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ABSTRACT

The primary purpose of this report is to present and investigate

design procedures for compensating the elements in a phased array

antenna for impedance changes with scan angle. With proper compen-

sation it is possible to improve the overall array efficiency and

in many instances to increase the usable scan range for the array.

Also included is a survey of the design results for scanned array

antennas and a coierage of the factors affecting array efficiency

changes with scan angle such as mutual coupling, element placement,

surface wave coupling, and polarization. Two basic approaches to com-

pensation for impedance variations with scan angle are detailed. The

first considers the effects of structures which modify the array environ-

ment such as baffles and dielectric cover sheets. The other deals with

methods which depend on behind-the-array circuitry for matching.

vii
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I. INTRODUCTION

As is well known, the variations of active element impedance with

scan angle in phased arrays can seriously affect array efficiency. The

primary objective of this report is to present methods to compensate for

these impedance changes and thereby increase the usuable scan range for

a given antenna array. The principal methods of compensation are

presented in Chapter V, and the reader is immediately referred to that

chapter {f that is his sole interest. The rest if the report is

intended as a survey which hopefully presents Many of the important

design considerations used in array theory in an easily accessible form.

Special emphasis is placed on understanding what really influences array

efficiency, and the resultant analysis separates the contributing factors

into two levels. The first ignores the particular type of element and

its mutual coupling and concentrates on the effects of element place-

meet and spacing on efficiency. The second level goes deeper by in-

cluding mutual coupling and element characteristics in the evaluation of

array performance.

In most of compensation techniques developed in this paper, it is

assumed that the system complexity is so great that it is necessary to

utilize measured data from the original array or an array simulator as

the basis for the matching. The two common ways to experimentally eval-

uate array operation are as follows:

(1) Passive Array Measurements One element (central) is excited with

all others terminated in their generator impedances. Nulls or dips in

patterns measured under this condition usually correspond to "blind"

1
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spots to scan for the active array. For infinite arrays nulls are ex-

pected at such points, and for finite arrays the active array can be ex-

pected to have at beet a pattern dip near these scan anglea. Generally the

3 db bandwidth of the passive array element pattern is an appr,)ximate

measure of the high efficiency scan range for the active array. In

addition, coupling coefficients are defined and measured for the array

in this state, and in Chapter IV it will be shown that these can be

used to predict active array reflection coefficients and impedance be-

havior for different scan angles. The passive array measurements are

easy-to-implement and provide considerable information about active

array characteristics.

(2) Active Array Measurements In an active array measurement all

elements are excited. Here not only - ,n-:~ern, but reflection coefficient

and impedance can be measured directly . The trouble is that this method

is much more cumbersome than the passive a-"'ay measurement in that all

of the elements have to be actively fed and properly phased at each

different beam setting. As a consequence, it is not used as frequently

as the passive array method, and it is not recommended =for prototype

arrays with a large number of elements.

Chapter II is a survey of design results for scanned array antennas

having a uniform amplitude distribution across the elements with beam

pointing accomplished by varying the progressive element phase shift.

Included in this chapter are baadwidth and grating lobe effects. Linear,

rectangular, and equilateral triangular lattices are treated.

Chatper III delves into element efficiency from the first level

viewpoint previously defined to include such geometric effects as place-
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ment and spacing. Some of the results presented here should prove

especially useful to an array designer.

Chapter IV is an attempt to introduce and summarize some of the

effects of scan angle on mutual coupling, impedance, and polarization in

infinite arrays. An approximate formula is developed to give a qualita-

tive estimation of impedance variations with scan angle, and some of the

effects on impedance scan properties caused by certain array alterations

are examined. Also included is a fairly exhaustive analysis of active

array impedance and efficiency variations for an infinite linear array of

short dipoles which allows for the mutual impedance and pattern effects

of a real element. This analysis defines mutual coupling parameters, and

it gives a good example of their application to active array problems

where generator impedance effects must be included. Also in this chapter,

the topic of surface waves is first introduced and related to possible

degradation of the usable scan range to values below those expected

from simple grating lobe considerations. As will be seen, this phenomenon

severely affects the scan range of the dielectric sheet compensation

method covered in Chapter V. The subject of surface waves is treated in

great detail in Chapter V for a special array loading, however, in

Chapter IV surface wave treatment is more general in that it is intu-

itively deduced and can be applied to any array surface.

As previously stated Chapter V covers the methods used to compensate

for array impedance variations with scan angle. The approaches are

divided into those which modify the array environment with such things

as baffles, fences, or dielectric sheets and those which use behind-the-

array circuitry for matching. Much work has been done to supplement the
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work contained in the literature on these methods. As for the choice of

method it will be seen that this is largely dictated by design require-

ments. The matching dielectric sheet technique is probably cheapest

and simplest for compensating arrays of flush-mounted antenna ele-

ments, however, it lacks great precision so that extremely low VSWR's

are not to be expected, and it is often limited by surface wave effects

to usefulness over smaller scan ranges than the coupling element tech-

niques. The matching circuit techniques treated in this chapter can all

be considered variations of Hannan's scheme of coupling adjacent array

positions with susceptive networks. Again this method offers a range

of choices depending on the precision and scope of scan. Some effi-

ciency improvement is obtained by using only pre-element matching net-

works, however, the more general method interconnects an element with its

eight closest neighbors and is capable of achieving excellent match over

fairly wide scans. Probably the main drawbacks of the connecting circuit

method are its initial expense and the complexity of the design. Still,

for arrays with a large number of elements using modular elements, it is

likely that the necessary circuitry could be incorporated into the

modules without significantly increasing the cost. Also included in this

chapter is a procedure for realizing Hannan's connecting circuit match

with the aid of a digital computer.



II. SUMMARY OF DESIGN RESULTS FOR SCANNED ARRAYS WITH UNIFORM

AMPLITUDE ILLUMINATION

A. LINEAR ARRAYS	 (Fig. 1)	 r

X

10 IQe- ' &	 jo-10-06

Fig. 1 Linear Array

Pattern Factor (N elements, uniform amplitude distribution, far-

field pattern)

Normalized pattern factor

N
F	 1 sin 2
N	 N	 tli	

(2-1)

sin (2)

where	 * - kd sin 6 - 6 = kd sin 6 - kxd.	 (2-2)

d - element spacing

k - 2n/a.

5
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Main Beam

The beam maximum occurs when = 0. Thus a beam maximum at

6 - 6 s requires

6 - kd sin 6 s - k 
x 
d - progressive per element phase shift

	

6 s - beam scan angle, 	 (2-3)

From (2-2) it is seen that the progressive phase constant to

direct the beam in the 6s direction is given by

k - k sin 6	 (2-4)
x	 s

Grating Lobes

These are main beam maximums which occur when the interelement

spacings are such that = 0 at angles other than 6 - 6 s in visible

space ( I sin 6	 < 1 )

2 - + pTr - Tr d [sin 6 - sin (6s)

Manipulating the above it can be shown that grating lobes can be

avoided in the scan range , 6 1 < 6m if

d <	 1(2-5)
a	 1 + I sin 6m1

Obviously for d < a/2 no grating lobes appear in visible space.
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Half-Power Beamwidth ( 3 db beamwidth)

6 half -power beamwidth 6 2 - 6l

where	 Fn(61) 	 . 707 FN (6 s )	 = 1, 2.

Written out this becomes

(2-6)

N`^il
1 ain A

	

sin	 1/2)

For large N and scan angles close to 0 1 or 02 Eq. 2-7 is approximately

sin r(N ^ i )1	 sin r(N ^1^

I`	 2 J = .707 =	 II.	 2

N sin( 2 i )	 (N ^i)

2

N ^
Solving the above gives the half-power points at 2i - + 1.39.

Thus	 kd (sin 6 1 - sin 6s)
	 + 2.78

i
t

i
i

sin 6 1 = sin 6 s
 ± 2.778

yielding for a linear array

e 1/2 = half-power beamwi^9th = sin -1 (sin 6 s + 
.4L3aI

sin-1 ( sin 6s - 
.443X
	

(2-8)

4r

1
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where	 6s = scan angle

L - Nd - array length + d

N - number of elements

Common Special Cases

(a) Broadside, 6 s = 00

0 1	 2 sin -1 
[̂.443 a]	

(2-9)

2 

(b) Broadside, with N large and d - a/2 (optimum spacing for a

linear array)

d 2 sin -1 
[.88

N61 _ 1. 7N
72 (

radians)

101.8R	 -	
N	

(degrees)	 (^-10)

Directivity

g2	 2 sin M/2)

D

4 IF 
1 2
 _	 sin2(ip/2)

= H I Fn 1 2 dil	 'r sin  (N^/2) dQ

f sin 2(^/2)
-^r

D  =	 1

	

1 + 2 NI1 
(N-m) sin ((a k d) 	 (2-11)

N 1



t^
Z
W 1.0

U_

W
W
W

n a 2d for d < X/2

n - lford> a/2

e	 .`
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Efficiency

The maximum theoretical efficiency for a linear array of

"ideal" radiating elements as a function of element spacing is

shown in Fig. 2 below.

V i	 -.a- %
.5

ELEMENT SPACING

Fig. 2 Maximum Efficiency of a Linear Array

Comparing the abcve with the condition that d < A/2 for

elimination of grating lobes in visible space, it is seen that

d = 0.5 A is an optimum choice, at least for the idealized case.

The derivation of the above plot and a far more thorough treatment

of both linear and planar array efficiencies will be covered in a

later chapter. The influence on element efficiency of using a

physical element instead of an ideal one is shown in a subsequent

analysis of an infinite linear array of elementary dipoles.

i
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10

2

x

Fig. 3 Planar gray

The lattice points in a general planar array with parallelo-

gram cells are given by

Pmn m al + n a2

For al ax and a2 ay , a rectangular grid such as shown in Fig. 3

is obtained.

Pattern Array Factor (M x N array, rectangular grid, uniform

amplitude distribution, far-field)

1 sin[ 2 (k dx sine cosO-dx)]
F(O,m) _ —

sin[ 
2 (k d sine coso-d

x	 x)J

sin[ 2 (k d sine sinO-d )]y	 v	
(2-12)

sin[ 1 (k d sine sinO-dy	 y)]
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Phase Increments to Point the Beam in the ( 6 s ,o s ) Direr ection

The main beam maximum occurs at ( 6 s , ^ s ) if

6x - k dx sine s cosms

dy - k dy sine s sine s 	(2-13)

Grating Lobes

1. Rectangular grid (Fig. 4(a))

For conical scan over the range e < e m and 0 < 0 < 2n

the grating lobe maximum can be avoided if

a ` 1 + sinemax r	
(2-14)

to)	 M

Fig. 4 Square and Equilateral Triangular Grids
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The author can show for N > 10 that a better grating lobe

condition is

.815	 k
d	 1 - N

<	 (2-15)

1 + Isinemaxf

The condition in (2-14) is such that the grating lobe produces

a sidelobe of nearly the amplitude of the main beam when the

beam is aimed in the e 
max 

-direction. Equation 2-15, on the

other hand, limits the grating sidelobe to a maximum amplitude

in real space equal to the first sidelobe level.

2. Equilateral Triangular Grid (Fig. 5)

This configuration is optimum in the sense that the number of

elements is minimized for a given area designed to have no

grating lobes in an allowed conical scan region about broadside.

For a given effective array aperture with maximum interelement

spacing to suppress grating lobes, the total areas are

(a) Square grid: Al N 2 a2

	

1	 ^

(b) Equilateral triangular grid: A2 = N2 2 1 . 155 a2 = 2^—.N22a2.
V3

Since A2= Al , N2 2 = 
VT N
12 .866 N12 , and hence

for the same effective areas, the equilateral triangular grid

array yields a 13.4% savings [ 2j in the number of elements.



X

600

1	 - la21

0

v	 13

Fig. 5 Equilateral Triangular Grid Geometry

For the scanning range lei < em and 0 < 0 < 2n

where em - maximum scan angle, the spacing conditions necessary to

eliminate grating lobes and use the minimum number of elements are

_ I	 I_ 
]a
	 X	 _ 1.155a	

(2-16)d	
al	 a2I 1 3 1 + sin em 1 + sin 8m '

or, as in (2-15), limiting the amplitude of the grating sidelobe to

that of the first sidelobe

.815

d < 1.155 -	 N	
(2-17)

1+sin em

For N large

-	 2A	 - 1.155A ax

	

al - ax ^(
1 + sin 8)	

1 + sin 8m

	

m	
(2-18)

a2 -	
2a	

(ax cos 60° + ay sin 60'1. (2-19)
F(1 + sin em)
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From the above

d	
1.155a	 (2-20)

x	 1+ air. 9
m

dy

	

	 (2-21)
1 + sin 8m

Examples (assuming N in Eq. 2-17 is very large):

al (45°) - d  (45 0 ) < . 678X -# 45 0 scan

a1 (600) - d  (60°) < .62X	 i 60° scan

a1 (90°) - d  (90°) < .578n -> 90° scan

Obviously complete visible scan is possible if

d< .578a
x—

d < .5a .
y —

Area of parallelogram - AE - al x a2 - (al l ,a2 1 sin 60 0 -

	

_ 
r
2	 a2

AE	 VJ	 (1 + sin 9m)2

A	
1.155 a2 2

(1 + sin 9m)
(2-22)

.j



III. ELEMENT EFFICIENCY

In this chapter the effects of array geometry and interelement spac-

ing on element efficiency will be examined. The resultant efficiencies

are theoretical maximums obtained by postulating and using "ideal"

radiating elements in infinite arrays. The geometries considered are

linear, planar with a rectangular grid, planar with a triangular grid,

and planar with an arbitrary parallelogram grid,

As is well known, efficiency limits are affected by the trade-off

between grating lobe suppression and mutual coupling in phased arrays

used for scanning. For regularly spaced and uniformly illuminatea array

elements, grating lobes can be eliminated by keeping the element spacings
i

below certain values. However, problems arise because decreasing element

spacings normally increases the mutual coupling between elements, leading

to impedance mismatches and consequent power reflection and efficiency

losses that vary with scan angle. This section will initially ignore

impedance effects and concentrate on how the array geometry affects the

amount of power actually radiated into visible space as compared with

the power which is available from the array. As will be seen, even

this restricted definition of efficiency puts conflicting demands on

element spacing in that 100% efficiency typically requires spacings

greater than the maximum allowed to avoid grating lobes.

A. Definitions

In this analysis the following definitions are used: (31

15

4z
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(1) Element efficiency V.

n = Power Radiated	 = l _ Power Reflected
(3-1)Power  Available	 Power Available

(2) Directive gain

_ 4n U (e,0)	 4 TrU(9,^)
gd(8,^) (3-2)

ff U CM	 Power Radiated

where U(6,0) - radiation intensity and dQ - differential solid angle.

(3) Realized gain

g(e.^)	
47 U (e,m)	

- n gPower Available (3-3)r	 d

(4) Efficiency in terms of reflection coefficient

rr

1 -	
12

	 fn

J 
	 jr(al,a2)i2 dal dal (3-4)

Tr
0	 0

where

T = reflection coefficient

al ,a2 - orthogonal phasing terms

(5) An ideal element is one whose

(a)	 element pattern has no grating lobes in the square

f al l	 < v and Ia
2

I
	 < n for the passive array environment. t

(b)	 reflection coefficient is zero (t - 0) for all real angles

of scan for the main beam in the active array configuration.
i



Here

^n Ir
(a)I

2
	da

Tr 

0

(3-5)
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B. Linear Arrays (Fig. 6)

z

^d-
Fig. 6 Linear Array Geometry

x

where

a kd sin 6= 2 
a 
d sin 6

From the definition of an ideal element

Irl = 0	 visible region (Isin 61 < 1)

I r l - 1 invisible region (Isin 61 > 1)

Therefore for d < a/2

r(a) - 0 for 0 < a < On d/a)

- 1 for ( 2n d/a) < a < n i
1
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and hence

n-1-	 (n - 2 7 d ) -2d /a for d<X/2
Tr

- 1 for d > a/2	 (3-6)

I

SPACING

Fig. 7 Ideal Element Efficiency for a Linear Array

C. Rectangular Grid Arrays (Fig. 8)

Consider an infinite rectangular array in direction cosine

space

v  - cos YX - sin 9 cos ^

v2 - cos Yy - sin 6 sin 0
	

(3-7)



Fig. 9 Direction Cosine Space

vl
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dl
dx

i .
1 a a

d2 d^i 2 .
x

A

Fig. 8 Rectangular Grid

Then

al m k dx vl , 27r dl sin 8 cos	
1

a2 = k dy v2 . 2Tr d2 sin a sin	 (3-8)

and

al

vl 2Tr d1

a2

v2 2Tr d2 v2
(3-9)
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The invisible-visible region boundary is the circle

	

712 + v22 = 1	 (3-10)

Transforming to the al a2 plane produces an ellipse (Fig. 10)

[

al 2	 ra2	 2

Tr dl	+ 2 d2	 = 1
	 (3-11)

with intercepts at a l = + 27 d l and a2 = + 2-ff d2.

N _

Fig 10 
al 

a2 or Phase Space

Noting that

1	 n n
n	 1 - 

2	 1	
J ^rol, 

'2)11
2
dal , da2

n 
0 0

(3-12)
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and

r(a1, 012) 	 0 inside the ellipse in phase space (See Fig. 10)
1 outside the ellipse,

it follows that

	

fTr	

^Tr2n M Tr2-
	

f 
I r 

12 
da1 da2

0 0

is numerically equal to the area common to the ellipse and the

square 0 < al < Trand 0 < a2 < v (shown shaded in Fig. 10).

Results:

(1) For small element spacing •(d1 and d2 < 0.5),

n - 7 d 
1 
d 
2

`	 (2) For sufficiently large spacings (d 1 >0.5 and d 2 >	
1	 ),

2 V1- (2a )2
1

n - 1

(3) For d2 > 0.5 and

d1 < 0.5,

n - 2 d1 1 - (2d ) 2 + 2 d 
1 
d 
2 

f Tr/2 - sin ^l 1 - (2d ) 2
2	 2

-
 2d 1 - (2d

	

2	 2
)2 }
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(4) For .5 < d1 < .707 and

.5<d2<	
1

2 V(Z—I) 2
2

n-2d	 1- (1) 2 +2d d 1 1 q^, _ 
( 1 ) 2 - 1	 1- (1)2

1	 2d2	 1 2 2dl V 11	 2d1	 2d2	 2d2

+ sin -1
	

sin > - sin -1	 1 - (2d ) 2 }
1	 2

The results for several different ratios d 2 /d1 are shown plotted in

Fig. 11.

D. General Parallelogram Lattice (Fig. 12)

Fig. 12 Parallelogram Lattice

* All distances are expressed as fractions of free space wavelength.

l-.
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U-apace is defined by the transformation

v  = sine coso - U1/al

	

-U1 Coss	 U2
v2 - sine sink	 +	 (3-13)

	

a l sins	 a2 sins

Substituting the above in the visible-invisible region, boundary

equation

2 + 
v2 2v1 	

1

produces the ellipse

U 2	 -U cosh	 U	 2

al	 +	 al sins + a2 sins	 1	 (3-14)

in U-space. Kahn [31 shows that in U-space for ideal elements the

efficiency is equal to the area common to the invisible-visible

boundary ellipse and a unit square. The equivalent area is shown

shaded in Fig. 13 below.

Fig. 13 U-space
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The ellipse has:

1	 -1 ^ a
l a2 cosh

TILT ANGLE	 T	
2 

tan	 2	 2	
( 3-1.5)

al - a2

a2 sink.

AXIAL RATIU AR - tanT '
a 
1 

tasT - a 
2 

cosh	
(3-16)

INTERCEPTS	 U1 - 0, U2 = a2 sink

U2 - 0, U1 a al sin& .	 (3-17)

Equilateral Triangular Grid

s

This important special case has al - a2 a a and a 60°.

From the above

T - 7/4 or 45°

AR - V ,

intercepts: U1 - 0, U2 - 0.866a

U2 - 0, U1 = 0.866a,

and the appropriate boundaries in U-space are sketched below.

Fig. 14 U-space for an Equilateral Triangular grid
	 ^.	 1
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Calculations for the equilateral triangular grid show that for

(1) a < 0. 5,	 n	
7ra2Vr3—

2

(2) 0.5 < a < 1/ V3_-  0.5773,

- r 2 1-R	 1-R 2 1+R	 1+R 2
n	 .75R + V 3 a	

4aV,_( 4a)	4a 1-(4a )

+ n + sin- 1
[ 1-R

] - sin-1[121
2	 4a	 4a

where R -	 12a2 - 3

(3) l/ VT< a < 1.0,

1+R _ 1+R 2 ^- 2 n_ 1+R ^ 1+R 2	 -1 1+R
n = 2	 16 + Y ' a ^2 ( 4a) ( qa) -sin ( 4a)J

(4) a < 1. 0,

n - 1.0

and the results are plotted in Fig. 15.

Kahn [3) has worked out several other cases which might prove

useful, and these are presented in Figs. 16 and 17 below. Figure 16

shows the effect on efficiency of changing the sidelength ratio,

a2 /al , on a 60° parallelogram lattice. Note that the commonly used 	 t

equilateral case where a2 = al is in a sense worst from an effic-

iency standpoint. In Fig. 17 the corner angle of a rhombic grid

has been varied, and it is observed that for a given element spacing,

efficiency increases as the angle approaches 90°.
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1.0
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W_
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0
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1.5

—21 5

• 4.0 = 112/0
1

0,

	

.5	 1.0
-^ °ya

SPACING

Fig. 16 Effect of Sidelength Ratio in a 60° Parallelogram Lattice

1.0

V
z .5
W_

V
W
U_
W

900

50 =

1011 -1021

I Oo = ^

U	
.5	 1.0	 1.5

Fig. 17 Effect of Corner Angle in a Rhombic Lattice
	 i

Some sample calculations using the information in Figs. 11, 15, 16

and 17 which might prove interesting are given by the following examj:les:

(1) Square grid - 100% efficiency requires d 1 = d2 = X/ v/-2- = 0.707X;

maximum scan with grating lobe suppression

.707X	
1 +1sin6	 e

m _ 24.5° for 100% efficiency
m
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(2) Equilateral triangular grid - 100% efficiency requires a . a
a	 '

maximum scan without grating lobe 	 = 1.155/(l+sin6m)

6m = 9° for 100% efficiency

(3) 60° scan, square grid -

dx = dy = (1.0/1.866)a = 0.536a;

from Fig. 11, Ti max - 0.85

(4) 60° scan, equilateral triangular grid -

dx - al Q a2	.62a;

from Fig. 15, nmax - 0.8435

(5) 90° scan, square grid

dx - dy - 0.5X;

from Fig. 11, n	 0.785
max

(6) 90° scan, equilateral triangular grid -

dx = al = a2 - 0.5773a;

from Fig. 15, nmax - 0.802.



IV. EFFECTS OF SCAN ANGLE ON IMPEDANCE, MUTUAL COUPLING, AND
POLARIZATION IN INFINITE ARRAYS.

The aim of this chapter is to introduce some of the terminology,

analysis techniques, and difficulties associated with impedance and mutua?.

coupling in scanned arrays. The early portion of the chapter contains

some graphical results and a few formulas taken from the literature which

are intended to give a qualitative feel for the behavior expected for

array impedance variations with scan angle. Included are graphs showing

special examples of the effects on impedance of ground planes, grating

lobes, and element spacing. The primary literature sources for these

results are Hansen[4] and Allen and Diamord [5] and these references are

recommended for more comprehensive treatments and extensive bibliographies

on the subject. Once some of the qualitative array effects are known,

the active impedance and efficiency of an infinite linear array of elemen-

tary dipoles are calculated. The details of one of the common techniques

for analyzing infinite arrays are illustrated by this application. In

addition, this chapter contains an introduction to the troublesome effects

of coupling waves which often produce gain losses at scan angles prior to

grating lobe effects. Lastly, a qualitative summary of some of the

factors that influence the polarization characteristics of a scanned

array is given.

A. Approximate Impedance (or Admittance) Variations with Scan Angle

In this analysis it is assumed that the arrays are infinite Cr large

enough to approximate the behavior of an infinite array, and hence, the

method of periodic unit cells [6] may be used for calculations. By look-

30
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ing at an array as an infinite sequence of periodic cells, it is possible

to obtain an approximate formula for scan dependent impedance variations

from geometric and physical considerations. For a beam streered in the

6-direction the periodic cells are aligned Ps shown in Fig. 18. Note

that the results to be obtained are especially representative of arrays of

l

—^	 O O
=S 	 IS

(a) E-plane scan	 (b) H--plane scan

Fig. 18 Unit Cell in Infinite Array

short slots or dipoles.

By the equivalence principle [311 most array source elements can be

described by the appropriate combination of surface currents or current

filaments (magnetic /electric). For an E-plane scan the effective

electric current contributing to the far-field (E 6 j is

Ieff ' I
s cos 6	 (4-1)

implying
R

s 0
Reff	 cos 6

(4-2)
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where R  - broadside cell impedance.

Similarly, for the H-plane scan

I
_ s

Ieff	 cos A	 (4-3)

implying

Reff = 
R  cos 9 .	 (4-4)

If mutual coupling is ignored, the above approach shows that the

approximate impedance or admittance variation of the array with scan

angle, 9, takes one of forms given in the following table:

E H- lane	 H E- lane
1

cos	 cos 9

The effective impedance variations, as well as the resultant reflection

coefficients for these cases, are shown plotted in Fig. 19 below.

L

3

Fig. 19 Approximate Impedance and Reflection Coefficient Variation with
Scen Angle
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B. Planar Arrays of Short Dipoles

For an infinite array of short dipoles and in the absence of a ground

plane, the active impedance for an arbitrary scan position (6, 0) can be

shown to be [7]

N	 R 1 - sin 2 ecos 2^	 N X
Za 

a 
2 dx dy

 F
EE (	 cose	

) + i dx 
dy	

(4-5)

where

R 1	 [sine coso + dX
]2 - 

1	 (4-6)

X	 R
2	 e

m n [(sin6 cos¢ + d^
)
2 + (sin6 sinO + d^)2 

1] 1 2

x	 y

N constant dependent on type of element and geometry

excludes the propagating modes.

If this array is placed a height, h, above a conducting ground plane,

the active impedance becomes [7]

Z - R + i X
a	 a	 a

Z
0

where

N	 1 - sin2 6 cos 2	2

Ra 
a 
d d re

 [
	 cos 6	

] sin (kh cos 6)
x y

[ d Nd-I Zo sin' (hk cos 6)

x Y

Z
Xa M d 	 [X + 22 sin (2 kh cos 6)]

y x
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The resistive components of impedance for the case without the ground

plane and for the array positioned a/4 above s ground plane are compared

in Fig. 20 below.

1.6 /tH—PLANEW
WITHOUT GROUND PLANEi 1.4
H-PLANE

to 1.2 /	 WITH GROUND PLANE

W 1.0
C

.B E-PLANE WITHOUTcW `^ GROUND PLANE
N .6 \

a \	 E- PLANE WITH4
GROUND PLANE

\\.2Z

15' 30' 45! 66 756 90!

SCAN ANGLE

Fig. 20 Resistance versus Scan Angle

Note that for H-plane scan the ground plane reduces the VSWR to less

than 1.2 for A < 65°.

C. Ground Plane. Grating Lobe. and Element SDacina Effects in Half-wave
Dipole Arrays

In this section the behavior of some infinite or very large planar

arrays of a/2 dipoles are graphically presented.
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Fig. 21 Effect of Ground Plane on Dipole Array Resistance

In Fig. 21 it is observed that with the ground plane;(1) D-and H-plane

resistances go to 0 instead of infinity as 8-90°and(2) H-plane resistance

is fairly constant out to scans of 60°.
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dx=dy 20,6
200

I

1 80
	

I H- PLANE

W	 80

a	 60

40

20

E-PLANE—,

I
GRATING LOSE f

BOUNDARY -•+
I
I

20 0 	 4
1

660	8

0	 20	 40 ' 60	 80

Fig. 22 Spacing and Grating Lobe Effects on Impedance
(a/2 dipoles, X/4 above a ground plane) [8]
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Comments on Fig. 22:

(1) The introduction of the grating lobe into visible space greatly per-

turbs impedance and efficiency.

(2) The broadside resistance was reduced from 105 to 80 ohms as the

element spacing was changed from 0.6a to 0.7a.

(3) A 65xl49 array was calculated to almost exactly fit the above curves

for infinite arrays.
0,0

00

Fig. 23 Smith Chart Locus of Driving Impedance Variations
with Scan Angle 0/2 dipoles, dx W dy 0 a/2) (9]

1.a
(9x11 array of

center	 U a/2 dipoles,
element	 spaced A/2, 1/4

above a ground
plane)

.i

,4

.2

0° 20° 40° 60 0 80°

Fig. 24 E-Plane Gain vs Scan Angle [9)
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Gain

H-PLANE SCAN	 5

d-d -d -0.8X
x y

^-d=0.7,x,

d-0.6n

2	 isolated dipole

1	
a0.5a

-80 0	-600 -40 0 -20 0	00	200	400	600	80°

Fig. 25 Effect of Element Spacing on Gain vs Scan Angle
(7x9 array of a/2 dipoles) [10]

I
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D. Calculations of A.-tive Impedance and Efficiency for an Infinite
Linear Array of Dipoles

As an example of the procedure involved in a theoretical analysis of

impedance and efficiency effects, it is useful to consider Wasylkiwskyj

and Kahn's [11] treatment of an infinite, linear array of elementary

dipoles. In contrast to the earlier section on element efficiency, the

influences of physical elements on the system and their contributions to

mutual coupling will be included in this solution. Among the results

obtained are the observations (1) that the impedance variation with scan

angle is dependent on the orientation of the dipole elements with respect

to the array axis and (2) that there exists an alignment where tha imped-

ance is a constant, independent of scan angle.

The solution is obtained by using the "free excitation" method [12]

which models the drive to each array antenna element with an appropriately

phased generator source having an impedance, Zg (Fig. 26). The system

is then analyzed in terms of the scattering or coupling coefficients at

the interface to the radiating elements. A distinctive property of such

a feed system is that it has constant incident or "available" power.

As a review, the basic equations and definitions used for scattering

are noted. The scattering traxtrix equation is

[b ] - C;i][a],	 (4-7)

and the equation governing a single part for a linear array is

r.
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N

	b  - lim	 cG Snm am
N— -N

N

	= lim	 I Cnm am	(4-8)

	

N-^-	 -N

where

am = incident wave from the mth port - V+/Z9

b  - reflected wave at the n th port V /Zg

S	 C = bn	 - scattering or coupling coefficient
nm	 nm amaj - 0, j # m

The quantity Snm traditionally has been used to denote a scattering coef-

ficient. In this treatment it will be used interchangeably with the

term "coupling coefficient" denoted C
nm 

Yhich is often adopted by those

working in array theory. Unless stated otherwise, the symbol Cnm will be

used throughout the remainder of this report. In terms of the total

voltage and current

I

b
n

Fig. 26 Equivalent Circuit for n th Port

an
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at the n th port it can be shown that

Vn + Z g In 2 + g an 	(4-9)

Vn — Zg*In - 2 ^ Rg bn 	(4-10)

where Zg - Rg + i Xg M generator impedance. It is also a consequence of

the definition of scattering coefficients that

2 . power ton
I snml	 power available at n due to m with all

other ports passively terminated in Zg

which again makes obvious the origin of the term, coupling coefficient.

Note that Debski and Hannan (13) showed that it is possible to measure

these parameters and use the results as the basis for calculations of

active array performance. Their scheme involves a passive array measure-

ment where one element is excited, the rest are terminated in their

matched generator impedances, and the wave transfers to various elements

are measured to determine respective coupling coefficients.

For the infinite linear array of dipoles shown in Fig. 27 (all lie

in the xy-plane and are oriented at an angle y o with respect to the

array axis),



X

^t dipoles

A

V 	 iZg m

a - 0
M (4-13)

42

0

Y

Fig. 27 Infinite Linear Array of Short Dipoles

the voltage at the n th port is given by an infinite difference equat!_n

N

V 
	 lim	

I zk In+k	
(4-11)

N— -N

V
_ n

zk 
In+k
all other I's = 0 	 (4-12)

Desiring to further correlate the impedance and coupling relations at

the n th port, the following approach is taken. From (4-9) for a m - 0 it

follows that
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Substituting (4-13) into (4-10) yields

bm =	 1 [ -Zg -Zg*] Im = -FRg Im2(4-14)
V

a = 0
m

Therefore

b

Cnm = am - V m I
m for n m	 (4-15)

nl a
a^ 0 n

J # n
and similarly

I

Cnn = 1 - Rg 
am 

for n - m.	 (4-16)
n

By substituting the expansion (4-11) into (4-9), (4-9) can be written

N
2Rg am = lim	 1 zk Im+k + I

m Zg	 (4-17)
F N— -N

Now an excitation is applied at m which is adjusted to cause a net wove

of unity to be incident at n. Equation (4-17) becomes

2Rg amn = 2FRg 6nm
	 L zk In+k,m + Z

g In ^m (4-18)

where a	 d	 unit incident wave at n due to the excitation at m 	 withnm	
nm all other ports passively terminated in Zg

Ip,m - current at p due to the above excitation at m.
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00	 2

If In,m are constrained such that 'r jin,ml < - and if
-OD

n

Mn
d a 

2^	
e-i(m-n ) ^ dt - Kronecker delta,	 (4-19)

-7r

then I	 can be made the n th term coefficient in a Fourier series
n,m

expansion of a function F W

1
In,m	 2Tr	

n 

F (C) e
	

dI	 ^	 (4-20)
-

Using (4-19) and (4-20) in (4-18) yields

2	 Rg	
J2 7r	
I' 

e-i(n-m)& 
d& -	

zk 2n f
L- Tr F(&)e-

i(n+k-m)& d&
k-7r	 -n

+ Zg 2rt	
fTr F(E) e-i(n-m)C dC	 (4-21)

-Tr

Then equating integrands in (4-21) and solving for F (&) gives

2 ^	 2 V"
F(O s	

S	 (4-22)
Zg + C zke-ik& 	 z  + Z W

where Z (E) is defined as

N
Z W - lim I zke

-ik^ 	
(4-23)

N-*m -N
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The current I is thus
nm

I = 1 
	 2 Rg	 e (n-m)d

2irnm

f7r

	

V

Zg + Z W
-^r

and by superposition the total current at n is

(4-24)

CO2s 1

	 f

	
-^imp

In m.--,	 2In,m am	 n 	 Zg+ ZM 0 ma e]ed^

'r 	 (4-25)

Consequently the scattering matrix elements can be expressed

RTr	 -ie(n-m)

Cnm	 Mnd 	 j Z + Z(&) d^
	 (4-26)

-Tr	 g

or using (4-19) for 6rM and manipulating (4-26) the coupling coefficient

expression can be rearranged to give (*denotes complex conjugate)

1	 'r
Z(E) 

-ZC S e-i^(n-m)	
.

nm 2 f Z M +Zg	
dc

-n

It is now noted that

N
Z(a) . lim I 

z e-ipa

N+- -N p

(4-27)
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is identical to the active impedance of an infinite array excited by equal

amplitudes and a linear phase taper, a. This is true because for

am - 
e-ima the sum in the integrand of (4-25) equals 216 ( &-a) where 6 is

the Dirac delta function, and hence integration of (4-25) produces

2 V- g	 -inaIn(a)	 Zg + Z(a) e

a - phase t;ieer - kd sin 6

which can be written

Zg + Z(a) In (a) - 2	 e-ina	
(4-28)

Looking at (4-9) with an - e-ina

2 Rg a - 2 ` ^ e-ina - Vn + In Z
n	 v	 g

and comparing with (4-28), it is immediately apparent that

V  - Z(a) In(a)

or

Z(a) - I - active input impedance of the n th port.	 (4-29)
n
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Since Z(a) is the load impedance seen by the generator at the nth

element, the reflection coefficient is

z (a) - Z

NO - Z(a) + Zg	
(4-30)

But Eq. 4-27 then implies that 
Cmn 

are the Fourier series coefficients in

an expansion for r (a). Hence, it is seen that

	

_	
00	

1(n-m) a	
Z(a) - Z^*

r(a)	 I Cnm e	 = Z(a) + Z g	 '	
(4-31)

m=-^

and

C	 = 1
	

ITr r(a) 
e-i(n-m)a 

da
nm	 2Tr

-Tr

Tr Z(a) - Z

	

2Tr	 f	 Z(a) + Zg
e
-i(n-m)a 

da	 (4-32)

	

2Tr	

Tr

From Eqs. 4-30, 4-31, and 4-32 it is thu3 possible to determine active

element impedance variations with scan knowing the reflection coefficient

behavior and to relate coupling coefficients to the reflection coefficient.

Although these results were obtained for a one-dimensional array, the some

procedures can be employed to extend them to multi-dimensional arrays.

Recalling the definition of element efficiency given on page 16

n 1 - power reflected 
-

power radiated	
(A-33)

power available power available
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V

and using the above formulations, it follows from Parseval's theorem

that

rr

r1	 1 - I 
ICnm l2
	 Zn	 jr(a)^2 da

m

	

f
-n

Z'a) - Z * 2

1	 2	 1Z (a)+ Zg 1	
da	 (4-34)

	

-Tr	 g

Taking the first term on the right hand side into the integral and doing

the required algebra yields

2	 * 2	 ^r
n - 

1

	

f
7T

IZ+Zg
1

- Z-Zg	da - —I f Rea1LZ(a))	
da

2r Z+Z 2 n	 -n IZ(a)+Z 2
 (	 gl	 g) (4-35)

From ( 4-34) a linear array having a phase taper a s - kd sinO s is seen to

be impedance matched at the scar_ angle, 6 
s 
,f

	

Zg* - Z( as ) .	 (4-36)

The invisible-visible region constraints give

Real[Z(a)] !. 0 and jr(a)l :<l  for Jul< kd < n	 (a)
(4-37)

Real[Z (a))	 0 and Irml - 1 for kd < jai	 (b)

For the . ;onditions in (4-37a) real power is radiated, and for the

conditions of (4-37t), Z(o) is purely reactive and there is no time

average power.
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Since the visible region accounts for the radiated power, Eq. 4-35

can be written

2RI
fkd Real Z

r1 M 	 2 do for 0 < kd < n	 (4-38)

-kd	
IZg+Z1

Again using Hannan's definition of an "ideal" element as one which is

matched for all angles of scan in the visible region, i.e. Z g* Z(a)

for all laj < kd, the maximum or ideal efficiency for an infinite linear

array is found to be

2R 	 R	 kd , kd < it
n

max 	 7r

	 fkd
 (2Rg)2 do	

1.0, kd > it	 (4-39)
-kd

Wasylkiwskyj and Kahn (14] calculated impedance and efficiency for an

infinite linear array of elementary dipoles. The impedance terms, zv,

for elementary dipoles are given by

3	 (2)	
hl(2)(jv!kd]2

zv	 2 ( ho	 (Ivikd] -	 v kd	
] sin •{o +

3h1(2)(lv!kdJ	
2

v kd	
cos Yo	v 0

zv -1.0 , v-0
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where Yo - angle between each dipole and the array axis, h o (2) 
and h1(2)

are spherical Hankel functions. They substituted (4-40) into (4-23) and

summed it to get an expression for Z (a) - R  + i Xa . In closed form their

result for R. - Re[Z] is

2
R.
	 2kd	 ( 1 -	

)(Cos2Yo - 2 sin2Y^) + sin2Yo
 ] . ^aI < kd < n

k d

	

-0, kd< l a )

	
(4-41)

For an element spacing of X/4, Eq. 4-41 is plotted for several d pole

orientations , Yo , in Fig. 28 below.

n

Yo 0° Colinear
(E Plane)

Y -90°

N 3 _° (H

is2

r

n
W

1

Yo- sin-1 (x%3 ) = 550

a - kd s in 8

0

.4	 .8	 1.2 1.6

	 a - 2 sin 8 - scan position

Fig. 28 Active Resistance vs Scan angle for an Infinite L{.z:-ar Array of
Elementary Dipoles (kd - r/2)
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From (4=41) and Fig. 28 it is seen that an important special case occurs

when sin 2Yo = 2/3. This yields

	

Re(Z) - kd ,	 , aj < kd < n

= 0	 ,	 kd < lal

which is constant and independent of scan angle. The element efficiency

for the optimum alignment [ sin(Y0) = 2 33 ] has been calculated and is

shown in Fig. 29.

Fig. A Effect of Element Spacing on Efficiency (sin Yo M 2/3)

i

.	
L

d
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Note that the above analysis suggests a theoretical justification

for the common technique of mounting crossed slots or crossed dipoles in

a planar array at 45 0 with respect to the array axes in that impedance

variations with scan angle tend to be reduced.

E. Coupling Wave Effects Producing Mismatch Prior to the Appearance of
Grating Lobes [15]

Surface waves (or as Knittel, Oliner, et al. [16, 391 have pAnted

out, surface-wave-like fields, or sometimes leaky waves) along an array

face can destructively interfere with the generator phased elements with

the net.result that large reflections occur at the effective array surface.

Under such conditions of large reflection, the efficiency of the array

becomes intolerably low and the drive networks become badly matched.

Thus, if coupling waves initiated along an array produce the first

destructive interference been by the beam as it is scanned from broadside,

the coupling waves, not grating lobes, will determine the scan limits for

that array. This discussion presents an intuitive explanation of the

phenomenon in terms of coupling or "surface" waves, and the results can be

applied to any array, not just ones covered with thick dielectric sheets

where true surface waves cause the effect. The development to follow

depends on the observation that if coupling effects somehow propagate

along the surface of an array with a coupling velocity less than the speed

of light (slow wave), coupling mismatches will occur and degrade efficiency

at smaller scan angles than those at which grating lobes appear. In

practice many arrays exhibit slaw wave coupling velocities, and this is

evidenced by mismatches at angles prior to those predicted by grating

lobes [19].

I-
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For this analysis a planar array with an equilateral triangular

grid such as shown in Fig. 30 is considered. As is well known, an

equilateral triangular grid (hexagonal cell) reduces the number of ele-

ments required by 13.4% [2], and because of its consequent widespread

usage, it will be investigated here. In such a lattice a cardinal plane

z

x

Fig. 30 Cardinal and Intercardinal Planes

is defined as one containing the z axis and any one of the six closest

elements (i.e., ¢ = 00 , 60 0 , 120 0 , 180% 240 % 300°), and an inter-

cardinal plane contains the z axis and one of the bisecting planes

(0 = + 30°, + 90°, + 150°). In the case of a planar array the active

reflection coefficient at the center element (0, 0) with all others

excited is given by
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where

CUM - mutual coupling coefficient between the (0,0) th and (m,n)th
antenna elements

VMn - drive voltage applied to the (m,n) th element
V00 - drive voltage applied to the (0,0) th element.

For a two-dimensional planar array having a uniform amplitude illumina-

tion, the beam is steered in the (e s ,¢ s) direction by phasing the

elements such that

V
V^ = exp[-im^x -inky]
00

where

(4-43)

^x = k d  sine s cos$s

Iyy = k d  sine s sine s .

The resulting far-field pattern factor is then given by

F(6,0) = I I exp[imk d x (sine coso - sine s cos¢s)

+ ink dy (sine sin¢ - sine s sinu s)]	 (4-44)

For this phasing Eq. 4-42 is recognized as a Fourier series

r ( r X '*y )	 E L Cmn exY (4-45)m n 

and hence the scattering or mutual coupling coefficients can be found

from

cj" 
J Tr r
	 ^'^, _ (2^)2	 {V^x^V^y) 

eim x + inr^y dW
x d^,y	 (4-46

-Tr -n
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In order to simplify the analysis the special case of scanning in

the cardinal plane, ^ s = 0, is considered. Here ^ y = 0 and ^x = k dx sir_ 0

reducing (4-45) to

CC C
r (V x)	 L G Cmn e- mix = F Am eiom i m

' -x	 (4-47)

m

where

m e
i^m I Cmn

n

Each element is the source of an electromagnetic wave which propagates

out from it. Into free space the wave propagates at the velocity of

light, however, along the array face it is possible that the array ele-

ments and the surface interact to create a coupling wave which travels

parallel to the surface at an effective velocity other than the speed of

light. Since the array is nearly infi.ite, it follows that the coupling

velocity, and hence the phase shift, should be symmetric about the

reference element along a line through it. Thus, for cardinal plane scan,

the expected phase delay m elements from the reference is

Om = a + I m IT	 (4-48)

where

^ = incremental phase delay in coupling

= k d - w d /v^	 x2-rd/ac x	 x c
.;

The above is expressed in terms of a real or fictitious coupling wave 	 ^I

that travels outward from the 0th column with a phase velocity, vc.

°i
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Under these circumstances the reflection coefficient becomes

c
r(^x) = 

L COn + e
ia C m e-im(Wx-0) + Am a+im(

^x+^) ,	 (4-49)
i

and large coupling mismatches occur when the coupling contributions add

in-phase to maximize r. From Eq. 4-49 it is seen that this takes place

when

2nd
^x
 = + + 2np - k d 

x 
sine 

c - 
+ 

a 
x 

+ 2np	 (4-50)
c

Solving the above for the critical scan angle due to coupling gives

pXo	 X 	 X	 c
sine c	d +	 = p 

o 
+ v
	

(4-51;
x	 c	 x	 c

c'- speed of light

Mismatches are gnerated when 6 c lies in real space ; i.e. Isin9 c I < 1.

Since p = 1 commonly designates the threshold of the destructive inter-

ference in real space, the form of Eq. 4 -51 normally used for calculations

is

a

Isin6 gl
i
	

d
—° -	 (4-52)

x	 c

From Chapter II the normally predicted grating lobe condition for this

cardinal plane (0 s = 0) is given by

X

1 sine gl ) = ao - 1	 (4-53)

x

l
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Comparing Eqs. 4-52 and 4-53 it is .aotnd for slow wave mutual coupling

(as is often the case) where v  < c ' -. at 8 c < ® gl , and hence mismatch

due to mutual coupling is observed at scan angles prior to those predicted

by pure grating lobe assumptions. Note that there have been many

instances where experimental measurements have recorded this effect.

Linearily polarized coaxial horns, circularily polarized coaxial horns,

and linearily polarized rectangular horn arrays have all been character-

ized by coupling velocities less than the speed of light [18, 19, 20].

Using only the unmodified grating lobe condition of (4-53), the max-

imum element spacings to eliminate grating lobes for scans out to + 9m

are

X

d o_

x	 1 + Isin8m^

and

(4-54)

d  = V
	

dx (hexagonal cell).

From Eq. 4-52 it is obvious that this choice can result in serious imped-

ance mismatches, radiation loss, and polarization distortion whenever

the element coupling phase velocity is less than the speed of light, as

is frequently the case. The degradations are caused by the in-phase

accumulation of coupling contributions, and in such instances the coupl-

ing accumlation determines the usuable scan limits for efficient operation

without compensation. Actually this is just an alternate way of looking
	 %

at the problem of impedance variations and mismatch with scan angle

(caused by and commonly analyzed by mutual coupling considerations).

Its advantage is that it lumps coupling effects in a propagation velocity,



0

58

vc , which can be experimentally measured [15] or usefully employed as a

design safety factor.

Lechtreck [ 20] did extensive experimental work with a 65 element

planar array of coaxial horn antennas (hexagonal interelement geometry

with a rectangular periphery). He considered:

(1) Polarization ( linear and circular)

(2) Radomes (with and without)

(3) Cardinal and IC scan planes

(4) Interelement spacing

with the following results:

1. Phase, ^, was linearily proportional to iml or the magnitude of

distance from the column used as a reference.

2. Coupling velocities (v c ) of 90 to 92% of c (velocity of light)

were measured for linear and circular polarization,

3. Large gain and power losses occurred at the scan angles predicted

using the coupling velocity, v .
c

4. The presence and shape of radomes affected the coupling velocity.

5. Figure 31 below shows the variation in 8
sc 

(critical scan

angle) with element spacing for the range of coupling velocities

encountered. Note that decreasing d
x 

gives a wider useful scan.

6. For circuilar polarization, a large polarization distortion

occurred near E sc (critical coupling scan angle).

1.
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Fig. 31 Critical Scan Angle vs Spacing
(circularly polarized, 5x13 planar array)

E-plane

H-plane ---

For this case

8 . 670
00 20 0 400 60 0 80°	 c_o

Scan Angle	
8gi 78

Fig. 32 Polarization Distortion
(5x13 planar array, dx = 0.506X)
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F. Polarization Effects

Polarization will be treated in more detail in a future study [41]

where special attention will be given to wide angle matching of circularly

polarized arrays. Some qualitative aspects are summarized below. In the

following list are some specific as well as general observations:

1. In arrays it is possible for linearly polarized elements to

produce elliptical polarizations varying all the way to circular at certain

scan angles. Similarly, circularly polarized source elements c:.n display

linear polarizations when used in an array, Often these effects are

most pronounced n.ar grating lobes. Fortunately, polarization degen-

eration is not a necessary occurrence for elements in an array environment,

and in many instances the polarization characteristics of an array are

better than those of an isolated antenna element.

2. Polarization deteriorization is strongly a function of the

!	 array geometry and the type of radiating element. For example polari-

zation loss is more noticeable for dipoles in echelon than for a

rectangular grid of dipoles.

3. For evaluating polarization effects it is usually easiest to

measure or compute the cross polarization field component as a function

of scan angle.

4. Gain for a desired mode of polarization can be substantially

reduced by energy transferred to unwanted polarizations.

5. Under proper conditions the polarization of an array of crossed

dipoles was found to be more nearly circular over wide scan angles than

was the pattern of a single element (axial ratio at 9s - 57° improved

from 2.1:. to 1.11:1 when the element was placed in a 7 x 7 rectangular

array (101).
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6. Log periodic antennas generaily do not work well in arrays.

7. Spirals, crossed dipoles, crossed slots, cavity-backed circu-

lar and square apertures, helices, and specially designed combinations

such as the Wheeler element [42] are commonly used for circular polari-

zation.

8. Spiral antennas are useful for circular polarization. They are

broadband and their relative phases can be adjusted by rotation of the

feeds-

9. Flush mounted antenna elements are preferred in many array

designs. Since the feed structures for nonflush antennas protrude

into the fields of adjacent array elements, the mutual coupling effects

can be considerable and are difficult to predict. A shadowing phenomenon

can occur which especially limits wide angle scans. Lastly, the aero-

dynamic advantages of flush mounted radiators are obvious.

10. For wide angle scans an ideal element would be cne with a

hemispherically isotropic pattern with the proper polarization. The

beam width of an individual element in an array with all other elements

terminated in matched impedances is a good measure of the maximum scan

range for the active array.

11. Scott and Soo Hoo [43] have shown that a null-free antenna

pattern includes all axial ratios. Thus it is impossible to achieve a

null-free antenna pattern with a fixed polarization. By applying

topological theorems Scott [44] showed that a circularly polarized

antenna requires at least one null point in its far field pattern.



V. COMPENSATION TECHNIQUES

In this chapter some of the techniques for compensating an array

for changes in element driving point impedance with scan angle will be

considered. Again since impedance changes produce great losses in gain

and efficiency at extreme scan angles, any lossless schemes for reducing

effective impedance variations will also improve efficiency.

A. FOR PRELIMINARY DESIGN OR LAB STUDY MODELS

The components listed below are readily available and provide a means

of isolating the array generators or loads from the effects of the impedance

variations at the antenna elements. Generally these matching networks

are lossy and hence are best applied to designs having no premium on

radiated power or efficiency, such as might be the case with mock-up or

experimental designs where simplicity and speed of implementation are

important. Some of the off-the-shelf components used for such matching

are given as follows:

1. Series ^ ds to reduce VSWR

2. Terminated circulators

3. Isolators

All of the above give isolation between the feed network and the

array elements thereby reducing standing waves and helping prevent

oscillator pulling and parametric oscillations, however, most of them fail

to cope with the basic efficiency problem of variation in realized gain 	 ^!

with scan angle.

62
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B. CORRECTIVE COMPENSATIONS

In arrays where radiated power and efficiency are important the

problems of mutual coupling and impedance changes with scan angle must

be considered. As an arbitrary rule of thumb it noted that for scans

of less than + 30° from broadside, mismatch effects are usually tolerable.

However, depending on the array and grid geometry, efficiency losses due

to impedance changes seriously affect array performance for scans

beyond certain limits. For instance, planar arrays are typically used

for scans up to + 60° from broadside, and in many cases compensation

techniques can be very effective in achieving efficient scans over that

range. For scans much greater than + 60° it is probably best to go to

three-dimensional array geometries to maintain reasonable efficiencies.

This work will concentrate on linear and planar arrays since these geometries

are frequently used as building blocks for more general configurations.

Knittel [21] and Kmetzo [22], for instance, have considered hemispheric scan

coverage using planar arrays arranged in a pyramidal fashion.

Basically there are two general approaches to the task of lossless

scan matching, namely,

1. Modification of the array environment with fences, baffles,

dielectric cover sheets, or dielectric plugs, [23,24,25],

2. Employment of tunable active or passive matching networks

and/or interconnecting circuitry between array elements [26,27,28].

Of the following methods the most applicable are probably variations of

the Hannan connecting circuit technique [26] and the Magill and Wheeler
	 ti

sheet matching [24]. Because of the importance of these methods much of

this work is done to supplement them and present their limitations so that
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hopefully most of the information needed for actual design is readily

available. The matching dielectric sheet is essentially a trial and

error procedure where the primary limitation is the necessity of avoiding

deleterious coupling wave effects. Hannan's connecting circuit method

is probably the most powerful, but it has a greater initial cost and

requires either a fairly reliable experimental measurement of impedance

and coupling variations with scan angle or a detailed theoretical study

giving the same information. The complexity of the corrective compensation

scheme used depends on the degree of compensation desired. First order

efficiency improvement can often be accomplished by matching each array

element with a tuned line and an inductive or capacitive coupling element

between adjacent array positions. The values can be selected by making a

good engineering guess based on the active impedance ranges. If

theoretical maximum efficiencies are to be approached, it is usually

necessary to make extensive use of a digital computer in the design. An

outline of such a computer program is given in this chapter.

A. Edelberg and Oliner Baffles to Modify Array Environment

In this early approach Edelberg and Oliner [23] experimentally leveled

the variations in active driving element impedance with scan angle by

placin metal fences between rows of dements in a large array of dipoles

above a ground plane. The fence width and its height above the ground

plane were varied until an experimental optimum combination was determined.

Nov-.e that they placed the fences and worked to improve E-plane scan,

klri::a for dipoles in the array is much worse than H-plane scan variations.

Some of their results are plotted in Fig. 33 below. Observe that
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generator VSWR was reduced from about 4 to less than 1.3 fo: E -plane scan

out to 60°.

H-plane	 ground plane

	

1.2	 E-plane (with baffles)

	

1.0	 H

	

g	 ^	 310 E-plane

C	 (without)

	

a ,6	
§ 2.5

.4 E-plane	
^ 2.0 E(with baffles)'

	

2	 (without) ^\	 1.5

1.0
15 0 30 0 45 0 75 0 900	150	 30° 45 0	600 75 6 90°

scan angle	 scan angle

Fig. (a) Resistance vs Scan 	 Fig. (b) VSWR vs Scan Angle

Fig. 33 Effect of Fences on an Array of Dipoles

B. Impedance Matching with Scan Angle Using Connecting Circuits [26]

The following developments of Hannan et al. [26] illustrate the

origins of the phase dependent reactance terms introduced by inter-

connecting adjacent array elements with reactive circuits. Since these

reactances are lossless and can be shown to load each drive element

with a reactive equivalent circuit which varys with the phasings of

the drive generators, they can often by chosen to effectively offset

array impedance variations with scan an:-.le with no loss in radiated

power. The connecting circuits introduce into each element line a signal

which varies with generator phasing and hence scan angle. By proper

selection, these networks can significantly reduce element mismatch over a
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range of scan angles without sacrificing array gain.

Fig. 34 No Compensation

Fig. 35 With Connecting Circuit Matching

For the purpose of analysis it will be assumed that the arrays are

infinite and regular. This means that the generators and elements have

identical environments. It is found that the behavior of many finite

arrays with a small number of elements can be treated as infinite arrays

provided correction is made for edge effects.
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1. Linear Array
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---T`^ iB

Fig. 36 Connecting Circuits in an Infinite Linear Array

Consider the effect of shunt susceptances connecting the element linas

in the infinite linear array illustrated in Fig. 36. The net susceptance

shunting the line to ground is found in the following manner:

I s = Iu + I d = iB [Vm - VM+lI + iB [Vm - Vm-1]	
(5-1)

Yeq = iB [2 - 
Vm+l - VV-1) - Vs	 (5-2)
m	 m	 m

For an array phased to point in the es-direction

Vm+l = e+ia	
V

anc^. Via

	

1 = e 	 (5-3)
m	 m

where	 a - k d sine s = progressive per element phase shift.

Substituting (5-3) into (5-2) gives

Yeq - iB [2 - eia - e
-
'c ] - iB 2[1 - cosa]. 	 (5-4)
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Using cos(a) = 1-2 sin 2 (a/2) gives

Yeq = i 4B sin  (2).	 (5-5)

Hence each line in the array is effectively shunted to ground by a

susceptance

Beq = 4 B sin 
2[2]'
	 ( 5-6)

The resultant equivalent circuits seen by the generators are shown below.

V	 ( 1, }--
m-1

B
eq

V 	 B = 4B sin 
2[2]

e
q

B
eq

Vm+l	 B
eq

Fig. 37 Equivalent Array Networks

2. Planar Array

Row phase shift = S

Column phase shift = a

E-plane scan: +s = kd sing , a - 0

H-plane scan: a 0, a = + kd sine

D-plane scan: +a = + + g k2 sine
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The effects of E-and H-plane connecting circuits:

E-plane: Beq - 4 BE sin 2[8/2]

H-plane: Beq - 4 B  sin 2[a/2]

D-plane: Beq (E) - 4 BE sin 21
Trd2sin9 ^,

Hannan et al.[26) worked out the case for a 7x9 array of a/2 dipoles

spaced with d  - d  - a/2, a height of a/4 above a ground plane. The

original array for a +60° scan had a VSWR of 14 db (-5) and a maximum loss

due to reflection of power of 2.6 db. With a first order simple compensation

the VSWR was reduced to 4.5 db (1.68) and the reflection loss to 0.3 db.

In this example, Hannan at al. used inductive coupling for H-plane compensation

and capacitive coupling for E-plane compensation. The following steps which are

illustrated in Fig. 38 are used in a typical matching procedure:

(1) A series network or a transmission line is adjusted to

rotate the E -plane locus so that it can be offset with a

susceptive shunt

(2) The scan dependent BE is used to neutralize the above locus
eq

variation

(3) The H--plane locus is rotated to make it purely susceptive

with scan

(4)
B 
	 is added to cancel the susceptance in (3)
eq

(5) The generator is impedance matched with 1 c and Bg.
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OC

H 1 E )

(a) rotate
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a
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Fig. 38 Smith Chart Steps for a T;
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Fig. 39 Matching Network
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C. COMPENSATION FOR WIDE ANGLE SCANS USING A DIELECTRIC SHEET IN
FRONT OF THE ARRAY*[24]

This ie a simplt and possibly inexpensive compensation technique which,

from a circuit and impedance matching point of view, has a lot in common

with Hannan's method. Although the dielectric sheet method is fairly

crude and somewhat restricted, it potentially yields a good trial and

error means of improving the scan performance of a planar array.

For a thin dielectric sheet of thickness, t, and relative

permittivity, e r , the effective broadside susceptance, B(0), is approxi-

mately

	

B (0) • (e r - 1) 
2Ttt	

(5-1)

	

0	 0

so that within limits a desired susceptance can be obtained using a

thickness

t	
X0	 B(0)	 (5..8)

 2ir(E r-1)	 G0

The effective susceptance as a function of scan angle is given by

	

H plane: B(0)	 cosA	 (5-9)

2

	

E plane: 
B(e0)	

co s8 - einc
ose	

(5-10)
r

I	 %I
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Fig. 40 Dielectric Sheet Above an Array

A rougr outline of the basis of the compensation procedure is as

follows:

1. The Smith chart locus of active impedance variations in the

uncompensated array is examined as a function of scan plane

and angle.

2. Height, d, of the dielectric sheet above the array plane

(see Fig. 40) is chosen to rotate or shift the locus so

that it har, a susceptance portion which can be compensated.

3. Thickness, t, and dielectric constant, e r , are chosen to

give the desired neutralization. Because of coupling wave

effects, it is best to keep "t small and work with cr.

Again note that the method readily lends itself to trail and error

experimentation to improve usable scan range. The reflection coefficient

at a central element could be monitored as a function of scan angle and

the dielectric constant, the position, and the thickness can be changed

to hopefully find a "best" combination to increase the limits of efficient

scan.
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Pared [29] shows that the surface wave velocity is strongly de-

pendent on the dielectric thickness and is fairly independent of the

dielectric constant for large e r ^ This, of course, implies that

in order to avoid limits on scan angle imposed by coupling modes, it

is best to keep the dielectric thin and work with c  to widen the scan

range.

Because of the simplicity and inexpensiveness of the dielectric

sheet compensation method, it is highly recommended whenever it will do

the job. In general it works best for limited scans (up to + 60 ` from

broadside) where only an efficiency improvement and not ideal matching

is required. The next few sections include some supplementary material

that should be useful when applying this method. One section summarizes

some of the important transmission and impedance characteristics of

dielectric sheets, and the other deals with the limits on dielectric

sheet matching posed by surface wave effects. Both qualitative and

quantitative results are presented.

C.1. Impedance and Transmission Proverties of Planar Dielectric Sheets

Summarized in this section are some of the formulas applying to the

transmission of plane waves through infinite dielectric sheets. Most

of the results are elementary ones which are taken from developments

given in Collin [ 301 and Harrington [311.

e
r

Zi

Fig. 41 Dielectric Sheet
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Thin Dielectric Sheets

For normal incidence

1	 + i tan(St)
n o con at + i n lsin(St)	 1

Z i 	nl n coe St + i n sin(St) . Yi = n	 1 	 Go iBo (5-11)
1	 0	 1 1 + i-- tan(St)

r

where

n	 n	 1	 ul
1	 0	 E1	

21+tanSt +i tan(St)[AE  - 1 ]r

no = E—o = 377Q	
Yi = n12	 ^

	

0	 0	 1 + — tan St
E r

S W w^ = k o^
1

If the thickness "t" is small (at « 1)

	

r	 l

1 1 + i,/E r at	 1 1 + (at) 2 + istl^ - ^,
Y. = —
	

_ —	
l	 1

I r,0 1 + i1- St n o 	 1 + (at)2
3 E
-
	Er	 r

Thus

	G o = n	 (5-13)
0

Bo nk0t(E r-1) = G0 
^rrt 

(E r-1)	 (5-14)

	

0	 0

(5-12)
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For oblique incidence, the normalized susceptance of a thin dielectric

sheet can be shown to vary as

H-plane: B(e) 1 (5-15)Bo core

E-plane: B(6)
osh=c	 -

sin 26 (5-16)B E	 cose'o r

These variations are graphically presented in Fig. 42 below.

	

1.5
	

H-plane

B A	 1.0
B

0

	.5
	 E-plane

0
30 0	60'	 900

Fig. 42 Normalized Susceptance of a Thin Dielectric Sheet

Observe that the H-plane susceptance increases with 6 and the E-Plane

susceptance decreases with 6. Note also that in the E-plane B(6) goes

negative for

tang	vrc---.
r

In order to illustrate some of the degrees of freedom and to emphasize

the approximations involved in a typical dielectric matching scheme, the

following developments for a dielectric sheet located at a height "d" above
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an array plane will be repeated.

(a) H-plane scan (polarized perpendicular to the plane of incidence):

Region Q

	

6i	
Z	

no EO

t	 n	 e	 dielectric

	

6	
Z2	 Region Q

d6	 Zl	 no  P 
array plane

Fig. 43 Dielectric Sheet above a Planar Array-
Transmission Path

E = -relative dielectric constant
r

t = dielectric thickness

d = height of the dielectric above the reference plane

n_ o
Z 3	 cosei	 (5-17)

	

S l = k  cose d = koV-E 
r 

cos6 d = k  Er - sin 2 6 i	(5-18)

Snell's Law:

	

sin6d v 
	 1

	

s;.n 6 i	
vi

r



1

77

n	 Z 3 + i cos6 tan (slt)	 n	 cosh + i cos9 
tan(slt)

Z	
1	 d	 1	 i	 d

2	 cos9 d n 1	 cosed 
n l 	 no

coaled + i Z 3 tan(s	
+ ilt)	

cosed	
cos91 tan(d1t)

1	 cos61
1 + i	

cose 
tan (slt)

nl	 r	 d

cos8	 cos9	
(5-20)

d le— cosed + i tan(9lt)

r

TI

n	 Z 2 + i 
cos9 tan(k0cos6id)

o	 i
1	 cos8 1 no

	+ i Z2	 otan(k dcos9
cose	

l)
i

(5-21)

1 + i 
cose 

tan(S t)

Z 2 GLpol.)	 no
	

close 	
1	 =_ Z 2 (H)	 (5-22)

	

e3 	 i 26	
+ i tan(Slt)

r	 le -sin26
r

Usual approximations: assume E r > 2, kot << 1, tan(s lt) = alt

co:; 6

	

ri	 1+i---kot ►^	 l+i k t cos6
	o 	 ^

e _
	 o

Z2(H) = /---sin26 
cos6 

+ i ko t3-- - no cos6+i kot(er-sin2A)
r

(5-23)

Y (H) 
a _ 1 

a l coserl+(kot)2(Er-sin26)]+ikot(-cos26+Er-sin26)

2	 Z2(H)	
n o	 1 + (kot) 2 cos26

n
I (cose(l+k2 t2 )(e r -sin 26+ikot(Er-1)]
0

where 3-- _ 
E - sin26
r
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Referred to the direction of propagation in region n

Y	 k t (e -1)
Y . cos8 . G(e) + iB(e) = no 1+(kot)2(Er-singe)+1 ocose

	 (5-24)

from which it is seen that

B(8) _ 1	 kot(Er-1)

B	 cosh	
where Bo
	 TI0	 0

(b) E-plane scan (polarized in the plane of incidence):

Here

Z 3 = no cosei ; B = k  cose d = ko ve r- sin 2ei

	

Z 3+in 1 cose dtan(S r0	 nocosei+in1 cosedtan(St)
Z2 = nlcosed n

lcose d+iZ 3 tan (srt) = nlcos8d nleoseein0cosei

	

cosec	 (	 n l
Vcose + i tank o E rY sin`6it1

	

d	 l	 J1	

(5-26)_	 cos d
	 cose
l+i^	

l
tan l tko er-sin ei)coso id

For ko t << 1 and er > 2,

cosec2
+ i ko ersine t

1 - — sin 8

Z 2 = no
	

1 - e sin 28iEr
	 i

Vr	 —2 cos 8i
1 + i ^ k  eVt r-sin ei

1 - e sin28i
r

cose c + i kot(1 - sin 26)

Z 2 (E)	 no	 r	
(5-27)1 + i kot e r cos8i
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1

/9

1	 1+(k t) 2 E U - 
sin 26) + ik t 

E -	
1 (1 - 

sin 
26)

Cosa	 o	 r	 E	 o	 r	 2	 E

Y (E) = n	
r	 cos 8	 r	

(5-28)
2	 no	

1 + (kot)2	
12	

1 _ sin26
cos 6	 r

and thus

1 k
o t(E r	1)	

1
B -	 -	 k t(e -1)	 (5-29)
o	 n o	 1 + (kot)2

	
n o o	 r

Ignoring the contribution of the second term in the denominator and

referring the admittance to the direction of propagation [i.e.,

Y = Cosa Y2 (E)] yields

G(a) = 1 1 + (k t) 2 E (1 - sin 26 
	

(5-30)
n0	 o	 r	 Er

k t
Bo n (Er - 1)	 (5-31)

0

2
BB(e) = Cosa - sic

osa	
(5-32)

o	 r

C.2. Qualitative Results for Arrays Covered With Dielectric Sheets
or Dielectric Element Plugs

(1) Generally speaking resonant peaks of reflection coefficient occur

at scan angles between the angles of formation expected for the grating

lobe for the dielectric and that of the grating lobe for air. ('-Cnittel)[16]

The following are observations of Wu and Galindo [32,33] which are based

on their comparison of scan properties of parallel-plate waveguides

loaded with dielectric plugs with their earlier (Jan. '68) loading with a

1
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dielectric sheet (rectangular array).

(2) The radiation properties of an array can be substantially changed

by covering it with a dielectric sheet. Typically such coverings in-

troduce resonant peaks in the plot of reflection coefficient, t, versus

scan angle. Frequently r- 1 prior to the angle predicted by the

occurrence of a grating lobe.

(3) For thin enough slabs no reflection peaks are observed.

(4) For slab thicknesses greater than certain critical values of the

order of 16 
X  (fi e 

= wavelength in the dielectric) resonant peaks begin

to occur. At the threshold thickness the resonant peak is near the

grating lobe formation angle. According to Wu and Galindo if

2 ` d/a ` 1 ' e cr	 1 - (d/X).

(5) For sheets with fixed element spacing, d, and dielectric constant,

e r , the resonant peaks migrate toward broadside as the slab thickness is

increased.

(6) More than one peak may occur if the thickness of the slab is large

enough, say greater than 4 Ae'

(7) Normally resonant peaks correspond to complete reflection where the

reflection coefficient is unity.

(8) Dielectric plugs can, but do not always, give rise to resonant peaks

in t.

(9) While dielectric sheets invariably cause peaks if the thickness

exceeds a certain value, such is not the case for plugs in waveguides.

(10) Exterior sheets may give rise to more than one peak if they are

thick enough; however, Wu and Galindo have not observed any multiple

peaks for plugs.
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(11) As a general rule 1'(9) is flatter with plugs than for waveguides

loaded with dielectric sheets implying a possible better impedance aad

efficiency match. Both sheets and plugs can be used to improve

efficiency.

C.3. Input Admittance to a Slot Array Covered by a Dielectric Sheet

This section is a strengthening of the work of Pared (29] that applies

to an infinite array of short slots covered by a dielectric sheet. In

it expressions for the admittance variations with E-plane scan are

derived. An important consequence: of the analysis is the observation that

dielectric thickness, not dielectric constant, is the important factor

in determining surface wave velocity. Thus, when using the dielectric

sheet method for match compensation, it is recommended that the sheet be

kept thin and the dielectric constant be selected to give the desired

match.

z

d -^

Fig. 44 Dielectric Covered Slots

Figure 44 shows a set of narrow slots of width "a", located in

xy-plane and extending to infinity in the y-direction. For such narrow

slots, it is assumed that Ex is a constant independent of x across their
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width. The array is steered in the 6 -direction by feeding the slots

with a progressive phase shift

6 = vod = kxd	 (5-33)

where d - slot spacing and k  = x-directed phase constant of the slot

feed system. Beam maximums occur when ^ = kd sine - 6 = 0 +2nn = kd sine-kxd,

and the following relations apply to a propagating wave:

k
sine = k /k

x

k = v + 2n7d	 kz6 k
x	 O	 E

rose V 1 - (kx/k)2

Method:

1. Express field at z = 0 as a sum of an infinite number of plane waves

2. Determine the input admittance at z = 0 for a plane wave

3. Compute the total input power at z = 0 for an aperture of unit

width in the y-direction and length, d, in the x-direction

4. Express the input admittance in terms of the input power and voltage.

As is now well known, this geometry can be described by a Fl .oquet series [40]

which is just a Fourier Series for E x (x,o) which is modified with a phase

taper term to account for the progressive phase excitation [Replaces

Eqs. (2), (3), (4), in Parad ' s proof) of the slots necessary for pointing
tr,

t:	 the beam.
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•	 e	 e	 e	 e

Fig. 45 Slot Illumination

A mathematical expression for a periodic aperture distribution with a phase

tapered excitation is found by

(1) Writing a Fourier series for the pulses that includes a

phase taper k 
x 
x on the center element.

(2) Multiplying the periodic series found in (1) by a phase taper

term -k x.
x

The phase tapers (1) and (2) combine to produce a net phase term for the

nth element of a-jndkx

Fig. 4b Phase Vs x for Net Function

f (x)

net phase
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For the example of the above slots the periodic function is:

CO

f(x) _ I Cne-J21Tnx/d	 (5-34)

a/2

	

= 1	 rnx/d a
 sin [2 x(k+2rn/d))

C	 ejkxx+j2
 (5-35)

n	 d	
d 2 [kx+2nn/d]

-a/2

sin[a(k +2rn/d) ]
f(x) = a

?	 2 x	 e-j 2r nx/d	
(5-36)

d	
2 (k

x+2r n/d)

Now adding the phase taper factor gives the net series

= e- kxx f (
x) = a sin [2(kx+2r n/d)]

E	
e_ix(kx+27rn/d) 	

(5-37)(x,o)	 j
X	

d-00 2 (kx+2rn/d)

As with most series solutions the above 	 masks the physical significance

of the apertures, however, the form of the series suggests a sum of plane

waves, the nth having an amplitude equal to Cn.

The input power to a section of width, d, and length, L, (in the

y-direction) is

	

L d/2	 d/2

P =1	 EH*dxd 
= LE 2 a2	 sin	 e-j 2+mx/e

2	 x y	 y	 2	 ( d)	 () 

	o -d12	 -d/2

^x im 
* sin( _ e	 x

+j2n=c /d 
d	 (5-38)^	 ( ) 

1
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where Y im = input admittance of the mth wave

H	 1	 I
Y - -y-_	 _	 (5-39)
i Ex ncos6 n 1-k̂

All integrals in (5-38) are zero except when m - n giving

P = a2L 
E 
2 

c
^ Y * sin2[2(kx.,.'nn/d)j

L2d	 in [2(kx+27n/d)] 2-CO
(5-40)

Also
P = 2 VI* 2(Ea)(Ea)*Y* - 2 a 2 1EI 2 Y*	 (5-41)

Thus	
2P*	

00	 sin 2[2(kx+2lrn/d)]

F	 (5-42)Y	 Y	 -
a2 1E^ 2	d-m in [2(kx+2nn/d)]2

where Y in - input admittance to the nth plane wave at the surface z - 0

By (5-39) it follows that

_ 1
in	 v nn]a'

n	 1- ( o	 )2	

(5-43)

k 

When the array is covered by a dielectric of thickness, t, and relative

permittivity, E r , the admittance seen looking into the sheet is

Yln + j Yon taa (Bn 0
Y	 Yon	 5-44in	 Yon + jYln tan(Snt)

t'
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where
V `r

H	 p

Yon - Eyi -
	 0	 (5-45)

xi	
pcose
 in	

I -	 1 2 (vo 27m/d)2
E k
r o

Yin =	
1	 =	 1

p ocos6 t 	vo ,rn	 2	
( 5-46

rt 
o 1 - (	 k	 )

0

On = ^ k cos bin

e t = angle ray leaves dielectric surface realized scan angle.

Observations:

1. From (5-42) the admittance Y has a pole where Yin has a pole.

It is theoretically possible to eliminate such poles by using

a different aperture distribution.

2. From (5-44) it is seen that these poles can first occur when

e t is imaginary (no radiation) corresponding to the excitation

of surface wave modes.

3. For a thin dielectric layer,tan Bt~Bt and a pole in (5-44) occurs

when

r	
mkt cos6

in
Yon + jY

Inst - 0 ; cose in 	-	 coseln

coseln - j kt cos t ein	 1 - k v 2 A2 - jkt(1-kv2/Erk2)
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Solving for 
kv2 

yields

	

k

2	
E 

2	 _

	

v2 E r + --r .; 2 [l - 1. + 4k2 t 2 cr 2 ]	 ( 5-47)

	

k	 2k`t	 E
r

2	 _

For kt < • 1 9 Eq. (5-47) gives	 2 = 1 + k2 t 2 ( ErE 1) 2	( 5-48)
k	 r

which is nearly independent of dielectric constant Er.

4. The admittance pole or.curs at scan angles prior to the grating

lobes since Eq. ( 5-48) shows that the surface wave propagation

constant is greater than that of free space (i.e., k  > k).

D. Use of a Computer for Planar Arrav Match Compensation Through
Adjacent Element Coupling [28]

Here a set of equations is developed which can be programmed on a

digital computer for a systematic realization of Hannan's compensation

technique. It assumes that the array coupling coefficients are either

experimentally or theoretically known (normally coupling coefficients

are easier to measure than active impedances), and it uses pi-type

reactances for interconnecting adjacent element channels.

The required program inputs are

(1) Coupling coefficients, Cmn

(2) Shape of the scan region

(3) Grid structure

(4) Desired matching scheme

where the last three are design alternatives.

Hannan [34] has shown that by interconnecting all channels it is

theoretically possible to impedance match an infinite phased-array

antenna for g11 scan angles. In this development only adjacent channels

(maximum of 8) are connected so that a perfect match is not expected.

However, if enough care is taken, the results using this finite number
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of couplings are excellent even for scans greater than + 60°. As an

indication of the possibilities of a truncated matching scheme, Amitay

et al. [35] in a recent paper went a step farther and were successful

in matching an array of circularly polarized elements out to + 60 0 using

only a lossless series matching obstacle behind each antenna element.

Thus there are two choices for behind-the-array circuit matching. The

general case consisting of a matching network behind each element and

reactive couplers between contigious elements is the most powerful, and

it is, therefore, recommended for wide angle scans or ones where high

efficiency is needed. The other consists of the series network alone

and shows promise for simple, non-critical compensations.

The array considered in this development is planar with a rectangular

grid located in the xy-plane as shown in Fig. 47 below.

z

x

Fig. 47 Rectangular Grid Array

The elements have a uniform amplitude distribution and a progressive

phase shift such that the excitation of the mnth element is

im^y
Vmn = Vo e x 

+ ink
y 	 (5-49)
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$y = kdy sin6 sink.	 (5-50)

By reciprocity the coupling coefficients between the 00th and the

meth elements are equal

Omn = C 0 Omn 1Cmni eidmn
	

(5-51)

and thus, if all the array elements are excited, the total reflected

voltage at the 00th element is given by

V  = V1	 LL 0mn eim^x + inky.
	

(5-52)
mn

The reflection coefficient referred to the plane of the array (see

Fig. 49) is then

q Vr - JL Omn e im 
x + inky.	

(5-53)
1

Observe that q is a function of x and ^y . Again this analysis assumes

that the array has enough elements to approximate an infinite one. Of

an extremely important practical nature is the fact that Wu and

Galindo [36,37] and others [13,38] have shown that a moderate number of

array coupling coefficients (on the order of 11x11 to 13x13) are often

sufficient to describe a central element's behavior with reasonable

accuracy. Ara a consequence, only 2 finite number of coupling coefficients

need be measured when using this particular method for design purposes.

'the most general case to be treated is shown in Fig. 48, and it

allows for coupling between an element and its eight immediate neighbors
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in a rectangular grid with reactive pi-networks for coupling. Note that

the assumed symmetry reduces the unknown coupling admittances to

four: Y t , Y 2 , Y 4 and Y6.	 (0,1)

y4	 (1^1)
y

Y6
y2-iB2

6	
6-iB6

y4=iB4	 (1,-1)

(0,-1)
Fig. 48 Matching Element Geometry

The basic feed connecting system is illustrated in Fig. 49 below

i	 ) ,,arra plane	 IA_ d	 —
to element

-- —L---

Fig. 49 Compensation Coupling Model

where AA' = array plane

BB' - coupling junction plane where the generator line, the array

element line, and the coupling networks meet.

D
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Y 
	 effective admittance at BB' of the coupling networks

Yo"	 characteristic admittance of the array line

Yo '	 characteristic admittance of the generator line

The phase shift between AA' and BB' is

2	
k"d _ 2Trd

and hence the reflection coefficients referred to the coupling junction

plane, BB', is given by

q it = e-U 
q = e-i^ ZG Cmn eim^x + inky.

	 (5 -54)
mn

Using the fact that

i = q= 11 y	 (5-55)

Y = 1 g = normalized admittance, 	 (5-56)

it follows that the active admittance at BB' looking into the line from

the array element can be written

YL = Yo" 1 - Q	 (5-57)

Then the admittance at BB' due to the element line and the coupling

network is

Y = Y
C 
+ YL ,	 (5-58)

and the reflection coefficient seen by the generator line at BB' is

1 -1 Y/Yo'	
(5-59)

qB 
= 

+ Y/Yo'

f	 i
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Since the voltages at BB' have the same relative phases as the

generator voltages, Vmn, they can be written

Vmn' - Vo'eim^x + inky	 (5-60)

and thus the total current into Y  can be expressed as

Vmn - Y
2 (1 - e i^'x) + Y 2 (1 - e-i^x) + Y4 (1 - ei^Y) + Y4 (1 - W i^

+ Y6 [1 - ex + i^yy + 1 - e-i^x i^'y+2 -e i^'x-iiyy-a-i ^yx+icy'] + 2Y 	 (5-61)

Yc = Vmn= 	2[Y
2

+Y4+2 Y6+Yt ] - 2 Y2 cos (^yx) - 2 Y4 cos y - 2 Y6 cos (>Vx+dry)

	

- 2 Y6 cos (fix - *y )	 (5-62)

In order to make some of the subsequent expressions notationally simpler,

it is found convenient to define the following normalized variables (1- /--1)

Y	 Y	 Y
	 Y6
	 Y"

	

iNc = Yc „ iN t = Yt ,; 0 = Y2 ,; iN4 = Y4 ,; iN6 Y ► ; No - -	 (5-63)
0	 0	 0	 0	 0	 0

The reflection coefficient q  is, of course, a measure of the

effective system match. To optimally select the compensation cirre+it,

a cost factor

CF -
f	

IgBl2 
dux day =	 f

scan region

1-Y/Y' 2

	

1 + Y/Y '	 dux d*
Y	(5-64)	 E

o

is suggested. Ideally y Y, 1 for the total scan range corresponding
0

to CF - 0. For only a finite number of connecting elements it is assumed
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that y in the compensated system is close to one and hence the approximation

I 	
= I-YI2

can be used to put Eq. (5-64) in a more usuable form

CF -* I	 f	 11—y12 d, x d^ V 	(5-65)
J	 r

scan region

Then (1-y) is linearly related to Not Nt , N2 , N4 and N6 and

;N— ' °' a ' °' ..., eN ' o	 ( 5-66)
o	 t	 6

are the conditions required to minimize I. The optimum values of the

network sequence { N} are obtained by repeated solutions of (5-66) for

various values of 0. The integral to be minimized is

_

f 

r

	

 
J	

1-y 2 d^x d^y 	(5-67)

scan region

where in terms of the ratio definitions given in (5-63)

Yc+YL'
	 12(Ny = Y o
	

12+N4+2N6+N t)-2N2cos( fix)-2N4cos(^y) -2N6cos(^x+^y)

1- "-2N6 cos (^ ^,y ) l + No 1	 (5-68)

Using (5-54) for q" it is seen that the last term in (5-68) becomes

	

1-a
-i ^1 7 C	

imp, + in^
NO	

-1^CC mne x	 Y	
(5-69)

l+e GGCmneim*
x + inky
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which, since it is a doubly periodic function of ^x and ^ y , can be

expanded as

	

1- "	 C
NO 1+q" - No 1-271Dmn 

eimW +n^yy 	(5-70)

Hence

1 - y - 1-N +2N 7^D e14x+inW	0 0
. mn	

y -i 2 (Nt + N2 + N4 + 2N6)

- 2N2 cos ' X - 2N4 cosy - 2N6 Cos ( ^x+^ y ) - 2N6 Cos ( ^x-^y ) . (5-71)

Amitay then used (5-66), (5-67), and (5-71) to obtain the following

equations.

From WaN0 - 0,

a - 211D ' a = N [a -41YD ' a + 1111D Dpq a	 ]

0o TI JD."

mn mn	

c

o 

ID 

0o mn mn mn mnpq mn	 m-p,n-q

-4 NTGGD." a. + 2N21mn"(am+l,n - 2a mn + am-1,n)
mn

+2 N61ID mn' "(.am+l,n+l + am-1,n+1 + am+l,n-1 + am-1,n-1 - 4a
	mn(5-72)

From aI/aN t = 0,

0 - -N o LC 
mn mn	 t 00	 2 00
D "a + N a + N (a - a 10	 4 0o O1	 6 00 11

) + N (a -a )+2N (a -a )	 (5-73)

From aI/M 2 - 0

0 = NojLDmnif(am+l,n+am-l,n-2amn) + 2Nt(aoo-a10) + N 2 (3ao +a20-4a10)
mn

+ 2N
4 (aoo a11-a10-a01) 

+ 2N6[2(aoo-a10) + a21 + a01 - 2a11 1	 (5-74)
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From 8I/3N6 = 0,

0 - N
0JIDmn '(am+l,n+l + am-1,n+l + am+l,n-1 + am-1,n-1 -4a Mn )

• 4Nt(aoo-a11) + 2N2[2(aoo-a11) + a
01 + a21 - 2a10]

• N4[2(aoo-all) + alo+a12-2a0l
] + 2N6[5aoo a02

+a20+a22-8a11 ]. (5-75).

From aI/N4 - 0,

0 - NOZIDmn 11(am,n+]+
a
mn-l

-2amn)+2N
t (aoo

-a01)+2N
2 [aoo all-a0l-alU]

+ N4 Da 
o

+a^, 2 -4a01 ]+2N
6 [2(aoo

-a01)+a10+a12-2a11 ]. (5-76)

Note that in the above equations,

Dmn ' - Real[DMn]

Dom" - Imag[D
mn

]	 (5-77)

and

amn = I I	 ei"x+in*y du
x day .	 (5-78)

scan region

Furthermore, Eqs. (5-72) through (5-76) assume that amn is real. With

a little additional bookkeeping one could allow for a complex am;

however, this is usually not necessary since amn are real for the commonly

encountered cases of elliptical and rectangular scan regions such as

sketched in Fig. 50.	
$

,.1 y

-,yo°^
'^ 1

i
n

x

1

Fig. 50 Unit Cell With Elliptical and Rectangular Scan Regions
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It is easily shown for the rectangular scan region that

sin [m^ ] sin [no, ]

amn 
s 4
	 om n	 1	

(5-79)

and for the elliptical region,

aMn = 2,T o0o1 1 
[V/(moo )
	 1	

(5-80)

3 (moo ) 2+(no1 ) 2

Amitay used this method on a linearly polarized array of square

waveguides spaced with d/A - .5714. For a scan of + 45° without any

compensation, the returned power was as high as 30%. Using compensation

within each channel but letting the adjacent channel coupling be zero

(N2 - N4 - N6 s 0), the returned power was reduced to around 5% over

most of the scan region. For his final comparison Amitay [28] added

interelement coupling (No = 1, Nt = 0.512, N2 = -0.0976, N4 = -0.189,

N6 = 0), and obtained a returned power that was under 1% for most of the
w

scan region.
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