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ABSTRACT

The primary purpose of this report is to present and investigate
design procedures for compensating the elements in a phased array
antenna for impedance changes with scan angle. With proper compen-
sation it is possible to improve the overall array efficiency and
in many instances to increase the usable scan range for the array.

Also included 1s a survey of the design results for scanned array
antennas and a coverage of the factors affecting array efficiency

changes with scan angle such as mutual coupling, element placement,
surface wave coupling, and polarization. Two basic approaches to com-
pensation for impedance variations with scan angle are detailed. The
first considers the effects of structures which modify the array environ-
ment such as baffles and dielectric cover sheets. The other deals with

methods which depend on behind-the-array circuitry for matching.
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I. INTRODUCTION

As is well known, the variations of active element impedance with
scan angle in phased arrays can seriously affect array efficiency. The
primary objective of this report is to present methods to compensate for
these impedance changes and thereby increase the usuable scan range for
a given antenna array. The principal m~thods of ccmpensation are
presented in Chapter V, and the reader is immediately referred to that
chapter if that is his sole interest. The rest 2f the report is
intended as a survey which hopefully presents many of the importent
design considerations used in array theory in an easily accessible form.
Special emphasis is placed on understanding what really influences array
efficiency, and the resultant analysis separates the contributing factors
into two levels. The first ignores the particular type of element and
its mutual coupling and concentrates on the effects of element place-
ment and spacing on efficiency. The second level goes deeper by in-
cluding mutual coupling and element characteristics in the evaluation of
array performance.

In most of compensation techniques developed in this paper, it is
assumed that the system complexity is so great that it is necessary to
utilize measured data from the original array or an array simulator as
the basis for the matching. The two common ways to experimentally eval-
uate array operation are as follows:

(1) Passive Array Measurements One element (central) is excited with
all othe:ss terminated in their generator impedinces. Nulls or dips in

patterns measured under this condition usually correspond to "blind"




spots to scan for the active array. For infinite arrays nulls are ex-
pected at such points, and for finite arrays the active array can be ex-
pected to have at best a pattern dip near these scan anglea. Generally the
3 db bandwidth of the passive array element pattern is an approximate
measure of the high efficiency scan range for the active array. In
addition, coupling coefficients are defined and measured for the array
in this state, and in Chapter IV it will be shown that these can be

used to predict active array reflection coefficients and impedance be-
havior for different scan angles. The passive array measurements are
eagy-to~implement and provide considerable information about active
array characteristics.

(2) Active Array Measurements In an active array measurement all

elements are excited. Here not only v»a--ern, but reflection coefficient
and impedance can be measured directly. The trouble is that this method
is much more cumbersome than the passive a:» ay measurement in that all
of the elements have to be actively fed and properly phased at each
different beam setting. As a consequence, it is not used as frequently
as the passive array method, and it is not recommended:for prototype
arrays with a large number of elements.

Chapter II is a survey of design results for scanned array antennas
having a uniform amplitude distribution across the elements with beam
pointing accomplished by varying the progreésive element phase shift.
Included in this chapter are beamwidth and grating lohe effects. Linear,
rectangular, and equilateral triangular lattices are treated.

Chatper III delves into element efficiency from the first level

viewpoint previously defined to include such geometric effects as place-



ment and spacing. Some of the results presented here should prove
especially useful to an array designer.

Chapter IV is an attempt to introduce and summarize some of the
effects of scan angle on mutual coupling, impedance, and polarization in
infinite arrays. An approximate formula is develcped to give a qualita-
tive estimation of impedance variations with scan angle, and some of the
effects on impedance scan properties caused by certain array alterations
are examined. Also included is a fairly exhaustive analysis of active
array impedance and efficiency variations for an infinite linear array of
short dipoles which allows for the mutual impedance and pattern effects
of a real element. This analysis defines mutual coupling parameters, and
it gives a good example of their application to active array problems
where generator impedance effects must be included. Also in this chapter,
the topic of surface waves is first introduced and related to possible
degradation of the usable scan range to values below those expected
from simple grating lobe consideraticns. As will be seen, this phenomenon
severely affects the scan range of the dielectric sheet compensation
method covered in Chapter V. The subject of surface waves is treated in
great detail in Chapter V for a special array loading, however, in
Chapter IV surface wave treatment is more general in that it is intu-
itively deduced and can be applied to any array surface.

As previously stated Chapter V covers the methods used to compensate
for array impedance variations with scan angle. The approaches are
divided into those which modify the array environment with such things
as baffles, fences, or dielectric shects and those which use behind-~the-~

array circuitry for matching. Much work has been done to supplement the



work contained in the literature on these methods. As for the choice of
method it will be seen that this is largely dictated by design require-
ments. The matching dielectric sheet technique is probably cheapest

and simplest for compensating arrays of flush-mounted antenna ele-

ments, however, it lacks great precision so that extremely low VSWR's

are not to be expected, and it is often limited by surface wave effects
to usefulness over smaller scan ranges than the coupling element tech-
niques. The matching circuit techniques treated in this chapter can all
be considered variations of Hannan's scheme of coupling adjacent array
positions with susceptive networks. Again tiis method offers a range

of choices depending on the precision and scope of scan. Some effi-
clency improvement is obtained by using only pre-element matching net-
works, however, the more general method interconnects an element with its
eight closest neighbors and is capable of achieving excellent match over
fairly wide scans. Probably the main drawbacks of the connecting circuit
method are its initial expense and the complexity of the design. Still,
for arrays with a large number of elements using modular elements, it is
likely that the necessary circuitry could be incorporated into the
modules without significantly increasing the cost. Also included in this
chapter is a procedure for realizing Hannan's connecting circuit match

with the aid of a digital computer.



II. SUMMARY OF DESIGN RESULTS FOR SCANNED ARRAYS WITH UNIFORM
AMPLITUDE ILLUMINATION

A. LINEAR ARRAYS[I](Fig. 1)

k-d—

ry A S A
v v v M > X

I, Ioe-"G Ioe-i(n-l)s

L
-
t
-

Fig. 1 Linear Array

Pattern Factor (N elements, uniform amplitude distribution, far-

field pattern)

Normalized pattern factor

Ny
F =4 8in (2) (2-1)
N-N v
sin (2)
where Y =kd sin 6 - § = kd sin 6 - kxd. (2-2)

d = element spacing

k= 2n/).




Main Beam
The beam maximum occurs when ¢ = 0. Thus a beam maximum at

6 = Gs requires

§ = kd sin Gs = kxd = progressive per element phase shift

6, = beam scan angle . (2-3)

From (22 ) itis seen that the progressive phase constant to

direct the beam in the Bs-direction is given by

k_ =k sin 6 . (2-4)
X s

Grating Lobes

These are main beam maximums wiiich occur when the interelement
spacings are such that § = 0 at angles other than 6 = es in visible

space(lsinelil)

v, -I1d -
7 =t opm T [sin 6 - sin (Bs)]

Manipulating the above it can be shown that grating lobes can be

avoided in the scan range | 6 | < em if

>ja.

1
S T+ Tsine]| (2-5)

Obviously for d < A/2 no grating lobes appear in visible space.
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Half-Power Beamwidth (3 gb beamwidth) .
6.4- half-power beamw:ld;h - 62 - 61 (2-6)
vhere Fn(ei) = ,707 FN(OS) i=1, 2,
Written out this becomes
ES
707 = = S0 2.2 (2-7)

¥ et (y,/2)

For large N and c=can angles close to Ol or 92 Eq. 2~7 18 approximately

sin [(N wi)J sin[(N wiﬂ

—_—2 = . 707 - 2

N sin( 1) (N y;)
2 7

Ny

Solving the above gives the half-power points at l. + 1.39.
2,78
Thus ¢ = kd (sin 6, - sin es) =+ =5
2.78
sin 61 = gin 6_ + RdN

yielding for a linear array

91/2 = half-power beamwidth = Bin_ltsin es +- :3)‘]

-1 443)
- sin ~ [sin 6, - 3 ] (2-8)
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where es = gcan angle
L = Nd = array length + d
N = number of elements
Common Special Cases
(a) Broadside, 68 = Q¢
e 1 = 2 gin l:——L——] (2-9)

(b) Broadside, with N large and d = A/2 (optimum spacing for a

linear array)

0,= 2 sin 1 [—%ﬁl = —1*;—2-2- (radians)
Jd

3

lQ%;é (degrees) , (2-10)

i

Directivitz
2 sinngQZZ)
sin’(y/2)
sr|F_|? a0 j" sin’(Ny/2) d9
sin’(y/2)

N-1
2 sin (m k d) (2-11)
1+ -3 Z (N-m) p—

NT 1



Efficiency

The maximum theoretical efficiency for a linear array of

"{deal" radiating elements as a function of element spacing is

shown in Fig. 2 below.

0f---- 5

EFFICIENCY

Y -,

05
ELEMENT SPACING

n-%‘gfordillz

n=1ford>A\/2

Fig. 2 Maximum Efficiency of a linear Array

Comparing the abcve with the condition that d < A/2 for

elimination of grating lobes in visible space, it is seen that

d =0.5 X is an optimum choice, at least for the idealized case.

The derivation of the above plot and a far more thorough treatment

of both linear and planar array efficiencies will be covered in a

later chapter. The influence on element efficiency of using a

physical element instead of an ideal one is shown in a subsequent

analysis of an infinite linear array of elementary dipoles.
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B. PLANAR ARRAYS

v,
S S AV S
S SV
/77 AT
/S St S
'S

X

Fig. 3 Planar Array

The lattice points in a general planar array with parallelo-

gram cells are given by

Pmn = m al +n a2

For Ei = ;x and 52 = ;y’ a rectangular grid such as shown in Fig. 3

is obtained.

Pattern Array Factor (M x N array, rectangular grid, uniform

amplitude distribution, far-field)

sin[ & (k dx gind cos¢-6x)]

F(0,6) =

sin[ 5 (k dx siné cos¢-6x)]

sin{ &+ (k dy &inb sin¢-6y)]

(2-12)
gin(

N o= =N

(k dy sinb sin¢~6y)]
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Phase Increments to Point the Beam in the (es,¢s) Direction

e ——————

The main beam maximum occurs at (Gs,¢s) if
§ =kd sin® cos¢
X X 8 s
Gy = k dy sines sip¢s . (2-13)

Grating Lobes
1. Rectangular grid (Fig. 4(a))

For conical scan over the range & < 6 and 0 < ¢ < 27

the grating lobe maximum can be avoided if

d 1
Y<TF ein__T (2-14)
£
b~ 8- . aT
(a) (b)

Fig. 4 Square and Equilateral Triangular Grids
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The author can show for N > 10 that a better grating lobe

condition is

. 815
d -5
T < (2-15)
1+ |sin6 l
max

The condition in (2-14) is such that the grating lobe produces
a sidelobe of nearly the amplitude of the main beam when the
beam is aimed in the emax-direction. Equatinn 2-15, on the
other hand, limits the grating sidelcbe to a maximum amplitude
in real space equal to the first sidelobe level.

Equilateral Triangular Grid (Fig. 5)

This configuration is optimum in the sense that the number of
elements is minimized for a given area designed to have no
grating lobes in an allowed conical scan region about broadside.
For a given effective array aperture with maximum interelement

spacing to suppress grating lobes, the total areas are

(a) Square grid: Al = N12 a2

(b) Equilateral triangular grid: A, = N 2 1.155 32 = Z—— N 232.
2 2 E;' 2
2 V3 2 2
Since A2- Al' Nz =3 N1 = ,866 N1 , and hence

for the same effective areas, the equilateral triangular grid

array yields a 13.42% savings [2] in the number of elements.




Y 13
a = 60°
5] =I5,
A - X
~—dl—4

Fig. 5 Equilateral Triangular Grid Geometry

For the scanning range |6 <6 and 0 < ¢ < 27
where em = maximum scan angle, the spacing conditions necessary to

eliminate grating lobes and use the minimum number of elements are

1.155)
d = lall - 132! < =

2 A
- » (2-16)
\/‘5‘ 1 + sin em 1l + 8in em _

or, as in (2-15), limiting the amplitude cf the grating sidelobe to

that of the first sidelobe

.815

4 < l'isi = N (2-17)
sin em
For N large
a
V3 (1 + sin em) m
a. = 2 [;x cos 60° + ;y sin 60°]. (2-19)

2 VTa+sins)
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From the above
1.155)
dx = l + 8in 6 (2-20)
m
d A (2-21)

€ e————
y—1+sinem

Examples (assuming N in Eq. 2-17 is very large):
a, (45°) = d_(45°) < .678A ~+ 45° scan
a, (60°) = d, (60°) < .62 + 60° scan
a, (90°) = d (90°) < .578% ~ 90° scan

Obviously complete visible scan is possible 1f
d_ < .578)
x -—

d < .52 .
y =

Area of parallelogram = A = 51 x 22 = |a| |32| sin 60° =

)‘2

2 .
AE \/3- (1 + sin em)2

1.155 A2
2
(1 + sin em)

(2-22)

AE-




III. ELEMENT EFFICIENCY

In this chapter the effects of array geometry and interelement spac-
ing on element efficiency will be examined. The resultant efficiencies
are theoretical maximums obtained by postulating and using "ideal"
radiating elements in infinite arrays. The geometries considered are
linear, planar with a rectangular grid, planar with a triangular grid,
and planar with an arbitrary parallelogram grid.

As 1s well known, efficiency limits are affected by the trade-off
between grating lobe suppression and mutual coupling in phased arrays
used for scanning. For regularly spaced and uniformly illuminatea array
elements, grating lobes can be eliminated by keeping the element spacings
below certain values. However, problems arise because decreasing element
spacings normally increases the mutual coupling between elements, leading
to impedance mismatches and consequent power reflecticn and efficiency
losses that vary with scan angle. This section will initially ignore
impedance effects and concentrate on how the array geometry affects the
amount of power actually radiated into visible space as compared with
the power which is available from the array. As will be seen, even
this restricted definition of efficiency puts conflicting demands on
element spacing in that 100% efficiency typically requires spacings

greater than the maximum allowed to avoid grating lobes.

A. Definitions

In this analysis the following definitions are used: [3]

15
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(1) Element efficiency

o Power Radiated - 1 . Power Reflected

Power Available Power Available (3-1)
(2) Directive gain
Q4r U (8,6) _ _47U(B,4) _
Sd(e’¢) S/ U 49 Power Radiated (3-2)

where U(6,¢) = radiation intensity and dQ = differential solid angle.

(3) Realized gain

4m U (6,¢) - _
gr(9,¢) ® Power Available n 8d (3-3)

(4) Efficiency in terms of reflection coefficient

1 K 2
n=1-= J I IF(al,a2)| da, da, (3-4)
m

[0} [o)

where
I' = reflection coefficient

apsa, = orthogonal phasing terms

(5) An ideal element is one whose

(a) element pattern has no grating lobes in the square

lall < m and |a2| < m for the passive array environment.

(b) reflection coefficient is zero (I = 0) for all real angles

of scan for the main beam in the active array configuration.
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B. Linear Arrays (Fig. 6) .

]

Fig., 6 Linear Array Geometry

Here
T
newl- %— j |F(a)|2 do (3-5)
o
where
a = kd sin 6 = 2 ; d sin 6 .,

From the definition of an ideal element

Ir| =0 visible region (|sin 8| < 1)

I[T| = 1 4invisible region (|sin 6| > 1) .

Therefore for d < A/2 o

T'(a) = 0 for 0 < a < (2r d/})

=1 for (2r d/\) <a <71m,
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and hence

nel- %-(ﬂ - 3—%—5 ) = 2d/x for d < A/2

=1ford> )/2 (3-6)

& O == ===

~ |

> |

O

2 |

W |

o |

“w |

t |

—
o5 %

SPACING

Fig., 7 1Ideal Element Efficiency for a Linear Array

C. Rectangular Grid Arrays (Fig. 8)

Consider an infinite rectangular array in direction cosine

space
v, = cos Y = sin 6 cos ¢

v, = cos Yy = gin 6 sin ¢ (3-7)




4 0%
- L%
/ / / Y A A
d
/ ///
/ /Ldy.?/
X
Fig. 8 Rectangular Grid
Then
o, = k dx vl - 27 d1 sin 6 cos ¢
a, = k dy v, = 27 d2 sin 8 sin ¢ (3-8)
and
a
vi = 27 i
1
a
2
2 = 77 d (3-9)
2 v
2
|
2
/—vl+v2-1
</ —

Fig. 9 Direction Cosine Space
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The invisible-visible region boundary is the circle

, =1 . (3-10)

Transforming to the % 9, plane produces an ellipse (Fig. 10)

ul 2 az 2
77 d + [2« d -1 (3-11)
1 2

with intercepts at «a

=+ 27 d, and o, = + 27 d

1 1 2 2°
2
T
2w dz
2nd
: 4 il
-‘n' Otl
invisible -
\ — visible
l boundary
-

Fig 10 « a, or Phase Space

1

Noting that

1 m n 2
nel- ﬂ—z I I Ir(ul, a2)§ dﬁl. d‘lz (3-12)
o



and

21

F(al. az) = 0 inside the ellipse in phase space (See Fig. 10)

= 1 outside the ellipse,
it follows that

T T
nzn - "2 - j J |I‘|2 dal daz
o o

is numerically equal to the area common to the ellipse and the

square 0 < a. < mand 0 < o, < = (shown shaded in Fig. 10).

1 2

Results:

(1) For small element spacing.(d1 and d, < 0.5,

nem dle

(2) For sufficiently large spacings (d1 >0.5 and d, >

2

(3) For d, > 0.5 and
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N
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FIG. 11
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(4) For .5 < d, < ,707 and

1
WS < d2 < 1 ,
1/ 1 2
2 Y1 - G3

) q/ 1.2 BV _3;_4/ 12
n =24, (Zd )"+ 2d) 4y { 2d 2d; 2d, 2d
+ sin (-—) - sin T4/1 - (-1— 2 }
4, 2d,

The results for several different ratios dz/d1 are shown plotted in

~

Fig. 11.

D. General Parallelogram Lattice (Fig. 12)

by
/ Sl s/

7
"/
/Y

A E /

=M a + N 52

= lattice point
vector
e X

Q)
TN

Fig. 12 Parallelogram Jattice

* All distances are expressed as fractions of free space waveleugth.

o was- W AR 2+ B
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U-space is defined by the transformation

v, = ginf cos¢ = Ul/a1

1

—U1 cosé U2
v, = sind sin¢ = + . (3-13)

a1 sing a2 sing

Substituting the above in the visible-invisible regiow boundary

equation

produces the ellipse

U1 2 -Ul coség U2 2
sing + 324;1n£ -1 (3-14)

+ a
4 1
in U-space. Kahn [3] shows that in U-space for ideal elements the
efficiency is equal to the area common to the invisible-visible
boundary ellipse and a unit square. The equivalent area is shown

shaded in Fig. 13 below.
u,

Fig. 13 U-space
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The ellipse has:

2 a. a, cosE |
TILT ANGLE T = 3 tan 1[ —-2—1-——2—2———J (3-15)
81 — &
a2 sin§
AXIAL RATIO AR = tanrt (3-16)
al tant - 32 cosé
INTERCEPTS U1 = 0, U2 = a, sing
U, =0, U =a sinf . (3-17)

Equilateral Triangular Grid

This important special case has a, =a,=a and £ = 60°,

From the above

T = /4 or 45°

AR =3

intercepts: Ul =0, U2 = 0.866a

= 0, U = 0.866a,

9y 1

and the appropriate boundaries in U-space are sketched below.

- "%)/
L

Fig. 14 U-space for an Equilateral Triangular Grid
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Calculations for the eqrilateral triangular grid show that for

ra V3

(1) a<0.5 n=2%

(2) 0.5 <a < 1/)/3=0,5773,

n = .75R +,/3 a’ 2 1-(1-,';1:-2-1*—‘*
T -1.1-R, _ . -1 LiR
+ 3 + sin 7| Aa] [ 43{]
2

where R = 12a™ - 3

3 1/4/3<a< 1.0,
1+R l+R 1+R 1+R l 1+R
n=HR_OAD Y (aanﬁ_( D)

(4) ac<1.0,

n=1,0

and the results are plotted in Fig. 15.

Kahn [3] has worked out several other cases which might prove
useful, and these are presented in Figs. 16 and 17 below. PFigure 16
shows the effect on efficiency of changing the sidelength ratio,
azlal, on a 60° parallelogram lattice. Note that the commonly used
equilateral case where a, = a, is in a sense worst from an effic~-
iency standpoint. 1In Fig. 17 the corner angle of a rhombic grid

has been varied, and it is observed that for a given element spacing,

efficiency increases as the angle approaches 90°.
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EFFICIENCY

SPACING

Fig. 16 Effect of Sidelength Ratio in a 60° Parallelogram Lattice

EFFICIENCY

5 1.0 .5

Fig. 17 Effect of Corner Angle in a Rhombic Lattice
Some sample calculations using the information in Figs. 11, 15, 16

and 17 which might prove interesting are given by the following examj.les:

(1) Square grid - 1007 efficiency requires d1 = d2 = A/V2 = 0.707);

maximum scan with grating lobe suppression

7072 = —= > 8 = 24.5° for 100% efficiency

1 + sind
m
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(2) Equilateral triangular grid - 100% efficiency requires a = A
a
maximum scan without grating lobe +7%-- 1.155/(1+sin6m)

> em * 9° for 1007 efficiency

(3) 60° scan, square grid -
dx = dy = (1.0/1.866)x = 0.5361;

from Fig. 11, Nmax - 0.85

(4) 60° scan, equilateral triangular grid -

d =a = a, = ,62);

X 1 2
from Fig. 15, Noax 0.8435

(5) 90° scan, square grid -
d =d = 0.5);
X y

from Fig. 11, Mmax - 0.785

(6) 90° scan, equilateral triangular grid -

d =a, = = 0,5773);

X 1 a2

from Fig. 15, Npax =~ 0.802.




IV. EFFECTS OF SCAN ANGLE ON IMPEDANCE, MUTUAL COUPLING, AND
POLARIZATION IN INFINITE ARRAYS.

The aim of this chapter is to introduce some of the terminology,
analysis techniques, and difficulties associated with impedance and mutual
coupling in scanned arrays. The early portion of the chapter contains
some graphical results and a few formulas taken from the literature which
are intended to give a qualitative feel for the behavior expected for
array impedance variations with scan angle. Included are graphs showing
special examples of the effects on impedance of ground planes, grating
lobes, and element spacing. The primary literature sources for these
results are Hansen[4] and Allen and Diamord [5] and these references are
recommended for more comprehensive treatments and extensive bibliographies
on the subject. Once some of the qualitative array effects are known,
the active impedance and efficiency of an infinite linear array of elemen-
tary dipoles are calculated. The details of one of the common techniques
for analyzing infinite arrays are illustrated by this application. 1In
addition, this chapter contains an introduction to the troublesome effects
of coupling waves which often produce gain losses at scan angles prior to
grating lobe effects. Lastly, a qualitative summary of some of the
factors that influence the polarization characteristics of a scanned
array is given.

A. Approximate Impedance (or Admittance) Variations with Scan Angle

In this analysis it is assumed that the arrays are infinite cr large

enough to approximate the behavior of an infinite array, and hence, the

method of periodic unit cells [6] may be used for calculations. By look=-

30
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ing at an array as an infinite sequence of periodic cells, it is possible
to obtain an approximate formula for scan dependent impedance variations
from geometric and physical considerations. For a beam streered in the
6-direction the periodic cells are aligned #s shown in Fig. 18. Note

that the results to be obtained are especially representative of arrays cf

® o
I

(a) E-plane scan (b) H-plane scan
Fig. 18 Unit Cell in Infinite Array

short slots or dipoles.

By the equivalence principle [31] most array source elements can be
described by the appropriate combination of surface currents or current
filaments (magnetic/electric). For an E-plane scan the effective

electric current contributing to the far-field (Ee) is

Lgs™ Is cos 6 (4-1)

implying

0
Reff cos 0 (4-2)
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where R° = broadside cell impedance.

Similarly, for the H-plane scan

I
8
Ieff cos B (4-3)
implying
Reff = R cos 8. (4-4)

If mutual coupling is ignored, the above approack shows that the
approximate impedance or admittance variation of the array with scan

angle, 6, takes one of forms given in the following table:

E/H-plane l H/E~plane

1
cos cos 6

The effective impedance variations, as well as the resultant reflection

coefficients for these cases, are shown plotted in Fig. 19 below.

>
)

o

REFLECTION COEFFICIENT ,
i

Fig. 19 Approximate Impedance and Reflection Coefficient Variation with
Scen Angle
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B. Planar Arrays of Short Dipoles

For an infinite array of short dipoles and in the absence of a ground

plane, the active impedance for an arbitrary scan position (6, ¢) can be

shown to be [7]

2 2
- N ¥ (1 - sin 6cos ¢ N X -
za 2d d Ve ( cosf )+id d (4~5)
X Yy X Yy
where
[sin® cos¢ + :—A]Z -1 (4-6)
] ]
x'%\/% ) ) a2 . 1/2
n  [(sin® cos¢ + d—) + (8iné sin¢g + a-) - 1]
X y

N = constant dependent on type of element and geometry

|
E excludes the propagating modes.

If this array is placed a height, h, abuve a conducting ground plane,

the active impedance becomes [7]

(o]
where

2 2 "
- N B l - sin 6 cos ¢ 2
R, T dy \’e [ o 0 ] sin” (kh cos 6)

i

N 2
[q—d—y—] Zo sin” (hk cos 6)

Z
N 0
Xa ——-—dy dx [X + 7 sin (2 kh cos 8)] ,
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The resistive components of impedance for the case without the ground

plane and for the array positioned A/4 above & ground plane are compared

in Fig. 20 below.

NORMALIZED RESISTANCE

.6
.4

.2
1,0
B
6
K

/
J+H—PLANE
; WITHOUT GROUND PLANE

/ H-PLANE

WITH GROUND PLANE

E~PLANE WITHOUT
GROUND PLANE

E-PLANE WITH
GROUND PLANE

L L 1 il

15 30° 45" 60 75° 90

SCAN ANGLE

Fig. 20 Resistance versus Scan Angle

Note that for H-plane scan the ground plane reduces the VSWR to less

than 1.2 for 8 < 65°.

C. Ground Plane, Grating Lobe, and Element Spacing Effects in Half-wave

Dipole Arrays

In this section the behavior of some infinite or very large planar

arrays of A/2 dipoles are graphically presented.



3.0L
H=-PLANE SCAN
8 2.5 (g=90")
g A/2 dipoles
0 2.0 ---- elementary dipoles
&
a
E 1.5
s
2 ° D-PLANE
05
E—-PLANE SCAN
(g=0°
L 1 k y |
20° 40° 60° 80 SCAN ANGLE
(a) Without ground plane
S
~ H-PLANE
)
loo "h—
g R~
= \\ \\
& - \ \
g N
N 5| o-pLane A\
: O\
\
=4 [ \ \
E-PLANE \ N\
N \
N
1 1 L

20° 40O 60 80 SCAN ANGLE

(b) With ground plane

Fig. 21 Effect of Ground Plane on Dipole Array Resistance

In Fig. 21 it is observed that with the ground plane;(l) D-and H-plane
resistances go to 0 instead of infinity as 0~ 90°and (2) H-plane resistance

is fairly constant out to scans of 60°.
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Fig. 22 Spacing and Grating Lobe Effects on Impedance
(A/2 dipoles, A/4 above a ground plane) [8]



Comments on Fig. 22:

(1) The introduction of the grating lobe into visible space greatly per-

turbs impedance and efficiency.

(2) The broadside resistance was reduced from 105 to 80 ohms as the

element spacing was changed from 0.6) to 0.7A.

(3) A 65x149 array was calculated to almost exactly fit the above curves

for infinite arrays.

Fig. 23 Smith Chart Locus of Driving Impedance Variatioms
with Scan Angle (1/2 dipoles, d_ = dy = 1/2) [9]

Gain
141 (9x11 array of
center 1.24 X/2 dipoles,
element spaced A/2, )\/4
above a ground
‘. -
" L
.‘JP
.2"
i 1 L 1 1 1

0° 20° 40° 650° 80°

Fig. 24 E-Plane Gain vs Scan Angle [9]

o Y A il A0 R 0 A Y MR LA i 5 N L4 9 st

T .
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H-PLANE SCAN 5+

isolated dipole

=0.5)

L ] i J i 4 ] A

~80°  -60° =-40° -20° 0° 20° 40° 60° 80°

Fig. 25 Effect of Element Spacing on Gain vs Scan Angle
(7x9 array of A/2 dipoles) [10]
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D. Calculations of A-tive Impedance and Efficiency for an Infinite
Linear Array of Dipoles

As an example of the procedure involved in a theoretical analysis of
impedance and efficiency effects, it is useful to consider Wasylkiwskyj
and Kahn's [11] treatment of an infinite, linear array of elementary
dipoles. In contrast to the earlier section on element efficiency, the
influences of physical elements on the system and their contributions to
mutual coupling will be included in this solution. Among the results
obtained are the observations (1) that the impedance variation with scan
angle is dependent on the orientation of the dipole elements with respect
to the array axis and (2) that there exists an alignment where thz imped-
ance is a constant, independent of scan angle.

The solution is obtained by using the 'free excitation' method [12]
which models the drive to each array antenna element with an appropriately
phased generator source having an impedance, Zg (Fig. 26). The system
is then analyzed in terms of the scattering or coupling coefficients at
the interface to the radiating elements. A distinctive property of such
a feed system is that it has constant incident or 'available' power.

As a review, the basic equations and definitions used for scattering

are noted. The scattering raxtrix equation is

[b] = [5][al, (4-7)

and the equation governing a single pecrt for a linear array is
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N
b_ = lim ) s
n -N

N>

N
= lim 1 C_a (4-8)
Nooo -N nm m

where
th +
a = incident wave from the m~ port = V /Z8
bn = reflected wave at the nth port = V-/Z8

S =C = -=— = gcattering or coupling coefficient

The quantity Snm traditionally has been used to denote a scattering coef-
ficient. In this treatment it will be used interchangeably with the

term "coupling coefficient" denoted Cnm vhich is often adopted by those
working in array theory. Unless stated otherwise, the symbol Cnm will be
used throughout the remainder of this report. In terms of the total

voltage and current

— —— — —

nth port

Fig. 26 Equivalent Circuit for nth Port
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at the nth port it can be shown that

—
Vn + Z8 In =2 V'Rg a (4-9)
V =27 %I =2 R b (4-10)
n g n V g n

where Zg = Rg + 1 X8 = generator impedance. It is also a consequence of

the definition of scattering coefficients that

g 2 _ power ton
l nmI power available at n due to m with all
other ports passively terminated in ZS

which again makes obvious the origin of the term, coupling coefficient.
Note that Debski and Hannan [13] showed that it is possible to measure
these parameters and use the results as the basis for calculations of
active array performance. Their scheme involves a passive array measure-
ment where one element is excited, the rest are terminated in their
matched generator impedances, and the wave transfers to various elements
are measured to determine respective coupling coefficients.

For the infinite linear array of dipoles shown in Fig. 27 {all 1lie
in the xy-plane and are oriented at an angle Yo with respect to the

array axis),
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n-1 n n+l
Yo
™ x
short dipoies
d

Fig. 27 Infinite Linear Array of Short Dipoles

the voltage at the n:h port is given by an infinite difference equat: _a

N

V. = lim z, I (4-11)
n Noreo _g k "n+k
\Y
z, = —
k In+k
all other I's = 0 . (4-12)

Desiring to further correlate the impedance and coupling relations at

the ntP port, the following approach is taken. From (4-9) for a =0it

follows that

(4-13)
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Substituting (4-13) into (4-10) yields

1
b o [ -2, -2*1 1, = - /R8 I (4-14)
' g

a =0
m
Therefore
bm
Cm‘n - E; = -MES. Im for n ¥ m (4-15)
| L
%
j#n
and similarly
Im
Con ™ 1 -,/Rg E; for n = m. (4-16)

By substituting the expansion (4-11) into (4-9), (4-9) can be written

. N
) 2‘/38 a_ = lim % Zg L+ I z8 (4-17)

N+ =
Now an excitation is applied at m which is adjusted to cause a net wcve

of unity to be incident at n. Equation (4-17) becomes

2 /Rg a =2 /Rg 8™ L2 Lkmt % I 4718

-

- where a = Gnm = unit incident wave at n due to the excitation at m with
" no all other ports passively terminated in Z8

~

Ip n " current at p due to the above excitation at m.
’
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- © |, 2
If1I are constrained such that Z I < » and if
n,m = |"n,m
1 T -i(m=-n)§
Gmn i J e dZ = Kronecker deltsa, (4-19)
-m
then In can be made the nth term coefficient in a Fourier series
’
expansion of a function F(E)
z 1 m -1(n-m) €
In,m "7 f F(6) e dg (4-20)

-7
Using (4-19) and (4-20) in (4-18) ylelds

w m
2 R = j 1™ gy, L f F(g)e LR 4

-7 k -7

™
- f F(g) e 10ME 4 (4-21)
g 2m

-m

Then equating integrands in (4-21) and solving for F({) gives

2,/R 2 \/R
B - ——E (4-22)

F(E) =

-1ikg
2y + ) z,e 2, + 2()
where Z(£) is defined as
¥ ke
Z(E) = lim z z, e . (4-23)

Noe =N
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The current I is thus
nm

~ T 2+\/R
I -%—" J — & __ it(n-m) e, (4=24)

B Z +2Z
nm ! % €3]

and by superposition the total current at n is

© 2 R ®
. T L ™ img, -inf
In = z In,m a f zg T 200 [-g a e ] e de

- (4-25)

mase=0co

Consequently the scattering matrix elements can be expressed

e-i&(n-m)

28—+_Z-(-gj_ dg (4-26)

R n
=8 -5 I
m

nm m
=T

or using (4-19) for Gnm and manipulating (4-26) the coupling coefficient

expression can be rearranged to give (*denotes complex conjugate)

Z(E) -Z *
¢ . 1 ™ Z(§
nm 2 Z(t) +zg

-

o ie(mmm) 4 (4-27)

It is now noted that

N ~ipa
Z(a) = 1lim Z z e P
N =N P
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is identical to the active impedance cf an infinite array excited by equal

aniplitudes and a linear phase taper, o. This is true bacause for

a = e-ima the gum in the integrand of (4-25) equals 27§(£-a) where & is

the Dirac delta function, and hence integration of (4-25) produces

2 /R
I (o) = Y g e-ina
n Zg + Z(a)

o = phase tuper = kd sin 6

which can be written

-ina
Z8 + Z(a) In(a) -2, /R8 e ) (4-28)

Looking at (4-9) with a = e—ina

-ina
2 Rg an 2, /R.g e = Vn + In Z8
and comparing with (4-28), it is immediately apparent that

Vh = Z(a) In(a)

or
v th
Z(a) = TE-- active input impedance of the n~ port. (4-29)
n
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Since Z(a) is the load impedance seen by the generator at the nth

elenent, the reflection coefficient is

Z(a) - Z %

F'(a) =
Z(a) + Z8

. (4-30)

But Eq. 4-27 then implies that Cmn are the Fourier series coefficients in

an expansion for I'(a). Hence, it is seen that

o 1 (n-m)a Z(a) - Z *
M@ = JcC e - —-———-&—Z(a) 5 (4-31)
mme=oc 8
and
T
R
-7
1 ™ Z(a) - Z * ~1 (n-m)a
T 2n J Z(a) + Z8 da - (4-32)

From Eqs. 4-30, 4-31, and 4-32 it is thus possible to determine active
element impedance variations with scan knowing the reflection coefficieat
behavior and to relate coupling coefficients to the reflection coefficient.
Although these results were obtained for a one-dimensional array, the seme
procedures can be employed to extend them te multi-dimensional arrays.

Recalling the definition of element efficiency given on page 16

n =1 - BOWer reflected _ power radiated (4-33)
power available power available
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and using the above formulations, it follows from Parseval's theorem

that

m
|2 =1 - L f 'I‘(a)l2 da

-T

1 [n Zia) = 2 %2
s ] - E-‘r'r- ! Z(G) T zg do (4-34)

-1

Taking the first term on the right hand side into the integral and doing

the required algebra yields

2 2 7
T |z4z_|© - |2-z2_*| R
n =3 & - S { f&-ﬁ[&.ﬂ_ da

2 2
L |24z, | moon 2G|

(4-35)

From (4-34) a linear array having a phase taper o, = kd Sines is seen to

be impedance matched at the scarn angle, 68, if
* o . -3 Y
ZS Z(as) (4-36)

The invisible-visible region constraints give
Real[Z(a)] > O and IT(a)] <1 for |a]< kd < = (a)
(4-37)

Real(Z(a)] = 0 and |T(«)| = 1 for kd < |al . (b)

For the _onditions in (4-37a) real power is radiated, aad for the
conditions of (4-37t), Z(a) is purely reactive and there is no time

average powver.,
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Since the visible region accounts for the radiated power, Eq. 4-35

can be written

2R kd
n = —& Real 2‘2 do for 0 <kd < . (4-38)
m |z +z]
~kd g

Again using Hannan's definition of an "ideal" element as one which is
matched for all angles of scan in the visible region, i.e. ZB* = Z(a)
for all |aj < kd, the maximum or ideal efficiency for an infinite linear

array is found to be

2R (kd R kd 4 <
"max " -731 f 7 do "{ "
" (2R.) 1.0, kd > , (4~39)
-kd

Wasylkiwskyj and Kahn [14] calculated impedance and efficiency for an
infinice linear array of elementary dipoles. The impedance terms, Z
for elementary dipoles are given by

h, P 1ol

z, = %»[ ho(z) [Ivlkd] - -——T;T—EE—- ] sin27° +

3, D []v!ka)
ToTid cos”y, , V ¥ 0
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(2) and h 2)

where Yo " angle between each dipole and the array axis, ho 1

are spherical Hankel functions.

They substituted (4-40) into (4-23) and

summed it to get an expressicn for Z(a) = Ra + 1 Xa° In closed form their

result for _Ra = Re[Z] 1is

2
3 a 2 1
Fa =@ | (=g )(costy, - 3
k™d
=0, kd < |af

sinzyo) + sinzyo 1, |a] <kd <

(4-41)

For an element apacing of A/4, Eq. 4-41 is plotted for several Jinole

orientations, Nb, in Fig. 28 below.

.
(A1 8

y =0° Colinear
~— (E Plane)

vy _=90°

R, = Real (z)

4 .8 1.2 1.6

-1 7=\ . gco

T Yplane)/’/— Yo~ 8in (/273 = 55
fee — \\\\

14 o

a = kd sin 6

sin 8 = gcan position

Fig. 28 Active Resistance vs Scan Angle for an Infinite Lfr.ar Array of
Elementary Dipoles (kd = »/2)
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From (4~41) and Fig. 28 it is seen that an important special case occurs

when sinzyc = 2/3. This yields

Re(2) = o3 ‘ol <kd <

=0 , kd < |o

which is constant and independent of scan angle. The element efficiency

for the optimum alignment [sin(yo) = /2/3 ] has been calculated and is

shown in Fig. 29.

l.o ;
~
-8 Elementary Dipoles
= Oriented with ,o: 55°
; 3
N -6 Ideal
= Efficiency
. !
I~ ' I
e LRt D
204 I :
| o= .51 |
|
| L | i | [ 1 1 — kd
1 2 3 4 5 6 7 8

Fig. 29 Effect of Element Spacing on Efficiency (sin Yo " v2/3)

T T R
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Note that the above analysis suggests a theoretical justification
for the common technique of mounting crossed slots or crossed dipoles in
a planar array at 45° with respect to the array axes in that impedance
variations with scan angle tend to be reduced.

E. Coupling Wave Effects Producing Mismatch Prior to the Appearance of
Grating Lobes [15]

Surface waves (or as Knittel, Oliner, et al. [16, 39] have psinted
out, surface-wave-like fields, or sometimes leaky waves) along an array
face can destructively interfere with the generator phased elements with
the net. result that large reflections occur at the effective array surface.
Under such conditions of large reflection, the efficiency of the array
becomes intolerably low and the drive networks become badly matched.

Thus, 1f coupling waves initiated along an array produce the first
destructive interference seen by the beam as it is scanned from broadside,
the coupling waves, not grating lobes, will determine the scan limits for
that array. This discussion presents an intuitive explanation of the
phenomenon in terms of coupling or "surface" waves, and the results can be
applied to any array, not just ones covered with thick dielectric sheets
where true surface waves cause the effect. The development to follow

- depends on the observation that if coupling effects somehow propagate
along the surface of an array with a coupling velocity less than the speed
of light (slow wave), coupling mismatches will occur and degrade efficiency
at smaller scan angles than those at which grating lobes appear. In
practice many arrays exhibit slgw wave coupling velocities, and this is
evidenced by mismatches at angles prior to those predicted by grating

lobes [19].

F:
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For this analysis a planar array with anquuilateral triangular
grid such as shown in Fig. 30 is considered. Askis well known, an
equilateral triangular grid (hexagonal cell) reduces the number of ele-
ments required by 13.4% [2], and because of its consequent widespread

usage, it will be investigited here. In such a lattice a cardinal plane

-y

Fig. 30 Cardinal and Intercardinal Planes

is defined as one containing the z axis and any one of the six closest
elements (i.e., ¢ = 0°, 60°, 120°, 180°, 240°, 300°), and an inter-
cardinal plane contains the z axis and one of the bisecting planes

(¢ = + 30°, + 90°, + 150°). In the case of a planar array the active
reflection coefficient at the center element (0, 0) with all others

excited is given by

\
r =) Jc = (4-42)
mon ™ V00
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where

C__ = mutual coupling coefficient between the (0,0)th and (m,n)th
antenna elements

an = drive voltage applied to the (m,n)th element

V00 = drive voltage applied to the (0,0)th element.

For a two-dimensional planar array having a uniform amplitude illumina-
tion, the beam is steered in the (es,¢s) direction by phasing the

elements such that

<

m— — —-— —
Voo = exp| imwx 1nwy] (4-43)

where
wx = k dx sines cos¢S

wy = k dy sineS sin¢s .

The resulting far-field pattern factor is then given by

F(6,¢) = z 2 exp [imk dx(sine cosd - sineS cos¢s)
+ ink dy(sine sin¢ - sind_ sin¢s)] (4-44)

For this phasing Eq. 4-42 is recognized as a Fourier series

I‘(wx’wy) = z z Cmn e-im‘bx"inwy (4-45)
mn ’

and hence the scattering or mutual coupling coefficients can be found

from

1 T imp + 1
cC = 5 f fl"(wx.wy)e“""x by

dy dy . 4=46
- Yy wy (
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In order to simplify the analysis the special case of scanning in

the cardinal plane, ¢ = 0, is considered. Here y_ = 0O and y = k d sin ©
8 y X X

reducing (4-45) to

rv) =JJc et ™x - ‘Z A elonTimy (4=47)
where
A ei¢m = z C
m n mn

Each element is the source of an electromagnetic wave which propagates

out from it. Into free space the wave propagates at the velocity of
light, however, along the array face it is possible that the array ele-
ments and the surface Interact to create a coupling wave which travels
parallel to the surface at an effective velocity other than the speed of
light. Since the array is nearly infiiite, it follows that the coupling
velocity, and hence the phase shift, should be symmetric about the
reference element along a line through it. Thus, for cardinal plane scan,

the expected phase delay m elements from the reference is

©-
]

a+ |m|? (4-48)

where
¢ = incremental phase delay in coupling
= kc dx = @ dx/vd = 2ndx/)\c .
The above is expressed in terms of 4 real or fictitious coupling wave

that travels outward from the 0th column with a phase velocity, Ve
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Under these circumstances the reflection coefficient becomes
. ia v, _-im(y_-9) +im(y_+$) )
F(wx) 2 Con + e E Am e X + Am e X . (4~49)

and large coupling mismatches occur when the coupling contributions add

in-phase to maximize I'. From Eq. 4-49 it is seen that this takes place

when
2md
X
A
c

V. =+ ¢+ 2mp = k dx sinec = +

x + 2mp . (4-50)

Solving the above for the critical scan angle due to coupling gives

é; PA, Ao Ao c
sinb =—7= + 3= =p7 to- (4-51;
. x c x c

¢ = speed of light

Mismatches are gnerated when Gc lies in real space; i.e. lsinec| < 1.
Since p = 1 commonly designates the threshold of the destructive inter-

ference in real space, the form of Eq. 4-51 normally used for calculations

is
p

| =32
gl dx

Isine - &
v

. (4-52)
c

From Chapter II the normally predicted grating lobe condition for this

cardinal plane (¢8 = 0) is given by

A
Isinegll - i -1. (4~53)
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Comparing Eqs. 4-52 and 4-53 it is aotad for slow wave mutual coupling

(as 1is often the case) where Ve < o tlat ec < 681' and hence mismatch

dus to mutual coupling is observed at scan angles prior to those predicted

by pure grating lobe assumptions. Note that there have been many

instances where experimental measurements have recorded this effect.

Linearily polarized coaxial horns, circularily polarized coaxial horns,

and linearily polarized rectangular horn arrays have all been character-

ized by coupling velocities less than the speed of light [18, 19, 20].
Using only the unmodified grating lobe condition of (4-53), the max-

imum element spacings to eliminate grating lobes for scans out to i,em

are

A
0

b (4-54)

1+ |sine_|
m

and

dy = 4/3 dx (hexagonal cell).

From Eq. 4-52 it is obvious that this choice can result in serious imped-
ance mismatches, radiation loss, and polarization distortion whenever

the element coupling phase velocity is less than the speed of light, ar

is frequently the case. The degradations are caused by the in-phasge
accumulation of coupling contributions, and in such instances the coupl-
ing accumlation determines the usuable scan limits for efficient operation
without compensation. Actually this is just an alternate way of looking
at the problem of impedance variations and mismatch with scan angle
(caused by and commonly analyzed by mutual coupling considerations).

Its advantage is that it lumps coupling effects in a propagation velocity,
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Vs which can be experimentally measured [15] or usefully employed as a
design safety factor.

Lechtreck [20] did extensive experimental work with a 65 element
planar array of coaxial horn antennas (hexagonal interelement geometry
with a rectangular periphery). He considered:

(1) Polarization (linear and circular)

(2) Radomes (with and without)

(3) Cardinal and IC scan planes

(4) Interelement spacing

with the following results:

1. Phase, ¢, was linearily proportional to |m| or the magnitude of
distance from the column used as a reference.

2, Coupling velocities (vc) of 90 to 92% of c¢ (velocity of light)
were measured for linear and circular polarization.

3. Large gain and power losses occurmd at the scan angles predicted
using the coupling velocity, Ve

4. The presence and shape of radomes affected the coupling velocity.

5. Figure 31 below shows the variation in esc (critical scan
angle) with element spacing for the range of coupling velocities
encountered. Note that decreasing dx gives a wider useful scan.

6. For circuilar polarization, a large polarization distortion

occuned near esc (critical coupling scan angle).
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F., Polarization Effects

Polarization will be treated in more detail in a future study [41]
where special attention will be given to wide angle matching of circularly
polarized arrays. Some qualitative aspects are summarized below. In the
following list are some specific as well as general observations:

1. 1In arrays it is possible for linearly polarized elements to
produce elliptical polarizations varying all the way to circular at certain
scan angles. Similarly, circularly polarized source elements cun display
linear polarizations when used i an array. Often these effects are
most pronounced near grating lobes. Fortunately, polarization degen-
eration is not a necessary occurrence for elements in an array environment,
and in many instances the polarization characteristics of an array are
better than those of an isolated antenna element.

2. Polarization deteriorization is strongly a function of the
array geometry and the type of radiating element. For example polari-
zation loss is more noticeable for dipoles in echelon than for a
rectangular grid of dipoles.

3. For evaluating polarization effects it is usually easiest to
measure or compute the cross polarization field component as a function
of scan angle.

4. Gain for a desired mode of polarization can be substantially
reduced by energy transferred to unwanted polarizations.

5. Under proper conditions the polarization of an array of ciossed
dipoles was found to be more nearly circular over wide scan angles than
was the pattern of a single element (axial ratio at 63 = 57° improved
from 2.1:. to 1.11:1 when the element was placed in a 7 x 7 rectangular

array [10]).
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6. Log periodic antennas generaiiy do not work well in arrays.

7. Spirals, crossed dipoles, crossed slots, cavity-backed circu-
lar and square apertures, helices, and specially designed combinations
such as the Wheeler element [42] are commonly used for circular polari-
zation.

8. Spiral antennas are useful for circular polarization. They are
broadband and their relative phases can be adjusted by rotation of the
feeds.

9. Flush mounted antenna elements are preferred in many array
designs. Since the feed structures for nonflush antennas protrude
into the fields of adjacent array elements, the mutual ccupling effects
can be considerable and are difficult to predict. A shadowing phenomenon
can occur which especially limits wide angle scans. Lastly, the aero-
dynamic advantages of flush mounted radiators are obvious.

10. For wide angle scans an ideal element would be cne with a
hemispherically isotropic pattern with the proper polarization. The
beam width of an individual element in an array with all other elements
terminated in matched impedances 1is a good measure of the maximum scan
range for the active array.

11. Scott and Soo Hoo [43] have shown that a null-free antenna
pattern includes all axial ratios. Thus it is impossible to achieve a
null-free antenna pattern with a fixed polarizatinn. By applying
topological theorems Scott [44] showed that a circularly polarized

antenna requires at least one null point in its far field pattern.



V. COMPENSATION TECHNIQUES

In this chapter some of the techniques for compensating an array
for changes in element driving point impedance with scan angle will be
considered. Again since impedance changes produce great losses in gain
and efficiency at extreme scan angles, any lossless schemes for reducing

effective impedance variations will also imprcove efficiency.

A. FOR PRELIMINARY DESIGN OR LAB STUDY MODELS
The components listed below are readily available and provide a means
of isolating the ar.ay generators or loads from the effects of the impedance
variations at the antenna elements. Generally these matching networks
are lossy and hence are best applied to designs having no premium on
radiated power or efficiency, such as might be the case with mock-up or
experimental designs where simplicity and speed of implementation are
important. Some of the off-the-shelf components used for such matching
are given as follows:
1. Series ypuds to reduce VSWR
2. Terminated circulators
3. 1Isolators
All of the above give isolation between the feed network and the
array elements thereby reducing standing waves and helping prevent
oscillator pulling and parametric oscillations, however, most of them fail
to cope with the basic efficiency problem of variatioan in realized gain

with scan angle.

62
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B. CORRECTIVE COMPENSATIONS

In arrays where radiated power and efficiency are important the
problems of mutual coupling and impedance changes with scan angle must
be considered. As an arbitrary rule of thumb it noted that for scans
of less than + 30° from broadside, mismatch effects are usually tolerable.
However, depending on the array and grid geometry, efficiency losses due
to impedance changes seriously affect array performance for scans
beyond certain limits. For instance, planar arrays are typically used
for scans up to + 60° from broadside, and in many cases compensation
techniques can be very effective in achieving efficient scans over that
range. For scans much greater than + 60° it is probably best to go to
three-dimensional array geometries to maintain reasonable efficiencies.
This work will concentrate on linear and planar arrays since these geometries
are frequently used as building blocks for more general configurations.
Knittel [21] and Kmetzo [22], for instance, have considered hemispheric scan
coverage using planar arrays arranged in a pyramidal fashion.

Basically there are two general approaches to the task of lossless
scan matching, namely,

1. Modification of the array environment with fences, baffles,

dielectric cover sheets, or dielectric plugs [23,24,25],
2. Employment of tunable active or passive matching networks
and/or interconnecting circuitry between array elements [26,27,28].

Of the following methods the most applicable are probably variations of
the Hannan connecting circuit technique [26] and the Magill and Wheeler .
sheet matching [24]. Because of the importance of these methods much of

this work is done to supplement them and present their limitations so that

T
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hopefully most of the information needed for actual design is readily
available. The matching dielectric sheet is essentially a trial and
error procedure where the primary limitation is the necessity of avoiding
deleterious coupling wave effects., Hannan's connecting circuit method

is probably the most powerful, but it has a greater initial cost and
requires either a fairly reliable experimental measurement of impedance
and coupling variations with scan angle or a detailed theoretical study
glving the same information. The complexity of the corrective compensation
scheme used depends on the degree of compensation desired. First order
efficiency improvement can often be accomplished by matching each array
element with a tuned line and an inductive or capacitive coupling element
between adjacent array positions. The vaiues can be selected by making a
good engineering guess based on the active impedance ranges. If
theoretical maximum efficiencies are to be approached, it is usually
necessary to make extensive use of a digital computer in the design. An

outline of such a computer program is given in this chapter.

A. Edelberg and Oliner Baffles to Modify Array Environment

In this early approach Edelberg and Oliner [23] experimentally leveled
the variations in active driving element impedance with scan angle by
placing metal fences between rows of =2lements in a large array of dipoles
above a ground plane. The fence width and its height above the ground
plane were varied until an experimental optimum combination was determined.
Nove that they placed the fences and worked to improve E-plane scan,
mﬂlgh for dipoles in the array is much worse than H-plane scan variations.

Some of their results are plotted in Fig. 33 below. Observe that
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generator VSWR was reduced from about 4 to less than 1.3 foi E~plane scan

out to 60°,

E-plane (with baffles)

| E-plane
3.0 (without)
§ 2.5

= 2.0
- E-plane \ '
i (without) \\ i.5
N |
e —— LN 1.0 1 ] 1 i | L
15° 30° 45° 75° 90° 15° 30°  45° 60° 75° 90°
scan angle scan angle

Fig. (a) Resistance vs Scan Fig. (b) VSWR vs Scan Angle

Fig. 33 Effect of Fences on an Array of Dipoles

B. TImpedance Matching with Scan Angle Using Comnecting Circuits [26]

The following developments of Hannan et al. [26] illustrate the
origins of the phase dependent reactance terms introduced by inter-
connecting adjacent array elements with reactive circuits. Since these
reactances are lossless and can be shown to load each drive element
with a reactive equivalent circuit which varys with the phasings of
the drive generators, they can cften by chosen to effectively offset
array impedance variations with scan an.le with no loss in radiated
power. The connecting circuits introduce into each element line a signal
which varies with generator phasing and hence scan angle. By proper

selection, these networks can significantly reduce element mismatch over a
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range of scan angles without sacrificing array gain.

i2a (:) <
e
Smith chart showing
ia locus of Z(o) as it
e @-—-—< varies with scan

Fig. 34 No Compensation

e ~ ossless .—--——-<
i __network

lossless

eia @ _ __..___.__.__< ﬂ.:/ locus
lossless a=0"

lossless

i0 |
e ~ lossless |

Fig. 35 With Connecting Circuit Matching

For the purpose of analysis it will be assumed that the arrays are
infinite and regular. This means that the generators and elements have
identical environments., It is found that the behavior of many finite
arrays with a small number of elements can be treated as infinite arrays

provided correction is made for edge effects.
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1. Linear Array

L@+ (EZ} i
oimo G_

I
ei(m-l)a (::}

Fig. 36 Connecting Circuits in an Infinite Linear Array
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Consider the effect of shunt susceptances connecting the element linss
in the infinite linear array illustrated in Fig. 36. The net susceptance

shunting the line to ground is found in the following manner:

IB = Iu + Id = 1iB [Vm - Vm+l] + iB [Vm - Vm-l] (5-1)
\ \) I
- mbl | mel, s -
qu = iB [2 7 v 1 =7 (5-2)
. m m m
For an array phased to point in the es—direction !
Vol 1 -1
2 - Y gpa 2= = g (5-3)
\') \
m m
where a=Lkd sines = progressive per element phase shift.
Substituting (5-3) into (5-2) gives
ia -ia
Y =41B[2~-e  =-e ] =1B 2[1 - cosal. (5-4)

eq
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Using cos(a) = 1-2 sinz(a/Z) fives

_ 2 o -
qu = 1 4B sin (2). (5-5)

Hence each line in the array is effectively shunted to ground by a

susceptance

2.0
Beq = 4 B sin [5]. (5-6)

The resultant equivalent circuits seen by the generators are shown below.

V-1 @ %
B
eq

- Zra
eq - 4B sin [2]

Vn C'\'JL I~ < B

Vbl 6‘} * e \

Fig. 37 Equivalent Array Networks

2. Planar Array
Row phase shift = B
Column phase shift = q
E-plane scan: +B = kd sin6, a = 0
H-plané scan: B = 0, a = + kd siné

D-plane scan: +a = i_:B = E% siné
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The effects of E-and H-plane connecting circuits:

2
E-plane: Beq = 4 BE sin“[B/2]

H-plane: B = 4 BH sinz[a/2]

eq
2.nd 8iné
D-plane: Beq(E) = 4 BE sin”| 73 ].

Hannan et al.[26] worked out the case for a 7x9 array of A/2 dipoles
spaced with dx = dy = A/2, a height of A/4 above a ground plane. The
original array for a +60° scan had a VSWR of 14 db (=5) and a maximum loss
due to reflection of power of 2.6 db., With a first order simple compensation
the VSWR was reduced to 4.5 db (1.68) and the reflection loss to 0.3 db.
In this example, Hannan et al. used inductive coupling for H-plane compensation
and capacitive coupling for E-plane compensation. The following eteps which are
1llustrated in Fig. 38 are used In a typical matching procedure:
(1) A series network or a transmission line is adjusted to
rotate the E-plane locus so that it can be offset with a
susceptive shunt
(2) The scan dependent BE is used to neutralize the above locus
variation =
(3) The H-plane locus is rotated to make it purely susceptive
with scan
(4) B, is added to cancel the susceptance in (3)

eq
(5) The generator is impedance matched with 1c and Bg.
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C. COMPENSATION FOR WIDE ANGLE SCANS USING A DIELECTRIC SHEET IN
FRONT OF THE ARRAY*[24]

This ie a eiméie=and possibly inexpensive compensation technique which,
from a circuit and impedance matching point of view, has a lot in common
with Hannan's method. Although the dielectric sheet method is fairly
crude and somewhat restricted, it potentially yields a good trial and
error means of improving the scan performance of a planar array.

For a thin dielectric sheet of thickness, t, and relative

permittivity, € the effective broadside susceptance, B(0), is approxi-

mately
B(O) . _ 2nt _
Go (er 1) —T; (5-7)

80 that within limits a desired susceptance can be obtained using a
thickness

A
o B(0) -
CTTGeD 6 (5-8)

[o}

The effective susceptance as a function of scan angle is given by

. B(O) _ 1 -
H plane: B(0) = Cosd (5-9)
2
E plane: B(e) | cosf - 8in 6 (5-10)
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Fig. 40 Dielectric Sheet Above an Array

L
JETIT TR

Array plane

A rough outline of the basis of the compensation procedure is as

follows:

1. The Smith chart locus of active impedance variations in the
uncompensated array is examined as a function of scan plane
and angle.

2. Height, d, of the dielectric sheet above the array plane
(see Fig. 40) is chosen to rotate or shift the locus so
that it has & susceptance portion which can be compensated.

3. Thickness, t, and dielectric constant, €ps are chosen to
give the desired neutralization. Because of coupling wave
effects, it is best to keep 't small and work with € .

Again note that the method readily lends itself to trail and error
experimentation to improve usable scan range. The reflection coefficient
at a central element could be monitored as a function of scan angle and
the dielectric constant, the position, and the thickness can be changed
to hopefully find a "best" combination to increase the limits of efficient

gcan.
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Parad [29) shows that the surface wave velocity is strongly de-
pendent on the dielectric thickneus and 1s fairly independent of the
dielectric constant for large €r This, of course, implies that
in order to avoid limits on ecan angle imposed by coupling modes, it
is best to keep the dielectric thin and work with €, to widen the scan
range.

Because of the simplicity and inexpensiveness of tne dielectric
sheet compensation method, it is highly recommended whenever it will do
the job. In general it works best for limited scans (up to + 60° from
broadside) where only an efficiency improvement and not ideal matching
1s required. The next few sections include some supplementary material
that should be uzeful when applying this method. One section summarizes
some of the important transmission and impedance characteristics of
dielectric sheets, and the other deals with the limits on dielectric
sheet matching posed by surface wave effects. Both aqualitative and

quantitative results are presented.

C.1. Impedance and Transmission Properties of Planar Dielectric Sheets

Summarized in this section are some of the fcrmulas applying to the
transmission of plane waves through infinite dielectric sheets. Most
of the results are elementary ones which are taken from developments

given in Collin [30]) and Harrington [31].

|
IRV SNNNNINIR
Z; rl

Fig. 41 Dielectric Sheet
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Thin Dielectric Sheets

For normal incidence

- Go+1Bo (5-11)

1 _ 41 tan(at)
nycos 8t + i n ain(8t) 1 ﬁ::
2, = nl H Y, = —
i nycos(8t) + 1 n sin(Bt) 1M 1+ -1 tan(ae)
€r
where
I SR ']
nl no €
E1:' 1 2 : 1
l+tan“Bt +i tan(et)[/'e—r' -—]
/¥ 1 ‘/‘:—r-
n = -E—g = 377Q Yi = — 1 2
° o no 1+ = tan Bt
r
W —
8 vy WYHe, kon—;
If the thickness "t" is small (Bt << 1)
2 ! 1
1 1+ i/e Bt 1+ (gt) +18t[‘/;'/e—]
r 1 r .
P Sl 3 (5-12)
‘ol + i — Bt o l+(Bt)
Ve _ €
r r
Thus
1
G0 *n (5-13)
0
1 2nt
B, = =k t(e,-1) = G , (€-1) ,  (5-14)

(o]
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For oblique incidence, the normalized susceptance of a thin dielectric

sheet can be shown to vary as

H-plane: B(8) - 1 (5-15)
B cosb
2
E-plane: B(O) _ ogp - 81RO (5-16)
Bo €_ cosB

H-plane ~LH-plane
1
cos

30° 60° 90°

Fig. 42 Normalized Susceptance of a Thin Dielectric Sheet

Observe that the H-plane susceptance increases with 6 and the E~plane
susceptance decreases with 6. Note also that in the E-plane B(8) goes

negative for

tand & Ver.

In crder to illustrate some of the degrees of freedom and to emphasize
the approximations involved in a typical dielectric matching scheme, the

following developments for a dielectric sheet located at a height ''d" above
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an array plane will be repeated.

(a) H-plane scan (polarized perpendicular to the plane of incidence):

Region @@
Mza i o "o
//// //////ty/nl// s://iielectric
G Z

2 1 Region O

d
9 zl ‘ s %o

T — array plane

Fig. 43 Dielectric Sheet above a Planar Array-
Transmission Path

Telative dielectric constant

™
([l

r
t = dielectric thickness
d = height of the dielectric above the reference plane
n
- o —
Z3 " cosf (5-17)
i
- = = - 1 2 -
Bl = kd cosed kofz: c:osed ko\/,e:r sin ei (5-18)
Snell's Law:
sin6 v
d . d4_1_ (5-19)
sin6 v - -
i £
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n n n
0 1
n Z3 +1 cosb tan(Blt) n cos®b + cosb tan(Blt)
7 = 1 d - 1 1 d
2 cosed Ny cosed " no
cosb 1 Z3 tan(Blt) cost +1 cosb tan(Blt)
d d i
cosb
14142 L can(8,t)
" e coaed 1
1 r
cosb cosf
d_1_ cosei + 1 tan(Blt)
/; d
n‘\
N Z2 + 1 m: tan(kocoseid)
= . (5-21)
1 cosei n°
cosei + 1 22 tan(kodcosei)
n 1+1 -cos8 tan(Blt)
Z,(Lpol.) = 2 z 2. (H)
2 _cosé 2
é *sinze //:::::g:-+ i tan(Blt)
r € -sin”8

r

Usual approximations: assume e > 2, k t << 1, tan(g,t) = Bt

cos9
1+i=""—k oty 1+ 1kt cosd

n

cosb +1 k tv © cos6+i k t(e -sinze)
J—--- o (o] r

cos6{1+(kot)2(er—sin26)]+1kot(-cos26+er—sin26)

(5-20)

(5-22)

1 1
Y(H) =z —
2 ZZ(H) no 1+ (kot)2 cosze
L1 22, .2 _
® n [cose(1+kot )(e;r sin 6+ikot(er 1)]
where

= /e - sinze
r

(5-23)
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Referred to the direction of propagation in region (i)

Y 1 2 9 kot(e -1)
Y= <osb © G(8) + 1iB(8) = ;: l+(kot) (er—sin 6)+i cosb (5-24)
from which it is seen that
k t(e -1)
B(6) _— where B = =>——%L . (5-25)
B cosb o n
o o
(b) E-plane scan (polarized in the plane of incidence):
Here
Z, = n_cosb s B_ =%k, cos6, =k Ve - sinze
3 o i r d d o r i
(
o BT o,
nl (o] ] d san r "ll d Y‘IOC i
cosbd
Ve i + 1 tanlk Ve -sin“e.t
r cosH o r i
= mcos d 050 (5-26)
1+i/e_ tan|tk Ve —sin26 1
r o r i cosed

For k t << 1 and ¢ > 2,
o r —

Ye_ cosh

L4 1 +1 k Ve —sin29 t
;7 T y) o b o i

1l - — sin”®

n € i
z. =~2— V1 - L gine .3

2 S € i
€ r /. cosb
r 1+41i/e ktVe -sin26 L
r o r i ["-I'--E—'
l] - = gin"0
€ i
r
i 26
cosf, + 1 k t(1 - 2222
Z,(E) = n 1 ° r
2 o (5-27)

l1+1ikte cosb
o r i
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2 2
1 2 sin 8 __1 ., _sin®
. v l+(kot) er(l ——E;—)]+ ikot{e Cosze\l c )]
YZ(E) ] . ' 7 T2 (5-28)
o 14 (k t)2 l2 [1 _ sin 9}
o €
cos 6 r
and thus
k t(e - 1)
B o=t ol (e -1) (5-29)
°© My 1+ k)" Mo ° T

Ignoring the contribution of the second term in the denominator and
referring the admittance to the .direction of propagation [1.e.,

Y = cosb YZ(E)] yields

2
6(8) = = |1+ (k )% e (1 - 2128 (5-30)
n o r £
o r
kot
Bo = e (t-:r - 1) (5-31)
0
B(O) _ cosf - ELEEQ_ (5-32)
Bo ercose

C.2. Qualitative Results for Arrays Covered With Dielectric Sheets
or Dielectric Element Plugs

(1) Generally speaking resonant peaks of reflection coefficient occur

at scan angles between the angles of formation expected for the grating
lobe for the dielectric and that of the grating lobe for air. (Xnittel)[16]
The following are observations of Wu and Galindo [32,33] which are based

on their comparison of scan properties of parallel-plate waveguides

loaded with dielectric plugs with their earlier (Jan. '68) loading with a
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dielectric sheet (rectangular array).
(2) The radiation prcperties of an array can be substantially changed
by covering it with a dielectric sheet. Typically such coverings in-
troduce resonant peaks in the plot of reflection coefficient, I', versus
scan angle. Frequently '+ 1 prior to the angle predicted by the
occurrence of a grating lobe,
(3) For thin enough slabs no reflection peaks are observed.
(4) For slab thicknesses greater than certain critical values of the
order of %E Ae (Ae = wavelength in the dielectric) resonant peaks begin

to occur. At the threshold thickness the resonant peak 1s near the

grating lobe formation angle. According to Wu and Galindo 1if

1 . 27
<A<, 8 = Ty

(5) For sheets with fixed element spacing, d, and dielectric constant,
€ps the resonant peaks migrate toward broadside as the slab thickness is
increased.

(6) More than one peak may occur if the thickness of the slab is large
enough, say greater than % Ae.

(7) Normally resonant peaks correspond to complete reflecticn where the
reflection coefficient is unity.

(8) Dielectric plugs can, but do not always, give rise to resonant peaks
in T,

(9) While dielectric sheets invariably cause peaks if the thickness
exceeds a certain value, such is not the case for plugs in waveguides.
(10) Exterior sheets may give rise to more than one peak if they are

thick enough; however, Wu and Galindo have not observed any multiple

peaks for plugs.
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(11) As a general rule [ (8) is flatter with plugs than for waveguides
loaded with dielectric sheets implying a possible better impedance aad
efficiency match. Both sheets and plugs can be used to improve

efficiency.

C.3. Input Admittance tc a Slot Array Covered by a Dielectric Sheet

This section is a strengthening of the work of Parad [29] that applies
to an infinite array of short slots covered by a dielectric sheet. 1In
it expressions for the admittance variations with E-plane scan are
derived. An important consequence of the analysis is the observation that
dielectric thickness, not dielectric constant, is the important factor
in determining surface wave velocity. Thus, when using the dielectric
sheet method for match compensation, it is recommended that the sheet be
kept thin and the dielectric constant be selected to give the desired

match.

/L /1///1%(%?i i

R

Fig. 44 Dielectric Covered Slots

Figure 44 shows a set of narrow slots of width "a'", located in
xXy-plane and extending to infinity in the y-direction. For such narrow

slots, it is assumed that Ex is a constant independent of x across their
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width. The array is steered in the 6-direction by feeding the slots

with a progressive phase shift
§ =vd=%kd (5-33)

where d = slot spacing and kx = x~-directed phase constant of the slot
feed system. Beam maximums occur when ¢y = kd sin§ - é§ = 0 +2nm = kd sine-kxd,

and the following relations apply to a propagating wave:

sind = k /k
X

k =v + 2nnd
X o —

cosf =V 1 - (kx/k)2

Method:
1. Express field at z = 0 as a sum of an infinite number of plane waves
2. Determine the input admittance at z = 0 for a plane wave
3. Compute the total input power at z = 0 for an aperture of unit
Ly width in the y-direction and length, d, in the x-direction
| 4., Express the input admittance in terms of the input power and voltage.
As is now well known, this geometry can be described by a Floquet series [40]
which is just a Fourier Series for Ex(x,o) which is modified with a phase
taper term to account for the progressive phase excitation [Replaces
Eqs. (2), (3), (4), in Parad's proof] of the slots necessary for pcinting

the beam.



83

E_(x,0) 6 m k, d

l-— d _—-' eik*x

.415 .16 ] ei° =18 ‘-126

Fig, 45 Slot Illumination

A mathematical expression for a periodic aperture distribution with a phase
tapered excitation is found by
(1) Writing a Fourier series for the pulses that includes a
phase taper kxx on the center element.

(2) Multiplying the periodic series found in (1) by a phase taper

term -k_x.
X

The phase tapers (1) and (2) combine to produce a net phase term for the
-jndkx

nth element of e

phase
—due to f(x)

T

net phase

Fig., 46 Phase vs x For Net Function
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For the example of the above slots the periodic function is:

f(x) - z Cne_jZTTHX/d (5_34)
a/2 a
) sin[=(k +2nmn/d)]
Cn - é. ejkxx+j2nnx/d _a . 2 x (5-35)
d3 [k +2nn/d]
-a/2
» gin[3(k_+2r1/d)]
f) = 2] —2X g I2mm/d (5-36)
el (kx+2nn/d)
Now adding the phase taper factor gives the net series
_ ® sin[2(k_+21n/d)] _
E_(x,0) = e 5 £(x) = &) —Lx g Ix(kF2mn/d) (5 g5y
-w 2 (k_+2nn/d)
2 'x
As with most series solutions the above masks the phyeical significance

of the apertures, however, the form of the series suggests a sum of plane

waves, the nth having an amplitude equal to Cn’

84

The input power to a section of width, d, and length, L, (in the

y-direction) is

L d/2 d/2
2
21 . LIE]® (a2 sin( ) _-j2mnx/d
P ZJ J Egiy* dudy = =5 (P Fo e
o -d/2 ~-d/2

gin( ) +j2nmx/d
)

zYim* —( .

d
x
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where Yim = input admjttance of the mth wave

H
1 1
Y, = L= = (5-39)
i Ex ncos@ nl/likvi/ki
All integrals in (5-38) are zero except when m = n giving
2 (g2 = sin’ {2 (k *2m/d)]
Peini— LYy 2 (5-40)
~o [f(k +2mn/d)]
X
Also
P = 3 VI* = 2(Ea) (Ea)*v* = £ a° |E| v (5-41)
Thus 2.a
2P L sin [E(kx+2ﬂn/d)]
Y=g =gl Yy, 7~ (5-42)
a“|E| - [5(k +2m0/d) ]

where Yin = input admittance to the nth plane wave at the surface z = 0

By (5-39) it follows that

Y, = —————— (5-43)

When the array is covered by a dielectric of thickness, t, and relative

permittivity, €ps the admittance seen locking into the sheet is

Yln + jYon tan(Bnt)

Yon + jYin '..‘an(Bint) (5-44)

Yin = Yon
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where z
Vr

Hyi 1 "o
Yon = - = (5-45)
R 2
i 1 - ~(v +2m/d)
n 2 o
e k
ro
1 1
¥in = n _cosf - v ¥Zm/d (5-46
o, V/; - =2 )2
o ko

et = angle ray leaves dielectric surface = realized scan angle.

Observations:

1. From (5-42) the admittance Y has a pole where Y, has a pole.

in
It is theoretically possible to eliminate such poles by using
a different aperture distribution.

2. From (5-44) it is seen that these poles can first occur when
o, is imaginary (no radiation) corresponding to the excitation

of surface wave modes.

3. For a thin dielectric layer, tan 8t=Bt and a pole in (5-44) occurs

P when
/E; Ve kt cose1n
Yon + lenBt =0~ cosh =-1 cosH
in In

coss, = -4kt cose, =V1- kv2/k2 -- jkt(l—kvzlerkz)

In in
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Solving for kv2 yields

k € v/ff e - 1
Lome + S (1 - Vix a2 (5-47)
k 2kt €
r
kvz 228 "1
For kt < +1,Eq. (5-47) gives - 1+ k7t°( . ) (5-48)
k r

which is nearly independent of dielectric constant €y

4, The admittance pcle oncurs at scan angles prior to the grating
lobes since Eq. (5-48) shows that the surface wave propagation
constant is greater than that of free space (i.e., kv > k).

D. Use of a Computer for Planar Array Match Compensation Through
Adjacent Element Coupling [28]

Here a set of equations is developed which can be programmed on a
digital computer for a systematic realization of Hannan's compensation
technique. It assumes that the array coupling coefficients are either
experimentaily or theoretically known (normally coupling coefficients
are easier to measure than active impedances), and it uses pi-type
reactances for interconrecting adjacent element channels.

The required program inputs are

(1) Coupling coefficients, Cmn
(2) Shape of the scan region
(3) Grid structure
(4) Desired matching scheme
where the last three are design aiternatives.

Hannan [34] has shown that by interconnecting all channels it is
theoretically possible to impedance match an infinite phased-array
antenna for all scan angles. In this development only adjacent channels
(maximum of 8) are connected sv that a perfect match is not expected.

However, if enough care 1is taken, the results using this finite number
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of couplings are excellent even for scans greater than + 60°. As an
indication of the possibilities of a truncated matching scheme, Amitay
et al. [35] in a recent paper went a step farther and were successful
in matching an array of circularly polarized elements out to + 60° using
only a lossless series matching obstacle behind each antenna element.
Thus there are two choices for behind-the-array circuit matching. The
general case consisting of a matching network behind each element and
reactive couplers between contigious elements is the most powerful, and
it is, therefore, recommended for wide angle scans or ones where high
efficiency is needed. The other consists of the series network alone
and shows promise for simple, non-critical compensations.

The array considered in this development is planar with a rectangular

grid located in the xy-plane as shown in Fig. 47 below.

Fig. 47 Rectangular Grid Array

The elements have a uniform amplitude distribution and a progressive

phase shift such that the excitation of the mnth element is

Sl + 10w,

Vi = Vo (5-49)
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where

<
[}

kd sinf cos9
X

<
]

kdy sind sing. (5-50)

By reciprocity the coupling coefficients between the 00th and the

mnth elements are equal
(5-51)

and thus, if all the array elements are excited, the total reflected

voltage at the COth element is given by

imy + iny
Vo=V, g}g C,e 'x y. (5-52)

The reflection coefficient referred to the plane of the array (see

Fig. 49) is then
imy +
q = %E = zz C elmwx inwy. (5-53)

Observe that q is a function of wx and wy' Again this analysis assumes

that the array has enough elements to approximate an infinite one. Of

an extremely important practical nature is the fact that Wu and

Galindo [36,37] and others [13,38] have shown that a moderate number of

array coupling coefficients (on the order of 11x11 to 13x13) are often

sufficient to describe a central element's behavior with reasonable

accuracy. As a consequence, only 2 finite number of coupling coefficients

need be measured when using this particular method for design purposes.
The most general case to be treated is shown in Fig. 48, and it

allows for coupling between an element and its eight immediate neighbors
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in a rectangular grid with reactive pi-networks for coupling. Note that
the assumed symmetry reduces the unknown coupling admittances to

four: Y Y, and Y, . 0,1)

IR TTIR 6

y4=1B,

- (0 :'1)
Fig. 48 Matching Element Geometry

The basic feed connecting system is illustrated in Fig. 49 below

/l ,array plane A

Fig. 49 Compensation Coupling Model

where AA' = array plane
BB' = coupling junction plane where the generator line, the array

element line, and the coupling networks meet.
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Yc = effective admittance at BB' of the coupling networks
Yo" = characteristic admittance of the array line

Yo' = characteristic admittance of the generator line

The phase shift between AA' and BB' is
9wy = 2nd
2 k'd A

and hence the reflection coefficients referred to the coupling junction

plane, BB', is given by

- - i
q" = 9 4= e 1o ZZ con 1™k + inwy. (5-54) %
mn :
Using the fact that
TN S 4 - :
I =717 v (5-55) %
v =~%fi—% = normalized admittance, (5-56)

it follows that the active admittance at BB' looking into the line from

the array element can be written

Yy =Yy " l-q (5-57)

Then the admittance at BB' due to the element line and the coupling

network is

Y=Y +Y, (5-58)
and the reflection coefficient seen by the generator line at BB' is b

1 -Y/Yo'
9% = T+ ¥/Yo' (5-39)
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Since the voltages at BB' have the same relative phases as the

generator voltages, Vmn, they can be written

Vmn' = Vo'el™yx * inwy (5-60)

and thus the total current into Yc can be expressed as

%ﬁ; =1, - et + 7,01 - ey + Y, - elVy) + Y, - e 1V

+ Y6[1 - eiwx + i‘py + 1 - e-iwx—iwy+2 eeiwx-iwy-e-iwk+iwyj + 2Yt (5-61)

Ic
Yc Vo 2[Y2+Y4+2 Y6+Yt] -2 Y2 cos (wx) -2 Y4 coswy -2 Y6 cos(wx+wy)

-2 Y6 cos (wx - wy) (5-62)

In order to make some of the subsequent expressions notationally simpler,

it is found convenient to define the following normalized variables (i= /:I3

Y Y Y Y Yy"
Y t 2
e =g Mg = ghi A = 25 N = gt W = 325 N = g% (5-69)
o (o] [o] (o] [o) o}

The reflection coefficient g is, of course, a measure of the
effective system match. To optimally select the compensatica cirenit,

a cost factor

2
CF = J J lagl” av, v, =
scan region
1-v/v |2
W d\bx dl))y (5-64)

is suggested. Ideally y A.%‘T = ] for the total scan range corresponding
(o]

to CF = 0. For only a finite number of connecting elements it is assumed
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that y in the compensated system is close to one and hence the approximation

1-y|? | |1zy]?
4yl | 2

can be used to put Eq. (5-64) in a more usuable form

CF+ 1= J [ |1-y|2 dy, v, (5-65)

scan region

Then (l-y) is linearly related to No’ Nt’ NZ’ N4 and N6 and

9l ol 91
N 0, T 0, s¢», N - 0 (5-66)
o t 6

are the conditions required to minimize I. The optimum values of the
network sequence {N} are obtained by repeated solutions of (5-66) for

various values of ¢, The integral to be minimized is

- - 2 -
I= J J | 1-y| dy_ dwy (5-67)

scan region

where in terms of the ratio Jefinitions given in (5-63)

Y 4y, "
¢ L
y = Yo, = i[2(N2+N4+2N6+Nt)-2N2COS(Wx)-2N4COS(Wy)‘2N6C°8(wx+¢y)
- - 1-q" -
2N6cos(wx wy) + No T+q" (5-68)

Using (5-54) for q" it is seen that the last term in (5-68) becomes

l-e'i¢ZZcmneimwx + 1nwy (5-69)

No -i¢
L+ T)C Amp + inyy
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which, since it is a doubly periodic function of wx and wy’ can be

expanded as

1-g" | - e
Ny 157 = Mo |1 2fIp elmiy by (5-70)

J

Hence

. imy +iny
1-y=1-N+2N ])D e x + 2N6)

y -1 [2 (Nt + N2 + N4

- 2N coswx - 2N

2

4 coswy - 2N6 cos(wx+wy) - 2N6 cos(wx-wy)J. (5~71)

Amitay then used (5-66), (5-67), and (5-71) to obtain the following
equations.

From BI/BNo =0,

*
o0~ 21" = Nolgq 10y 2 * ggggnm DPA &) g ]

- " " -
4 NTzulemn 2 + 2NZZZDmn (am+1,n 2amn M am—l,n)

4a_ ) (5-72)

11} -
2 NJID "@rg a1 * Bnel,ntl T 2mklinol T %nel,n-l mn

From BI/BNt =0,

| - " 1 - - — -
0 Nozszn a + Ntaoo + Nz(aoo alo) + Né(aoo a01)+2N6(aoo 811) (5-73)

From aIlaN2 = 0

- " - - -
0= Noggnmn (am+1,n+am—l,n 2amm) + 2Nt(aoo 810) + N2(3aoo+820 4310)

+a ., - 2a (5-74)

+ 2N, (2, +a 0 2100 t 3 Y2y 11]

1172107301 + Wel2(a,



95

From BI/BN6 =0,

= ' -
0 = NIID @iy nb1 ¥ Bnet,nel  fmel,nol t %nelnel ~%m)

+ éNt(aoo-all) + 2N2[2(a°o-a11) + a8, + 851 " 2310]

+ N4[2(a° -2&01] + 2N6[Saoo+a +a,.+a,,-8a..]. (5-75)

o~211) * 810™ey; 02+3208227%81;

From aI/N4 =0,

= " - 7 - - -
0 Nozszn (am,n+1+am,n-l zamn)+2ht(aoo a01)+2N2[aoo+811 %01 alO]

+ N4[3aoo+aoz-4a01]+2N6[2(aoo-a01)+alo+alz-2311]. (5-76)

Note that in the above equations,

D ' = Real[D_]

mn mn

Dmn = Imag[Dmn] (5-77)
and

- imp_+iny -
an J J e 'x y dwx dwy. (5-78)

scan region

Furthermore, Eqs. (5-72) through (5-76) assume that a is real. With

a little additional bookkeeping one could allow for a complex a ;
however, this is usually not necessary since a . are real for the commoniy
encountered cases of elliptical and rectangular scan regions such as

sketched in Fig. 50.

ﬁ\wy
_wé—\ﬂ , W{.
r” N m -
o P x

Fig. 50 Unit Cell With Elliptical and Rectangular Scan Regioms



96

It is easily ‘hown for the rectangular scan region that

sin[mwO] sin[nwl]

" 4 p— (5-79)

and for the elliptical region,

2 2
J, [V(my ) +(ny,)7]
1 0 1
a . " 2vwowl (5-80)

/(my )2+ (ay,)?

Amitay used this method on a linearly polarized array of square
waveguides spaced with d/A = ,5714. For a scan of + 45° without any
compensation, the returned power was as high as 30%. Using compensation
within each channel but letting the adjacent channel coupling be zero

(N2 - Na = N6 = 0), the returned power was reduced to around 5% over

most of the scan region. For his final comparison Amitay [ 28] added

interelement coupling (N0 =1, N = 0,512, N, = -0.0976, N, = -0.189,

t 2 4

N6 = 0), and obtained a returned power that was under 1% for most of the

scan region.
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