DYNAMIC INTERACTION BETWEEN STRUCTUR E AND LIQUID PROPELLANTS IN A SPACE SHUTTLE VEHICLE MODEL

by
Daniel D. Kana
William L. Ko
Philip H. Francis
Andrew Nagy

FINAL REPORT, PART I
Contract No. NAS1-9890
Control No. L17-826

SwRI Project No. 02-2820

Prepared for
National Aeronautics and Space Administration
Langley Research Center Hampton, Virginia

October 15, 1970

DYNAMIC INTERACTION BETWEEN STRUCTURE AND LIQUID PROPELLANTS IN A SPACE SHUTTLE VEHICLE MODEL

by
Daniel D. Kana
William L. Ko
Philip H. Francis
Andrew Nagy

FINAL REPORT, PART I
Contract No. NAS1-9890
Control No. L17-826

SwRI Project No. 02-2820

Prepared for
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

October 15, 1970

Approved:

H. Norman Abramson, Director

Department of Mechanical Sciences

PREFACE

This report constitutes the first of two volumes which summarize the work accomplished under Contract NASl-9890. It contains the design of an experimental space shuttle vehicle model, supporting experimental data, the design of a corresponding analytical model, comparisons of results, and a listing of the digital computer program designed for predicting natural frequencies of a typical shuttle vehicle parallel-stage configuration which includes liquid propellants. The second part of the work, which deals with other liquid dynamics problems associated with space shuttle operation, is summarized in Final Report, Part II entitled "Propellant Dynamic Problems in Space Shuttle Vehicles."

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS iv
LIST OF TABLES v
NOMENCLATURE vi
INTRODUCTION 1
DESCRIPTION OF PHYSICAL MODEL 1
ANALYTICAL MODEL 8
Mechanical Model 8
Mathematical Formulation 13
Numerical Aspects 20
EXPERIMENTAL PROCEDURE 22
COMPARISON OF RESULTS 25
SUGGESTED FURTHER STUDIES 34
REFERENCES 34
ACKNOW LEDGEMENTS 36
APPENDICES
A. Revised Beam Equations A. 1
B. Matrix Elements B. 1
C. Computer Program C. 1

LIST OF ILLUSTRATIONS

Figure Page
la SwRI Space Shuttle Vehicle Dynamic Model 3
1 b Schematic of Space Shuttle Vehicle Model 4
2 a Equivalent Mechanical Model 9
$2 b$ Detail of i-th Shell Beam 10
2c Detail of Orbiter Reinforcing Beam 10
2 d Detail of Booster Reinforcing Beam 11
3 Intermediate Empty Configurations of Booster Model 23
4 Uncoupled Booster Natural Frequencies 26
5 Uncoupled Orbiter Natural Frequencies 27
6 Natural Frequencies for Space Shuttle Vehicle Model 32

LIST OF TABLES

Table Page
I Material Properties and Geomerty of Structural Components of Booster Model 6
II Material Properties and Geometry of Structural Components of Orbiter Model 7
III Definition of Coordinates 18
IV Agreement Index for Decoupled Models 28
V Natural Frequencies for Space Shuttle Vehicle Model 30

Symbol
Definition
a
$\underset{\sim}{a}$
b
c
c
D_{k}
d
$\underset{\sim}{d}$
E_{S}
$E^{(m)}$
e
$F_{i}=\frac{4}{\pi} \frac{I_{1}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}{\frac{\pi R_{i}}{2 h_{i}} I_{0}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}$
$\mathrm{G}_{\mathrm{S}} \quad$ shear modulus of cylinder shell s
g

H
distance between subsystems 2 and 11 equations of motion
distance between subsystem 11 and the centerline of the Orbiter
distance between subsystems 12 and 13
constraint matrix
distance between the neutral axis of a reinforcing beam section and a cylinder shell $(k=1,2,3,4)$
distance between subsystems 15 and 16 of constraint
modulus of elasticity of a reinforcing beam section ($\mathrm{m}=1,2,3,4$)
distance between subsystem 5 and the $\operatorname{rod} K^{(5)}$
coefficient matrix of constraint coordinates appearing in
coefficient matrix of mass coordinates appearing in equations
modulus of elasticity of cylinder shells $(s=1,2,3,5,6,7)$

> gravitational constant
> total number of dynamic and constraint equations of the mechanical system
h_{i}
\tilde{h}_{i}
h_{i}^{*}
ρ_{s}
I_{0}
I_{1}
i
J_{n}
$J(m)$
$\mathrm{J}_{\mathrm{i}}^{*}$
$J^{(i)}$
rigid
j
$\mathrm{K}_{\mathrm{i}} \quad$ equivalent longitudinal spring constant of cylinder i accounting for liquid effect
$K_{j}=\frac{2 \pi R_{j} \delta_{j} E_{j}}{\ell} \quad$ longitudinal spring constant of cylinder j
$\bar{K}_{i}=\frac{2 \pi R_{i} \delta_{i} E_{i}}{\ell-v_{i}^{2} h_{i}} \quad$ longitudinal spring constant of cylinder i with liquid effect
$\mathrm{K}^{(\mathrm{m})}, \overline{\mathrm{K}}^{(3)}, \overline{\mathrm{K}}^{(4)}$ longitudinal spring constants of the reinforcing beam sections
$K^{(6)}, K^{(7)} \quad$ vertical and horizontal spring constants of the coupling spring system
$k_{i} \quad$ vertical sloshing spring constant

Symbol	Definition
$\overline{\mathrm{k}}_{\mathrm{i}}$	vertical sloshing spring constant due to Poissons effect of the cylinder
$k_{i}^{\prime}=\frac{4 \pi R_{i} \delta_{i} E_{i}}{h_{i}}$	$\left.\frac{I_{1}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}{\frac{\pi R_{i}}{2 h_{i}} I_{o}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}\right]^{2}$
$\tilde{\mathrm{k}}_{\mathrm{i}}$	lateral sloshing spring constant
k	index
L	number of dynamic equations
L^{\prime}	number of constraint equations
$\ell{ }_{s}$	length of cylinder section
M_{n}	structure mass element
M()$, \bar{M}()$	end moments of a beam section
$M_{[1]}^{(~)}, \bar{M}_{[~]}^{(~)}$	net end moments of a shell-beam section
m_{i}	vertical sloshing mass in cylinder i
\tilde{m}_{i}	horizontal sloshing mass in cylinder i
$\mathrm{m}_{\mathrm{i}}^{*}$	rigid mass in cylinder i
$m_{T}^{(i)}=\pi R_{i}^{2} h_{i} \rho_{i}$	total mass of the liquid in cylinder i
m	index
n	inder
$P()()$	mass matrix of the total system of dynamic and constraint equations

Symbol
p
$Q_{()}$()
$\stackrel{q}{\sim}$
r
R_{s}
S_{r}
s
t
V()

${ }^{W}()$
$\underset{\sim}{X}$
$\underset{\sim}{x}$
x^{x})
$\left.Y_{(}\right)$
${ }^{y}(1)$
$\left.{ }^{2} 1\right)$
$\left.a_{1}\right)$

Definition
mass matrix of the dynamic equations only
stiffness matrix of the total system of dynamic and constraint equations
stiffness matrix of the dynamic equations only
index
R_{B} (Booster radius) for $s-1,2,3 ; \mathrm{R}_{\mathrm{O}}$ (Orbiter radius) for $s=5,6,7$
torsional spring constant ($\mathrm{r}=1,2, \ldots, 7$)
index
time
lateral shearing force on an end cross section of a beam section
net lateral shearing force on an end cross section of a shell-beam section
vibration mode
coordinates associated with mass elements (see Table III)
coordinates associated with constraint conditions (see Table III)
lateral displacement of a subsystem
amplitude of a vibration mode
axis of rotation of a subsystem
vertical displacement of a subsystem
rotation of a cross section of a shell beam where a horizontal sloshing spring or a rigid mass is attached
phase angle
cylinder shell thickness
vertical displacement of a vertical sloshing mass
horizontal displacement of a lateral sloshing mass
v_{s}
Poissons ratio of cylinder shell
horizontal displacement of a shell beam cross section where the lateral sloshing spring or a rigid mass is attached
mass density of liquid in cylinder i
rotation of a structure subsystem
Ω
eigenvalue of a vibration mode
ω
frequency

DYNAMIC INTERACTION BETWEEN STRUCTURE AND LIQUID PROPELLANTS IN A SPACE SHUTTLE VEHICLE MODEL

By Daniel D. Kana, William L. Ko, Philip H. Francis, and Andrew Nagy Southwest Research Institute

INTRODUCTION

Currently specified design requirements of a space shuttle vehicle are anticipated to present many new problems heretofore not encountered in aerospace systems. The dynamic interaction between elastic structure and liquid propellants has always been an important design criteria for launch vehicles and aircraft; however, it is surmised that potential problems posed by this interaction will become even more critical in presently envisioned space shuttle systems (ref. l). Therefore, the purpose of this study is to examine the applicability of existing analytical techniques for studying the coupled liquid-structural dynamics of a typical space shuttle configuration--a parallel-stage design.

The program objective has been accomplished by developing a suitable experimental model that is capable of experiencing at least the most fundamental structural dynamics of a prototype system, measuring its natural frequencies of vibration for a range of various parameters, and comparing the results with those predicted from a corresponding analytically derived model. In selecting the model details from the outset, considerable effort was exercised to utilize components which were already available from previous research programs, in order to minimize fabrication costs. Further, existing concepts of spring-mass fluid models, which have been derived to simulate liquid reactions for decoupled lateral and longitudinal motions, are employed in a straightforward manner in a system which experiences strong coupling along these axes. The results of this study of a rather fundamental model will point toward the path to follow for more complex representations of a shuttle system. We begin with a description of the physical model, then outline the analysis, and finally present results and conclusions from the study.

DESCRIPTION OF PHYSICAL MODEL

A model consisting of a parallel-stage Boostex and Orbiter, each consisting of two propellant tanks and appropriate intermediate skirts and
rigid masses, was considered feasible to carry out the program objective. The major portion of the Booster was already on hand from a previous study (ref. 2) of longitudinal dynamics in axisymmetrical launch vehicles. As a result, as will be seen, it also included some components, such as stiffeners and baffles, which were not strictly essential to the present study. Nevertheless, the presence of these extra components did not alter the conclusions of the study.

A photograph of the completely assembled and suspended system is shown in Figure la, as it was used during most of the experiments. In order to provide a quick overall indication for model size and typical rigid masses, a schematic is shown in Figure lb. Further details will be given now, as well as in later sections of the report.

The Booster comprises the major part of the model, and it consists of the following main components:
(1) Upper tank
(2) Lower tank
(3) Skirt
(4) Bulkheads

Both tanks in the Booster model were fabricated from 0.005-inch thick, type 302 Stainless Steel sheets, which were rolled and butt-welded along longitudinal seams. A flat steel disk was spot-welded to one of the tanks which serves as a top mass for the upper tank. The lower end of this upper tank and both ends of the lower tank were spot-welded to identical steel flanges, which can be bolted to the bulkheads and the skirt as required. Two rows of spot welds, each spot weld having a test strength of 25 pounds, were used at each end of the tanks. The spots were spaced $1 / 8$-inch apart with $1 / 8$-inch spacing between the rows. To provide for ullage pressure integrity, the ends of both tanks were sealed with epoxy cement.

The third main component in the Booster is the skirt. It was fabricated by rolling 0.025 -inch thick, 6061-T6 aluminum sheet to the desired diameter and butt-welding it along a longitudinal seam. Two aluminum flanges were welded to the end of this cylinder with the same hole pattern as on the flanges of the tanks to provide for bolted assembly of these parts. Two small ports on the side of the skirt served as a pressure port for introducing ullage pressure to the lower tank and for filling the tank with liquid.

Flat, rigid bulkheads were machined from mild steel and 6061-T6 aluminum plates for the lower and upper tanks, respectively, with a shoulder

FIGURE la. - -SwRI SPACE SHUTTLE VEHICLE DYNAMIC MODEL

FIGURE lb。--SCHEMATIC OF SPACE SHUTTLE VEHICLE MODEL
on them so they could partially fit inside the tanks. The shoulders and their hole patterns match the thanges on the tanks. The lower ends of the tanks were sealed by these flat, rigid bulkheads by bolting them to the corresponding flanges. The tanks in turn were joined by bolting them together using the skirt as a coupling.

The lower tank had stiffener rings, stringers, and baffles installed on it. Eleven 6061-T6 aluminum rings, 0.032 -inch thick were cemented on the outside of the tank l. 25 inches apart, symmetrically about midspan. Twelve 6061-T6 aluminum stringers, $1 / 8 \times 1 / 8 \times 14$ inches in dimensions, were fastened to the inside of the tank by use of epoxy. The stringers were equally spaced around the circumference of the tank and symmetrical about midspan. Tapped holes along the length of these stringers provided the means for installing eleven yellow brass ring baffles into the tank. Data pertaining to the Booster model are given in Table I.

The Orbiter model, similar to the Booster, consists of two tanks with flat, rigid bulkheads and a skirt. The tanks and the skirt were fabricated from 0.012-inch-thick and 0.020 -inch-thick $1100-\mathrm{Hl} 4$ aluminum sheets, respectively, which were rolled and butt-welded along a longitudinal seam in the same manner as the Booster. Identical flanges with 16 -hole bolt patterns were welded to each end of both tanks and skirt by a continuous weld.

Flat, rigid bulkheads were machined from 606l-T6 aluminum plates with hole patterns matching the pattern on the flanges. These bulkheads, however, did not have shoulders on them as was the case for the Booster. Plates identical to the bulkheads were used for capping both of the tanks on the Orbiter with provisions for introduction of ullage pressure and modeling liquid.

The skirt, as in the case of the Booster, was used to join the two tanks. Data pertaining to the Orbiter model are given in Table II.

Coupling between the Booster and Orbiter was achieved by the strongback assembly. As can be seen in Figure l, the strongback spans the full length of the Booster and is attached to it at four locations, namely, at each flange and the top. This part of the strongback was fabricated from a 1-1/2×1-1/2×1/8-inch, 6063-T5 aluminum square tube with appropriate altering to be attachable to the Booster.

A short backstrap was attached to the Orbiter spanning between the two flanges of the skirt. To this backstrap, al/4-inch square steel rod was fastened which fits into two guides on the strongback allowing adjustment of the relative position between the Booster and Orbiter.

TABLEI.--MATERTAL PROPERTIES AND GEOMETRYOF STRUCTURAL COMPONENTS OF BOOSTER MODEL

Structural Element	Effective Length (ℓ) (in.)	Inside Dia. (in.)	Wall Thickness (in.)	Material Density $(\# / \mathrm{in} 3)$	$\begin{gathered} \mathrm{E} \\ \times 10^{6} \\ \mathrm{psi} \\ \hline \end{gathered}$
Upper Tank	14.5	10.0	0.005	0.29	29
Lower Tank	14.5	10.0	0.005	0.29	29
Skirt	7.5	10.3	0.025	0.098	10

	Material Density $\left(\# /\right.$ n $\left.^{3}\right)$	E $\times 10^{6}$ psi	

	Number Used on Tank	Material Density (\#/in ${ }^{3}$)	$\begin{gathered} \mathrm{E} \\ \times 10^{6} \\ \mathrm{psi} \\ \hline \end{gathered}$	Dimensions (in.)	Location	$\begin{gathered} \text { Spacing } \\ \text { (in.) } \end{gathered}$
Stiffener Ring	11	0.098	10	$\begin{aligned} & 10.0 \text { I. D. } \\ & \text { 10.5 O. D. } \\ & 0.032 \text { thick } \end{aligned}$	Symmetrical about midspan	1. 24
Stringer	12	0.098	10	$\begin{aligned} & 0.125 \times 0.125 \\ & \times 14.0 \end{aligned}$	Symmetrical about midspan	Equally spaced on inner circumference

Baffle 11 0.306 16 9.68 O. about 1.25
0.0125 thick midspan

TABLE II. - MATERIAL PROPERTIES AND GEOMETRY OF STRUCTURAL COMPONENTS OF ORBITER MODEL

Structural Element	Effective Length(ℓ) (in.)	Inside Dia. (in.)	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Material } \\ \text { Density } \\ \left(\# / \text { in }^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \times 10^{6} \\ \mathrm{psi} \\ \hline \end{gathered}$
Upper Tank	8.5	6.0	0.012	0. 098	10
Lower Tank	8.5	6.0	0.012	0.098	10
Skirt	6.0	6.0	0.020	0.098	10
	$\begin{gathered} \text { Diameter } \\ \text { (in.) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Thickness } \\ \quad \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Material } \\ \text { Density } \\ \left(\# / \text { in }^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \times 10^{6} \\ \mathrm{psi} \\ \hline \end{gathered}$
Bulkheads	6.7		0.25	0.098	10
Caps	6.7		0. 25	0.098	10

ANALYTICAL, MODEL.

Mechanical Model

In the modal analysis of free vibration of the model Shuttle Vehicle, the system is represented by the equivalent mechanical model shown in Figure 2a. The motion of the system will be limited to translations in x and z directions and pitching about an axis perpendicular to $x z-p l a n e$. The cylindrical shells between any two neighboring mass elements will be represented by thin-walled beamlike tubes, or shell-beams, as shown in Figure 2b. Additional details are given in Figures 2c and 2d. Masses of the cylindrical shell sections, Booster and Orbiter strongback beam sections, and between any two neighboring mass elements are divided equally into two parts, each of which is lumped into each of the two mass elements. Thus, the inertia effect of the shells and the strongback beams will be otherwise neglected. The Booster and the Orbiter strongback reinforcing beams are pin-jointed, respectively, to the Booster and the Orbiter mass elements with one torsional spring attached to each joint. The two beams are then connected together through a coupling compound spring system which permits relative displacements in x and z directions, and one relative rotation about an axis perpendicular to the $x z$ plane. The lower end of the Orbiter is connected to the Booster strongback beam through a rod $K^{(5)}$ both of whose ends are pin-jointed.*

The vertical and lateral sloshing motions of the liquid in a cylinder are represented independently by two sloshing models. The vertical sloshing model (ref. 3) consists of one vertical sloshing mass $m_{i}(i=1,3,5,7)$ connected to the neighboring mass elements through two springs $\dagger \mathrm{k}_{\mathrm{i}}$ and $\overline{\mathrm{k}}_{\mathrm{i}}$. It will be assumed that the bending of the shell-beam does not interfere with the motion of m_{i}. The lateral sloshing model \ddagger (refs. $4,5,6$) consists of one rigid mass $\mathrm{m}_{\dot{1}}^{*}$ rigidly attached to the shell-beam, and one lateral sloshing mass \tilde{m}_{i} connected to the shell-beam through two springs of spring constant $\tilde{k}_{i} / 2$. For the vertical sloshing, quantities associated with the horizontal sloshing (i.e., m_{i}^{*}, \tilde{m}_{i}, and $\tilde{\mathrm{k}}_{\mathrm{i}}$) will be set to zero, and vice versa.

[^0]

\[

$$
\begin{aligned}
& \bar{M}_{4}^{(i)}=\frac{2 E_{i} \vartheta_{i}}{N_{i 3}\left(\ell_{i}-\tilde{h}_{i}\right)^{2}}\left[3\left(x_{i+1}-\xi_{i+1}\right)+\left(\ell_{i}-\tilde{h}_{i}\right)\left(2 \phi_{i+1} A_{i 3}+\alpha_{i+1} B_{i 3}\right)\right] \\
& v_{3}^{(i)}=\frac{6 E_{i} \vartheta_{i}}{N_{i 3}\left(\ell_{i}-\tilde{h}_{i}\right)^{3}}\left[2\left(x_{i+1}-\xi_{i+1}\right)+\left(\ell_{i}-\tilde{h}_{i}\right)\left(\alpha_{i+1}+\phi_{i+1}\right)\right] \\
& M_{3}^{(i)}=\frac{-2 E_{i} \vartheta_{i}}{N_{i 3}\left(\ell_{i}-\tilde{h}_{i}\right)^{2}}\left[3\left(x_{i+1}-\xi_{i+1}\right)+\left(\ell_{i}-\tilde{h}_{i}\right)\left(2 \alpha_{i+1} A_{i 3}+\phi_{i+1} B_{i 3}\right)\right] \\
& \bar{M}_{3}^{(i)}=\frac{2 E_{i} \vartheta_{i}}{N_{i 2}\left(\tilde{h}_{i}-h_{i}^{*}\right)^{2}}\left[3\left(\xi_{i+1}-\xi_{i}\right)+\left(\tilde{h}_{i}-h_{i}^{*}\right)\left(2 \alpha_{i+1} A_{i 2}+\alpha_{i} B_{i 2}\right)\right] \\
& v_{2}^{(i)}=\frac{6 E_{i} \vartheta_{i}}{N_{i 2}\left(\tilde{h}_{i}-h_{i}^{*}\right)^{3}}\left[2\left(\xi_{i+1}-\xi_{i}\right)+\left(\tilde{h}_{i}-h_{i}^{*}\right)\left(\alpha_{i}+\alpha_{i+1}\right)\right] \\
& M_{2}^{(i)}=\frac{-2 E_{i} \vartheta_{i}}{N_{i 2}\left(\tilde{h}_{i}-h_{i}^{*}\right)^{2}}\left[3\left(\xi_{i+1}-\xi_{i}\right)+\left(\tilde{h}_{i}-h_{i}^{*}\right)\left(2 \alpha_{i} A_{i 2}+\alpha_{i+1} B_{i 2}\right)\right] \\
& \bar{M}_{2}^{(i)}=\frac{2 E_{i} \vartheta_{i}}{N_{i 1}\left(h_{i}^{*}\right)^{2}}\left[3\left(\xi_{i}-x_{i}\right)+h_{i}^{*}\left(2 \alpha_{i} A_{i 1}+\phi_{i} B_{i 1}\right)\right] \\
& v_{1}^{(i)}=\frac{6 E_{i} \vartheta_{i}}{N_{i 1}\left(h_{i}^{*}\right)^{3}}\left[2\left(\xi_{i}-x_{i}\right)+h_{i}^{*}\left(\alpha_{i}+\phi_{i}\right)\right] \\
& M_{1}^{(i)}=\frac{-2 E_{i} \vartheta_{i}}{N_{i 1}\left(h_{i}^{*}\right)^{2}}\left[3\left(\xi_{i}-x_{i}\right)+h_{i}^{*}\left(2 \phi_{i} A_{i 1}+\alpha_{i} B_{i 1}\right)\right] \\
& V_{i}
\end{aligned}
$$
\]

FIGURE 2b。--DETAIL OF i-th SHELL BEAM

$$
\begin{aligned}
& M^{-(17)}=\frac{2 E^{(4)} J^{(4)}}{\left(l_{6}-d\right)^{2}}\left[3\left(x_{7}-x_{16}\right)+\left(l_{6}-d\right)\left(2 \phi_{17}+\phi_{16}\right)\right] \\
& v^{(16)}=\frac{6 F^{(4)} J^{(4)}}{\left(l_{6}-d\right)^{3}}\left[2\left(x_{7}-x_{16}\right)+\left(l_{6}-d\right)\left(\phi_{16}+\phi_{17}\right)\right] \\
& M^{(16)}=\frac{-2 E^{(4)} J^{(4)}}{\left(l_{6}-d\right)^{2}}\left[3\left(x_{7}-x_{16}\right)+\left(\ell_{6}-d\right)\left(2 \phi_{16}+\phi_{17}\right)\right] \\
& \bar{M}^{(16)}=\frac{2 E^{(4)} J^{(4)}}{d^{2}}\left[3\left(x_{16}-x_{6}\right)+d\left(2 \phi_{16}+\phi_{15}\right)\right] \\
& v^{(15)}=\frac{6 E^{(4)} J^{(4)}}{d^{3}}\left[2\left(x_{16}-x_{6}\right)+d\left(\phi_{15}+\phi_{16}\right)\right] \\
& M^{(15)}=\frac{-2 E^{(4)} J^{(4)}}{d^{2}}\left[3\left(x_{16}-x_{6}\right)+d\left(2 \phi_{15}+\phi_{16}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{M}^{-(14)}=\frac{2 E^{(3)} f^{(3)}}{\left(\ell_{3}-c\right)^{2}}\left[3\left(x_{4}-x_{13}\right)+\left(\ell_{3}-c\right)\left(2 \phi_{14}+\phi_{13}\right)\right] \\
& \mathrm{v}^{(13)}=\frac{6 \mathrm{E}^{(3)} \mathrm{J}^{(3)}}{\left(l_{3}-\mathrm{c}\right)^{3}}\left[2\left(\mathrm{x}_{4}-\mathrm{x}_{13}\right)+\left(l_{3}-\mathrm{c}\right)\left(\phi_{13}+\phi_{14}\right)\right] \\
& M^{(13)}=\frac{-2 E^{(3)} J^{(3)}}{\left(\ell_{3}-c\right)^{2}}\left[3\left(x_{4}-x_{13}\right)+\left(\ell_{3}-c\right)\left(2 \phi_{13}+\phi_{14}\right)\right] \\
& \bar{M}^{(13)}=\frac{2 E^{(3)} f^{(3)}}{c^{2}}\left[3\left(x_{13}-x_{3}\right)+c\left(2 \phi_{13}+\phi_{12}\right)\right] \\
& V^{(12)}=\frac{\left.6 E^{(3)} f^{3}\right)}{c^{3}}\left[2\left(x_{13}-x_{3}\right)+c\left(\phi_{12}+\phi_{13}\right)\right] \\
& M^{(12)}=\frac{-2 E^{(3)} J^{(3)}}{c^{2}}\left[3\left(x_{13}-x_{3}\right)+c\left(2 \phi_{12}+\phi_{13}\right)\right] \\
& \bar{M}^{(12)}=\frac{2 \mathrm{E}^{(2)} \mathrm{J}^{(2)}}{\left(\ell_{2}-\mathrm{a}\right)^{2}}\left\{3\left(x_{3}-\mathrm{x}_{11}\right)+\left(\ell_{2}-\mathrm{a}\right)\left(2 \phi_{12}+\phi_{11}\right)\right] \\
& v^{(11)}=\frac{6 \mathrm{E}^{(2)} \mathrm{J}^{(2)}}{\left(\ell_{2}-a\right)^{3}}\left[2\left(x_{3}-\mathrm{x}_{11}\right)+\left(\ell_{2}-\mathrm{a}\right)\left(\phi_{11}+\phi_{12}\right)\right] \\
& M^{(1))}=\frac{-2 E^{(2)} f^{(2)}}{\left(\ell_{2}-a\right)^{2}}\left[3\left(x_{3}-x_{11}\right)+\left(\ell_{2}-a\right)\left(2 \phi_{11}+\phi_{12}\right)\right] \\
& \bar{M}^{(11)}=\frac{2 E^{(2)} \mathrm{J}^{(2)}}{\mathrm{a}^{2}}\left[3\left(\mathrm{x}_{11}-\mathrm{x}_{2}\right)+\mathrm{a}\left(2 \phi_{11}+\phi_{10}\right)\right] \\
& V^{(10)}=\frac{6 \mathrm{E}^{(2)} \mathrm{J}^{(2)}}{\mathrm{a}^{3}}\left[2\left(\mathrm{x}_{11}-\mathrm{x}_{2}\right)+\mathrm{a}\left(\phi_{10}+\phi_{11}\right)\right] \\
& M^{(10)}=\frac{-2 E^{(2)} J^{(2)}}{a^{2}}\left[3\left(x_{11}-x_{2}\right)+a\left(\phi_{11}+2 \phi_{10}\right)\right] \\
& \bar{M}^{(10)}=\frac{2 E^{(1)} f^{(1)}}{l_{1}^{2}}\left[3\left(x_{2}-x_{1}\right)+l_{1}\left(2 \phi_{1} 0^{+\phi_{q}}\right)\right] \\
& V^{(9)}=\frac{6 F^{(1)} J^{(1)}}{l_{1}^{3}}\left[2\left(x_{2}-x_{1}\right)+l_{1}\left(\phi_{9}+\phi_{10}\right)\right] \\
& M^{(0)}=\frac{-2 E^{(1)} J^{(1)}}{\ell_{1}^{2}}\left[3\left(x_{2}-x_{1}\right)+\ell_{1}\left(\phi_{10}+2 \phi_{9}\right)\right]
\end{aligned}
$$

The vertical sloshing mass m_{i} and the sloshing spring constants k_{i} and $\overline{\mathrm{k}}_{\mathrm{i}}$ are defined as follows (ref, 3)

$$
\begin{gather*}
m_{i}=\frac{16}{\pi} \frac{I_{l}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}{\frac{\pi R_{i}}{2 h_{i}} I_{o}\left(\frac{\pi R_{i}}{2 h_{i}}\right)} m_{T}^{(i)} ; \quad(i=1,3,5,7) \tag{1}\\
k_{i}=k_{i}^{\prime}-v_{i} \bar{K}_{i} F_{i}+v_{i}^{2} \bar{K}_{i} F_{i}^{2} ; \quad \text { (no summation) } \tag{2}\\
\bar{k}_{i}=v_{i} \bar{K}_{i} F_{i} \tag{3}
\end{gather*}
$$

where
$I_{1}, I_{o}=$ modified Bessel functions of the first kind
$R_{i}=R_{B}$ (Booster radius) for $i=1,3,=R_{0}$ (Orbiter radius) for $\mathrm{i}=5,7$
$h_{i} \quad=$ height of the liquid in cylinder i
$m_{T}^{(i)}=\pi R_{i}^{2} h_{i} \rho_{i}=$ total mass of the liquid in the cylinder
$\rho_{i} \quad=$ mass density of the liquid

$$
\begin{equation*}
k_{i}^{\prime}=\frac{4 \pi R_{i} \delta_{i} E_{i}}{h_{i}}\left[\frac{I_{l}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}{\frac{\pi R_{i}}{2 h_{i}} I_{o}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}\right]^{2} \tag{4}
\end{equation*}
$$

$v_{i}=$ Poissons ratio of the cylindrical shell

$$
\begin{gather*}
\bar{K}_{i}=\frac{2 \pi R_{i} \delta_{i} E_{i}}{\ell_{i}-v_{i}^{2} h_{i}} \tag{5}\\
F_{i}=\frac{4}{\pi} \frac{I_{1}\left(\frac{\pi R_{i}}{2 h_{i}}\right)}{\frac{\pi R_{i}}{2 h_{i}} I_{o}\left(\frac{\pi R_{i}}{2 h_{i}}\right)} \tag{6}
\end{gather*}
$$

$t_{i}=$ length of the cylinder
$\delta_{i}=$ cylinder wall thickness
$\mathrm{E}_{\mathrm{i}}=$ Young's modulus of the cylinder shell
The lateral sloshing mass for the first mode or fundamental slosh mass \tilde{m}_{i}, and its height $\tilde{\mathrm{h}}_{\mathrm{i}}$, the rigid mass $\mathrm{m}_{\mathrm{i}}^{*}$ and its height $\mathrm{h}_{\mathrm{i}}^{*}$ and the sloshing spring constant are defined in the following (refs. $4,5,6$)

$$
\begin{align*}
& \tilde{m}_{i}= m_{T}^{(i)}\left(\frac{R_{i}}{2.2 h_{i}}\right) \tanh 1.84 \frac{h_{i}}{R_{i}} \tag{7}\\
& m_{i}^{*}=m_{T}^{(i)}-\tilde{m}_{i} \tag{8}\\
& \tilde{k}_{i}=m_{T}^{(i)}\left(\frac{g}{1.19 h_{i}}\right)\left(\tanh 1.84 \frac{h_{i}}{R_{i}}\right)^{2} \tag{9}\\
& \tilde{h}_{i}=h_{i}-\frac{R_{i}}{0.92} \tanh 0.92 \frac{h_{i}}{R_{i}} \tag{10}\\
&= \text { height of } \tilde{m}_{i} \\
& h_{i}^{*}=h_{i}-\frac{m_{T}^{(i)}}{2 m_{i}^{*}}+\left(h_{i}-\tilde{h}_{i}\right) \frac{\tilde{m}_{i}}{m_{i}^{*}} \tag{11}\\
&=\text { the height of } m_{i}^{*}
\end{align*}
$$

$g=$ gravitational constant, and the polar moment of inertia of m_{i}^{*} is defined as

$$
\begin{align*}
& J_{i}^{*}=J_{r i g i d}^{(i)}+m_{T}^{(i)} \frac{h_{i}^{2}}{4}-\frac{m_{T}^{(i)} R_{i}^{2}}{2}\left[1.995-\frac{2.14 R_{i}}{h_{i}} \tanh 0.92 \frac{h_{i}}{R_{i}}\right] \\
&-m_{i}^{*}\left(h_{i}-h_{i}^{*}\right)^{2}-\tilde{m}_{i}\left(h_{i}-\tilde{h}_{i}\right)^{2} \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
J_{\text {rigid }}=\frac{m_{T}^{(i)} R_{i}^{2}}{4}\left[\frac{1}{3} \frac{h_{i}^{2}}{R_{i}^{2}}+1\right] \tag{13}
\end{equation*}
$$

Figures 2 a and 2 b show that \tilde{m}_{i} is situated above $\mathrm{m}_{\dot{1}}^{*}$; however, as the depth of the liquid h_{i} decreases, \tilde{m}_{i} will shift to a position below $\mathrm{m}_{\mathrm{i}}^{*}$.

Mathematical Formulation

The free dynamic behavior of the mechanical model can be described completely in mathematical terms by writing the equations of motion and equations of constraint for the system. In order to do this, the mechanical model is divided into subsystems for which equations of dynamic and static equilibrium for the free oscillation can easily be set up. The coordinate system at each subsystem is shown in Figure $2 a$.

In the model, the structure mass elements $M_{n}(n=1,2, \ldots, 8)$ will have three degrees of freedom in motion (two translations and one rotation) the rigid mass $m_{1}^{*}(i=1,3,5,7)$ two degrees of freedom (one horizontal translation and one rotation, the lateral sloshing mass \tilde{m}_{i} one degree of freedom (horizontal translation), and the vertical sloshing mass m_{i} one degree of freedom (vertical translation). Thus, the entire system will have forty degrees of freedom and therefore forty equations of motion. However, only equations associated with subsystem 1 will be shown for the purpose of illustration.

Equations of motion.--At subsystem 1 there are two equations of motion for translation and one for rotation. They are

$$
\begin{gather*}
M_{1} \ddot{x}_{1}-V_{1}^{(1)}-V^{(9)}=0 \tag{14}\\
M_{1} \ddot{z}_{1}-K^{(1)}\left[\left(z_{2}-z_{1}\right)+\left(R_{B}+D_{1}\right)\left(\phi_{2}-\phi_{1}\right)\right]-K_{1}\left(z_{2}-z_{1}\right) \\
 \tag{15}\\
-k_{1}\left(\zeta_{1}-z_{1}\right)=0 \\
J_{1} \ddot{\phi}_{1}-K^{(l)}\left(R_{B}+D_{1}\right)\left[\left(z_{2}-z_{1}\right)+\left(R_{B}+D_{1}\right)\left(\phi_{2}-\phi_{1}\right)\right] \tag{16}\\
\end{gather*}
$$

$D_{1}=$ distance between the neutral axis of the Booster strongback beam section 9-10 and the Booster shell
$\mathrm{K}_{1}=$ longitudinal spring constant of cylinder 1
$K^{(1)}=$ longitudinal spring constant of beam section 9-10
$J_{1}=$ polar moment of inertia of mass M_{1} about y_{1} axis
$S_{1}=$ torsional spring constant at joint 9

$$
\begin{equation*}
M_{1}^{(1)}=-\frac{2 E_{1} \vartheta_{1}}{\left(h_{1}^{*}\right)^{2} N_{11}}\left[3\left(\xi_{1}-x_{1}\right)+h_{1}^{*}\left(2 \mathrm{~A}_{11} \phi_{1}+B_{11}^{a_{1}}\right)\right] \tag{17}
\end{equation*}
$$

$=$ net moment at lower end of shell-beam 1

$$
\begin{equation*}
V^{(9)}=\frac{\left.6 E^{(1)}\right)_{J}^{(1)}}{\ell_{1}^{3}}\left[2\left(x_{2}-x_{1}\right)+\ell_{1}\left(\phi_{9}+\phi_{10}\right)\right] \tag{18}
\end{equation*}
$$

$=$ end shearing force of the Booster reinforcing beam section at end 9 (ref. 7)

$$
V_{1}^{(1)}=\frac{6 E_{1} \vartheta_{1}}{\left(h_{1}^{*}\right)^{3} N_{11}}\left[2\left(\xi_{1}-x_{1}\right)+h_{1}^{*}\left(\phi_{1}+a_{1}\right)\right]
$$

$=$ net shearing force at lower end of shellbeam l (see Appendix A)
$E^{(1)}=$ Young's modulus of the reinforcing beam section $9-10$
$J^{(l)}=$ moment of inertia of the cross section of the reinforcing beam section 9-10
$\Omega_{1}=$ moment of inertia of the cylinder cross section
and

$$
\begin{array}{r}
N_{11}=1+\frac{12 E_{1} \varrho_{1}}{\left(h_{1}^{*}\right)^{2} \pi R_{B} \delta_{1} G_{1}}, \quad A_{11}=1+\frac{3 E_{1} \varrho_{1}}{\left(h_{1}^{*}\right)^{2} \pi R_{B} \delta_{1} G_{1}} \\
B=1-\frac{6 E_{1} \Omega_{1}}{\left(h_{1}^{*}\right)^{2} \pi R_{B} \delta_{1} G_{1}} \tag{20}
\end{array}
$$

in which
$G_{1}=$ shear modulus
Equations (20) provide correction factors which arise from the analysis based on linear membrane theory of the shell. These factors are unity for an ordinary beam (see Appendix A). Similar equations of motion may be written for the rest of subsystems.

Equations of constraint. --As shown in Figure 2a, at each massless subsystem of $9,10,12,14,15$, and 17 there will be one constraint condition in the ϕ direction; at subsystem 11 there are two constraint conditions (x and ϕ directions); at subsystems 13 and 16 there are three constraint conditions ($\mathrm{x}, \mathrm{z}, \phi$ directions) for each subsystem; at subsystem $\mathrm{i}(\mathrm{i}=1,3,5,7$) there are two constraint conditions (a, ξ directions). Thus there will be twenty-two constraint conditions associated with the model. For the purpose of illustration only the constraint condition at the massless subsystem 9 will be shown below.

$$
0 \times \ddot{\phi}_{9}-S_{1}\left(\phi_{1}-\phi_{9}\right)-M^{(9)}=0
$$

where

$$
\begin{align*}
M^{(9)}= & -\frac{2 E^{(1)_{J}^{(1)}}}{\ell_{1}^{2}}\left[3\left(x_{2}-x_{1}\right)+\ell_{1}\left(2 \phi_{9}+\phi_{10}\right)\right] \tag{21}\\
= & \text { end moment of the Booster reinforcing beam } \\
& \text { section at end } 9
\end{align*}
$$

Similar constraint equations may be written for the rest of massless nodes.

Eigenvalue problem. --Since only free oscillations are being considered, the aforementioned system of H equations of motion and constraint is homogeneous. Taken together, the total system of dynamic and constraint equations can be written in compact notation (employing the summation convention) as

$$
\begin{equation*}
P_{r s} \ddot{W}_{s}+Q_{r s} W_{s}=0 \quad r, s=1,2, \ldots, H \tag{22}
\end{equation*}
$$

It is assumed that the vibration modes are harmonic, i.e.,

$$
\begin{equation*}
W_{S}=Y_{S} \cos (\omega t+\gamma) \tag{23}
\end{equation*}
$$

where each frequency ω is real. On substituting Eq. (23) into Eq. (22) one finds

$$
\begin{equation*}
\left(Q_{r s}-\omega^{2} P_{r s}\right)\left(Y_{s}\right)=0 \tag{24}
\end{equation*}
$$

There is a well-known principle (ref. 7) in vibration theory which states that a system of H equations consisting of L dynamic and L^{\prime} constraint equations ($L+L^{\prime}=H$) can always be reduced to a problem involving L equations. This can be accomplished by incorporating the constraint equations into the equations of motion. In the present problem, this can be done by segregating the set of generalized coordinates $\underset{\sim}{W}$ into two nonintersecting sets:

$$
\underset{\sim}{W}=\underset{\sim}{X} \cup_{\underset{\sim}{X}}^{X}
$$

where

$$
\begin{aligned}
& \underset{\sim}{X}=\text { set of coordinates associated with mass elements } \\
& \underset{\sim}{x}=\text { set of coordinates associated with constraint conditions }
\end{aligned}
$$

For the present problem, $\underset{\sim}{X}$ and $\underset{\sim}{x}$ are defined in Table III. Equations (24) can now be replaced by two sets of equations, the first of which gives the L equations of motion expressed in terms of the constraint coordinates X

$$
\begin{align*}
\left(q_{i j}-\Omega^{2} p_{i j}\right)\left(X_{j}\right)=-a_{i n} x_{n} \quad i, j=1,2, \ldots, L & \\
& n=1,2, \ldots, L^{\prime} \tag{25}
\end{align*}
$$

The second set of conditions relates the $\underset{\sim}{x}$ coordinates to the $\underset{\sim}{X}$ coordinates:

$$
\begin{equation*}
c_{1 m} x_{m}=d_{1 j} X_{j} \quad 1, m=1,2, \ldots, L^{\prime} \tag{26}
\end{equation*}
$$

TABLE III. --DEFINITION OF COORDINATES

Coordinates Associated with Mass Elements
$X_{1}=z_{1}$
$X_{2}=z_{2}$
$x_{22}=x_{6}$
$X_{3}=z_{3}$
$\mathrm{X}_{4}=\mathrm{z}_{4}$
$X_{5}=z_{5}$
$x_{6}=z_{6}$
$X_{7}=z_{7}$
$X_{27}=a_{5}$
$X_{8}=z_{8}$
$X_{28}=a_{7}$
$X_{9}=\phi_{1}$
$X_{29}=\xi_{5}$
$X_{10}=\phi_{2}$
$X_{30}=\xi_{7}$
$\mathrm{X}_{11}=\phi_{3}$
$X_{31}=\eta_{3}$
$X_{12}=\phi_{4}$
$X_{13}=\phi_{5}$
$X_{14}=\phi_{6}$
$X_{34}=\zeta_{2}$
$X_{15}=\phi_{7}$
$X_{35}=a_{1}$
$X_{16}=\phi_{8}$
$X_{36}=a_{3}$
$X_{17}=x_{1}$
$X_{37}=\xi_{1}$
$X_{18}=x_{2}$
$X_{38}=\xi_{3}$
$X_{19}=x_{3}$
$X_{39}=\eta_{1}$
$X_{20}=x_{4}$
$X_{40}=\eta_{2}$

Coordinates Associated with Constraint Conditions

$$
\begin{array}{ll}
x_{1}=z_{13} & x_{12}=x_{11} \\
x_{2}=z_{16} & x_{13}=x_{13} \\
x_{3}=\phi_{9} & x_{14}=x_{16} \\
x_{4}=\phi_{10} & x_{15}=a_{6} \\
x_{5}=\phi_{11} & x_{16}=a_{8} \\
x_{6}=\phi_{12} & x_{17}=\xi_{6} \\
x_{7}=\phi_{13} & x_{18}=\xi_{8} \\
x_{8}=\phi_{14} & x_{19}=a_{2} \\
x_{9}=\phi_{15} & x_{20}=a_{4} \\
x_{10}=\phi_{16} & x_{21}=\xi_{2} \\
x_{11}=\phi_{17} & x_{22}=\xi_{4}
\end{array}
$$

This system of equations can be written such that the square matrix c is symmetric and that $\underset{\sim}{d}=-\underset{\sim}{a}$. Solving for x :

$$
\begin{equation*}
x_{n}=c_{n 1}^{-1} d_{1 j} X_{j} \tag{27}
\end{equation*}
$$

and substituting into Eq. (25):

$$
\begin{align*}
\left(q_{i j}-\Omega^{2} p_{i j}\right)\left(X_{j}\right) & =-a_{i n} c_{n 1}^{-1} d_{1 j} X_{j} \\
& =a_{i n} c_{n l}^{-1} a_{l j}^{T} X_{j} \tag{28}
\end{align*}
$$

Thus:

$$
\begin{equation*}
\left[\left(q_{i j}-a_{i n} c_{n 1}^{-1} a_{1 j}^{T}\right)-\Omega^{2} p_{i j}\right]\left(X_{j}\right)=0 \tag{29}
\end{equation*}
$$

By premultiplying by p^{-1} this equation takes the form of a standard eigenvalue problem

$$
\begin{equation*}
\left[p_{k i}^{-1}\left(q_{i j}-a_{i n} c_{n 1}^{-1} a_{1 j}^{T}\right)-\Omega^{2} \delta_{k j}\right]\left(X_{j}\right)=0, \quad k=1,2, \ldots, L \tag{30}
\end{equation*}
$$

Nontrivial solutions for the eigenvector $\underset{\sim}{X}$ exist if, and only if, the determinant of the coefficient matrix vanishes:

$$
\begin{equation*}
\left|p_{k i}^{-1}\left(q_{i j}-a_{i n} c_{n l}^{-1} a_{1 j}^{T}\right)-\Omega^{2} \delta_{k j}\right|=0 \tag{31}
\end{equation*}
$$

Thus, the problem reduces to finding the eigenvalues of the $\mathrm{L} \times \mathrm{L}$ matrix ${\underset{\sim}{p}}^{-1}\left(\underset{\sim}{q}-\underset{\sim}{a c}{ }^{-1}{\underset{\sim}{a}}^{T}\right)$. The eigenvalues found by this process are the natural frequencies of the Booster/Orbiter system, expressed in radians/second. Included in this set of frequencies are the zero frequencies identified with translation and rotation of the system as a rigid body.

In the present problem, the matrix $\underset{\sim}{q}$ and the matrix ${\underset{\sim}{c}}^{-1}{\underset{\sim}{a}}^{T}$ both are symmetric, and the matrix p is diagonal (and, hence, ${\underset{\sim}{2}}^{-1}$ is diagonal). How ever, the product matrix $\mathrm{p}^{-1}\left(\underset{\sim}{q}-\underset{\sim}{a}{\underset{\sim}{c}}^{-1}{\underset{\sim}{a}}^{\mathrm{T}}\right)$ is not symmétric. Mathematically, the eigenvalues of a real, nonsymmetric matrix may be complex, all or in part. On physical grounds, however, one knows that the mathematical model being solved represents a linear conservative system, and therefore a correct solution must result in real eigenvalues. Complex eigenvalues introduce growth and decay characteristics in the modal response which are inadmissible for the free vibrations of the problem under consideration. In the numerical solution for the present problem an eigenvalue routine was used
which computes the complex eigenvalues of a nonsymmetric matrix. All nontrivial eigenvalues, however, were found to be real.

The nonzero elements of the matrices q, and c are tabulated in Appendix B for three different cases: $\widetilde{h}_{i}>h_{i}^{*}, \widetilde{h}_{\dot{1}}<h_{\dot{1}}^{*}$ and the empty case.

Numerical Aspects

The physical quantities which are involved in the equations of motion and constraint for the analytical model consist of parameters which can be computed directly (masses, moments of inertia, etc.) and of terms which do not lend themselves to direct computation (effective* spring constants). These latter terms can be estimated from force-displacement calculations based on idealized models, but these estimates by no means serve as valid input data for computational purposes. Effective spring constants, in some cases, also can be determined experimentally by impedance techniques. The general approach used in this program for determining the input parameters for the analytical models was first to calculate by some means (quite approximately in some cases) all of the input data required of the model. Following this, certain of the parameters; least amenable to accurate calculation, were adjusted within certain narrow bounds in an attempt to match the frequencies computed theoretically with the experimental values for the empty tank case. This procedure is not the same as "curve fitting" where one takes much greater liberty with the number of parameters varied and disregards theoretical estimates on their magnitudes. The approach adopted here limits the amount of empiricism to a practical minimum in fixing the input data.

In the case of the Booster K_{1} and K_{2}, the effective axial spring constants of the thin-walled shells were found experimentally by an axial vibration test, as described in the next section. The axial spring constants characterising the strongback were adjusted from their calculated values to match the empty, decoupled booster data. For the Orbiter, the axial spring constant of cylinder 5 was calculated, and a correction factor (a corrected shell thickness δ_{5}) introduced to force agreement with the experimental result for cylinder 5 alone in both axial and bending motion. This procedure was repeated using cylinders 5 and 6 together, to determine K_{6}. For cylinder $7, \delta_{7}$ was taken equal to δ_{5}. The parameters finally arrived at are listed. Once so determined, they were held constant throughout all computational work.

[^1]\[

$$
\begin{array}{ll}
\mathrm{K}_{1}=3.48 \times 10^{5} & \mathrm{lb} / \mathrm{in} \\
\mathrm{~K}_{2}=7.36 \times 10^{5} & \mathrm{lb} / \mathrm{in} \\
\mathrm{~K}^{(1)}=1.8333 \times 10^{5} & 1 \mathrm{~b} / \mathrm{in} \\
\mathrm{~K}^{(2)}=5.3571 \times 10^{5} & \mathrm{lb} / \mathrm{in} . \\
\mathrm{K}^{(3)}=3.4921 \times 10^{5} & 1 \mathrm{~b} / \mathrm{in} . \\
\mathrm{K}^{(4)}=1.2083 \times 10^{6} & 1 \mathrm{~b} / \mathrm{in} . \\
\overline{\mathrm{K}}^{(3)}=3.8596 \times 10^{5} & 1 \mathrm{lb} / \mathrm{in} . \\
\overline{\mathrm{K}}^{(4)}=1.2083 \times 10^{6} & 1 \mathrm{~b} / \mathrm{in} . \\
\delta_{5}=\delta_{7}=9.84 \times 10^{-3} & \mathrm{in} . \\
\mathrm{K}_{6}=1.885 \times 10^{5} & 1 \mathrm{~b} / \mathrm{in} . \\
\mathrm{S}_{5}=\mathrm{S}_{7}=2.60 \times 10^{4} & \mathrm{in} .-\mathrm{lb} / \mathrm{rad}
\end{array}
$$
\]

In the case of the coupled Booster/Orbiter system three additional spring constants were available for adjustment, within limits, to match the theoretical and experimental coupled empty tank condition. These three constants represented the torsional coupling spring S_{6}, the vertical coupling spring $K^{(6)}$, and the horizontal coupling spring $K^{(7)}$. All three of these spring constants were first calculated on the basis of idealized models, to serve as nominal values in the adjustment process. The values finally chosen were:

$$
\begin{array}{ll}
S_{6}=3.9027 \times 10^{4} & \\
\text { in. }-1 \mathrm{lb} / \mathrm{rad} \\
K^{(6)}=2.677 \times 10^{5} & \\
K^{(7)}=9.9672 \times 10^{3} & \\
\mathrm{~K}^{(7 b} / \mathrm{in} .
\end{array}
$$

The calculations for the empty-tank condition omit the slosh models from the system of equations, and do not represent simply a degenerate case of vanishingly small liquid levels. The general system of equations, which does include the sloshing models, must predict frequencies compatible with the empty-tank results for small, but nonzero liquid levels. This criterion serves as a checkpoint on the accuracy of the numerical program. Also, a transition point occurs at a liquid level of 1.043 times the tank diameter, below which h_{i}^{*}, the location of the rigid mass, reverses its relative position with \tilde{h}_{1}, the location of the sloshing mass. On either side of this transition
certain equations must be rewritten in a different form, with the result that the program differs according to whethex one is considering a "near full" or a "near empty" tank. Continuity in the computed frequencies, of course, must be maintained across this transition point, and this criterion serves as an additional check on the programming accuracy.

The matrix eigenvalue problem was solved on a CDC-6400 computer using a standard eigenvalue routine (modified Jacobi method) for finding the eigenvalues of a real, nonsymmetric matrix. A listing of the computer program and instructions for use are given in Appendix C.

EXPERIMENTAL PROCEDURE

The test program performed on the previously described physical model can be divided into distinctive phases and may be listed as the determination of:
(1) Effective spring constants for subassemblies
(2) Natural bending frequencies of decoupled Booster and Orbiter models
(3) Natural frequencies of decoupled Booster and Orbiter models with longitudinal excitation
(4) Natural frequencies of Shuttle Vehicle Model.

The first part of the experimental program was to determine the effective spring constants of the Booster model components. This was accomplished by mounting the intermediate empty configurations illustrated in Figure 3 on an electrodynamic shaker and determining the natural frequencies of the components. Frequencies obtained by this test were used to calculate the effective spring constants. Similar procedure was used with the Orbiter model components, both for axial and lateral excitation. The resulting spring constants were tabulated in the previous section for both models.

The second phase of the test program was devoted to determining the natural bending frequencies of the decoupled models. The Booster model was vertically suspended by a nylon-rope, pulley, and spring combination which was designed to simulate a free-free condition. The rope was attached to the model at its bottom flange on the lower tank and was guided at the top of the skirt. A small electrodynamic shaker connected to the model at the

a) LOWER TANK

b) LOWER TANK and SKIRT

FIGURE 3。--INTERMEDIATE EMPTY CONFIGURATIONS OF BOOSTER MODEL
upper flange of the skirt was used to excite the model in a lateral direction. Four piezoelectric accelerometers were mounted on the model, one on each flange and one on top with their axes in line with the direction of excitation, and monitored simultaneously. The model was tested with empty, full, and intermediate liquid conditions and its natural frequencies were recorded. The information so obtained served a dual purpose; it provided data for comparison with the frequencies obtained by an analytical model discussed in the preceding section, and also allowed for the identification of bending modes when the model was later tested in its coupled configuration. This test procedure was also repeated using the Orbiter model.

To determine the natural frequencies of the Booster and Orbiter models with longitudinal excitation, the models were suspended as previously described and excited along their vertical axes by a small electrodynamic shaker. Four piezoelectric accelerometers, mounted on the flanges and the top of the models with their axes along the direction of excitation, were monitored together with pressure transducers installed in the center of each bulkhead. As in the preceding phase, each model was tested with empty, full, and intermediate liquid conditions.

The final step in the test program was the determination of natural frequencies of the complete shuttle vehicle model shown in Figure 1. The system was suspended in such a manner so that the driving force introduced to the model by the electrodynamic shaker always acted through the gravitational center of the model. Four piezoelectric accelerometers, located on the bottom flanges and the top of the models, were monitored measuring acceleration along the axes of the models, while two others were located at the tops recording acceleration in the lateral direction. In addition, four pressure transducers, one located in each bulkhead, were monitored. All tests were performed with the Orbiter tanks full. The liquid level in the Booster tanks was varied from empty to full with intermediate conditions. Thus, a normal operational sequence was simulated.

Throughout the entire test program, distilled water was used as a modeling liquid propellant. Ullage pressure was provided in all tanks to raise the natural frequencies of nonsymmetric shell modes above the frequency range used during the tests.

As a conclusion to the experimental program, the modeling liquid was replaced in the tanks by a granular substance with bulk density very closely equal to the modeling liquid and the model was tested at full and half-full levels in the Booster tanks, and similar levels in the Orbiter tanks. This substitution was implemented to facilitate identification of liquid and structural modes in the data obtained from tests completed on the coupled system, as well as to show more vividly the effects of liquid propellants.

The output from the theoretical model was in the form of natural frequencies representing:
(1) Rigid body motion of the system (zero frequencies)
(2) Sloshing frequencies of the four liquid-containing tanks
(3) Frequencies of the system.

Regarding the rigid body modes, the analytical model predicts three zero frequencies for the coupled Booster/Orbiter system, and six when the Booster/Orbiter coupling is set to zero. This prediction is consistent with rigid body motion in a plane. The four calculated sloshing frequencies were in the range of lo 3 Hz and are quite small when compared with system frequencies. Thus, the sloshing modes are essentially decoupled from the natural frequencies of the total system.

Figures 4, 5, and 6 present a comparison of the theoretically-predicted with the experimentally-determined results. Figure 4 shows the first five frequencies of the Booster alone, and Figure 5 shows the first three frequencies of the Orbiter alone. The analytical and experimental frequency values are quantitatively compared in Table IV. This agreement index was based upon the maximum (absolute value) percentage error between the theoretical and the experimental values, with the experimental values taken as the basis. The agreement is considered good if this error is within 10%, fair if between 10% and 20%, and poor if greater than 20%.

It is seen from this comparison, and from Figures 4 and 5, that the agreement between theory and experiment is generally better in the case of bending modes than in the longitudinal modes. There is a particularly significant lack of agreement in the second and third longitudinal Booster modes. Also, the theoretical frequencies tend to be somewhat higher than the experimental values (except in the case of the second Orbiter bending mode, where the theoretical and experimental curves cross each other).

Table V.A compares the theoretical and experimental frequencies for the coupled empty-tank condition. In terms of the comparison index mentioned above, the agreement is good for the first six modes, and poor for the next three higher modes. It is obvious that above the sixth mode, the relatively simple analytical model is no longer adequate to describe the motion of the system.

FIGURE 4。-UNCOUPLED BOOSTER NATURAL FREQUENCIES

FIGURE 5。--UNCOUPLED ORBITER NATURAL FREQUENCIES

TABLEIV.--AGREEMENT INDEX FOR DECOUPLED MODELS

Mode Number	BOOSTER	
	Mode Form	Agreement
1	1st bending	Good
2	1st longitudinal	Fair
3	2nd bending	Good
4	2nd longitudinal	Poor
5	3rd longitudinal	Poor
	ORBITER	
Mode Number	Mode Form	Agreement
1	1 st bending	Good
2	1st longitudinal	Good
3	2nd bending	Good

Figure 6 compares the theoretical and experimental frequencies for the coupled Booster/Orbiter system for full Orbiter and various Booster propellant levels. The two lowest modes, approximately constant at 15 Hz and 70 Hz , represent modes in which the Booster and Orbiter act essentially as rigid bodies, but vibrate relative to each other through the torsional coupling spring and the lateral coupling spring, respectively. The third mode is dominantly Booster bending, while the fourth mode is the remaining rigid body mode, with relative Booster/Orbiter motion resisted through the longitudinal coupling spring. The fifth and sixth modes exchange motions of dominantly Orbiter bending and Booster longitudinal motion. Above this, the discrepanies become quite large.

Additional results are shown in Tables V.B and V. C where frequencies are given for the case of a solid-like fluid. A mixture of soil and flour was used to produce a substance having a bulk specific gravity of 1.0 . Only the first two modes remained relatively unaltered, while most higher modes disappeared. Apparently, considerably more damping was displayed by this mixture than experienced with water. Thus, in this case a better study of the effects of liquid rather than solid propellant simulation could have been obtained from the analytical model.

In Tables V.D and V.E, results are given for alternate positions of the Orbiter on the Booster, when all tanks werefull. * In these cases the difference was surprisingly small. Other such results at various liquid levels would be highly desirable.

It appears reasonable to conclude that the liquid propellant models, as derived, provide only a fair overall prediction of frequencies for the decoupled models and a somewhat better prediction for the coupled case. However, possibilities for refinement of the models can immediately be considered. For example, the use of additional modes for the longitudinal liquid model could very likely improve the results at the higher frequencies. A better estimation of joint compliances in the structural model would also help.

Finally, Figure 7 shows an instability that occurs in the system for both Orbiter and Booster full and excitation through the system center of gravity at 453 Hz . The oscilloscope traces show only the pulsating envelope of the high frequency responses. The origin or cause of this type of instability remains to be investigated. However, inspection of the liquid surfaces showed no apparent slosh coupling with the low frequency pulsation, even though it was near the frequency for those modes.
*Because of the coupling design, it was subsequently determined that these results include the effects of the indicated amount of Orbiter position change, as well as effects of an undetermined amount of variation in the coupling springs $K(6), K(7)$, and S_{6}.

TABLE V.--NATURAL FREQUENCIES FOR SPACE SHUTTLE VEHICLE MODEL

A. All Tanks Empty
(Orbiter Position c = 7.87 in .)
Experimental (Hz) Theoretical (Hz) Mode

23.0	23.2	Good	Torsional Coupling
109	105	Good	Lateral Coupling
212	221	Good	Booster Bending
343	355	Good	Longitudinal Coupling
402	417	Good	Orbiter Bending
431	463	Good	Booster-Orbiter Bending
471	649	Poor	
546	659	Poor	
597	815	Poor	
708	863	Poor	

B. Booster and Orbiter $h / \ell=0.983$ - Granular Propellant(Orbiter Position $c=7.87 \mathrm{in}$.)
Experimental (Hz) Mode
14.7 Torsional Coupling
60.0
Lateral Coupling436845
C. Booster and Orbiter $\mathrm{h} / \ell=0.517$ - Granular Propellant
(Orbiter Position c $=7.87$ in.)
Experimental (Hz)Mode
14.7
Lateral Coupling
64.0420869
D. All Tanks Full
(Orbiter Position c = 4.06 in.)

Experimental (Hz)

15.5

121
171
191
216
300
310
416
458
476
E. All Tanks Full
(Orbiter Position $\mathrm{c}=11.69 \mathrm{in}$.)
Experimental (Hz)
15.2

124
173
190
221
299
312

Mode

Torsional Coupling Lateral Coupling Booster Bending Booster Longitudinal

Mode

Torsional Coupling Lateral Coupling Booster Bending Booster Longitudinal

FIGURE 6.--NATURAL FREQUENCIES FOR SPACE SHUTTLE VEHICLE MODEL

Top Booster
Longitudinal
Acceleration

Top Booster
Lateral
Acceleration

Bottom Booster
Longitudinal
Acceleration
Bottom Booster
Pressure

I 0.1 psig

Top Booster
Lateral
Acceleration

Top Orbiter Longitudinal
Acceleration
Top Orbiter
Lateral
Acceleration
Lower Orbiter Pressure

The results of this study indicate that a very effective, yet rather simple model of a typical space shuttle system has been developed, whereby many potential problems can be studied. Desirable steps to follow in this process are as follows:
(1) Minor refinement of the analytical model is in order. This can be done by incorporating higher longitudinal liquid modes and getting better estimates of effective spring constants.
(2) The analytical model should be used to compute results for a wide variety of parameters including other Booster-Orbiter liquid depth combinations, Orbiter positions, coupling springs, etc. The assumption of solid propellants can easily be made and results determined from the analytical model. Some experiments should be performed to verify select cases of the results.
(3) Experimental transfer functions should be run between various response points and the excitation. A better description of coupling between longitudinal and lateral motions would result. Various gimbal angles on the excitation should be used along with this.
(4) The present analytical model incorporates motion only in the plane of symmetry or system pitch plane. Experiments should be conducted to determine system response for both yaw and roll excitation. The derivation of an analytical model for these types of motion is also appropriate.
(5) The origin of the pulsating instability should be identified and its significance explored.

REFERENCES

1. Proceedings of Space Transportation System Technology Symposium. NASA TM X-52876, vol. II, Dynamics and Aeroelasticity, NASA Lewis Research Center, July 15-17, 1970.
2. Kana, D. D.; and Nagy, A.: An Experimental Determination of the Longitudinal Modes of a Simulated Launch Vehicle Dynamic Model. Interim Report, Contract No. NAS8-30167, Southwest Research Institute, March 1970.
3. Glaser, R. F.: Longitudinal Mass-Spring Modeling of Launch Vehicles. NASA TN D-5371, 1969.
4. Abramson, H. N.; Chu, W. H.; and Ransleben, G. E.: Representation of Fuel Sloshing in Cylindrical Tanks by An Equivalent Mechanical Model. ARS Journal, pp. 1967-1705, Dec. 1961.
5. Bauer, H. F.: Mechanical Model of Fluid Oscillations in Cylindrical Containers and Introducing of Damping. MTP-AERO-62-16, George C. Marshall Space Flight Center, Huntsville, Alabama, 1962.
6. Abramson, H. N.: The Dynamic Behavior of Liquids in Moving Containers with Applications to Space Vehicle Technology. NASA SP-106, 1966.
7. Pestel, E. C.; and Leckie, F. A.: Matrix Matrix Methods in Elastomechanics. McGraw-Hill Book Co., Inc., N. Y., p. 148, 1963.
8. Simmons, J. G.: Modifications of the Timoshenko Beam Equations Necessary for Thin-Walled Circular Tubes. Int. J. Mech. Sci., vol. 9, pp. 237-244, 1967.

ACKNOWLEDGEMENTS

The authors wish to express their sincere appreciation to several individuals who contributed significant efforts toward the conduct of this program. Dr. H. Norman Abramson provided overall consultation, Mr. Luis Garza did much of the experimental apparatus design, Mr. Herbert G. Pennick performed the computer programming and computations, and Mr. Dennis C. Scheidt and Mr. George W. Downey performed the experiments.

APPENDIX A

REVISED BEAM EQUATIONS

```
END MOMENT AND SHEAR EQUATIONS FOR BEAM-LTKE THIN-WALIED CIRCULAR TUBES
```

Based on the linear membrane theory, the governing equations for beam-like, thin-walled circular cylinder following the sign convention shown in Figure $\mathrm{A}-\mathrm{I}(\mathrm{a})$ are given by (ref. 8)

$$
\begin{gather*}
\frac{d V}{d z}=0 \tag{A.1}\\
\frac{d M}{d z}=V \tag{A.2}\\
\frac{d \phi}{d z}=\frac{M}{E_{i} V_{i}} \tag{A.3}\\
\frac{d x}{d z}=-\phi+\frac{V}{\pi R_{i} \delta_{i} G_{i}} \tag{A.4}
\end{gather*}
$$

where

$$
\begin{aligned}
& \mathrm{V}=\text { net shearing force on a cross section } \\
& \mathrm{M} \\
& \phi=\text { net moment on a cross section } \\
& \mathrm{E}_{\mathrm{i}}=\text { measure of net rotation } \\
& \mathrm{G}_{\mathrm{i}}=\text { shear modulus } \\
& \Omega_{\mathrm{i}}=\text { moment of inertia of the cylinder cross section } \\
& \mathrm{R}_{\mathrm{i}}=\text { radius of the cylinder } \\
& \delta_{\mathrm{i}}=\text { thickness of cylinder wall } \\
& \mathrm{x}=\text { displacement in x-direction }
\end{aligned}
$$

The general deformation of a beam-like thin-walled cylinder subjected to end moments $M^{(i)}, M^{(i+1)}$ and end shear $V^{(i)}, V^{(i+1)}$ [see Figure A-I(a)] may be represented by an equivalent cantilever beam subjected to equivalent end moment M_{R} and end shear $V_{R}[$ see Figure $A-I(b)]$, with the conditions:

$$
\begin{gather*}
x_{R}=x_{i}+1-x_{i}+\ell_{i} \phi_{i} \tag{A.5}\\
\phi_{R}=\phi_{i}+1-\phi_{i} \tag{A.6}
\end{gather*}
$$

If we decompose the deformation of the equivalent cantilever beam into that due to end moment M_{R} only and that due to end shear V_{R} only [see Figure $A-I(d)$], the governing equations (A.l to A.4) written for the two cases are
(l) Due to M_{R} alone

$$
\begin{gather*}
V^{\prime}=0 \tag{A.7}\\
\frac{d M^{\prime}}{d z}=0 \tag{A.8}\\
\frac{d \phi^{\prime}}{d z}=\frac{M^{\prime}}{E_{i} \ell_{i}} \tag{A.9}\\
\frac{d x^{\prime}}{d z}=-\phi^{\prime} \tag{A.10}
\end{gather*}
$$

(2) Due to V_{R} alone

$$
\begin{gather*}
\frac{d V^{\prime \prime}}{d z}=0 \tag{A.11}\\
\frac{d M^{\prime \prime}}{d z}=V_{R} \tag{A.12}\\
\frac{d \phi^{\prime \prime}}{d z}=\frac{M^{\prime \prime}}{E_{i} \ell_{i}} \tag{A.13}\\
\frac{d x^{\prime \prime}}{d z}=-\phi^{\prime \prime}+\frac{V_{R}}{\pi R_{i} \delta_{i} G_{i}} \tag{A.14}
\end{gather*}
$$

Solving the above two sets of equations with proper boundary conditions one obtains

$$
\begin{equation*}
x_{M}=-\frac{M_{R^{l}} l_{i}^{2}}{2 E_{i} \ell_{i}} \tag{A,15}
\end{equation*}
$$

$$
\begin{gather*}
\phi_{M}=\frac{M_{R} \ell_{i}}{E_{i} \ell_{i}} \tag{A.16}\\
x_{V}=\frac{V_{R} \ell_{i}^{3}}{3 E_{i} \ell_{i}}+\frac{V_{R} \ell_{i}}{\pi R_{i} \delta_{i} G_{i}} \tag{A.17}\\
\phi_{V}=-\frac{V_{R} \ell_{i}^{2}}{2 E_{i} \ell_{i}} \tag{A.18}
\end{gather*}
$$

Substitution of Equations (A.15) to (A. 18) into the following equations

$$
\begin{align*}
& x_{R}=x_{M}+x_{V} \tag{A.19}\\
& \phi_{R}=\phi_{M}+\phi_{V} \tag{A.20}
\end{align*}
$$

and solving for M_{R} and V_{R}, there results

$$
\begin{gather*}
M_{R}=\frac{2 E_{i} \ell_{i}}{\ell_{i}^{2} N_{i}}\left[3 x_{R}+2 \ell_{i} A_{i} \phi_{R}\right] \tag{A.21}\\
V_{R}=\frac{6 E_{i} \ell_{i}}{\ell_{i}^{3} N_{i}}\left[2 x_{R}+\ell_{i} \dot{\phi}_{R}\right] \tag{A.22}
\end{gather*}
$$

where

$$
\begin{align*}
& N_{i} \equiv 1+\frac{12 E_{i} \ell_{i}}{\ell \ell_{i}^{2} \pi R_{i} \delta_{i} G_{i}} \tag{A.23}\\
& A_{i} \equiv 1+\frac{3 E_{i} \ell_{i}}{\ell_{i}^{2} \pi R_{i} \delta_{i} G_{i}} \tag{A.24}
\end{align*}
$$

Using Equations (A.21) and (A.22), one obtains

$$
\begin{equation*}
M_{L}=-\frac{2 E_{i} \ell_{i}}{\ell_{i}^{2} N_{i}}\left[3 x_{R}+\ell_{i} B_{i} \phi_{R}\right] \tag{A.25}
\end{equation*}
$$

$$
\begin{equation*}
V_{L}=V_{R} \tag{A.26}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i} \equiv 1-\frac{6 E_{i} \ell_{i}}{\ell_{i}^{2} \pi R_{i} \delta_{i} G_{i}} \tag{A.27}
\end{equation*}
$$

Now writing $M_{L}=M^{(i)}, M_{R}=M^{(i+1)}, V_{R}=V^{(i)}=V^{(i+1)}$, and using Equations (A.5) and (A.6), the end moments and end shear of the original beam section are obtained

$$
\begin{align*}
& M^{(i)}=-\frac{2 E_{i} \ell_{i}}{\ell_{i}^{2} N_{i}}\left[3\left(x_{i+1}-x_{i}\right)+\ell_{i}\left(2 A_{i} \phi_{i}+B_{i} \phi_{i}+1\right)\right] \tag{A.28}\\
& M^{(i+1)}=\frac{2 E_{i} \ell_{i}}{\ell_{i}^{2} N_{i}}\left[3\left(x_{i+1}-x_{i}\right)+\ell_{i}\left(2 A_{i} \phi_{i}+1+B_{i} \phi_{i}\right)\right] \tag{A.29}\\
& V^{(i)}=V^{(i+1)}=\frac{6 E_{i} \ell_{i}}{\ell_{i}^{3} N_{i}}\left[2\left(x_{i}+1-x_{i}\right)+\ell_{i}\left(\phi_{i}+\phi_{i}+1\right)\right] \tag{A.30}
\end{align*}
$$

For ordinary beams one simply sets A_{i}, B_{i}, and N_{i} to unity.

APPENDIX B

MATRIX ELEMENTS

ADDITIONAL NOMENCLATURE

Symbol

$$
A_{i 1}=1+\frac{3 E_{i} l_{i}}{\left(h_{i}^{*}\right)^{2} \pi R_{i} \delta_{i} G_{i}}
$$

$$
A_{i 2}=1+\frac{3 E_{i} \ell_{i}}{\left(\tilde{h}_{i}-h_{i}^{*}\right)^{2} \pi R_{i} \delta_{i} G_{i}}
$$

$$
A_{i 3}=1+\frac{3 E_{i} \ell_{i}}{\left(\ell_{i}-\tilde{h}_{i}\right)^{2} \pi R_{i} \delta_{i} G_{i}}
$$

$$
A_{j}=1+\frac{3 E_{j} \ell_{j}}{\ell_{j}^{2} \pi R_{j} \delta_{j} G_{j}}
$$

$$
\bar{A}_{i 1}=\left.A_{i 1}\right|_{h_{j}^{*} \rightarrow \tilde{h}_{i}}
$$

$$
\bar{A}_{i 2}=A_{i 2}
$$

$$
\overline{\mathrm{A}}_{\mathrm{i} 3}=\left.\mathrm{A}_{\mathrm{i} 3}\right|_{\tilde{h}_{\mathrm{i}} \rightarrow \mathrm{~h}_{\mathrm{i}}^{*}}
$$

$$
A_{i 1}^{\prime}=\left.A_{i l}\right|_{h_{i}^{*} \rightarrow \ell_{i}}
$$

$$
B_{i l}=1-\frac{6 E_{i} l_{i}}{\left(h_{i}^{*}\right)^{2} \pi R_{i} \delta_{i} G_{i}}
$$

$$
B_{i 2}=1-\frac{6 E_{i} l_{i}}{\left(\tilde{h}_{i}-h_{i}^{j / 2}\right)^{2} \pi R_{i} \delta_{i} G_{i}}
$$

Definition
= Correction factor in modified beam theory for thin-walled beam-like cylinders ($\mathrm{i}=1,3,5,7$, no summation)
$1 "$
"
" $(j=2,6)$
"
"

11

II
= Correction factor in modified beam theory for thin-walled beam-like cylinders

ADDITIONAL NOMENCLATURE (Cont'd)

Symbol
$B_{i 3}=1-\frac{6 E_{i} \ell_{i}}{\left(\ell_{i}-\tilde{h}_{i}\right)^{2} \pi R_{i} \delta_{i} G_{i}}$
$B_{j}=1-\frac{6 E_{j} \ell_{j}}{\ell_{j}^{2} \pi R_{j} \delta_{j} G_{j}}$
$\overline{\mathrm{B}}_{\mathrm{il}}=\left.\mathrm{B}_{\mathrm{il}}\right|_{\mathrm{h}_{\mathrm{i}}^{*} \rightarrow \tilde{h}_{\mathrm{i}}}$
$\bar{B}_{i 2}=B_{i 2}$
$\bar{B}_{i 3}=\left.B_{i 3}\right|_{\tilde{h}_{i} \rightarrow h_{i}^{*}}$
$B_{i l}^{\prime}=\left.B_{i 1}\right|_{h_{i}^{*} \rightarrow \ell_{i}}$
$N_{i 1}=1+\frac{3 E_{i} \ell_{i}}{\left(h_{i}^{*}\right)^{2} \pi R_{i} \delta_{i} G_{i}}$
$N_{i 2}=1+\frac{3 E_{i} \ell_{i}}{\left(\tilde{h}_{i}-h_{i}^{*}\right)^{2} \pi R_{i} \delta_{i} G_{i}}$
$N_{i 3}=1+\frac{3 E_{i} \ell_{i}}{\left(\ell_{i}-\tilde{h}_{i}\right)^{2} \pi R_{i} \delta_{i} G_{i}}$
$N_{j}=1+\frac{3 E_{j} \vartheta_{j}}{\ell R_{j}^{2} \pi R_{j} \delta_{j} G_{j}}$
$\overline{\mathbb{N}}_{i 1}=\left.\bar{N}_{\mathrm{il}}\right|_{\mathrm{h}_{1}^{*}}-\tilde{h}_{\underline{i}}$

Definition
= Correction factor in modified beam theory for thin-walled beam-like cylinders

11

11

11

11

11
= Correction factor arising from modified beam theory

11

11

11

11

ADDITIONAL NOMENCLATURE (Cont'd)

Symbol

$$
\begin{array}{ll}
\bar{N}_{i 2}=N_{i 2} & \begin{array}{c}
\text { Correction factor arising from } \\
\text { modified beam theory }
\end{array} \\
\bar{N}_{\mathrm{i} 3}=\left.N_{i 3}\right|_{\tilde{h}_{\mathrm{i}} \rightarrow h_{i}^{*}} & "
\end{array}
$$

Definition
$P_{i j}$

HONZIFDO ELEMTNTS OF 是 MATRIX (SYMMITIDIC)

NONEERO FLEMENTS OF P MATRM (SYMMETAL)

NONZFED ELEMEHES OF a MATPIX (NENSTMAITGLC)

C. 1

APPENDIX C

COMPUTER PROGRAM

The computer program consists of a main program SHUTTLE together with eight function and subroutine subprograms. The purpose of SHUTTLE is to accept input data, compute certain constant data, generate and manipulate the requisite matrices and set up the final matrix for the computation of eigenvalues and ordered printout of frequencies. SHUTTLE has one basic option, viz., whether the Booster and Orbiter tanks are all empty or whether all tanks contain liquid. The input data required of SHUTTLE are listed below:

Mathematical Symbol	FORTRAN Symbol	Meaning
$\rho_{i}, \quad i=1,3,5,7$	$\mathrm{RHO}(\mathrm{I}), \mathrm{I}=1,3,5,7$	Density of liquids in each of the four tanks
$\mathrm{a}_{\text {s }}$	AS	```Constant, = 4.375 (s ee footnote)```
$h_{i}, i=1,3,5,7$	$\mathrm{HI}(\mathrm{I}), \mathrm{I}=1,3,5,7$	Height of liquids in each of the four tanks
K_{1}	KCAPI	Longitudinal spring constant of lower Booster system, $=3.48 \mathrm{E}+05$
-	TANK	Tank code, $=0.0$ if all tanks empty; = 1.0 if all tanks contain liquid
E_{s}	ES	Coupling parameter, $=0.0$ for uncoupled Booster/ Orbiter; = 3.0E+07 for coupled Booster/Orbiter

footnote: a_{s} is the distance from the lower support of the strongback to the location of the coupling spring.

The input order is RHO(I), AS, HI(I), KCAPl, TANK, ES. The format is (8 F 10.0), so that two cards per case are required.

The names and purposes of the eight subprograms are given below:

FOR TRAN Name	Purpose
SINCH	Computes sinh(x)
COSCH	Computes cosh(x) MMATRX and stores result in CC
MPRINT	Prints matrices (call to MPRINT optional)
SRTCYC	Computes $I_{0}(x)$ and $I_{1}(x)$
EIGEN	Sorts eigenvalues in ascending order and converts to Hz
MATINV	Computes eigenvalues (and, optionally, eigenvectors) of real nonsymmetric matrix

```
            PROGRAM SMUTTLE (INPUT, OUTPUT,TAPEG:INPUT)
            REAL NNN:NNN2,NNNG
            REAL 11,12,13,15,16,17,L1,L2,L3,L5,L6,L7,LS,JUP1,JUP2,JUP3,JUPA,
            *IS,LL,IM,MP,MPQA,JSTR,JRIG,MSTR,KCAPI,KCAPZ,KCAPS,
            3 KCAP5,KCAP6,KCAP7,KUP1,KUP2,KUPS,KUP4,KUP5,KUP6,KUP7,KBUP3.
            A KGUP4,K1,K3,K5,K7,KB&,KB3,KB5,KB7,KT1,KT3,KT5,KT7,NU,KP,KCB,
            5 NUST,NULMMASS.
            LH,KR,KW
C####
            DIMEFS{ON AAA(7,3),BETA(7,3),NNN(7,3),BBB(7,3)
            OIMESSIOA CYC(40,2)
            DIMESSION LL(7),DEL(7),NU(7),EE(7),RHO(7),MI(7),QARR(40,40),
                    MSS(40,40),F(7), ANS(50),T1(40),T(40), PDUCY(40,40),R(7),
            *KCB(7),MSTR(7),MTDA(7),JSTR(7),JRIG(7),MT(7),MM(7),KP(7),
            \ \ARR(40,40),ARR(40,40), CARR(40,40)
    900 FORMAT (gF10,0)
    5 0 0 ~ F O R M A T ( 1 H 0 3 9 X , 1 0 H I N P U T ~ D A T A / / 5 X , ~
```



```
            * RHO7=AE13,4,/5X,
```



```
                    * Hy =#E13,4,/5X,
                        #S =AE13,4,4X,# KCAPq##E13,4,4X,#ES &AE13,G)
    550 FORMAT(141)
    600 FORMAT\1w038X,&AHROW FREQUENCY//
            * 40(39X,F2,0,1X,E10,2,/))
            50 CONYINUE
            C#### ZERO ALG ELEMENTS
            JCe40
            JRE4O
            O 5 :=1, JR
            DO 5 JBi,NC
            ARR(1,d)=0.0
            CARR(1,J):0.0
            OARR(I,J)=0,0
            MASS(1,j)=0,0
            POUCT(I,d) E0,0
            QARR(I!J): 0.0
            5 \text { CONTINUE}
            C
            CW% OPTIONS DESIRED FROM EIGENVALUE SUBROUTINE
C
            MXX=40
            |J=Jl=22
            TOL=1,E=5
            P! = 3.1425927
            NLOPTEO
            NZOPYA 0
            MAXIT-50
            NDEC = 2
            C DAPA STATEMENTS FOR PROGRAM CONSTANTS
            DATA 65T:GAL/1, 2E7:4.E6/
            OATA AN,TO,EW, LW/0,0,4,0,2,9E7,7,1
            DATA A,B,C,G,E/2,25,5,0.7.875,5,0,1,0/
            DATA RO,RQ,D1,D2,O3,D4/3.0.5.0.1.125,4.5,5,225.0.375/
            GATA E,EE,ES,ES,E6,E7/2.9E7,1,E7,2,9E7,3息,E7,
```



```
        100 CONTINUE
    C#### CALCUGAT!ONS FOR F(1), KCB(1), KB1, KP(1), K1
        ARG:P1 RB/(2,aHI(1))
        CALL UESN!5(ARG,2,ANS)
        F(1): ((4./P!)*ANS(2))/((P!*RBAANS(1))/(2,#H!(1)))
        KCB(1)#KEAP1/(1, ONUSTAF(1))
        KB1=\USTकKCB(1)辟(1)
```



```
    1 #(A*S(2)/((P!#RB#ANS(1))/(2,*H!(1))) )**2
```



```
        00 200 Jey.7.2
        ARG PlबR(J)/(2,#H({J))
        CALL GESNIS(ARG,ZIANS)
```



```
        MM(J)E 16:/(P!##2)*((ANS(2)MMT(J))/(P!#R(J)#ANS(1)/(2,#H!(J))))
        200 CONTINUE
            CALCULATE THE KCAP
        KCAP2:7.36ES
        KCAP3 (1, NU(3)=F(3))AKCB(3)
    KCAP5 苃 (1.0NU(5)%F(5))OKCB(5)
    KCAPG E 2.#P!#RO#E6*DEL(6)/L6*,30
    KCAP7 (1, #NU(7)解(7))MKGB(7)
C#### CALCMLATE THE SMALL KS ANO KBS
    K3 = KP(3)=NU(3)#KCB(3)*F(3)&NU(3)*2*KCE(3)*F(3)**2
    K5:KP(5)@NU(5)*KCB(5)*F(5)*NU(3)*&2*KCB(5)*F(5)*#2
    K7 = KP(7)0NU(7)*KCB(7)WF(7)&NU(7)**2*KCB(7)*F(7)**2
    K日3= NU(3)炈E(3)郎(3)
    KB5= NU(5)akCB(5)0F(5)
    KB7=NU(7)aKCB(7)aF(9)
C***# CAbCULATE DATA FOR MASS MATRIX
    00300 191,9,2
    ARG 1,84#H!(!)/R(1)
    MPDA(1) EMG(I)mR(I)/(2,2#HI(1))苗ANN(ARG)
    MSTR(1)=MT(1)wMPOA(1)
```



```
    300 CONTINUE
    ARG=1,84*H:(1)/R(1)
```



```
    KT1:MT(1)*%/(1, 10%HI(1))m(TANH(ARG))m#2
    HST1明(1)=MT(1) HI(1)/(2,GMSPR(1))
    1 क(H!(1) कHT1)GMTDA(1)/MSTR(1)
```



```
    1 2,#R(1)/H!(1)*((1,07#COSCH(ARG)-1,07)/S!NCH(ARG)))=MSTR(1)*(HI(1)
```



```
        ARGE1, B4%HI(3)/R(3)
        HT3:H!(3)=R(3)/,92*TANH(.92*H!(3)/R(3))
```



```
        HST3EHI(3)mM9(3)* HI(3)/(2, MS4R(3))
    1 +(H{(3)mHT3)覓TOA(3)/MSTR(3)
```



```
    12,*R(3)/H{(3)W((5,07,COSCH(ARG)=1,0%)/SINCH(ARG)))=MSTR(3)*(H!(3)
```



```
    ARG=%,04*#1(5)/R(5)
    HT5:HI(5)=R(5)/.92#TANH6.92,HI(5)/R(5))
```



```
        1+(H1(5)-4T5) MMTOA(5)/MSTR(5)
```



```
        1 2,*(5)/H|(5)*((1.07*COSCH(ARG)*1.07)/5INCH(ARG)\)-MSTR(5)*(HI(5)
        2mHSTS)**2* HTOA(5)*(H!(5)-HT5)##2
        ARG=1,844d!(7)/R(7)
        HT7%-1(7)-{(7)/.92*TANH(.92*H1(7)/R(7))
        KT7=\T(7)*S/(1,19*H{(7))*(YA.VH(ARG))**2
        4ST7EH!(7)日MT(7)* H!(7)
                                    /(2.aMSTR(7))
        1 +(H1(7)-HT7)GMTOA(7)/MSTR(7)
```



```
        12,a*(7)/H1(7)#((1,07aCOSCH(ARG)-1,07)/SINCH(ARG)))=MSTR(7)#(HI(7)
        2-HST7)*&2 MTDA(7)*(4!(7)-HT7)**2
    40C1 CONTINUE
    C
        COMPI TED DAYA FOR FACYORS OF MULTIPLICATION
        IF(TANK,EQ,O,O)GO %O2999
        IF(HT1,GE.HST1)GO TO 2999
    C
    C
                            INVERTED CASE HT1 LT HSTI
                            INVERTED BOOSTER
        BETA(1,1)E 3, #EE(3) &II/( MT1**2*P|*R(1)AOEL(1)*GST)
        RETA(3,1) 3, EEE(3)*I3/( HT3**2&P|GR(3)QDEG(3)*GST)
```



```
        RE#A(3.2)= 3. EEE(3)#13/((HSTJm&T3)##2#PI#R(3)*DEL(3)#GST)
```



```
        BETA(3,3)=3,由EE(3)*{3/((63-WST3)**2&PI*R(3)*DEL(3)*GS早)
    C
                    INVERTED ORBITER
        IF(HT5.GF.HSP5)GO 10 4002
```



```
        BETA(7,1): 3, #EE(7)#17/( HT7##2#P1कR(7)#DEG(7)*GAL)
```



```
        GO TO 4003
C
    2999 CONTINUE
    C
                                    REGULAR CASE HT1 GT HSTI
C
    RETA(1,1)= 3,*EE(3)#11/(HST14*2&P!#R($)*DEL(1)*GST)
```



```
40O2 CONTINUE
```



```
    4003 CONTI VUE
```



```
01413
01422
01423
01424
01433
01436
01442
01446
01451
01453
01454
01455
01457
01461
01464
01467
01472
01475
02500
0.503
01506
01511
01513
01514
01516
01517
01521
01.522
01524
01525
01527
01530
01532
01533
01535
01536
01540
01541
01543
01544
01546
01547
01551
01552
01554
01555
01557
0 1 5 6 3


```

 O 9% 1 = 5.7.2
    ```
    O 9% 1 = 5.7.2
    00 9" Ja!.3
    00 9" Ja!.3
    MNA(1,y) = 1: + 4.#BETA(I,N)
    MNA(1,y) = 1: + 4.#BETA(I,N)
    \triangleAA(I,j) E 1, & BETA(I,d)
    \triangleAA(I,j) E 1, & BETA(I,d)
    ABR(I,J) = 1, = 2,#BETA(I,j)
    ABR(I,J) = 1, = 2,#BETA(I,j)
    g0 CONYINLE
    g0 CONYINLE
    ANN2 =1, & 4, GETAV2
    ANN2 =1, & 4, GETAV2
    NNN6 a 1, 4, BETANG
    NNN6 a 1, 4, BETANG
    \triangleAAZ = 1. m BEY\triangleN2
    \triangleAAZ = 1. m BEY\triangleN2
    \triangleAAG = 1. & BETANG
    \triangleAAG = 1. & BETANG
    ABR2 = 1, 2, BETAN2
    ABR2 = 1, 2, BETAN2
    PBB6 = 1. 2. EETANG
    PBB6 = 1. 2. EETANG
C
C
CH### FILL TME PEMSTRIX (MASS) WITH ITS NON-ZERO ELEMENPS
CH### FILL TME PEMSTRIX (MASS) WITH ITS NON-ZERO ELEMENPS
C
C
    MASS(1,1)EMASS(17.17)=8.291E-2
    MASS(1,1)EMASS(17.17)=8.291E-2
    MASS(2.2)=AASS(19,18)=1.768E-2
    MASS(2.2)=AASS(19,18)=1.768E-2
    MASS(3.3):\ASS(19,19)=3.334E-2
    MASS(3.3):\ASS(19,19)=3.334E-2
    MASS}(4,4)=\ASS(20,20)=3,037E-2
    MASS}(4,4)=\ASS(20,20)=3,037E-2
    MASS(5,5)=4ASS(21,21)=5,715E-3
    MASS(5,5)=4ASS(21,21)=5,715E-3
    MASS(6,6)=NASS(22,22)=4,755E=3
    MASS(6,6)=NASS(22,22)=4,755E=3
    MASS(7,7)=MASS(23,23)=4.885E-3
    MASS(7,7)=MASS(23,23)=4.885E-3
    MASS(8,B)3\ASS(24,24)=5,208E-3
    MASS(8,B)3\ASS(24,24)=5,208E-3
    MASS(33,33)= MM(1)
    MASS(33,33)= MM(1)
    MASS(34,34)= MM(3)
    MASS(34,34)= MM(3)
    MASS(25,25)= MM(5)
    MASS(25,25)= MM(5)
    M4SS(20,26)= MM(7)
    M4SS(20,26)= MM(7)
    NASS(9, 0)=7,05E=1
    NASS(9, 0)=7,05E=1
    MASS (10,10)=2,09F-1
    MASS (10,10)=2,09F-1
    MASS(11,11.)=3,255E=1
    MASS(11,11.)=3,255E=1
    *AS5(12,12)=1,721E*1
    *AS5(12,12)=1,721E*1
    MASS(13,13)=2.782E=2
    MASS(13,13)=2.782E=2
    MASS(1,4,14)=2,54EE-2
    MASS(1,4,14)=2,54EE-2
    \AS5(15,15)=2,582E=2
    \AS5(15,15)=2,582E=2
    4455(15,16)=1,643E-2
    4455(15,16)=1,643E-2
    MASS(35,35)= JSTR(1)
    MASS(35,35)= JSTR(1)
    MASS(36,36)= JSTR(3)
    MASS(36,36)= JSTR(3)
    MAS5(27,27)= JSTR(5)
    MAS5(27,27)= JSTR(5)
    MASG(24,28)= JSTR(7)
    MASG(24,28)= JSTR(7)
    MASS(37,37)= MSTR(1)
    MASS(37,37)= MSTR(1)
    MASS(3A,3R)= MSTR(3)
    MASS(3A,3R)= MSTR(3)
    MASS(29,29)= MSYR(5)
    MASS(29,29)= MSYR(5)
    \ASS(30,30)= MSTR(7)
    \ASS(30,30)= MSTR(7)
    YASS(39, 39)= MTOA(1)
    YASS(39, 39)= MTOA(1)
    MASS(40,40)= MTDA(3)
    MASS(40,40)= MTDA(3)
    MASS(31.31)= MTDA(5)
    MASS(31.31)= MTDA(5)
    vA55(32,32)= M早DA(7)
    vA55(32,32)= M早DA(7)
    COAH INVEFT THE DIAGONAL FGMATRIX (MASS)
    COAH INVEFT THE DIAGONAL FGMATRIX (MASS)
    C####
    C####
        00 75 1:1.JC
        00 75 1:1.JC
        72 MASS(1.1)*1./MASS(1.1)
        72 MASS(1.1)*1./MASS(1.1)
        75 CONTINUE FHESINYNG OF PROGRAM CALCULATIONS FOR PHE NONEZERO
        75 CONTINUE FHESINYNG OF PROGRAM CALCULATIONS FOR PHE NONEZERO
C ELEMEVTS OF THE SYMMEYRIC QMMATRIX(QARR)
```

C ELEMEVTS OF THE SYMMEYRIC QMMATRIX(QARR)

```


```

C\#****

```
C#****
    RBOI & 2'&\4
```

 RBOI & 2'&\4
    ```
\begin{tabular}{|c|c|}
\hline 01567 & 2802： 23.622 \\
\hline 01571 & 29n3＝ 20.03 \\
\hline 01572 & R024 a R0¢04 \\
\hline 01574 & EIL2＝E2－12／62 \\
\hline 01577 & E111＝E1＊11 \\
\hline 01601 & E212＝E2．12 \\
\hline 01602 & E313＝E3＊13 \\
\hline 01604 & E515＝E5－15 \\
\hline 01605 & E616 Ebal6 \\
\hline 01610 & E717＝E7：17 \\
\hline 01612 & ElHST1＝E1411／HST1 \\
\hline 01614 & EIHST3＝E3a13／4ST3 \\
\hline 01617 & EIHST5＝E5－15／4ST5 \\
\hline 31621 & F1HST7 E E7417／4S97 \\
\hline 01624 & F．ILnT3 \(=53+13 /\left(L_{2} 3-4+3\right)\) \\
\hline 01627 & EILHTS \(=E 5 \$ 15 /(L 5-4 T 5)\) \\
\hline 01633 & E1LHT7－E7＊17／（L7shT \({ }^{\text {a }}\) ） \\
\hline 01636 & EUJUF1 3 EUPI AJUP1 \\
\hline 01640 & EUJUP2＝EUPZQJUP2 \\
\hline 01642 & EUJUP3＝ELP3＊JUP3 \\
\hline 01644 & EUJUFA \％EUP4 JUP 4 \\
\hline 01646 & SARR（ 1，1）KCAPI＋KUP1＋K1 \\
\hline 01651 & QARR（ 1,2 2 EmKCAPI－KUP1 \\
\hline 01653 & QARR（ 1,9\()\) E KUP1＊RBO1 \\
\hline 01654 & AARR（ 1，10）＝mKUP1＊RRD1 \\
\hline 01655 & SARE \((1,33)=-K 1\) \\
\hline 01656 & QARR（ 2，2）KCAP1＋KCAP2＋KUP1＊KUP2＊KB1 \\
\hline 01662 & QARR（ 2，3）EKCAP2－KUP2 \\
\hline 01663 & QARR（ 2，9）QARR（1，10） \\
\hline 01665 & QARR（ 2，10）QARR（1，9）＋KUP2＊RBD2 \\
\hline 01667 & GARR（ 2．11）mekupa＊RBD2 \\
\hline 01670 & QARR（ 2，33）EKB1 \\
\hline 01671 & TARR（ 3，3）KCAP2＊KCAP3＊KUP2＊KUP3＊K3 \\
\hline 01696 & QARR（ 3，4）EEKCAPS \\
\hline 01677 & QARR（ 3,10\()\) QaRR（2，11） \\
\hline 01700 & \(\operatorname{QARR}(3,11) \quad\) Q QaRR 2,11\()+\mathrm{KUP3*RBD3}\) \\
\hline 01702 & QARR（ 3,34 ）EKK3 \\
\hline 01703 & GARR（ 4，4）KCAP \({ }^{\text {a }}\)＋KRUP \(3+K B 3\) \\
\hline 01706 & GARR（ 4，12）＝KBUP3＊RBD3 \\
\hline 01707 & GARR（ 4，34）mak \\
\hline 01710 & QARR（ 5，5）KCAP5中K \\
\hline 01712 & QARR（ 5,6 ）AmKCAP5 \\
\hline 01713 & QARR（ 5，25）－-K 5 \\
\hline 01714 & QARR（ 6，6）KCAP5＋KCAP6＋KUP4＊K日5 \\
\hline 01717 & QARR（ 6，7）EEKCAP6 \\
\hline 01720 & QARR（ 6，14）E－KUP4＊ROD 4 \\
\hline 01722 & QARR（ 5，25）EKBS \\
\hline 01723 & QARE（7，7）KCAPG中KCAP7＊KBUP\＆\({ }^{\text {\％}} 7\) \\
\hline 01726 & QARR（ 7，e）EKCAP7 \\
\hline 01727 & QARR（ 7，15）EmKBUP4aROD 4 \\
\hline 01730 & PARR（ 7，26）Ek？ \\
\hline 01731 & QARR（ 8，\％）KCAP7\＃KR7 \\
\hline 01732 & QARR（ 8．26）－KB7 \\
\hline 01733 &  \\
\hline 01742 & QARR（ 8.10\() \quad \operatorname{CaRR}(1,9) * R B D 1\) \\
\hline 01744 &  \\
\hline 01751 & QARR（ 9,35\()=2, \triangle E 1 H S T 1 \oplus B B E(1,1) / N N N(1,1)\) \\
\hline 01754 &  \\
\hline
\end{tabular}
```

01755
01773
02000
02011
02014
02030
02031
02040
02043
02047
02055
02062
02066
02074
02077
02102
02117
02123
02134
024.37
02153
02154
02160
02163
02166
02172
02177
02207
02211
02213
02247
02236
02243
02257
02263
02266
0230%
02306
0 2 3 0 7
02314
02331
02335
02353
02354
02357
02362
0 2 3 6 4
02366

```


```

 *(1,3)/\N(4(1,3)*E:L2*AAAZ/NNN2)
    ```
    *(1,3)/\N(4(1,3)*E:L2*AAAZ/NNN2)
    SARR(10.11) EKUP2 &RBO2**2*2. EEIL2*BBB2/NNN2
    SARR(10.11) EKUP2 &RBO2**2*2. EEIL2*BBB2/NNN2
    TARR(10.18) 6.*(E1|1/(L1-HT1)**2*1,/NNN(1,3)-E!L2/(La*NNN2))
    TARR(10.18) 6.*(E1|1/(L1-HT1)**2*1,/NNN(1,3)-E!L2/(La*NNN2))
    GARR(10.29) G."EIL?/L2a1./NNN2
    GARR(10.29) G."EIL?/L2a1./NNN2
    OAPR(11,11) = KUP2*RED2**2*KUP3*RBO3**2*S3*4.*(EIL2*AAA2/NNN2*
    OAPR(11,11) = KUP2*RED2**2*KUP3*RBO3**2*S3*4.*(EIL2*AAA2/NNN2*
    #EIHST3aAAA(3,1)/NNN(3,1))
    #EIHST3aAAA(3,1)/NNN(3,1))
    OARR(11,1日) GOQAR(10,19)
    OARR(11,1日) GOQAR(10,19)
    GARR(11.19) QARR(10.19)%0.#E313/HST3#*2%1,/NNN(3.1)
    GARR(11.19) QARR(10.19)%0.#E313/HST3#*2%1,/NNN(3.1)
    QARR(11,36) 2,4E!HST3&BBB(3.1)/NNN(3,1)
    QARR(11,36) 2,4E!HST3&BBB(3.1)/NNN(3,1)
    GARR(11,38) 6,"E!HST3/HST3,1,/NNN(3,1)
    GARR(11,38) 6,"E!HST3/HST3,1,/NNN(3,1)
    OARR(12,12) = GARR(4,12)&RBO 34S4$4,#EI6HT3*AAA(3,3)/NNN(3,3)
    OARR(12,12) = GARR(4,12)&RBO 34S4$4,#EI6HT3*AAA(3,3)/NNN(3,3)
    GARR(12,20) 6, WE!LATY/(L3-NT3)W1,/NNN(3,3)
    GARR(12,20) 6, WE!LATY/(L3-NT3)W1,/NNN(3,3)
    AARR(13,13) E G.mEIHST5*ADA(5,1)/NNN(5,1)
    AARR(13,13) E G.mEIHST5*ADA(5,1)/NNN(5,1)
    MARR(13,21) E KUP5#E-6,*EIHST5/HST5*1,/NNN(5,1)
    MARR(13,21) E KUP5#E-6,*EIHST5/HST5*1,/NNN(5,1)
    OARR(13,27) 2, EIHST5#BBB(5,1)/NNN(5,1)
    OARR(13,27) 2, EIHST5#BBB(5,1)/NNN(5,1)
    QARR(13.29) 6,WE!HST5/HST5#1,/NNN(5,1)
    QARR(13.29) 6,WE!HST5/HST5#1,/NNN(5,1)
    OARR(14,14) = KUP4*ROD4##2+55*4.#ElGHP5*AAA(5,3)/NNN(5,3)*4, #E616*
    OARR(14,14) = KUP4*ROD4##2+55*4.#ElGHP5*AAA(5,3)/NNN(5,3)*4, #E616*
#AAAG/(LGGNNNG)
#AAAG/(LGGNNNG)
    OARR(14,15) =2,#E616/L6*BBB6/NNN6
```

 OARR(14,15) =2,#E616/L6*BBB6/NNN6
    ```


```

 OARR(14,23) E 6.#E6I6/(L.6*2#NNN6)
    ```
```

 OARR(14,23) E 6.#E6I6/(L.6*2#NNN6)
    ```


```

*AAA(7,1)/NMN(7,1))

```
*AAA(7,1)/NMN(7,1))
    QARR(15,22) mataRR(14,23)
    QARR(15,22) mataRR(14,23)
    AARR(15,23) OARR(14,23)-EIHSF7/HST706,*1,/NNN(7,1)
    AARR(15,23) OARR(14,23)-EIHSF7/HST706,*1,/NNN(7,1)
    QARR(45,28) 2.#ElHST7ABBB(7,1)/NNN(7,1)
    QARR(45,28) 2.#ElHST7ABBB(7,1)/NNN(7,1)
    AARR(15,30) 6.OEIHST7/HST7%1,/NNN(7,1)
    AARR(15,30) 6.OEIHST7/HST7%1,/NNN(7,1)
    QARR(10,16) G.#EILHT7#AAA(7,3)/NNN(7,3)
    QARR(10,16) G.#EILHT7#AAA(7,3)/NNN(7,3)
    AARR(16,24): 6, EEILHT7/(L7-HT7)A1,/NNN(7,3)
    AARR(16,24): 6, EEILHT7/(L7-HT7)A1,/NNN(7,3)
    QARR(17,17) = 12.#(E111/HST14#3*1,/NNN(1,1)+EUJUP1/L1**3)
    QARR(17,17) = 12.#(E111/HST14#3*1,/NNN(1,1)+EUJUP1/L1**3)
    QARR(17,18) = w12, &EUJUP1/L1**3
    QARR(17,18) = w12, &EUJUP1/L1**3
    QARR(17,35) =QARR(9,37)
    QARR(17,35) =QARR(9,37)
    GARR(17,37)=-12,#EIHST1/HST1*#2&1,/NNN(1,1)
    GARR(17,37)=-12,#EIHST1/HST1*#2&1,/NNN(1,1)
    GARR(1月,18) = 12,#(E111/((L1-NT1)**3*NNN(1,3))*EUJUP1/61**3 *
    GARR(1月,18) = 12,#(E111/((L1-NT1)**3*NNN(1,3))*EUJUP1/61**3 *
                            E2!2/(L2**3*NNN2) + EUJUP2/A**3)
                            E2!2/(L2**3*NNN2) + EUJUP2/A**3)
    OARR(19,10) E.2%*E!L2/L2**2*1,/NNN2
    OARR(19,10) E.2%*E!L2/L2**2*1,/NNN2
    OARR(19,18) EmGARR(18,19)中12.#(EUJUP2/(L2-A)##3+E1HST3/HST3**2
    OARR(19,18) EmGARR(18,19)中12.#(EUJUP2/(L2-A)##3+E1HST3/HST3**2
    *#1,1/NN(3.1)* EUNUP3/C*#3)
    *#1,1/NN(3.1)* EUNUP3/C*#3)
    GARR(19,36) EF, EE9HST3/HST3&1, /NNN(3,1)
    GARR(19,36) EF, EE9HST3/HST3&1, /NNN(3,1)
    OARR(19,38) E-12,#E!HST3/HST3**2*2,/NNN(3,1)
```

 OARR(19,38) E-12,#E!HST3/HST3**2*2,/NNN(3,1)
    ```


```

 ###3)
    ```
    ###3)
    OARR(21,21) KUP5$ 12,"EIMST5/HST5**2#1,/NNN(5,1)
    OARR(21,21) KUP5$ 12,"EIMST5/HST5**2#1,/NNN(5,1)
    QARR(21,27) EmaRR(1,3,29)
    QARR(21,27) EmaRR(1,3,29)
    OARR(21,29) a-12,#EIHST5/HST5%2%1,/NNN(5,1)
    OARR(21,29) a-12,#EIHST5/HST5%2%1,/NNN(5,1)
    AARR(22,22) 12.*(E515/((155mHT5)##3*NNN(5,3))中E616/(66*#3*NNNG)
    AARR(22,22) 12.*(E515/((155mHT5)##3*NNN(5,3))中E616/(66*#3*NNNG)
    *
    *
    - EUJUP4/0-43)
    - EUJUP4/0-43)
    OARR(22,23)=012.*E6:6/L6*#3#1,/NNN6
    OARR(22,23)=012.*E6:6/L6*#3#1,/NNN6
    OARR(23,23) 22."(E616/(664&3#NNN6)कE717/(HST7*#3GNNN(7,1))*
    OARR(23,23) 22."(E616/(664&3#NNN6)कE717/(HST7*#3GNNN(7,1))*
    #
    #
    EUJUP4/(66mD)##3)
    EUJUP4/(66mD)##3)
    GARR(23,28) = QARR(15,30)
    GARR(23,28) = QARR(15,30)
    QARR(23,30) 2,*QARR(23,28)/HST7
    QARR(23,30) 2,*QARR(23,28)/HST7
    \ARR(24,24) = 2,MQARR(16,24)/(L7%HT7)
    \ARR(24,24) = 2,MQARR(16,24)/(L7%HT7)
    OARR(25,25) K54KB5
    OARR(25,25) K54KB5
    OARP(26,26) = K7%KB7
```

 OARP(26,26) = K7%KB7
    ```


```

 5):NNN(5,2))?
    ```
```

 5):NNN(5,2))?
    ```
```

02577
02406
02417
02426
02440
02452
02453
02455
02457
0246%
02472
02503
02514
02525
02537
02551
02552
02554
02555
02556
02557
02591
02572
02574
02575
02602
02604
02605
026\$0
026:2
02613
02620
02622
02623
02630
02632
02633
02640
02646
02647
02650
02652
02653
02417
C

```

```

 GARR(2:,2A) = A:HE7!7B(AAA(7,1)/(HST7ANNN(7,1)) + AAA(7,2)/((HT70
 * HET7)WNNN(7,2)))
 AARR(28,30)= QARR(15,30)-6, #E717/(HT7-HST7)##2#1,/NNN(7,2)
    ```

```

 * NNN(5,1)),
 QARR(30,30) 5 12,4E7!74(1,/((HT7mHST7)*#3*NNN(7,2))+1./(4ST7**3*
 *
 2, (7, 1)(1)
 AARR(31,31) = KT5
 OARR(32,32) = KT7
 RARR(33,33) = K1$KB1
 OARR(34,34) = K3*KB3
    ```

```

 * ((NT1-HST1)&NNN(1,2)))
 3ARR(35,37) # 6.#E111*(1,/(HST1*#2*NNN(1,1))-1,/((HT1*HST1)*#2"
 # NNN(1,2)))
 QARR(36,36) E, #E3[3#(AAA(3,1)/(4ST3*NNN(3,1)) & AAA(3,2)/
 * ((HT3-HST3)aNNN(3,2)))
 QARR(36,38) E 6, #E3(3*(1./(HST3#*2NNNN(3,1))-1,/((HT3#H5T3)**2*
 * NAN(3,2)))
 QARR(37,37) {2.*E1!1*(1,/((HT1#HST1)##3aNNN(1,2))+1./(HST1**3*
 *
 OARR(38,38) 312.#E3!3*(1,/((HT3*HST3)**3*NNN(3,2))*1./(HST3**3*NNN
 *
 QARR(39,39) KT1
 QARR(40,40) E KT3
 GENERAYE REMAINDER OF QARR MATRIX FROM SYMMETRY
 C
 k=1
 D0 352 1:2,40
 no 351 J=1,k
 351 QARR(1,J)=GARR(J,I)
 K=K+1
 C
c
C
IF(TANK,NE:0.0\GOTO 2001
352 CONTINUE
QARR(9,10): GARR(9,10)+2,*E111/L1*BBB(1,1)/NNN(1,1)
QARR(9,18) © QARR(9,37)
QARR(0.35)=0.0
GARR(10.17) E-6."E1:1/L1**2*1./NNN(1,1)
QARR(11,12)=\operatorname{OARR}(11,36)
QARR(11,20) QaRR(11,38)
GARR(12,19) =6, \#E313/L3**2*1,/NNN(3,1)
GARR(13:14) a QARR(13.27)
QARR(13,22) = QARR(13,29)
QARR(14,21) = *6,\#E5\5/L5**2*1,/NNN(5,1)
QARR(15,16) = QARR(15,28)
GARR(15,24) QARR(15,30)
QARR(16,23) - 6,*E717/L7**2*1,/NNN(7,1)

```

```

 QARR(17.37)=0.0
 QARR(19,20) QaRR (19,38)
 QARR(21,22) E QARR(21,29)
 GARR(23,24) ब QRR(23,30)
 2001 CONTMME

```
```

IF(TKOK,EQ,O.D)GO TO 200%
IF(NTI,GE,HST1)GO TO 2011

```
                                    INVERTED CASE
                                    INVERTED BOOSTER

    GARR( 9,17 ) \(=6, \operatorname{BE} 111 /(H T 14424 \operatorname{NNN}(1,1))\)
    AARR( 9.35\()=0.0\)
    QARR \((9.37)=0.0\)

    *
        ( \((L 1-M S T 1)\) aNNN \((1,3))+4\), \#E2 \(12 * A A A 2 /(L 2 * N N N 2)\)

    * *NNNZ) )
    GARR(10,35) 2, \#E1!1*BBB(1,3)/( (L1-HST1)ANNN(1,3))
    \(\operatorname{QARR}(15,37)=6, * E 111 /((L 1-H S T 1) * 2 * N N N(1,3))\)
    QARR(11,11) KUP2\&RBD2**2*KUP3*RBD3**2+53+4.*EIL2*AAA2/NNN2
    \(\leftrightarrow\)


        QARR \((11,36): 0,0\)
    QARR \((11,38)=0.0\)

    \(\#\)
                        (NNN (3,3))

        QARR \((12,36)=2, \operatorname{AE} 3(34 B 8 B(3,3) /(163=H S T 3)\) ANNN \((3,3))\)
        aARR \((12,38)=-6, \# E 3\{3 /((63-H 5 T 3) 4=2 \# \operatorname{NNN}(3,3))\)
        QARR(17.17) E 12.*(E1/1/(HT1**3aNNN(1,1))中EUUUP1/L2**3)
        \(\operatorname{QARR}(17.35)=0.0\)
        QARR \((17,37) \quad 0.0\)

    * E212/(L2**3*NNN2) 中EUUUP2/A**3)


        QARR \((19,49)=12, *(E 212 /(L 2 * * 3 * N N N 2) * E U \cup U P 2 /(62-A) * 4 *\)
    * E3I3/(HTY**3*NNN(3,1)) +EUJUP3/C**3)
        QARR \((19,36)=0.0\)
        QARR(19,38) 0.0

    QARR \((20,36)=6, \operatorname{EE} 3\{3 /((\mathrm{L} 3-H S T 3) * 2 * N N N(3,3))\)
        QARR \((20,38)=-12, * E 313 /((1.3-4573) * 43 \operatorname{NNN}(3,3))\)
        QARR \((35,35): 4, A E 111(A A A(1,3) /((61-\operatorname{HST})\) WNNN \((1,3))\)
    * \(\quad A A(1,2) /((H 5 T 1-H T 1)\) hNNN(1,2)))



    * \(\quad \operatorname{AA}(3,2) /((\operatorname{HST} 3 m H T 3) \operatorname{HNN}(3,2)))\)

    * ( \((13045+3) \leftrightarrow 26 \operatorname{NNN}(3,3)))\)

    * ((L1 H HST1) \(\quad 3 \mu N N N(1,3)))\)


        IF (HT5,GE:4ST5)G0 T0 2000
                    INVERTED OREITER


```

03260
03241
03242
03261
03271
03277
03304
03322
03331
03332
03333
03340
0.3346
0.3353
03361
03366
03367
03370
03405
03411
03416
03434
03435
03436
03442
03447
03454
03466
0 3 5 0 0
03512
03524
0 3 5 3 6

```
    3ARR(13.27) = 0.0
```

 3ARR(13.27) = 0.0
 AARR(13,29) = 0.0
 AARR(13,29) = 0.0
 RARR(14.14)= KUP4&R0044#2*5544.#E5!54AAA(5,3)/
 RARR(14.14)= KUP4&R0044#2*5544.#E5!54AAA(5,3)/
 ((L5-HST5) #NNN(5,3)) * 4, AE6I6*AAAG/(L6*NNN6)
 ((L5-HST5) #NNN(5,3)) * 4, AE6I6*AAAG/(L6*NNN6)
 \ARR(14,22)=6.*(ES!5/(1L5-4ST5)*#2#NNN(5.3))=
 \ARR(14,22)=6.*(ES!5/(1L5-4ST5)*#2#NNN(5.3))=
 #
 #
 NARQ(14,29) = 2.#E5[54BBB(5,3)/((6504ST5)4NNN(5,3))
 NARQ(14,29) = 2.#E5[54BBB(5,3)/((6504ST5)4NNN(5,3))
 AARP(14,29) =-6.*ESI5/((1,5-H5T5)##2#NNN(5,3))
 AARP(14,29) =-6.*ESI5/((1,5-H5T5)##2#NNN(5,3))
 QARR(15,15) = KBUP4*ROD4**2+S7*4.*E616*AAAG/(L6*NNN6)*
 QARR(15,15) = KBUP4*ROD4**2+S7*4.*E616*AAAG/(L6*NNN6)*
 4.#E717*AAA(7,1)/(HP7&NNN(7,4))
 4.#E717*AAA(7,1)/(HP7&NNN(7,4))
 GARR(15,23) 6.#(E616/(L6**2*NNN6)-E7!7/(HT7**2#NNN(7,1)))
 GARR(15,23) 6.#(E616/(L6**2*NNN6)-E7!7/(HT7**2#NNN(7,1)))
 AARR(15,28)=0,0
 AARR(15,28)=0,0
 TARR(25,30)=0,0
 TARR(25,30)=0,0
 QARR(15,16) = 4,#E7|7#AAA(7,3)/((67-HST7)ANNN(7,3))
 QARR(15,16) = 4,#E7|7#AAA(7,3)/((67-HST7)ANNN(7,3))
 GARR(16,24) 6. बE7!9/((L7-H5T7)#NNN(7,3))
 GARR(16,24) 6. बE7!9/((L7-H5T7)#NNN(7,3))
 QARR(16,28) F 2.#E717#BBB(7,3)/((L7-4S97)#NNN(7,3))
 QARR(16,28) F 2.#E717#BBB(7,3)/((L7-4S97)#NNN(7,3))
 GARR(15,30) = =6, #E7!7/((L7-HST7)A#2#NNN(7,3))
 GARR(15,30) = =6, #E7!7/((L7-HST7)A#2#NNN(7,3))
 QARR(21,71) = KUP5 + 12.#E515/(HP5##3*NNN(5,1))
 QARR(21,71) = KUP5 + 12.#E515/(HP5##3*NNN(5,1))
 \operatorname{argr}(21,27)=0.0
 \operatorname{argr}(21,27)=0.0
 GARR(21,29) 0.0
    ```
        GARR(21,29) 0.0
```



```
    * * EUJUP4/D**3)
```

 * * EUJUP4/D**3)
 QARR(22,27) 6, &E515/((L5-H5T5)*2#NNN(5,3))
 QARR(22,27) 6, &E515/((L5-H5T5)*2#NNN(5,3))
 QARR(22,29) E=12,कE515/((L5-4595)*43#NNN(5,3))
    ```
    QARR(22,29) E=12,कE515/((L5-4595)*43#NNN(5,3))
```



```
    #
```

 #
 QARR(23,28) = 0,0
 QARR(23,28) = 0,0
 GARR(23.30)=0.0
 GARR(23.30)=0.0
 GARR(24,74) 12,*E717/((67-HET7)**3*NNN(7,3))
 GARR(24,74) 12,*E717/((67-HET7)**3*NNN(7,3))
 QARR(24,2B): 6, 4E717/((L7-HST7)4*2NNNN(7,3))
 QARR(24,2B): 6, 4E717/((L7-HST7)4*2NNNN(7,3))
 QARR(24,30)-12,*E7!7/((L7-HST7)*43aNNN(7,3))
 QARR(24,30)-12,*E7!7/((L7-HST7)*43aNNN(7,3))
 GARR(27,77) 4, ES5[5:(AAA(5,3)/((65.HST5)ANNN(5,3))
 GARR(27,77) 4, ES5[5:(AAA(5,3)/((65.HST5)ANNN(5,3))
 * AAA(5,2)/((45T5-HT5)ANNN(5,2)))
 * AAA(5,2)/((45T5-HT5)ANNN(5,2)))
 SARR(27,29) = 6.#E515*(1,/((HST5=HT5)*F2*NNN(5,2))=
 SARR(27,29) = 6.#E515*(1,/((HST5=HT5)*F2*NNN(5,2))=
 1,/((L5-HST5)*a2GNNN(5,3)))
 1,/((L5-HST5)*a2GNNN(5,3)))
 AARR(28,28)=4.\triangleE7!7*(AAA(7,3)/((67-HST7)#NNN(7,3))
 AARR(28,28)=4.\triangleE7!7*(AAA(7,3)/((67-HST7)#NNN(7,3))
 * * AAA(7,2)/((H5T7-HT7)WNNN(7,2)))
 * * AAA(7,2)/((H5T7-HT7)WNNN(7,2)))
 QARR(20,30) = 6, #E7!7%(1,/((&ST7mH97)##2#NNN(7,2))=
 QARR(20,30) = 6, #E7!7%(1,/((&ST7mH97)##2#NNN(7,2))=
 * 1,/((67-HST7)*#2#NNN(7,3)))
 * 1,/((67-HST7)*#2#NNN(7,3)))
 QARR(29,29) = 12,4E5!54(1,/((HST5=HT5)**3#NNN(5,2))+
 QARR(29,29) = 12,4E5!54(1,/((HST5=HT5)**3#NNN(5,2))+
 * 4,/((L5-HST5)an3aNNN(5,3)))
    ```
    * 4,/((L5-HST5)an3aNNN(5,3)))
```



```
    * 1./((L6mHST7)an3aNNN(7.3)))
```

 * 1./((L6mHST7)an3aNNN(7.3)))
 2009 CONTINLE
K=1
K=1
00 354 [a2,N6
00 354 [a2,N6
00 353 J=1,k
00 353 J=1,k
353 QARR(!1,J)=QARR(J.1)
353 QARR(!1,J)=QARR(J.1)
k=k+1.
k=k+1.
354 CONTINUE
2011 CONTINUE
ARR(3, 1) =mKUP3
ARR(3, 1) =mKUP3
ARR(4: 1) w=kBUPS
ARR(4: 1) w=kBUPS
ARR(6, c) =@KUP4
ARR(6, c) =@KUP4
ARR(7, 2) = =KBUP4
ARR(7, 2) = =KBUP4
ARR(9, 3) =mS!
ARR(9, 3) =mS!
ARR(10: 4) =mS2

```
    ARR(10: 4) =mS2
```


03610 03614 03616 03620 03621 03623 03626 03433 03635 03637 03641 03644 03651 03653 03655 03660 03665 03670 03671 03673 03677 03701 03703 03711 03717 03723 03727 03731 03734 03737 03742 03743 03746 03753 03756 03760 03763 03764 03766 03773 04001 04005 04006 04011 04013 04017 94024 04032 04037 04045 04047 04052 04060 04063 04065 04066 04074 0.102


```
ARR("1, 6) =m S3
ARE(42, 1) =-KBUP3*RRD3
ARF(12, %i)=054
ARF(12,2?) = 2,#ElLHT3*BBR(3,3)/MNV(3,3)
```



```
&RR(13,17) =wKUPS4E
ARP(14, ?) =KUPA#ROO4
ARP(14, 9) = =55
ARR(14,15)=2,AEILHT54BBB(5,3)/ANN(5,3)
ARR(14,17)=66,*E1LHP5/(L5-NT5)*1,/NNN(5,3)
AQR(15, %) E KRUP4#ROO4
ARR(95,1才) = - 57
AR'2(16,16)=2, #E1L明7aBBB(7,3)/NNN(7,3)
ARP(15,1`) =-6,0ElLHF7/(L7-HY7)w1,/NNN(7,3)
ARR(17,3) E-6, EEUJUP1/L1**2
ARL(17, A) = ARR(17,3)
ARF(16, 3) = 6,*EUUUP1/L1**2
ARF(1B, a) = 6.*(EUJUP1/L1**2-EUJUP2/A**2)
ARF(18,5) = 66,4EU\UP2/A*#2
ARR(1, %,12) = 12. सEUNIP2/A#w3
ARiर(13,19)= = #E1|1/(L2-HT1)**2*1,/NNN(1,3)
ARQ(18,21) = =12, कE111/(L1-HT1)#*3*1,/NNN(1,3)
ARR(1,9,5) = 6, #EUJUP2/(L2-A)=#2
ARD(19, 大) = ARR(19,5)-6, "EUJUP3/C##2
ARR(19, 7) =66, "EUJUP3/C**2
ARR(19,17) = - 2&ARR(19,5)/(L2~A)
APR(19,13) =e12,"EUJUP3/C**3
ARP(20,7) = 6.&EUJUP3/(L3-C)##2
ARR(20. 日) ョ \triangleRR(20.7)
ARR(20.53) = - 2.*ARR(20,7)/(L3-C)
ARP(20,2!)=6,#E[GHT3/(L,3-HT3)*1,/NNN(3,3)
ARR(こ0.2?) =-2.4ARR(20.20)/(L3-14T3)
ARR(21,12) = - KUP5
ARR(大2, %)= =6,*FUJUP4/D**2
ARO(:2,17) = \triangleRR(22,9)
ARR(:2,14)= =12,*EUUNP4/D**3
ARR(:2,15)=6,#EILNT5/(L5-4T5)41,/NNN(b,3)
AQR(22,17)=-12,#EIL&Y5/(L5-4T5)&&241,/NNN(5,3)
ARR(`3,1口) = 6, # EUJUP4/(L6-D)*a2
ARR(73.11)=ARR(23,10)
ARR(23,14)=02.#ARR(23,10)/(L6mD)
ARR(24,16) =ARR(16,18)
ARR(24.1:) = 2, ARR(16,16)/(L7-H47)
ARR(:7,15) = 2, #E5|5/(HT5日HST5)#RB3(5,2)/NNN(5,2)
ARR(>7,17)=6,#E5!5/(4T5m@ST5)**2*1,/NNN(5,2)
ARR(2,1,1%)= 2,4F717/(NT7-4ST7)*RBB(7,2)/NNN(7,2)
```



```
ARR(5.15) = - ARR(27.17)
\triangleRR(2,.17) = 2.4ARQ(29,15)/(4T5#HST5)
ARR(39:16) =66.#E7\7/(HT7-HST7)a&2*1,/NNN(7,2)
ARR(3),1日) = 2.4ARR(30.16)/(HT7-HST7)
ARR(31:17)=skT5
\triangleRR(%,2,1月) = =KT7
ARH(55,19)=2.3E1!1/(HT1-HST1)*BBR(1,2)/NNN(1,2)
ARR(35,21) = 6.WE111/(HT1-HST1)**2*1./NNN(1,2)
AQR(3G:2%)=2,*F3{3/(4T3-HST3)*B5B(3,2)/NNN(3,2)
```

04107
04115
04117
04122
04130
04133
04135
04136
04137
04140
04146
04154
04162
04163
04163

04266
04172
04175
04176
04177
04203
04206
04207
04210
04213
04227
04220
04221
04224
04230
04231
04232
04237
04245
04252
04260
04264
04271
04296
04303

04306
04312
04315
04316
04317
04323
04326
04327
04330
04333
04337
94340

ARR(37,16) =eARR(35:21)
$\triangle R E(37121)=2 . * A R R(37.19) /(4 T 14 \operatorname{HT} 1)$

$\operatorname{ARR}(30.22)=2,4 \operatorname{ARR}(30,20) /(H T 3+45 T 3)$
$\triangle \operatorname{ARF}(39,21)=-K T 4$
$\triangle R R(A 0,22)=K T 3$
IFITANK, SE,0.0)60 T0 3002
$A R R(10: 19)=0,0$

 $\operatorname{ARP}(20,22)=A R R(22,15)=A R R(22,17)=\operatorname{ARR}(24,16)=\operatorname{ARR}(24,18)=0,0$ GOTO 3006
3002 CONTINUE
IF(HT1.GE.HSTIDGOTO 3006
INVERTED BOOSTER

ARR(9,24) 6.*E1I1/(HT1**2*NNN(1,1))
$\operatorname{ARR}(10.19)=0.0$
$\triangle R K(10121)=0.0$

$\operatorname{ARR}(11,22)=6,4 F 3 I 3 /(4 T 3+42 \pi N N N(3,1))$
$\operatorname{ARF}(12.21)$ a 0.0
$\Delta R R(12.22)=0.0$
ARR(17.19) =66. \#E119/(HT14\#2ANNN(1,1))
$\operatorname{ARR}(17,21)=-12, \pi E 111 /(H T 1043 * \operatorname{NNN}(1,1))$
ARR(13.19) \& 0.0
$A R R(1,3.24)=0.0$

$\triangle \operatorname{ARP}(20.27)=0.0$
$\operatorname{ARR}(20,22)=0.0$
$\operatorname{ARR}(35,19)=2,4 E 1!14 \operatorname{BBB}(1,2) /(45 T 1-H T 1) \otimes \operatorname{NNN}(1,2))$

$\operatorname{ARR}(37,19) 6,6 E 11 /((H 5 T 10 H T 1)=26 N N N(1,2))$

IF(HT5.GE.4ST5)60 503006
INVERTED ORBITER
$\operatorname{ARR}(13.15)=2.6 E 5 / 5 * B B B(5,1) /(495$ anNN(5.1))
$\triangle R R(13.17)=6.4 E 515 /(H T 5 * 20$ NNN $(5,1))$
$\operatorname{ARR}(14.15)=0.0$
$\operatorname{ARR}(14.17)=0.0$
$\operatorname{ARR}(15.16)=2,4 E 7176 B B B(7,1) /(H 47$ aNNN(7:1))

$A R R(16.16)=0.0$
$\triangle \operatorname{RR}(16+1 i)=0.0$

ARR(22.15) =0.0
$\operatorname{ARR}(2217)=000$

```
        CARR(19,19) = 4, E|I1,#(AAA(1,2)/((NT1-HST1)#NNN(1,2))+AAA(1,3)/
```



```
    CARR(19,21) 5 6,WE1114(1,/((-1T1-HST1)*62*NNN(1,2))-1,/((L1-HT1)
    # अ#? कमNN(1,3)))
    CARP(2O,20)=G,#E3!3#(AAA(3,2)/((HT3-HST3)@NNN(3,2))&AAA(3,3)/
    * ((L3-HT3)bUNN(3,3)))
    CARR(2N,22)=6, #E3! 3a(1,/((HT3-HST3)**2NNNN(3,2))=1./((L3-HT3)**2
    * *NNN(3,3));
    CARR(21,21)=KT1+12."E1I1*(1,/((L1-HT1)**34NNN(1,3))*1./((HT1-HST
    * 1)**3*NNA(1,2)))
    CARR(22,22)= KT3+12,4E3I3*(1,/((63-4T3)*#3#NNN(3,3))&1,/((HT3=HST
        IF(TGNK,EQ,0,0)60 T0 3010
        IF(HT1,G5,GST1)G0 TO 3010
    C
                            INVERTEO BOOSTER
        CARR(17,19):4,#E111*(AAA(1,2)/((HST1*HT1)#NNN(1,2))+
    * AAA(1,1)/(HT1&NNN(1,1)))
        CARK(19,21) = 6,"E1!1"(1,/(HY1##2HNNN(1,1))-1,/
    * ((45T1日甠T1)**2*NNN(1,2)))
        CARR(20,2O)=4, BEGIS*{AAA(3,2)/((45T3-HT3)&NNN(3,2))*
    *' AAA(3,1)/((H73*NNN(3,1))))
        CARR(2O,22)=6, #E313#(1,/(KT3**2*NNN(3,1))=1.1
    * ((H5T3mHT3)##20NNN(3,2)))
        CARR(21,21)=KT1&12,*E111*(1,/(HT1403#NNN(1,1))+1,/
    * ((H5TymHT1)##3aNNN(1,2)))
        CARR(22,22)=KYY+12, #E313*(1,/(HT3*a3NNNN(3,1))+1,/
        * ((m5T3-HT3)*a3^NNN(3,2)))
        IF(HTS,OF.HST5)GOTO 3010
    C
                            INVERTED ORBITER
    C
        CARR(15,15)=4.AE5!54(AAR(5,2)/((45T5@HT5)aNNN(5,2))%
        * AAA(5,1)/(HT5ANAN(5,1)))
        CARR(15,17)=6.NESI5*(1,/(14T5**2*NNA(5,1))-1,1
        * ((-455504T5)**2#NNN(5,2)))
        CARR(1A,16)=A,#E7170(AAA(7,2)/((H5T7*H97)&NNN(7,2))+
        * AAA(7,1)/(HT7bNNN(7,1)))
        CARR(16,18): 6, ETI7#(1,/(4T7%42#NNP(7,1))-1,1
        * ((4597%4T7)4a2*NNN(7,2)))
        CARR(17,17)=KT5+12,*E5 154(1,/(HT5*43#NNN(5,1))41,1
        # ((4ST5-475)*#3&NNN(5,2)))
        CARR(1%18)=KT7 12.4E7!7*(1,/(HT74*3*NNN(7,1))*1.1
        # ((H5T7-HT7)*#3*NNN(7,2)))
    301C CONTINJE
    C GENEPATE SYMMETRY FOR THE C-MATRIX
        < =1
        00375:=2.41
        O0374 j=1,K
    374 CARR(I.J)=CARR(Nol)
        K=K+1
    375 CONY!NUE
    G GENERATE PHE OMMATRIX AS THE NEGATIVE TRANSPOSE OF AGMATRIX
    C
        00 05 l=1,0!
        O0 G5 Jailve
    95 DARR(1.J)=##RRTJ|!)
```

04341 04344 04350 04351 04352 04357 04365 04372 04400 04404 04411 04415 04423 04423 04426 04427 04432 04436 04437 04444 04446 04450 04454 04456 04463 04472 04474 04500 04503 04511 04513 04515 04522 04527 04532 04535 04537 04541 04546 04551 04556 04563 04566 04576 04606 04607 04617

$A K R(<4.14)=0.0$
$\operatorname{ARR}(24.1 \tilde{n})=0.0$

ARQ（？8，16）＝2，＊E7！7＊BBB（7，2）／（（HST7＊HT7）日NNN（7，2））

$\Delta R 4(29.15)=0$, EF5！5／（（HST5－HT5）』24NNN（5，2））
$\operatorname{ARR}(29,17)=-12$, AE515／（（HSP5－HT5）＊43＊NNN（5，2））

$\operatorname{ARR}\left(30,1^{\circ}\right)=-12, * E 717 /((H S T 7-H P 7) * * 3 * N N N(7,2))$
3006
CONTIVIJE
CARR（ 1，1）－KUP3＋KBUP3＋KUP6
CARK（ 1，2）makUP6
CARR（ 2，2）＝（KUP4＋KBUP4＋KUP6）
CARR（ 3，3）＝ $51+4, ~ \& E U J U P 1 / 61$
CARR（ 3，4）2，©EUJUP1／L1
CARF（ 4，4）：52＊4：（EUJUP1／L1＊EUJUP2／A）
CARR（ 6，5）E 2，©EUJUPZ／A
CARR（ 4，12）＝6．EUUUP2 $A * * 2$
CARR（5，5）：A，WEUJUP2\＄L2／（Aa（L2－A））
CARR（5，6）2，EEUJUPZ／（L2－A）
CARR（ 5,12$)=6, * E U J U P 2 *(1, / A * 2-1, /(L 2-A) * * 2)$
CARR（ E，6）a $S 3+4$ ，＂（EUJUP2／（L2－A）$由 E \cup U \cup P 3 / C)$
CARR（ 5,7$)=2$. EUUUP $3 / C$
CARR（ $K, 12)=6$ ，EUUUP2／（L2－A）\＃2
CARR（ 6，33）E 6，NEUJUP3／C4\＃2

CARR（ 7，8）a 2，EUUUP3／（L3－C）
CARR（7，10）© 96
CARC（ 7，13）＝6，AEUJUP $3 *(1, / C * 2-1, /(63-C) * 2)$
CARR（ \＆，g）S\＆\＆\quad GEUVUP3／（L3－C）
CARR（ 3，13）$-6,4 E \cup \cup L P 3 /(L 3-C) * 2$
CARR（ $\theta, \theta)$ ES早，＂EUJUP4／D
CARR（ 9．10）2．EUJUP4／0
CARR（ 7,14$)$ G，EEUJUP4／D＊：2

$\operatorname{CARR}(19,11)$ 2，EUUUPG／（L6－D）
CARF（17．14）6．EUJUP4\＃（1．／0＊＊2＊1：／（66－0）＊＊2）
CARR（11，11）S7＊4，aEUJUP4／（L6eD）
CARR $(11.14)=6, \operatorname{EEUJUP4/(66-D)*\# 2}$

CARR $(13,13)=K \cup P 7+12, * E U J U P 3 *(1, / C * * 3+1, /(L 3-C) * 3)$
CARR（13，14）E－KUPY
CARR（14．14）KUP7由12．WUJUP4＊（1，10＊＊3＊1，／（L6－0）＊＊3）
 （（L50HT5）बNNN（5，3）））
＊

$4 \quad \operatorname{NNN}(5,3))$

$\because \quad \operatorname{NNN}(7,3)))$

 ＊7）\quad（3＊NNV（7，2））

05246 05255 05264 05273 05274 05276 05277 05305 05312 05316 0532 ? 05322 05323 05323 05327 05332 05333 05336 05337 05341 05343 05344 05354

05360 05367 05423

CALL YM: A YRX ($\triangle R R, ~ C A R R, P D U C T, J R, J I: \triangle I, M X X)$
CALL MMATRX(PDUCT, DARR, $A R R, J R: U I I J R, M X X)$
$x=1$
$0081=2.06$
กO $7 \mathrm{Jm}, \mathrm{K}$
IF(ARS(ASR(J.J)). $\operatorname{AT} \cdot 1, E-15) G 0 T 06$
DIFFEA $\operatorname{DQ}(I, J)=A R R(J, I)$
PERCENTIIIFF/ARR(I!J)
IF (AFS (GERCEVT),GT.1.E-6)GOT0 9
6 continve
60107

- CONTIVUE

PRINT 55°
CALL MPRINT (ARR, JR:JC, AO)
gO 70700
7 CONTINDE
$K=k+1$
8 CONTIMUE
クO $4001=1, \sqrt{0}$
DO 400 J=1, JC
GARR(IIJ): QARR(I, J) $=A R R(I, J)$
AOO CONTIVLE
CHAs WHLTPLY THE JNVERSE OF THE MASS MATRIX AND PHE
$\stackrel{C}{C}$
CALL MMATRX(UASS,GARR,PDUCT, JR,JR,JR,MXX)
PRINT 2000,KR,KW,KUP1,KUP2,KUP3,KBUP3,KUP4,KBUPA,KUP5,KUP6,KUP7,56

* *KUPAB\#E11, 4, *KUP7玉\#E11,4, \#S6=aE11,4)

* $1 \times$, \#F5 EE11,4, 4KGBSEAE11,4, MKP5E\#E11, A, $/$

PRINT 3 O00, (F (1), KCB(1),KP(1):1=1,7,2)

PRINT S000. (4T(I),MM(1),MTDA(1),MSTR(1),1=5,7,2)

PRINT AOOO,KY,KB1,KCAP2,KCAP6,K3,KB3,KCAP3,K5,KB5,KCAP5,K7, - KBT, KCAP7
 *JR!G=\#E11,4,
 *JR1G=4E11.A./
 *JRIG: WE11:A!
 * JR! GaxE11,4)

PRINT 6OOO:HTAKKI:MSTI:JSTR(1):JRIG(1),


```
05573 CALL EIGEN(UC,PDUCT,CARR:QARR,MAXIT.NDEC,N1OPT,NZOPT,40)
    05604 PRINTSON,(RNO(I),1=1.7.2),(HI(1),I=1,7,2),AS,KCAP1,ES
05632
05634
05640
05641
05644
05646
05663
05665
05667
05675
05675
05675
0.5676
05676
05700
    DO 450 121,Je
    CYC(1,1)aPOUCT(1,1)
    CYC(1,2):FLOAT(1)
452 CONTINUE
    CALL SRTCYC(CYC,JR,40)
    PRINT SOO,(CYC(1,2),CYC(1,1),1=1,JC)
    CALL SECOND(Y)
    TMME=Y-x
    PRINT 551,T!ME
551 FORMAT(118X,5HTIME F7.2)
7OO CONTINUE
    00 Y0 50
702 CONTINUE
    STOP
    ENO
```

000003
000015
000015
FHNOTM, StNEH(x)
SINCX , $\because(E x p(x)-E x O(-x))$
QETUE
ENO

000003
000015 000015
FUNCTIO COSCH (x)
$\operatorname{cosC}=. S(E X P(x)+E x P(-X))$
RETUM:
END
000012
000012
000013
000014
000015
000017
000032
000034
000040
000044
000044

```
        SUBROUTINE MMATRX(AA,BR,CC,NR,JR:JC,MD)
C Subroutine mulitiplies tme am ano bo matrices and Places the answer in
        DIME:SIOM AA(MD,FD),BB(MD,MD),CC(MD,MD)
        DO 102 I=1,NR
        DO 102 J=1,JC
        ELEM = 0,00
        00 G5 K:1,JR
        ELEM = ELEM & AA(I,K)ABB(K,J)
    95 CONTINUE
        CC(1,J)=ELEM
    102 CONTINUE
        RETURN
        END
```



```
    G MATRIX PRINT SUBROUTINE MP
    C THE CALL FOR THIS SUBROUTINE IS AS FOLLOWS, MP
C CALL MFHINT (A,N,N,NIO)
    WHERE A IS TME MATRIX TO BE PRINTEO
                            & IS THE NUMBEA OF ROWS
                                IS THE NUMEER OF COLUMNS
                            MS IS DIMENSIONED NO. OF ROWS OF MATRIX A
    DIMESIO, A (1), IT (6),C(6)
    EQUIVALEACE (JT,C)
    N1=N
    N2=6
    A3=6
    N4=1
    1001F(N3-1, 120.120,110
    C
    110N2 = 11-3+6
    N3=N1
    120 K = 
    00 130 1 = 44, 43
    k}=k+
    130 JT (k) = 1
        PRINT 1.(NT (1), 1=1,N2)
        00 150 1 = 1.M
        k=?
            L=*0# (N4-1) + 1
            DO 140 y=N4, 13
            k =k+1
            C (K)=A (L)
    140L=L + N0
    150 PRINT 2, , (C(K),K=1,N2)
    IF (v3-\1) 160,170,170
C
000113
000115
000116
000116
000117
000117
000117
```

000007 000007 000007 000010 000011 000012 000013

000016 000021 000021 000022 000024 000026 000032 000045 000051 000052 000056 000057 000061 000064 000070 000111

000113 000116

000116
000117 000117

C THE CALL FGR THIS SUBROUTINE IS AS FOLLOWS, MP

C WHERE A IS TWE MATRIX TO BE PRINTEO
\because IS THE NUMBER OF ROWS MP
C
C
C
-IS THE NHMBER OF COLUMVS
MT IS DIMENSIONED NO. OF ROWS OF MATRIX A
DIMESIO. A (1), لT (6), C(6) MP
EQUIVALEACE (NT, C) MP

12
$12=6$
$N 4=1$
$1001 F(\sqrt{2}=1) 120.120,110$
$110+2=12-3+6$
$N 3=n 1$
$120 k=0$
$00 \quad 130 \quad 1=44,43$
$k=k+1$
$130 \mathrm{JT}(k)=1$
$001501 \pm 1, M$
$k=?$
$L=00$ ($=14=1)+1$

- $4+13$
$C(k)=A(L)$
$140 \mathrm{~L}=\mathrm{L}+\mathrm{O}$
150 PRINT 2, ! ($C(k), K=1, N 2)$
IF $(\sqrt{1}-11) 160,170,170$
C
$160 \mathrm{~N} 3=13+6$
$N^{4}=v^{4}+6$
GOTO 100
C
170 RETURA
C
FORMAT (9H, $4 X, 6(6 X, 7 H C Q L U M N$ 114,)
2 FORM:T (1H 114, X, (GE 17.8)) END
C3 BKY BES IS
FORTPA IV SUBROMIME BESNIS ($x, N \mathrm{MAX}, \mathrm{FI}$) BSIS
c \quad - a floating point single precision variable
0 J- IE THE UVBER OF VALUES
C FI- IS a ONE-DIMENSIONAL ARRAY OF ANSWERS

```C TO EtaluATE EXP \((-x) I(X)\) make The FOLLOWing change\(\mathrm{c} \quad \Delta=\mathrm{I}, /(\mathrm{PI}(1)+5 \mathrm{UM})\)
```

DINE'Sl2 FI(50), P1(200) BSIS
000006 000006 BSIS
SUM $=0$.
SUM $=0$.
$1=x$ BSIS
JMAX=I +21 BSIS
$T Z=2, / x$ BSIS
PI $(\sqrt{j} A x+2)=0$. BSIS
$p 1(J " 4 x+1)=1, E-20$ BSIS
DO $1 J=1, J \operatorname{MAX}$ BSIS
$K=J W_{1} x+2=J$ BSIS
$D K=K-1$ BSIS
PI(K-1) =RKaTZ*PI(K)+P1(K+1) BSIS
$15 U M=S U^{2}+P 1(K)$ Bsis
 BS 16
$A=E X P(X) /\left(F I(1)+S U_{M}^{M}\right)$ BSIs
DO 2 VAn Nax BSIE
$2 F I(N)=A \# P I(N)$ BSIS
RETUHN: BSIE
END BSIE000006000010000012000013000015000017000020
000022
000024
000032
000037
000040
000047
000050
000055
000056

```
    SUBROJTINE SRTCYC(A,NROWS,NOIM)
C SUBROUTIE SORTS THE FIRST COLUMA OF THE IN COMING ARRAY IN
C ASCE DING OROER WHILE TAE CORRESPONDING ROW IN THE SECOND
C COLU'Y IS MOVED ALOVG WITH IT, THE SUBROUTINE ALSO DIVIDES
C THE S.JT OF THE SORTED ELEMENT BY 2*PI IF THE ELEMENT IS NOT NEGATIVE
o if the elemest is negative it is placed back into the array.
    OIMESIOL A(1)
    00 15 1=1, wROWS
    00 14 J=1, NOWS
    IF(A(I)-A(J))14,14,11
11 L=1-'0!M
    LL=J-ND:'
    DO 1? K=1,2
    L=L+NJ!
    LL=LL+NDIM
    F=A(t)
    A(L)=a(LL)
12A(LL)=F
14 CONTI NUF
15 continut
    DO2-1=1,NROWS
    IF(A(1).LT.0.0)GO TO 20
    \Delta(!)=50RP(a(I))/5.2831
20 cONTHNE
    RETUPa
    ENO
```



```
000155
000156
000160
0 0 0 1 6 1
000162
000163
000165
000167
000173
0 0 0 1 7 6
000211
0 0 0 2 1 3
000216
000221
000225
000227
000231
000233
000234
000236
000241
000241
000243
000245
000247
000256
000260
000261
0 0 0 2 6 6
000271
000273
000275
000300
000303
000307
000307
000310
000.312
000314
000315
000320
000324
0 0 0 3 2 7
000333
000335
000340
000343
000346
000351
000356
000361
000364
000367
```

```
    210 10 = 4-1
```

 210 10 = 4-1
 SUM = 10. OE 20
 SUM = 10. OE 20
 220 TAU =0.0
 220 TAU =0.0
 EN = 0.0
 EN = 0.0
 00 230 1 = 1, NO
 00 230 1 = 1, NO
 N0 =1 +1
 N0 =1 +1
 00 230 J = v0, N
 00 230 J = v0, N
 IJ = (J-1)* NDIM + I
 IJ = (J-1)* NDIM + I
 JI=(1-1) NDIM + J
 JI=(1-1) NDIM + J
 230 TAU= TA\ & Q (J) **2 + E(J!)**2
 230 TAU= TA\ & Q (J) **2 + E(J!)**2
 00 240:=1.N
 00 240:=1.N
 II=(1-1)*NDIM+1
 II=(1-1)*NDIM+1
 TE=B(I!)
 TE=B(I!)
 240 EN=EN +TE**2
 240 EN=EN +TE**2
 250 EN = EN + TAU
 250 EN = EN + TAU
 250 DELN = SUM - EN
 250 DELN = SUM - EN
 270 IF(DELA) 290, 290, 280
 270 IF(DELA) 290, 290, 280
 C
C
280 SUM = EN
280 SUM = EN
IT = IT + 1
IT = IT + 1
IF(MAXIT IT , 870, 970, 310
IF(MAXIT IT , 870, 970, 310
C
C
290 CONTINUE
290 CONTINUE
IF (NDEC - NTIMES) 970. 970. 300
IF (NDEC - NTIMES) 970. 970. 300
C
C
300 YR = YR / 100 . 0
300 YR = YR / 100 . 0
Ys = YS / 100 , 0
Ys = YS / 100 , 0
PRINT 2, NTIMES, IT
PRINT 2, NTIMES, IT
NTIMES = NPIMES \& 1
NTIMES = NPIMES \& 1
IT = IT + 1
IT = IT + 1
310 DO 960 k \# 1, NO
310 DO 960 k \# 1, NO
KK = (K-1) NDIM + K
KK = (K-1) NDIM + K
KO = K+1
KO = K+1
320.DO 960 M = KO, N
320.DO 960 M = KO, N
MM=(M-1)*NOIM+M
MM=(M-1)*NOIM+M
KM = (M - 1) *NOIM + K
KM = (M - 1) *NOIM + K
MK=(k-1) *NOIM + M
MK=(k-1) *NOIM + M
H=*.0
H=*.0
G=0,0
G=0,0
HJ=0.0
HJ=0.0
33000 450 1 = 1, N
33000 450 1 = 1, N
340 IF (I - K) 350, 450, 350
340 IF (I - K) 350, 450, 350
C
C
350 1F (! M) 360, 450, 360
350 1F (! M) 360, 450, 360
C
C
360 IK = (K - 1) * NDIM \$ 1
360 IK = (K - 1) * NDIM \$ 1
KI=(1-1)*NDIM + K
KI=(1-1)*NDIM + K
IM=(M-1) *NDIM*I
IM=(M-1) *NDIM*I
MI = (1-1) \#NDIM*M
MI = (1-1) \#NDIM*M
80=B(! (K)
80=B(! (K)
370 BR = B (K!)
370 BR = B (K!)
3H0 ZQ = B (IN)
3H0 ZQ = B (IN)
300 BS = B (M1)
300 BS = B (M1)
400 H = H + ER \# BS - BO B B
400 H = H + ER \# BS - BO B B
410 TEP = B0 * BO * BS * BS
410 TEP = B0 * BO * BS * BS
420 TEM = BR \# BR * BQ BQ
420 TEM = BR \# BR * BQ BQ
430 G % + TEP \& TEM
430 G % + TEP \& TEM
440 HJ = HJ - TEP + TEM

```
    440 HJ = HJ - TEP + TEM
```



```
000613
000622
000625
0 0 0 6 3 0
000635
000643
000645
000647
000653
000656
000661
000663
000670
0 0 0 6 7 6
000700
000702
000706
000711
000713
000716
000723
000731
0 0 0 7 3 6
000737
000741
000742
000746
000756
000765
C
```

 JK = (K % &) * NDIM * J
    ```
        JK = (K % & ) * NDIM * J
        JM = (N- N ) NDIM+J
        JM = (N- N ) NDIM+J
    360 B0= E (NK)
    360 B0= E (NK)
    Q7UBR=Q (JN)
    Q7UBR=Q (JN)
    000 B ( JK) = B0 * C2 - BR * S2
    000 B ( JK) = B0 * C2 - BR * S2
    890 E ( NM) =- 80*S1 + BR *C1
    890 E ( NM) =- 80*S1 + BR *C1
    900 IF (N10PT ) 930. 930.910
    900 IF (N10PT ) 930. 930.910
910 DO 920JE=1; N
C
C
    94000 950J=1,N
    94000 950J=1,N
        JK = (KM-1 )*NDIM * J
        JK = (KM-1 )*NDIM * J
        JK = (K K - 1 ) *NDIM + J
        JK = (K K - 1 ) *NDIM + J
        BO =T (JK)
        BO =T (JK)
        BR=T (JN )
        BR=T (JN )
        T(JK) = BO* C2 # BR*S2
        T(JK) = BO* C2 # BR*S2
    950 T (JM) = - BO*S1 + BR|C1
    950 T (JM) = - BO*S1 + BR|C1
    960 CONTINUE
    960 CONTINUE
        GO TO 220
        GO TO 220
C
C
    870 D0 980 = = 1,N
    870 D0 980 = = 1,N
    870 D0 980 ! = 1,N
    870 D0 980 ! = 1,N
        IJ=(J-1)*NDIM + 1
        IJ=(J-1)*NDIM + 1
    9g0B(IJ)=B(IJ) # ANORM
    9g0B(IJ)=B(IJ) # ANORM
        PRINT 3, NTIMES, IT
        PRINT 3, NTIMES, IT
        RETUFN
        RETUFN
C
C
            1 FORMAT(aIEIGEN SUBROUTINE STATISTICS*/ * SIZE OF MATRIXIS*,I4,
            1 FORMAT(aIEIGEN SUBROUTINE STATISTICS*/ * SIZE OF MATRIXIS*,I4,
        * "MAX, NJ#, OF REFN, IS *,I3, "MAX, NUM, OF ITER, IS #,IA,/)
        * "MAX, NJ#, OF REFN, IS *,I3, "MAX, NUM, OF ITER, IS #,IA,/)
        * "MAX, \JN, OF REFN. IS *,I3, "MAX, NUM.,
        * "MAX, \JN, OF REFN. IS *,I3, "MAX, NUM.,
        FORMAT(aOEXIT ON REFN,*,13,# ITER.B,14)
        FORMAT(aOEXIT ON REFN,*,13,# ITER.B,14)
        END
```

 END
    ```
\(c\)
1 FORMAT \(a\) IEIGEN SUBROUTINE STATISTICS*/ \# SIZE OF MATRIX IS\#, IA,
FORMAT(\#OEXIT ON REFN,*,13,* ITER.B,14) END
```

E! 1 EI
E! 1 El 1 EI 1 EI 1 EI 1 E1 1 E1 1 EI 1 E! 1 E! 1 E! 1 EI 1 E. 1
El 1
E: 1
E1 1
EI 1
E! 1
E! $\frac{1}{6}$
E! $\frac{2}{2}$
E1
E! $\frac{2}{z}$
E!
E!
EI
E! 2
E!
El 2
E!

E! 2
E:
E!

```
    OO Y. 220
```

 OO Y. 220
 8,00
 8,00
 0 0 0 6 1 7

```


```

000372
000375
000377
000403
000405
000410
000411
00041.3
000417
000422
000422
000423
000425
000427
000431
0004312
000433
000442
000450
000452
000455
000460
000464
000470
000470
000473
000475
000502
000505
000505
000514
000516
000517
000520
000526
000530
000534
000540
000544
000550
000550
000555
000556
000560
000564
000570
000573
000576
000603
000611 %50 00 n00 J=1.N

```
```

 459 6ONTINEE * 4
    ```
    459 6ONTINEE * 4
        O= (<K) - B (Mm)
        O= (<K) - B (Mm)
        TEP=O ( < N )
        TEP=O ( < N )
        TEM = B ( पK )
        TEM = B ( पK )
        C=TEP + TEM
        C=TEP + TEM
        E = TEP - TEM
        E = TEP - TEM
    470 IF (ABSF (C) - YR) 480, 480, 510
    470 IF (ABSF (C) - YR) 480, 480, 510
C
C
    430 CC = 1 , 0
    430 CC = 1 , 0
    490 SS = 0.0
    490 SS = 0.0
    500 GO TO 620
    500 GO TO 620
C
C
    510 By = 0/C
    510 By = 0/C
    520 IF (EY ) 530. 540. 540
    520 IF (EY ) 530. 540. 540
C
C
    530 51G=- - % % % 0
    530 51G=- - % % % 0
C
C
    540 516=1,0
    540 516=1,0
    550 COT = BY + (SIG # SQRTF (BY A BY + 1, O ) )
    550 COT = BY + (SIG # SQRTF (BY A BY + 1, O ) )
    560 SS = SIG / SQRTF (COT * COT + 1.0)
    560 SS = SIG / SQRTF (COT * COT + 1.0)
    570 CC=SS* COT
    570 CC=SS* COT
    580 TEP = CC * CC - SS *SS
    580 TEP = CC * CC - SS *SS
    590 TEM = 2. D WS #CC
    590 TEM = 2. D WS #CC
    600 O=O *TEP + C # TEM
    600 O=O *TEP + C # TEM
    610 H=H * TEP = HJ & TEM
    610 H=H * TEP = HJ & TEM
    620 CONTIVEE
    620 CONTIVEE
    630 ED = 2, D*E|D
    630 ED = 2, D*E|D
    640 EDH=EO-H
    640 EDH=EO-H
    650 OEN = O + 2, O# (E#E + D*D)
    650 OEN = O + 2, O# (E#E + D*D)
    G60TEE= EDH ( (DEN + DEN)
    G60TEE= EDH ( (DEN + DEN)
    670 CONTINUE
    670 CONTINUE
    6日0 IF ( \triangleESF (TEE) - YS) 690, 690,710
    6日0 IF ( \triangleESF (TEE) - YS) 690, 690,710
O
O
    690 CH=1.0
    690 CH=1.0
    700 SH=0:0
    700 SH=0:0
C
C
    710 CH=1.0 / SQRTF (1.0 - TEE * TEE )
    710 CH=1.0 / SQRTF (1.0 - TEE * TEE )
    720 SH=TEE CH
    720 SH=TEE CH
    730 C1 = CH*CC - SH* SS
    730 C1 = CH*CC - SH* SS
    740 C2 = CH*CC * SH * SS
    740 C2 = CH*CC * SH * SS
    750 S1 = CH:SS + SH*CC
    750 S1 = CH:SS + SH*CC
    760 S2 = - CH*SS + SM # CC
    760 S2 = - CH*SS + SM # CC
    70 contiave
    70 contiave
    780 IF (S1 ) 800.790.800
    780 IF (S1 ) 800.790.800
C
C
    790 IF ( S2 ) 800. 960,800
    790 IF ( S2 ) 800. 960,800
C
C
    100 00 40 = =2, N
    100 00 40 = =2, N
            KJ=(j-2) "NOIM & k
            KJ=(j-2) "NOIM & k
            MJ=(J-1) #NDM * M
            MJ=(J-1) #NDM * M
    819 E0= E (KJ)
    819 E0= E (KJ)
    920 RR = 日 (MJ)
    920 RR = 日 (MJ)
    30日 (R) = C1* 20 + 51 * BR
    30日 (R) = C1* 20 + 51 * BR
    840 B (NJ)= S2 * B0 + C2 % BR
```

 840 B (NJ)= S2 * B0 + C2 % BR
    ```

```


[^0]: *This rod was removed from the experimental apparatus and, consequently, its effect was nullified in the numerical program by setting to zero its crosssectional area.
 \dagger All springs in the model are massless and linear.
 \ddagger This model was originally developed for a rigid container.

[^1]: Note that effective spring constants include effects difficult to predict, such as bolted joint compliances and longitudinal stiffeners.

