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SECTION 1 

ANALYSIS PROGRAMS 

The data simulation, factor analysis, cluster analysis, classification, and 
information programs represent analytical techniques developed and applied during 
the study to  accomplish signature data processing. 
provides data f rom known distributions with which t o  evaluate techniques and soft- 
ware. The factor analysis program is the product of several  years  of development 
and is specifically tailored for analysis of multispectral data. 
program employs a new technique for identification of cluster centers in multivar- 
iate hyperspace. 
prove the available ground truth. 

The data simulation program 

The cluster analysis 

It can be applied operationally to reduce the need for or  to im- 

The classification programs are not intended for  classification of data under 
operational conditions, but for evaluation of the relative performance of various 
classification techniques. 
provide for several  ways of obtaining the probability density function used in the 
processes. 
function is compared to assess the relative mer i t s  of the available alternatives. 

Both these and the information divergence programs 

The performance obtained with the different expressions for  the density 

The following sections a r e  intended t o  provide descriptions of basic features, 
logic flow, and the underlying mathematics of these analysis programs. 

1.1 SIGNATURE DATA SIMULATION PROGRAM 

1.1. 1 General Description 

The Signature Data Simulation Program generates random data, in one of 
three forms ,  f rom distributions which a r e  specified parametrically. U s e  of the 
simulated data serves  to tes t  program logic, to evaluate the effects of varying pro-. 
g ram parameters ,  and to  establish the performance of the analytical techniques 
used by evaluating data f rom known distributions. 

A number of c lusters  with means and standard deviations fo r  each channel 
is specified by the user.  
departure of the equal probability contours of the cluster f r o m  sphericity and also 
the directions of the a x i F  of the equal probability ellipsoids. 
available in the program concerning correlation: 

The correlation matrix of the cluster determines the 

Three options are 

1-1 (11) 
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1. The data may be uncorrelated 

2. The user  may specify eigenvalues, determining the relative 
lengths of the axes and requiring random orientation by the 
program 

3. The user  may specify the correlation matr ix  requiring use of 
the EIGEN subroutine before data a r e  generated by the main 
program. 

The user  may request that the data be generated in parametric fo rm (cluster 
weight, means, covariance matrix,  factor loadings matr ix) ,  digitized scanner form, 
o r  continuous form. 

1. 1. 2 Flow Chart of the Data Simulation Program 

The reference to  subroutine EIGEN, made in Figure 1-1  of the Data Siniu- 
lation Program is satisfied in Section 1.2.2, where the EIGEN flow chart  is pre-  
sented. 

KEY TO NOTATION 

Main Program, Data Simulation 

ix = initial value for random number generator 

8'8 = Hadamard orthogonal matrix 

m = number of channels 

ng = number of groups of data to  be simulated 

NkI , 1 = 1, ng = number of clusters in the 1 t h  group 

Nob. ., j =1, ng, i= l ,  Nk. = number of observations in ith cluster of jth group 
'3 J 

Nnl , I  =1, ng = number of observations in I th group 

W..* i = l ,  Nk., j=1, ng = weight of ith cluster of jth group, proportional to 
number of observations in c luster  u J 

B1 i, i = l ,  m = lower bound of ith channel's scanner range 

1-2 (II) 
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Bu., i = l , m  

2 ,  i= l ,m  

sdi, i = l , m  

R. , i= l ,m,  j=l , m  

G1 i J  i = l , m  

T.., i = l , m ,  j = l , m  
1J 

A. ., i=l , m, j=1 , m 
1J 

TT. ., i=l , m, j=1 , m 

Ti.., i = l , m ,  j = l , i n  

X., i = l , m  

Jxi, i = l , m  

1 

i 

1j 

13 

1J 

1 

upper bound of ith channel's scanner range 

mean of ith channel 

standard deviation of ith channel 

correlation matr ix  of cluster 

eigenvalues of correlation matr ix  

eigenvector s 

covariance matrix of cluster 

factor loadings matr ix  

factor deviation matrix 

signature in continuous form 

signature in digitized scanner form. 

1-3 (II) 
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Figure 1 - 1  Main Program, Data Simulation, 
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Figure 1-1 (Cont. ) 
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Figure 1-1 (Cont. ) 
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Figure 1-1 (Cont. ) 
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1.2 FACTOR ANALYSIS PROGRAM 

The Factor Analysis Program identifi principal components, thereby r e -  
moving redundancy owing to  correlations among variables. 
done using correlation about the mean, Correlation about the origin, covariance 
about the mean, o r  covariance about the origin. 
in the analysis, and therefore,  the number of principal components identified, may 
be limited in  one of three ways. The user  may specify directly the number of fac- 
t o r s  desired, the minimum eigenvalue to  remain in the analysis, or  the maximum 
percentage of total variance to be accounted for by the eigenvalues. 

The factoring may be 

The number of eigenvalues used 

Subroutine CORRE reads the n observations of m-tuple raw data and f rom 
these data calculates means, standard deviations, and product moment correlation 
coefficients o r  covariance matrix, either about the mean o r  origin. 
EIGEN computes the eigenvalues and eigenvectors of the input covariance o r  co r -  
relation matrix. 
variance accmnted fo r  by eigenvalues and number of principal components to  be 
kept for analysis on the basis of one of the three  limiting options. 
calculates the coefficients of each factor by multiplying the elements Qf each nor- 
maiized eigenvector by the square root of t h e  corresponding eigenvalue. 

Subroutine 

Subroutine TRACE computes the c u m u l a t i v e  proportion of total 

Subroutine LOAD 

Input may be in the form of raw data to  be read by the CORRE subroutine, o r  
means, standard deviations, eigenvalues, eigenvectors, and factor coefficients 
may be read by the main program. 
put and computes the factor score coefficient matrix, channel coefficient settings, 
and the factor scores.  

In either case,  the main program handles out- 

1. 2. 1 Factor Analysis Mathematical Description 

The facto? analysis orthogonal solution is a method of finding coordinate 
systems in which the variables are uncorrelated. 
is limited to linear (i. e. , nonlinear ccupling is absent), the t ransform might a l so  
produce statist ical  independence o r  something approaching it. 

If dependence among the variables 

Given a data matrix ,Xn consisting of n column vectors, each one an ob- 
servation, the covariance matrix* of X is: 

m n  

s = -  x XT 
m m  n m n n m  

* 
This applies for covariance about the origin. 
requires that the data matrix first be properly adjusted. 

Covariance about the mean values 

1-8 (11) 
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Since S is a rea l  symmetric positive definite matrix,  there exists a t rans-  
formation U which wil l  t ransform S into a diagonal matrix D whose diagonal ele- 
ments a r e  the eigenvalues of S. 

T L = U  s u =  

.......... \ A 1 O  0 

o x  -.'........ 0 I 
(1- l j  

.......... 
m 

u u.. n 

The square root of a diagonal matrix can be defined: 

a - d  

So that 

and 

Substituting for  S, 

' 5 0  ....... 0 

0 q.,.... 0 

................ 

................ 
0 0  ........... K 

L 

4TT 4 7  = UT su 

- I  -I 

K- U ~ X X ~ U C  = n ~  

Define A, the factor score coefficient matrix, and F, the factor score  matrix: 

T -1  
A = C  U 

1-9 (11) 
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T It follows f rom these definitions and Equation 1-4, that FF = nI; i. e. , the 
factor scores  a r e  uncorrelated. 

If A is nonsingular, its inverse exists and X can be computed f rom F: 

x = A - ~ F .  

If the inverse of A is not defined because A is not square: 

A X  = F 

T T 
A A X = A  F 

T -1 T 
X = ( A  A )  A F .  

The correlation matrix of X , m n  

-1 - 1  
R =6 S 6  , where m m  

D =  [; .......... 2 
2 

(r . . . . . . . 

0 . . . . . . . . . 2 
m Q D 

cmay be diagoi A a 1 ized during the analysis in place of the covariance matrix, S. If 
Snalysis is done about the sample mean rather than the origin, mYn , n column 
vectors of the f o r m  Y. = X - X, j = 1, n,  are used in the place of the vectors forin- 

- 
~j ing X . m n  

1.2.2 Flow Chart  of the Factor Analysis Program 

The following generalized flow diagram (Figure 1-2) of the factor analysis 
program is supplemented by detailed Fortran IV statement diagrams of subroutines 
CORRE, EIGEN, TRACE, and LOAD. (Figures 1-3 to  1-6). . 

1-10 (11) 
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KEY TO NOTATION 

Main Program, Principal Component Factor Analysis 

n 

k 

m 
- 
X., i=l, m 
1 

S., i=l, m 
1 

X m n  

X j=1, k 

U k m  

d., j=1, k 

j’ 

J 
B m k  

C 
m k  

A k r n  

E k m  

G k m  

F 
k n  

X , i=l, k 
fi 

R m m  

- 

numbe r of obs e rvations 

number of factors  

number of variables 

mean of ith variable 

standard deviation of ith variable 

raw data matrix 

jth eigenvalue 

row-wise eignevectors 

cumulative .proportion of total  variance 

factor 

factor 

factor 

factor 

matrix for standard data 

matr ix  for nonstandard data 

score coefficient matrix for 

score coefficient matrix for 

channel coefficient settings matrix 

factor scores  

factor score means 

cor relation o r  covariance matrix. 

standard data 

nonstandard data 
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0 
c 

Figure 1-2 Main Program, Principle Component Factor Analysis 
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Figure 1-2 (Cont. ) 
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K E Y  TO NOTATION 

Subroutine CORRE 

X = raw data n m  

n = number of observations 

m = number of variables 
- 
X . ,  i = l ,  m = mean of ith variable 

S . ,  i = l ,  m = standard deviation of ith variable 

1 

1 

R = covariance or correlation matrix. m m  

1-14 (11) 
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Figure 1 - 3  Subroutine CORRE 
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Figure 1-3 (Cont. ) 
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... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  --1 
SUBROUTINE CORRE 

PlIRPOSE 1 COHPUTE MEANS, STRNDRRO OEVIRTIONS, SUMS OF CROSS-PRODUCTS 
OF DEVIRTIONS OR SUMS OF CROSS PRODUCTS, RND CORRELRTION 

C COEFFICIENTS OR COVRRIANCE MATRIX 

3-- 

f 
Figure 1-3 (Cont. ) 
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r c  . 
SUBROUTINES ANU FUNCTION SUBPROCRAHS REOUIREO 

ORTR(H,O. IN ,FHT)  - T H I S  SUBROUTINE BUST BE PROVlOEb T O  

C EXTERNAL INPUT OEYiCE 
C '  I 
C 
C 

I C  
HETHOO 

PRODUCT-MOHFNT CORRELATIOI! COEFFICIENTS ARE COMPUTED. 

I ............................................,.~.,.,,,....,*,,,.... I! 

SUBROUT1 NE CORRE IN, H, XBRR,STD.STiiO. RX. R. 8.0, T, 1;;. FH T ,  HEAN. COV,  SIG 1 
DR. K T )  -. - 

Figure 1-3 (Cont.) 
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Figure 1-3 (Cont.) 
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Figure 1-3 (Cont. ) 
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I? 

1 f INERN) 

PRTH STRTEHENT 

Figure 1-3 (Cont. 1 
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Figure 1-3 (Cont. ) 
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IC 1 

I REAn THE REST OF OBSERVATIONS ONE AT A TIHE. SUH 

PRODUCTS OF DEVIATIONS FROM TEMPORARY HEANS 
THE OBSERVATION, AND CALCULRTE SUMS OF CRBSS- 

I 
1 

KKsN-KK 

13? 

0 9  

JK=O P CALL OAT lH.0. IN.FflT.SIGDA.KTI 

4 
ENTER RFTER TRUE 
PATH STATEHENT 

0 

Figure 1-3 (Cont. ) 
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JK= JK+ 1 Lr’ 
Figure 1-3 (Cont. ) 
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6 
ENTER RFTER TRUE 
PC)TH STATEMENT 

Figure 1-3 (Cont. ) 
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C 
C CRLCULATE COARELATlON COEFFICIENTS 
C 

I 

Figure 1-3 (Cont. ) 

1-26 (11) 



BSR 2949‘ 

Figure 1-3 (Cont. ) 
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I F  (.NOT.IIEAN) 6 
ENTER AFTER TRUE 
PATH STATEHENT 

6 
A (JK) =R [JKI /FN 1 

b 
ENTER AFTER TRUE 
PATH STATEWENT 

Figure 1-3 (Cont. ) 
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CON I I NUE 

l i” ’ -  - -+ 
CALCULATE STANDRRO O E V J A T I B N S  H 

6 
E N T f R  CIFTER TRUE 
PRTli STRTEHEt 

Figure 1-3 (Cont. ) 
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\ G O  TO 330> I 

c 

6 
C 
C COPY THE DIAGONRL OF THE HRTRlX OF SUHS OF CROSS-PRODUCTS OF 
C DEVIATIONS FROH HEANS. 
C 

330, , 
L=-H 

Figure 1-3 (Cont.) 
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K E Y  TO NOTATION 

Subroutine EIGEN 

n = crder of input matrix (corresponds to m of main prograr,?! 

A z input correlation or covariance matrix, destroyed c ? ~ ; Y ~ : : ;  

computation; eigenvalues are placed in diagonal a s  ot:t;, .! n n  

R = eigenvectors, columnwise 
n n  

= initial norm 

= final norm vf 

t = threshold 

ind = indicator that off-diagonal elements found larger than prrur:; 
threshold. 

x-31 (11) 
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a 

Figure 1-4 Subroutine EICEN 
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I 

I '  I 

Figure 1-4 (Cont. ) 

1-33 (II) 



BSR 2949 

~ 

r C  .................................................................. 
C 
C SUBROUTINE EIGEN 
C 
C PURPOSE 
C COMPUTE EIGENVALUES RNO EIGENVECTORS OF R RERL SYMMETRIC 
C MATR 1 X 
C 

I N  SRHE SEQUENCE AS EIGENVALUES) 
N - ORDER OF HRTRICES A AND R 
MV- INPUT CODE 

0 COMPUTE EIGENVALUES RNO EIGENVECTORS 
1 COMPUTE EIGENVALUES ONLY I R  NEED NOT BE 

DIMENSIONED BUT nusi STILL APPEAR IN CALLING 
SEQUENCE) 

+ 
C USAGE 
C CALL EIGEN [R.R.N. MV)  

C REMARKS 
C ORIGINAL H A l R I X  A MUST BE RERL SYHMETRIC lSTORAGE HODE=ll 
C NATRIX A CANNOT BE I N  THE SRHE LOCRTION AS HRTRIX R 
C 
C SUBROUTINES RND FUNCTION SUBPROGRRNS REOUIRED 
C NONE 
C 
C METHOD 

L. 

C DESCRIPTION OF PRRRHETERS 
C A - ORIGINAL H R T R I X  ISYHMETRIC), DESTROYED I N  COHPUTATICIN. 
C RESULTRNT EIGENVRLUES RRE DEVELOPED I N  DIAGONRL OF 
C M Q T R I X  A I N  DESCENDING ORDER. 
C R - RESULTRNT H R T R l X  OF EIGENVECTORS (STORED COLUMNHISE. 

C 
C BY VON NEUHRNN FOR LARGE COMPUTERS AS FOUND I N  'HRTHEHAT~CRL I 
C NETHODS FOR D I G I T A L  COHPUTERS'. EDITED 61 a. R A L ~ T O N  9ND 
C H.S. WILF. JOHN WILEY AND SONS. NEH YORK. 1962. CYAPTES 7 
C 
C .................................................................. 

OlRGBNRLIZRTlON METHOD $IGINRTEO BY JRCOBI RNO ROAPlEc---- ! 

i . --  ..-.---... .. I + 
CONI. ON PC - 

Figure 1-4 (Cont.) 
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C 62 MUST BE CHANGED TO DABS. THE CONSTRNT I N  STATENEN1 5 SHOULD 
C BE CHRNGEO TO 1.00-12. 
C 
C ............................................................... 
C 
C GENERATE IDENTITY N A T R I X  ,c 

C 
C ............................................................... 
C 
C IF A DOUBLE PRECISION VERSION OF THIS ROUTlNE IS DESIRED. THE 
C C IN COLUHN 1 SHOULD BE REMOVED FRdN THE DOUBLE PRECISION 
C STATEMENT WHICH FOLLOWS. 
C 

f? 

.b 

I 
DOUBLE PRECISION R.R.RNORM,RNRMX.THR.X.Y,SIN~,SINX2.CBSX.C~SX2,SIN 
CS. RANGE 

C6NT. ON PG 3 

Figure 1-4 (Cont. ) 
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I 

\ 
DO YO J-1.N - - - 5= 

- - -  

CONT. ON PG Y 

Figure 1-4 (Cont. ) 
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CONT. ON PG 5 

Figure 1-4 (Cont. ) 
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r 

CONT. ON PG 6 

Figure 1-4 (Cont.)  
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I 

0 

0 

INO=l 

b 

I 
I 

CONT. ON PG 7 

Figure 1-4 (Coat. ) 
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C AOTIITE L RNO M COLUMNS 
C 

I 

IF (I-MI 170.230.180 i[ 17 IM-) 

CONT. el ON PG 8 

IF (I-MI 170.230.180 [L 
6 

CONT. ON PG 8 

Figure 1-4 (Cont. ) 
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CONI. ON PC 9 

Figure 1-4 (Cont. ) 
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X m R  I I LRI  MCOSX-R ( I  HA) M S I N X  
R l l f l R l ~ R ~ I L R ~ ~ S l N X + R ~ I f l R l  MCOSX 

TESTS FOR COHPLETION 

TEST FOR , H - LAST COLUMN 

r -, 

' .._ 

a 
CONT. ON PG, 10 

Figure 1-4 (Cotit. ) 
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0 

.- 

CONT. ON PG 11 

Figure 3-4 (Cont. ) 
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i 

z 
8 
f 
m 

C 
C CONPRRE THRESHOLD Y l T H  FlNRL NORM 
C 

I 

63 
0 

0 

SORT EIGENVRLUES RNO EIGENVECTESS 1 7 

m>-- -  

ZiT> - - - 

CONT. ON PG 12 

Figure 1-4 (Cont. ) 

0 13 

0 13 
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-/ a F  (R (LLI - W  -\+ (HH, ; 5Y0.370.370 - 

8 
QD H CONT. . I N  PG 13 

Figure 1 -4 (Cont. ) 
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Figure 1-4 (Cont. ) 
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KEY TO NOTATION 

Subroutine TRACE 

m number of eigenvalues = (number of variables) 

k number of factors kept 

X ., i= l ,  m = eigenvalues 
1 

t = total variance 

C = number of factors to keep, or percentage of total variance 
to be explained, or minimum eigenvalue to be kept 

d . , j= l ,  k = cumulative proportim of total variance. 
J 

1-47 (U) 
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--- 

Figure 1-5 Subroutine TK4CE 
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c- 

.................................................................. 
SUBROUTINE TRRCE 

C PURPOSE 
C COMPUTE CUHHULRTIVE PROPORTION OF TOTRL VRRIRNCE F R O H  ElCENV 
C GRERTER THRN OR EQURL TO R CONSTRNT S P E C l f l E O  BY USER. T H I S  
C ROUTINE NORMRLLY OCCURS I N  R SEQUENCE O f  CALLS TO SUB- 

V 
C R - INPUT HRTRIX (SYMMETRIC AND STORED I N  COMPRESSED 
C FORM WITH ONLY UPPER TRIANGLE BY COLUMN I N  CORE) 
C CBNTRlNlNC EIGENVRLUES I N  DIRCONRL. EICENVRLUES RRE 
C ARRRNCEO I N  OESCENOINC ORDER. THE ORDER OF HRTRIX R 
C IS M BY M. ONLY Mw(M+11/2 ELEMENTS FIRE I N  STORAGE. 
C :STORAGE HOOE OF 11 
C CON - R CONSTANT USE0 TO DECIDE HOW MRNY EIGENVALUES TO 
C RETAIN. 

- O U T P U T V R R I ~ B C E  
GR€ATER THRN OR EQURL TO CON. IK IS THE NUflBFR OF 

IWCPORTION OF TOTAL VRRIRNCE OF EIGENVRLUES YHICH FIR 
C R E A l Y I  THRN OR EQURL TO CON. 

FRCTORS. I 

K 

0 - OUTPUT VECTOR Of LENGTH M CONTAINING CUMULRTIVE 

METHOO 
THE CURHULRTIVE SUM Of 

1 
V - 

C IS OlV lDEO BY TOTAL VARIRNCE. 
C 
C .................................................................. 
C 

CONT. ON PG 2 

Figure 1-5 (Cont. ) 
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ROUT I hE. C 
C 
C ............................................................... 

V 

SUBROUTINE TRRCE IH.R.CON,K,O, EIG,F?KP,PCKPl 
LOClCRL EIG,FTKP,PCKP 
OlHENSION R ( 1 1 .  0 ( 1 )  

I 

I 

I 

C 

C 
C ............................................................... 

I f  R DCL'RLE PRECISION VERSION OF THIS ROUTINE IS OESIAEO, THE 
C IN COLUHH 1 SHOULO BE REHOVEO FROM THE OOUBLE PRECISION 
STATEMENT I IHlCH FOLLOWS. 

Figure 1-5 (Cont. ; 
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GG-0. % 
PATH STRTEHENT 

PRTH STATEHENT 

D U  

Figure 1-5 (Cont. ) 
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DO 
AlW 

UO v 
[RETURN 1 

Figure 1-5 (Cont. ) 
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KEY TO NO'i'ATION 

Subroutine LOAD 

V = input eigenvectors, columnwise 

B = factor matrix 

m k  

m k  
1 i, i= l ,  k = eigenvalues, 

1-54 (11) 
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Figure 1-6 Subroutine LOAD 

1-55 (XI) 



BSR 2949 

C R - R HRTRIX ISYflHETRlC R N D ~ S ~ D p I ~ C ~ R E S S E D  FORH 
C H I T H  ONLY UPPER TRIRNGLE BY COLUMN I N  CORE) CON- 
C TRINING EIGENVRLUES I N  OIRCONRL. EIGENVALUES ARE 
C RRRRNGED I N  DESCENDING ORDER. RND FIRST K 
C EIGENVALUES ARE USED B.Y THIS SUBROUIINE. THE ORDER 
C O f  M A T R I X  R IS H BY H. ONLY H*IH+l)/2 ELEHENTS ARE 
C I N  STORAGE. ISTORRGE HOD€ OF 1)  

,c V - WHEN THIS SUBROUTINE I S  CALLED. HRTRIX 'J t t l  X MI 

C 

.................................................................... 
F S U B R O U T  C I NE LORD 

PURPBSE 
COHPUTE A FRCTOR HRTRIX (LOADING) FROM EICENVRLUES AND 
RSSOCIRTED €IGENVECTORS. THIS SURAOUTINE NOHMRLLY OCCURS I! I N  R SEQUENCE OF CRLLS TO , SUBROUTINES CORRE. EIGEN. TRRCE. I 

+ 
LORD. RND VRRHX I N  THE PERFORMANCE Of R FRCTOR RNALYSIS. 

CRLL LORD [H,K,R.VI  
USRGE 

CONTRINS EIGENVECTORS COLUHNWISE. UPON RETURNING TO 
THE CALLING PROGRRH, H A T R i X  V CONTRINS CI FACTOR 

REMARKS 
NONE 

SUBROUTINES AND FUNCTION SUBPROGRRHS REOUIRED 

C NONE 
C 
C METHOD 

, c  NIYRMALIZED EIGENVECTORS RAE CONVERTED TO THE FACTOR PWTERN 

CONI. ON PG 2 

Figure 1-6  (Cont. ) 
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- 
C BY MULTIPLYING THE ELEMENTS OF ERCH VECTOR BY THE SOURRE 
C ROOT Of THE CORRESPONOlNG EICENVRLU€. 
C 
C .................................................................... 

c 

1 

-. 
E 
i 

c 

DIMENSION R 111 , V (1) 

............................................................... I! I 
I IF R DOUBLE PRECISION VERSION Of THIS ROUTINE IS DESIRED. THE 

C IN COLUHN 1 SHOULD BE REMOVED PROM THE DOUBLE PRECISION 
STATEMENT WHlCH FOLLOWS. 

C 

Figure 1-6 (Cont. ) 
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Figure 1 -6  (Cont. ) 
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1 . 3  CLASSIFICATION AND INFORMATION DIVERGENCE PROGRAMS 

t 

C 

A t  the base of all of the classification and information divergence programs 
is the computation of the probability density function com3uted from the training 
sets  evaluated at  each sample signature. 
and the Information Divergence Program provide several  options for probability 
density computation. 
Divergence Program make restricted use of the hyperpyramid smoothing function 
for the density computation. 

The Bayesian Decision Function Program 

In contrast ,  the Density Lis ter ,  Decision Ruler,  and Density 

A 

The probability density function of signatures for objects of c lass  k, f (x), k .  
can be evaluated in one of several  ways. 

The univariate normal probability density computation is based upon population 
parameters : 

where 

j is the channel index 

k is the population (target) index. 

The multivariate normal probability density computation is: 

where 

m is the number of channels 

Y is the signature x expressed about the kth training set mear 

A is the inverse covariance matrix of the kth training set. 

-L -L 

k 
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The Specht function is a smoothing method for  weighting the contribution of 
each point in a data sample to the total density function evaluated at a point not in 
the sample. 
sample point. 
should be used and subsequently expanded in polynomial form. 
expansion, however, is unsuitable for this study. 
used throughout the study is: 

A smoothing function is used t o  compute the weight given t o  each 
Donald Specht:." concluded that an  exponential smoothing function 

The polynomial 
The Specht smoothing function 

where 

N k 

S. ik 

'ijk 

is the number of observations in the kth training set 

is the Specht smoothing parameter for  the ith training set 

is the ith component of the jth signature of the kth training set 
A 

x. is the ith component of x. 
1 

The exponential smoothing is extremely t ime consuming. In an  effort t o  reduce 
The the computation time, the hyperpyramid smoothing function** is implemented. 

hyperpyramid smoothing function is: 

'.Specht, Donald F. , "Generation of Polynomial Discriminant Functions for 
Pattern Recognition, 
Tech. Report  No. 6764-5, May 1966. 

Stanford Electronics Laboratories, Stanford, Calif. , 

**Smoothing functions are discussed in  Section 4.3,  Vol. I. 
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a -  xi - yi.k ' (1 'ik 
g(x, Y. ) = 1 - max 

Jk 

where 

, i = l , m  ] fo r  

A &  f g(x, Y.) = 0 for  max 
3 

xi - Yi.k 

max [I 'ik 

x i  - Yi.k 

SikJ  

(1 -8) 

1.3.  1 Bayesian Decision Function Program 

The Bayesian Decision Function Program assigns a rb i t ra ry  signatures 
f r o m  sample sets to  one of the targets  characterized by the training sets. The-as-  
signment is based upon the probability density functions computed f r o m  the training 
sets evaluated a t  each sample signature, the a p r i o r i  probability occurrence of 
each target,  and the penalties of misclassification. The program will compute 
density functions in one of six ways and will accept training set data in one of four 
forms. 

The options for  probability density function computation are as  follows: 

1. 

2. 

3. 

As a product of univariate normal probability densities, using 
means and standard deviations of each channel o r  factor f rom 
the training sets. 

As a product of probability densities f rom univariate histograms. 

As multivariate normal probability density, using the covariance 
matr ix  of the training sets. 
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4. 

5 .  

A s  a multivariate Specht function o r  product of bivariate Specht 

density function may be computed over all channels simultaneously, 
o r  over pairs  of components in which case,  the probability density 
for  the observation signatur? is the product of densities for pairs. 
The bivariate option can actually be used to  subselect any number 
of channels. 

and functions, computed by- smoAthing the training set  data. The 

6 .  A s  a multivariate hyperpyramid smoothing function. 

Training se t  data may be in the f o r m  of digitized scanner data, continuous 
o r  factor score .lata, univariate histograms, o r  parametric (means and standard 

(- deviations) form.  Sample data for classification can be digitized scanner data o r  
continuous data. 

Training se t  forms can be used in conjunction with density computation 
options according t o  the following table. 

TABLE 1-1 

USE O F  TRAINING SET FORMS WITH DENSITY COMPUTATIONS 

Training Set Form 

Digitized Scanner Data o r  
Continuous Data  

Univar iate Histograms 

Parametr ic  

Possible Density Computation 
~ 

Product of Univariate Normal 
Bivariate f rom Specht 
Multivariate f rom Specht 
Hyper py r amid Smoothing 
Mult ivz r iat e No r mal 

Product of Univariate Normal 
Product of Univariate Histograms 

Product of Univar iate Normai c 
The READ subroutine reads training set data and computes f rom these data 

quantities needed for the chosen density computation option. 
the probability density function of each sample signature when attributed t o  each 
training set ,  while the main program calculates the Bayesian Decision Function and 
handles output of signature target assignment. 

COMPUT calculates 
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c 

1.3. 1. 1 Bayesian Decision Function Mathematical Description 

In Bayesian classification of a rb i t ra ry  samples, the decision criterion 
is minimum cost. The expected cost of an experiment is: 

where 

w is the cost of the experiment 

w(j, k) is the cost of assigning an object of c lass  j to class  k 

P(j ,  k )  is the probability of assigning an object of class  j to c lass  k. 

The probability P( j ,  k) can be expressed as the product of an a priori  and 
a conditional probability: 

where 

P( j )  is the - a p r i o r i  probability of occurrence for objects of c lass  j, 

P(klj)  is the probability of assigning an object to c lass  k provided i t  
belongs to  c lass  j. 

Let r be the set of signatures ( a  region in the space of signtrtures) k 
which is attributed to c lass  k. Then, by definition, 

P(klj) = f. ($1 ax', (1-11) 
J 

'k 
where 

is an observed signature 

f.($) is the probability density function of signatures fo r  objects of class  
J 

j, o r  
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(1-12) 

where 

S2 is the entire signature space 

\ By substitution, the expected cost is then 

J 
sa (1-13) 

Minimization of cost occbrs when the cost function in  square brackets 
is evaluated for each k and r k  (g) is set  to 1 for  the k associated with the minimum 
cost. 

1.3. 1.2 Flow Chart of the Bayesian Decision Function Program 

The following flow chart  (Figure 1-7) makes reference to Subroutine 
MINV, inversion of a matrix,  whose Fortran IV statement diagram only is provided. 
Refe r  to Figures 1-8 and 1-9 for subroutines READ and COMPUT. 

KEY TO NOTATION 

Main Program, Bayesian Decision Function 

m = number of channels 

mr = number of training eets ( targets)  

m s  = number of samples to be classified 
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th 
n r  k = l , m r  = number of signatures in k training set  k' , 

ns k= 1, m s  k' 
th = number of signatures in k sample set  

mk = number of subsets of channels 

Inn = number of channels in each subset of channels 

th 
N . . , i = l , m r ,  j = l ,  mk*mn = channel numbers in the subsets of channels fo r  i 
1J training set 

P i = l , m r  = - a p r io r i  probability of occurrence of target i i' 

C . . , i = l , m r ,  j = I , m r  = cost of attributing a signature of target i to target j 
1J 

S . . , i = I , m ,  j = l ,  
1J 

dmax., i = l , m r  
1 

rnr 
th = smoothing parameters for the ith channel of the j 

training set  (for Specht function or  hyperpyramid 
function) 

= upper bound on truncatiou e r r o r  for computing the 
deilsity function of a signature attributed 

se t  (for Specht function) 

= denominator of the univariate normal probability 
density function for the ith training set  

th 
sd.. , i= 1, m J  j= 1 mr = standard deviation in  the ith channel of the j 

1J training set  

= denominator of the probability de sity function for & dnm.. i=l ,  mk, j=1, m r  
1J the ith subset of channels of the j 

Specht function or  hyperpyramid function) 
training set  (for 

smax. ., i = l ,  mk, j=1,  m r  = upper l imit  on s u m  of squares for truncation of 
computation of density function (for Specht function) 1J 

th 
X.. i-1, m, j=1, nr  k=l ,  m r  = jfh signature of k training set  ijk' k' 

" 
YiD i=l ,  m = signature of sample set  

f i=l ,mr i' 

bdfi, i = l  , mr 

pri, i= 1, mr 

= probability density function Of a sample signature when 
attributed to the ith training se t  

th = Bayesian decision function of i training set  

= Bayesian probability that signature is occurrence of 
target i. 
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Figure 1-7 Main Procram, Bayesian Decirion Function 
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Figure 1-7 (Cont. ) 



Subroutine READ 

m 

nrk, k= 1 I mr 

ni k= 1, mr 
k’ 

- 
i=l ,  m, k = l ,  mr 

r ‘ik’ 

ik sd , i = l , m , k = l , m r  

xmid i=l ,  m, k = l  mr ik’ 

deltik, i= 1 , m ,  k = l  , mr 

i = l , m ,  j = l , n i  , k = l , m r  Hijkl k 

det , k = l , m r  k 

D , k = l l m r  k 

B.. , i = l l m ,  j = l , m , k = l , m r  
1Jk 

f‘! *ijk’ i=l , m, j=  1 m, k= 1, mr 
L 

X..  , i = l , m , j = l , n r  , k = l , m r  

mr 

1Jk k 

BSR 2949 

KEY TO NOTATION 

= number of channels 

= number of signatures in kth training set  

= number of intervals in histogram of kth 
training set 

mean of ith channel of the kth trzining set  = 

= standard deviation of the ith channel of the 
kth training set  

= midpoint of the first interval of the histogram 
of the ith channel of the kth training set  

= length of interval of the histogram of the ith 
channel of the kth training set 

= frequency in ith channel, jfh interval] of 
histogram of kth training set 

= determinant of the covariance matr ix  of the 
kth training set  

= determinant of the inverse of the covariance 
matrix of the kth training set  

th = m x m covariarxe matrix for k training 
set 

= m x m inverse of covariance matrix for  kth 
training set 

= jth signature of kth training set 

= number of training sets (targets) 

. 
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Figure 1-8 Subroutine READ 
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Figure 1-8 (Cont. ) 
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_. 
C L - HORK VECTOR OF LENGTH N 
C H - YORK VECTOR OF LENGTH N 
C 

E .................................................................. 
C 
C SUBROUT 1 NE tl I NV 
C 
C PURPOSE 
C INVERT A HRTRIX 
C 

I 
USHGC 

CRLL HINV IA.N.D.L.tl) 

DESCRIPTION OF PARAMETERS 

RESULTANT INVERSE. 11 A -  INPUT MATRIX. DESTROYEO I N  COHPUTRTION RND REPLRCED BY 

N - ORDER OF HATRIX R 
D - RESULTRNT DETERHINRNT 

I 

REMARKS 
C~RTRIX R nusi BE R GENERAL MATRIX 

C SUBROUTINES RNO FUNCTION SUBPROGRRMS REOUIREO 
C NONE 

CONT. ON PG 2 

Figure 1-8 (Cont. ) 
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~~ ~ ~ ~~ 

C 
C THE C MUST RLSO BE REHOYED FROM DOUBLE PRECISION STATEHENTS 
C RPPEARJNG I N  OTHER ROUTINES USED I N  CONJUNCTION NITH THIS 
C ROUT 1 NE. 
C 
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST RLSO 
C CONTRIN DOUBLE PRECISION FURTRRN FUNCTIONS. RBS I N  STRTEHENT 

& C  10 NUST BE CHRNCED TO DABS. 

-- 
C 
C ............................................................... 
c 

NK=NU+W 
I. (IO -K 
H (Kl -K 
ItK-NK+K 

~ ~IGR-R (KKI 

I. 
I F  A DOUBLE PRECISION VERSION OF T H I S  ROUTINE IS DESIRED, THE 
C I N  COLUHN 1 SHOULD BE REHOVED FROM THE DOUBLE PRECISION 
STRTEHENT WHICH FOLLOWS. Ii 

I? 

- 
I C  DOUBLE PRECISION R.D.BICA.HOLD 

I 

Figure 1-8 (Cont. ) 
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Figure 1-8 (Cont. ) 
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4 
,CONf. ON PG 5 

Figure 1-8 (Cont. ) 
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Figure 1-8 (Cont. ) 
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b 

CONT. O W P G  7 

Figure 1 -8 (Cont. ) 
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c-- 

c I 
CONI. ON PC 8 

Figure 1-8 (Cont. ) 
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Figure 1-8 (Cont, ) 
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C 
C FINAL RON AWD COLUNN INTERCHAWGE 
C 

CMlf. ON r G  10 

Figure 1-8 (Cont. 1 
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r 

Figure 1-8 (Cont. ) 
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Figure 1-8 (Cont. ) 
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KEY TO NOTATION 

Subroutine COMPUT 

m 

mr 

m k  

mn 

nikD k= 1. mr 

x.. , i = l , m , k = l , m r  
1K 

, i = l , m , k = l , m r  
sdik 

N . . s i = l D m r D  j=l ,mk*mn 
iJ 

xmid , i=l ,  m, k = l  , mr ik 

delt , i=l , m, k = l  , mr ik 

smax. . , i= 1 , xdc, j=  1 , mr 
=J 

dnm.. , i= 1 , mk, j = 1 , mr 
=J 

dui. i= 1 , mr 

= number of channels 

= number of training sets ( targets)  

number of subsets of channels 

number of channels in each subset of channels 

= 

= 

= number of intervals in histogram of kth 
training set 

= mean of ith channel of kth training set 

= standard deviation of ith channel of kth 
training se t  

= channel numbers in the subsets of channels 
of the ith training set 

= midpoint of the first interval of the histogram 
of the ith channel of the kth training set 

length of interval in histogram of the ith 
channel of the kth training set 

= 

= frequency in jth interval of histogram of ith 
channel of kth training set 

= upper limit on s u m  of squares for  truncation 
of computation of density function (Specht 
function) 

= denominator of the Specht function o r  hyper- 
pyramid function for the ith subset of channels 
of the jth training set 

= denominator of the univariate normal prob- 
ability density function f o r  the i th training set 
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S. ., i=l , m, j = l  , mr 
1J  

= smoothing parameters  for  Specht function, o r  
hyperpyramid function, ith channel of jth 
training set 

t h  A. .  , i=l , m, j=1, m, k=l  , mr = inverse of covariance matrix (m x m) fo r  k 
1Jk training set 

D , k = l , m r  = determinant of A for  kth training set 

YiJ i=l , m = signature f rom sample set 

X.. , i = l , m ,  j = l , n r  , k = l , m r  

k 

= jth signature of kth training set 1Jk x 
f . , 4= l ,mr  

1 

f '  k-1,mk 5r' - 

nrkJ k= 1 , mr 

= probability density function of a sample 
signature when attributed t o  the i th training 
set 

= probability density function for  kth subset 
of channels 

number of signatures in kth training set. = 
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Figure 1-9 Subroutine COMPUT 
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Figure 1-9 (Cont. ) 
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1.3. 2 Information Divergence Program 

The Information Divergence Program computes the measure of the amount 
of information which the differences between two distributions contribute t o  thc 
classification of a : p z t r a l  signature. The training set  data may be in one of the 
forms discussed for  the Bayesiari Decision F u x t i o n  Program, while the data re  - 
fe r red  to a s  sample data a r e  the representation of the training set  data i n  digitized 
scanner o r  continuous data form. 

The computation is again based upon the probability density functims com- 
puted f rom the training sets evaluated at each sample signature, and the optj.ons 
fer this computation a r e  the same as those in the Bayesian Decision Function 
Program. 

1. 3. 2. 1 Information Divergence Mathematical Description 

Divergence is defined a s  the sum of two information measures .  

Suppose a signature x a r i se s  f rom one of two object c lasses ,  j or k. 
a 

The likelihood ratio method of classification is to  evaluate the likelihood function 

(1-14j 

and assign the signature to  object class j ,  if L exceeds some criterion value, and 
to  class k otherwise. 
the decision is log L. 

The amount of information in the likelihood ratio for  making 
(Log2 L gives the information in bits. ) 

T o  obtain the average information per observation for  evaluating the 
hypothesis that the signature belongs to object c lass  j against the alternative class  
k, it is necessary t o  take the expected value over distribution j: 

I(j;k) = 1 ( log ?) fk(x”) f .  J (E) dx . 

Simila ly, the average informa,, m for evaluating the hypoth 
the signature belongs to  c lass  k against the alternative c lass  j is 

(1 -15) 

sis that 

(1-16) 
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The divergence between the two classes  is 

J ( j , k )  = I(j;k) t I(k;j) . (1-17) 

Since the distributions a r e  unknown, they a r e  assumed to be character-  
ized by the training data sets and the alogritluns for evaluating the density functions, 
fk (g) and f -  (z), as described in Section 1. 3. 3 

The required computations then become 

(1-18) 

and 

1.3.2.2 Flow Chart of Information Divergence Program 

A11 flew charts of subroutines referenced in Figure 1-13 may be found in 
Section 1.3. 1.2. 

KEY TO NOTATION 

Main Program, Information Divergence 

.% m = number of channels 

mr = number of training sets  to  be diverged 
(=  number of sample sets)  

mk = number of subsets of channels 

mn  = number of channels in each subset of channels 
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b 

-+ 

N. , , i= 1 , rnr , j= 1 , mk*mn 
1J 

risk, k= 1, mr 

S. ., i=l ,  m, j=1, mr 
1J 

dmax. , i= 1, mr 
1 

d u . , i = l , m r  
1 

sd.. , i= 1, m j  = 1 , mr 
1J 

dnm.. , i = l , m k ,  j = l , m r  
'J 

smax. ., i = l ,  m, j = l ,  mr 
1J 

Y., i=l , m 

ti , i= l ,mr  

1 

djk.. , i=l ,  mr, j=1, mr 
1J 

r- 

I- 

f l  i, i= 1, mr 

dv., , i= l ,mr ,  j = l , m r  

nrk, k= 1, nir 
1J 

= channel numbers in the subsets of channels 
for  ith training set 

= number 05 signatures in kth sample set  

= smoothing parameters  for the ith channel 
of the jth training set  (for Specht function o r  
hype rpyramid function) 

= upper bound on truncation e r r o r  for  computing 
the probability density function of a signature 
attributed to  the ith training set (for Specht 
function) 

= denominator of the univariate normal  prob- 
ability density function for the ith training set; 

= standard deviation in the ith channel of the jth 
training set 

= denominator of the probability density function 
fo r  the ith subset of channels of the jth t ra in-  
ing set 

= upper limit on sum of squares for truncation 
of computation of density function (for Specht 
function) 

= signature f rom sample set 

= probability density function of a sample s i g -  
nature when attributed to  the ith training set 

= total information in training set i for  discr im- 
ination in favor of set i against the alternative 
set j 

= logarithm of the probability density function 
of a sample signature when attributed to  the 
ith training set 

= divergence between training sets i and j 

= number of signatures in kth training set. 
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Figure 1-10 Main Program, Information Divergence 
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Figure 1-10 (Cont. ) 
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Figure 1-10 (Cont. ) 
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1.3.3 Density Divergence Program 

The modified divergence computation, referred to as density divergence, is 
used to  determine the divergence between two representations of the same popula- 
tion. The Density Divergence Program specifically computes the divergence be - 
tween a population known to be multivariate normal and representation of that pop- 
ulation with a training set  and the hyperpyramid smoothing function. It is useful 
in determining the utility of a given set of smoothing parameters.  A small  density 
divergence indicates a vaiid smoothing function representation of the t rue  dis t r i -  
bution of the population. 

The divergence computation (non-modified) i s :  

(1  -19) 

Define: N 

N f ax" = d P  a n d 1  f l  & - 
1 

i= 1 

Then - dP 
dxz - and 

f l  
substituting in Equation 1-19 

(1 -20)  

(1 -21) 

When f l  is the expression for  the multivariate normal probability density* and f2  is 
the hyperpyramid function:: using a sample from the distribution, the choice of 
smoothing parameters  used in f2 m a y  be evaluated. 
- * 

Refer to Section 1.3. 
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Input to  the program consists of a sample f rom the population, hyperpyr- 
amid smoothing parameters  for thc sample,  and the population inverse covariance 
matrix arid channel means. 

1.3.3.1 Flow Chart of Density Divergence Program 

Refer to  Figure 1-1 1. 

KEY TO NOTATION 

Main Program, Density Divergence and Subroutine COMPUT2. 

m 

N 

x.. , i = l , m , j = l , N  

S. , i = l , m  
'J 

1 

A r n m  

de t 
- 
x , i= l ,m  
i 

dnm 

f l  

f2  

yi , i= l ,m  

d 

number of channels 

number of signatures in sample 

sample f rom population 

smoothing parameter for ith channel, hyper - 
pyramid function 

inverse covariancc matrix of population 

determinant of inverse covariance matrix 

ith channel mean for  population 

de iominator of hyperpyramid smoothing 
function 

multivariate normal  probability density 
evaluated at one signature 

hyperpyramid smoothing function evaluated 
at one signature 

signature at which probability density function 
is to be evaluated 

density divergence in bits. 
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Figure 1-1 1 Main Program, Density Divergence and Subroutine COMPUT2 
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Figure 1-11 (Cont. ) 
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1.3 .4  Density Lister Program 

Due to  the high cost involved in computation of the probability densities nec- 
e s sa ry  for  signature analysis, software is needed for calculation and recording of 
this quantity to  be read rather than recomputed by other programs. This program 
evaluates the hyperpyramid probability density function': at any number of signatures 
when attributed to  one training set, recording the value on an external storage de-- 
vice for la ter  use. 

Input to  the program is the training set signatures, signatures a t  which the 
probability density is to be evaluated, and hyperpyramid smoothing parameters .  
The output consists of the signatures at which evaluation was done with the prob- 
ability density appended as the m t lSt component, where m is the number of 
channels. 

1.3.4. 1 Flow Chart  of Density Lister Program 

Refer to  Figure 1-32. 

K E Y  TO NOTATION 

Main Program, Density Lis ter  

m = number of channels 

N = number of signatures in training set 

Si, i = l , m  = hyperpyramid smoothing parameters  for  
training set 

X.., i = l , m ,  j = l , N  = training set signatures 
1J 

ns  

r.irm., i= 1, ns  
1 

dnm 

yi, i = l , m  

= number of groups of signatures at which 
probability densities will be evaluated 

= number of signatures for evaluation in each group 

= hyperpyramid smoothing function denominator 

= signature at which probability density is t o  be 
evaluated 

f = hyperpyramid probability density. 

* 
Pefer to Section 1.3. 
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Figure 1-12 (Cont. ) 
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1.3.5 Decision Ruler Program 

The Decision Ruler Program has only to read any nclmbcr of files of Den- 
sity Lister o-itput in order  to  assign a signature to  a category. 
tion 1.3.4,  the Density Lister Program records in an external file the hyperpyr - 
amid probability density of each signature as attributed to one target. Upon c r e a -  
tion of several  such files containing the densities computed tLt identical signatures 
attributed to  different targets ,  the Decision Ruler Program is used to make target 
assignment of the sample signature to  the category for which that signature 's  con- 
ditional probability density is the largest .  The probabilities of cor rec t  classifica- 
tion are computed for  each sample signature as well. 

A s  noted in Sec- 

1.3.5. 1 Flow Chart  of the Decision Ruler Program 

Refer to  Figure 1-13. 

KEY TO NOTATION 

Main - Program, Decision Ruler Program 

n r  = number of targets  (number of density Lister fi les) 

N = number of signatures t o  be classified 

f . ,  i=l, nr  
1 

probi , i = l , n r  

= probability density of sample signature attributed 
t o  the ith target  

= probability of the correct  classification of sample 
signature to  the ith target. 

f- 
a.- 
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Figure 1-1 3 Main Program, Deczdion Ruler Program 
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1.4 CLUSTER ANALYSIS 

1.4. 1 Cluster 1 ,* , s i s  Mathematical Description 

Frequently, in the course of the a w l y s i s  of multivariate data, it is useful 

Usually, some simple parametric form is  assumed 
tc, represent a population probability density distribution in some parsimonious 
but reasonably accurate way. 
and the parameters a r e  estimated from a sample 

Even when it would be otherwise difficult to  justify, the multivariate nor- 
ma l  distribution i s  used because it is easy to determine the parameters  and also 
easy to  evaluate the density exprcssion. 

When a sample distribution exhibits excessive skew, kurtosis, multi- 
modality, o r  other departure f rom normality, alternative representations a r e  
sought. This section describes a technique for dealing with the multimodal or 
clustered distributions when it may be hypothesized that each cluster i s  multi- 
variate normal. The procedure requires an  estimate of the probability density 
associated with each observatian-this may be accomplished by a variety of 
methods, among which a particular one described by Specht* will -erve : as a n  
example. 

If the observations a r e  resequenced to  be i n  the order  of descending - 

Each succeeding observation is then assessed with r ega r i  
probability density, the f i r s t  observation m a y  clearly be taken to be the inode 
of the first cluster. 
to the probability that it belongs to  on- of the existing clusters or, alternatively, 
that  a new cluster must be formed. 

Of fundamenta, importance in the assessment  is the relation 

& 

which gives the probability density f for an observation vector x on the hypoth- 
esis that the distribution i s  multivariate normal with mean x and covariance 
matrix C. 
with the generalized Mahalanobis squared distance. 

-L 

The quadratic form in  the right half of Equationi.  4-1 can be replaced 

* 
D. F. Specht, "Generation of Polynomial Discriminant Funciions for Pattern 
Recognition, IEEE Tramactions on Electronic Computers, Vol EC- 16, No. 3, 
J u i e  1967. 
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(1.4-2) 

yielding 

Taking the log of both sides, 

Note that Equations 1.4-2 and 1.4-4 can be Yegarded 
putkg the same quantity, one using the hypothesized 

(1.4-3) 

(1-4-4) 

a s  two different ways of com- 
mean and covariance matrix 

and the other using the previously estimated probability densities. 

In the cluster analysis algorithm to be described, the extent of the disa- 
greement between the two computations makes an important contribution to  the 
decision, because appreciable differences will .occur only when the wrong cluster 
(and hence the wrong mean and covariance matrix) has been hypothesized. To 
allow for the difference, Equation 1.4-4 will be rewritten using the symbol e to 
represent the value of d that would be expected from the densities f(G) and f(d). - 

(1.4-5) 

A t  this point, the notation will be permitted tc reflect the presence of m 
clusters, each of which is to  be tested with regard to  the hypothesis that the cur- 
rent observation x arose from that particular cluster. 
tions l. 4-2 and l. 4-5 for the i th cluster, 

Evaluating both Equa- 

(1.4-6) 

(1.4-7) 
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Since di i s  the observed generalized distance (between the observation and 
the center of the i th c luster)  and ei is the expected generalized distance, it i s  
reasonable to define the variable a. in Equation 1.4-8 a s  the expected fraction of 
the observztion relative to the ith cluster,  

1 

e i 
1 di 
a. = - (1.4-8) 

and the unexpected fraction p i  then given by Equation 1.4-9: 

e. 
= I - -  

di 

1 

(1.4-9) 

The u.--expected part of the observation relative to  the i th cluster is  the 
vector: 

(1.4- 10) 

Clearly, sinct; the covariance mat r ices  Ci, the means zi, and the prob- 
ability densities f (z) and f (g) are estimated f rom the observations and hence 
are not f r ee  of - r ro r s ,  the unexpected fraction f3i is not identically zero even 
for the best  choice fc, i. 

Although a rule fo r  making a choice has not yet been stated, it may be 
assumed that one exists. 
unexpected part of the observation for the chosen cluster is: 

If the rule selects j for the cor rec t  value of i, the 

& *  A 

z = $. (x-x.). 
j J 3 

(1.4- 11) 

The covariance matr ix  of the Z .  for all previous selections can be called 
J the unexpected covariance matrix. T h s  matrix, denoted by W, plays a central  

role in  the selection rule to  be proposed. 

The generalized Mahalanobis squared distance for  the unexpected part 
of a n  observation 2 (relat5ve to  the i th c luster)  is: 

T w-l zi ' 2 
gi = zi (1.4-12) 

1-105 (11) 



BSR 2949 

The desired selection procedure can now be stated: 

1. Evaluate gf for  each cluster.  

2. 

3 .  

Let j be the value of i which minimizes gf for i = 1, m. 

If g *  is g r t  t c r  than a prechosen number 8, form a new cluster 
number m t l  centered a t  the given observation 2. 

2 
J 

2 
J 4. If g .  is not greater  than Q, the observation is classified as part of 

the jth cluster,  with appropriate modificzticnc rr*~dt:  io the mean 
2. and covariance matr ix  C 
-3 f j '  

2 On the hypothesis that unexpected variance is multivariate normal, the gi 
will possess the chi-squared distribution and Q can be chosen to yield a specified 
probability of forming a new cluster by chance when a large deviation occurs. 

The covariance matrixes for t i .  individual c lusters  a r e  all biased in the 
direction leading to underestimation of expected var iawe.  
because observations are included in each cluster in the order  of decreasing 
probability density. 
able in the expressiori: 

This effect occurs 

Fortunately, a suitable correction for the variance is avail- 

where 

K = the fractional amount by which variance is underestimated 

n -r the number of variables in  each multivariate observation. 

1.4. ?_ Flow Chart of the Cluster Analysis Program 

The following flow chart  of the Cluster Analysis i rogram, Figure 1- 14, 
9 c-' makes reference to  Subroutine EIGEN whose chart is presented in Section 1.2.2. 
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KEY TO NOTATION 

Main Program, Cluster Analysis 

IIN 
IOUT 
LBL 
KD 
NV 
NG 
SL 
OPT 

X 
NC 

Nk 
VFk 
PS 
NOC 
XMij 
NCR 
PMi 
COVij 
DF 
ESDS 

C H S Q  

GMDS 
CSMIN 
CSMAX 

Vijk 
Uijk 
Vijl 
ui j l  

-9 

- 

input unit for data set  to  be cluster analyzed 
output unit for cluster analyzed data 
data set  identification 
data type 
number of variables 
number of groups 
smoothing parameters  
option for  space in which results of cluster analysis a r e  to  be printed 
MEAS - measurement space 

- constant vector in  transformation (y = A x t b ) YM 
SA - transformation matr ix  ( y  = A x -k b) 
data point 
number of c a i e s  
number of vectors belonging. to kth cluster 
factor by which variance i n  cluster k has been misestimated 
probability density 
number of c lusters  
mean of cluster j 
number of data points which have been read into progrpm 
probability density at mode of cluster j 
jth component of covariance matr ix  f rom cluster i 
number of data points used in computing unexplained covariance m t r i x  
expected square of Xahalanobis distance between vector arising f rom 
cluster under hypothesis and cluster mean 
unexpected portion of square of Mahalanobis distance f rom mode of 
cluster under hypothesis 
Mahalanobis distance between vector a:.d mode of c luster  under hypothesi: - 

minimum value of CHISQ vy-ler all hypotheses L. 

maximum value which CSMIN can assume without causing a new 
cluster tc be formed 
diagonalized scat ter  matr ix  fo- cluster k-1 
unitary mat r ix  used todiagonalize scatter matr ix  for cluster k- 1 
diagonalized scatter matr ix  for unexpected variance 
unitary matr ix  used to  diagonalizescatter matr ix  of unexpected variance. 

FACT - factor space u - 
Y - 

- 
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AND IOUT 

1 READLBL 1 

STOP 

P R I N T E R R O R  - STOP 
MESSAGE 

L r 

READ YMi 

(-1 
= 1. NV 

t c 
c 

Figure 1-14 Main Program, Cluster Analysis 

4 

T 
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NCR = NCR + 1 a 
f 

+ 

I 

i =  l,NV 

.I 

Figure 1-14 (Cont. ) 
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i - l . N V  

PRINT 

i = l , N V  

DF = NCR . NOD 

SUMSQ = 0. - 
+ 

ti = z Ujik Y )  

+ 
zsi = 2; 

i 
i = l , N V  

i = l , N V  

I 

Figure 1-14 (Cont. ) 
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CHISQ = SUMSQ DF * UNEXP2 1 
Figure 1-14 (Cont. ) 
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‘I‘ 

PRINT 

+ 

wj = t i  

K G =  KMAX 1 w 
PRINT 

NCRl  NV CSMIN = ACSMN 

xi = Xi/SLj 

i = l , N V  P 
A I 

XXj = YMj + C SAij Xj I e+ i = 1. NV j’= 1, NV -- 7- 

Figure 1-14 (Cont. 1 
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I 

Vill = Vi j l  -t Qi * Qj 

VijKMAX = VijKMAX +'i * wj 
v.. = v. 

VjiKMAX = vijKMAX 
i = 1, N V  j = 1, N V  

111 i j l  

NKMAX = NKMAX + 1 
N1 = NCR . NOG 
PR = PS/PMKMAX 

V F  = 1 - PR . TH 
FNC = NCR - 1  
C = .1 + .9/FNC 
ACSMN ACSMN + (CSMIN - ACSMN) . C 

IMAX = I 
JMAX = J 

*; 

Figure 1-14 (Cont. ) 
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ISST = ST2 + 
SST< T o-. 

I CST = 1 - SST 

SCT G T =  = ST ““I * CT 

Figure 1-14 (Cont. ) 
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Figure 1-14 (Cont. ) 
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PRINT LBL 

h 

t 
PRINT 
KT, NV, NOG 

NCR< NC * 
PRINT 

I 

PRINT 
NC, N; 

Figure 1 - 14 (Cont. ) 
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READ 

i = 1. NV 
Xi, NVP 

. 

Xi = Xi - XMEANNV~, i 

i = l , N V  
& 

IND = 0 a 
IND = IND + 1 1 

I I 

PRINT DATE 

.I 

.I 

+ 
+ 

PRINT LBL 

PRINT NC, NV 

PRINT NOG 

PRINT OPTION 

Figure 1-14 (Cont. ) 
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K = l  

PRINT 
XMEANki = 
i =  l , N V  

F 

f 

PRINT K 

I L =  1 

PRINT 

i = IL. IH r4 IL = IL + I 

Figure 1-14 (Cont. ) 
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IN = IN t I 
1 = 1 t 1  

t 

- 

PRINT 
CO, i = 1. NV 

t 
I L =  1 

# 

+ 
+ 
+ 

1 - 1  

1 
t 

PRINT 
R- j = IL, IH I 

. 
2 

PRINT 

Figure 1-14 (Cont. ) 

I 
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SECTION 2 

UTILITY PROGRAMS 

Several of the computer programs produced during the study a r e  not of any 
r e a l  theoretical interest  in te rms  of advancing the ability to perform spectral  pat- 
t e rn  recognition. 
services in preparation for the programs that actually perform multivariate data 
analysis and classification. 
required by any signature data processing system, although the details of those 
discussed here  a r e  peculiar to the requirements of the hardware used. 
the functions performed a r e  described. 

Hoever, they perform necessary clerical  and data handling 

The functions performed by these programs wil l  be 

Thus, only 

2.1 TAPE EDITOR PROGRAM 

Analog video is sampled with an eight-channel A/D converter under push- 
button control by the operator. 
ible incremental tape recorder ,  
compatible, the format is not Fortran-compatible. The Tape Editor Program 
accepts the output of the A/D converter and converts it to a record length and for- 
mat which can be read by For t ran  programs. During this process, incomplete 
records and records containing readings outside the scanner range specified by the 
use r  a r e  deleted. 

The results a r e  recorded on a computer-compat- 
While the tapes produced in this way a r e  computer- 

2.2 DATA SELECTION PROGRAM 

The Data Selection Program regroups existing sets  of data, as in selecting 
homogeneous samples for collating signatures with imagery. Input to the program 
m a y  be the output of the Tape Editor or output f rom a previous run of the Data 
Selection or Subsampling Programs, along with the case numbers of the signatures 
to be extracted to form a new data set. 
ing the original Tape Editor output observation number along with the signature 
selected, for ease in associating ground truth information. 

.L 

- The user  may choose an option of record- 

2.3 SUBSAMPLING PROGRAM 

The Subsampling Program selects random subsamples of a specified length 
f r o m  existing sets of data, Input may be in the form of digitized scanner data or 
continuous data with or without case numbers of the Tape Editor output appended. 
If input does not already have case numbers appended, the User may choose an 
option to append them in this program. 
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2.4 DATA TRANSFORMATION PROGRAM 

The Data Transformation Program is designed to accept any number of factor 
score coefficient matrices produced by analysis about the mean or  origin, for t rans-  
forming any number of sets of data in digitized scanner or continuous form. Several 
computation options a r c  available to the user  as well: 

1. A factor score correlation matrix may be computed from resultant 
transformed values. 

2. A data correlation matrix may be computed from raw input data. 

3. A data covariance matrix may be computed from raw input data. 

2.5 HISTOGRAM TALLY PROGRAM 

The Histogram Tally Program produces univariate histograms for each 
channel in the fo rm of a frequency distribution by interval. 
continuous data, digitized scanner data, or factor scores  along with the number of 
intervals desired in the histogram. 
intervals, midpoint of f i r s t  interval, length of interval, and observed frequency in 
each interval. 

Input may be either 

Output includes sample size, number of 

2 .6  PLOTTING ROUTINES 

The Scatter Diagram Program produces a Calcomp Pen Plotter scatter dia- 
gram of-values bf any two specified channels. The user  specifies the scale on the 
axes of the plot and may input continuous, digitized scanner, or factor score data. 
Digitized scanner data a r e  converted to  continuous data before plotting by use of 
the upper and lower bounds of scanner range. 

The Histogram Plotter Program accepts a s  input the output of the Histogram 
Tally Program, and produces a Calcomp Pen Plotter graph per channel of the f re -  

p- quencies in each interval. 
k program. 

Scaling of the axes is handled automatically by the 
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