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DYNAMIC DISTORTION AT THE EXIT OF A SUBSONIC
DIFFUSER OF A MIXED COMPRESSION INLET

By Arnold W. Martin, Leonard C. Kostin, and Sidney D. Millstone

Los Angeles Division of
NORTH AMERICAN ROCKWELL CORPORATION
Los Angeles, California

SUMMARY

A 20-inch diameter, axisymmetric, external-internal shock compression
inlet was tested at Mach numbers from 2.6 to 3.0 to obtain inlet dynamic
distortion data. High-response instrumentation was used to obtain dynamic
pressure data during inlet operation with (1) fixed inlet geometry and tunnel
conditions, (2) sinusoidal exit area disturbances, (3) simulated engine tran-
sients, (4) sinusoidal external flow disturbances, and (5) simulated clear air
turbulence. A portion of the test program was conducted with a simple terminal
shock control system.

Analog and digital data analysis procedures were used to obtain instan-
taneous pressure patterns, turbulence levels, probability density curves,
cross correlations, power spectral densities, cross power spectral densities,
and coherence functions.

Data analyses indicate that inlet-induced turbulence is a combination of
random and nonrandom pressure oscillations, the nonrandom components becoming
more apparent as inlet operation becomes more supercritical. The basic
turbulence-generating mechanism appears to be boundary layer/shock interaction

which creates a time-varying pattern of boundary layer detachment and oblique
and normal shock waves. Maximum excursions in pressure in the turbulence
process are toward the high-pressure side; regions of maximum turbulence
correspond generally with the regions of maximum pressure recovery,

Instantaneous engine face spatial distortions are quite large during
highly supercritical inlet operation, and appreciably exceed the values that
would be measured by conventional steady-state instrumentation. Large changes
in distortion occur within a millisecond. Instantaneous total pressure
recovery averaged over the engine face annulus also varies with time during
"'steady-state'' operation, but at a generally lower rate than the variations
in spatial distortion.



The terminal shock control system was reasonably effective in reducing
terminal shock excursions induced by exit area disturbances. Shock excursions
induced by external flow disturbances were increased by the shock control sys-
tem. Inlet turbulence levels were affected by the control system only as the
terminal shock position was affected.

INTRODUCTION

During propulsion system wind tunnel and flight tests of both the
turbojet-powered XB-70 and the turbofan-powered F-111, a number of engine
stalls were encountered which could only be explained by turbulent flow at the
engine face. Characteristically, the probability of such inlet turbulence-
induced stalls increased as the turbulence amplitude increased; however, indi-
vidual stalls appeared to be random with time, particularly at marginal turbu-
lence levels. That is, an engine might stall immediately upon reaching a given
inlet operating condition, or it might not stall for many seconds or even min-
utes. This observation suggested the use of statistical techniques in analyz-
ing inlet dynamic distortion data; much of this investigation has been based
on such techniques.

Resolution of dynamic distortion problems requires a two-sided approach,
one relative to the engine, the other relative to the inlet. On one side,
knowledge is required as to what dynamic distortion characteristics are
critical to an engine. On the other side, methods must be developed for
defining, predicting, and possibly eliminating inlet dynamic distortion.

Determining what dynamic distortion characteristics are critical to an
engine was not a part of this program. However, other investigations
have indicated the following:

(1) A major cause of turbulence-induced stall is spatial distortion at
the compressor/fan face sustained for sufficient time to act as steady-state
distortion. There must be a low-pressure area of appreciable size sustained
for some minimum time, in the order of 5 milliseconds.

(2) One-dimensional pressure oscillations (a major portion of the engine
face pressures varying in phase) can induce stall in different ways depending
on the frequency as well as the amplitude. At low frequencies, such relatively
slow-response items as the fuel control, exhaust nozzle area, and rotor speeds
coupled with the combustor and tailpipe volume dynamics can result in excur-
sions of the engine operating point exceeding the surge limit. At high fre-
quencies, the interstage volume dynamics can result in changing stage-by-stage
matching so that the apparent compressor characteristics differ from the
steady-state values.



There were a number of objectives in this exploratory investigation of
inlet dynamic distortion ranging from the general to the quite specific.
These included:

(1) Developing a better understanding of the general nature of inlet-
induced turbulence

(2) Defining turbulence for a specific inlet in terms of statistical
parameters

(3) Determining the transport properties of turbulence

(4) Determining the scale of turbulence (the distance over which
pressures vary in unison)

(5) Determining the presence of discrete and/or preferred frequencies
and their dependence on inlet geometry

(6) Determining the pattern and magnitude of engine face spatial distor-
tion and their variation with time

(7) Determining whether an inlet amplifies or attenuates external flow
disturbances such as clear air turbulence

(8) Determining the effectiveness of an automatic shock position control
in reducing terminal shock excursions due to either internal or external flow
disturbances

MODEL DESCRIPTION

Inlet Configuration

The inlet model tested was an axisymmetric, mixed-compression inlet
having a cowl leading edge diameter of 20 inches. It was originally designed
and constructed as an approximately one-third scale model of a Mach 3.0 super-
sonic transport inlet by the Lockheed Company. A detailed description of the
model can be found in references 1, 2 and 3. Steady state performance
characteristics are given in reference 2.

Figures 1 and 2 are photographs of the model installed in the NASA Ames
Unitary 8 x 7 Wind Tunnel. Figure 3 shows the general configuration of the
inlet and its internal lines. Cross-section area as a function of model
station is presented in figure 4. The boundary layer bleed configuration and
compartmentation are illustrated in figure 5.



Variable model components. - Remotely variable components on the inlet
model included a translating cowl, a rotating sleeve bypass valve, and a trans-
lating sleeve which, in combination with a fixed position plug, varied duct
exit area. A hydraulically powered servo control system, discussed in
Appendix A, was used to control the variable components.

Translating cowl: The translating cowl was used to start the inlet and
to obtain the desired contraction ratio for each run.

Bypass valve: The rotating sleeve bypass valve is shown schematically in
figure 6. Flow passage areas were enlarged relative to the initial model con-
struction to insure that the exit area controlled by the rotating sleeve was
the flow regulating area. During the "automatic control' portion of the test
program, bypass area was varied to control terminal shock position as sensed
by inlet throat static pressures. The control system characteristics are
described in Appendix B.

Sleeve/plug valve: The sleeve/plug valve (figure 7) was positioned either
through manual input or through input from magnetic tapes prerecorded to pro-
duce either sinusoidal exit area variations or exit area variations simulating
engine transients.

Attention is called to the fact that the sleeve/plug valve minimum area
is well downstream of the simulated engine face station. Construction of the
model made it impractical to locate the sonic section of the flow control valve
near the engine face station.

External flow disturbance vane: A two-dimensional vane forward and above
the inlet model was used to generate disturbances in the external flow. Figure
8 is a schematic diagram of the vane which completely spanned the tunnel. Vane
angle variations to produce sinusoidal disturbances and clear air turbulence
(CAT) were commanded by prerecorded magnetic tape inputs to a PACE TR-10 analog
computer as described in Appendix A.

Instrumentation

Instrumentation consisted of high-frequency response pressure probes for
measuring transient pressures, steady-state pressure probes for establishing
the steady-state external flow and inlet performance characteristics, and
potentiometers to measure the positions of the translating cowl, the bypass
sleeve, the exit area sleeve, and the external disturbance vane angle. Tunnel
instrumentation was used to measure model angle of attack.



Transient pressure instrumentation,-

External rakes: Figure 9 shows the location and typical configuration of
the 12 probes constituting the external flow field transient pressure rake.
Statham PA222 transducers were used in the rake.

Internal rakes: Total pressure instrumentation in the model consisted of
four rakes at the engine face station, and two boundary layer rakes at differ-
ent stations but in-line in the subsonic diffuser. In addition, single total
pressure probes were located (1) on the center body external conical spike,
(2) just upstream of the inlet throat section, and (3) at the diffuser exit
plug station. The total pressure probes just upstream of the inlet throat and
on the external spike were removed early in the test program because of the
disturbances generated in the downstream flow. Locations of the probes at the
engine face station are shown in figure 10. Locations of probes at other
stations are shown in figure 11.

Details of a typical total pressure probe are presented in Appendix C.
Screens of 27-percent porous material having 0.0055-inch-diameter holes were
used to protect the 0.125-inch-diameter Kulite transducers from particle impact
damage. Initially, the Kulite transducers were mounted with the diaphragms
exposed directly to the airstream. During the first few minutes of tunnel
operation (which followed a period of tunnel maintenance), 30 of the 32 total
pressure probe transducers failed. The failures, and the methods developed to
protect the transducers and the resultant dynamic characteristics, are
described in Appendix C.

The dynamic instrumentation for measuring static pressures consisted of 4
static pressure probes at the engine face station (figure 10) and 40 static
pressure taps located as shown in figure 11. Typical configuration details of
the static taps are shown in figure 12. Statham PA222 transducers were used
where space permitted; Kulite CPL-125-25 transducers were used when a smaller
size was required.

Dynamic pressure recording: Transient pressures were recorded both on
magnetic tape and oscillographs. The latter were used for guidance in conduct-
ing the test program and to check the magnetic tape data validity. Nine 14-
channel tape recorders were used to record the frequency-modulated signals.
Figures 13 and 14 list, respectively, the parameters on each recorder with and
without the external disturbance vane installed.

Time-dependent analog data analyses such as cross correlations and cross-
power spectral densities could be made only with those parameters recorded on
a single tape. Consequently, certain key parameters were repeated on several
recorders.



An IRIG B time code signal was recorded on each tape to permit time
correlation of data from different tapes providing that the FM analog data
were converted to digital data.

Dynamic pressure reference system: To obtain the maximum accuracy and
signal-to-noise ratio, most of the steady-state component of each pressure was
eliminated in one of two ways. Where the absolute instantaneous pressure was
of concern (engine face total pressures, for example) the steady-state compo-
nent was eliminated by maintaining a reference tank pressure close to the
average pressure, Where only the time and magnitude of pressure change were
of concern (duct static pressure taps, for example) the steady-state pressure
component was eliminated by an electrical bias. The method used for each pres-
sure is noted in figures 13 and 14.

Steady-state pressure instrumentation.-

External flow rake: An external flow rake was mounted on the cowl as
illustrated in figure 9. The rake consisted of three identical conical probes
for measuring flow angle, Mach number, and total pressure. The conical probe
configuration is shown in figure 15.

Internal rakes and static pressure taps: Figure 16 gives the locations of
the steady-state total pressure probes and static pressure taps.

Flow metering nozzle: The flow metering nozzle and the associated pres-
sure instrumentation are shown in figure 17.

Pressure recording: All steady-state pressures were recorded using the
tunnel pressure data system.

Position instrumentation. - Linear potentiometers were used to measure the
position of the inlet cowl, the bypass ring, the exit plug valve sleeve p051-
tion, and the external dlsturbances vane angle.

During operation where either the exit sleeve or the external vane was
cycled about the same midposition at frequencies above 4 Hz, the potentiometer
signals became extremely noisy, and frequent replacement or cleaning of the
potentiometers was necessary.



TEST PROCEDURES

Test procedures fell into six general categories. These were:

(1) Operating at various inlet cowl positions, angles of attack, and
mass-flow ratios to define steady-state performance

(2) Operating at selected 'steady-state' conditions to obtain inlet
turbulence measurements

(3) Operating with exit area disturbances
(4) Operating with external flow disturbances

(5) Operating with identical input disturbances with the automatic
shock control system operative and with it inoperative

(6) Inducing inlet unstarts and buzz either by exit area reduction or
throat area reduction

Steady-State and '"Steady-State Dynamics' Tests

Steady-state and ''steady-state dynamics' data were recorded after the
angle of attack, cowl position, and mass-flow ratio had been set. During the
"'steady-state dynamics'' tests, several seconds of oscillograph data and up to
400 seconds of magnetic tape data were recorded at each run condition. The
runs and data recorded are summarized in Appendix D.

Exit Area Disturbance Tests

Inputs to a PACE TR-10 analog computer from prerecorded magnetic tapes
were used to schedule exit sleeve position to provide either sinusoidal varia-
tions in exit area or variations simulating engine transients. The magnetic
tape command data were shaped to account for the kinematics and dynamics of
the servo control system as described in Appendix A. The taped sinusoidal
inputs were 1/2, 1, 2, 4, 6, 8, 10, 12, and 14 cycles per second for the large
amplitude disturbances (*4 square inches for most tests), and 1/2, 1, 2, 4, 6,
8, 10, 12, 14, 16, 18, and 20 cycles per second for the small amplitude dis-
turbances (*¥2 square inches).



External Disturbance Tests

Inputs from prerecorded tapes were used to drive the external vane so that
either sinusoidal disturbance or simulated clear air turbulence was generated.
Because the vane cannot accurately simulate the combination of flow direction,
Mach number, total pressure, and density (or temperature) that an aircraft will
encounter flying through a turbulent atmosphere, an arbitrary decision was made
to simulate flow direction. Two input tapes were generated for both the sinus-
oidal distrubances and the clear air turbulence simulation, one tape scheduling
flow angle versus time, the other tape scheduling vane angle versus time. The
vane angle tapes were used in the actual tests because vane angle was directly
measurable, and because flow angularity was not uniform over the face of the
inlet,

Sinusoidal disturbances.- Both small-amplitude disturbances, £3.5 degrees
about a midpoint of 10 degrees and large-amplitude disturbances, *7.5 degrees
about a midpoint of 10 degrees, were input at frequencies of 1/2, 1, 2, 4, 6,
8, 10, ... 28, and 30 cycles per second. Appendix A shows the approximate
variations of the several flow parameters with wedge angle at free stream Mach
numbers of 3.0 and 2.6.

Clear air turbulence.- Tests were run with both large-amplitude (3 RMS ~
6 degrees) and small-amplitude (3 RMS ~ 2.5 degrees) clear air turbulence.
The mechanization and definition of the clear air turbulence inputs are dis-
cussed in Appendix A.

Shock Control Tests

A portion of the test program was run with a relatively simple terminal
shock control system. No attempt was made to optimize the system. Rather,
the objectives were to see if the control system performed according to ana-
lytical predictions, to see whether internal and external disturbances were
increased or decreased by the control, and to compare turbulence levels with
and without the control.

The control system mechanization is described in Appendix B. Basically,
the bypass area was varied to control shock position as indicated by four inlet
throat static pressure taps.

The test procedure consisted of operating the inlet with either exit area
or external flow disturbances first with the control system inoperative, then
with it operative. The inlet operating point and input disturbances were iden-
tical with and without the control system except for a small bias in the oper-
ating point introduced when the control system was activated.



Inlet Unstarts

In runs to obtain dynamic distortion characteristics during inlet unstart
and buzz, (1) the inlet operating point was set, (2) the data recording systems
were turned on, and (3) the inlet was unstarted either by reducing exit area or
translating the cowl forward. Exit area unstarts were induced at Mach 2.6 and
3.0. Cowl-induced unstarts were induced at Mach 2.6 and 2.9. Cowl travel was
inadequate to unstart the inlet at Mach 3.0. Transient data were also recorded
for a fast and a slow restart at each of these test conditions.

TUNNEL AIRFLOW TURBULENCE AND INSTRUMENTATION NOISE

Wind tunnel airflow turbulence, transducer vibrations, and electrical
noise contribute to the transient pressure measurements. Analyses indicate
that, with the occasional exception of electrical noise, these extraneous con-
tributions are appreciably smaller than the turbulence levels of concern to an
engine.

Capped Probe Data

Because transducers act to some degree as accelerometers, total pressure
probe outputs were recorded during wind tunnel operation with the total pres-
sure probes capped. Power spectral density (PSD) plots of these data suggest
mechanical vibration inputs at 40, 215, 330, and 603 Hz for the external rakes,
and at 330 and 603 Hz for the engine face rakes. Signal levels are so low that
the apparent absolute levels are questionable.

Electrical Noise

The major contributor to extraneous signals was 60 Hz electric current.
These inputs were introduced during both data recording and data analysis, and
their magnitude varied from run to run. Part of this variation can be
explained in terms of signal levels, data recording, and analysis systems
gains. Part is most easily attributed to gremlins.

Data components associated with 60 Hz electric current are readily appar-
ent in that they show up as multiples of 60. Because they are so apparent, no
attempt was made to filter out those components associated with 60 Hz electric
current. This minimized the possibility of distortion or elimination of valid
pressure data.



Wind Tumnel Airflow Turbulence

Pressure transients associated with the tunnel airflow were measured by
the external flow field rakes. Data were analyzed at Mach 2.6 and 3.0 without
the external disturbance vane installed, and at Mach 3.0 with the vane
installed.

Turbulence levels without the disturbance vane.-

Mach 2.6: Figure 18 is a PSD plot for the external rake total pressure
probe P802 at an inlet total pressure recovery of 0.918. Discrete peaks not
associated with 60 Hz electrical inputs are apparent at approximately 285, 333,
605, 645, and 680 Hz. The peak frequencies of 333 and 605 Hz correspond to
those observed with capped probes, and may be associated with or amplified by
mechanical vibration frequencies. Peaks at the other frequencies are believed
to be characteristic properties of the tunnel flow.

Peak PSD values were less than 7 x 1079, PSD values, excluding the dis-
crete frequency peaks, ranged from 1 x 10710 to 5 x 10710,  Tunnel turbulence
levels were, therefore, well below inlet turbulence levels of concern to a
propulsion system.

Mach 3.0: Figures 19 and 20 present PSD plots for probe P802 at inlet
pressure recoveries of 0.877 and 0.565, respectively. Associated turbulence
levels (6 RMS/P{y) were less than 0.01. Discrete frequency peaks are apparent
at 285, 333, 605, 640, and 680 Hz; the 333 and 605 Hz frequencies again corre-
spond to those observed with the probes capped. Peak PSD values at Mach 3.0
were typically less than 4 x 10-9. Average values, excluding the discrete
peaks, ranged from 1 x 10710 to 5 x 1079,

Turbulence levels with the disturbance vane installed.- The appreciable
increase in turbulence when the vane is installed in the tunnel is shown by
comparison of the PSD curve of figure 21 with those of figures 19 and 20. The
data of figure 21 were obtained with the vane installed at zero degree angle
of attack.

Turbulence also varied appreciably with location behind the disturbance
vane. This difference can be seen by comparison of the PSD curves of figures
21 and 22 for external rake probes P802 and P804, respectively. The probe-to-
probe variation in turbulence with the vane installed is further illustrated
in figure 23.

Although turbulence levels were higher with the disturbance vane
installed, they were well below the levels of concern for an inlet.
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STATISTICAL CHARACTERISTICS OF STEADY-STATE ENGINE FACE DATA

Probability Density

Engine face total pressure versus time traces are presented in figures 24
and 25 for Mach 3.0 operation at high- and low-pressure recoveries, respec-
tively. Data are from the 45-degree rake. Probability density curves for each
of the two recovery levels are presented in figure 26 for the inner probe, and
in figure 27 for the outer probe.

Comparison of high and low recovery probability density functions for the
inboard probe, P870, shows little difference, both patterns being essentially
Gaussian with a slight skewness to the negative side. In figure 27, the dif-
ference in the probability density plots with recovery for the outer engine
face total pressure probe, P874, is more extreme. At the high recovery, the
essential Gaussian characteristics of the data from probe P874 are indistin-
guishable from those of the data from probe P870 at either recovery level. At
the low recovery, however, the skewness is more marked, and the curve has a
considerably thinner bell shape and an appreciably higher peak value. Figures
24 and 25 show that this distortion is associated with the relatively greater
amplitude of the positive spikes for P874 at low recovery.

In summary, the probability density determinations show the steady-state
data to consist of basically Gaussian random noise plus randomly occurring
positive discrete spikes. The spikes increase the peak amplitude above the
pure Gaussian peak amplitude of 0.394, make thinner the standard bell shape,
and skew the curve to the left. However, for the most part, probability den-
sity is not a sensitive parameter. The presence of spikes, for example, is
more easily detectable from the original pressure data. In general, signifi-
cant changes in the data that occur with changes in operating conditions are
not readily determinable from probability density analyses.

Stationarity

When time averages are calculated over some fundamental minimum interval,
the data are said to have the property of stationarity when these averages are
independent of the particular time interval selected. For the engineer, sta-
tionarity of inlet turbulence data is of concern (1) in determining the data
recording requirements at each test condition, (2) in determining the number
and length of data records to be analyzed, and (3) in determining the validity
of the statistical analyses.

As a check of the degree of stationarity of the inlet turbulence data,
statistical properties have been computed for several increments of several
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lengths and in different portions of a 7-minute data record. This procedure
is illustrated in figure 28 which shows the three 5-second time intervals in
the 7-minute run and the four 0.05-second intervals within one of the 5-second
intervals for which statistical data were obtained.

Table I presents RMS values obtained at a Mach 3.0, high-pressure recovery
condition. Data are compared for four 0.05-second intervals and a 5-second
interval which included the 0.05-second intervals. The RMS values for the
0.05-second intervals were computed from digital data; the 5-second interval
values were measured by an RMS meter. Table II presents RMS values for three
5-second intervals in the Mach 3.0, high recovery run.

Tables III and IV present RMS values for intervals similar to those of
tables I and II but for a Mach 3.0, low recovery point.

Probability density functions for the Mach 3.0 high recovery condition
are presented in figure 29 for three 5-second intervals for each of three
engine face total pressure probes. Figure 30 presents similar data for the
Mach 3.0 low recovery condition.

PSD plots corresponding to the aforementioned probability density curves
are presented in figures 31 and 32.

The preceding tables and figures indicate stationarity of the 5-second-
interval data within most engineering requirements. Even the 0.05-second-
interval data show reasonable stationarity at the high recovery conditions.
There is considerable variation, however, in the low recovery, 0.05-second-
interval data, particularly for such probes as P873 and P874.

The generally lower digital data RMS values, as compared to the corre-
sponding analog values, are probably an indication that the 2,000-per-second
sampling rate is too low to catch the spike peaks.

Ergodicity

Whenever statistical information is obtained by taking time averages, the
assumption that such information is valid is called the ergodic hypothesis
(reference 4). For the inlet system, the statement of the ergodic hypothesis
implies that if 1,000 identical inlets operating under identical steady-state
conditions have an instantaneous pressure measurement taken at the same point
in each inlet, the statistical distribution of this data is the same as if
1,000 measurements are made at equal intervals of time at the same point in
one inlet. A test for ergodicity involving 1,000 independent observations on
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identical systems is obviously impractical. Consequently, in dealing with
practical processes, the truth of the ergodic hypothesis is generally accepted
as a matter of convenience, and averages over time are taken to provide
statistical information.

While it is impractical to verify the ergodic hypothesis, a check of a
somewhat analogous ''spatial ergodicity'' is possible. That is, the instantan-
eous average of a number of engine face probes can be compared with the time
average of all these probes. Figure 33 presents the spatial average of
20 engine face probes as a function of time at a Mach 3.0, high recovery condi-
tion. Also shown are the time histories of two typical probes showing their
appreciably larger excursions with time. Similar data are presented in fig-
ure 34 for a low recovery condition. At the high recovery condition, the
instantaneous spatial average does approach the time average, even with the
limited number of probes. At the low recovery condition, however, there is an
appreciable variation with time of the instantaneous spatial average. That is,
the pressures at the 20 different probe locations are not independent. The
degree of dependence of the 20 probe pressures becomes more apparent in the
discussion of engine face coherence.

DYNAMIC DISTORTION AT THE ENGINE FACE STATION

A known cause of engine stall is spatial total pressure distortion at the
engine face. Dynamic instrumentation shows that even during ''steady-state'
operation, spatial distortion changes rapidly with time, and that short-
duration distortion values can appreciably exceed those measured by conven-
tional steady-state instrumentation.

The distortion data presented in this section were obtained by digitizing
the analog pressure data recorded on magnetic tape. Data were digitized for
each of 20 dynamic engine face total pressure probes at intervals of 0.0005
second. That is, there were 2,000 instantaneous time slices per second.

Instantaneous Spatial Distortion

Instantaneous total pressure ratio contours are presented in figures 35
through 38 for instantaneous time cuts 0.0005 second apart. Additional data
presented are the instantaneous spatial average total pressure recovery, the
minimum and maximum individual total pressure readings, and the instantaneous

Pt max ~ Tt min

> where Pt2 avg is the engine face

distortion parameter, P2 avg
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instantaneous spatial average total pressure. Figures 35 and 36 present data
recorded at high- and low-pressure recovery conditions, respectively, at Mach
3.0. Figures 37 and 38 present similar data for Mach 2.6. Note that the low-
pressure recoveries are much lower than would be anticipated for an actual
aircraft installation. Turbulence characteristics are exaggerated and are
therefore more easily detected at these exceptionally low recoveries.

Figures 35 through 38 show that large changes in the engine face total
pressure contours take place in 0.0005 second, the changes being markedly
greater at the low-pressure recoveries. Although the model was presumably
axisymmetric, a preferred pattern of distortion can be seen.

An interesting characteristic revealed by the instantaneous time-cut data
is that the variation with time of the maximum local pressure in the engine
face annulus is greater than the variation in the minimum local pressure. For
example, the maximum local pressure ratio in figure 36 varied from 0.625 to
0.881; the minimum local pressure ratio varied from 0.451 to 0.508.

Pt max - Pt min
. e "t2 avg
sented as a function of time in figures 39 through 42. All values in the
parameter are instantaneous values for that time cut.

The instantaneous spatial distortion parameter, > is pre-

Comparison of figures 39 and 40, high recovery at Mach 3.0 and low re-
covery at Mach 3.0, respectively, show that both the distortion parameter and
its excursions with time are an order of magnitude higher for the low recovery
condition. Similar trends at Mach 2.6 are shown in figure 41 and 42.

Instantaneous Average Total Pressure Recovery

The instantaneous average pressure recovery at the engine face station
(spatial average) is shown as a function of time in figures 43 through 46.

At the Mach 3.0, high recovery condition (figure 43), there are relatively
small changes in the instantaneous average recovery with time. However, as
"'steady-state'' pressure recovery decreases, the variations in instantaneous
average pressure recovery become much larger as shown in figure 44. The oscil-
lation in instantaneous average pressures shown in figure 44 would be seen
by an engine as absolute pressure transients of approximately 14 percent.

The same general trends observed at Mach 3.0 are shown at Mach 2.6 in
figures 45 and 46.
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Some interesting characteristics are revealed when the spatial average
pressure recovery history of figure 44 is compared to the distortion parameter
history of figure 40. The distortion parameter appears to have little more
than a random relationship with the instantaneous average recovery. Particu-
larly interesting are the lower frequency ''beat note'' spatial average total
pressure oscillations that become more prominent at low recovery conditions.
The typical 'beat note' period shown in the bottom portion of figure 44 is
nearly identical to the organ-pipe frequency of the model, assuming that the
terminal shock and the choked sleeve/plug valve act as closed ends.

Time-Averaged Distortion Characteristics

Because of volume dynamics and flow inertia, there is some minimum time
required before a distortion pattern or pressure oscillations result in com-
pressor (fan) stall. Volume dynamics in particular tend to average out
extremely short-duration pressure transients, Figures 47 through 50 and
52 through 55 present pressure ratio contours, average pressure recovery, and
distortion values obtained by averaging the instantaneous time-cut data over
various lengths of time.

The data presented in figures 47 through 50 for the high recovery Mach 3.0
condition were obtained using the individual probe pressures computed by aver-
aging the instantaneous time-cut pressure ratios of figure 35 over time spans
of 0.002, 0.005, 0.010, and 0.040 second. Times given for each plot are those:
for the initial cut of data used in the averages. The corresponding steady-
state data are presented in figure 51.

Mach 3.0 low recovery total pressure ratio contours and distortion para-
meters are presented in figures 52 through 55 for time-averaging periods of
0.002, 0.005, 0.010, and 0.040 second, respectively. Two sets of data are
presented for each time-averaging period: one beginning at 42.000 seconds and
one beginning at 42.0420 seconds. The time-average values were computed from
the instantaneous time-cut pressure ratios of figure 36. The corresponding
contours, distortion parameter, and pressure recovery computed from the steady-
state instrumentation are presented in figure 56.

As might be expected, the maximum values of distortion and recovery are
reduced as the instantaneous time-cut data are averaged over longer periods of
time. In the data presented for the Mach 3.0 low recovery condition, for
example, the maximum distortion values were 0.5948, 0.4347, 0.4272, 0.3986,
and 0.3670 for the instantaneous point and for time-averaging periods of 0.0020,
0.0050, 0.010, and 0.040 second, respectively. The steady-state value was
0.3464. Similarly, the total pressure contours approach the steady-state
values as the time-averaging increment is increased.
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The time-averaged parameters were computed for consecutive increments
of the selected time span. Inspection of plots, such as figures 40 and 44,
show that the high-frequency pressure and distortion oscillations are super-
imposed on lower frequency oscillations. Thus, except for very long time-
averaging periods, peak values of time-averaged parameters are dependent
on the initial time selected. This dependency of the peak values on the
initial time could be eliminated by computing a running average. That is,
at each time slice, the data from, say, the preceding and following 10
slices would be averaged. This process would be repeated for each time
slice point.

Steady-State Distortion Characteristics

The steady-state total pressure ratio contours for Mach 3.0 high and low
recovery operations presented in figure 51 and 56 are compared to the more
conventional radial profile plots in figure 57. Similar plots for Mach 2.6
high and low recovery operations are shown in figure 58. The figures show a
migration of the maximum pressure region from the outer portion of the annulus
towards the hub as pressure recovery decreases. This characteristic is typical
of the inlet at both Mach 3.0 and 2.6.

Inlet Unstart

Inlet unstarts and buzz are accompanied by changes in spatial distortion
as spectacular as the pressure transients. Data for a Mach 2.6 unstart
induced by reducing exit area and for two Mach 2.9 unstarts induced by for-
ward translation of the cowl are presented in figures 59 through 65.

Figure 59 shows engine face total pressure traces for the unstarts.

Figure 60 presents total pressure ratio contours beginning with the
steady-state values prior to initiating the Mach 2.6 unstart and continuing
with instantaneous time cuts through the unstart transient, Instantaneous
distortion values and total pressure ratios are also presented for each time
cut. These data are further presented in figure 61 as plots of

p -P : P p - P :
t max -"t min, _EE; and "t max t min versus time. The distortion

Pt2 avg Pto Pto
Pt max - Pt min . . .
" parameter, , increases rapidly during the unstart. The
P2 avg

Py max ~ Pt min
Pto

increase during the unstart inasmuch as P, does not change.

second distortion parameter, , has an appreciably smaller
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Data similar to that presented for the Mach 2.6 unstart are presented in
figures 62 and 63 for a Mach 2.9, 0.873 initial recovery unstart, and in
figures 64 and 65 for a Mach 2.9, 0.741 initial recovery unstart, Trends are
generally similar to those observed for the 2.6 Mach number unstart.

The Mach 2.9 unstarts exhibit an unusual buzz cycle of approximately
77 cycles per second. Fully developed buzz cycles normally have periods
similar to that for the unstart cycle, and analytic calculations predict a
buzz frequency of approximately 19 cycles per second. (On close inspection,
the presence of this "'normal'’ buzz cycle can be seen in the high recovery
unstart oscillograph traces.) The high-frequency buzz of approximately 77
cycles per second corresponds closely to calculated organ-pipe frequency when
the terminal shock and the choked plug exit valve are considered to be closed
ends.

The fully developed 'mormal" buzz cycle is triggered by separation of
the throat region boundary layer which initiates a duct emptying process.
When the emptying process has reduced duct pressures sufficiently, the bound-
ary layer reattaches, and a filling cycle is initiated. It would appear that
a higher frequency boundary layer separation and reattachment cycle is
triggered by the organ pipe pressure pulsations and is superimposed on the
lower frequency empty-fill cycle.

Inlet Restart

Figure 66 presents oscillograph traces recorded during a transition from
buzz to started operation at Mach 2.6. Shown are three engine face total
pressures, three static pressures measured downstream of the inlet throat (see
figure 11), and the exit sleeve position. The approximate time when the cowl
translation began is also shown.

During the initial buzz operation, both the empty-fill and the organ-pipe
frequencies previously discussed are clearly evident, the organ-pipe frequency
being particularly distinctive in the throat region. As the exit area
increases, the low-frequency buzz vanishes.

Upon restart, the terminal shock moves downstream of the throat static
pressure taps. Engine face total pressure increases relatively smoothly but
then shows the turbulence characteristic of excessively supercritical opera-
tion. The latter is to be expected for an open-loop restart where the exit
area and throat area are opened by arbitrary amounts to ensure inlet restart.
A closed-loop restart control which would increase bypass flow only by the
amount required for the restart would largely eliminate the engine face total
pressure turbulence during the restart.
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STEADY-STATE OPERATION TURBULENCE CHARACTERISTICS

Turbulence values have been computed as a function of operating condi-
tions, location, and steady-state distortion. Herein, turbulence is defined
as 6 RMS/I_’t2 where RMS is the measured true root mean square voltage of the
given pressure transducer signal, and P, is the average steady-state engine
face total pressure. This expression can be interpreted physically as the
width of a band which would bound the nondimensionalized pressure oscillation
trace for all but an infrequent, abnormally high-amplitude oscillation.

Engine Face Turbulence

Turbulence variation with recovery.- Figures 67 and 68 present turbulence
as a function of total pressure recovery for each of the engine face total
probes at Mach 2.6 and 3.0. The data were obtained during steady-state
operation at zero degrees angle of attack.

As pressure recovery drops (terminal shock strength increases),
turbulence increases sharply, as does the probe-to-probe variation on a given
rake. The discontinuity, at approximately 78 percent recovery for the Mach
3.0 operation in figure 67, is believed to reflect a change in the wall
boundary layer conditions. These data and total pressure ratio contour data
suggest separation of the outerwall boundary layer at the lower recoveries.

To be noted is the fact that turbulence values differ by several-fold
from location to location at a given operating condition. For example,
turbulence ranged from 0.04 to 0.07 at Mach 3.0 high recovery, from 0.03 tc
0.11 at Mach 2.6 high recovery, from 0.20 to 0.85 at Mach 3.0 low recovery,
and from 0.24 to 0.85 at Mach 2.6 low recovery. Obviously, the turbulence
level computed from a single probe does not define the overall turbulence
level. Other test data show not only a several-fold variation in turbulence
level between probes, but also that the location of the probe(s) having the
highest turbulence level often changes as changes are made in the inlet oper-
ating condition.

Turbulence and total pressure ratio contour similarity.- When engine face
station turbulence contours and radial profile plots were examined, a striking
similarity to the corresponding total pressure ratio plots was noted. This
similarity is illustrated in figures 69 and 70. Figure 69 compares contour
plots of turbulence and total pressure ratio. Figure 70 compares radial pro-
file plots of turbulence and total pressure ratio. In particular, it can be
seen that the regions of maximum turbulence coincide with the regions of
maximum total pressure ratio. Further, minimum turbulence regions are those
near the outer and inner walls of the flow annulus.
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As would be expected for an axisymmetric configuration, the turbulence
variation is primarily radial. Somewhat lower values of turbulence were
observed for the probes on the 45-degree rake. The two boundary layer rakes
upstream of the 45-degree engine face rake (figure 11) may have changed the
flow pattern and characteristics enough to lower the turbulence values.

Turbulence variation with steady-state distortion parameter.- As steady-
state total pressure recovery decreases, both turbulence and steady-state
distortion increase. Figures 71 through 74 show the relationship of turbu-

: P - P -
lence and the steady-state distortion parameter, L MaX T min,

Pi2

Curves of distortion versus the numerical average of turbulence at
Mach 3.0 and 2.6 are presented in figure 71. The turbulence value is the
numerical average for 20 engine face total pressure probes.

Figure 72 is similar to figure 71 except that the average turbulence was
computed as the square root of the sum of the squares of the 20 engine face
total pressure turbulence values. This parameter gives greater weight to high
turbulence values.

Figures 73 and 74 present distortion versus individual probe turbulence
values for Mach 3.0 and Mach 2.6, respectively. The large probe-to-probe
variation in turbulence, previously noted with respect to figures 67 and 68,
is again clearly evident.

Circumferential variation in turbulence.- Comparison of the turbulence
levels for probes at the same radius on different rakes in figures 67 and 68
and the turbulence contour plots of figures 69 and 70 shows reasonable but not
complete axisymmetry of the engine face total pressure turbulence. Part of
the nonaxisymmetry is undoubtedly associated with the instrumentation effects
on the flow.

Upstream rake effects on engine face turbulence.- Engine face rake turbu-
lence values obtained in two test runs are compared in figure 75. The rums
differed in that the two single-probe rakes installed in the 315-degree plane
in the supersonic flow portion of the inlet for the first run were removed for
the second run. Engine face total pressure turbulence is higher in the 45-,
135-, and 225-degree planes with the rakes installed, but lower in the 315-
degree plane behind the upstream rakes.
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Turbulence variation with anglé of attack.- Figure 76 shows the variation
in turbulence with angle of attack at Mach 3.0 for low recovery operating
conditions (high recovery operation was not possible at 8 degrees angle of
attack). The data were all obtained with the 315-degree plane rakes installed.
The variation in turbulence with angle of attack clearly is dependent on the
total pressure probe location,

Turbulence Variation With Station

Total pressure turbulence.- Turbulence variation both with inlet station
and with radial location are illustrated in figures 77 and 78. Data are for
Mach 3.0 and 2.6, respectively, at three recovery levels. Also shown are the
approximate terminal shock positions. All the data are from the 45-degree
plane instrumentation.

With few exceptions, the total pressure turbulence decreases with
distance downstream of the terminal shock. The few exceptions are believed to
be a function of the radial location of the instrumentation.

The relatively higher total pressure turbulence near the centerbody at
MS 47.50, particularly when the nominal shock position is downstream of the
rake, possibly indicates unsteady separation of the boundary layer triggered
by the rake strut shock.

Static pressure turbulence.- With an occasional exception within the data
accuracy, wall static tap turbulence values decrease with distance downstream
of the terminal shock. This characteristic is consistent with data from
several other inlet configurations and is believed to be associated with
(1) increased mixing length and damping in the wall boundary layer, and
(2) decreasing Mach number with distance downstream of the shock. In addi-
tion, where an appreciable organ-pipe component exists, much higher pressure
oscillations would be expected near the terminal shock and the choking
station, i.e., the node points. (The choking station for this model is well
downstream of the engine face station.)

Static pressure turbulence measured at the wall tap, MS 76.35, is con-
sistently higher than that measured in the airstream by the engine face static
pressure probes. Turbulence values at the two locations differed by as much
as a factor of 2.
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Turbulence levels at the same station but different circumferential
locations are reasonably similar as would be expected for an axisymmetric
inlet. For example, turbulence levels are as follows for two wall static
pressure taps 90 degrees apart at station MS 76.35:

%9 PtZ/PtO 315° 45°

3.0 0.877 0.018 0.017
3.0 0.565 0.131 0.121
2.6 0.918 0.022 0.019
2.6 0.642 0.182 0.138

Some difference is to be expected because of the two rakes forward of the
45-degree pressure tap; it can be seen that turbulence levels are somewhat
lower in the 45-degree plane, particularly at the higher turbulence levels.

HYPOTHETICAL MODEL OF THE TURBULENCE-GENERATING PROCESS

Hypothetical Model

Several observations from this and other tests suggest a hypothetical
model for turbulence generated by boundary layer-shock interaction during
supercritical operation.

Observations suggesting the hypothetical model include the following:

(1) Turbulence levels increase as the inlet operation becomes
increasingly supercritical, that is, as terminal shock strength and boundary
layer thickness increase. This is illustrated by figures 67 and 68.

(2) During highly supercritical operation, the terminal shock is not a
planar normal shock. Rather it consists of a train of oblique and normal
shocks which are in continual motion.

(3) Turbulence contour maps tend to correspond to total pressure contour

maps. Specifically, as indicated in figures 69 and 70, the regions of maxi-
mum pressure recovery correspond generally to the regions of maximum
turbulence.
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(4) Pressure versus time traces such as in figure 25 show that the time
that total pressures are near their minimum exceeds that for which they are
near their maximum. Further, the greatest and most erratic excursions are
forward the high-pressure direction,

(5) The peak pressures during these excursions appreciably exceed those
that can be computed assuming a single normal shock loss at the apparent
quasisteady terminal shock position.

The hypothetical turbulence model is based on cyclical separation and
reattachment of the boundary layer. The separation and reattachment of the
boundary layer is both caused by and causes changes in the terminal shock
structure. Figure 79 shows sequential shock and boundary layer separation
patterns. To obtain a qualitative understanding for the magnitude of the
total pressure changes with time that can result, several arbitrary assump-
tions have been made.

(1) The flow is essentially two-dimensional and is symmetrical about a
reflection centerplane. (The flow annulus height is small compared to its
diameter.)

(2) Flow Mach number upstream of the Station e shock position is 2.2,
and the ratio of effective area at Station a to that at Station e is 1.05
when the boundary layer is attached,

(3) When the boundary layer detaches, it forms an effective ramp angle
of 13 degrees relative to the flow.

Consider now the conditions for each of the shock patterns of figure 79.

Figure 79(a): The boundary layer is initially attached, and the terminal
normal shock is at Station a. Except for flow in the boundary layer, total
pressure recovery is essentially uniform. For the assumed conditions, the
total pressure ratio across the terminal shock system, P /P , will be 0.606

tx
for streamtubes 1, 2, and 3.

Figure 79(b): The strong static pressure gradient with the normal shock
at Station a caused the boundary layer to separate. The separated boundary
layer generates an oblique shock which is reflected from the centerplane.

The converging area and continuity considerations cause the normal shock to
move forward to b where quasisteady-state total pressure ratios are 0.825 for
streamtube 1, 0.825 for streamtube 2, and 0.925 for streamtube 3.
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Figure 79(c): The terminal shock moves upstream to Station c.
Quasisteady-state total pressure ratios, Pty/Ptx’ are 0.825 for all three
stream tubes.

Figure 79(d): When the terminal normal shock reaches Station d, total
pressure ratios are 0.825 for streamtubes 1 and 2 and 0.628 for streamtube 3,

Figure 79(e): With the terminal shock at Station e, the total pressure
ratio for streamtubes 1, 2, and 3 will be 0.628. The contours formed by the
detached boundary layer will cause the subsonic flow behind the terminal
shock to be reaccelerated, perhaps to supersonic Mach numbers. The associated
static pressure gradients will cause reattachment of the separated boundary
layer, the terminal shock will move aft, and a new cycle may be initiated.

Comments on the Hypothetical Model

The hypothetical model is in good agreement with experimental observa-
tions. The center and normally higher recovery streamtubes undergo the
most frequent and highest amplitude changes in total pressure. Quite high
peaks in total pressure occur for short periods. Finally, there are large
total pressure changes in a given streamtube.

Generally, the boundary layer separation and reattachment patterns and
processes would not be expected to be symmetrical nor in phase from one part
of a duct to another, An exception might be when essentially one-dimensional
pressure waves were moving through the duct. Such waves, associated with
organ-pipe or Helmholtz resonance, for example, could trip a cyclical and
relatively symmetrical boundary layer separation which, in turn, would add
energy to the resonance process,

A factor further contributing to measured pressure transients during the
boundary layer detachment and reattachment process is the fact that the
streamtubes shift laterally while the pressure probes remain stationary.
Lateral displacements of streamtubes of different total pressure are therefore
seen as pressure transients by a dynamic probe. This factor is, of course,
strongest in regions of high total pressure gradients.
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STEADY-STATE OPERATION POWER SPECTRAL DENSITY AND
COHERENCE CHARACTERISTICS

Power Spectral Density Characteristics

The distribution of turbulence energy with respect to frequency is best
seen in power spectral density (PSD) curves. The area under the PSD curve is
proportional to the square of the turbulence parameter, 6 RMS/Ptp, if the upper
and lower frequency limits used in the data processing are identical.

Units of the PSD curves presented herein are QﬁP/pfz)z/Hz. That is, the
pressure oscillations are nondimensionalized by the engine face average total
pressure. Unless otherwise noted, a constant filter bandwidth of 5 Hz was used
in the PSD determinations.

Power spectral density variation with recovery.- The typical increase in
engine face total pressure PSD's with decreasing recovery is shown in figures
80 through 83. Figures 80 through 82 present Mach 3.0 PSD's for immer, outer,
and middle probes, respectively. Figure 83 consists of Mach 2.6 PSD's for an
inner probe. It can be seen that PSD levels varied as much as a thousandfold
over the test range of recoveries.

Typically, the PSD curves slope down to the right. As recovery drops and
turbulence increases, a disproportionate part of the energy increase is in the
low-frequency range. For example, in figure 82 the increment in PSD between
the low and high recovery condition is approximately 5 x 1076 at 1,000 Hz and
38 x 107 at 100 Hz. (Note that, because of the logarithmic ordinate, PSD
increases much more in the low-frequency range even where the PSD curve slopes
are similar or decrease with decreasing pressure recovery.)

Particularly conspicuous is the very sharp rise in the low recovery PSD
curve at low frequencies for the inboard probe (figure 80).

Power spectral density variation with circumferential angle.- PSD plots
for eight engine face total pressure probes, at a constant radius, 6.946 inches
(2.741 inches from the hub), are shown in figure 84. The data are for high
recovery operation at Mach 3.0. PSD plots for the same probes at low recovery
operation are shown in figure 85.

The circumferential variations in PSD at Mach 2.6 were similar to those
at Mach 3.0, except that they showed greater axisymmetry,

Power spectral density variation with radius.- PSD plots for the five
engine face total pressure probes on the 225-degree rake are shown in figures
86 and 87 for high and low recovery operation at Mach 3.0, Similar radial
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variations were observed for the other engine face rakes. The curves confirm
previous observations that the turbulent energy is lowest in the flow adjacent
to the inner and outer duct walls. Further, turbulence is lowest near the
inner wall at high recovery and lowest near the outer wall at low recovery.

Power spectral density variation with angle of attack.- Figures 88 through
93 compare PSD's of the inboard, midstream, and outboard probes of the 225- and
315-degree engine face rakes for angles of attack of 0, 4, and 8 degrees. Com-
parisons are made at as similar pressure recoveries as possible.

As might be expected, angle of attack effects differ depending on the
probe location, from top to bottom, and from centerbody to outer wall.

Resonance peaks are much more evident at the 4- and 8-degree angles of
attack than at zero degrees.

Power spectral density variation with station.- The change in PSD's
proceeding down the duct is illustrated in figures 94 through 97.

Figure 94 shows total pressure PSD curves at MS 47.30, MS 66.70, and
MS 78.95 for approximately the same stream tube. The terminal shock was near
MS 39 for this Mach 3.0 test point. It can be seen that there is an apprecia-
ble reduction in the PSD levels with increasing distance aft of the shock; the
maximum attenuation is at the high frequencies.

Figure 95 presents data similar to figure 94 but for a low recovery point
with the terminal shock aft of the upstream rake. The same reduction in PSD
levels with distance downstream of the terminal shock is observed. However,
the PSD level for the upstream rake, in supersonic flow, is appreciably lower.

Similar trends can be observed in the static pressure PSD curves of fig-
ures 96 and 97. That is, the level decreases with distance downstream of the
terminal shock and is lower in the supersonic flow. Static pressure PSD is
somewhat lower in the engine face annulus area than at the centerbody wall, as
previously indicated by the RMS turbulence measurements.

Power spectral density variation at a rake station.- PSD curves for a wall
static tap and two total probes at MS 47.30 are compared in figure 98 for a
Mach 3.0 high recovery point, and in figure 99 for a Mach 3.0 low recovery
point. Although the nominal shock position is slightly aft of MS 47.30, the
appreciable turbulence, particularly for the inboard probe, suggests boundary
layer instability in the supersonic flow portion of the inlet. This could be
triggered either by pressure transmission from the terminal shock system
through the subsonic boundary layer, or from the rake strut shock system near
the wall.
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Effect of the disturbance vane on the external flow field power spectral
density.- External flow field PSD's with’' simulated clear air turbulence are
compared to those measured with the disturbance vane installed but stationary
in figures 100 through 102. Data are shown for three external probes at a
Mach 3.0 operating condition. PSD without the disturbance vane installed in
the tunnel is also shown in figure 100. The figures show (1) the flow field
generated by the disturbance vane is not uniform, and (2) .the clear air turbu-
lence most influences the PSD curves in the lower frequency range as was
intended.

Figures 103 through 105 compare PSD's at the engine face for the same runs
for which external flow field data are presented in figures 100 through 102.
The figures show that, with the possible exception of frequencies below 20 Hz,
the external flow field turbulence has negligible effect on the engine face
turbulence.

The rather surprising fact that engine PSD's are slightly higher without
the disturbance vane installed is believed to be the result of a stronger inlet
terminal shock system. Although the total pressure recoveries were similar for
the three runs, part of the total pressure loss with the disturbance vane
installed was caused by the vane. Consequently, the inlet terminal shock loss
was greater by 3 percent or more in the run without the disturbance vane.

The primary observation to be made is that turbulence in the external flow
field is not amplified by the inlet, and the inlet terminal shock strength has
greater influence on the engine face turbulence level than external flow field
turbulence. The relative contribution of the external flow turbulence will,
of course, increase as inlet total pressure recovery 1ncreases.

Sinusoidal external disturbance effects are described in the section on
the inlet control. In summary, the sinusoidal disturbances affected the PSD
curves primarily at the disturbance frequencies and their harmonics.

Coherence Characteristics

Coherence is a measure of the degree of interdependence between two time
histories at specific frequencies. Perfect coherence has the measure unity
while lack of coherence (complete independence) has the measure zero. It is
to be noted that the coherence function is not a function of the signal ampli-
tudes but only a measure of the degree of interdependence of two signals,
regardless of amplitudes. A general discussion of coherence is given in
reference 5.
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Engine face coherence.- Coherence functions calculated for 16 pairs of
engine face probes during steady-state operation at high and low recovery
levels at Mach 3.0 are shown in figure 106. Figure 107 presents similar data
for Mach 2.6. The detailed calculations, listed in Appendix E, illustrates
the relative magnitude of the four terms entering the coherence function calcu-
lation and the limited accuracy with which they could be read from X-Y analog
plots.

Coherence between various pairs of engine face total pressure probes
provides a measure of the ''scale'" of turbulence, that is, the portion of the
annulus area that will undergo the same pressure change at a given frequency.
Inspection of the coherence values in figures 106 and 107 shows that coherence
increases as recovery decreases. Coherence was relatively high for adjacent
probes. Fairly high coherence was observed between midradius probes 90 degrees
apart in the top sector. However, coherence was negligible between (1) inboard
probes in the top sector, (2) outboard probes in the top sector, and (3) mid-
radius probes in the bottom sector.

A more revealing presentation of the foregoing data is given in figure 108.
Coherence is plotted versus frequency, coherence being the numerical average of
the coherence functions for each of 13 probe pairs. The fact that the low
recovery data is significantly more coherent is readily apparent. Of even
greater interest is the peaking at or near 80 Hz. The estimated organ pipe
frequency, assuming the terminal shock and the choked exit to act as closed
ends, is between 70 and 80 Hz.

A typical coherence function for adjacent probes on the same rake is shown
in figure 109. The low recovery resonance indications at the duct organ pipe
frequency are strong at both Mach 3.0 and 2.6.

Figure 110 shows high coherence, particularly at the organ pipe frequency,
for probes P872 and P887 on adjacent rakes. This high coherence was not
observed for any of the other limited checks of coherence between probes on
adjacent rakes. For example, the mirror-image pair of probes, P877 and P882,
showed negligible coherence.

An unusual condition is shown in figure 111 wherein the adjacent inboard
probes on the 215-degree rake show more coherence at high recovery than low
recovery. The more outboard probe pair, P882 and P883, had the typically low
coherence at high recovery. The reason for this high recovery, high coherence
phenomena is not clear. It may be due to some localized disturbance caused by
the duct operating in an off-design condition.

Coherence for probes at different stations.- Coherence functions deter-
mined for various pairs of probes located in=line but at different inlet sta-
tions are listed in table V. Data are tabulated for a high and low recovery
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condition at Mach 3.0. The most significant observation is that with one
exception, there is negligible coherence between duct stations over the fre-
quency range analyzed.

Coherence between static and rake total pressures.- Table VI lists coher-
ence functions for pairs of wall static and rake total pressures for MS 47.30
and MS 66.70. Coherence values are relatively high at low recovery. Although
coherence varies appreciably with frequency, a consistent pattern is not
apparent.

Coherence as a function of frequency is shown in figure 112 for pairs of
adjacent total and static probes at the engine face station. Maximum coherence
peaks exist at low frequencies and at 100 to 120 Hz.

Coherence between static pressures.- Coherence between static pressure
taps on opposite sides of the duct is shown as a function of frequency in
figure 113.

Coherence between external flow field and engine face total pressure.-
Clear air turbulence as simulated by the external disturbance vane affected the
engine face turbulence primarily in the low-frequency region. This is shown in
figures 103, 104, and 105 which compare PSD curves at similar inlet recovery
levels with and without simulated clear air turbulence.

Coherence between an external rake probe and an engine face probe is shown
as a function of frequency in figure 114. Coherence is high as might be
expected at frequencies below 20 Hz. At higher frequencies, both the low clear
air turbulence amplitudes and the attenuating effect of the duct apparently
eliminate any coherence.

TERMINAL SHOCK CONTROL SYSTEM TESTS

The terminal shock position control system was evaluated with both inter-
nal and external disturbances at a tunnel Mach number of 3.0. The evaluation
consisted of comparing such inlet parameters as shock excursion, power spectral
densities, and RMS turbulence levels with and without the shock control system
in operation. The mechanization and characteristics of the control system were
as described in Appendix A except that the integral gain, K, was reduced from
100 to 80.
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Shock Excursion Comparisons

Sinusoidal exit area disturbances.- Shock travel excursions with and with-
out the control system are listed in table VII for various disturbances. Shock
travel was determined from the shock position parameter, PR, which varies with
shock position as shown in figure 137 of Appendix B.

The effectiveness of the control system in reducing shock travel caused
by sinusoidal exit area disturbances is shown in figure 115. Performance
predictions based on the linear analysis and the "'hardware tie-in simulation'
of Appendix B are also presented for comparison with the test performance.

The reduction in shock excursion for disturbance frequencies below 6 cps
and the amplification for disturbance frequencies from 6 to approximately 17
cps, shown by the test data of figure 115, are in good agreement with the hard-
ware tie-in simulation predictions. However, agreement with the linear analysis
was poor, indicating the importance of the bypass actuator and servo valve rate
limits which were not included in the linear analysis.

The validity of the inlet dynamics representation used in the control sys-
tem analysis and simulation was obscured by the rate restrictions of the bypass
actuator and servo valve hardware. A limited investigation of shock response
to sinusoidal exit area disturbances is summarized in Appendix F.

External sinusoidal disturbances.- The ineffectiveness of the control in
reducing shock excursions caused by sinusoidal external vane angle disturbances
is apparent in figure 116. Except for disturbance frequencies of 1 Hz and
less, the control system amplifies the shock excursion.

As would be expected, the control performance with external disturbances
was not in agreement with the analytical predictions shown in figure 115. One
reason is that the inlet dynamics representation used (from reference 3) is
not valid for external disturbances. A second reason is that the shock posi-
tion parameter, PR, was nondimensionalized by the use of tunnel total pressure,
Pto. Pto does not reflect the disturbance vane-induced changes in flow total
pressure, Mach number, and direction at the inlet face. The scope of the shock
position control portion of the program was too limited to investigate control
concepts and modifications to improve the external disturbance characteristics.
A more sophisticated shock position parameter wherein the reference pressure
varied with flow angle and Mach number would have been of help. However, sens-
ing and logic capable of distinguishing between external (upstream) and inter-
nal (downstream) disturbances may well be required for high-performance inlet
operation.
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Control System Effects on Turbulence

RMS turbulence.- The effects of the control system on overall turbulence
levels (as indicated by the RMS pressure level) are shown in figure 117 for
sinusoidal exit area disturbances and in figure 118 for sinusoidal external
disturbances. The trends shown are in good agreement with those indicated in
figures 115 and 116. That is, the control system attenuates the shock travel
and its contribution to RMS turbulence for disturbance frequencies below 6 cps,
and amplifies them at frequencies from approximately 6 to 17 Hz. The control
amplifies the shock travel and turbulence levels for external disturbances in
most of the frequency range. The test data indicate that the control system
affects turbulence only as it effects shock position.

Power spectral densities.- Three engine face total pressure PSD curves are
compared in figure 119. One was recorded with no disturbance input, one with a
2 Hz exit area disturbance, and one with a 14 Hz exit area disturbance. All
were run at Mach 3.0 and an initial condition (midpoint) recovery of 0.846.

Most of the differences are at the disturbance frequency and, in some instances,
the first harmonic of the disturbance frequency. (The cutoff in the PSD curves
at 5 Hz is due to the analysis equipment limitations with a 5 Hz bandwidth
filter.)

Figures 120 through 122 show the effect of the control on engine face total
pressure PSD values for sinusoidal exit area disturbances of 2, 10, and 14 Hz,
Except for the reductions or increases at the disturbance frequency (correspond-
ing to the previously noted reductions or increases in shock excursions), the
control had no discernible effect on the power spectral density curves. Of
interest is the apparent first harmonic for the 10 Hz disturbance present both
with and without the controller operating.

PSD comparisons for P830, an inlet throat static pressure tap downstream
of the terminal shock, showed the same trends as those described previously for
an engine face total pressure probe.

PSD curves with both sinusoidal external disturbances and with simulated

clear air turbulence show no discernible difference due to control operation
down to 5 Hz.

CONCLUSIONS AND RECOMMENDATIONS
Test Procedures and Equipment
The use of prerecorded magnetic tapes in conjunction with analog computers

and servo control system permits a reduction in wind tunnel occupancy time.
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Equally important, test conditions such as simulated engine transients or
external flow disturbances can be repeated precisely to permit comparison tests.

Dynamic test inlet models should have a sonic point flow control valve at
or near the simulated engine face station inasmuch as the inlet dynamic charac-
teristics are influenced by the acoustic characteristics of the total ducting
system aft to a sonic point.

Use of a two-dimensional wedge to simulate external flow disturbances
leaves much to be desired. The flow field over the inlet face was not uniform.
Further, the interrelationships between such flow parameters as Mach number,
flow direction, total pressure, and density are not representative of those
that would be encountered by an airplane flying through turbulent air.

Miniature pressure transducers exposed directly to the airstream provided
good dynamic response characteristics. However, screens or baffles protecting
the transducer diaphragms from particles in the airstream were found to be
essential.

Turbulence in the NASA Ames 8 x 7 Unitary Wind Tunnel was found to be well
below the levels of interest in inlet turbulence investigations.

Data Recording and Analysis Techniques

The large number of parameters which must be recorded and time-correlated
in an inlet dynamics test makes it highly desirable to record all data on a
single multiplexing tape recorder rather than on a number of tape recorders.

A major problem in recording, playback, and analysis of test data is mini-
mizing noise, particularly the noise associated with 60-cycle electric current.
Eliminating the steady-state component of the measured pressures either by
regulation of the transducer reference pressures or by biasing the signal elec-
trically aids in obtaining satisfactory signal-to-noise ratios.

The quantity of dynamic data which can be generated in an inlet dynamics
test is enormous. Techniques must be developed for rapid scanning and editing
of the data if the data analysis efforts are not to be lost in the sheer bulk
of material. Experience to date suggests that digital techniques have greater
potential for speedup and automation of the data analyses than do analog tech-
niques. Digital techniques should also provide greater accuracy, particularly
for those analyses where multiple processing, plotting, and reading of the data
is now required using analog techniques. An example of such an analysis is the
highly useful coherence function where four parameters must be processed,
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plotted, read from the plots, and used in a final calculation. Digital data
analysis techniques are also expected to have fewer limitations for analyses in
the low-frequency spectrum.

Steady-State Dynamic Distortion

Inlet-induced turbulence contains both random and nonrandom pressure
oscillations. As inlet operation becomes increasingly supercritical, both
turbulence amplitude and the nonrandom component of turbulence increase. The
nonrandom turbulence strongly favors the acoustic frequencies of the inlet duct,
particularly the organ-pipe frequencies wherein the terminal shock and the
choked (sonic) exit act as acoustically closed ends.

Instantaneous spatial distortions at the engine fact station appreciably
exceed those which would be measured by conventional steady-state instrumen-
tation. During highly supercritical inlet operation, large changes in engine
face pressure patterns occur within a millisecond. The instantaneous pressure
recoveries, averaged over the engine face, also vary appreciably with time but
at frequencies generally lower than those for the distortion pattern oscilla-
tions.

At a given operating condition, regions of maximum turbulence corresponded
generally to the regions of maximum pressure recovery; the largest and most
conspicuous excursions in pressure are towards the high-pressure side.

Turbulence values at a given inlet operating condition vary appreciably
with location in the engine face plane. Variations are typically twofold at
high recovery conditions and as much as fourfold at low recovery conditions.

Dynamic Distortion with Internal and External Disturbances

During inlet unstarts, instantaneous distortion values approached 100 per-
cent, more because of the large drop in instantaneous average pressure than
because of increased differences between pressures at various locations.

Two types of buzz oscillations were observed, one corresponding to the
fully developed "empty-fill'' buzz cycle, the other being a shorter cycle corre-
sponding in frequency to the inlet duct organ-pipe frequency.

Exit area disturbances changed the inlet turbulence characteristics only
as consistent with steady-state operation over the range of terminal shock
positions. Power spectral density changes were limited to frequencies below
150 Hz, the major portion of the change being at the input disturbance
frequency.
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Simulated clear air turbulence was appreciably attenuated by the inlet.

Sinusoidal external flow disturbances did not noticeably change the power
spectral density curve except at the input disturbance frequency.

The shock control system was effective in reducing the terminal shock
excursions for simulated engine transients and for exit area disturbances at

frequencies up to 6 Hz. Performance was in reasonable agreement with the con-
trol system simulation with the exit area disturbances.

The control system increased terminal shock excursions induced by external
disturbance inputs at most frequencies. A considerably more sophisticated con-
trol would be required to effectively reduce shock travel for both downstream
(engine) disturbances and external flow disturbances.

The control system had no effect on the inlet turbulence characteristics
other than as it affected the terminal shock position.

Recommendations

The data analysis program was essentially exploratory in nature, and only
a portion of the test data recorded have been analyzed. It is recommended that
further analyses be made with emphasis on steady-state operation runs at inter-
mediate recovery, and on digitized data coherence studies.

Los Angeles Division
North American Rockwell Corporation
Los Angeles, California July 31, 1969
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Appendix A

SERVO CONTROL SYSTEM AND DISTURBANCES MECHANIZATION

Component Positioning Control System

The variable components of the model, cowl, bypass, aft sleeve (plug
valve), and the external disturbance vane were positioned by a hydraulically
powered servo control system which was capable of accepting manual or pro-
gramed (from a magnetic tape recorder) commands. The system included a
closed-loop shock position control.

Figure 123 is a diagram of the interfaces between the components employed
in the control system. Two PACE TR-10 analog computers were used to implement
the computing portion of the control system. A control panel was used to pro-
vide manual control inputs to the position control system. A magnetic tape
playback machine transferred programed inputs to the control system. A sine-
wave generator was used as a backup for the magnetic tape.

The shock position control system employed four pressure transducers in
the throat region to determine the shock position. The transducer outputs
were amplified by a CEC 20,000 Hz carrier amplifier. The performance of the
system was monitored on an oscilloscope and an eight-channel pen recorder.

Components of the control system were:

(1) Computing component (PACE TR-10 analog computer)
(2) Control panel (manual inputs)

(3) Magnetic tape playback machine (programed inputs)
(4) Servovalves and hydraulic actuators

Computing component.- The computing component, mechanized on the TR-10A
analog computer (figure 124) provided servovalve current based on the feedback
potentiometer output and the manual or programed position command. Each actu-
ator loop employed three amplifiers, thereby providing easy monitoring of the
system performance and actuator positions. The outputs of the amplifiers, as
a function of the actuator position, are shown in figure 125.

The loop gains of the position control system were obtained during bench
tests at the contractor's facility. The loop gains were increased until the
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system became unstable, then reduced to approximately one-half the instability
value for the wind tunnel tests. Gain of the vane control system was lowered
from 30 to 24.9 during the wind tumnel test. The gain change was required
because of the load added to the actuators by the vane, not part of the bench
test setup.

Because high response was not required, the cowl rate was limited to 6
inches per second by a limiter in the cowl servo loop.

Two rates were provided for the aft sleeve (plug valve): a high rate for
simulating engine disturbances and a lower rate for restarts.

Control panel.- Manual control inputs were made by means of bias poten-
tiometers in the control panel. The control panel also contained two restart
switches (switches 2 and 3 of figure 126) which returned the cowl and sleeve
to pre-selected positions which insured restarting the inlet.

Magnetic tape playback.- Preprogramed inputs were obtained from a tape
playback machine. The tape outputs are patched directly into the TR-10A com-
puter. The tape inputs were activated by function switches on the computer.

Actuators.- The interfaces between the TR-10A and the hydraulic actuators
for the cowl, bypass, sleeve (plug valve), and external vane are shown in
figures 127 and 128.

Internal Disturbances

The internal disturbances consisted of sinusoidal exit area variations
and engine transients. These disturbances were generated by varying the plug
exit area. The sinusoid variations were taped so that the input command
increased with frequency to compensate for the attenuation associated with
the actuator system. These normalized tape amplitudes were then adjusted by’
potentiometer 13 of figure 124 to obtain the desired amplitude for each run
(or the maximum amplitude attainable within the system capabilities).

External Disturbances
The inlet was subjected to two types of external flow disturbances: sinu-
soidal disturbances and simulated clear air turbulence (CAT). Both types
were generated by a disturbance vane mounted ahead and above the inlet. The

vane is discussed in detail in reference 2.

Flow field properties versus vane angle are shown in figure 129 and 130
for Mach 2.6 and 3.0. The. curves presented are from reference 2 and are based
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on two-dimensional flow in the near flow field. Flow direction variation
with time was selected as the most meaningful inlet disturbance.

Because of their similarity, the solid line curve in figure 131 was used
to represent both the Mach 2.6 and Mach 3.0 variation of flow angle with wedge
angle.

Sinusoidal disturbances.- Two sinusoidal disturbance tapes were generated
using the setup illustrated in figure 132 - one giving flow angle sinusoids and
the other giving vane angle sinusoids. For the tape-generating flow angle
commands, the output of the sine generator was shaped by the inverse of the
flow angle versus vane angle curve. For both tapes, the gain, Ky, was adjusted
at each frequency to compensate for the actuator dynamics. For flexibility,
vane midposition and sinusoid amplitude were set manually for the vane
sinusoids.

Preliminary flow surveys using the conical flow direction probes showed
appreciable variations, both from the theoretical calculations and with height
above and below the inlet centerline. Consequently, the vane angle tape was
used for the test program because vane angle could be directly measured and
monitored.

Clear air turbulence.- The CAT taped inputs consisted of white noise
filtered so that the statistical properties of a CAT model were matched.
During selection of the filter to be used, three CAT models were considered.
The power spectrum density (PSD) equations for each of the models were:

0@ _ L (1+3 022 1

—;_2— ™ (1+$22L2)2 (1)
W

#(@) . L [1* 8/3 (1.3399L)2]

o T [1+ (1.339 aL)2]11/6 (Von Karman) (2)

0@ . L 1 "

of T+ 1/l
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The CAT power spectrums are dependent on the ''scale of turbulence' and
the aircraft speed. These parameters are determined by the aircraft operating
conditions. For the assumed altitude of 40,000 feet and Mach numbers of 3.0
and 2.6

L = 2,500 ft
U= 2,525 ft/sec My = 2.6)
U= 2,913 ft/sec My = 3.0)

To determine the required filter on the white noise to obtain the desired
CAT spectrum, the following property of power spectra was used. The power
spectrum, ¢y (w), of a linear system with system function G(jw) is

oy@) = |G (G)|% 9, (W)
where ¢, (w) is the power spectrum of the input. Thus, if white noise
[¢x @)= 1] is used as the input,

oy @ = I6GWI

The required filters for each spectrum are presented in table VIII. The
PSD plots are shown in figures 133 and 134,

The Von Karman spectrum was considered the most accurate CAT model. How-
ever, the filter required to match its PSD did not lend itself to easy analog
computer mechanization. The other two spectra approximate the Von Karman
spectrum well at frequencies below 20 rad/sec. The errors occur primarily at
frequencies which are attenuated by 20 db or more, thus spectrum 3 was
selected due to its simplicity.

From figures 133 and 134, it can be seen that the power spectra are very
similar for Mach 3.0 and 2.6. Thus, one filter was used for shaping the
white noise. The setup used in taping the CAT inputs is shown in figure 135,

Prior to taping the CAT inputs, a preliminary recording of the CAT and
the actuator output was made. PSD plots were obtained for the input and out-
put of the actuator. The actuator did not alter the PSD at frequencies below
35 Hz; thus the filter was not changed to accommodate the actuator dynamics.
These PSD's were obtained with actuator alone; i.e., the wedge was not
installed.
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Appendix B

SHOCK POSITION CONTROL SYSTEM

The closed-loop shock position control system is shown schematically in
figure 136. Shock position, as indicated by selected throat static pressure
taps, was controlled by actuating the bypass using proportional plus integral
compensation. For simplicity, the control was designed for Mach 3.0 opera-
tion at zero-degrees angle of attack and yaw. Inlet pressure distributions
and the ''downstream disturbance duct dynamics'' representation used in the
control design were obtained from reference 2.

Shock Position Sensing Parameter

Shock position was sensed by four static pressure probzs in the inlet
throat region. The shock position sensing parameter, PR, was obtained by
averaging the output of the four transducers and dividing by free-stream
(tunnel) total pressure to make the signal independent of absolute pressure
level. Figure 137 is a curve of the shock position parameter, PR, versus
shock position as determined from the data of reference 2. The constant
slope of -0.094 APR/inch of shock travel shown in figure 137 was assumed
for the control mechanization.

The advantages of the selected shock sensing parameter include:
(1) Simple mechanization
(2) Simple interface with the control system

(3) Increased range and linearity relative to a single-point
pressure signal

Disadvantages of the parameter include the following:

(1) An a priori knowledge of the pressure distribution is required

(2) The parameter is not valid for other throat geometries or
other upstream flow conditions.

Alternate shock position parameters were considered which utilize the

characteristic jump in pressure across the shock. Either pressure differ-
ences or pressure ratios are sensed for each adjacent pair in a line of
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static pressure taps to determine shock position. Advantages of this type of
shock position parameter are that a priori and accurate pressure distribu-
tions are not required. Disadvantages include more difficult mechanization,
sensitivity to boundary layer separation, and a noncontinuous shock position
indication (only the fact that the shock is between two probes is indicated).
The latter characteristic would probably result in a limit cycle for the
closed-loop control.

Control System Analysis

The control system analysis was conducted in two phases. The first phase
consisted of a linear analysis. During this phase, the inlet duct and bypass
characteristics were obtained from reference 2, and a preliminary control
system was defined. The second phase consisted of a "hardware tie-in'' simu-
lation. The simulation was performed on a PACE TR-10 computer.

The block diagram of the control system used in the linear analysis is
shown in figure 138. The bypass actuator dynamics used in this phase of the
analysis were based on the manufacturer's estimate of the servo valve dynamics.
The bypass gain (-0.006 unit engine face total pressure ratio change per
square inch of bypass area change) approximates the average of the values
determined in the tests of reference 2. The diffuser gain (-41.67) inches of
shock travel per unit of engine face total pressure ratio) was similarly
obtained from the test data of reference 2. The diffuser dynamics, e -+ 00718
were approximated by a second-order polynomial which is quite accurate up to
200 radians per second.

The hardware tie-in simulation is shown in figure 139. The simulation
included the bypass actuator and the nonlinearities of the controller (limits).
Because of its small value and because of analog equipment limitations, the
diffuser dynamics term was deleted from the hardware tie-in simulation.

System gains, Kg = 2.0 and Ky = 100, were determined with the hardware
tie-in. The 1limit on the integral path was included for two reasons. The
first was to prevent the integrator amplifier from saturating. The second
was to effectively remove the integrator output during large transients,
thereby providing faster system response.

The system response to step shock position changes is shown in figure
140 for various system gains. As expected, an increase in gain results in
lower damping ratio. Also, if the integral gain is lowered, the response is
slower. A complete analysis to determine the effects of varying the gains was
not performed. The gains were determined by trial and error during the
simulation,

The system response to sinusoidal inputs is shown in figure 141.
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Appendix C

TOTAL PRESSURE PROBE TRANSDUCER FAILURES AND PROTECTIVE CONFIGURATIONS

Within minutes of the first air-on operation, 30 of the 32 Kulite trans-
ducers mounted in total pressure probed failed. This appendix describes the
failures and the alternate probe configurations developed to protect the
transducers.

Original Probe Configuration

The transducers which failed were Kulite Model CPL-125-25 differential
pressure transducers having a face diameter of 0.125 inch and a rated pressure
range of +25 psid. This type of transducer, shown in figure 142, has a flush-
mounted silicon diaphragm of 1.5 mils thickness. The silicon diaphragm and
diffusion bonded semiconductor strain gage network form a mechanically homoge-
neous silicon wafer.

Two types of total pressure probes were used. One, shown in figure 143,
was used in the engine face rakes. The cap served to minimize yaw sensitivity
and provide mechanical protection for the transducers during model installa-
tion. The alternate configuration, figure 144, had the transducer diaphragm
flush with the end of the probe. This configuration had a smaller cross sec-
tion and was used in the more area-critical portions of the inlet. In both
configurations, the transducer diaphragm could ''see' the oncoming airstream.

Transducer failures.- All the initial failures were associated with
fractures of the silicon diaphragms, the fractures varying from pinholes barely
visible to the naked eye to an almost complete loss of the diaphragm material.
Figure 144 is a photograph of the centerbody rakes following the initial air-
on operation, Figures 145 and 146 are magnified views of two diaphragm fail-
ures, one barely visible, the other most obvious.

A number of factors indicated that the failures were caused by small
particles in the airstream impacting the silicon diaphragms. These included
the following items:

(1) Thirty of the 32 Kulite transducers having the diaphragms exposed to
particle impact were destroyed within minutes. In contrast, none of
the 10 Kulite transducers mounted so that the diaphragms were pro-
tected against direct impact (static pressure probes and wall static
pressure taps) were damaged.
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(2) In a successive test wherein screens or shields were used to protect
the transducers from direct particle impingement, no failures
occurred. The transducers were located in the same probes where
failures had originally been encountered; consequently, they were
subjected to the same airflow pressure fluctuations and probe
mechanical vibrations.

(3) The microphotographs suggest impact failures.

(4) 0il film in the duct metering section had collected a quantity of
grit-like and metallic particles. (Welding operations on the tunnel
intercooler and model rework and installation prior to the initial
air-on operation probably resulted in an exceptionally large amount
of debris in the tunnel stream.)

Protective configurations.- A diaphragm failure not only made the trans-
ducer inoperative, but also introduced a leak in the reference pressure system.
Consequently, the first change made was to provide individual rather than mani-
fold lines from the reference pressure tank to the transducers.

Three basic protective configurations were fabricated and run in the
tunnel. These are shown in figure 147, One had two opposing baffles, one had
three baffles displaced by 120 degrees, and one had a porous material screen
in front of the diaphragm. Several versions of the latter configuration were
investigated. In addition, tests were run with silastic rubber coating on the
diaphragms to increase impact resistance.

All the protective configurations were successful in preventing impact
damage to the diaphragms. Frequency response checks were conducted at the
NASA Edwards Flight Research Center and, following the test program, at the
Propulsion Wind Tunnel Facility of the Arnold Engineering Development Center.
The NASA test apparatus, a piston/cylinder pneumatic signal generator, was
limited to 1000 Hz, Within the accuracy of the test setup, the test data
showed essentially no effect of the protective devices on frequency response,
and no superiority of one configuration over another. The AEDC frequency
response test results are presented in figure 148. In these tests, a horn
driver was used to generate the pneumatic signal.

Inasmuch as all the configurations appeared satisfactory, the screen con-
figuration was selected for ease of manufacturing. Two versions were used in
the wind tunnel tests. The engine face total pressure probes had a Millipore
screen installed in the cap approximately 0.015 inch forward of the diaphragm
face, The centerbody probes had integrally screened transducers as supplied
by the manufacturer. The Millipore screen was epoxy bonded to a 0.015-inch
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spacer ring. The spacer ring was fastened to the diaphragm case with contact
cement. The Millipore screen has 27-percent open area, with hole diameters of
0.0055 inch.

The screen-protected engine face and centerbody probes functioned satis-
factorily when the test program was resumed.
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Appendix D

DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

The following run summary lists all the test runs made, including a
number of runs for which limited or no data analyses have been made as of
this report date.

During the runs where engine transients were to be simulated, the polarity
of the amplifier converting the tape input signal to the desired amplitude was
inadvertently reversed, an error not discovered until after the tests were com-
pleted. Consequently, the simulated lights listed in the run summary more
nearly represented blowouts, and the blowouts more nearly represented lights.

For consistency with the steady-state data printouts, the position data
for the cowl, bypass, and exit area sleeve are presented in Beckman counts.
These counts can be converted to physical dimensions by the following equations:

Cowl position, model station = 22.7 + 0,001207 (counts)
Bypass exit area, square feet = 0.05027 + 0.00001828 (counts)
Exit area, square feet = 0 + 0.001414 (counts)

Vane angle, degrees = 0 + 0.00566 (counts)
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DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

FIXED GEOMETRY OPERATION

8 B B
i ot . =
S8 |8 |82 555 W & |ug|es
° o0 mmg o ‘_‘:: e O~
Se.18 | =23|S88|588 |58 |88 88 Comments
§8|2 | 5|05 8|R38|38 |8£|B&
In Counts
31 54 [3.0 | 0.0 | 0.794|Prelim| 39.0 [ 0.0 | 425.0
55 .749 39.0 450.0
56 .720 38.0 475.0 All total pressure
57 .649 38.0 525.0 ' probes capped
58 .572 57.0 600.0
59 .515 38.0 675.0
31 60 . 834 |Prelim| 28.0 393.0
101134 .864 A' [15.0 371.5
135 .814 412.0
136 . 766 437.0
137 727 464.0
138 .644 526.0
10]139 .563 15.0 600.0
111140 .551 60.0 648.0
141 :622 548.0
142 . 826 384.0
149 .789 419.0
150 \ / 742 453.0
111151 0.0 .694 60.0 487.0
121152 4,0 .808 35.0 397.0
153 .780 421.0
154 727 449.0
155 .695 477.0
156 .608 541.0
121157 4.0 .529 35.0 626.0
131158 8.0 .625 275.0 480.0
v(iso| v | ¢ | .51 ¥ ¢ v | 503.0
131160 {3.0 | 8.0 .565| A’ 0.0 | 529.0
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DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

FIXED GEOMETRY OPERATION (CONTINUED)

§ &
pa - lw®l e | o o g
d 3 Zo °© ,g“ S [} % o0 91 m.g o S
< jo o 9| 40 > o Q» 5ﬁ
5 E .S |28l 888 50%| B0 | 88| 23
Sel = |2 LIRSS R | g2 | v a Comments
In Counts
131161 | 3.0 | 8.0]0.533 | A" |275.0f 0.0/574.0
v | 162 v | 443 641.0
13 163 8.0 .469 275.0 738.0
21 | 209 0.0 .877 0.0 366.0
210 .824 411.0
211 .779 436.0
212 . 732 462.0
213 651 524.0
21 {214 .565 0.0 598.0
22 | 215 .573 15.0 v 598.0
22 1216 . 869 15.07 0.0(369.0
23 1224 . 878 0.0]825.01320.5
225 .878 725.01326.0
226 . 877 650.01330.5
227 .877 525.0(341.5
228 . 876 400.01354.5
23 1229 . 874 Al 0.0]1369.5
25 | 237 . 872 B 371.0
238 .872 C 374.5
239 . 868 D 379.0
240 . 844 D 402.0
241 ¢ . 843 C \ 401.0
25 1242 13.0 . 842 B 0.0 400.0
27 1250 ] 2.6 .918 A' 119.0 444,5
251 .900 467.0
252 . 867 490,0
253 . 774 556.0
254 v | .705 ¥ [604.0
27 125512.6 { 0.0} .642 Al 119.0f 0.0]675.0
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DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

SINUSOIDAL EXIT AREA VARIATIONS

o o
g g I
sl s 1w .l E&|E 5 §1 & ¢ 5
i =, ~ « =Y} o Uerd @] +J
Z 1o o ﬁ ~ 2T O 0 = O - o
~ o~ S wn O fﬂ" QU4 §r on o I Or
Slkc |8 | »E|Beg| 338158 88| 847 |58
oz | = 52 2a2 (e300 88| ax S nE Comments
2
In Counts IN.
19 1951 3.0 0.010.797 A' 15.0 0.0 1410.01 %4.5
207 205 .841 0.0 403.0] 4.5
207 206 . 838 403.01 2.0
307 268 .735 462.01 4.5
31t 270 .789 0.01432.01 2.0
46| 305 .845 553.0 | 370.0 1 *2.0 | Control and no
control
306 . 846 ¢ 550.0 | 370.0 | ¥*4.0 | control and no
6 \ 4 control
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DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

ENGINE TRANSIENTS*

= 80
S &
. ) e = =
. & o ”S - ‘-‘b E? o 0 o
QO e =z Y SO 1@ oo o N o'
=3 ) o U]l Hn> |3k ) 2 S P
Bl s |S8|828(58% | w0 | &2 | &7 Comments
Slss| & |2E|ebe|BR8 | 88| &8 | 28
In Counts
29 262 3.0 O-O 0.842 A‘ 000 0.0 400.0 Augnlentor 1ight’ turbojet
and turbofan
263 . 842 Augmentor light, turbojet
and turbofan
264 . 841 Augmentor blowout,
turbojet
266 . .843 Augmentor blowout,
\/ \/ v v \ \/ turbojet
291267 | 3.0 | 0.0 | .849 A' ] 0.0 0.0 | 400.0 |All engine transients
461307 1 3.0 | 0.0 | .843| A' | 0.0]560.0| 370.0 | All engine transients,
control and no control

#*Amplifier polarity inadvertently reversed for engine transients
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DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

INLET TRANSIENTS

= 80
ig . 44‘8 o a E» = o o +
:g '% 2 3 fg — 5 oL (.o 18 mé% gig g 5
o G|z 8 m&’o%‘”‘“ e @0l 5 H |2 prgs
5l5s| SIBEIE EYSRE B8 (28| & 8|85 (&2
S2| 2| EZR ARSI S| on [RE| 7 & [= = Comments
In Counts
28125712.6(0.0 {0.918 A' 1118.5/0.01446.5|Fast{Plug | Start, unstart, buzz,
restart
258 .918 119.0 446.5|Slow|Plug | Start, unstart, buzz,
restart
260 .917 118.5 447.0|Fast|{Cowl [ Start,unstart,restart
Vi |v
28)1261|2,6 917 119.0 446,5|S1low|Cowl { Start,unstart,restart
43129713.0 . 864 12.0 379.0|Fast[Plug | Start,unstart, buzz,
restart
431298(3.0 12.0 379,0|Slow{Plug | Start, unstart, buzz,
restart
44130012.9 .873 13.0 412.0{Fast|Cowl | Start, unstart, buzz
441301 .872 412.0|Slow|Cowl | Start, unstart, buzz
451302 .741 495,0|Fast|{Cowl [ Start, unstart,
restart
V|V v \4
45(303)2,9] 0.0| .743] A'] 13.0]0.0(495.0/Slow|Cowl | Start, unstart,

restart
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DYNAMIC DISTORTION TEST RUN SUMMARY, TEST 87-255

EXTERNAL DISTURBANCES

'g . ‘E-‘*)O =] £ g g =] 3
S| 12 (Bl 88 (B w 2| o8| 08| 88 | 3
=18 o Rl o T B o | 85 25| ob | ox
5|8 | § |BE|SEg |B56| 38| BE| 2%\ 5B |
oz | = |E2|IEEE |R3C| Oa as| B&| =2 |B€ | Comments
In Counts Deg
571444 13.0 0.0 -- A 130.0 0.0]435.0 | Var Calibration of
external flow
571445 0.785 175.0)%7.5| field during
step changes
581447 .783 175.0(%3.5|in vane angle
448 .785 177.0(%7.5
v \ /
449 .785 0.01435.0 | 176.0|CAT. |Large and small
CAT, control
v and no control
58(451 .783 507.01412.0 | 175.0|CAT. |Large and
small CAT,
control and
no control
60(452 .782 514.0(412.0 | 175.0]%3.5|Control and
’ no control
v v vi|v
60]1453 | 3.0 0.0} .778| A' {30.0 |530.0/412.0 | 175.0(%7.5|Control and
no control
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APPENDIX E

COHERENCE CALCULATIONS

Corr No. 209 M, = 3.0 Frequency = 20 Hz
P ,/P., = 0.877
Colum Number

1 2 3% 4 5% b* 7% 8 9 10
Probe | Probe| PSD | PSD | Co | Quad K ¥ |Ox@| 7

1 2 1 2 | cpsp | cPSD | Factor

_ -7 ]
X 1077 | X 10 x 107 | x 107 14|x 1071

870 880 | 1.1 | 1.3 | 0.1 | 0.1 | 2.46 | 6.05 | 1.43 |0.08
874 884 | 1.0 | 1.6 1 1 | 477 |22.8 | 1.6 .29
874 889 | 1.0 | 1.3 1| o 2,79 | 7.718 | 1.3 .06
876 877 | 1.2 | 1.7 .3 1 | 1.88 | 3.53 | 2.04 | .17
877 878 | 1.7 | 2.2 | 1.5 1| .66 436 | 3.74 | .26
877 882 | 1.7 .85 | .2 2| 493 | 243 | 1.45 | .02
882 880 | .85 | 1.3 1| o 1.28 | 1.64 |1.11 | .01
882 881 | .85 | 2.1 | 1.4 6 | .503 | .253 | 1.79 | .33
882 883 | .85 | 1.8 .9 5 | .32 | .124 | 1.53 | .09
886 887 | 1.7 75 | .3 | .1 | .s8s3 | .728 | 1.28 | .08
887 888 | .75 | 1.3 2 | o 1.03 | 1.06 | .975 | .04
887 872 | .75 | 1.4 | 0 3 | .248 | .062 | 1.05 | .01
872 873 | 1.4 | 1.8 5 3 | .868 | .753 | 2.52 | .10
870 872 | 1.1 | 1.4 | 0 .5 | .56 | .300 | 1.54 | .05
871 872 | 1.9 | 1.4 3 | 1.0 | .39 | .157 | 2.66 | .06
870 885 | 1.1 | 1.2 1| o 1,91 | 3.05 |1.32 | .03

# (Observed data

yZ =

from analog plots

[Coz . Quadz] K2

coherence function

X - Y plotter scaling factor
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COHERENCE CALCULATIONS

Corr No. 209 My = 3.0 Frequency = 40 Hz
P /P, = 0.877
Colupn. Number

1 2 3% 4% 5% 6" 7* 8 9 10

Probe | Probe PSD .PSD Co Quad K 2 5
1 2 1 2 CPSD | CPSD | Factor K | ®Ox@]| 7

x 1077 | x 10° x 1077 [ x 107M|x 10714

870 880 | 0.76 | 1.0 0.03 | 0.05 | 2.46 | 6.05 | 0.76 .04
874 884 | 1.0 1.0 05 |0 4,77 |22.8 1.0 .06
874 889 | 1.0 1.0 1 0 2.79 | 7.78 | 1.0 .08
876 877 | 1.2 1.2 .1 5 | 1.88 | 3.53 | 1.44 .08
877 878 | 1.2 1.8 1.1 0 .66 436 | 2.16 .24
877 882 | 1.2 .8 .2 ) 493 | 243 | 1.02 .02
882 880 .85 | 1.0 0 15 | 1.28 | 1.64 .85 .04
882 881 .85 | 2.1 1.3 .3 .503 | .253 | 1.79 .25
882 883 .85 | 1.7 .6 .7 .352 | .124 | 1.45 .07
886 887 | 1.6 .8 .35 .1 .853 | .728 | 1.28 .08
887 888 .80 | 1.2 .30 1 1.03 | 1.06 .96 11
887 872 .80 | 1.2 .8 .8 248 | .062 | .96 .08
872 873 | 1.2 1.8 4 0. .868 | .753 | 2.16 .06
870 872 .76 | 1.2 0 .3 .55 | .309 | .912 | .03
871 872 | 1.3 1.2 .8 .3 396 | .157 | 1.56 .07
870 885 76 | 1.1 0 0 1.91 | 3.0 .836

*Obse“ved data from analog plots

‘;:02 + Quadz] K2

2 =

Yoo PSD; -
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COHERENCE CALCULATIONS

Corr No. 209 M, = 3.0 Frequency = 80 Hz
Ptz/PtO = 0.877
Column Number
*
1 2 3 2" 5* 6* 7% 8 9 10
Probe | Probe| PSD | PSD | Co Quad| K K |Qx@ | 7
1 2 1 2 CPSD CPSD | Factor
x 10°7] x 1077 x 1077 | x 10014 x 10714
870 880 | 1.1 1.0 0.1 1 2.46 | 6.05 | 1.1 .11
874 884 80 | 1.1 0 4.77 | 22.8 .88
874 889 80 | 1.1 0 1 2.79 | 7.78 .88 .09
876 877 | 1.0 1.5 2 1.88 | 3.53 | 1.5 .09
877 878 | 1.5 1.3 1.0 .66 .436 | 1.95 .22
877 882 | 1.5 .7 1 1 4931 .243 | 113 | .004
882 880 75 | 1.0 0 1.28 | 1.69 .75
882 881 75 | 1.8 1.3 7 .503 | .253 | 1.35 .41
882 883 75 | 1.6 7 .3 3521 .124 | 1.20 .06
886 887 | 1.5 1.0 .30 .05 .853 | .728 | 1.5 .05
887 888 | 1.0 1.6 .6 1 1.03 | 1.06 | 1.6 .25
887 872 | 1.0 1.2 .6 .7 2481 L062 | 1.2 .04
872 873 | 1.2 2.0 .5 .1 868 | .753 | 2.4 .08
870 872 | 1.1 1.2 2 1 556 | .309 | 1.32 .01
871 872 | 1.6 1.2 | 1.0 .3 .396 | .157 | 1.92 .09
870 885 | 1.1 1.1 0 1.91 | 3.65 | 1.21

“Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 209 h% = 3.0 Frequency = 100 Hz
Pi2/Prg = 0.877
Column Number

1 2 3% 4 * 5 ¥ 6" 7" 8 9 10

Probe | Probe| PSD | PSD | Co | Quad K K | x@| 72
1 2 1 2 CPSD CPSD Factor

x 1077 | x 1077 x 1077 |x 10714]x 10714

870 880 0.80 1.3 0 0 2.40 6.05 1.4 0
874 884 .72 1.2 0 0 4,77 |22.8 .864 | 0
874 889 .72 1.1 0 0 2.79 7.78 .792 | 0
876 877 1.3 1.2 .1 .1 1.88 3.53 1.56 .05
877 878 1.2 1.9 1.4 0 .66 .436 | 2.28 .37
877 882 1.2 .90 0 .3 ,493 .243 | 1.08 .02
882 1880 .90 1.3 .1 .1 1.28 1.64 1.17 .03
882 881 .90 1.8 .7 .5 ,503 .253 | 1.62 .12
882 883 .90 1.4 1.1 .3 .352 J124 | 1.26 .13
886 887 1.3 .80 .3 .1 .853 .728 | 1.04 .07
887 888 ,80 1.3 ! .1 1.03 1.06 1.04 .17
887 872 .80 2.3 0 .5 .248 .062 | 1.04 .02
872 873 1.3 2.1 .7 0 .868 L753 | 2.73 .14
870 872 .80 1.3 0 0 .556 .309 | 1.04 .0
871 872 1.4 1.3 ) .6 . 396 L157 | 1.82 .03
870 885 .80 1.0 0 0 1.91 3.65 .80 0

“Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 209 Mo = 3.0 Frequency = 200 Hz
Py2/Pyg = 0.877
Columm Number

1 2 3* 4* 5% 6* 7% 8 9 10

Probe | Probe| PSD | PSD | Co | Quad K K | Ox@| »?
1 2 1 2 CPSD CPSD Factor

x 107 | x 1077 x 1077 |x 107 14|x 10714

870 880 0.70 0.65 0 0 2.46 6.05 0.455 | 0
874 884 .70 .80 0 0 4,77 |22.8 .560 |0
874 889 .70 .90 0 0 2.79 7.78 630 | 0
876 877 .90 1.3 .1 0 1.88 3.53 1.17 .03
877 878 1.3 1.5 1.0 0 .66 .436 | 1.95 .22
877 882 1.3 .80 0 .2 493 124.3 1.04 .01
882 880 .80 .65 .1 0 1.28 | 1.64 .520 .03
882 881 .80 1.6 .8 .3 .503 | .253 | 1.28 .14
882 883 .80 1.3 1.0 1.0 .352 .124 | 1.04 .24
886 887 1.3 .80 .1 .2 .853 |72.8 1.04 .04
887 888 .80 1.5 .5 .1 1.03 1.06 1.20 .23
887 872 . 80 1.1 .2 .3 .248 .062 .88 .01
872 873 1.1 1.8 .5 0 .868 .753 | 1.98 .10
870 872 .70 1.1 .3 .3 .556 .309 .77 .07
871 872 1.5 1.1 .8 .5 .396 .157 | 1.65 .08
870 885 .70 .80 0 0 1.91 3.65 .56 0

*Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 214 My = 3.0 Frequency = 20 Hz
Colum Number

1 2 3* - 4* ‘5* 6% 7% 8 9 10

Probe | Probe| PSD | PSD | Co | Quad | X K | @@ | 2
1 2 1 2 CPSD CPSD | Factor

x 107> |x 107 X 107° | x 10719 x 10710

870 874 | 0.6 0.35 | 0.1 0 1.36 | 1.85 | 0.21 .09
872 887 | 1.6 1.4 .15 .1 5.93 | 35.2 2.29 .51
887 886 | 1.4 3.8 1.1 0 2.06 | 4.24 | 5.32 .96
870 885 .60 | 4.0 0 1 2.71 | 7.34 | 2.4 .03
872 873 | 1.6 1.2 .45 | 0 1.99 | 3.97 | 1.92 .42
872 871 | 1.6 1.2 16 | 0 3.14 | 9.8 | 1.92 .13
872 870 | 1.6 .60 .1 0 3.14 | 9.86 .96 .10
887 888 | 1.4 .65 .5 0 1.78 | 3.17 .91 .87
870 880 .60 | 1.2 .1 0 1.06 | 1.12 72 .02
880 884 | 1.2 .50 .4 .1 .816 .666 .60 .19
874 884 .35 .50 .05 .05 .988| .977 .175 .01
874 889 .35 .40 .1 .05 .575 .331 .140 .03
877 876 | 5.0 |10. 1.2 .1 5.2 | 27.0 |50, .78
877 878 | 5.0 1.5 2.7 .1 .86 .740 | 7.5 72
877 882 | 5.0 4.5 0 .3 7.18 | 51.6 |22.5 .21

*Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 214 M, = 3.0 Frequency = 40 Hz
PtZ/PtO = 0.565
Column Number
* * - * * %
1 2 3 4 5 6 7 8
Probe | Probe | PSD PSD Co Quad K K2
1 2 1 2 CPSD CPSD Factor
X 107° | X 107° X 107> |x 10710
870 874 0.50 0.36 0 0 1.36 1.85
872 887 1.5 1.4 .1 .1 5.93 |35,2
887 886 1.4 4,0 .8 .15 2,06 4,24
870 885 .50 4.0 0 .05 2.71 7.34
872 873 1.5 1.1 .5 0 1.99 3,92
872 871 1.5 1.5 .3 0 3.14 9,86
872 870 1.5 .50 1 0 3,14 9,86
887 888 1.4 .70 .5 0 1.78 3.17
870 880 .50 1.3 0 0 1.06 1.12
880 884 1.3 .52 .3 .1 .816 .666
874 884 . 36 .52 0 0 .988 .977
874 889 . 36 .37 0 0 .575 .331
877 876 2.0 3.5 .4 .05 5.2 27.0
877 878 2.0 .72 1.3 .1 . 86 .740
877 882 2.0 3.0 .05 .05 7.18 |51.6

®
Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 214 MO = 3,0 Frequency = 80 Hz
Column Number
* *

1 2 3 4 5* 6" 7" 8 9 10

Probe | Probe PSD PSD Co Quad K KA ®x @ 72
1 2 1 2 CPSD CPSD Factor

X 1075 | x 107 x 107 | x 107 10[x 10710

870 874 0.45 0.30 0.02 0 1.36 1.85 0.135 0
872 887 1.0 1.1 .1 .1 5.93 35.2 1.1 .64
887 886 1.1 2.3 .7 .1 2.06 4,24 2,54 .83
870 885 .45 3.3 .1 .1 2.71 7.34 1.49 .10
872 873 1.0 1.0 .5 0 1.99 3.97 1.0 .96
872 871 1.0 1.2 .3 0 3.14 9,86 1.2 .70
872 870 1.0 .45 .05 0 3,14 9.86 .45 .05
887 888 1.1 .60 .5 0 1.78 3.17 .66 1.0
870 880 .45 1,3 .1 0 1.06 1.12 . 585 .02
880 884 1.3 .52 .5 .1 . 816 .666 .676 .26
874 884 .30 .52 .1 0 .988 .977 .156 .06
874 889 .30 .40 .05 .1 .575 .331 .120 .03
877 876 1.6 2.5 .3 0 5.2 27.0 4.0 .61
877 878 1.6 .64 1.0 0 . 86 .74 1.02 .72
877 882 1.6 3.8 .1 0 7.18 |51.6 6.06 .08

“Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 214 M, = 3.0 Frequency = 100 Hz
Pyp/Pyy = 0.565
Column Number
1 2 3" 4% 5% 6* 7% 8 9 10
2

probe | Probe| PSD | PSD | Co | Quad K k2 | ®Ox®| v

1 2 1 2 CPSD CPSD Factor
Xx107°(x 107 X 107° |x 10719 x 10710

870 874 | 0.40 | 0.25 0.1 0 1.36 1.85 | 0.100 .18
872 887 | 1.2 1.2 0 .1 5.93 |35.2 1.44 .24
887 886 1.2 2.0 .7 J15 | 2.06 4,24 | 2.4 .90
870 885 .40 2.5 .1 1 2.71 | 7.34 | 1.00 .15
872 873 | 1.2 .85 .45 0 1.99 3.97 1.02 .80
872 871 | 1.2 1.1 .25 |10 3.14 | 9.8 | 1.32 .47
872 870 1.2 40 |0 0 3.14 | 9.86 .48
887 888 | 1.2 .60 .5 0 1.78 | 3.17 72 .0
870 880 .40 1.5 .1 0 1.06 | 1.12 .60 .02
880 884 | 1.5 .52 .5 .2 .816 .666 .78 .25
874 884 .25 .52 .1 .1 .988 .977 ,130 .15
874 889 .25 .40 1 0 .575 .331 ,100 .03
877 876 1.2 2.0 .25 0 5.2 27.0 2.4 .70
877 878 | 1.2 .40 .7 .05 .86 .74 .48 .76
877 882 1.2 4.0 0 0 7.18 |51.6 4.8

*Observed data from analog plots
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COHERENCE CALCULATICONS

Corr No. 214 MO = 3.0 Frequency = 200 Hz
Pry/Prg = 0.565
Colum Number
% * * * *
1 3 4 5 6 7 8 9 10
2
Probe | Probe| PSD | PSD Co Quad K K2 | ®Ox®| 7
1 2 1 2 CPSD | CPSD | Factor
X 107° | X 1075 X 1072 |x 10710x 10-10
870 874 | 0.38 | 0.23 | 0 0 1.36 | 1.85 | 0.087
872 887 | 1.1 .70 | 0 0 5.93 |35.2 .77
887 886 70 | 1.0 .3 0 2.06 | 4.24 .70 .55
870 885 .38 | 1.0 0 0 2.71 | 7.34 .38
872 873 | 1.1 .70 .2 0 1.99 | 3.97 .77 .21
872 871 | 1.1 .90 15 | o 3.14 | 9.86 .99 .22
872 870 | 1.1 38 | 0 0 3,14 | 9.86 .418
887 888 .70 .32 .2 0 1.78 | 3.17 224 | .57
870 880 38 | 1.1 0 0 1.06 | 1.12 . 418
880 884 | 1.1 .40 .3 0 816 | .666 | .44 .13
874 884 .23 40 |0 .1 988 | .977 | .092 | .10
874 889 .23 .30 .08 | 0 5751 .331 | .069 | .03
877 876 .54 .90 1 0 5.2 |27.0 486 | .57
877 878 .54 .22 35 1 0 .86 740 | 119 | .76
877 882 54 | 3.0 0 0 7.18 |51.6 1.62

*
Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 250 M, = 2.6 Frequency = 20 Hz
Piy/Prg = 0.918
Column Number

1 2 3% 4% 5% 6% 7% 8 9 10

Probe |Probe| PSD | PSD | Co | Quad | K K2 | ®x@| 42
1 2 1 2 CPSD | CPSD | Factor

- -7 B} - )
X 1077 {X 10 x 1077 | x 10714 |x 10714

872 871 0.28 2.0 0.30 0 0.915| 0.841 | 0.56 0,14
872 870 .28 .90 .10 .1 .656 .430 .252 .03
887 886 4.0 3.5 1.4 .15 1.20 1.44 |14.0 .20
887 888 4.0 3.2 3.5 1 .707 .500 {12.8 .48
872 887 .28 4.0 .5 .3 .353 J125 | 1.12 .04
885 870 1.2 .90 0 0 2.84 8.07 1.08 0
877 876 4.5 4.8 .5 .05 5.41 |29.3 21.6 .34
877 878 4.5 1.1 .05 0 5.37 |28.8 4.95 .01
877 882 4.5 11.0 .15 .1 9.0 81.0 49.5 .05
882 881 | 11.0 6.0 .9 .1 7.12 |50.7 ]66.0 .63
882 883 | 11.0 1.57 1.0 .2 1.42 2.02 |16.5 .12
882 880 | 11.0 1.2 .30 .1 6.50 |42.3 13.2 .32
870 880 .90 1.2 0 0 3.70 | 13.7 1.08 0
874 884 .60 2.2 0 0 .173 .0299| 1.32 0
874 889 .60 1.2 0 0 1.44 2.07 .72 0

&
Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 250 N% = 2.6 Frequency = 40 Hz
Piy/Prg = 0.918
Column Number
1 2 3 1 5" 6 7 8 9 10
Probe | Probe PSD PSD Co Quad 2
1 2 1 2 CPSD | CPSD K K Ox@| 2
Factor
x 1077 |x 1077 x 1077 |x 107 x 1014

872 871 0.28 1.6 0.10 0 0.917 | 0.841 | 0.488 | 0.02
872 870 .28 .88 .10 .05 .656 .430 .246 .02
887 886 3.2 3.0 1.3 .10 1.20 1.44 9.6 .26
887 888 3.2 2.8 2.5 .20 .107 .50 8.96 .35
872 887 .28 3.2 .1 .5 .353 .125 .896 .04
885 870 1.3 .88 0 0 2.84 8.07 1.14 0
877 876 5.0 4,0 .5 .05 5.41 [29.3 20.0 .37
877 878 5.0 1.2 .1 0 5.37 |28.8 6.0 .05
877 882 5.0 7.2 .05 .1 9.0 81.0 36.0 .03
882 881 7.2 6.2 .9 .3 7.12 150.7 44.6 1.0
882 883 7.2 1.2 .85 .1 1.42 2.02 8.64 .17
882 880 7.2 1.3 .30 .1 6.50 |42.3 9.36 .45
870 880 .88 1.3 0 0 3.70 |13.7 1.14 0
874 884 .66 1.5 0 0 .173 .030 .99 0
874 889 .66 1.2 0 0 1.44 2.07 792 |0

*
Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 250 M, = 2.6 Frequency = 80 Hz
PtZ/PtO = 0.918
Column Number

1 2 3% 4% 5k 6% 7% 8 10
Probe | Probe | PSD PSD Co | Quad K K2 @ | 7 2

1 2 1 2 CPSD CPSD | Factor

x 1077 | x 1077 x 1077 |x 107 | x 1071

872 871 | 0.26 | 1.35 | 0.20 0 |0.927 | 0.841 | 0.351 | 0.10
872 870 216 .75 | -.1 0 .656 .430 .195 .02
887 886 | 3.8 3.0 1.5 -.2 | 1.20 1.44 |11.4 .29
887 888 | 3.8 2.6 1.9 -.4 .707 .50 9,88 .19
872 887 .26 | 3.8 -.5 -.1 .353 .125 .988 .03
885 870 | 1.1 .75 0 0 | 2.84 8.07 .825 0
877 876 | 3.6 4.0 .4 0 |s5.41 [29.3 14.4 .33
877 878 | 3.6 1.0 .1 .1 | 5.37 |28.8 3.6 .16
877 882 | 3.6 4.5 0 -.05 | 9.0 81.0 16.2 .01
882 881 | 4.5 3.5 .5 -.1 | 7,12 |[s50.7 15.8 .83
882 883 | 4.5 .82 ; 0 | 1.42 2.02 3.69 .02
882 880 | 4.5 .85 .1 -.1 |6.50 [42.3 3.83 .23
870 880 .75 .85 0 0 |3.70 [13.7 .63 0
874 884 .80 | 1.5 0 0 173 .030 | 1.20 0
874 889 .80 | 1.15 0 0 | 1.44 2.07 .92 0

* (Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 250 M0 = 2.6 Frequency = 100 Hz
Pta/Pyg = 0.918
Colum Number
1 2 3% 4% 5% 6% 7% 8 9 10
Probe | Probe | PSD PSD Co Quad K K2 Gx@ y?
1 2 2 CPSD | CPSD | Factor
x 10-7 |x 1077 x 1077 [x 10714 | x 10014

872 871 0.28 | 1.8 0.25 0 | 0.917 | 0.84 .504 | 0.10
872 870 .28 | .85 0 -1 .656 .43 .23 .02
887 886 3.0 | 3.0 1.3 -.50 | 1.20 1.44 9,0 .31
887 888 3.0 | 2.0 2.0 0 .707 .500 | 6.0 .33
872 887 .28 | 3.0 -.3 0 .353 .12 .84 .13
885 870 1.1 .85 0 0o | 2.84 8.07 .935 0
877 876 2.7 | 3.0 .3 0 | 5.41 [29.3 8.1 .33
877 878 2.7 .80 .1 .1 | 5.37 |28.8 2.16 .27
877 882 2.7 | 4.0 0 -.05 | 9.0 81.0 1.18 17
882 881 4.0 | 3.0 .3 -.1 | 7.12 |s0.7 12.0 .42
882 883 4.0 .80 | -.1 1 | 1.42 2.02 3,20 .01
882 880 4.0 .75 0 -.05 | 6.50 |42.3 3.00 .03
870 880 .85 | .75 0 0 | 3.70 1{13.7 .638 0
874 884 J75 1 1.1 0 0 .173 .030 .825 0
874 889 .75 1 1.2 0 0 | 1.44 2.07 .90 0

* Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 250 Mg = 2.6 Frequency = 200 Hz
P¢7/Prg = 0.918
Column Number
1 2 3 4% 5% 6% 7% 8 10
2 2
Probe | Probe PSD PSD Co Quad K K C:)X<:> y
1 2 1 2 CPSD CPSD | Factor
x 1077 | x 1077 x 1077 [x 10714} x 10714
872 871 0.25 1.5 0.13 0 0.917 0.841 0.375 [0.04
872 870 .25 .70 0 0 .656 .430 .175 0
887 886 2.57 2.57 .80 -.6 1.20 1.44 6.25 .23
887 888 2.57 1.3 1.3 0 . 707 .500 3.25 .26
872 887 .25 2.57 -.35 0 .353 .125 .625 | .025
885 870 .80 .70 0 0 2.84 8.07 .56 0
877 876 2.9 2.4 .2 0 5.41 29.3 6.96 .17
877 878 2.9 1.4 0 .08 5.37 28.8 4,06 .05
877 882 2.9 3.0 0 -.05 9.0 81.0 8.7 .02
882 881 3.0 3.0 .2 -.1 7.12 50.7 9.0 .28
882 883 3.0 .60 -.1 0 1.42 2.02 1.8 01
882 880 3.0 .45 0 0 6.50 42.3 1.35 0
870 880 .70 .45 0 0 3.70 13.7 .318 0
874 884 .60 1.3 0 0 .173 .030 .78 0
874 889 .60 1.5 0 0 1.44 2.07 .90 0

* (Observed data from analog plots

y

2 -

[coz ¥ Quadz} KZ

PSD; -

PSD,

67




COHERENCE CALCULATIONS

Corr No. 255 Mb = 2.6 Frequency = 20 Hz
PtZ/Pto = (0.642

Colum Number

1 2 3% 4% 5 6% 7% 8 9 10
Probe | Probe PSD | PSD | Co | Quad K K2 @ | ¥?
1 2 1 2 CPSD | CPSD | Factor
107° | x107° x 107° | x 10719 | x 10719
877 876 2.8 7.2 1.0 0 | 4.02 |[16.2 20.2 0.8
877 878 2.8 1.3 2.2 y 662 438 | 3.64 .59
877 882 2.8 4.5 1 S1 | 3.32 | 11.0 12.6 .02
882 881 4.5 3.2 75 | -.25 | 2.64 6.97 | 14.4 .30
882 883 4.5 1.6 7 1| 2.64 6.97 7.2 .48
882 880 4.5 2.0 05 | -.15 | 2.4 5.76 9.0 .02
887 886 2.8 5.0 1.2 ~.3 | 2.64 6.97 | 14.0 .76
887 888 2.8 1.2 1.2 0 | 1.53 2.34 3.36 1.0
887 872 2.8 2.2 ~.05 .05 | 3.05 9.3 6.16 .004
872 871 2.2 3.5 1.0 -4 | 1.61 2.59 7.7 .39
872 873 2.2 2.1 6 15 | 2.3 5.29 4.62 .44
872 870 2.2 .65 4 1| 1.61 2.59 1.43 .31
870 874 65 | 1.1 0 .35 | .90 .81 .715 14
870 885 65 | 3.0 1 0 | 1.4 1.96 1.95 .01
870 880 65 | 2.0 0 0 | 1.83 3.35 1.30 0
880 384 2.0 1.5 | -.2 1 | 3.2 ho.2 3.0 17

*Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 255 M, = 2.6 Frequency = 40 Hz
Pi2/Pep = 0.642

Colum Number
1 2 3 4% 5% 6% 7% 8 9 10
probe | Probe PSD PSD Co ad K K2 2
1 2 1 2 CPSD ggsn Factor Ox®@ | 7
X 107> |x 107> x 1072 x 10710 | x 10710

877 876 2.5 5.4 0.75 0o | 4.02 |16.2 13.5 0.68
877 878 2.5 1.3 2.0 -1 .662 438 | 3.25 .54
877 882 2.5 3.5 .2 -1 | 332 |11.0 8.75 .06
882 881 3.5 2.3 .80 .05 | 2.64 6.97 8.05 .56
882 883 3.5 1.5 70 | -.1 | 2.64 6.97 5.25 .66
882 880 3.5 .80 .05 0o | 2.4 5.76 2.8 .005
887 886 4.6 7.0 1.7 -2 | 2.64 6.97 | 32.2 .63
887 888 4.6 1.6 1.4 0 |1.53 2.34 7.36 .62
887 872 4.6 2.1 -1 -.05 | 3.05 9.3 9.66 .01
872 871 2.1 2.8 1.0 -.50 | 1.61 2.59 5.88 .55
872 873 2.1 1.7 .6 15 | 2.3 5.29 3.57 .57
872 870 2.1 .56 4 1 | 1.61 2.59 1.18 .04
870 874 .56 | 1.0 2 0 .90 .810 .56 .06
870 885 .56 | 2.3 0 -3 | 1.4 1.96 1.24 .08
870 880 .56 .80 | -.05 0o |1.83 3.35 .448 .02
880 884 .80 | 1.1 -1 0 |3.2 10.2 .88 12

*
Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. = 2.6 Frequency = 80 Hz
PtZ/PtO = 0.642
Colum Number

1 2 3% 4% 5% 6* 7* 8 9 | 10
Probe | Probe PSD PSD Co Quad K K2 ®x @\ 7 2
1 2 1 2 CPSD CPSD | Factor

X 107° 1073 X 107° | x 10719 x 1010
877 876 | 1.5 .5 0.5 0 4,02 16.2 5,25 0.77
877 878 | 1.5 .70 1.25 -.2 .662 .438 1.05 .67
877 882 1.5 2.9 .1 0 3.32 11.0 4,35 .03
882 881 | 2.9 1.4 .40 .1 2.64 6.97 4,06 .29
882 883 | 2.9 1.3 .60 0 2.64 6.97 3.77 .67
882 880 | 2.9 1.2 0 JAS | 2.4 5.76 3.48 .04
887 88 | 3.3 5.0 1.1 -.2 2.64 6.97 16.5 .53
887 888 | 3.5 1.4 1.0 -1 1.53 2.34 4.62 .51
887 872 3.3 2.0 0 -.15 3.05 9.3 6.6 .03
872 871 | 2.0 1.5 .75 -.1 1.61 2.59 3.0 .49
872 873 2.0 1.6 .7 -.1 2.3 5.29 3.2 .83
872 870 2.0 .68 .3 0 1.61 2.59 1.36 .17
870 874 .68 .80 .4 -.15 .90 ,810 - .544 .27
870 885 .68 2.3 -.3 .1 1.4 1.96 1.56 .13
870 880 .68 .2 0 0 1.83 3.35 .816 0
880 884 .2 .95 0 -,08 3.2 10,2 1.14 .06

1"Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 255 = 2.6 Frequency = 100 Hz
Pyp/Pry = 0.642
Colum Number

1 2 3% 4% 5% 6% 7* 8 9 10

Probe | Probe | PSD | PSD | Co | Quad K K2 2
1 2 1 2 | cPsD | CPSD | Factor @ | 7

X 107 | X 107 x 107 | x 10710} x 10710

877 876 | 1.2 2.6 0.3 0 |4.02 |16.2 3.12 | 0.47
877 878 | 1.2 .70 .9 -.1 .662 .438 .84 .43
877 882 | 1.2 2.5 0 -1 | 3.32 |11.0 3.0 .04
882 881 | 2.5 1.8 .30 0 | 2.64 6.97 4.5 .14
882 883 | 2.5 1.0 .50 0 | 2.64 6.95 2.5 .70
882 880 | 2.5 1.0 0 10| 2.4 5.76 2.5 .02
887 886 | 2.0 4.0 5 | -2 | 2.64 6.97 8.0 .52
887 888 | 2.0 .70 .75 0 |1.53 2.34 1.40 .94
887 872 | 2.0 1.6 0 -.1 | 3.05 9.3 3.2 .03
872 871 | 1.6 1.1 .5 -.1 | 1.61 2.59 1.76 .38
872 873 | 1.6 1.3 .5 0 |2.3 5.29 2.08 .64
872 870 | 1.6 .74 4 0 |1.61 2.59 1.18 .35
870 874 .74 .80 .5 -1 .90 .810 592 | .36
870 885 74 | 1.5 -.3 0 |1.4 1.96 1.11 .16
870 880 .74 | 1.0 0 0 |1.83 3.35 .74 0
880 884 | 1.0 .80 0 -.08 | 3.2 10.2 .80 .08

®
Observed data from analog plots
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COHERENCE CALCULATIONS

Corr No. 255 M, = 2.6
PtZ/PtO = 0,642

Frequency = 200 Hz

Column Number

1 2 3 4% 5% 6% 7% 8 9 10
Probe | Probe PSD PSD Co ad K K2 2
1 2 1 2 CPSD chgSD Factor @ X @ Y
X 1072 | X 1073 X 107 | x 10710 | x 10710
877 876 | 0.90 0.2 0 | 4.02 |16.2 1.3 0.48
877 878 .90 .50 .7 0 .62 .438 450 | .48
877 882 .90 0 0 | 3.32 1.0 1.26 0
882 881 | 1.4 . .2 0 | 2.64 6.97 1.4 .20
882 883 | 1.4 .65 .2 0 | 2.64 6.97 .91 .31
882 880 | 1.4 .74 -.06 0o | 2.4 5.76 1.04 .02
887 88 | 1.0 . .3 -1 | 2.64 6.97 1.9 .37
887 888 | 1.0 .46 .3 0 | 1.53 2.34 .46 .46
887 872 | 1.0 .85 0 0o | 3.05 9.3 .85 0
872 871 .85 .70 .1 -.1 | 1.61 2.59 .595 | .09
872 873 .85 .65 2 0 | 2.3 5.29 .553 | .38
872 870 .85 .35 0 0o | 1.61 2.59 ,298 0
870 874 .35 .45 1 -1 .90 .810 158 | .10
870 885 .35 . 0 -.05 | 1.4 1.96 .35 .01
870 880 .35 .74 0 0o | 1.83 3.35 .259 0
880 884 .74 .42 0 -.05 | 3.2 10.2 311 | .08

&
Observed data from analog plots

2 I:Coz + Quadz] K2
LA PSD, - PSD,
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Appendix F

DETERMINATION OF TRANSFER FUNCTIONS FROM STATISTICAL PARAMETERS

Analog computations of statistical parameters were used to obtain shock
position response to sinusoidal exit area disturbances. The method used, the
inputs required, and the results are presented in this appendix. The calcu-
lation uses a number of analog-computed parameters which must be read from
X-Y plots. The possible errors (introduced by the input parameters, depar-
ture of the exit disburbance from a true sinusoid, nonlinearity of the shock
position pressure parameter versus shock position, etc) make the accuracy of
the results questionable. They are presented, however, for illustrative
purposes.

The transfer function, H (f), relating shock position with exit area
disturbance, can be found from the following statistical relations:

2 PSD (Xg,f)
= y2 -
IHT(f)l T'®) 55 X, 1) (F-1)
0 () - tanl U sy Xp,f) (E-2)

Co (g, Xp,f)
where ‘Yz(f) is the coherence function between Xp and Xg
PSD (f) 1is the power spectral density function
® (£f) 1is the phase relationship between Xp and Xg

Co (f) 1is the coherent component of the cross power
spectral density function

QU (£f) is the quadrature component of the cross
power spectral density function

The calculations are provided in table IX. The typical PSD and cross
PSD data reduction plots which were used for these calculations are given
for the 10 Hz excitation in figures 149 through 151. The PSD curve for the
shock position parameter was obtained in terms of the pressure variable by
a summation of the four pressure sensors as discussed in Appendix B. The
PSD curve for the exit area parameter was obtained in terms of voltage.
Both the shock position pressure parameter and the exit area voltage are
assumed to be linear functions of the shock position and exit area.
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Although the intent during the course of the test was to hold the plug
displacement constant as a function of frequency, the data revealed that the
plug position actually decreased significantly with frequency. However, if
the linear system analogy is valid, this is not meaningful in terms of the
amplitude ratio presented in colunn 12 of table IX. It should be noted,
however, that the units are not the same as the units represented by equation
F-1 but differ by a constant. For the actual calculations

2 PSD (pressure, f)
= 2 2 -
|H (£) | Yol PSD (volts, f) (F-3)
where
pressure = Kj Xg
volts = K Xp
2 - w2 PSD (pressure, £) _(K1\? v2.¢y PSD(XS,E)
lH (f)l Yo® Volts, <K'2‘> Y poprx )
Ky \2 2
= f -
ol |Hr (£) | (F-4)

The transfer function can be nondimensionalized by determining a value for
H({O). Since

o |2 (%Y |Hr(°)|2
K

then et - |mo

and the transfer function becomes independent of the units used. This
transfer function can then be interpreted as the amplitude ratio of the
shock position at the excited frequency, f, to the shock position response
at zero frequency.

(F-5)

G(f)

The value of H(O) was found from an extrapolation of the transfer
function as plotted on a linear frequency scale (figure 152). From the curve
of figure 152, the value of H(O) = 2,0 was selected. The normalized transfer
function is shown in figure 153.
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TABLE I.- RMS/Pyq MEASUREMENTS FOR DIFFERENT SECTIONS OF A

5-SECOND INTERVAL, M, = 3.0, Py5/Pq = 0.877

0.00-0.05| 0.05-0.10 | 0.10-0.15 | 0.15-0.20 | 0.00-0.20 | 0.00-5.0
Probe Second Second Second Second Second Seconds
870 0.0059 0.0053 0.0063 0.0061 0.0059 0.00592
871 0.0102 0.0099 0.0096 0.0094 0.0098 0.00966
872 0.0091 0.0097 0.0089 0.0090 0.0092 0.00884
873 0.0107 0.0105 0.0094 0.0091 0.0100 0.01030
874 0.0072 0.0062 0.0064 0.0068 0.0067 0.00694
875 0.0068 0.0076 0.0074 0.0088 0.0077 0.00728
876 0.0087 0.0098 0.0098 0.0099 0.0096 0.00966
877 0.0088 0.0094 0.0092 0.0094 0.0092 0.00864
*378
*879
880 0.0073 0.0067 0.0064 0.0057 0.0066 0.00605
881 0.0088 0.0091 0.0089 0.0083 0.0088 0.00946
882 0.0094 0.0084 0.0092 0.0090 0.0090 0.00878
*883
*884
885 0.0076 0.0069 0.0070 0.00063 0.0070 0.00599
886 0.0086 0.0080 0.0078 0.0090 0.0084 0.00830
887 0.0081 0.0091 0.0081 0.0082 0.0084 0.00789
888 0.0072 0.0088 0.0082 0.0085 0.0082 0.00783
889 0.0053 0.0068 0.0062 0.0067 0.0063 0.00605

*Probe data questionable for these rums,
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TABLE II.- RMS/P;y MEASUREMENTS FOR THREE 5-SECOND

INTERVALS IN A 7-MINUTE RUN, My = 3.0,P;y/Pyg = 0.877

Interval 1 Minute 3 Minutes 5 Minutes
Probe Into Run Into Run Into Run
870 0.0060 0.0060 0.0057
873 0.0103 0.0103 0.0103
874 0.0072 0.0072 0.0072
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TABLE III.- RMS/PtO MEASUREMENTS FOR DIFFERENT SECTIONS

OF A 5-SECOND INTERVAL, M, = 3.0, PtZ/PtO = 0.565

0.00-0.05 { 0.05-0.10 | 0.10-0.15| 0.15-0.20 | 0.00-0.20 { 0.0-5.0
Probe Second Second Second Second Second Seconds
870 0.0344 0.0319 0.0312 0.0292 0.0317 0.0358
871 0.0494 0.0392 0.0386 0.0466 0.0437 0.0520
872 0.0441 0.0427 0.0362 0.0463 0.0425 0.0506
873 0.0286 0.0323 0.0257 0.0311 0.0296 0.0365
874 0.0192 0.0244 0.0171 0.0169 0.0196 0.0220
875 0.0644 0.0521 0.0524 0.0489 0.0547 0.0593
876 0.0656 0.0547 0.0728 0.0485 0.0611 0.0636
877 0.0572 0.0350 0.0574 0.0399 0.0484 0.0433
*878
*879
880 0.0510 0.0491 0.0555 0.0503 0.0515 0.0539
881 0.0723 0.0748 0.0635 0.0710 0.0705 0.0773
882 0.0776 0.0801 0.0738 0.0770 0.0772 0.0803
883 0.0522 0.0549 0.0392 0.0457 0.0484 0.0270
884 0.0338 0.0286 0.0203 0.0232 0.0270 0.0295
885 0.0525 0.0422 0.0439 0.0450 0.0461 0.0539
886 0.0532 0.0398 0.0505 0.0489 0.0483 0.0549
887 0.0433 0.0352 0.0403 0.0416 0.0402 0.0402
888 0.0358 0.0403 0.0222 0.0422 0.0350 0.0277
889 0.0182 0.0236 0.0181 0.0244 0.0213 0.0196

*Probe data questionable for these rums.
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TABLE 1IV.- RMS/PtO MEASUREMENTS FOR THREE 5-SECOND

INTERVALS IN A 7-MINUTE RUN, Mo = 3.0, PtZ/PtO = 0.565

Interval

1 Minute 3 Minutes 5 Minutes

Probe Into Run Into Run Into Run
870 0.0368 0.0358 0.0358
873 0.0370 0.0370 0.0370
874 0.0220 0.0220 0.0220
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TABLE V.- COHERENCE FUNCTIONS FOR PAIRS OF IN-LINE PROBES

Mo = 3.0
Coherence
EE& Probe 20 40 80 100 140 160 200
PtO Pair Hz Hz Hz Hz Hz Hz Hz
0.877 | 831-870)] 0.0815 0.1560 ) 0.0000 | 0.0027 0 0.0096 0
833-87410.252 § 0.0266 } 0.0062 | 0.0296} 0.0515} 0.0032{ 0.0105
833-839| 0.0960| 0.0900 | 0.0013§ 0.0451 | 0.0017 ] 0.0150| 0.0460
839-871 1 0.0275] 0.0684 | 0.0549 | 0.0216} 0.0320] 0.0291 ¢ 0.0163
0.565 | 831-8701{ 0.0327{ 0.0133 0 0.0007 0 0 0
833-874 | 0.0138 | 0.0407 | 0.0519 | 0.0685 | 0.0445 0 0.0814
833-839 0 0.0031 | 0.0066 | 0.0353} 0.0069| 0.0149} 0.0139
839-871) 0.0052 ] 0.0011 | 0.0041 ] 0.0026 | 0.0035| 0.0026| 0.0003
TABLE VI.- COHERENCE FUNCTIONS FOR PAIRS OF STATIC AND TOTAL
PRESSURES AT MS47.30 AND MS66.70
Coherence
Pt2 | Probe 20 40 80 100 140 160 200
PtO Pair Hz Hz Hz Hz Hz Hz Hz
0.877 | 830-8311] 0.0028} 0.0444 | 0.16251 0.0378 | 0.0151 ]| 0.0550| 0.0032
830-833] 0.0286] 0.0370 |} 0.0006 | 0.0305 1} 0.0004 | 0.0123 | 0.0295
836-83910.0489 | 0.0470 | 0.0278 } 0.0560 | 0.0003 } 0.0021 ] 0.0725
0.565 } 830-83110.278 | 0.525 0 0 0 0 0
830-83311.0 0.216 |0.473 (0.182 10,3560 0.0437] 0.728
836-839]0.552 | 0,0894 {0.0815§0.112210.0394 ] 0.0738] 0.0593
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TABLE VII.- CONTROL SYSTEM TEST SUMMARY OF SHOCK TRAVEL

Shock Travel - AXg (inches)

Input No No No No
Freq. Con- Con- Con- Con- Con- Con- Con- Con-
(Hz) trol trol trol trol trol trol trol | trol
Input Plug Plug Plug Plug Wedge Wedge Wedge Wedge
Ampl 2 in.2 | #2 in.2| *4 in.2| #4 in.2| #3.5° t3,5° *7,5° t7.5°
ﬁfZ/PtO 0.845 0.845 0.846 0.846 0.782 0.782 0.778 0.778
Corr 305 305 306 306 452 452 453 453
0.5 0.340 1.064 0.340 1.702 0.319 0.426 0.426 0.638
1 0.426 1.064 0.808 1.702 0.372 0.426 0.745 0.745
2 0.511 1.064 1.106 1.702 0.532 0.426 1.170 0.745
4 0.511 0.638 1.489 1.702 0.851 0.426
6 0.766 0.808 1.277 1.277 0.958 0.426 1.490 0.745
8 0.851 0.681 1.362 1.064 0.851 0.426 1.702 1.064
10 0.766 0.638 1.362 1.064 0.851 0.532 1.649 1.064
12 0.681 0.596 1.191 0.936 0.904 0.585 1.649 1.17
14 0.596 0.511 1.064 0.851 0.904 0.532 1.490 1.064
16 0.426 0.426 0.851 0.585 1.436 1.064
18 0.340 0.383 0.851 0.638 1.33 1.011
20 0.298 0.340 0.851 0.745 1.33 1.064
22 0.904 0.745 1.43 1.064
24 1.064 0.745 1.49 1.17
26 1.117 0.851 1.49 1.17
28 1.117 0.851 1.543 1.117
30 1.064 1.064 1.49 1.17
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X = 40.0 inches aft of inlet spike
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TABLE VIII.- CAT FILTER TRANSFER FUNCTIONS

Spectrum CBS) M, = 2.6 S6) = 3.0
GU.) OL\.\
) .979(S * .577) 1.058(S + .671)
(s + 1) (S + 1.165)2
) .690(S + .458) .7425(S + .532)
(S + .745)1-883 (S + 1.165)1-883
5 .979 1.055
(S + 1.732) (S + 2.00)
L = 2,500 ft
h = 40,000 ft
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Figure 1.- Inlet and external rakes
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A-41165

Figure 2.- Inlet and external disturbance vane.
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Figure 5.- Bleed configuration.
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BYPASS FLOW

INNER WALL SLOTS

CENTER BODY

Figure 6.- Bypass valve schematic
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ORFICE NUMBERS SHOWN R

® DYNAMIC TOTAL PROBES

® DYNAMIC STATIC TAPS

889 890
888 87§7“
887 AT
886 895® QN
' 871 >
o 885 1|
893 870 % .
;
e 1 N
898
880
' q1
831 _ 8
882 l897 8768 ;
%3 ' 7 878
|

VIEW LOOKING AFT
MS78.95

Figure 10. Engine face dynamic pressure instrumentation.
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CHANNEL RECORDER NUMBER

NO. 1 2 3 4 5 6 : 8 9

1 VOICE | VOICE | VOICE | VOICE | VOICE | VOICE | VOICE | VOICE | VOICE
2 TIME | TIME | TIME | TIME | TIME | TIME | TIME | TIME | TIME
3 870 2 | VANE | VANE | 885 2 | 870 % | 870 2 | VANE | VANE | VANE
4 875 2 | 884 2 | 880 2 | 886 2 | 871 % | 884 2 |BYPASS | BYPASS| 872 °
5 880 2 | 885 2 | 8812 | 8872 | 8732 | sss 2 | 8722 | 8722 | 890
6 88s 2 | 886 2 | 882°% | 888 % | 874 % | 24} 61 ] 23! 14 !
7 874 2 | 887 2| 8832 | 802 | 830> | 54l 71— 20 !
8 8792 | 888 2| ssa 2| s023 | 8313 | 343 g ! st ol
9 884 2 | 8892 | 8022 | s203 | 832° | 8353 | 10! g1 22!
10 889 2 | 8932 | 804 % | 04| 833° | 850> | 13! 5 1 23 |
11 895 3 | 8003 | 8053 | 8223 8363 | 813 | 15! 91 | goq 3
12 896 3 | Bor 3| 8065 | o003 | 837° | 8523 16 ! 10! | 809
13 897 3 | 8023 | 8073 | 853 | 838 | 223| 18! 1!} osw0?
14 898 3| 8033 | 8083 ) 8403 ] 8393 sa03 | sV | 120 | 8113

NOTES

1. ABSOLUTE PRESSURE
2. ABSOLUTE PRESSURE MINUS VARIABLE REFERENCE PRESSURE

3. AC COMPONENT WITH MAXIMUM DC SUPPRESSION (ELECTRICAL BIAS)

Figure 13.- Tape recorder channel listings - vane installed.
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CHANNEL RECORDER NUMBER
NO. 1 2 3 4 5 6 7 8 9
1 VOICE | VOICE | VOICE | VOICE | VOICE | VOICE | VOICE | VOICE | VOICE
2 TIME | TIME | TIME | TIME | TIME | TIME | TIME | TIME | TIME
3 870 2 | 8902 | 8752 | 8852 | 8702 | 870 2 |PLUG | PLUG 870 2
SLEEVE | SLEEVE
4 8752 | 8722 | 876 2 | 886 2 | 8712 | 874 2 |BYPASS | BYPASS | 871 2
5 880 2 | 8912 | 8772 | 8872 | 8732 | 8852 |.8722 | 8722 | 8722
6 8852 | 8772 | 8782 | 888 2 | 874 2 241 6 1 231 | 8732
7 874 2 | 8922 | 8792 | 8892 [ 830 2 54 1 71 | = | 8742
8 879 2 | 8822 | 8802 | 8023 | 8313 | 8343 g1 51 ] 8852
9 884 2 | 8932 | 8812 | 8203 | 8323 | 8353 10! a4l | gse 2.
10 889 2 | 8872 | 8822 | 8213 | 8333 | 8503 13 1 51 | gg72
11 8953 | 900! | 8832 | 8223 | 8363 | 851 3 15 1 91 | 8882
12 896 3 211 | 8842 | 8233 | 837 3| 8523 16 1 101 | 889 2
13 87 3 141 | 811 | 8353 | 8383 27 3 18 1 111 | 890l
14 888 3 521§ 8921 | 8403 | 8393 | 8403 20 1 121 | 8031
NOTES

1. ABSOLUTE PRESSURE
2, ABSOLUTE PRESSURE MINUS VARIABLE REFERENCE PRESSURE
3. AC COMPONENT WITH MAXIMUM DC SUPPRESSION (ELECTRICAL BIAS)

Figure 14.- Tape recorder chamnel listings - no vane.
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700

713

711

713

o PROBE NO. 1
60°
0.020 DIA
705
o PROBE NO. 2
710
711
PROBE NO. 3
712 714 ° (WITH TYPICAL HOOKUP)
713
P712P710
P71y

Figure 15.- Conical probe configuration.
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O STEADY-STATE TOTAL PROBES
0 STEADY-STATE STATIC TAPS
® 8 DYNAMIC PROBES (SHOWN

FOR REFERENCE) s e g

VIEW LOOKING AFT

€3)
Figure 16.- Concluded.
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My = 3.0
VANE ANGLE = (°

TUNNEL ¢
6 _RMS
PTO PROBE NO.
O ° 0074 COWL LI P ) oS
0.0077 |
CENTERBODY
0.0174 S

0.0167 0.0112 0.0057

0.0063

0.0126

0.0126

VIEW LOOKING AFT
MS21.05

Figure 23.- Typical turbulence values, external rake pressure probes.
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Figure 24.- Engine face total pressures vs time, My

117



'695°0 = oum\m ‘0'c = 9 ‘oury sA seanssoid Tel0] eJeF outduy -'G7 oInSIg
(|IVY oSH “TIVM LSTIVAN 380dd)

é;,})ézé?%i/z I I %,

, ;o

aNOJ3S 170

" k 3',} }E};%}i
R}?J){ \}ila){\{

-

,}

mmmm

ORI

¢/8d

ISd 1°¢ = n_dk

e W\ e, 8%, P

(DIVY oSH ‘anH 1STAVAN 30Ud) 0/8d

118



0°¢ = oW “0.8d 990ad ‘A1Tsusp AITTIqeqod -°9Z 9In3Tg

.. . I S i .
P S +
L
———tim +
DDV SDUPENP PN :
——— — -
T T 3 1
e + +
[ : et
+ T v T
. N
i
T
v N : ! -
— t
> e — -
.. - —— -
— - T
P 1

:
L ool el bt — — i m—
: had Bment ; . B : ; -
Bud S Dl e ; s pen ,
i — T - s R
- i - —p—t - - —_ ¥ ——  ————
T + 1 by 4
IuL..‘“ : B Brmee + Tt m . . “l 4
DIk . : s T . IS
s e : - o4 i T
N i —— B O .
T T b : - 3 :
) W RS v ; i DR It — ‘
A I pudut s it ;- - L
e T — T T 1
+ _F - [ RN (U SUPNE SRR NP S — —
T -uu%mwu.h, T o
T i ;

1°0

z°0

£°0

0

ALISN3AQ ALINIdvEO0dd

119



"pPopNIdU0) -9z SINIT]

. -4
-t . — e —— B ety - g e
bepe . — PR EI.
T - —— — -—-
+——t
i ST
1 » ——
! 1
\ -
T .
—
| B
T RN . o i
i i 1 17
1
It ! i
158 RS i 1 i i
. T [N A A R N
T ¥ D T T
T i } H M
I T oTT ! i M|
I M o B v 1
[ IR 1 L H
SO AR A I NS0 AOER SLURIN N AT
711 ! PR .
- : +
+
;
™ I
! N
1] : :
1 I I} T
’ T
} .
Tt -
Tt
: JS [DUREREDE) NEERRS NSRS
] Ul T
I - .
] - — b - - —
: S ) 1 IRERA -
- Y W ‘ ey -
LA, * R » - -
RN SRS ' - D % -
B T T TETT T
- T i et s patun -
IS S S
- - j — e — ]
- R
——r +{——q-"
: e el
s S N ]
. — P SO S, NN
1 et zdecrd > re A ol

1’0

ALY

£ 0

h°0

ALISN3Q ALITIGvE0¥d

120



"0°¢ = °W ‘ps8d 9qoxd ‘Aatsusp AATTTqeqoid -° L7 9IndT]
(e)

T
— 1°0
= I
T
1
=+
TR R
- 4
B
1 1T N O
. ]
t
— remspefrt
; :
4
T L
T ] T RADLAN 0 B IR
[
- T '
,M T
_ ¢°0
# r i ' — N
| 7 e : I
1 Tt t T
- ] I
= " st : :
) 1 AL D
! ! P DRI
) t i Bt - . 1 7
T ! i
1 = HIM
1 1
1. T T .1.*, T (i 1 T 1 | DI
T 1y M g 1] T TV W e A
i e o i 1 it (NI BN
; : EREECES i LS 0 0 O A
=T R ¥ L1
AN‘ N B 1 ——— i : T
1o b o | ] ;
1 =t T T H I !
: i T nEas - i
Eee; - . : i f
paaws , : - : ;
: b t
R —_ [N Y i i - : + ; T ¢_
41 T 15 N DR NOGRE B e T 188 S i : f o
: 1 )| L H ] i 1
17 t Sy B I SO I 1 ' T | g g
m,w . T - -+ T T + H I _ "
o) R e I ] PRaS o T " i
IIr,“ W. I 1_ m_<~ - i i _ m_ m
+ 4 — PRSI S —— .~ i 4 i
i 1 |8 1 I i " i i . by i1

121

ALISNIQ ALITI8vE0dd



pepniouo) -°/z 2indiq
()

it * J— = g

[EPUINGY SURSNINIDES SPUUN I SN PGE SDURU (SN, S

i oeniunt IDEDENRN! D

s Rl R ey o S

- 1l Y
I . H
I 1 IR B Pl
I ot -
I T : i
T T \ T
T : __ =T
: i
} : T Ly ———t
I i L R I
] 1 ESENE B e 1 1
3 RN
- 4 ' !
1 1 "
] | 1 NS TR It
' T t T
= 1 T I
L P H T
: . i
T N T T Tt
" : TN D
AR i T
: 4+
T f Y
7 = I e
e ] I
i i M R W
I 13 AN N
1 I M IO
1l 1 T [
1 t T
7 7
i
i ' :
+
T
Hill
1T
T
PRIDENSS (U
1

BRuEE Byt

s Bl i
i o :..mﬂ Jr~ i it
Y .~L \H+ 11
Fend + - ‘ + 4
i i -t e i b H gt
1 § 4 4+t
e THa 13
ot 1 .
T + - H ;

bt b4 et §

COHITLT

ALISN3A ALINISVEO¥d

122



*STBAISQUT BlEp TEDT1STIIBIS -°§7 9InTg
Viva TWLI9I4 dNOD3S S0°0

T il
| g 1_ < >< é_ \i_\g\g\{

Viva WVLIOIA ANOJ3S-02°0 —m= ot

NN\

V1ivd 907TvNV ANOJ3S-S

V1va 90TVYNY ON0D3S-S e | B 2

QE003d V1iva JLNNIW-L -]

123



*L18°0 = oum\mpm ‘0°s = W ‘STRAIS]UT PUODSIS-G JUSISFFTIP IO SUOTIOUNG

(®)

L1susp L3TTTGRqOId -°67 ANTT

S
g 4 ¢ 4 1 0 (S AS ¢~ 4 S- ¢ IS
S f ¢ Z 1 0 - AT - S ¢ 3v0S
S i < 4 I S S 1 37v0S
0
H‘
z°
Me
. L
¢ 3OS ‘NNY OINI SILNNIW § 7| L
. _
¢ FI¥OS ‘NN OLNI SILONIW € 0/8 380¥d

T 37¥2S ‘NNY OLNI FLNNIW T |

B 1 1 1 i m.,

ALISN3d ALITI9VE0dd

124



"PSNUTIUO) -°6Z INIT]

(a)
S f g z I 0 ¢ 3VIS
q h ¢ Z 1 G- Z 35S
S 4 1 Z - G- T 37Vv2S
¢ 3OS
‘NNY OLNI SIINNIW §
Z 3OS
‘N0 OINI SALANIW € _
1 3705
‘NNY OLNI JLNNIW T~
w ¢/8 390¥d
1

0

ALTSNIG ALITI9VE0Yd

125



"PepNIdU0) -6z 9ANST]

(°)

SWY
9 f ¢ z I I- z- g- 7= G- ¢ 3VIS
9 ) ¢ A 1 0 1- z- ¢- - = Z 3OS
S ) g z 1 0 - o ¢- - S- T 3OS
HO
No
¢ IVIS
‘NNY OLNI SILNNIW §
. MO
Z 37V0S ‘
‘NN OANI SILANIW €]
+~a
= _ " '
, [ 3Vvos ! H48 390%d
NN OINI ALANIW T |
] 1 1 m.

ALISN3Q ALINIgvaoud

126



"595°0 = 0¥q/%%d ‘0°¢ = OW ‘STEAISQUT pUODSS-§ JUSIOFFTP 10F SUOTIOUNF ALTSUSp AITTTRqOId -° (0§ @InBTd
(e)

S
g ¢- = G- ¢ IWIS
z- §- y= §- T FWOS
1- - - 4 - T 3OS
\ 0
I
! 3
] . 8
4
&
‘NNd OLNI SILNNIW G- r
3
lw)}
m
: ¢ &
zawos | R 3
‘NN OINI S3LANIW ¢ — % | \
.
, T 319S 0/g 390%d
NNY OLNI JLONIW T |
I 1 1 | G*

127



*penuUIIUQ) -°(¢ OINJT

(9)

SWY
f 9 Z 1 0 1- z- ¢- ¢ IS
G H ¢ Z I 0 1- Z- ¢—- 2 3IMWOS
q U] ¢ Z 1 z- ¢— 1 3JVIS
*tgs&euﬁg y o
_;e;fsf
Me
"
NQ
¢ FIVIS ‘NNY OLNI SILANIW §— | }e.
Mo.
Z 3TVOS ‘NNY OINI SILNNIW
m *NO
_ G*
T 37v2S ‘NNY OLNI JLNNIW T
i) mo
¢/8 3904d
Ne

ALISN2A ALITTIgveOud

128



‘pepnIouo) -°(g 9INITg

()
SWY
S 4 ¢ Z 1 0 1- z- $- ¢ TWIS
G 4 ¢ z 1 0 - z- ¢- 7 3OS
0 - z- ¢- 1 IWIS
v e 0
m«
f g
ot
%
Y % z°
s v
¢ Y0 ‘NN OINI SILONIW §—| | 1
fi, i
Z IS ‘NNd OINI SILANIW § —— W | | “«
N
i mn.
. F ]
N "R h
__. | "y
i .mf
e
| il
$ o il me
T 3VD0S ‘NNY OINI FINNIW 1
@5
.8 390Yd

ALISN3G ALITIEVEQO¥d

129



*L18°0 = oum\Npm ‘0°¢ = 9N ¢srearsjur pPUODaS-G JUSISIFTIP 38 AITSuop Tex3dads xomod -°T¢ oandTd
(®)

zy
00ST 0001 00§ 0
N
!
|
- ]
11 . ® 1
|
[ ﬂ__w
! t )
; b NNY OINI SILANIW § i | o
[ 048 : AT o1 °
® | A T l- —M_H mT.,

@

- - .- i u -1

. NNd OINI S3ILNNIW €

. |
- /=01
ZH 6 = HLQIMAONvE ¥3L714
NNY OINI JLNANIW T ) _
1 I I A . L /-01

130



(9)

panuruo) -'I1g SINBTH

zy
00ST 0001 005
NN¥ OINI SIUONIW § 7]
\u\\\nll
NI OINI SILONIW €
1 ‘ 7
ZH § = HLOIMONVE ¥3L714 NN OINI JLANIW T

131

/=01
AN
;=01 ol W
N
’I.I\
N
®
I _I
N
;0T



00ST

"PapNIOU0) - ¢ N3y
()

ZH

0001 00§

NNY OLNI SILANIW §

NN OINI S3IINNIW ¢

\

e

i NNY OINI ILONIW 1T

ZHS

HL

GIMANVE d3L71

/-01

132



'59S°

0061

0
0 =

Y4/

‘0°¢ =

%W €STBAIOIUT PUODSS-G JUSISIJTP 1B A1TSuep [ex3dads JeMod -°7¢ aandig

000t

(®)
zy

009

INI SILANIW §

! \\‘V
NN OANI SIUINNIW ¢

4

ZH §

= Hid

IMONvd

434714

NN OLNI Mhssz_ﬁ\\\\\»\

1

L L

¢-0T

)

ZH
"T[‘s

dv

133



*pPenUIIUC) -°7¢ oanSTi

)

ZH
00§ 0

| | .,7?44{.,)
NNY OINI SALANIW § i %
) 0\

00ST 000t

| "Wy i
NN OINI SLONIW § —F— xf}qﬂaﬁﬁl A

NNY OLNI JLNNIW H\\

ZH 9 = HLGIMONvY d3111id

i34



0041

*pepnIou0) -°z¢ 9INSTg

zy

(®)

00§

NNY OLNI SILNNIW § =]

1
,

e

S M

ZH 9

HiGIMONYEG ¥31714

NN

OLNI

JIONIW

g

—.

01

01

135



02 m
11870 = d/%*d ‘0°g = °W

s suosTiedwiod aunssoxd Te101 9deJ SUISUS TENPTAIPUT pue o3BISAR SNOSUBIUBISUI -°¢¢ 9infTjg

01 1
d/

SANODJ3S
050° 0H0° 0¢0° 0¢0° 010° )
_ _ 08°
\// gkl
=vigie
' /. ,
\.
. /g 3E0ud VV
JOVA3AV TVILvdS 340dd <0¢
06~
AN
%6°

136



59570 = 034/23d ‘0°¢ = W
‘suostaedwod aanssoxd Te101 90BJ SuISus TENPTAIPUT pue 95BISABR SNOSUBIUBISU] -'§$ SINFTJ

aN0D3S
050" Gho* 040" 560° 050" A 020" s10° 10° $00° 0,0
/8 380¥d gh
> \ \ N
\\\M A \ A /\\\/\ AN .
! ! ¢ \“ /m\ .
MU LN
__ o)
® [ w. Q | - o 41, 96~
ﬁ« © \ / O @.< R wx © \ mmv
7%& / / //// “oo.

{ N /7\ -

J9VAIAY WILVdS 390dd 0C

< 89°
G688 3G0ud

L

137

03g4/¢34g



TIME IS SHOWN IN HOURS, MINUTES, AND SECONDS.

RUN 21.208 RUN 21.209
TIME 8 26 0.0000 TIME 8 26 0.000S
PT2AYG - PTMAX-PTHMIN PT2AVG - PTMAX-PTHIN =
P70 = 0.8760 —PToavG  °© 0. 0573 P10 = 0.8753 ~—PYSAVE 0. 0484
HIRIMUM = 0.8505 INCREMENT = 0.010 MINIMUM = 0.8572 INCREMENT = 0.010
HMAXIMUM = 0.9007 INCREASING A.B.C....sE MAXIMUM = 0.8997 INCREASING A.B.C.....0
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TIME € 26 0.0010 TIME € 26 0.0015
PT2AVG . PTMAX-PTMIN _ PT2AVG PTMAX-PTMIN _

oS = 0.8713 — Ay = 0.0445 e = 0.8747 e ¢ 0.0631
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Figure 35.- Instantaneous total pressure ratio contours,
Mo = 3.0, Pt2/Ptp = 0.877.
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Figure 36.- Instantaneous_total pressure ratio contours, M, = 3.0,
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Figure 37.- Instantaneous total pressure ratio contours, My = 2.6,
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Figure 37.- Concluded.
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Figure 47.- Time-averaged total pressure ratio contours, 0.002-second
span, Mo = 3.0, Pt2/Ptp = 0.877.
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Figure 48.- Time-averaged total pressure ratio contours, 0.005-second
span, My = 3.0, P¢y/Pyq = 0.877,

177



RUN 21.209
TIME 8 26 0.0000

PTI2AVG  _ PTHAX-PTHIN

“P1o. - 0.8754 PTIAVE = 0.0425
MINIMUM = 0.8568 INCREMENT = 0.810
MAXIMUM = 0.8941 INCREASING A.B.C.....D

4

E ¢ ¢ B a(e

L ‘g‘ ‘a"nﬂcs
g < g [ BCE
2 Cg gC?® ¢
-8 c Cg gectb B¢
B¢ ce BCD BCBA
g C M S¢rcscs,

[4 <°0
s € c 8 S ¢ Coa
8 ¢ <% Fecolcs,
[4 2 Fe

c’%
CC”‘snastﬁz
Ccececct c 8

RUN 21.209

TIMC 8 26 0.0100
PT2AVG PTMAX. PTMIN .
“Froe ¢ 0.8774 T PYIAVE = 0,0460
MINIMUM = 0.8592 INCREMENT = 0.010
MAXIMUM = D,899¢F INCREASING A:B.Cv....D

@
-~
o~
@*®

[
4
[4
[4
4
€

€

Cegpgae®
Anann
P wwn @

Figure 49,- Time-averaged total pressure ratio contours, 0.010-second
span, My = 3.0, Pyy/Pyg = 0.877.
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Figure 50. Time-averaged total pressure ratio contours, 0.040-second
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Figure 51.- Steady-state total pressure ratio contours, M, = 3.0,
PtZ/PtO = 0.877.
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Figure 52.- Time-averaged total pressure ratio contours, 0.002-second
span, My = 3.0, Py2/Pyg = 0.565.
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Figure 52.- Concluded.
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Figure 53.- Time-averaged total pressure ratio contours, 0.005-second
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Figure 54.- Time-averaged total pressure ratio contours, 0.010-second
span, Mg = 3.0, Py9/P¢g = 0.565.
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Figure 55. Time-averaged total pressure. ratio contours, 0.040-second
span, M, = 3.0, PepfPrp = 0.565.
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Figure 56.- Steady-state total pressure ratio contour, My = 3.0,
Bt2/Pyg = 0.565.
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Figure 57.- Typical steady-state total pressure ratio contours and profiles,

Mo = 3.0.
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Figure 59.- Engine face total pressure during unstarts.
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M. = 2.6.
o)

192



RUN 28.257

RUN 28,257
TIME 8 1 57.0740 TIME 9 1 57.0780
PI2AVG  _ PTMAX-PTMIN _ PT2AVG . PIMAX-PTMIN _
870 = 0.9132 ~BTIAVE . - 0.1029 -3 e =z 0.9065 BTSAVE = 0,1182
MINIMUM = 0.8663 INCREMENT = 0.020 MINIMUM = 0.8553 INCREMENT = 0.020
MAXIMUM = 0.9602 INCREASING A+Bel....sE MAXIMUM = 00,9625 INCREASING AoBoCs.o.oof

¢ € ¢t
¢ ce. b ¢
,nﬂstcgggc
[

e ®

¢
¢
® " 'cg 4‘
R ® 3 .
3¢ <5 0
g¢ © €< o
tc¢ e <8 &
::c e ¢ 8 &
A
u,f‘ (t"‘.aA
[} e e S a
< 5 g ¢ ¢ 8
g% .
[ c

RUN 28.257 RUN 28,257
TIME 9 1 57,0800 TIME 8 1 57.084C
PI2AVG PIMAX-PTMIN _ PT2AVG _ PTMAX-PTMIN _
~B70. - 0.9043 BTIAVG = 0.1327 BT = 0.8803 ~B13AVG — ° 0.1443
MINIMUM = 0.8443 INCREMENT = 0.020 MINIMUM = 0.8244 INCREMENT = 0.020
MAXIMUM = 0.9644 INCREASING A.BsCo..ooF MAXIMUM = 0.9514 INCREASING A.BoCoo.asl

®
n

@&
® g
Ann
an”n L
e e o
o®® ®w
»
Preng,

nn
Ann [P,

P
P

]
e "Posct® €
g
[ R
[
¢ g 3
g ¢
g €

®)

Figure 60.- Continued.
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Figure 62.- Instantaneous total pressure ratio contours during inlet unstart,
MO = 2.9, PtZ/PtO = (0.873.
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Figure 64.- Instantaneous total pressure ratio contours during inlet unstart,
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Figure 64.- Continued.
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Figure 64.- Concluded.
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Figure 67.- Engine face turbulence variation with recovery, My = 3.0.
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Figure 67.- Continued.
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Figure 67.- Continued.
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Figure 67.- Concluded,
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Figure 68.- Engine face turbulence variation with recovery, Mo = 2.6.
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Figure 68.- Continued.
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Figure 68.- Concluded.
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Figure 69.- Engine face turbulence and total pressure ratio contour comparisons.
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Figure 69.- Concluded.
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Figure 70.- Engine face turbulence and total pressure
ratio radial profile comparisons.
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Figure 71.- Steady-state distortion versus average
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Figure 72.- Steady-state distortion versus average turbulence.
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CLOSED SYMBOL, UPSTREAM RAKES IN 315-DEGREE PLANE INSTALLED, EtZ/P = 0.563

t0
OPEN SYMBOL, UPSTREAM RAKES IN 315-DEGREE PLANE REMOVED, Etz/PtO = 0.565
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Figure 75.- Upstream rake effect on engine face turbulence, M, = 3.0.
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Figure 76.- Engine face turbulence variations with angle of attack, M, = 3.0.
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ENGINE FACE COHERENCE

9

o7

o3

O M = 3.0

]

PROBE 872 X 871

M = 2.6

0 Lo 80 120 160 200

Hz
(a)

Figure 109.- Coherence functions for adjacent probes
on the same rake.
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ENGINE FACE COHERENCE

0 40

Figure 111,

80 120 160

Hz
Coherence function inversion, M,

200

2.6.



ENGINE FACE CCHERENCE

3

!
PROBES
— O 870 X 895
0 875 X 896
]
0 Lo 80 120 160 200
Hz

Figure 112.- Engine face coherence between static and total
pressures, M, = 3.0, PtZ/PtO = 0,565,
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.8
FOR PROBE LOCATION
SEE FIGURE 11(e)
7 ©
PROBE 840 X 27
.6
9
[T jal
g .3 N
o
(8]

\\ /7&\ , E;éé = 0.565
0
A A"

'1 \

0 i - {ik il

0 Lo 80 120 160 200
Hz

Figure 113.- Subsonic diffuser coherence function for probes on
opposite sides of duct, MS 76.35, M, = 3.0.
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.8
PROBE 802 X 887
FOR PROBE LOCATION
SEE FIGURES 9, 10
.7
6 ?/<
L
(@)
g
g .5
(&
4
.3
o2 —
o1
0 \\“
10 15 20 25 30 35 40
Hz

Figure 114.- External to engine face total pressure coherence with clear air
turbu13nce, % & 3009 PtZ/PtO = 007850
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G\ + IN? DISTURBANCE
L) 5 -

STATIC PRESSURE PROBE 830

& O NO CONTROL
w A CONTROL
%
) 3
[72]
W
[+
o.
[72]
2
.2
TOTAL PRESSURE PROBE 870
.1
0
0 4 8 12 16

DISTURBANCE FREQUENCY, Hz

Figure 117. - Turbulence levels with sinusoidal exit area disturbances,
M = 3.0, Fyp/Peg = 0.846,
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Figure 124,- Position control system computer.
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Figure 126.- Control panel wiring diagram.
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Figure 131. - Flow angle in the near wake of the disturbance wedge.
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Figure 142.~ Kulite CPL-125-25 pressure sensor.
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Figure 144.- Centerbody probes.
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Figure 146.- Damaged diaphragm, ''complete' failure.
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SCREEN CONFIGURATION
(a)

Figure 147.- Probe modifications,
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