, Vol. HFE-7, No. 2, June, 1966.
8. Miller, R.A., A Preview Control Model With One or Two Fast Time Scale Loops, MIT Engineering Projects Lab Tech. Rept. 70283-4, August, 1967.
9. Miller, D.C., Behavioral Sources of Suboptimal Human Performance in Discrete Control Tasks, MIT Engineering Projects Lab Tech. Rept. 70283-9, January, 1969.
10. Rouse, W.B., An Appraisal of Problems in the Air Traffic Control System, MIT Engineering Projects Lab Tech. Rent. 70283-12, March, 1970.
11. Simpson, R.W., An Analytical Investigation of Air Traffic Operations in the Terminal Area. Ph.D. Thesis, MIT, 1964.
12. Porter, L.W., On Optimal Scheduling and Holding Strategies for the Air Traffic Control Problem, MIT Electronic Systems Lab Tech. Pept. ESL-R-401, September, 1969.
13. Anon, "The Tangled Mess in Aviation," Business Week, August 9, 1969.
14. Odoni, A.R., An Analytical Investigation of Air Traffic in the Vicinity of Terminal Areas, Ph.D. Thesis, MIT, 1969.
15. Taylor, F.W.R., ed., Jane's All The World's Aircraft, 1969-1970, p. 275.
16. Fischel, J. et.al., Flight Studies Pertinent to Low-Speed Operation of Jet Transports, NASA Memorandum 3-1-59H, 1959, p. 21.
17. Philbrick/Nexus, Applications Manual for Operational Amplifiers, Philbrick/Nexus Research, 1968.
18. Dixon, W.J. and F.J. Massey, Introduction to Statistical Analvsis, McGraw-Hi11, 1951, pps. 119-148.
19. Chapanis, A., Research Techniques in Human Engineering, The Johns Hopkins Press, Baltimore, 1959, pps. 96-147.
20. Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-Hill, 1956, p. 378.
21. Hald, A., Statistical Tables and Formulas, Wiley, N.Y., 1952.
22. Scarborough, J.B. Empirical Formulas, 2nd. Edition, The Johns Hopkins Press, N.Y., 1950.
APPENDIX A. SAMPLE LEARNING CURVES
The fitting of three parametex exponential learning curves to the
data was discussed in Chapter VI. Although many curves were produced (60),only two example curves will be presented. These will represent a least-squares fit and an approximate fit respectively, The computer program usedto generate all of the learning curves appears in Appendix B.


LEARNING CURVE


APPENDIX B. COMPUTER PROGRAMS

The following two computer programs were used to perform the analysis described in Chapter VI. The first program, LCURV, performed the exponential curve fitting. The second program, ANVAR, performed the analysis of variance.

```
c LCuRV
c LEAST-SQUARES FITTING OF AN EXPONENTIAL
        leaznivg curve to data
        OIVENSIUN 1TRL(2,5,20),1X2(2,5,20),1X20(2,5,20),
        1IX3(2,5,20),IX30(2,5,20),ITI(2,5,20),
        III(2,5,20),IPI (2,5,20),IX(2,5,20),FXA(20),
        1A:3.20)
    data Nust se lin integer form
        \because1 TRHATMEMTS - mAX 2
        \because2 SURJECTS - MAX 5
        \because T'IALS - vax 20
        \4 DATA COMPONENTS - MAX 10
        \1=2
        \2=5
        y3=16
        V4=4
C- TATA INPUT T-IS SECTION will GGANGE witM tre tyre of data
        20 20 I=1,N1
        20 20 J=1,in2
        no 20 K=1,n3
        READ(2,10)ITRL(I,J,K),IX2(I,J,K),IX2D(1,J,K),
        1I\times3(I,J,K),1\times30(I,J,<),1TI(I,j,K),II(I,J,K),
        1!0:!1,j,<)
        1) FOPVAT(BIO)
        20 continue
C
```

```
C AVERAGES
        NSI=1
        NS2=1
        90 DO 300 K=1:N3
        IXA(K)=0
        DO 200 I=NS1,NS2
        00 100 J=1.N2
    100 IXA(K)=IXA(K)+IAES(IX(I,J,K))
    200 CONT INUE
        ND=NS2-MS1+1
        DD=FLOAT(IXA(K))
        DA=FLOAT(NP*V2)
        FXA(K)=DD/DN
    3OO CONTIVUE
C CUPVE FITTINS
C FIRST APPROXIMATIONS
        N=N3
        \because3P=`3-1
        ALPHA
        SU:A=0.
        SUMR=0.
        DO 320 I=1.N3P
    320 SUMA = SUMA+FXA(I)*FXA(I +1)
        DO 330 I =1,N3P
    330 SUMB = SUMB+FXA(I)**2
        AAPHA = SUVA/SUMB
        ALPHA=ABS(AAPHA)
        A3=ALOG(ALPHA)
C LINEAR PORTION
    T1=0.
    T2=0.
    T3=0.
    T4=0.
    DO 340 I= I,N3
    ADD=ALPHA**(1-1)
    T1=T1+ADD
    T2=T2+ADD**2
    T3=T3+FXA(I)
    340 T4=T4+ADD*FXA(I)
    DEN=N*T2-(T1**2)
    A1=(T2*T3-T1*T4)/DEN
    A2=(N*T4-T2*T3)/DEN
```

```
C ITERATIVE FIT
    345 V1=0.
        v2=0.
        V3=0.
        V4=0.
        V5=0.
        V6=0.
        V7=0.
        V8=0.
        OC 350 I= N,N
        TA1=EXP(A3*I)
        TA2=A2*I*EXP(A3*I)
        TA3=-A1=A2*EXP(A3*I)+FXA(I)
        V1=V1+TA1
        V2=V2+TA2
        V3=V3+TAl**2
        V4=V4+TA1*TA2
        V5=V5+TA2**2
        VS=V6+TA3
        VT=V7+TA1*TA3
    350 V8=V8+TA2*TA3
        N1=V 3*V5-V4**2
        W2=V2*V4-VI*V5
        W3=V1*V4-V2*V3
        N4=N*V5-V2**2
        #5=V1*V2m,**V4
        :!5=N*V3-V1**2
        DEV=N*:11+V1*N2+V2*W3
        z=(N1*V6+N2*V7+W3*V8)/DEN
        A=(w2*V6+N4*V7+N5*V8)/DEN
        C=(*3*V5+N5*V7+N5*V8)/DEN
        D1=2**2+9**2+C**2
        D2=A1**2+A2**2+A3**2
        C=01/(D1+D2)
        A1=A1+Z
        A2 = A 2 + + 
        AB=A3+C
        IF(..LT.1.E-8) GO TO 360
C DATS: 14,2=PAPER 1=SCOPE 15,1=STUP ITERATING
    CALL DATS:N(15,J)
    GO T7 (360.345).J
    35? COYTI:UE
```

```
C ERROR
        ESUM=0.
        DO 600 K=1,N
        D=A1+A2*EXP(A3*K)
        E=D-FXA(K)
    600 ESUM=ESUM+E**2
        RNS=SQRT(ESUM/FLOAT(V3))
C PRINTOUT
        NRITE(3,700)IC,VSI,A2,A3,A1,RMS
    7\capO FORMATIIX,'COMPONENT',I2, 2X,'TREATMENT',I2:2X:
        I'HEIGHT',FIC.2,2X,'RATE',F10.6.2X,'ASYMP',F10.2,
        12X,'&`S ERROR'F10.21
        PLOTTING
        I=1
        DO 710 J=1 N N3
    710 A(I,J)=FXA(J)
        I=2
        DO 720 J=1 Niv
    720 A(I,J)=A1+A2*EXP(A3*J)
        I=3
        DO 730 J=1:N3
    730 A(I,J)=J
        I A = 3
    XLAB=0.
    XSCL=0.
    NVARS=3
    NPTS=N3
    NX=3
    NOVE=1
    LABEL=2
    ISCL=1
    FTIME=0.
    CALL DATSW(14gJ)
    LOOK=J-2
    CALL PICTR(A,IA*XLAB*XSCL,NVARS*NPTS*NX,VOVE,LABEL,
    IISCL,FTINE,LOOKJ
    IF(NSI.GT.1) GO TO 800
    IF(NS2.EQ.2) GO TO 900
    NSl=2
    NS2=2
    GO TO 90
    8OO NSI=1
        GO TO 90
    900 CONTINUE
        IF(IC.LT Ni4) GO TO 30
        ENO
```

```
C ANVAR
C TWO DIVENSIONAL ANALYSIS OF VAIIIANCE PROGRAM
        DIMENSION IX2(2,5,20),IX2D(2,5,20),IX3(2,5,20).
        IIX30(2,5,20),ITI(2,5,20),II(2,5,20),IPI(2,5,20),
        IIX(2,5,20),IT(2,5),ITR(5),ITC(<),F(<),ITRL(< 5, 20),
        1A1(1)),A2(10):A3(10)
        DATA VUST EE IN INTEGER FORM
        V1 TPEATMENTS - MAX 2
        N? SUBJECTS - MAX 5
        N3 TRIALS MAX 20
        N4 DATA COMPONENTS - MAX 10
        A 1 = 2
        \2=3
        \ 3=20
        N4=7
        . IATA INPUT
        THIS SECTION WILL CHANGE WITH THE TYPE OF DATA
        TO AVOID SUBTRACTING LEARNING FROM
C A COMDDNENT, USE AI=2000.
        REMD(2,5)A1(1),A1(2),A1(3),Ad(4),A1(5),A1(6),A1(7)
        READ(2,5)A2(1),A2(2),AL(3),A<(4),A2(5),A2(6),A2(7)
        READ(2,5)A3(1),A3(2),A3(3),A3(4),A3(5),A3(6),A3(7)
        5 FORMAT(7F10.5)
        O 20 I=1,N1
        DO 20 J=1,N2
        0) 20 K=1,N3
        READ(2,10)ITRL(I,J,K),IX2(I,J,K),IX2D(I,J,K),
    II\times3(IgJoK),IX30(I,J,K),ITI(I,J,K),I:(I:J,K).
    1IPI(I,J,K)
        10 FO२VAT(819)
        20 凸\Omega*TIVUE
    SELFCTIUN.OF PERFORMANCE COMPONENT TO BE ANALYZEO
C
    \becauseILL CHANGE NITH THE NUMBER OF DATA ITEIS
    IC=0
3? IC=IC+1
    DO 60 I=1,N1
    MO 60 J=1,N2
    20 58 K=1,N3
    GO TO (40,42,44,46,48,50,52),IC
40IX(I,J,K)=IX2(I,J,K)
    G0 T0 58
    42 IX(I,J,K)=IX2D(I,J,K)
    GO TO 58
    44 IX(I,J,K)=\\times3(I,J,K)
    60 T0 58
    46 I\times(I,J,K)=I\times30(I,JoK)
    GOTO 58
4& IX(I,J,K)=ITI(IQJ,K)
```

85. 
```
    60 TO 53
    50 IX(I,J,K)=II(I,J,K)
    GO T\cap 58
    52IX(I,J,K)=IPI(I,J,K)
    58 COVTIVUE
    GO CONTINUE
        GO TO 1950
        5 5 ~ C O N T I N U E ~
C SURTRACTING THE LEARNING CURVE
C SURTRACTS AI + A2EXP(-A3T) FRONV JATA
C NHERE AD,A2, AND A3 ARE CONSTANTS
    SUPPLIED BY USER AND T IS THE
    CONSECUTIVE NUMBER OF THE TRIAL
    IF(AI(IC).GT.IOOO.) GO TO 90
    OC 80 I=1,NI
            20 80 J=1giN2
            DO 70 K=1,N3
            A=FLOAT(\3)
            P=41(IC)+A2(IC)*EXP(-A3(IC)*A)
        70 IX(I,J,K)=IX(I,J,K)-IFIX(B)
        90 CONTINUE
        gO CONTINUE
    SUFZTOTALS
    DO 200 I=1,N1
    00 100 J=1,N2
    100 IT (I,.J)=0
    200 GONTIVUE
        DO 400 I=I,NI
        DO 400 J=1,N2
        DO 300 K=1,N3
    300 IT(I,J)=IT(I,J)+IX(I,J,K)
    400 CONTINUE
C RON TOTALS
    00 600 I=1, iv2
    600 ITR(I)=0
        DO 800 J=1,iv2
        DO 700 I=1,N1
    700 ITR(J)=ITR(J)+IT(I,J)
    8OO COMTINUE
C COLUMY TOTALS
    DO 900 I=1,NI
    900 ITC(1)=0
        DO 110: I=1,NI
        120 1000 J=1,N2
10n0 ITC(I)=ITC(I)+IT(I;J)
1100 CONTINUE
```

```
C TOTAL SUM OF SQUARES
    ITSUM=0
    FSO=0.
    DO 1300 I=1,N1
    00 1300 J=1 N2
    DO 1200 K=1,N3
    ITSU!=ITSUN+IX(I,J,K)
    1200 FSO=CSQ+(FLOAT(IX(I J.K)))**2
    13\0 OOVTINUE
        T=((FLOAT(ITSUM))**2)/(FLOAT(N1*N2*N3))
        ARITE(3.1400)T
    140! FO叉WAT(1X,F15,2)
    VI=FSO-T
C SUW OF SQUARES FOR ROWS
    V2=0.0
    DO 1500 I=1,N2
    1500 V2=V2+((FLOAT(ITR(I)))**2)/(FLOAT(N1*N3))
    V2=V2-T
C SUM OF SQUARES FOR COLUMNS
    V3:0.0
    DC 1600 I=1,N1
    1600 V3=V3+((FLOAT(ITC(I)))**2)/(FLOAT(N2*N3))
    V3=V 3-T
C SUY OF SQUARES FOR SUBTOTALS
    V }4=0.
    DO 1800 I=1,N1
    OO 1700 J=1,N2
    1700 V4=V4+((FLOAT(IT(I,J)))**2)/(FLOAT(N3))
    1800 CONTINUE
    V4=V4-T
C PRINTOUT
    GRITE(3,1900)IC,V1,V2,V3,V4
    1900 FOPVAT(1X,'COYPONENT',I2.2X,'TOTAL',F15.2.2X.
    I'ROW',F15.2,2X,'COLUNN',F15.2,2X,'SUUTOTAL',F15.2)
    GO TO 2300
C CALC OF NEANS
1950 COMTJNUE
    00 2200 I=1.N1
    1w5=0
    DO 2100 J=1,N2
    DO 2000 K=1,N3
    2000 I`S=I\becauseS+IX(I,J,K)
    2100 CONTINUE
    F(I)=(FLOAT(IMS))/(FLOAT(N2*N3))
    #RITE(3,2150)I,F(I)
    2150 FORMAT(1X,MEAN', 22,5X,F10.2)
    22OO CONTINUE
    GO TO 65
    2300 IF(IC.LT.N4) GO TO 30
    FND
```


## APPENDIX C. DATA

The following pages present the data collected duxing experiments I and II. For experiment $I$, initial conditions 1 and 2 refer to 45 and 90 . respectively. For experiment $I I$, initial conditions $1,2,3$, and 4 refer to 90,-90; 45,-90; 90,-45; and, 45;-45, respectively.

| $\begin{aligned} & \text { EXPERINENT } 1 \\ & \text { TRJAL } \end{aligned}$ | $\underset{X}{\text { INITIAL }}$ | $\begin{array}{r} \text { COND } 1 \\ \text { XDOT } \end{array}$ | SUBJ | $\begin{aligned} & \frac{1}{\text { TIME PRED }} \end{aligned}$ | $\begin{gathered} \text { LENGTH } \\ \text { PI } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | -4 |  | 145 | 149 |
| 2 | 2 | 10 |  | 138 | 152 |
| 3 | 1 | 4 |  | 128 | 134 |
| 4 | -2 | -12 |  | 132 | 148 |
| 5 | - 1 | 6 |  | 123 | 129 |
| 6 | 1 | -1 |  | 124 | 126 |
| 7 | 4 | 1 |  | 130 | 136 |
| 8 | 1 | $-2$ |  | 125 | 127 |
| 9 | 0 | -4 |  | 126 | 130 |
| 10 | 0 | -3 |  | 126 | 129 |
| 11 | 0 | 1 |  | 124 | 125 |
| 12 | 0 | - 10 |  | 121 | 131 |
| 13 | 1 | 8 |  | 124 | 134 |
| 14 | 0 | -9 |  | 123 | 132 |
| 15 | 2 | 5 |  | 125 | 133 |
| 16 | 0 | -5 |  | 124 | 129 |
| EXDERIMENT 1 | IVITIAL | COND 1 | SUBل | 2 PRED | LENGTH O |
| TPIAL | $\times$ | XDOT |  | TINE | PI |
| 1 | 14 | 6 |  | 134 | 158 |
| 2 | 4 | -8 |  | 152 | 162 |
| 3 | 2 | -2 |  | 140 | 143 |
| 4 | -1 | 2 |  | 140 | 142 |
| 5 | 7 | -3 |  | 133 | 141 |
| 6 | 2 | 0 |  | 123 | 125 |
| 7 | $-4$ | 5 |  | 130 | 137 |
| 8 | 2 | -8 |  | 124 | 132 |
| 9 | 1 | 1 |  | 127 | 130 |
| 13 | 3 | 0 |  | 132 | 135 |
| 11 | 1 | - 1 |  | 125 | 128 |
| 12 | $\bigcirc$ | -1 |  | 128 | 129 |
| 13 | -2 | 4 |  | 123 | 128 |
| 14 | 0 | 1 |  | 125 | 126 |
| 15 | 1 | 4 |  | 127 | 133 |
| 15 | $-5$ | - 14 |  | 126 | 149 |

89. 

| EXPERIMENT 1 | INITIAL | COND 1 | SUBJ 3 PRED | LEvGTH |
| :---: | :---: | :---: | :---: | :---: |
| TRIAL | $X$ | XDCT | TIME | Pi |
| 1 | -4 | 12 | 137 | 152 |
| 2 | 2 | -6 | 130 | 137 |
| 3 | -1 | -6 | 128 | 136 |
| 4 | -1 | 0 | 130 | 131 |
| 5 | -5 | -12 | 136 | 156 |
| 6 | 0 | 4 | 126 | 130 |
| 7 | 0 | 4 | 124 | 128 |
| 8 | 0 | 0 | 125 | 126 |
| 9 | 0 | -6 | 129 | 135 |
| 10 | 0 | -4 | 144 | 148 |
| 11 | 0 | -6 | 128 | 134 |
| 12 | 1 | -1 | 137 | 139 |
| 13 | 0 | 0 | 127 | 127 |
| 14 | 0 | 0 | 127 | 127 |
| 15 | 0 | 0 | 128 | 128 |
| 16 | 0 | 0 | 129 | 129 |
| EXPERIMENT 2 | INITIAL | COND 1 | SUBJ 4 PREU | LENGTH O |
| TRIAL | $x$ | XDOT | TIME | PI |
| 1 | 12 | 4 | 137 | 156 |
| 2 | 0 | -10 | 129 | 139 |
| 3 | 7 | 0 | 135 | 142 |
| 4 | 0 | 2 | 127 | 123 |
| 5 | -4 | -12 | 131 | 144 |
| 6 | 0 | 1 | 126 | 127 |
| 7 | 5 | -1 | 128 | 132 |
| 8 | 0 | 6 | 129 | 135 |
| 9 | -8 | -3 | 125 | 138 |
| 10 | -2 | -1 | 124 | 128 |
| 11 | 4 | 1 | 129 | 135 |
| 12 | 4 | 0 | 127 | 131 |
| 13 | - -7 | 4 | 124 | 132 |
| 14 | -1 | -12 | 126 | 140 |
| 15 | 0 | 8 | 125 | 133 |
| 16 | 1 | $-8$ | 124 | 132 |


| $\begin{aligned} & \text { EXPERIVENT } 1 \\ & \text { TRIAL } \end{aligned}$ | INITIAL $x$ | $\begin{array}{r} \text { COND } 1 \\ \text { XDOT } \end{array}$ | SUBJ | $\begin{aligned} & 5 \text { PRED } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { LENGTH } \\ P I \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12 | -20 |  | 143 | 167 |
| 2 | -8 | 6 |  | 134 | 151 |
| 3 | 4 | 5 |  | 132 | 143 |
| 4 | -6 | -8 |  | 127 | 144 |
| 5 | 8 | 4 |  | 130 | 145 |
| 6 | -4 | - 14 |  | 130 | 151 |
| 7 | 0 | 8 |  | 125 | 134 |
| 8 | -7 | -14 |  | 127 | 153 |
| 9 | 5 | 13 |  | 126 | 148 |
| 10 | -2 | -5 |  | 127 | 135 |
| 11 | 7 | 11 |  | 129 | 151 |
| 12 | -3 | -4 |  | 127 | 136 |
| 13 | 6 | 0 |  | 128 | 134 |
| 14 | 8 | -7 |  | 121 | 132 |
| 15 | -1 | 3 |  | 126 | 129 |
| 16 | 5 | $-2$ |  | 125 | 131 |
| EXPERI*ENT 1 | INITIAL | COND 1 | SUBJ | 1 PRED | LENGTH 20 |
| TRIAL | $x$ | XDOT |  | TIME | PI |
| 1 | 0 | 0 |  | 130 | 130 |
| 2 | 0 | 8 |  | 151 | 159 |
| 3 | 2 | 3 |  | 130 | 136 |
| 4 | -2 | $-6$ |  | 119 | 129 |
| 5 | 0 | 5 |  | 129 | 134 |
| 6 | 0 | -3 |  | 122 | 125 |
| 7 | 1 | 0 |  | 129 | 130 |
| 8 | 0 | $-2$ |  | 126 | 128 |
| 9 | 1 | 1 |  | 125 | 128 |
| 10 | 0 | 0 |  | 126 | 126 |
| 11 | $\checkmark$ | 0 |  | 124 | 124 |
| 12 | 0 | $-1$ |  | 124 | 125 |
| 13 | 0 | 0 |  | 125 | 125 |
| 14 | 0 | 0 |  | 124 | 124 |
| 15 | 0 | 1 |  | 124 | 125 |
| 16 | 0 | 0 |  | 124 | 124 |


| EXPERINENT TRIAL | $\mathrm{INITIAL}^{\text {x }}$ | $\begin{array}{r} \text { COND } 1 \\ \text { XDOT } \end{array}$ | SUSJ 2 PRED | LENGTH $\mathrm{PI}^{20}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 137 | 141 |
| 2 | -12 | 1 | 138 | 15 |
| 3 | 1 | 4 | 132 | 136 |
| 4 | -2 | -2 | 139 | 144 |
| 5 | 1 | 4 | 133 | 137 |
| 5 | 0 | -6 | 128 | 134 |
| 7 | 0 | 4 | 125 | 129 |
| 8 | 0 | -1 | 124 | 125 |
| 9 | 1 | 2 | 127 | 131 |
| 10 | 0 | 0 | 126 | 126 |
| 11 | 0 | -3 | 129 | 132 |
| 12 | $\checkmark$ | 0 | 125 | 125 |
| 13 | 0 | 0 | 125 | 125 |
| 14 | 0 | 0 | 124 | 124 |
| 15 | 0 | 0 | 125 | 125 |
| 16 | 0 | -1 | 127 | 123 |
| Experivent | INITIAL | COND 1 | SUBJ 3 PRED | LENGTH 20 |
| TRIAL | $\times$ | $\times$ DOT | TIME | PI |
| 1 | 0 | 1 | 131 | 132 |
| 2 | -2 | -2 | 132 | 137 |
| 3 | 0 | -2 | 133 | 135 |
| 4 | -1 | 0 | 129 | 130 |
| 5 | 0 | 0 | 130 | 130 |
| 6 | 0 | 0 | 125 | 125 |
| 7 | 0 | 0 | 126 | 126 |
| 8 | 0 | 2 | 126 | 128 |
| 9 | 0 | -2 | 128 | 130 |
| 10 | 1 | 4 | 127 | 133 |
| 11 | 0 | -3 | 128 | 131 |
| 12 | 0 | -2 | 138 | 140 |
| 13 | 0 | 0 | 130 | 130 |
| 14 | 0 | - 2 | 127 | 129 |
| 15 | 0 | -2 | 133 | 135 |
| 16 | 0 | -2 | 129 | 131 |

92. 

| $\begin{aligned} & \text { EXPERTVENT } 1 \\ & \text { TRIAL } \end{aligned}$ | IVITIAL | GUND 1 $\times \mathrm{OCT}$ | SUBJ 4 pred <br> TIME | LENGTH 20 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 12 | 130 | 149 |
| 2 | -1 | -12 | 129 | 143 |
| 3 | 6 | 0 | 133 | 139 |
| 4 | -1 | -4 | 129 | 135 |
| 5 | 0 | 16 | 122 | 138 |
| 6 | -2 | -4 | 125 | 132 |
| 7 | 0 | 4 | 125 | 129 |
| 8 | -2 | -10 | 127 | 141 |
| 9 | 0 | -8 | 123 | 131 |
| 10 | -1 | -4 | 125 | 131 |
| 11 | 2 | 2 | 129 | 134 |
| 12 | 4 | -6 | 123 | 131 |
| 13 | 0 | 6 | 124 | 130 |
| 14 | 0 | -7 | 126 | 133 |
| 15 | 0 | 7 | 127 | 134 |
| 16 | 0 | -8 | 125 | 133 |
| EXPERIMENT 1 | Jivitial | COND 1 | SUBJ 5 PRED | LENGTH 20 |
| TRIAL | $\times$ | $\times$ XOT | TIME | PI |
| 1 | 4 | 6 | 127 | 139 |
| 2 | -4 | -10 | 141 | 158 |
| 3 | -3 | 9 | 133 | 143 |
| 4 | -4 | -12 | 125 | 144 |
| 5 | 2 | 6 | 132 | 142 |
| 6 | 0 | -8 | 127 | 135 |
| 7 | 0 | 7 | 126 | 133 |
| \% | -4+ | -9 | 124 | 140 |
| 9 | 4 | 6 | 130 | 142 |
| 10 | 0 | -4 | 127 | 131 |
| 11 | 6 | 4 | 130 | 141 |
| 12 | 0 | - 10 | 126 | 136 |
| 13 | 12 | 0 | 133 | 145 |
| 14 | -3 | -8 | 125 | 138 |
| 15 | 0 | 0 | 127 | 127 |
| 16 | 0 | -8 | 125 | 133 |


| EXPERIMENT | INITIAL | COND 1 | SUBJ 1 PRED | LENGTH 40 |
| :---: | :---: | :---: | :---: | :---: |
| TRIAL | X | XDOT | TIME | PI |
| 1 | 0 | -10 | 165 | 175 |
| 2 | -2 | -4 | 147 | 154 |
| 3 | 2 | 6 | 141 | 151 |
| 4 | -2 | -10 | 128 | 142 |
| 5 | 0 | 0 | 128 | 128 |
| 6 | 0 | -1 | 125 | 126 |
| 7 | 1 | 0 | 128 | 129 |
| 8 | 0 | -2 | 124 | 126 |
| 9 | 0 | 1 | 128 | 129 |
| 10 | 0 | 0 | 131 | 131 |
| 11 | 0 | 0 | 128 | 128 |
| 12 | 0 | 0 | 128 | 128 |
| 13 | 0 | 1 | 125 | 126 |
| 14 | 0 | -8 | 123 | 131 |
| 15 | 0 | 0 | 124 | 124 |
| 16 | 0 | -4 | 124 | 128 |
| EXPERIMENT | INITIAL | COND 1 | SUBJ 2 PRED | Length 40 |
| TRIAL | $x$ | XDOT | time | P1 |
| 1 | -2 | 10 | 131 | 141 |
| 2 | -4 | -10 | 140 | 157 |
| 3 | -5 | -8 | 143 | 159 |
| 4 | -2 | -8 | 136 | 150 |
| 5 | -1 | 1 | 131 | 133 |
| 6 | 0 | -12 | 135 | 147 |
| 7 | -1 | 2 | 128 | 130 |
| 8 | -1 | -2 | 127 | 131 |
| 9 | 0 | 1 | 125 | 126 |
| 10 | 0 | -3 | 126 | 129 |
| 11 | 0 | 0 | 127 | 127 |
| 12 | 0 | -6 | 125 | 131 |
| 13 | -1 | 0 | 126 | 127 |
| 14 | 0 | -4 | 127 | 131 |
| 15 | 0 | 0 | 129 | 129 |
| 16 | 0 | -3 | 128 | 131 |

94. 


95.

| EXPERIMENT TRIAL | $1 \quad \underset{x}{\text { INITIAL }}$ | $\begin{array}{r} \text { COND } 1 \\ \times D O T \end{array}$ | $\begin{aligned} & \text { SUBJ } 5 \text { RRED } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { LEivgTi } \\ \text { PI } 40 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 6 | 139 | 149 |
| 2 | -2 | -12 | 134 | 150 |
| 3 | -6 | 12 | 131 | 145 |
| 4 | -2 | -12 | 131 | 147 |
| 5 | -1 | 8 | 126 | 134 |
| 6 | 0 | -12 | 127 | 139 |
| 7 | -1 | 7 | 125 | 132 |
| 3 | 0 | -9 | 126 | 135 |
| 9 | 2 | 8 | 129 | 141 |
| 10 | 0 | -5 | 129 | 134 |
| 11 | 2 | 7 | 126 | 137 |
| 12 | 0 | -10 | 129 | 139 |
| 13 | 1 | 6 | 131 | 139 |
| 14 | -2 | -8 | 128 | 140 |
| 15 | 0 | 8 | 126 | 134 |
| 16 | -1 | 0 | 131 | 132 |



| EXPERIMENT 1 | INITIAL COND 2 |  |
| :---: | :---: | ---: |
| TRIAL | $x$ | XDOT |
| 1 | -1 | -5 |
| 2 | 1 | -4 |
| 3 |  | 2 |
| 4 | -4 | 8 |
| 5 | 0 | -6 |
| 6 | 1 | -1 |
| 7 | 0 | 0 |
| 8 | 0 | -4 |
| 9 | 0 | 0 |
| 10 | 2 | -8 |
| 11 | 0 | -7 |
| 12 | 1 | -4 |
| 13 | 0 | -1 |
| 14 | 0 | 0 |
| 15 | -2 | -6 |
| 16 | 0 | -4 |
|  |  |  |


| FXPERIMENT 1 | INITIAL COND 2 |  |
| :---: | :---: | :---: |
| TRIAL | x | XDOT |
| 1 | -3 | -8 |
| 2 | -4 | 29 |
| 3 | 0 | -4 |
| 4 | -1 | -1 |
| 5 | 5 | 6 |
| 5 | 8 | -12 |
| 7 | -5 | 7 |
| 8 | 7 | 3 |
| 9 | -3 | -8 |
| 10 | 8 | 4 |
| 11 | 11 | -15 |
| 12 | 0 | 4 |
| 13 | -2 | -1 |
| 14 | 0 | -2 |
| 15 | 6 | 0 |
| 16 | 0 | 15 |


| SUBJ | PRED LENGTH |
| :---: | :---: |
| TIME | PI |
| 150 | 157 |
| 144 | 148 |
| 140 | 152 |
| 139 | 151 |
| 138 | 139 |
| 138 | 139 |
| 140 | 144 |
| 136 | 136 |
| 138 | 146 |
| 135 | 142 |
| 145 | 149 |
| 137 | 139 |
| 135 | 135 |
| 135 | 141 |
| 136 | 141 |
| 138 | 139 |


| SURJ PRED LENGTH |  |
| :---: | :---: |
| TIME | PI |
| 163 | 172 |
| 187 | 216 |
| 167 | 171 |
| 161 | 164 |
| 144 | 158 |
| 146 | 161 |
| 144 | 153 |
| 137 | 149 |
| 143 | 155 |
| 143 | 158 |
| 165 | 180 |
| 135 | 139 |
| 137 | 141 |
| 136 | 138 |
| 142 | 148 |
| 143 | 158 |


| EXPERIVENT 1 | INITIAL | COND 2 |
| :---: | :---: | ---: |
| TRIAL | X | XDOT |
| 1 | 0 | 1 |
| 2 | -12 | -1 |
| 3 | 1 | -20 |
| 4 | -10 | 20 |
| 5 | 4 | 1 |
| 6 | 6 | 16 |
| 7 | 8 | -12 |
| 8 | -5 | -6 |
| 9 | 0 | -1 |
| 10 | 0 | -1 |
| 11 | 4 | -16 |
| 12 | -2 | 15 |
| 13 | 12 | -7 |
| 14 | -7 | -5 |
| 15 | 9 | -6 |
| 16 | -9 | 0 |


| SUBJ PRED LENGTH |  |
| :---: | :---: |
| TINE | PI |
| 143 | 144 |
| 142 | 156 |
| 157 | 177 |
| 150 | 173 |
| 149 | 155 |
| 152 | 170 |
| 151 | 166 |
| 141 | 156 |
| 143 | 144 |
| 144 | 145 |
| 152 | 169 |
| 153 | 168 |
| 146 | 161 |
| 143 | 158 |
| 152 | 163 |
| 139 | 148 |


99.



101.

| EXPERIMENT 1 | IVITIAL | COND 2 | SUBJ 1 PRED | LEへGTM 40 |
| :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times$ | XDOT | TIME | PI |
| 1 | 0 | -4 | 189 | 193 |
| 2 | 0 | -2 | 196 | 193 |
| 3 | 0 | -4 | 155 | 169 |
| 4 | -1 | -2 | 161 | 165 |
| 5 | -2 | -12 | 157 | 173 |
| 6 | -1 | -3 | 152 | 157 |
| 7 | 0 | -1 | 158 | 159 |
| 8 | 0 | 0 | 142 | 142 |
| 9 | 1 | 0 | 146 | 147 |
| 10 | 0 | -1 | 146 | 147 |
| 11 | 0 | 0 | 147 | 147 |
| 12 | 0 | 0 | 145 | 145 |
| 13 | 0 | 0 | 138 | 138 |
| 14 | 0 | -4 | 136 | 140 |
| 15 | 0 | 0 | 139 | 139 |
| 16 | 0 | 0 | 141 | 141 |


| EXPERIMENT | INITIAL | cond 2 | SUJJ 2 PRED | LENGTH 40 |
| :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times$ | x00T | TIME | PI |
| 1 | 0 | -1 | 167 | 158 |
| 2 | -4 | -10 | 169 | 186 |
| 3 | -4 | 4 | 187 | 193 |
| 4 | -4 | -8 | 150 | 165 |
| 5 | -1 | -2 | 143 | 147 |
| 6 | -1 | 0 | 153 | 154 |
| 7 | 0 | -7 | 152 | 159 |
| 8 | 0 | -4 | 160 | 164 |
| 9 | 1 | 0 | 146 | 147 |
| 10 | 0 | 1 | 148 | 149 |
| 11 | 0 | -5 | 145 | 150 |
| 12 | 1 | 3 | 149 | 154 |
| 13 | 0 | 0 | 151 | 151 |
| 14 | 0 | 0 | 143 | 143 |
| 15 | 0 | -1 | 152 | 153 |
| 16 | 0 | 0 | 147 | 147 |

102. 

| EXPERIVEINT 1 | INITIAL | COND 2 | SUBJ 3 PRED | LENGTH 40 |
| :---: | :---: | :---: | :---: | :---: |
| TRIAL | $x$ | XDOT | TIME | PI |
| 1 | 0 | -2 | 148 | 150 |
| 2 | -3 | -3 | 154 | 162 |
| 3 | 0 | 4 | 141 | 145 |
| 4 | -4 | -8 | 143 | 158 |
| 5 | 0 | -1 | 146 | 147 |
| 6 | 0 | 0 | 143 | 143 |
| 7 | 0 | 0 | 139 | 139 |
| 8 | 0 | 1 | 146 | 147 |
| 9 | 1 | 0 | 141 | 142 |
| 10 | 0 | -1 | 137 | 138 |
| 11 | 0 | 0 | 138 | 138 |
| 12 | 0 | 1 | 138 | 139 |
| 13 | 0 | 0 | 138 | 138 |
| 14 | 0 | -1 | 137 | 138 |
| 15 | 0 | 0 | 138 | 138 |
| 16 | 0 | 0 | 138 | 138 |
| EXPERIMENT 1 | INITIAL | COND 2 | SUBJ 4 PRED | Length 40 |
| TRIAL | $\times$ | XDOT | TIME | PI |
| 1 | 6 | -3 | 159 | 166 |
| 2 | -3 | -5 | 154 | 164 |
| 3 | 4 | -10 | 153 | 164 |
| 4 | -3 | 0 | 154 | 157 |
| 5 | 8 | -2 | 143 | 155 |
| 6 | 0 | -12 | 139 | 151 |
| 7 | 7 | -7 | 154 | 164 |
| 9 | -4 | 0 | 147 | 151 |
| 9 | 8 | -4 | 143 | 152 |
| 10 | -7 | 4 | 147 | 155 |
| 11 | 6 | 0 | 147 | 153 |
| 12 | 0 | -3 | 138 | 141 |
| 13 | 0 | 4 | 137 | 141 |
| 14 | 0 | 0 | 137 | 137 |
| 15 | $\bigcirc$ | 1 | 139 | 140 |
| 16 | 0 | 0 | 137 | 137 |


| F.XPERIMEAT | INITIAL | COND 2 | SUBJ 5 Pried | LEisGTH 40 |
| :---: | :---: | :---: | :---: | :---: |
| TRIAL | X | $\times$ DOT | TIN: | PI |
| 1 | 3 | -6 | 162 | 168 |
| 2 | -6 | -3 | 153 | 154 |
| 3 | 0 | 4 | 143 | 147 |
| 4 | -6 | 4 | 151 | 159 |
| 5 | 4 | 1 | 147 | 153 |
| 6 | -4 | 0 | 144 | 148 |
| 7 | 2 | 2 | 148 | 143 |
| 8 | 0 | -7 | 140 | 147 |
| 9 | 2 | 4 | 145 | 152 |
| 10 | 0 | 5 | 157 | 162 |
| 11 | 4 | 0 | 161 | 165 |
| 12 | -2 | 1 | 158 | 160 |
| 13 | 9 | -2 | 157 | 165 |
| 14 | -4 | 1 | 154 | 158 |
| 15 | 4 | -1 | 151 | 157 |
| 16 | -1 | 5 | 153 | 158 |


| EXPER | VT | JNITIAL | COND | Sus ل | 1 PR | LENG | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | $\times 30$ | TIME | ITGL | PI |
| 1 | 0 | 2 | 8 | -48 | 232 | 375 | 658 |
| 2 | 0 | -27 | 0 | -12 | 305 | 45 | 389 |
| 3 | -1 | 16 | -2 | -26 | 256 | 15 | 317 |
| 4 | -6 | 0 | -4 | -26 | 224 | 0 | 263 |
| 5 | 2 | 15 | -2 | 1 | 230 | 23 | 274 |
| 6 | -9 | -16 | 1 | -10 | 235 | 78 | 354 |
| 7 | 8 | 10 | -1 | 0 | 234 | 90 | 347 |
| 8 | -2 | 12 | -1 | -5 | 241 | 0 | 260 |
| 9 | 0 | 22 | 0 | -36 | 265 | 36 | 359 |
| 10 | -6 | 20 | 0 | -22 | 246 | 4 | 292 |
| 11 | 6 | -5 | -5 | -20 | 255 | 24 | 316 |
| 12 | -5 | 12 | 1 | -40 | 250 | 27 | 330 |
| 13 | 3 | 2 | 0 | -3 | 223 | 0 | 232 |
| 14 | -2 | -7 | -1 | 0 | 225 | 0 | 236 |
| 15 | 0 | 12 | 0 | -2 | 234 | 0 | 248 |
| 16 | -: | 10 | 0 | 2 | 217 | 0 | 229 |
| 17 | 0 | 4 | 0 | -2 | 222 | 0 | 228 |
| 18 | 2 | 4 | 1 | -1 | 228 | 0 | 237 |
| 19 | 2 | 20 | 1 | 0 | 217 | 2 | 243 |
| 20 | -1 | 5 | -5 | 0 | 215 | 8 | 231 |



| EXPER | $1{ }^{1} 2$ | INITIAL | COND | SUBJ | 3 Pi | Len | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 2 \mathrm{D}$ | $\times 3$ | $\times 30$ | TIME | ITGL | P! |
| 1 | 6 | 12 | 1 | -4 | 294 | 45 | 365 |
| 2 | 0 | -3 | 0 | 0 | 280 | 0 | 237 |
| 3 | 3 | 2 | 1 | 1 | 324 | 60 | 393 |
| 4 | -8 | -16 | 4 | 0 | 306 | 3. | 369 |
| 5 | 3 | 8 | -1 | -1 | 243 | 6 | 265 |
| 6 | 0 | 1 | 0 | -1 | 231 | $\bigcirc$ | 233 |
| 7 | -2 | 2 | -1 | 4 | 210 | 42 | 259 |
| 8 | -1 | 0 | 1 | 12 | 214 | 11 | 239 |
| 9 | -1 | 1 | -1 | 0 | 233 | 0 | 235 |
| 10 | 1 | 8 | -2 | -10 | 233 | 0 | 257 |
| 11 | 2 | 3 | 2 | -1 | 229 | 0 | 237 |
| 12. | 2 | 7 | 1 | 2 | 217 | 0 | 231 |
| 13 | 1 | 6 | 1 | 0 | 213 | 0 | 222 |
| 14 | -5 | 1 | -1 | 0 | 231 | 24 | 261 |
| 15 | 0 | 4 | 0 | -2 | 233 | 12 | 251 |
| 16 | 3 | 14 | 1 | -5 | 238 | 0 | 253 |
| 17 | 2 | 10 | 2 | 0 | 220 | 0 | 236 |
| 18 | -1 | 2 | 0 | -2 | 224 | 0 | 223 |
| 19 | 0 | 0 | -2 | -3 | 219 | $\checkmark$ | 22.5 |
| 20 | -1 | 4 | -2 | -7 | 218 | 0 | 233 |


| EXPER | NT | INITIAL | COND | Susd | Pr | Leng | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TPIAL | $\times 2$ | $\times 2 \mathrm{D}$ | $\times 3$ | $\times 32$ | TIVE | ITGL | P1 |
| 1 | 0 | 0 | 0 | -36 | 277 | 210 | 523 |
| 2 | 0 | 4 | 0 | 4 | 304 | 0 | 312 |
| 3 | -3 | 8 | -7 | -20 | 242 | 0 | 283 |
| 4 | -5 | 4 | -4 | -35 | 250 | 0 | 302 |
| 5 | -2 | 38 | -1 | -50 | 221 | 8 | 319 |
| 5 | -6 | 15 | 7 | -40 | 236 | 3 | 297 |
| 7 | 2 | 14 | -6 | -7 | 238 | 24 | 296 |
| 8 | -4 | 3 | -4 | $-16$ | 241 | 30 | 299 |
| 9 | 0 | -4 | 1 | -2 | 248 | 30 | 284 |
| 10 | -8 | 10 | 1 | -15 | 228 | 11 | 269 |
| 11 | 0 | 20 | -1 | -12 | 238 | 15 | 267 |
| 12 | 0 | 12 | -5 | -24 | 258 | 27 | 322 |
| 13 | 0 | 0 | 0 | 0 | 227 | 15 | 242 |
| 14 | 0 | -2 | 0 | 0 | 237 | 6 | 245 |
| 15 | 1 | 8 | 2 | 2 | 231 | 0 | 246 |
| 16 | 7 | -16 | 1 | -10 | 241 | 0 | 259 |
| 17 | 0 | 2 | 0 | -1 | 224 | 0 | 227 |
| 18 | 1 | 1 | 2 | 0 | 221 | 0 | 226 |
| 19 | 1 | 10 | 1 | -1 | 214 | 5 | 232 |
| 20 | 0 | 0 | 1 | 2 | 217 | 12 | 233 |

106. 

| EXPERIMEVT 2 | IVITIAL | COND | SUBJ | 2 | PRED | LENGTH | 20 |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | X2D | $\times 3$ | X3D | TIME | ITGL | PI |
| 1 | 0 | 22 | -3 | -2 | 264 | 60 | 352 |
| 2 | 0 | -13 | -3 | -2 | 268 | 60 | 347 |
| 3 | -1 | 3 | -1 | -1 | 241 | 45 | 292 |
| 4 | 4 | 4 | -1 | -1 | 252 | 30 | 295 |
| 5 | -2 | 5 | 0 | 0 | 250 | 48 | 304 |
| 6 | 0 | 0 | 0 | -1 | 245 | 90 | 346 |
| 7 | -1 | 8 | 0 | 0 | 229 | 48 | 285 |
| 8 | -4 | 2 | -1 | -1 | 236 | 44 | 287 |
| 9 | 0 | 8 | 2 | -1 | 216 | 0 | 226 |
| 10 | -1 | -1 | 1 | -2 | 234 | 0 | 239 |
| 11 | -1 | -1 | 0 | 0 | 220 | 0 | 223 |
| 12 | -2 | -3 | 0 | 0 | 230 | 0 | 236 |
| 13 | -1 | 3 | 0 | -2 | 223 | 0 | 228 |
| 14 | 0 | 1 | 1 | 0 | 225 | 0 | 227 |
| 15 | -1 | -3 | 0 | 1 | 242 | 0 | 248 |
| 16 | 0 | 2 | 0 | -1 | 218 | 0 | 221 |
| 17 | 0 | -1 | 2 | 0 | 223 | 0 | 226 |
| 18 | 0 | 0 | 0 | -2 | 218 | 0 | 220 |
| 19 | 0 | 2 | 0 | 0 | 234 | 0 | 236 |
| 20 | 1 | 3 | 1 | 1 | 221 | 0 | 228 |



| EXPER | ENT 2 | INITIAL | COND | SUBJ | 1 Pi | Levo | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | $\times 30$ | TIME | ITGL | ri |
| 1 | 0 | 0 | 0 | -2 | 204 | 152 | 355 |
| 2 | 0 | -2 | 6 | -24 | 235 | 240 | 502 |
| 3 | 4 | -5 | 4 | -4 | 240 | 90 | 343 |
| 4 | -6 | 12 | 0 | -5 | 237 | 15 | 271 |
| 5 | -5 | 32 | 0 | -55 | 198 | 12 | 299 |
| 6 | 1 | 22 | 3 | -9 | 212 | 0 | 246 |
| 7 | -16 | 36 | -2 | -1 | 150 | 6 | 241 |
| 8 | 2 | 4 | -1 | 0 | 220 | 0 | 228 |
| 9 | 3 | 6 | 0 | 8 | 245 | 78 | 352 |
| 10 | -16 | 15 | 8 | -24 | 179 | 39 | 268 |
| 11 | -2 | 12 | 0 | 2 | 230 | 0 | 244 |
| 12 | 1 | -12 | 2 |  | 240 | 15 | 271 |
| 13 | 0 | 1 | 0 | 5 | 218 | 0 | 224 |
| 14 | 0 | -1 | 1 | 1 | 230 | 3 | 237 |
| 15 | 2 | 4 | 0 | -5 | 219 | 0 | 231 |
| 16 | -1 | 1 | 1 | 2 | 214 | 0 | 219 |
| 17 | 0 | 2 | 0 | -2 | 216 | 0 | 220 |
| 18 | 0 | -1 | 0 | -2 | 206 | 0 | 209 |
| 19 | 1 | 9 | 0 | -3 | 199 | 0 | 213 |
| 20 | 0 | -6 | -2 | -12 | 205 | 0 | 227 |


108.

| FXDERIVENT | 2 | IVITIAL COND | 2 | SUBJ | 3 | PRED LENGTH | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TRIAL | $\times 2$ | X2D | $\times 3$ | X3D | TIVE | ITGL | PI |
| 1 | 8 | 7 | 2 | -2 | 266 | 15 | 303 |
| 2 | 4 | 12 | 0 | 6 | 307 | 30 | 362 |
| 3 | 0 | -16 | -1 | 1 | 266 | 15 | 298 |
| 4 | -9 | -7 | 0 | 1 | 249 | 0 | 270 |
| 5 | 0 | -10 | 0 | 1 | 266 | 5 | 283 |
| 6 | 1 | 2 | 1 | 1 | 232 | 9 | 247 |
| 7 | 0 | 1 | -2 | -4 | 214 | 8 | 230 |
| 0 | 2 | 7 | -1 | 2 | 233 | 20 | 265 |
| 9 | 3 | 4 | -1 | -4 | 234 | 2 | 240 |
| 10 | -1 | -5 | 2 | 7 | 221 | 0 | 238 |
| 11 | 3 | 4 | 1 | -5 | 214 | 3 | 231 |
| 12 | 1 | -1 | -2 | -7 | 229 | 5 | 246 |
| 13 | 1 | 6 | 0 | 1 | 208 | 0 | 217 |
| 14 | 1 | 1 | -1 | -1 | 214 | 0 | 219 |
| 15 | 1 | 6 | 2 | 0 | 216 | 0 | 226 |
| 15 | 1 | 2 | 1 | 0 | 208 | 0 | 213 |
| 17 | 1 | 0 | 0 | 0 | 202 | 8 | 211 |
| 18 | 3 | -2 | 2 | 4 | 202 | 9 | 222 |
| 19 | 2 | 0 | 0 | 0 | 210 | 0 | 212 |
| 20 | 2 | 1 | 0 | -2 | 224 | 3 | 213 |


| EXDERIVENT |  |
| ---: | ---: |
| TRIAL | 2 |
| 1 | 4 |
| 2 | -2 |
| 3 | 2 |
| 4 | -2 |
| 5 | 0 |
| 6 | 5 |
| 7 | -1 |
| 8 | 1 |
| 9 | 1 |
| 10 | -16 |
| 11 | -1 |
| 12 | -13 |
| 13 | 1 |
| 14 | 0 |
| 15 | 1 |
| 16 | 0 |
| 17 | 2 |
| 18 | 1 |
| 19 | 2 |
| 20 | 2 |

INITIAL
$\times 2 D$
-18
-4
16
26
24
8
24
14
-4
-4
4
26
3
1
2
2
1
2
-1
8

COND 2
SUBJ 1
PRED LENGTH 20
$\times 3$
$\times 30 \quad T$
TIME IT
$\begin{array}{rr}\text { ITGL } & \mathrm{PI} \\ 60 & 300 \\ 0 & 254 \\ 0 & 271 \\ 0 & 276\end{array}$
1
0
4
276
225
$\begin{array}{ll}14 & 225 \\ 12 & 257\end{array}$


| EXPER |  | INITIAL | CCivD | 2 Subj | $2 P$ | PRED LENETH | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | X20 | $\times 3$ | $\times 3 \mathrm{D}$ | TIME | E ITGL | PI |
| 1 | -4 | 26 | -4 | -1 | 271 | 10 | 303 |
| 2 | 2 | 22 | -2 | -4 | 248 | 30 | 307 |
| 3 | -1 | 4 | 1 | -1 | 215 | 530 | 251 |
| 4 | 1 | 4 | 0 | 0 | 220 | 15 | 241 |
| 5 | -1 | 4 | 1 | 0 | 203 | - 8 | 216 |
| 6 | -2 | -4 | -1 | -2 | 220 | - 36 | 267 |
| 7 | -2 | 5 | 0 | -1 | 207 | $7 \quad 27$ | 241 |
| 8 | -2 | 4 | -1 | -1 | 211 | 17 | 235 |
| 9 | 0 | 3 | 0 | -2 | 227 | 7 8 | 240 |
| 10 | -1 | 2 | 0 | -1 | 212 | 20 | 215 |
| 11 | -1 | 4 | 0 | 0 | 195 | 5 3 | 202 |
| 12 | 0 | -2 | -1 | 0 | 202 | 25 | 211 |
| 13 | -2 | 1 | 0 | 0 | 222 | 20 | 224 |
| 14 | 1 | 5 | 0 | -1 | 225 | -3 | 236 |
| 15 | -1 | 1 | 0 | 0 | 211 | 10 | 212 |
| 16 | -3 | -4 | 0 | 0 | 202 | 2 | 212 |
| 17 | 0 | 2 | 1 | -1 | 209 | 0 | 212 |
| 18 | 2 | 3 | 1 | 0 | 199 | 9 | 214 |
| 19 | 0 | -1 | 1 | 0 | 203 | 3 | 210 |
| 20 | 0 | 0 | 1 |  | 199 | 0 | 202 |


| EXPER | T 2 | INITIAL | COND | SUB. | 3 P | PRED LENGTH | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | X2 | $\times 25$ | $\times 3$ | X3D | TIVE | ITGL | +1 |
| 1 | -2 | -4 | 0 | -4 | 246 | - 30 | 237 |
| 2 | 0 | 4 | -1 | -3 | 315 | 30 | 354 |
| 3 | -3 | -16 | -1 | -3 | 217 | $7 \quad 30$ | 273 |
| 4 | -2 | -4 | 0 | -1 | 247 | 70 | 255 |
| 5 | 0 | 1 | 0 | -1 | 245 | 5 3 | 250 |
| 6 | 0 | -4 | 0 | 0 | 249 | 0 | 253 |
| 7 | 0 | 0 | 0 | -1 | 213 | 30 | 214 |
| 8 | 0 | 1 | 0 | 0 | 225 | 56 | 232 |
| 9 | -1 | 1 | 1 | 1 | 222 | 20 | 226 |
| 10 | -1 | -2 | 0 | -1 | 205 | 5 | 216 |
| 11 | 2 | 5 | 0 | -1 | 232 | 25 | 246 |
| 12 | 0 | 2 | 0 | -1 | 197 | 70 | 200 |
| 13 | -1 | -7 | 0 | -2 | 200 | 0 | 211 |
| 14 | 1 | 1 | 0 | -2 | 200 | 0 | 204 |
| 15 | 0 | -2 | 0 | -1 | 212 | 20 | 215 |
| 16 | 0 | 2 | 0 | 0 | 210 | 0 | 212 |
| 17 | 2 | 1 | 2 | 0 | 201 | 15 | 211 |
| 18 | 3 | 4 | 1 | 0 | 192 | 21 | 223 |
| 19 | 0 | 0 | 0 | -2 | $2 \cup 3$ | 3 | 205 |
| 20 | -2 | -1 | 0 | -1 | 206 | 60 | 211 |


| EXOER | Evt 2 | INITIAL | COND | SUBJ | 1 Pr | LEN | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | $\times 30$ | TIME | ITGL | PI |
| 1 | 0 | 0 | -4 | 2 | 228 | 15 | 248 |
| 2 | $\bigcirc$ | -7 | -16 | 8 | 322 | 0 | 348 |
| 3 | -5 | 6 | 9 | -38 | 256 | 15 | 320 |
| 4 | - 7 | 4 | -3 | 30 | 240 | 0 | 284 |
| 5 | 4 | 0 | -7 | -24 | 257 | 45 | 342 |
| 6 | 0 | 0 | 1 | -18 | 294 | 5 | 310 |
| 7 | -16 | 22 | 16 | -48 | 198 | 5 | 284 |
| 8 | 3 | 12 | 4 | -12 | 229 | 42 | 301 |
| 9 | -4 | 8 | 12 | -26 | 221 | 3 | 263 |
| 20 | 0 | 10 | 8 | -16 | 238 | 66 | 333 |
| 11 | $-8$ | 12 | 8 | -24 | 215 | 5 | 262 |
| 12 | -7 | 14 | -1 | -20 | 217 | 9 | 264 |
| 13 | 0 | 4 | -2 | -3 | 243 | 0 | 253 |
| 14 | 0 | 5 | -1 | -5 | 223 | 26 | 260 |
| 15 | 4 | 20 | 1 | 1 | 248 | 0 | 278 |
| 16 | 0 | 10 | 1 | -12 | 243 | 3 | 268 |
| 17 | 1 | -3 | 1 | 10 | 236 | 15 | 266 |
| 18 | 2 | 10 | 1 | 1 | 244 | 18 | 278 |
| 19 | 0 | 20 | 0 | -2 | 239 | 0 | 261 |
| 20 | 0 | 8 | 0 | 0 | 230 | 0 | 238 |


| EXPERINEVT 2 | INITIAL COND | 3 | SUBJ 2 | PRED LENGTH |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | X3D | TINE | ITGL | PI |
| 1 | -6 | 20 | -4 | 6 | 263 | 90 | 404 |
| 2 | 0 | -4 | -2 | -2 | 287 | 75 | 371 |
| 3 | 0 | 10 | 0 | -8 | 292 | 30 | 340 |
| 4 | 2 | 16 | 1 | 0 | 279 | 15 | 315 |
| 5 | 0 | 10 | 0 | 6 | 289 | 39 | 344 |
| 6 | 10 | -18 | 0 | -5 | 251 | 72 | 352 |
| 7 | 0 | 10 | -1 | -1 | 231 | 18 | 262 |
| 8 | -1 | 6 | -1 | 0 | 245 | 4 | 256 |
| 9 | 4 | 5 | 0 | 1 | 250 | 16 | 278 |
| 10 | 1 | -1 | 2 | 0 | 225 | 33 | 261 |
| 11 | 1 | 8 | 0 | -3 | 234 | 21 | 268 |
| 12 | -1 | 5 | 0 | 3 | 229 | 26 | 261 |
| 13 | 1 | 4 | 0 | -2 | 243 | 15 | 266 |
| 14 | -2 | 7 | 0 | -5 | 231 | 27 | 270 |
| 15 | -1 | 2 | 0 | 2 | 238 | 8 | 250 |
| 16 | -1 | 1 | -1 | 2 | 231 | 8 | 242 |
| 17 | 0 | -2 | 0 | -3 | 229 | 6 | 240 |
| 18 | 0 | 0 | 0 | 4 | 235 | 17 | 256 |
| 19 | 1 | 3 | 1 | 0 | 252 | 14 | 271 |
| 20 | 0 | -2 | 0 | -2 | 240 | 8 | 252 |



| FXPER | NT 2 | INITIAL | COND | SUBJ | 1 P | Leng | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | X2D | $\times 3$ | $\times 30$ | TIME | ITGL | PI |
| 1 | 0 | 0 | -2 | -10 | 296 | 0 | 310 |
| 2 | 0 | -4 | -1 | -3 | 317 | 0 | 326 |
| 3 | 0 | 10 | 0 | -6 | 275 | - | 291 |
| 4 | -1 | 0 | 0 | -4 | 262 | J | 267 |
| 5 | -1 | 28 | 2 | -16 | 251 | 0 | 275 |
| 6 | -2 | 2 | 1 | -16 | 218 | 42 | 279 |
| 7 | -12 | 20 | -3 | 9 | 264 | 0 | 298 |
| 8 | -9 | 20 | 0 | -14 | 244 | 5. | 286 |
| 9 | -13 | 14 | 0 | -20 | 230 | 5 | 275 |
| 10 | 3 | 32 | -8 | 12 | 303 | 6 | 362 |
| 11 | 1 | 8 | -1 | -20 | 236 | 2 | 269 |
| 12 | -2 | 16 | 6 | -16 | 232 | 11 | 278 |
| 13 | 0 | -1 | 0 | -1 | 230 | 44 | 276 |
| 14 | 3 | -12 | 0 | -1 | 239 | 0 | 253 |
| 15 | -1 | 3 | 1 | -2 | 244 | 0 | 250 |
| 16 | 0 | -3 | 0 | -2 | 231 | 0 | 236 |
| 17 | 6 | 8 | 1 | -1 | 230 | 0 | 248 |
| 18 | 0 | 22 | 2 | 1 | 238 | 0 | 264 |
| 19 | 2 | 26 | 1 | - 5 | 240 | 6 | 281 |
| 20 | 3 | -10 | 0 | 0 | 232 | 0 | 242 |


| EXPER | VT 2 | INITIAL | COND | SUBJ | 2 PR | LENGTH | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | $\times 30$ | Time | ITGL | PI |
| 1 | 0 | 2 | -3 | -2 | 267 | 120 | 395 |
| 2 | 2 | 14 | -2 | -2 | 252 | 75 | 350 |
| 3 | -4 | -2 | 1 | -2 | 244 | 60 | 314 |
| 4 | -10 | 20 | 0 | 7 | 257 | 15 | 302 |
| 5 | 0 | 10 | 1 | 0 | 210 | 42 | 263 |
| 6 | 12 | 8 | 0 | -1 | 240 | 78 | 344 |
| 7 | - 1 | 8 | 0 | 1 | 221 | 47 | 277 |
| 8 | -3 | 10 | -1 | -1 | 230 | 18 | 261 |
| 9 | 1 | 0 | 1 | 0 | 255 | 30 | 287 |
| 10 | 0 | 1 | 1 | 0 | 220 | 38 | 260 |
| 11 | -1 | $-1$ | 0 | -1 | 237 | 36 | 277 |
| 12 | 0 | -3 | -1 | -2 | 253 | 41 | 300 |
| 13 | -2 | 10 | 0 | 0 | 224 | 8 | 242 |
| 14 | -1 | 2 | 0 | -2 | 213 | 42 | 259 |
| 15 | -2 | 4 | 0 | 0 | 246 | 5 | 255 |
| 16 | 0 | 2 | 0 | -1 | 227 | 0 | 230 |
| 17 | -1 | 0 | 2 | -2 | 214 | 18 | 236 |
| 18 | 0 | 0 | 2 | -2 | 228 | 5 | 236 |
| 19 | 0 | 0 | 1 | 0 | 252 | 9 | 262 |
| 20 | -1 | -2 |  | -1 | 234 | 5 | 244 |


| FXPER | VT 2 | INITIAL | COND | 3 SUBJ | 3 PRED | LENGTH | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 2 \mathrm{D}$ | $\times 3$ | $\times 30$ | TIME | I TGL | P1 |
| 1 | -2 | -4 | 0 | -3 | 253 | 60 | 323 |
| 2 | 10 | $\bigcirc$ | 0 | -2 | 270 | 75 | 357 |
| 3 | -3 | -8 | c | -3 | 252 | 30 | 298 |
| 4 | -1 | -4 | 0 | -1 | 247 | 30 | 284 |
| 5 | 1 | 2 | 1 | 0 | 253 | 6 | 264 |
| 6 | -1 | 6 | 0 | -2 | 252 | 12 | 272 |
| 7 | 2 | -3 | -1 | 0 | 262 | 8 | 274 |
| 8 | 1 | 5 | 0 | -1 | 238 | 6 | 252 |
| 9 | -1 | 2 | 0 | 0 | 244 | 3 | 249 |
| 10 | -2 | 0 | 0 | -1 | 241 | 15 | 259 |
| 11 | 1 | 1 | 0 | -1 | 237 | 20 | 260 |
| 12 | 1 | 0 | 0 | -1 | 249 | 8 | 259 |
| 13 | 0 | 0 | 0 | -2 | 233 | 12 | 247 |
| 14 | 0 | 0 | -1 | -2 | 219 | 21 | 244 |
| 15 | 0 | 2 | 0 | -2 | 225 | 8 | 237 |
| 16 | -2 | 0 | -1 | -1 | 232 | 0 | 237 |
| 17 | 1 | 1 | 1 | 0 | 224 | 6 | 234 |
| 18 | 1 | 2 | 0 | -1 | 226 | 5 | 235 |
| 19 | 0 | 1 | 0 | -1 | 239 | 5 | 246 |
| 20 | -1 | 1 | 0 | -1 | 237 | 5 | 244 |



| EXPER | NT | INITIAL | cond | SubJ | 2 PR | LEVG | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | $\times 30$ | TIVE | ItGl | PI |
| 1 | 15 | -4 | -7 | 16 | 246 | 180 | 460 |
| 2 | 5 | -13 | -2 | 0 | 290 | 45 | 351 |
| 3 | -8 | 8 | 0 | 3 | 262 | 15 | 292 |
| 4 | 2 | 8 | 0 | 0 | 239 | 0 | 251 |
| 5 | -1 | -8 | -1 | 0 | 256 | 24 | 301 |
| 6 | 1 | 8 | -1 | -10 | 219 | 18 | 259 |
| 7 | 2 | 10 | -1 | -3 | 212 | 12 | 242 |
| 8 | -1 | 4 | -2 | 0 | 234 | 14. | 254 |
| 9 | 3 | 10 | 2 | 6 | 223 | 0 | 248 |
| 10 | -1 | 8 | 0 | 0 | 221 | 3 | 232 |
| 11 | -2 | 0 | 0 | 0 | 225 | 9 | 236 |
| 12 | -2 | -1 | -1 | -1 | 211 | 33 | 250 |
| 13 | -1 | 2 | -1 | 0 | 227 | 0 | 230 |
| 14 | 2 | 12 | -2 | 9 | 222 | 2 | 249 |
| 15 | -1 | 9 | -1 | 4 | 211 | 3 | 227 |
| 16 | 3 | 9 | -2 | 0 | 220 | 0 | 236 |
| 17 | -1 | 3 | 1 | -1 | 218 | 0 | 223 |
| 18 | 1 | 3 | 2 | -2 | 213 | 17 | 237 |
| 19 | 0 | 5 | 0 | -4 | 214 |  | 223 |
| 20 | -1 | 7 | 0 | - 3 | 213 | 0 | 223 |

114. 



115.


| EXPER | ENT 2 | INITIAL | COND | SUBJ | 3 | Leivith | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIAL | $\times 2$ | $\times 20$ | $\times 3$ | $\times 30$ | TIME | ITGL | PI |
| 1 | 1 | 0 | 0 | -2 | 244 | 30 | 277 |
| 2 | -20 | -31 | 0 | 1 | 285 | 30 | 379 |
| 3 | -1 | -6 | 0 | -2 | 241 | 30 | 232 |
| 4 | -1 | -6 | 0 | 0 | 236 | 45 | 289 |
| 5 | 0 | 2 | 0 | 0 | 255 | 9 | 265 |
| 6 | -4 | -10 | 0 | -1 | 255 | 12 | 285 |
| 7 | 0 | 0 | -1 | 0 | 243 | 9 | 253 |
| 8 | -1 | 1 | 0 | 0 | 236 | 24 | 261 |
| 9 | -2 | -4 | 0 | -1 | 248 | 0 | 256 |
| 10 | 0 | 2 | 0 | 0 | 224 | 3 | 229 |
| 11 | 1 | 3 | 0 | 0 | 234 | 2 | 240 |
| 12 | 2 | 8 | 1 | -1 | 220 | 2 | 235 |
| 13 | -1 | -2 | -1 | -2 | 222 | 3 | 232 |
| 14 | 0 | 0 | 0 | -1 | 214 | 0 | 215 |
| 15 | 1 | 1 | 0 | 1 | 235 | 0 | 239 |
| 16 | -1 | 0 | 0 | -1 | 220 | - | 222 |
| 17 | 0 | 1 | 0 | 0 | 224 | - | 233 |
| 18 | 0 | 0 | 0 | 0 | 219 | 2 | 221 |
| 19 | 0 | -3 | 0 | -1 | 230 | $\checkmark$ | 234 |
| 20 | -1 | -2 | 0 | -2 | 210 | $\bigcirc$ | 216 |

