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SECTION 1
ANALYSIS PROGRAMS

The data simulation, factor analysis, cluster analysis, classification, and
information programs represent analytical tecliniques developed and applied during
the study to accomplish signature data processing. The data simulation program
provides data from known distributions with which to evaluate techniques and soft-
ware. The factor analysis program is the product of several years of development
and is specifically tailored for analysis of multispectral data. The cluster analysis
program employs a new technique for identification of cluster centers in multivar-
iate hyperspace. It can be applied operationally to reduce the need for or to im-
prove the available ground truth.

The classification programs are not intended for classification of data under
operational conditions, but for evaluation of the relative performance of various
classification techniques. Both these and the information divergence programs
provide for several ways of obtaining the probability density function used in the
processes. The performance obtained with the different expressions for the density
function is compared to assess the relative merits of the available alternatives.

The following sections are intended to provide descriptions of basic features,
logic flow, and the underlying mathematics of these analysis programs.

1.1 SIGNATURE DATA SIMULATION PROGRAM
1.1.1 General Description

The Signature Data Simulation Program generates random data, in one of
three forms, from distributions which are specified parametrically. Use of the
simulated data serves to test program logic, to evaluate the effects of varying pro-
gram parameters, and to establish the performance of the analytical techniques
used by evaluating data from known distributions.

A number of clusters with means and standard deviations for each channel
is specified by the user. The correlation matrix of the cluster determines the
departure of the equal probability contours of the cluster from sphericity and also
the directions of the axis of the equal probability ellipsoids. Three options are
available in the program concerning correlation:

1-1 (11)
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1. The data may be uncorrelated

2. The user may specify eigenvalues, determining the relative
lengths of the axes and requiring random orientation by the
program

3. The user may specify the correlation matrix requiring use of

the EIGEN subroutine before data are generated by the main
program.

The user may request that the data be generated in parametric form (cluster
weight, means, covariance matrix, factor loadings matrix), digitized scanner form,
or continuous form.

1.1.2 Flow Chart of the Data Simulation Program

The reference to subroutine EIGEN, made in Figure 1-1 of the Data Simu-
lation Program is satisfied in Section 1. 2.2, where the EIGEN flow chart is pre-
sented. '

KEY TO NOTATION

Main Program, Data Simulation

ix = initial value for random number generator
8U8 = Hadamard orthogonal matrix

m = number of channels

ng = number of groups of data to be simulated

Nkl, 1=1, ng

Nob.., j=1,ng,i=1, Nk,
1) ) J

number of clusters in the £ th group

number of observations in itP cluster of jth group

an ,1=1, ng = number of observations in ¢ th group

Ww.., i=1,Nk,, j=1,n
ij i J g

n

weight of itP cluster of jth group, proportional to
number of observations in cluster

B? i’ i=l, m = lower bound of iP channel's scanner range

1-2 (I1)
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Bui, i=1,m = upper bound of ith channel's scanner range
Zi, i=l,m = mean of ith channel

Sdi' i=l,m = standard deviation of ith channel
Rij' i=l,m,j=1,m = correlation matrix of cluster

GY it i=l,m = eigenvalues of correlation matrix
Tij’ i=l,m, j=1,m = eigenvectors

Aij' i=l,m, j=1,m = covariance matrix of cluster

TTij’ i=1,m,j=1,m = factor loadings matrix

Tiij, i=l,m, j=1,m = factor deviation matrix

Xi' i=1,m = signature in continuous form

in, i=l,m = signature in digitized scanner form.

1-3 (II)
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1.2 FACTOR ANALYSIS PROGRAM

The Factor Analysis Program identifi  principal components, thereby re-
moving redundancy owing to correlations among variables. The factoring may be
done using correlation about the mean, corre¢lation about the origin, covariance
about the mean, or covariance about the origin. The number of eigenvalues used
in the analysis, and therefore, the number of principal components identified, may
be limited in one of three ways. The user may specify directly the number of fac-
tors desired, the minimum eigenvalue to remain in the analysis, or the maximum
percentage of total variance to be accounted for by the eigenvalues.

Subroutine CORRE reads the n observations of m-tuple raw data and from
these data calculates means, standard deviations, and product moment correlation
coefficients or covariance matrix, either about the mean or origin. Subroutine
EIGEN computes the eigenvalues and eigenvectors of the input covariance or cor-
relation matrix. Subroutine TRACE computes the cummulative proportion of total
variance accounted for by eigenvalues and number of principal components to be
kept for analysis on the basis of one of the three limiting options. Subroutine LOAD
calculates the coefficients of each factor by multiplying the elements of eack nor-
maiized eigenvector by the square root of the corresponding eigenvalue.

Input may be in the form of raw data to be read by the CORRE subroutine, or
means, standard deviations, eigenvalues, eigenvectors, and factor coefficients
may be read by the main program. In either case, the main program handles out-
put and computes the factor score coefficient matrix, channel coefficient settings,
and the factor scores.

'1.2.1 Factor Analysis Mathematical Description

The factor analysis orthogonal solution is a method of finding coordinate
systems in which the variables are uncorrelated. If dependence among the variables
is limited to linear (i.e., nonlinear coupling is absent), the transform might also
produce statistical independence or something approaching it.

Given a data matrix X, consisting of n column vectors, each one an ob-
servation, the covariance matrix* of mX is:
n

S=—1- X XT .
m m n mnnm

“This applies for covariance about the origin. Covariance about the mean values
requires that the data matrix first be properly adjusted.

1-8 (1)
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Since S is a real symmetric positive definite matrix, there exists a trans-
formation U which will transform S into a diagonal matrix D whose diagonal ele-
ments are the eigenvalues of S.

0 AN eeevoraes 0
L= UT SU = |’ 2 (1-1)
00, cirrnnn )
m
The square root of a diagonal matrix can be defined:
(dx L0 s 0 \
a 0 'sz ...... 0
NI = (1-2)
\o OO v }
m
So that
NL NL = UT SuU
and (1_3)
NT ' uTsuvT "l
Substituting for S,
o T -
NL© U XX UWNL =nI (1-4)

Define A, the factor score coefficient matrix, and F, the factor score matrix:

-1 T
A =NT U
F = £%.

1-9 (II)
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It follows from these definitions and Equation 1-4, that FFT = nl; i.e., the
factor scores are uncorrelated.

If A is nonsingular, its inverse exists and X can be computed from F:

If the inverse of A is not defined because A is not square:

AX = F

AT AX ATF

X = (ATA)-I ATF .

The correlation matrix of X ,
m n

-1 -1
R =D sSND ,» Where
m m

2
0 ¢ ie.... 0
72
D= .
0 O ......... O'Z ]
m

-~ may be diagonalized during the analysis in place of the covariance matrix, S. If
analysis is done about the sample mean rather than the origin, Y, , n column
vectors of the form Y, = X, - X, j =1, n, are used in the place of the vectors forimn-
ing X . J J
m n
1. 2.2 Flow Chart of the Factor Analysis Program

The following generalized flow diagram (Figure 1-2) of the factor analysis
program is supplemented by detailed Fortran IV statement diagrams of subroutines
CORRE, EIGEN, TRACE, and LOAD. (Figures 1-3 to 1-6).

1-10 (II)
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KEY TO NOTATION

Main Program, Principal Component Factor Analysis

n

k

m

)_(,, i=l, m
i

S., i=1l, m
i

X

m n

X.j=1, k
j J

kUm

d., =1, k
i J

1"

it

number of observations

number of factors

number of variables

mean of ith variable

standard deviation of itP variable

raw data matrix

jth eigenvalue

row-wise eignevectors

curmulative proportion of total variance

factor matrix for standard data

factor matrix for nonstandard data

factor score coefficient matrix for standard data
factor score coefficient matrix for nonstandard data
channel coefficient settings matrix

factor scores

factor score means

correlation or covariance matrix.
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KEY TO NOTATION

raw data
number of observations

number of variables

mean of ith variable

th

standard deviation of i*® variable

covariance or correlation matrix.
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KEY TO NOTATION

Subroutine EIGEN

n = crder of input matrix (corresponds to m of main program:

A = input correlation or covariance matrix, destroyed duy ;.
computation; eigenvalues are placed in diagonal as outj .«

an = eigenvectors, columnwise
1 = initial norm
( Vf = final norm
t = threshold
ind = indicator that off-diagonal elements found larger than preer::

threshold.
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[zXelxlxlialalnlgl
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MV~ INPUT CODE
0 COMPUTE EIGENYALUES ANO EIGENVECTORS
1 COMPUTE EJGENVALUES ONLY (R NEEOQ NOT 8E
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CICOIOOOOO

REMARKS
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SUBEggEINES AND FUNCT]ON SUBPROGRAMS REQUIRED

METHOD
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METHODS FOR DIGITAL COMPUTERS', EDITED B8Y A. RALSTON AND
H.S. HWILF, JOHN HWILEY AND SONS, NEW YORK, 1962, CMRPIER 7

€ 808 5006000000000 0PNt INTETNONTERERVIRBILRNORNERSAEERRIOSIOEIBSBOELESETSTTSTSE

CONT. ON PG

Figure 1-4 (Cont.)
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g

SUBROUTINE EIGEN (R,R,N,HV)
DIMENSION R(1), R(1)

v

(glelnlizinligliel

L R L I I I R I O O I N R A I I I R R N R N A A Y

1F A DOUBLE PRECISION VERSION OF THIS ROUTINE 1S DESIRED, THE
C IN COLUMN 1 SHOULO BE REMOVED FROM THT DOUBLE PRECISION
STATEMENT WHICH FOLLOKS.

OOUBLE PRECISIBN R,R, ANORM, ANRMX, THR, X, Y, SINX,SINX2,CASX,C0OSX2, SIN
CS.RANGE

¢

oOOOO0O00

THE C MUST ALSO BE REMOVED FAOM DOUBLE PRECISION STATEMENTS
225%?HENG IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
NE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST RLSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENTS
40, 68, 75, AND 78 MUST BE CHANGED TO OSGRT. HABS IN STATEMENT

OOO0000

62 MUST BE CHRNGED TO DABS. THE CONSTRNT IN STRTEMENT S SHOULD
BE CHRNGED TO 1.00-12.

© 5 0 086888020020 088080520880040LE0080800000FRI0TItIRIBEIBRIICEEITSERETSBTDY

GENERATE JDENTITY MRTAIX

10 v
| RANGE=1.00-12 ]

v
COGNT., ON PG 3

Figure 1-4 (Cont.)
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IF (Mv-1) 20,S0,20

0

1Q=-N

{00 U0 J=I,N > - - - by
[1g=10+n ]
(B0 40 J=1,N » - - - Dy

v
1J=1Q+1
R(1J)=0.0

CONT. ON PG 4

Figure 1-4 (Cont.)
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\/
L CONT I NUE

C
¢ COMPUTE INITIAL AND FINAL NORMS (ANORN AND ANOHMX)
R2
s
ANOAM=0.0
----------------- D0 70 I=1.N

A

0

1A=1+ (JuJ-J) /2

[ ANGRM=RNORM+R (1R) %R (1R) |

CONTINUE

CONT. ON PG S

Figure 1-4 (Cont.)
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330,330,80

1F (RNORM)

80

2
[ANORM=1.414xDSQRT (RNORM) |

— v
LANRMX=ANORM®RANGE/FLOART (N) |

v

[wlelel

INITIALJZE INDICRTORS AND COMPUTE THRETHOLO,

THR

IND=0
THR=ANORM

==

Vv
THR=THR/FLORT (N) |

c
E COMPUTE SIN AND COS

CONT. ON PG 6

Figure 1-4 (Cont.)
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NQ= (NWN-N) 72

LO= (LaL-L) 72
LM=L+MQ

1F (DRBS (R(LM)) -THA) 260,130,130

1]

130

IND=1
LL=L+LQ

MM=M+MQ

X=0,5x (A (LL) -A (MM} )

Y=—R (LM} /DSQRT (A (LX) wA (LK) +XnX)

IF (X) 140,150,150

150
[SINX=Y/DSORT (2.0x (1.0+ (DSQRT (1.0-YuT))1) |

CONT, ON PG 7

Figure 1-4 {Cont.)
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SINX2=SINXuSINX
COSX=DSQRT (1,0~-SINX2)
COSX2=COSXxCOSX
SINCS=SINX%COSX

v

¢
g ROTATE L AND M COLUMNS

g

ILQ=Nx (L-1)
IMQ=Nx (H-1)

v
{00 250 I=1,N > - ~ - Dg

[1e=axI-N1/2 |

- +
If (I-L) 160,230,160

0

IF {I-M) 170,230,180

CONT. ON PG B

Figure 1-4 (Cont.)
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G0 70 190

20

IL=1+LQ

220 W
[ X=R (1L} wCASX-R (1M) nSINX |

v
A(IM) =R (JL) xSINX+R (IM) »COSX
AIL) =X

v

CONT, ON PG 9

Figure 1-4 (Cont.)
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A8
230
- +
0 i
ILR=1LQ+]

=[NQ+!
(ILR) wCOSX-A (IMA) HSINX
Eg;-;(lLH)NSINX+B(IHﬂlnCUSX

v,

CONTINUE

\/

X=2,0nR (LM) xSINCS

Y=R (LL) xCOSX2+A (MM) nSINX2-X

X=R (LL) nSINX2+A (MM) xCOSX2+X

A (LM} = (RILL) -A (MM} ) nSINCS+R (LM) » (COSX2-SINX2)
A(LL) =Y

A (MM) =X

TESTS FOR COMPLETION
TEST FOR M = LAST COLUNN

gixlglalel

IF (M-N) 270,280,270

CONT. ON PG, 10

Figure 1-4 (Cont.)

1-42 (11)



8039-1031

BSR 2949

B2
280
- +

IF {INO-1) 320,310,320

31(

IND=0

¢

CONT. ON PG 11

Figure 1-4 (Cont.)
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60 10 100

3
¢ COMPARE THRESHOLOD WITH FINAL NORM
<—"1F (THR-ANRMX) 330, 230, 90
0
c
¢ SORT EIGENVALUES AND EJGENVECTORS

TN
aao@i‘

v

{08 370 )=1,N > - - - D13
v

10=10+N

LL=1+(In]-1) /2

JO=Nw (1-2)

{00 3710 J=1,8 > - - - D13

CONT. ON PG 12

Figure 1-4 (Cont.)
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hv;
JQ=JQ+N
L MM=J¢ (JuJ-J) /2

340,370,370

R (LL) =R (MM)
A (MH) =X

A
IF (MvV-1) 350,370,350

0

---------------- D6 360 K=1,N

ILR=1G+K
1MR=JQ+K
X=R(ILR)
A (1LR) =R (1XR)

CONT. ON PG 13

Figure 1-4 (Cont.)
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CONTINUE

\/

RETURN

Figure 1-4 (Cont.)
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Subroutine TRACE

d.,j=1, k
JJ

1l

BSR 2949

KEY TO NOTATION

number of eigenvalues = (number of variables)
number of factors kept

eigenvalues

total variance

number of factors to keep, or percentage of total variance
to be explained, or minimum eigenvalue to be kept

cumulative proportion of total variance.

1-47 (1I)



) -

~

8089-104»2

BSR 2949

Figure 1-5 Subroutine TRACE
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c ...‘....‘..Q‘l...llltl.‘.....illl.lll.l"l.lIllllll.llI‘ll‘.ll“..
c
c SUBROUTINE TRACE
¢ PURPOSE
¢ COMPUTE CUNMULATIVE PROPORTION OF TOTRL VARIANCE FAGM EIGENV
c GRERTER THAN OR EQUAL TO R CONSTANT SPECIFIED BY USER. THIS
¢ ROUTINE NORMALLY OCCURS IN A SEQUENCE OF CALLS 70O SUB-

C ROUTINES CORRE, EIGEN, TRACE, LOAD, AND VARMX IN THE PER-

c FORMANCE OF R FACTOR ANALYSIS.

C USRGE

¢ CALL TRACE fM,R,CON,K,D)

¢ DESCRIPTION OF PRRAMETERS

c M - NUMBER OF VARIRBLES.

v

C R = INPUT MRTRIX (SYMHETRIC AND STGRED IN COMPAESSED
¢ FORN WITH ONLY UPPER TRIANGLE BY COLUMN IN CORE)
¢ CONTRINING EIGENVALUES IN DIAGONAL. EJGENVALUES ARE
c RRRANGED IN DESCENDING OROER. THE GRDER OF MATRIX R
C 1S M BY M. ONLY Mx (M+1) /2 ELEMENTS RRE IN STORAGE.
c ‘STORAGE MODE OF 1)
¢ CON - A CONSTANT USED TO DECIDE HOW MANY EIGENVALUES TO
¢ RETRIN.
c K ~ OUTPUT VARIABLE CONTAINING THE NUNBER OF EIGENVALUES
¢ GREATER THAN OR E£QUAL T@ CON. (K 1S THE NUMBFR OF
c FACTORS. )
¢ 0 - QUTPUT VECTOR @F LENGTH M CONTRINING CUMULATIVE
c 'HCPORTION OF TOTAL VARIANCE OF £I1GENVALUES WHICH RR
¢ GRER1SR THAN OR EQUAL TO CON.
¢ METHOD
C THE CUKMULRTIVE SUN OF TIGENVALUES GREATER THAN OR EQUAL TO
C 1S DIVIDED BY TOTAL VARIANCE.
C ettt eeeeeeeecaeneataeeataceaeteteteteeianaeenatetatatatatetacnnan
¢

\D*b

ec 1 Of S

CONT. ON PG 2

Figure 1-5 (Cont. )

1-49 (1I)



8059-104¢

BSR 2949

v
SUBROUTINE TRACE (M,R,CON,K,D,E1G,FTKP,PCKP)
LOGICAL EIG,FTKP, PCKP
OIMENSION A1), D(1)

v

L R R I I I I N N O N RN I N N A N S R O B I N S S S RS ST SN Y O PSS A

1f R DGUALE PRECISION YERSION OF THIS ROUTINE 1S DESIRED, THE
C_IN COLUMN 1 SHOULD BE REMOVED FROM THE OOUBLE PRECISION
STRTEMENT WHICH FOLLOWS.

OO0 O0O0

AvJ
{ OOUBLE PRECJSION R.D,RG,GG |

v

THE C MUST AHLSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
ggss?ﬁéNG 14 OTHER ROBUTINES USED IN CONJUNCTION WITH THIS
NE.

AOOOOOO

L R I R N R N N R N N N N N R R N A N SN I A S N IR A O SR I S B R RO ]

RG=0.
L=0

----------------- D0 10 1=1,K

g

LeL*]
D1l =AL)

- ®m e e e m e o e om e o= m om o @ e e

AG=AG+AR (L)
\ o¥e

CONT, ON PG 3

Figure 1-5 (Cont. )
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\/
ENTER AFTER TRUE
T PATH STATEMENT

60 70 SO

ENTER AFTER TRUE
¥ PRTH STATEMENT

D0 30 1=1,H » - - - by

I 66=GG+D (1} I

v

CONT. ON PG 4

Figure 1-5 (Cont. )
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- +
IF (D (1) -CON} uo.%

0

20
K=K+1

0
0 (1) =GG/RG

v
|68 T0 40 >

ZONT. ON PG S

Figure 1-5 (Cont.)
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i:|R3J7

---------------- {00780 I=1,M )

66=66G+D (1)
D (1) =GG/AG

- +
’F (’ - N pu0uu0
<Z_1F_(0(1)-CON) 80

0

80
_________________ 9 *

[CONTINUE ]

[6o 76 uo -]

Figure 1-5 (Cont.)
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KEY TO NOTATION

Subroutine LOAD

n

input eigenvectors, columnwise

m k

B = factor matrix
m k
xi, i=1, k = eigenvalues.
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Figure 1-6 Subroutine LOAD
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c 600058800080 60585000000 8000000650085 08800850864008808085808080s00006000b00s0bubsan
c
E SUBROUTINE LORO
c PURPGSE
c COMPUTE R FACTOA MATRIX (LOADING) FRAOM EIGENVARLUES AND
" ASSOCIATED EIGENVECTORS., THIS SUBROUTINE HWORMALLY OCCURS
C IN A SEQUENCE OF CALLS TO SUBROUTINES CORRE, EJGEN, TAACE,
E LORD, AND VARMX IN THE PERFORMANCE OF R FACTOR ANALYSIS.
c USAGE
E CALL LORD (M,K,R,V)
c OESCRIPTION OF PRARAMETERS
c H -~ NUMBER Of VARRIABLES. .
c K - NUMBER OF FRCTORS.
C R - R MATRIX (SYMMETRIC AND STORED IN COMPRESSED FORM
c HITH ONLY UPPER TRIANGLE BY COLUMN IN CORE} CON-
c TAINING EIGENVRLUES IN DIAGONRL. EIGENVALUES RRE
c ARRANGED IN DESCENDING ORDER, AND FIRST K
€ EIGENVALUES ARE USED BY THIS SUBROUTINE. THE ORDER
C OF MATRIX R IS M BY M, ONLY Mx (M+1)/2 ELEMENTS RRE
c IN STORAGE. (STORARGE MODE OF 1)
c \J - WHEN THIS SUBROUTINE IS CALLED, MATRIX V (M X M)
C CONTRAINS EJGENVECTORS COLUMNWISE. UPON RETURNING 70
C THE CALLING PROGRAM, MATRiX ¥ CONTRINS A FACTOR
g HMATRIX (M X K).
C REMARKS
E NONE
c SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
g NONE
c METHOOD
c NORMALIZED FIGENVECTORS ARE CONVERTED TO THE FRCTOR PATTEAN

CONT. ON PG 2

€G.L OfF _3

Figure 1-6 (Cont.)
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|

[ BY MULTIPLYING THE ELEMENTS OF EACH VECTOR BY THE SQURRE
E AOOT OF THE CORRESPONDING E£I1GENVALUE.
c ® 584 6 6808886004806 000840088080 AE00 60 S 600 4NN ABGEtINSsNLEANSRNOENED
c
v,
SUBRBUTINE LOARD (M,K,.R,V)
DIMENSION R{1), V(1)
c
E E e isaesetaeisestastetitottteanastasaetnctortanctettreaonesaena
c IFf A DOUBLE PRECISION VERSION OF TH1S ROUTINE 1S DESIREQ, THE
N C IN COLUMN § SHOULD BE REMOVED FROM THE DOUBLE PRECISION
E STATEMENT WHICH FOLLOKS.
v
| oouBLE PRECISION R,.V,SQ |
L,
c
c THE C MUST RLSO BE REMOVED FROM DOUBLE PRECISION STRTEMENTS
c APPEARING IN BTHER ROUTINES USED IN CONJUNCTION WITH THIS
E ROUTINE.
c THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST RLSO
c CONTRIN DOUBLE PRECISION FORTRAN FUNCTIONS. SGRT IN STRTENENT
c 150 MUST BE CHANGED TO NSORT.
c
c L2 B BB R B R B B BE RN R B B B S N B N SRR NN N SR R N N R BB BN BN B B BN R B BN N R B BB R B NC A AN I )
C

CONT. ON PG 3

Figure 1-6 (Cont.)
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Jd=JJ+J
SQ=0SGRT (R (JJ})

---------------- (oo 10 I=1,4 »

L=L+1

|viw=soxviL) |

RETURN

Figure 1-6 (Cont. )
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1.3 CLASSIFICATION AND INFORMATION DIVERGENCE PROGRAMS

At the base of all of the classification and information divergence programs
is the computation of the probability density function computed from the training
sets evaluated at each sample signature. The Bayesian Decision Function Program
and the Information Divergence Program provide several options for probability
density computation. In contrast, the Density Lister, Decision Ruler, and Density
Divergence Program make restricted use of the hyperpyramid smoothing function
for the density computation.

The probability density function of signatures for objects of class k, fk (x),
can be evaluated in one of several ways. '

The univariate normal probability density computation is based upon population
parameters:

1

_ - 2,2
fk (xj) = exp (- 1/2 (xj - xjk) /ajk) (1-5)

2w Ujk
where
j is the channel index

k is the population (target) index.

The multivariate normal probability density computation is:

£ (x) = I-fi]—l—/i— exp (- 1/2'§TA Y) (1-6)
K @ o2 K

where
m is the number of channels

— -
Y is the signature x expressed about the kth training set mear

A_ is the inverse covariance matrix of the kth training set.

k
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The Specht function is a smoothing method for weighting the contribution of
each point in a data sample to the total density function evaluated at a point not in
the sample. A smoothing function is used to compute the weight given to each
sample point. Donald Specht* concluded that an exponential smoothing function
should be used and subsequently expanded in polynomial form. The polynomial
expansion, however, is unsuitable for this study. The Specht smoothing function
used throughout the study is:

- (x -v
B z (43, S
N, a4 " >
k . i
1=l
(1-7)

where
Nk is the number of observations in the kth training set

Slk is the Specht smoothing parameter for the i th training set

th

is the i*" component of the jth signature of the kth training set

Yijk
x, is the ith component of x.

The exponential smoothing is extremely time consuming. In an effort to reduce
the computation time, the hyperpyramid smoothing function** is implemented. The
hyperpyramid smoothing function is:

#Specht, Donald F., '"Generation of Polynomial Discriminant Functions for
Pattern Recognition, " Stanford Electronics Laboratories, Stanford, Calif.,
Tech. Report No. 6764-5, May 1966.

**Smoothing functions are discussed in Section 4.3, Vol. I.
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N
K
f (Xx)= =—— N (S.. S S)Z %Y
1 ® T MG Sac Sk glx, Y )
j=1

2
where
o X, - Vi
g(x, Y.)=1-max{ S =l,m} for
jk S,
ik
l -
x - (1-8)
max %‘L .1=l,m}<_l,
ik

S e X. .
gix, Yj) = 0 for max { L _ijk

1.3.1 Bayesian Decision Function Program

The Bayesian Decision Function Program assigns arbitrary signatures
from sample sets to one of the targets characterized by the training sets. The as-
signment is based upon the probability density functions computed from the training
sets evaluated at each sample signature, the a priori probability occurrence of
each target, and the penalties of misclassification. The program will compute
density functions in one of six ways and will accept training set data in one of four
forms.

The options for probability density function computation are as follows:
1. As a product of univariate normal probability densities, using
means and standard deviations of each channel or factor from
the training sets.

2. As a product of probability densities from univariate histograms.

3. As multivariate normal probability density, using the covariance
matrix of the training sets.
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4. As a multivariate Specht function or product of bivariate Specht
and functions, computed by smou.thing the training set data. The
5. density function may be computed over all channels simultaneously,
or over pairs of components in which case, the probability density
for the observation signature is the product of densities for pairs.
The bivariate option can actually be used to subselect any number
of channels.

6. As a multivariate hyperpyramid smoothing function.

Training set data may be in the form of digitized scanner data, continuous
or factor score Jlata, univariate histograms, or parametric (means and standard
deviations) form. Sample data for classification can be digitized scanner data or

continuous data.

Training set forms can be used in conjunction with density computation
options according to the following table.

TABLE 1-1

USE OF TRAINING SET FORMS WITH DENSITY COMPUTATIONS

Training Set Form Possible Density Computation

Product of Univariate Normal
Digitized Scanner Data or Bivariate from Specht
Continuous Data Multivariate from Specht
Hyperpyramid Smoothing
Multivariate Normal

Product of Univariate Normal

Univariate Histograms Product of Univariate Histcgrams

Parametric Product of Univariate Normal

The READ subroutine reads training set data and computes from these data
quantities needed for the chosen density computation option. COMPUT calculates
the probability density function of each sample signature when attributed to each
training set, while the main program calculates the Bayesian Decision Function and
handles output of signature target assignment.
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1.3.1.1 Bayesian Decision Function Mathematical Description

In Bayesian classification of arbitrary samples, the decision criterion
is minimum cost. The expected cost of an experiment is:

K K
E(w) =Z E w(j, k)P(j, k) (1-9)
k=1 j=1

where
w is the cost of the experiment
w(j, k) is the cost of assigning an object of class j to class k
P(j, k) is the probability of assigning an object of class j to class k.

The probability P(j, k) can be expressed as the product of an a priori and
a conditional probability:

P(j, k) = P()P(k[j), {1-10)
where
P(j) is the a priori probability of occurrence for objects of class j,

P(klj) is the probability of assigning an object to class k provided it
belongs to class j.

Let T", be the set of signatures (a region in the space of signatures)
which is attributed to class k. Then, by definition,

P(dj) = 5 £ (%) d, (1-11)
1ﬂk
where
X is an observed signature
fj(ﬂ is the probability density function of signatures for objects of class
j, or
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P(k j) = S'I"k (f)fj (%) &x (1-12)
Q

where

2 is the entire signature space

e
]

1 for ¥ ¢ Ty

£’
i

0 for X e( - )
or X € ry

By substitution, the expected cost is then

K K
Ew) = ) ) wiiKIRG) IWGHICE
(1-13)
Q

k=1 j=1

K
. -, . : e 3
= S‘ z I (x) z wi(j, k)P(j) fj (x)] dx.
2 k=1 j=1

Minimization of cost occurs when the cost function in square brackets
is evaluated for each k and (x) is set to 1 for the k associated with the minimum
cost.
1.3.1.2 Flow Chart of the Bayesian Decision Function Program

The following flow chart (Figure 1-7) makes reference to Subroutine
MINV, inversion of a matrix, whose Fortran IV statement diagram only is provided.
Refer to Figures 1-8 and 1-9 for subroutines READ and COMPUT.

KEY TO NOTATION

Main Program, Bayesian Decision Function

m = number of channels
mr = number of training sets (targets)
ms = number of samples to be classified
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nrk,k=1,mr

nsk, k=1, ms
mk

mn

N, i=1,mr, j=1, mk#mn

P.,i=1l,mr

1

C..,i=l,mr, j=1,mr
1)

S,.,i=)l,m, j=1,mr
1)

dmaxi, i=l, mr

du,,i=]l,mr
i
sd,.,i=l,m,j=1,mr
1]

dmnij,i=l,mk,j=l,mr

smaxij, i=1,mk, j=1,mr

X i:l,m,j:]., nr

ik’ k=1, mr

kl
Y.,i=l,m
i

fi,i=1,mr

bdfi, i=l, mr

pri,1=l,mr

BSR 2949

number of signatures in kth training set
. . . th
number of signatures in k=~ sample set
number of subsets of channels
number of channels in each subset of channels

t
channel numbers in the subsets of channels for i
training set

a priori probability of occurrence of target i

cost of attributing a signature of target i to target j
. .th .th

smoothing parameters for the i~ channel of the j

training set (for Specht function or hyperpyramid

function)

upper bound on truncation error for computing the

probability deasity function of a signature attributed

to the i training set (for Specht function)

denominator of the univariate normal probability
density function for the ith training set

standard deviation in the ith channel of the jth
training set

denominator of the probability density function for
the ith subset of channels of the j  training set (for

Specht function or hyperpyramid function)

upper limit on sum of squares for truncation of
computation of density function (for Specht function)

jth signature of kth training set

signature of sample set

probability density function of a sample signature when

attributed to the ith training set

Bayesian decision function of ith training set

Bayesian probability that signature is occurrence of
target i. '
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Figure 1-7 Main Program, Bayesian Decision Function
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Figure 1-7 (Cont. )
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Subroutine READ

m

» k= 1 ’
nrk mr

ni_ ,k=1,mr

k

xik’ i=l, m, k=1, mr

sd

ik

xmidi

delt

H.. ,i=l,m,j=1,ni

1)

,i=1,m, k=1, mr

k

,i=l,m, k=1, mr

,i=1l,m, k=1, mr

ik

k

det, , k=1, mr

k

D ,k=1,mr

k

B..

ijk

X..

ijk

mr

k

s k=1, mr

»i1=1,m, j=1,m, k=1, mr

»i=l,m, j=1,m, k=1, mr

,i=l,m, j=1,nr

k

, k=1, mr
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KEY TO NOTATION

"

number of channels
number of signatures in kth training set

number of intervals in histogram of kth
training set

;th

mean of channel of the kth trzining set

th

standard deviation of the i**! channel of the

kth training set

midpoint of the first interval of the histogram
of the itP channel of the kth training set

length of interval of the histogram of the ith
channel of the kth training set

frequency in ith channel, jth interval, of
histogram of Kkt training set

determinant of the covariance matrix of the
kth training set

determinant of the inverse of the covariance
matrix of the kth training set

. . th ..
m x m covariar.ce matrix for k  training
set

m x m inverse of covariance matrix for kth
training set
jth signature of kth training set

number of training sets (targets)
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m
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i ,k=1,mr
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du.nitl,mr
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BSR 2949

KEY TO NOTATION

number of channels

number of training sets (targets)

number of subsets of channels

nurﬁber of channels in each subset of chatnnels

number of intervals in histogram of kth
training set

mean of itB channel of kth training set

standard deviation of ith channel of kth
training set

channel numbers in the subsets of channels
of the ith training set

midpoint of the first interval of the histogram
of the ith channel of the kth training set
length of interval in histogram of the ith
channel of the kth training set

frequeacy in jtP interval of histogram of ith
channel of kth training set

upper limit on sum of squares for truncation
of computation of density function (Specht
function)

denominator of the Specht function or hyper-
pyramid function for the ith subset of channels

of the jth training set

denominator of the univariate normal prob-
ability density function for the ith training set
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Si.. i=1,m, j=1,mr = smoothing parameters for Specht function, or
) hyperpyramid function, ith channel of jth
training set

Ai'k’ i=1,m, j=1,m, k=1, mr = inverse of covariance matrix (m x m) for kth
) training set

Dk.k=1.mr = determinant of A for kth training set

Yi.i=1.m = signature from sample set

Xijk' 1=1,m, j=1, nrk, k=1, mr = jth signature of kth training set

fi,i=1, mr = probability density function of a sample
signature when attributed to the ith training
set

fi k=1, mk = probability density function for kP subset
of channels

nrk,k=l.mr = number of signatures in kth training set.
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1.3.2 Information Divergence Program

The Information Divergence Program computes the measure of the amount
of information which the differences between two distributions contribute to the
classification of a ~pcctral signature. The training set data may be in one of the
forms discussed for the Bayesiaa Decision Function Program, while the data re-
ferred to as sample data are the representation of the training set data in digitized
scanner or continuous data form.

The computation is again based upon the probability density functions com-
puted from the training sets evaluated at each sample signature, and the options
for this computation are the same as those in the Bayesian Decision Function
Program.
1.3.2.1 Information Divergence Mathematical Description

Divergence is defined as the sum of two information measures.

Suppose a signature x arises from one of two object classes, j or k.
The likelihood ratio method of classification is to evaluate the likelihood function

L)
L (x) = E'L('ﬁ (1-14}
kx

and assign the signature to object class j, if L. exceeds some criterion value, and
to class k otherwise. The amount of information in the likelihood ratio for making
the decision is log L. (Log2 L gives the information in bits. )

To obtain the average information per observation for evaluating the
hypothesis that the signature belongs to object class j against the alternative class
k, it is necessary to take the expected value over distribution j:

£.(x) -
I(j;k) = 5‘ log ?11(—(;{-.-) fj (x) dx . (1-15)

Similarly, the average informa. on for evaluating the hypothesis that
the signature belongs to class k against the alternative class j is

£ (x)
1(k;j) = S' log flf(x) £, Gax . (1-16)
j
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The divergence between the two classes is
J(j, k) = I(jsk) + Ik;j) . (1-17)
Since the distributions are unknown, they are assumed to be character-
ized by the trammg data sets and the alogrithms for evaluating the density functions,

fy (x) and f (x), as described in Section 1. 3.

The required computations then become

N,
! J £, (%)
RS LI
Ji=1
(1-18)
Nk
] i' (x)
I(k;i) = F z log f_T)—c—)— ,
i=1

and
J(j, k) = I(jsk) + I(k;j).
1.3.2.2 Flow Chart of Informatior Divergence Program

All flow charts of subroutines referenced in Figure 1-i10 may be found in
Section 1.3.1.2.

KEY TO NOTATION

Main Program, Information Divergence

number of channels

~m =
mr = number of training sets to be diverged
(= number of sample sets)
mk = number of subsets of channels
mn = number of channels in each subset of channels
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k
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1)

dmaxi, i=l1, mr

du.,i=1,mr
1

sd, ., i=l,mj=1, mr
1)

dnmij »i=1l, mk, j=1, mr

smaxij,i=1,m,j=1.mr

Y.,i=l,m
1
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i
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1)
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BSR 2949

channel numbers in the subsets of channels
for ith training set

number of signatures in kth sample set

smoothing parameters for the ith channel
of the jth training set (for Specht function or
hyperpyramid function)

upper bound on truncation error for computing
the probability density function of a signature
attributed to the ith training set (for Specht
function)

denominator of the univariate normal prob-
ability density function for the jth training set

standard deviation in the ith channel of the jth
training set

denominator of the probability density function
for the ith subset of channels of the jth train-
ing set

upper limit on sum of squares for truncation
of computation of density function (for Specht
function)

signature from sample set

probability density function of a sample sig-
nature when attributed to the ith training set

total information in training set i for discrim-
ination in favor of set i against the alternative
set j

logarithm of the probability density function
of a sample signature when attributed to the
ith training set

divergence between training sets i and j

Kth

number of signatures in training set.
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1.3.3 Density Divergence Program

The modified divergence computation, referred to as density divergence, is
used to determine the divergence between two representations of the same popula-
tion. The Density Divergence Program specifically computes the divergence be-
tween a population known to be multivariate normal and representation of that pop-
ulation with a training set and the hyperpyramid smoothing fuaction. It is useful
in determining the utility of a given set of smoothing parameters. A small density
divergence indicates a valid smoothing function representation of the true distri-
bution of the population.

The divergence computation (non-modified) is:

N R R
J = S‘fl(x) log fz =) dx + giz (x) log W dx .
(1-19)
Define: N
- - 1
fldx =dPandSlf1dx—-.- "ﬁ" z (1-20)
i=1
Then
(1-21)

When £, is the expression for the multivariate normal probability density* and f; is
the hyperpyramid function* using a sample from the distribution, the choice of
smoothing parameters used in f, may be evaluated.

%
Refer to Section 1. 3.
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Input to the program consists of a sample from the populaiion, hyperpyr-
amid smoothing parameters for the sample, and the population inverse covariance

matrix and channel means.

1.3.3.1 Flow Chart of Density Divergence Program

Refer to Figure 1-11.

KEY TO NOTATION

Main Program, Density Divergence and Subroutine COMPUT2.

m =

N

X.. ,i‘—'l,m,j=l,N =
1)

S. s i=l,m =
1

A
m m
det =

x., i=l,m =
i

dnm =

yi. i=l,m =

number of channels
number of signatures in sample
sample from population

smoothing parameter for ith channel, hyper -

pyramid function

inverse covariance matrix of population
determinant of inverse covariance matrix
ith channel mean for population

de 10minator of hyperpyramid smoothing
function

multivariate normal probability density
evaluated at one signature

hyperpyramid smoothing function evaluated
at one signature

signature at which probability density function
is to be evaluated

density divergence in bits.
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1.3.4 Density Lister Program

Due to the high cost involved in computation of the probability densities nec-
essary for signature analysis, software is needed for calculation and recording of
this quantity to be read rather than recomputed by other programs. This program
evaluates the hyperpyramid probability density function* at any number of signatures
when attributed to one training set, recording the value on an external storage de-
vice for later use.

Input to the program is the training set signatures, signatures at which the
probability density is to be evaluated, and hyperpyramid smoothing parameters.
The output consists of the signatures at which evaluation was done with the prob-
ability density appended as the m + 15t component, where m is the number of
channels.

1.3.4.1 Flow Chart of Density Lister Program
Refer to Figure 1-12.
KEY TO NOTATION

Main Program, Density Lister

m = number of channels
N = number of signatures in training set
Si’ i=l,m = hyperpyramid smoothing parameters for

training set
xij’ i=1,m, j=1,N = training set signatures

ns = number of groups of signatures at which
probability densities will be evaluated

nam,, i=1,ns = number of signatures for evaluation in each group

dnm = hyperpyramid smoothing function denominator

Yy izl,m = signature at which probability density is to be
evaluated

f = hyperpyramid probability density.

*
Refer to Section 1. 3.
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1.3.5 Decision Ruler Program

The Decision Ruler Program has only to read any number of files of Den-
sity Lister output in order to assign a signature to a category. As noted in Sec-
tion 1. 3.4, the Density Lister Program records in an external file the hyperpyr-
amid probability density of each signature as attributed to one target. Upon crea-
tion of several such files containing the densities computed at identical signatures
attributed to different targets, the Decision Ruler Program is used to make target
assignment of the sample signature to the category for which that signature's con-
ditional probability density is the largest. The probabilities of correct classifica-
tion are computed for each sample signature as well.

1.3.5.1 Flow Chart of the Decision Ruler Program
Refer to Figure 1-13.
KEY TO NOTATION

Main Program, Decision Ruler Program

nr = number of targets (number of density Lister files)

N = number cf signatures to be classified

fi, i=1l, nr = probability density of sample signature attributed
to the ith target

probi , i=1,nr = probability of the correct classification of sample

signature to the ith target.

1-101 (II)



8059-112

BSR 2949

Gtart )
P

[ Read nr,
N

1=4+L

0

¢

— Print |
O e D A
> i,nc
I

Figure 1-13 Main Program, Dec’sion Ruler Program

1-102 (11)



BSR 2949

1.4 CLUSTER ANALYSIS
1.4.1 Cluster / --sis Mathematical Description

Frequently, in the course of the analysis of multivariate data, it is useful
tc represent a population probability density distribution in some parsimonious
but reasonably accurate way. Usually, some simple parametric form is assumeq
and the parameters are estimated from a sample

Even when it would be otherwise difficult to justify, the multivariate nor-
mal distribution is used because it is easy to determine the parameters and also
easy to evaluate the density expression.

When a sample distribution exhibits excessive skew, kurtosis, multi-
modality, or other departure from normality, alternative representations are
sought. This section describes a technique for dealing with the multimodal or
clustered distributions when it may be hypothesized that each cluster is multi-
variate normal. The procedure requires an estimate of the probability density
associated with each observation—this 1nay be accomplished by a variety of
methods, among which a particular one described by Specht* will serve as an
example.

If the observations are resequenced to be in the order of descending
probability density, the first observation may clearly be taken to be the mode
of the first cluster. Each succeeding observation is then assessed with regarc
to the probability that it belongs to on~ of the existing clusters or, alternatively,
that a new cluster must be formed.

Of fundamenta. importance in the assessment is the relation

£0) = £ exp-1/2 x-%)T ¢! (x-X) (1.4-1)

which gives the probability density { for an observation vector X on the hypoth-
esis that the distribution is multivariate normal with mean x and covariance
matrix C. The quadratic form in the right half of Equation 1.4-1 can be replaced
with the generalized Mahalanobis squared distance.

*
D. F. Specht, "Generation of Polynomial Discriminant Functions for Pattern
Recognition, '" IEEE Trausactions on Electronic Computers, Vol EC-16, No. 3,
Jui e 1967.
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2 -AAT -1 -~ N

d = (x-X) C = (¥-X) (1.4-2)
yielding
2
;((’;f)) = exp(—%) . (1.4-3)

Taking the log of both sides,

2 £ &)
4 = -un(f@). (1.4-4)

Note that Equations 1.4-2 and 1.4-4 can be regarded as two different ways of com-
puting the same quantity, one using the hypothesized mean and covariance matrix
and the other using the previously estimated probability densities.

In the cluster analysis algorithm to be described, the extent of the disa-
greement between the two computations makes an important contribution to the
decision, becanse appreciable differences will occur only when the wrong cluster
(and hence the wrong mean and covariance matrix) has been hypothesized. To
allow for the difference, Equation 1.4-4 will be rewritten using the symbol e to
represent the value of d that would be expected from the densities f(';) and f(g).

2 £(x)

e = -2tn o= (1.4-5)

At this point, the notation will be permitted te reflect the presence of m
clusters, each of which is to be tested with regard to the hypothesis that the cur-
rent observation x arose from that particular cluster. Evaluating both Equa-
tions 1.4-2 and 1.4-5 for the ith cluster,

diz = (.»E-Zci)T ci’l (X-%.) (1.4-6)
r £ (X)
e, ——Zln(—f‘(-_f;)— . (1.4-7)
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Since d; is the observed generalized distance (between the observation and
the center of the ith cluster) and e; is the expected generalized distance, it is
reasonable to define the variable a; in Equation 1.4-8 as the expected fraction of
the observection relative to the ith cluster,

%
ai = d— (1.4-8)
i
and the unexpected fraction p; then given by Equation 1.4-9:
ﬁi = 1- ai
e, (1.4-9)
=1« a——

The ur.expected part of the observation relative to the ith cluster is the
vector:

Ei = B, X)) - (1.4-10)

Clearly, sincc the covanance matrices C;, the means xl, and the prob-
ability densities f (x) and f (x ) are estimated from the observations and hence
are not free of _rrors, the unexpected fraction B; is not identically zero even
for the best choice fc. i.

Although a rule for making a choice has not yet been stated, it may be
assumed that one exists. If the rule selects j for the correct value of i, the
unexpected part of the observation for the chosen cluster is:

iyl

Z. = B, (X-%.). .4-
; ﬁJ(xgt_J) (1.4-11)

The covariance matrix of the Z. for all previous selections can be called
the unexpected covariance matrix. This matrix, denoted by W, plays a central
role in the selection rule to be proposed.

The generalized Mahalanobis squared distance for the unexpected part
of an observation X (relative to the ith cluster) is:

2 T -1
g, = Z;° Wz, . (1.4-12)
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The desired selection procedure can now be stated:
1. Evaluate g12 for each cluster.
2. Letl j be the value of i which minbnizes g% fori=1, m.

3. I g% is gre tor than a prechosen number Q, form a new cluster
number m+1 centered at the given observation X.

4, If g?' is not greater than QQ, the observation is classified as part of
the jth cluster, with appropriate modificaticns made to the mean
's(:i and covariance matrix Cj. '

On the hypothesis that unexpected variance is multivariate normal, the gi2
will possess the chi-squared distribution and Q can be chosen to yield a specified
probability of forming a new cluster by chanc? when a large deviation occurs.

The covariance matrixes for ti- individual clusters are all biased in the
direction leading to underestimation of expected variance. This effect occurs
because observations are included in each cluster in the order of decreasing
probability density. Fortunately, a suitable correction for the variance is avail-
able in the expression:

- 2
K = 1-(3% )57z
f(%,) /
where
K = the fractional amount by which variance is underestimated
n = the number of variables in each multivariate observation.

1.4.2 Flow Chart of the Cluster Analysis Program

The follgwing flow chart of the Cluster Analysis i rogram, Figure 1-14,
makes reference to Subroutine EIGEN whose chart is presented in Section 1.2.2.
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KEY TO NOTATION

Main Program, Cluster Analysis

IIN
10UT
LBL
KD
NV
NG
SL
OPT

NC

VF,
PS
NOG
XMIJ
NCR
PM;
COViJ
DF
ESDS

input unit for data set to be cluster analyzed

output unit for cluster analyzed data

data set identification

data type

number of variables

number of groups

smoothing parameters

option for space in which results of cluster analysis are to be printed
MEAS - measurement space

FACT - factor space

™M ~ constant vector in transformation (y = Ax+b )
SA - transformation matrix (y = Ax +b)
data point

number of caces

number of vectors belonging. to kth cluster

factor by which variance in cluster k has been misestimated
probability density

number of clusters

mean of cluster j

number of data points which have been read into progrrm

probability density at mode of cluster j

jth component of covariance matrix from cluster i

number of data points used in computing unexplained covariance matrix
expected square of iMahalanobis distance between vector arising from
cluster under hypothesis and cluster mean

unexpected portion of square of Mahalancbis distance from mode of
cluster under hypothesis

Mahalanobis distance between vector a:.d mode of cluster under hypothesv
minimum value of CHISQ vrier all hypotheses

maximum value which CSMIN can assume without causing a new
cluster te be formed

diagonalized scatter matrix fo~ cluster j_j

unitary matrix used todiagonalizescatter matrix for cluster ) _;
diagonalized scatter matrix for unexpected variance

unitary matrix used todiagonalizescatter matrix of unexpected variance.
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‘ START ’

Y

(" READ IIN
AND 10UT

Y
READ LBL

Y

—
REDEFINE
LBL

Y
READ KD,
NV, NG

PRINT ERROR|
MESSAGE stoe

READ SL;

i=1,NV
F PRINT ERROR
| MESSAGE STOP
T
READ OPT

READ YM,
i =1,NV

READ SA;
i =1,NV
i =1,NV

READ
NC

!

Figure 1-14 Main Program, Cluster Analysis

-
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i

Nk=0
VFk=0
Viik=0
Uijk=0 it
Uik =11i=i
k=1,20
i=1,NV
j=1,NV

1

READ
PS, X;
i=1,NV

1

PRINT
PS, X;

i=1, NV

1

NCR = NCR +1

Y

"NOG = NOG + 1
NOD = NOD +1

COVnogG, IND =0

IND=1,

NV (NV+1)
2

| Xi= 2 SA; X;

j=1,NVi=1,NV
Xi= X,
i=1,NV

I

1

Figure 1-14 {Cont.)
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XMEANNOG, i = X|
i=1, NV

|1

PRINT X, NOG
i =1, NV

[}

READ

0 PS, X,

g i=ULNV

Y

NCR = NCR + 1

)
PRINT
X, PS
i =1, NV

Y

DF = NCR - NOD
CSMIN = 10°0

=220 S
ESDS=-2-Ln (PMk’
SUMSQ = 0.

SUMSC  SUMSQ + \z'_.!

!

Figure 1-14 (Cont. )
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&)

GMDS = SUMSQ * VFyc Ny

PRINT
ESDS, GMDS, VFy

[

<o

F

NEXP = 1 - \[ESDS.
UNEX ! GMDs

)

@ ‘Pi =jz U]I1Yj

i=1, NV

2
zs; = P;

>
T

F

SUMSQ = SuMsSQ +

zs,

Vi1

/

CHISQ = s'umso - DF - UNEXP2Z

f

Figure 1-14 (Cont. )
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:

PRINT

SUMSQ, UNEXP, THISQ

PRINT
CSMIN, ACSMN, KG

CSMIN = ACSMN

Xi = Xi/SLi
i=1NV
Xxi =YM, +2 SAU Xi
PT # MEAS i
i=1, NV j=1 NV
gl
F y
XMEAN, ax, i = XMEANgmax, i * X Xi = XX;
i=1,NV

t

Figure 1-14 (Cont. )

1-112 (11)




8059-f

BSR 2949

{

PRINT
X; KMAX
i=1 NV

Vi1 = Vij t 00 Q
Viikmax = Viikmax Wi W,
Vi1 = Vij

ViikMAX = VijKMAX
i=1,NV j=1,NV

\

Nkmax = Ngmax + 1
Ny = NCR - NOG

VE=1-PR-TH

FNC = NCR -1

C=.1+.9/FNC

ACSMN = ACSMN + (CSMIN - ACSMN) - C

F

IMAX = |
JMAX =
CVMAX = CV

'

Figure 1-14 (Cont.)
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I=1+1

| J=J+1

5 6

MAX
MAX

e e
It n
— =

V“ = \'Iijk

V|| = Viik

EMU =.5 * (VII - VJJ)

FOM =- viJ - VvIJ2 + Fmu2

8058-g

T
FOM = - FOM

F
ST = FOM/ \12 (1+ \] 1-FOM?2) |

SST = ST2

L>C

CST =1.8ST

cT= Vest
SCT = ST - CT

}

Figure 1-14 (Cont. )
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VT = Vt'k -CT - Vilk - ST
Vfik = Vfik * ST + Vfjic - CT
Vifk = Vlik

Vi = vt

Vi = VT

'

UT = Ufj * CT - Yy - ST
_ . .CT

U jk = Ygik " ST+ Ui - ©T

Ulik=UT :

Lol - 111 }—0O

VT=2'Vijk'SCT

VTTgviik ‘CST+Viik +SST - VT

VT = Viik - SST + V”k -CST+VT

vijk = (VIl - VJJ) * SCT + VIJ - (CST - SST)
viik =VTT

Viik =VT

Vjik = Vijk

K=K+1 }—@)

Figure 1-14 (Cont. )
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o
<
x
A

K=K+ 1

XMEAN; = XMEANki/Nk
i=1,NV k=1, NOG

)
PRINT LBL

PRINT
KT, NV, NOG

PRINT
NC, N;

j=1.NOG
'

Figure 1-14 (Cont.)
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READ

X;, NP e

i=1, NV

i=1 NV

X = Xi - XMEANNVP i

.

IND=0

ED=IND+1

1 COVyye, IND = COVnvp, iIND * Xi* X;

J<i

| <NV

EEFER

BN

1=1+1

{<NC

F

PRINT DATE

-

PRINT LBL

Y

PRINT NC, NV

\

PRINT NOG

Y

PRINT OPTION

[

Figure 1-14 (Cont.)
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A o o

ety

PRINT

XMEAN; |
i=1, NV

i=1,IND

1

PRINT K

1

PRINT Ny

1

PRINT XMEAN;

i=1,NV

1

IL=1
IH=0

1

H=1H+ 1=

8059-k

1

PRINT
COi
j=ILH

=1L+

T

Figure 1-14 (Cont.)
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i

CALL SUBROUTINE
EIGEN

PRINT
€O, i -1, NV

IH=1" NV}

PRINT
R i=1L IH

IL=IH+1

F
I =NV 1=1+1

PRINT
X, i=1, NV
NVP

F
K = NIE K=K+1

END

Figure 1-14 (Cont.)
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SECTION 2
UTILITY PROGRAMS

Several of the computer programs produced during the study are not of any
real theoretical interest in terms of advancing the ability to perform spectral pat-
tern recognition, Hoever, they perform necessary clerical and data handling
services in preparation for the programs that actually perform multivariate data
analysis and classification. The functions performed by these programs will be
required by any signature data processing system, although the details of those
discussed here are peculiar to the requirements of the hardware used. Thus, only
the functions performed are described.

2.1 TAPE EDITOR PROGRAM

Analog video is sampled with an eight-channel A/D converter under push -
button control by the operator. The results are recorded on a computer-compat-
ible incremental tape recorder. While the tapes produced in this way are computer-
compatible, the format is not Fortran-compatible. The Tape Editor Program
accepts the output of the A/D converter and converts it to a record length and for-
mat which can be read by Fortran programs. During this process, incomplete
records and records containing readings outside the scanner range specified by the
user are deleted.

2.2 DATA SELECTION PROGRAM

The Data Selection Program regroups existing sets of data, as in selecting
homogeneous samples for collating signatures with imagery., Input to the program
may be the output of the Tape Editor or output from a previous run of the Data
Selection or Subsampling Programs, along with the case numbers of the signatures
to be extracted to form a new data set. The user may choose an option of record-
ing the original Tape Editor output observation number along with the signature
selected, for ease in associating ground truth information.

2.3 SUBSAMPLING PROGRAM

The Subsampling Program selects random subsamples of a specified length
from existing sets of data. Input may be in the form of digitized scanner data or
continuous data with or without case numbers of the Tape Editor output appended.
If input does not already have case numbers appended, the user may choose an
option to append them in this program.
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2.4 DATA TRANSFORMATION PROGRAM

The Data Transformation Program is designed to accept any number of factor
score coefficient matrices produced by analysis about the mean or origin, for trans-
forming any number of sets of data in digitized scanner or continuous form. Several
computation options are available to the user as well:

1. A factor score correlation matrix may be computed from resultant
transformed values.

2. A data correlation matrix may be computed from raw input data.
3. A data covariance matrix may be computed from raw input data.
2.5 HISTOGRAM TALLY PROGRAM

The Histogram Tally Program produces univariate histograms for each
channel in the form of a frequency distribution by interval. Input may be either
continuous data, digitized scanner data, or factor scores along with the number of
intervals desired in the histogram. Output includes sample size, number of
intervals, midpoint of first interval, length of interval, and observed frequency in
each interval.

2,6 PLOTTING ROUTINES

The Scatter Diagram Program produces a Calcomp Pen Plotter scatter dia-
gram of values &f any two specified channels. The user specifies the scale on the
axes of the plot and may input continuous, digitized scanner, or factor score data,.
Digitized scanner data are converted to continuous data before plotting by use of
the upper and lower bounds of scanner range.

The Histogram Plotter Program accepts as input the output of the Histogram
Tally Program, and produces a Calcomp Pen Plotter graph per channel of the fre-
. quencies in each interval. Scaling of the axes is handled automatically by the
program,
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