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We consider the transmission of a signal bandlimited to (- W, + W)

by the zero-crossings of the optimum signal

+ oo _ )
y(t) = kX (- 1% [x(k/2W)] 821:(%1;_\/1\12 k)
= =00

We describe a computer algorithm to estimate y(t) from its zero-crossing
in a finite time interval,

We show that as the channel bandwidth increases the output signal-
to-noise-ratio a, for the clipped version of the optimum signal tends to an

exponential function of the channel signal-to~noise ratio a_

J2m a
c

a g exp (aC/Z)

A similar behavior is obtained for x(t) itself.

We analyse the effect of the channel HC( w) = sin (0 T)/ » T, "Finite"
channel bandwidth introduces an additional term, linear in a.. This term
is related to the appearance of extra zeros in the 27T interval of time about
the zevo-crossings of the optimurm signal; the exponential term is related
to extra zeros occuring outside this interval at low channel signal-to-

noise ratio.



Directions for further research on this problem are: nonlinear
memoryless transformation of x(t) to control the distribution of the zero-
crossings of the optimum signal y(t}, nonlinear memoryless transforma-
tion of y(t) and filtering at the receiver input to minimize the zero-cross-
ings displacement, optimization of the zero-crossings detector, and

estimation of the optimum signal from its zero-crossings.
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List of symbols.

x{t} systemn input
x, = wlk/ 2W), k-th sample of x(t)
K % L4 RS % s
yi(t) output of the i-th intermediate stage of the communication

system. In particular ‘yl(t) ig the optimum signal associated
to x(t) or x(t) differentiated or x%(t) plus a narrowband process

centered about W.
a signal-to-mean-square-error ratio
channel signal-to-noise ratio
output signal-to-noise ratio
highest frequency of the signal x(t)
2n'W

channel bandwidth for the transmission of the optimum signal

Hmnsownm

half the time interval in which the computer algorithm gives an
estimate of the signal x(t) (in III-2 and IV-2 however T has been

used for the half integration time of the channel hc{t) = p?{‘t})

b bandwidth expansion factor for optimum signals

B | bandwidth expansion factor for general signals (B =b + 1)
hc(t) channel impulse responee

HC(Q) channel transfer function

No power density of white noise

A zero-crossing vate (or density) of a signal = lim (number of

zero-crogsings in time interval T/ T) for T-eow

A normalized zero-crossing rate for a signal bandlimited ta
(-W, 4W):n = \/2W

n number of diffeventiations of the signal x(t}
. k . g
v ratio of narvrow-band process power to dignal powesr
a mofﬁ s ratic of half-bandwidth of narrow-band process to cen-

ter frequency

By gero-crossing of the optimum process between k/ 2ZW and (k+1})/ 2W



random variable which takes the values +1 of -1, each with

probability 1/ 2
prebability of the event described in the parentheses
density function of the random variable x
distribution function of the random variable x

expectation

crosscorrelation function of the two random processes x(t)
and y(t)

normalized crosscorrelation function = ny_(tis tz)/' {F"Xﬁil)(fy(tz)
when the processes are stationary, Fourier transform of
ny(tl - t5)

variance of the random variable x

characteristic function of the random variable x

function to 1 if Icol < €2, 0 otherwise

function equal to -1 if t €0, 0 if t=0, and +1 ift >0

Dirac impulse function

sin (Qt - kw)
(Qt - kw)
sine integral = j Mdu
¢ o Zu

®
1 u . . .
exp (- du, This function is used ratheyr than
Tz ,[ Pl

the distribution function itself (usually denoted by &(t) ) to

avoid confusion with the characteristic function
Kronecker symbol =1 if k =1, 0 otherwise
conjugate of of the quantity

absolute value of the quantity

denotes a pair of Fourier transforms

y - s 5 3 ’ s
function equal to 1if 2 - w < lo] <5t +w_, O otherwise



INTRODUCTION

Signal transmission by means of zero-crossings takes its root
in a phenomena, clipped speech intelligibility, repoited in the literature
some 20 years agou’i. Advantage has been taken of this property for

(2-5)

the transmission of intelligible speech through channels of poor quality:

the communication of speech signals Clipped speech makes possible

typically for the same intelligibility clipped speech needs about 1/4 of
(6)

investigate the transmission of the bandlimited signal (in general) by

the channel capacity required for normal speech In this work, we

means of a set of related zero-crossings.

In Chapter 1 we describe the main statistical properties of a sub-
class of bandlimited processes (called optimum) characterized by one
zero-crossing in each Nyquist interval (it will appear that the zero-
crossings of this subclass are the related zero-crossings we are looking
for). The ideal clipper destroys all information but the zero-crossings
of its input; thus we give a description of this device by the transform
method. We define a measure of communication systems performances ;
we show that in our case, since the bandwidth expansion occurs by
clipping the optimum process, the suitable types of modulation give the
same performances as a direct transmission of the signal. We advise
the reader to start by Chapter II and to come to the appropriate sections

of Chapter I as the understanding of the material requires it,

In general a bandlimited signal is not completely defined by its
zero-crossings. Thus the set of these points contains less information
than the signal itself. In order to use the zero-crossings as information
carriers we should therefore find the mapping which maximize the
amount of information in the new set of zero-crossings. But, at the
present time, even for Gaussian processes, we do not have a nice
analytic form for the distribution of the zero-crossings interval. Thus
the approach just mentioned cannot be used. We rather process in an
heuristic way by investigating in Chapter II various ways of increasing
the zero-crossings rate. The two first methods {differentiation and addi-
tion of a sine wave) have a common property: as the zero-crossings rate
increases, the spacing between two successive zeros becomes more
regular; we show that these techniques fail to give a signal completely

defined by its zero-crossings. From the theorems discovered by



(8)

. 7 ¢ Yo : s . .
Tz.tc:hmaprsh{ ) and Polya we derive a third technigque (mapping into

an optimum process) which satisfies the above requirement.

At this point we have a bandlimited signal completely defined
by its zero-crossings and related in a known way to the original signal,
The next step is the investigation of the effect of noise and filtering on
these zero-crossings. This is undertaken in Chapter III. We first
derive the properties of random square waves transmission for large
bandwidth (-:\]%—' ©) and additive Gaussian noise. For finite channel band-
width we find an approximate expression when the channel transfer
function is Hc(w) = —Eio%—%—I(this channel has no exact finite bandwidthg
however it has a filtering action and its bandwidth, although somewhat

arbitrary, can be defined).

Finally, in Chapter IV we assemble the various paﬁs of the system:
the mapping of the signal into an optimum process, its transmission
through the channel, the estimation of the optimum process from the
received zero-crossings by means of a computer algorithm and the
inverse mapping into the estimate of the signal. The overall perform-

ances are then related to the result found in the previous chapter.
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CHAPTER I

TOOLS OF THIS RESEARCH

1. Description of signal clipping.

We shall investigate the transmission of a signal by a set of
related zero-crossings. Thus the ideal clipper appears an an essen-
tial element in our system and we need a convenient representation of

this device,

Let y(t) and z(t) be the ideal clipper input and output respectively.

z(t)=+1 if y(t)> 0

(I-1-1)
-1 if y(t)<0
or z(t) = sgn [y(t)) : (I-1-2)
2
Sgn(t)“j-(f)—
we can write
=-‘——- J‘ ejwy(t) dw (I-1=3})

Let f(yl, yyityst ) be the joint density function of y(t ) and ‘y(t )
(denoted by Yy and y, respectwely in the following), and @(wl,w tist, )

the joint characteristic function

# (w5t t,) = E {ed (V171792750 (1-1-4)

2’

Then (since we consider real processes only) the cross-correlation func-

tion between the clipper input and output is

gty t2) =B {ytt)atty) }

:“""”’ %E[ ]w =0 2 (1-1-3)



3 . j
since [g——]wl‘: 0 =jE {ylerZYZ} (I-1-6)

For 1:1=t2 (I-1-5) leads to

+

where ¢ is now the characteristic function of the random variable y(t)
@(w;ﬂ:E{eJ‘”Y“)} (1-1-8)
Similarly the autocorrelation of the clipper output is

Rt tp)=E {z(t‘l) z“z)}

+e@ 46 (1'1'9)
o1 e
--T?-m . (wlwz) Q(wl,w?_,tl,tz)dwldw2

Formulae (I-1-5, I-1-7 and I-1-9) make sense only if in the inte-
grand the pole at the origin cancels with a zero in the other factor. How-
ever if this does not happen we can still get a correct result by the use of
differentiation on both sides of these relations followed by appropriate
integration (the constant of integration being derived from the known
initial conditions), To illustrate this point let us investigate the auto-
correlation of the output of a clipper when the input is a stationary Gaussian

process. The answer is known to be given by the arc-sine law

2 . -l
Rzz(T)_'ﬁmn ry(*r) (I-1-10)

where r (T)=Ry_('1’)/0’; ' ' (I-1-11)
Taking account of the stationarity we write (I-1-9) as
2, 2, (7)
2 wytwyH2r Ve,
Iple %Gy ) w, dw,
T

(I-1-12)

DR 7.7 T}mmm?ff ww
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where the differential operator i’?Td/ﬂT; We get in this way a relation

where the pole at the origin disappears

+eo 4o ,_2+(L),§2+ 2r W oW,
i & y J. L <]

(T)———Rl )I I eao; 2 dw, dw, (I-1-13)

where R’ stands for dR/dr. With the change of variables
%
W,0 =T e——— (i=1,2) (I-1-14)
[ 2
l-x
oy J( Y)

we get’

r!(r)

RZ'Z(T) =

3V

(I-1-15)
1,-rY ()

By integration

Rzz(«r):%sin'l.[ry(ﬂ] +C (I-1-16)

But

R z(0) =1 and therefore C=0,

The te-chnique we have described implies no restriction on the non-
linearity involved (except the existence of its Fourier transform). It
implies also no restriction on the input process (thus this result.is not
restricted to the Gaussian case). Therefore we have here a very general

tool,

2, Statistical description of optimum signals

In chapter II we shall need the préperties of a special clasgs of pro-
cesses, introduced in our Master's thesis, which we called "optimum

signa}.s‘”w’. For convenience we recall first the definition. Let x(t) be a

gignal bandlimited to (aQ%*%Q } (deterministic or random at the present time)

+ e
X(w):f =(t) e“’jmat {(I-2-1)

« (D




or

S (w)= | R (1) 7Y aq (1-2-2)

vanishes outside (-Q,+Q). In both cases the sampling theorem holds, e.g.

+» + e
x(t)= ) x(Gp) SEBAT LY,y (1-2-3)
k= = k=aw

In the random case we must understand this equality in the mean square

sense.

The optimum signal, y(t), is derived from x(t) in the following way:
we leave the sample amplitudes unchanged but we change their polarities

so that the following equality is true

sgn [y () y(S5) ] =1 for all k (I-2-4)
Thus
+
= ) (=05 (1-2-5)
k=-o

It follows that between two consecutive samples y(t) has at least one zero-
crossing. In the deterministic case Poly4 has shown that there is only
one zero-crossing (appendix A). In the random case there is no proof
that such a property exists ; we will just say that in the simulation part
of this work we were unable to find an interval with more than one zero-
. crossing and we are tempted to say that ''there is only one zero-crossing
in each Nyquist interval with probability one''. The occurrence of a zero-
crossing in each interval is the basis of the optimum signal properties.
To find the cross-correlation function between the optimum process
and its clipped version section 1 shows that we need the second-order
characteristic function, x(t} will be assumed stationary in the wide sense,
Gaussian, zero-mean with a power spectrum uniform in (-Q, +0). Then

the samples x, are independent, Gaussian, zero-mean random variables
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#
with identical distribution. It will be useful to multiply each realization

of y(t) by the following random variable, independent of the xk‘s R

Z=+1 or -1 with probability 1/2 (1-2-12)

This will not affect the optimality of y(t), and the sign of y(t) is already
undetermined when the zero-crossings are known. Thus
+ e
k
Y(t)=Z Z (-1) \xk\‘vk(t) (I-2-13)

=y - -]

Otherwise the means will not be zero. Indeed

)
E{v(t)} =oxf-f;— Z (-1)¥ ¥ (t) (I-2-6)
k= -
- But .
t+e + e
Y DXy (Deep () g5 ) exp[ -jkigyt™] (1-2-7)

The finite sum

+N . 1
-2_% 2 exp[-jk(%w-kn)]:%-w sm[(N+2-)(—wmf+n)] (1-2-8)
k=N sin [ 305+ ]

is periodic with period 2. On the other hand

sin[N+%)( %174- TT)}

gim TR AT =76 (w+Q) (1I-2-9)
= 68 AN
" and 3w (w+ ) L tol/aw =21 6(w+Q) (I-2-10)

sin[W + Q)/4W)]
Therefore (I-2-8) is a sequence of impulses of strength 27 and (I-2-7 ) is
equal to

n[8lw-0)+ 8 {mﬂ}}jmcos ot} (I-2-11)

Thus E{y(t)} = o’x,/ % cos Ot with (I-2-5) as definition of y(t).
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It is easy to see that at each sampling time y(t) is a normally distributed

random variable with mean zero and same variance GZ as x(t).
X

=da =1 m 2 = & ae -~ < om — o ond et
der characteristics function of y{t).

9]
Ls!

3 9% g e PP I PN P K £ e
Firgt we consider the first-

+
=E{exp[jwz Y (-1 s v, (0] } (I-2-14)

k=ww»

Since Z is independent of the xk's

. te
@Y(w:t)=—é-[E{exp[jw 2 (-1* ‘kak(t)]} ¥
k= -o
o
Efexp[-ju ) (-D%|x lu 0]}
k= -
+o
=Rea1E{exp[5w Z -1k ‘kak(t)]}- (I-2-15)

Thus & (w;t) is a real function; this comes from the fact that the random
variable Z makes the density of y(t) symmetrical. Since the xk's are

independent
+w Xk
2 (wit) = Real i I E{exp[j(-x) w|xk|¢k(t)]} (I-2-16)

For t=n/2W we get
iy(w;n/ZW) = Real E{exp[j(-l)nw|xn|]}

=E{exp(ijn)}
: OZwZ

texp(«m%e«)

. . *
as expected. Otherwise since

(1-2-17)

# [,5.Gradshteyn and [. M. Ryzhik, ''Tables of Integrals, Series, and
Products, " Ac.Press, section 3.896 (p. 480).
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e
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i

where 1 l(a b; z) is Kummerx's functxon

+1
Fl(a;b;z)=1+%_1§r+i§-§-ﬁ%—,- .. (I-2-19)
and
? —a.u‘2 1 1 b2
| e cos (bu) du = 5.5 ©eXP (-23 (I-2-20)

(I-2-16) becomes

2 2
tea k .
Tk B 1,3 %) 1z
] (w t) =Real Il e 2 L1+3( 1) = Wy 1]:7‘1 1583 Yyl (I-2-21)

k= - (i
where wk=wox¢'k(t) (I-2-22)
put + o 2 2 +tew
on(-1 ¥ wlmen[- 52 T fw)] (1-2-23)
k= - k=<0

and since for two bandlimited functions £(t) and g(t) with finite energy and

same bandwidth W

+ e + @
f 1 k k
Jw f(r)glt-v)dr = WL ("2"— )glt - "W) (I-2-24)
- k= -
we get
+ e 2 te 2
1 sin (Qt- kﬁ)] J‘ [ sin Q(t-1) ] _1 s
zw Z — (CGt-kn ) —at-n J 4T aw (I-2-25)
and
+ @ wZ_ﬁZ
. 1 2., _ “x -
exp (-5 ) o) =exp(-—5i) (I-2-26)
. = e
and finaily
2 2

wo e
b (it) =exp(- —=% JReal 1 [1+3[2 (0w P (i3 ]

E a8

(I-2-27)
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The second-order characteristic function follows immediately

from the above result:

: J’[wlvitl‘ﬁwz‘f(tzﬂ«
g (w05t t)=E 1 e }
+ @
=E{ewp 52 ) (-DF|x ][ (e 0,0 e0] |} (I-2-28)
k= -

i.e., the same result as (I-2-8) except the replacement of w\bk(t) by

wl\bk(tl) +w2\bk(t‘2). Therefore the second order characteristic function
is given by (I-2-21) where

W = ox[wl'l!k(tl)+w2wk(t2)] (I-2-29)

Now t}\le first factor becomes

+ o 2 +
1 2., _ %l 2 2
exp(-3 Z ‘”k)’e"f’{‘ '2—[‘”1 Z b (¢))
k= = = =@
+ o +
taw,w, \_. “’k(tl)‘”k(tz”wg Z ‘”i‘tz)]}
k= - k=~
2
. . |
=exp{- | 0]+ 2w w,r (6,-t)) + w5 |} (1-2-30)

by the use of (I-2-24)",

Therefore the characteristic function (first or second order) of the

optimum process can be written as the product of the original characteristic

. function and the factor

e ' wZ
T [ fZ IEY
Real K= = 1+j = (-1) Wy lFl(Z’ > 'T) (I-2-31)
E3 .
where rx(*r) = ﬁlg%l is the normalized correlation function of the process

xt).
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where
A
W =0, 0 (1) or o (Wb (6)+u,b(5) | (I-2-32)
respectively, so that this factor appears as the perturbation of the charac-
teristic function of x(t) due to the mapping.

We shall also derive the auto-correlation function of the optimum

process.

+ o
=) (-nH! EJL"‘k"l‘]’"”k(tl”’l(tz)
K, 1= -
+ o0 +®
=02 ) e+ 262 Y Ry e ()
k= - k#l
k, 1= -
e +e
=2 (1-2) ) e e+ 2 Y 0y e (e, ]
k= e k,lz-»
2 st(t -t ) 2
= L(l-—-)—-——d(-t—_—t-)— COS(Qt )COS(Qt )] . (I—2~33)
or with tz—t1 T and t1=t
Ry('r;t)=o}2{ [(l--rz? EE—%?%) + = = cos (0 7) +—— cos Q(2t+'r)] (I-2-34)

Particularly the variance is given by -

oz (t)= o [1-1) + L cos(zan] (1-2-35)

i.e., the variance (and the correlation function) are modulated at twice the
highest frequency in the signal x(t). At a sampling time the variance is
maximum and equal to the variance of x(t}; at the mid-point of a Nyquist
interval the variance achieves its mil?imum oi(l- %) which shows that the
process y(t) is ''pinched' in the center of each Nyquist interval. Taking

the Fourier transform of (I-2-34) we get
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3§( -%-)4‘1pQ(w){é<w~n)+a(w+o>]<i+e33")tig

Sy(w;t)zo' l»ﬁ 3

=2 [(1-2) D p (0 + o(w-a)(1 +e12 Y 4o ea)1+eT2Y ] (1-2-36)

i.e., the power spectrum of the optimum process has a component identical

to that of x(t) and two modulated delta-function at +(). It is clear that these

components are correlated (for the samples sign to alternate).
These results can be obtained from (I-2-27) and (I-2-28) since

2 2
(t) (I-2-37)

w
when w = 0

B (w;t) = 1 --_g—-

1 2 2
Q(wl,wz,tl,tz) -3 w0 (t )+2u;1 2R(tl,tz)

2 2
tw, o (tz)] when W, and w, = 0 (I-2-38)

for zero-mean processes. Since lFl - 1 when the argument tends to zero

(I-2-27) becomes for small values of the argument

2_
éy(w;t)m(l-w e 3‘ wZ)cos[ 2 7 (-1*u, ]

k_ - = =@
ngZ
X 1 2 2 [: 1 22 2
%(l- -7——-)(14'; w OX) I-Fw OXCOS (Qt):]
wz 2 2 2 2 '
~ 1 -—Z—O'X[(l--ﬁ)‘l’ﬁ-cos (Qt)] (1-2-39)
Therefore
2 _ 2T 1 1 ]
oy(t) =0, Bﬁ"ﬁ)*; cos (2 Qt) (I-2-35)
which checks with (I-2-35), Similarly
2
. X% _ 2 2 2
8wy, w5t b)) m 1 -Z-{u Zypu? 2wy (1) +wS ]
(I-2-40)

2 2
+ = [wlcos (Qtl) + w,cos (Qtz)] ]



and by (I-2-35) and (I-2-38) we get

3 “: 'Z‘\ui\_L‘ZAni‘é°Aie‘xj
R \tl,tzimm {1~ ST \T;TFCua\QLI;CUs\QLZ,J

which is identical to (I-2-33).

3. Signal-to-mean-squared-error ratio at the output of a system

In chapter II we shall investigate how close a signal x{t) can be
recovered after some transformation and passage through an ideal clip-
per . The system is followed at least by an amplifier with appropriate
gain A and more generally by a filter h(t)(Fig. I-1). The final output which
is an approximation of x(t) will be denoted by %(t). We shall use the follow-
ing measure of the closeness of x(t) and x(t)

E {xz(tl)}

a =max min max (I-3-1)

Pi f1 T2 E{[x(t)-R(t,)] }

where the first maximum is taken over the set of parameters P, describing
the system. Maximization over t, for a given t; provides a means to

take account of a possible time shift in the systemT There is no restric-

tion on the

x(t) system | y(t) :r i(t)ﬁ:

h(t)

Fig.I-1

system which may be nonlinear and perturbed by noise. Assuming zero-
mean processes E{}"cz(t )} =Gf’i(t2) and E{xz(tl)} = o—xz (tl), and .

(¥ -3-1) may be written

Ca (tz) h(tl’ Z)
a=max min max [I+ -2 ] (I-3-2)
2 2
P; t, oty o (t;) o (t))

We can at least maximize a by an amplifier placed after the system; for
this its gain should be
R (¢t

5
A =__2€§_£__§m (I-3-3)

C’i‘v(tz)

and
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2
a=max min ma,x[lm xy 1’ 2 J {I-3-4)
t t o (t )oz(t )
Py 1 "2 x''1'% 2

When the system introduces no time delay t1=t2; if furthermore the pro-
cesses involved are stationary the quantity a is independent of time ; then
(I-3-4) becomes

a = max [1- -—21(70)- (I-3=5)
P; Iy cy

We can do better than (I-3-4) by replacing the amplifier with appro-
priate gain by a filter, Because of its mathematical tractability we shall
consider the Wiener-Kolmogoroff filter which given the data y(t) (the
output of the system) gives the linear-minimum-mean-square-error esti-
mation of the signal x(t), We shall recall the theory of the unrealizable
filter(lo' Ch. “). Linear estimation implies that x(t) deriive from y(t) by

an expression of the type

+ o
%(t,) =J h(t,, ) y(u) du (I-3-6)

The mean-square-error E{[x(t ) - %(t )] ]r achieves its minimum when the

b

weight h(t ,u) is such that the error is orthogonal to the data, e.g.

E{[x(tl) - i(tl)]y(c)} =0 for ~w<g <o (1-3-7)

and it is easily shown that the minimum mean-square-error is given by
[ 2 :
B{[xt) -2 ] }=E{[xt)) -2 ]xte )} (1-3-8)

" Therefore the Wlener -Kolmogoroff f;lter is the solution of

+ o
teo)= [ i R (0, o) du (1-3-9)

% In the unrealizable case (I-3-6) takes account of a possible time shift in
the system since the weight h(t, u) is chosen to minimize the error (in
the mean-square sense) and all data (from - to +«) are used to build

the estimate,
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and the minimum mean-square-error is given by

40

E‘S [x(t) - x (t.) ]2} = Rs;(t‘;’t‘-) - S h(t,,u) R (tl,u) du {I-3-10)

L wy

¥
-00

Therefore with the Wiener-Kolmogoroff filter (I-3-1) becomes

+00 -1
S h(tl, u)tl, u) ny(tl’ u Jdu

a = max min |l - —= (I-3-11)
p1 tl RX (tln tl)

For stationary processes (I-3-11) simplifies in

+00 -
S h(tl-u)ny(tl-u)du
-00
a = max 1- vA
Pj cx
+00 -1
g h(u) ny(u)du
= max |1 -2 ~ (I-3-12)
Py %x
while (I-3-9) becomes
. +w
ny(tl-o) = 5 h(tl-u) Ry(u-o) du
-00
or 100 |
R t) = h(t- -3-
xy( ) S ( u)Ry(u) du (1-3-13)
00

Finally by the use of the Fourier transform of the quantities involved

we can write

(w)

S
H(w) = ‘B’}%’i}i‘i‘" (I-3.14)
y



+o0 ” -1
r ja H(0)S) (o) do |
=00
a = max 1-
H 3
Pj L an % 4
+00 2 -
S |Sxy(w)|
dw
) S z“)j
= max |1 - 5 y (1-3-15)
p: 217 ©
kS X

In chapter IV we shall simulate a communication system on the
computer, In this case we cannot define the quality of the receiver output
in terms of expectations, Thus we shall use a definition of the signal-to-mean-

square-error ratio using integrals over the time domain:

4 o(utT ,
T x (t) dt
t

a(T) = max min max (I-3-16)
P; tl tZ t1+T
L ([t - x(e,)] %at
T xiy - xta

Y

(where tz is to be understood as a function of t) and

a =lim a(T) (I-3-17)

T— o0

For our purpose in that chapter since we shall consider the passage of a
stationary process (integrals become independent of t, for T — o) through a
system with zero time delay (tz = t) and fixed parameters (no max over the
pi's) (I-3-17) becomes
T
1 2
TS x (t) dt
0
0 T
( xe) 17
) [x(t) - x(t) ] dt
0

(I-3-18)

=
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The optimum amplifier gain is here given by

+{ s ywar

= lim 0 (1-3-19)
T —o0 T
,}S y2(t)dt
0

and

[TS x(t)y(t)

al=1 - lim (I-3-20)

T~
T‘S t)dtTS y (t

| S

4, Relation between signal-to-mean-square-error ratio and signal.-to-noise

A zame

ratio,

In section 3 we have considered the mean-square-error as a measure
signal power
g P has the

of the system performance., The quantity a =
mean-square-error

desirable property that it is monotonic with the channel signal-to-noise

ratio a_. But as it can be seen from (I-3-4) and (I-3-11) when the channel
signal-to-noise ratio tends to zero a tends to one. Thus for comparison

with other communication systems in term of quality of the output vs. quality
of the channel the quantity a would lead to erroneous conclusions since the
output signal-to-noise ratio should tend to zero with the channel signal-to-noise

(11)

ratio, Lawton has proposed the following theoretical definition for the

output signal-to-noise ratio

w2 (0)
a_ = = (I-4-1)
- rxy {0}Y
with
r_ (0) = E {x(t)y{t)} (I-4-2)

Xy 6 G
yf

s
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and where x(t) is the signal to be transmitted and y(t) the output of the
system., This definition assumes that the input and output processes

are zero-mean (otherwise for high channel signal-to-noise ratio a would
not tend to infinity); it also assumes that the processes are stationary

and that no delay occurs in the system (or that the output is properly shifted

in time for comparison with the signal), With a defined as above we can

see that
for a_ "~ 0 rxy(o) -0 and a -~ 0
a_ = 00 rxy(o) — 1 and a =

as desired, The definition also satisfies the requirement that if the
"communication system" merely consists of an addition of zero-mean
noise independent of the signal (Fig, 1-2) the output signal-to-noise ratio

is equal to the channel signal-to-noise ratio indeed

2, 2
a; = cx/cn (I-4-3)
2 °i °>2c
rc (0) = : = (I-4-4)
xy o %(0% + %) 0l +0
X X
2 2
rxy(o) °x (I-4-5)
a = = -l =
© 1 - r& (0) CJZ
Xy n
x(t) - y(t)

the system output.
From {I-3-5) we find that a, and a are related by the simple

relationship

aj=a - 1 (I-4-6)
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Therefore for nonstationary processes and communication systems

with time delay followed by the optimum amplifier (I-3-4) leads to

a = min max min y -1 {1-4-7)
© t T RZ (t.,t.+7)
Pi h xy 101

For nonstationary processes and communication systems with or without
time delay followed by the unrealizable Wiener-Kolmogoroff filter (I-3-11)

leads to

R_(ty,ty)
a;I = min max xx 1’1 1 (1-4-8)
P; t1 +00

h(tl, u) ny(tl, u) du

G0

and finally if the processes are stationary the previous formula becomes

2
-1 . 2m 9%
a_ = min T% ) -1 (I-4-9)
P; |8t |
—=  dw
R O

5, Comparison of the performance of the communication system with

and without modulation,

We intend to show here that the system may be investigated without
taking modulation into account. Indeed we shall send a bandlimited signal
by the clipped version of the associated optimum process which means a
bandwidth expansion before modulation. This expansion will give the noise
immunity and therefore no further bandwidth increase (by means of modulation)
will be necessary. Thus double-sideband suppressed carrier (DSB-SC), and
single-sideband (SSB) are suitable types of modulation for our problem.

We shall assume the noise gaussian, wide-sense stationary, and
zero-mean, Lhen the noise outside (wC~ a, W, + Q) or, for instance,

lw_, w, +0Q } (where w  is the carrier angular frequency) is independent

c
of the noise in that band and therefore cannot help in estimating y(t), the
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signal sent. The signal to be demodulated now can be written respectively

as

PR Y —

y{t)~/ 2 cos (wc j + n(t)

o,
et
g
(631
g
et
S

y(t) ¥/ 2 cos (w t) - ¥ (t) /2 sin (w_t) + n(t)

where y(t) is the clipped version of the optimum process filtered by the

channel, i’r(t) is the Hilbert transform of y(t), and n(t) can be written as

n(t) =V/Z n_(t) cos (w_t) - n_(t) /2 sin (w_t) (I-5-2)

(the noise n(t) is obviously not the same in the two cases: in SSB its
bandwidth and power are reduced by a factor 2).

In DSB-SC and SSB if the phase of the carrier is known we get,
multiplying by V2 cos (wct) and filtering,

y{t) + n_(t) (I-5-3)

In DSB -SC the channel signal-to-noise ratio is given by

a = —g—t—p—- (1-5-4)

a = + (I-5-5)

therefore we get a 3 dB improvement, In SSB

QZ+O.,2

a, = ——H (I-5-6)



21

and therefore a 2o We note that any phase difference between the

carrier and the local oscillator entails a loss of performance,
Therefore with the types of modulation suitable for our problem

the performances are easily derived from the performances under the

assumption that transmission takes place in the baseband,
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CHAPTER 11
ESTIMATION OF A STATIONARY, BANDLIMITED, GAUSSIAN,

ZERO -MEAN SIGNAL FROM A STREAM OF RELATED
ZEROQO -CROSSINGS

In this chapter, as well as in the following ones, we assume that
the input x(t) of the communication system is a stationary, bandlimited,

Gaussian, zero-mean process, with a flat power spectrum in (-Q,+ Q).
2W (12-p.193) 4 pang.
J3

limited process is defined (in the mean-square sense) from its samples

Such a process has a zero-crossing rate \ =

taken at the rate 2ZW per second; just by intuition we might expect that
the zero-crossings do not carry enough information to define the signal
completely; in section 1 we prove that this is indeed true.

The aim now would be to find the mapping such that the information
carried by the new set of zero-crossings is maximum., This approach
cannot be used because of our lack of knowledge on the distribution of the
zero-crossings interval., We use a less ambitious approach, namely we
shall increase the zero crossing rate (one of the factors which determine
the amount of information carried by the zero-crossing stream) and then
check whether the new process is better defined by its zero-crossings
than the original signal itself,

We first consider multiple differentiation of the signal, and addition
of a sine wave with the highest frequency Q (Sections 2 and 3). In these
two sections the signal x(t) is estimated by the optimum unrealizable
(Wiener -Kolmogoroff) filter from the zero-crossings of its mapping. In
both cases we get a decrease of the output quality with the increase of the
zero-crossing rate,

Section 4 is an attempt to estimate the signal x(t) from the
zero-crossings of its associated optimum signal by means of optimum
linear filtering. Here we run into analytical difficulties.

In section 5 we state two theorems due to Titchmarsch and Polya,
These theorems, valid when the signal has a Fourier transform vanishing
outside some interval, give the maximum zero-crossing rate to be expected
and the conditions under which the signal (then called optimum} is completely
defined by its zero-crossings, We extend these theorems to bandlimited
stochastic processes, and we give an algorithm for the estimation of the

optimum process from its zero-crossings,
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1. Some preliminary results

Let us first consider the

w

implest system we can think about:
no manipulation of the signal and clipping followed by an amplifier to
minimize the mean-square-error (Fig, II-1),

By (I-3-5)

-1y () yo(t)
2 1 I 2
=11 - (0) - o —e  (II-1-1
a [ rylyz A { )

Fig. II-1 Signal Clipping

and by (I-1-7)
a 2 0 02 wz
R (0) = 1 \ exp(—-—z——Yl ) dw = |2 (I1-1-2)
vy m J n ¥y

=00

where yl(t) and yz(t) are the clipper input and output. Thus

, -1
a=(-2) =2.76 (1I-1-3)

t t ' t
v, (t) :F Yo(t)  IsinQt | ys(t) A

@t

Fig. 11-2 Signal Clipping and Ideal Filtering

A first improvement is obtained by an ideal low-pass filter(with the
same bandwidth as the signal itself) between the clipper and the amplifier

(Fig, II-2). The system introduces no time delay; therefore we apply (I-3-5).

We denote by y3(t) the output of the ideal filter., From (I-1-5) we get




2 2
R RY}L(T) S oo "2 4 Ryi(ﬂ \/_E,,,
T e A 2 e s ) e
v.Y5 = 3 exp { — }dw OYI = (II-1.4)

Extension of this result to a broad class of processes and nonlinear trans -

formation is given in appendix B. Now

S (w) S (w)
S (w) £ ./2 *() 1 2 (II-1-5)
W) = m—— = P~lw) = ——— -1-
g ™ 0 o o
1¥3 v, vy '\/
Q
1 2 1 2
R (0) = —— /: S S (w)dw=g¢ = (I1-1-6)
V.Y o n 2Z2n y yaNT
173 N “q 1 1
We also have
+o0 : +00
2 1 _ sin{QT)
cy3 = == S Syz(w) Pq (w) dw = ‘S RYZ(T) T dr (I1-1-7)
- 00 - 00
which for a Gaussian zero-mean signal becomes
+00
2 2 S -1 sin(QT)
o} = sin” [r (T —_—td T 11-1-8
v, T2 g, M1 =55 (I1-1-8)
- 00
Thus by (I-3-5)
- 4 -l
a-1 =1 -m S sin'l (r (t)] sin(@7) dr (II-1-9)
Y1 T
- 00
Finally for a signal with flat power spectrum, e.g.
sin{Q T )
= 2oyl II-1-10
£y () = S5 ( )
and with the dimensionless variable t = QT
400 -1
atoym S gin ™) [Sltn(t) ] s‘?(t) dt (IL-1-11)
=00 P |
(13)

The value of the above integral is 3,897 "', Therefore

- -1
a = [l - W .‘l = 5. 21 (H—l«-lZ)
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A last improvement (if we require linear filtering and directly
apply the signal to the clipper) is obtained by a Wiener-Kolmogoroff filter.
We already know that

S (w)
S,y (@) = -C-?-—- TET (1I-1-13)
172 v,
Applying (I-3-15)
a s ()
al=1. 5 4! d o (I1-1-14)
n“o Syzlw)
i -Q
and since
400
S (w) = 2 S sin‘l lr (7)) cos (wt)dr (I1-1-15)
Y2 i Y1
- Q0
-+ Q > » +00 -1 -1
S S (w)[g sin™ [r (1)] cos (wT)dT] dw
-Q 41 1
at=1.— — (11-1-16)
2no
A

Again for a signal with flat power spectrum

2

in)
S (w)= (TO'Yl

v, Pq (@) (II-1-17)

and with the dimensionless variables t= QT and u = w/N

1 ca
. - -1

aal =l—g—5 [S sin"l [—E%ELJ cos (ut) dt ] du (II-1-18)

0 0

Since (13)
00
1,886 < S sin_“}' (szn t ) cos(u t)dt <1,982 for |u l<1 (II-1-19)
0

We can write

4,85 <a < 6, 02 (I1-1-20)

Actually we are doing better than with the ideal low-pass filter and we

can replace (I[-1-20) by
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5.21< a < 6,02 (II-1-21)

Thus in this case it does not pay to replace the ideal filter by the optimum
filter (this is expected since (II-1-19) shows that the spectrum of the
clipped signal is almost flat in (- Q, +Q): the main function of the filter

is to remove the frequencies generated outside this interval),

2. Signal differentiation, clipping, and Wiener filtering.

Differentiation of the signal increases the zero-crossing rate at the
clipper input, and therefore one of the factors which determine the amount
of the information available after clipping to recover the signal, Thus we

consider the following scheme (Fig, 1I-3)

xe) | B | A —_][__ 2 | H,) 2(t)

Fig.II-3 Differentiation, Clipping and Wiener Filtering

where Hl(w) = (j w)n (n differentiators) and Hz(w) is the Wiener filter
w
xy, )

H,(w) = W (I1-2-1)
2

Since yl(t) is still Gaussian we have

A |
Ryz('r)— 7 sin ryl('r) & Syz(w) (II-2-2)
From (II-1-4)
Ry ()
1 2

T z 11-2-3
Thus

Sy(m) [2 % 1 2

_ 1 1 _

Y1 Y1
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and

HZ(LLQ) = T ' 5 (HGZMS)

The structure of Hz(w) is better understood when we write

SY (w)
Hy(0) = o— /%.— '5'1—('6)’ H ) (L1-2-6)
b4 Y2

which is a filter with transfer function proportional to Sy’ (w)/Sy (w)
1 2

followed by the inverse of the preemphasis filter, Now by (I-3-15)

v |5, ol 2

-1 1
a =1- — B C) R d w

210 y @

X =00 2
+00 2 2
) Silw) | Hy(w) |
=1 - —— dw (II-2-7)

" 0 C© S (w)

Xy - 00 Y2

Up to here we did not specify Hl(w) and Sx(w). Now we specialize to

H, (o) = (jo)* (11-2-8)
and
s (@) =5 o2p (@) (I1-2-9)

(Gaussian signal with flat power spectrum in (- Q, + Q) and n differentiations

to increase the zero-crossing rate). For this case (II-2-7) becomes

Q
S wznsy'l(w) do
a’l =1 G,%, 0 2 (I1-2-10)
0
(‘ mZn d w
J
0
whers
S (w) 4= 2 sin~lr (r) (I1-2-11)
V2 " 1
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Z 0
UX 2n
A Tl—lg @ cos fwT)dw (I1-2-12)
L 0
Therefore ‘-Q
Q 400 S 2n q
-1 _ 2(2n+l) 2n | 2 Coal ( o® cos (wT) dw
2=t Zn+Z © T sin s (2n+1)
& 0 00 0
-1

cos (wrT )d’r] dw (II-2-11)

or, with the dimensionless quantities u = w/Q (in the first integral),

v = w/Q (in the second), and t =QrT

1 o0
a"l =1 - ii’l’zﬂ_)_f_"g uZn [ Scos (ut) sin_l['ryl(t;n)]dt ] ' du (II-2-12)
0 0
where
l
ryl(t;n) = (2n+l)S v?® cos (vt) dv (II-2-13)
0

0 in (II-2-12) (no differentiation of the signal before clipping)

When we let n
we get
1 o ' 1
at=1.7 S L Scos (ut) sin~t (Eiﬂé.t.)_..)dt] du (I1-2-14)
0 0

a result which checks with (1I-1-18)
The normalized correlation function r_ (t) of the n-th derivative

of the process x(t) can be computed by the 1 following recurrence formula

oy I sin(t) 2n ] 7
ry] (t;n) = (2n+1) L——-t-——=— + —tz [cos(t)mryl(t,nd) ]J (I1-2-15})

which we get after two integration by parts.

Finally since we can write (II-2-12) as
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1 o
9 1Y ! ™
a™t =1 . @g%i};ﬁ S uZﬁL S cosfut) ‘{sin”l [r’yl(t;n) ]
0 0
I -]
-r (tm)+r (t; } dt d I.2-16
g lem) £ xy (n) fae | du )
we get
1 0
a‘l =1 - S uZn Lu?‘nq--(-z-r-‘l?‘:l_-n--ﬁ S cos(ut) { sin"1 [ryl(t;n)]
0 0
=1
-r (t;n)} dt] du (I1-2-17)
Y1

which is more convenient for computatmn since sin~ [r (t,n)] - rY (t, n)

tends more rapidly to zero than sin” [rY (t,n)] itself.
1

The zero-crossing rate at the clipper input is easily found since

yl(t) is Gaussian, and
2 Q0
9% - 2n
R_ (1) = - S w  cos (wT)dw (II-2-18)
1 A
0

shows that the condition R’ (0) 0 is satisfied, For this case the

zero-crossing rate is given by(lo -Section 14-4)

9}
S W2nt2 g

! P !
=z -rYl(O) ==

o
I
=:|.‘3

1
By wea

‘The following table gives the normalized zero-crossing rate

N _ [Zn+1
AT W S F3 (i1-2-20)
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8.0
€.0F
a (dB)
4.0
2.0
O § 1 f |
0.5 0.6 ' 0.7 0.8 0.9 1.0

xl'l
Fig. II-4
Signal-to-mean-square-error ratio for the estimation of the signal from
a set of related zero-crossings vs, the normalized zero-crossing rate
A= %/ 2W (o : differentiation of the signal; + : addition of a Gaussian,

narrow-band process with center frequency W , and bandwidth ?_)_9_.3.90),
m
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(I1-2-17) has been evaluated on a computer,

The results are plotted (dots)

on Fig, II-4 vs, the normalized zero-crossing rate rather than the number

of differentiations, The dashed curve has been drawn merely for convenience.

As long as we consider linear estimation differentiation, although it increases

the zero-crossing rate, does not decrease the mean-squared-error, However

differentiation also decreases the variance of the zero-crossings interval

and therefore the result is not completely surprising.

3. Addition of a narrow band Gaussian process, clipping, and

Wiener filtering.

Another way to increase the zero-crossing rate at the clipper input

is the addition of the sine wave s(t) = A sinQt to the signal x(t) (Fig. II-5),

It is obvious that this technique as well as differentiation leads to a ZC rate

at the clipper input as close to 2W as we wish, Here however the theoretical

investigation would not be so straightforward because we lose the Gaussian

character of the clipper input. Thus we shall consider the addition of a

narrow-band Gaussian process centered about the frequency W.

x(t) /;\ Yl(t) '-—

Yz(t)

Q12

Hz‘(w)

Fig, II-5 Addition of A(t) sin(qt + 6), Clipping, and Wiener Filtering

Now the clipper input

yl(t) = x(t) + A(t) sin (Qt + 6)

where € has uniform distribution in (0,2 7 ) and A(t) has Rayleigh

. R . 2
distribution with parameter © s

(II-3-1)

x(t) + g(t) is Gaussian with mean zero,

variance O‘i + Gz , and autocorrelation function RY (r) = Rx('r) + RS('T )

since x(t) and s(t) are independent.

R ﬁ)xésinwi‘[fyﬁ)]wsy

Z i

Therefore

(w)

1

(I1-3-2)
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with

(11-3-3)

(I1-3-4)

Thus the closeness between the output x(t) of the Wiener filter and the

signal x(t) is given by (I-3-15), i.e.,
to |s_ (@)

00 Y2
where

S (w) \/"—
- __x /2
SXYz(w) ) 2, 2 m

g +0
X s

2
Therefore, with the dimensionless parameter y= o /G)Zc

af'l:l- S w)S (w) dw
I'I+-u

We now specialize to the following case: Sx(w} flat in \m \ <Q,

) 2w
Sx(w) - O.Xﬁ- PQ ((&))

(II-3-5)

(II-3-6)

(I1-3-7)

i.e.,

(I1-3-8)
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and  S_(w) flatin Q- w_ < ol < Qtw, ie.,

2 sin (wOT)

R (ty=o© cos Q7 II-3-9}
R (7) s oot < ({
S(@)=y o2 58 p  (w) . (11-3-10)
s % (.00 Qs wo : -
where we use the notation
= i - < .
pQ’wo(w) 1 if Q-0 < |o|< ot (IT-3-11)

0 otherwise

For this case

Q
al=1. 7-2—-—- S s "N do (I1-3-12)
a“+y) 3 Y2
where
sin QT Sinon
S (w)&> 2 sin”! [ ar_ 'Y Ggw —°°f m] (I1-3-13)
¥, i 1+y

When W, = 0, s(t) =A sin (Qt + 8) where 8 is a random variable with
uniform distribution in (0,27 ) and A a random variable with Rayleigh
distribution. In this case
sin QT
S (o) & 2 sin-l[ Qr
Yo "

(II-3-14)

+Y cosQ T
1+y ]

A periodic component appears in the clipper output. Since this component
is irrelevant to the information we seek from yz(t) it can be eliminated
by an appropriate filter. We shall denote the output of this filter by y;(t).
Now a is given by (II-3-5) with y, replaced by Vg Obviously
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s wy= S w H-3.
xy3( ) XYZ( ) { 15}
(Eg. (II-3-4) shows that Svy(w) is free of 0 -functions). To find
~r2
SY (w) we shall need the following theorem:

3
Theorem, -If a nonlinear device is such that the correlation function of its

output y(t) can be written as some function f(.) of the correlation function

of its input x(t), then for an input sum of a periodic process (whose correla-

: . 2n : .

tion R_(T) has period T = ?T) and a process with continuous power spectrum

(correlation R (1)) independent of the former, i,e.,
[
R (m) = R(r) + R (T) (1I-3-16)

the correlation function of the output of an ideal filter band-stop at the

multiples of the fundamental frequency of the periodic process is given by
(IR (1) + R () ] - £ [R(r) ] (I-3-17)
Proof., We expand the function f(.) in a Taylor series:

£ [RP(T) +R ()] =1 [RP(T) 1+ R_(r) £ [RP(T)] t s (II-3-18)

The Fourier transform of the first term leads to a succession of impulses
in the frequency domainat kQ, (k= 0, +1, iZ. .. ). Therefore if we remove
these impulses by a band-stop filter we are left with the autocorrelation

function (II-3-17). Applying this theorem to (II-3-14) we get

20 (S tyeesaTy ycos QT
Sy, (0 & Ry (1)=& sin (- - ) - sin <"ITT—>J (II-3-19)
Therefore with the dimensionless quantities
a=wo/Q, t=Qr, u=w/0 (II1-3-20)

(I1-3-12) becomes

atot L f fwcos(ut) sin"]’ A )dt mld (1I1-3-21)
Lo Ly (—1+y w (-3-
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and for the case wo =0

1 0 sint +¥Ycos t -l
{ {eos e[ ain™ ( g )i e} a

N I B

L (
= STOZEYY OJ
0

.
[0

[¢]

© C oo,

(I1-3-22)

The process (t) is Gaussian, and R’ (0) = 0 since R’ (0) and
! 1 y X

, RS'(O) both vanish., Therefore the zero-crossinlg. rate is given by

1
x=2 [ _rro) | (II-3-23)
m \/ N |
oD
with -R'' (0) = = S w?S. (w) dw
y m y
1 1
0
9] 0+ W
1 2 2 ]
”ﬁ'[ ‘gw S, (@} do + S w S (w) dw
0 Q-w
(o]
2

=;%{Q3+2%._[(Q+wo)3 - (Q-w0)3 ]}

2
¢ Y
= —,}[93+ a° (3oz+woz)] | (I1-3-24)
Finally
2
o 1y ed

As a check we find at the limits the expected results:
¥ — 0 (no narrow-band process added): A, o 1// 3
¥ — o (narrow-band process alone) and a = 0: N, L

The following is a table of the normalized zero-crossing rate as a function

of the power of the narrow band process for a = 0.
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The numerical results corresponding to (II-3-22) (i.e,, addition
of a sine process) are the + on Fig, 1I-4, We encounter the same problem
as in Section 2: in spite of a zero-crossing rate increase there is no improve-
ment of the estimate of the signal, But the drawback of the technique is also
the same: the variance of the zero—crossihgs interval decreases as the power
of the sine wave increases,

Finally we underline that in both sections we have considered the
linear optimum filter, Nonlinear filtering would obviously give better
performances, However, in the light of the previous results the nonlinear
approach does not seem promising since at a zero-crossing rate close to

2W the quality of the linear estimate is very poor.

4. Mapping of the Signal into the Optimum Process, Clipping, and

Wiener Filte rigg_

The optimum process associated to a bandlimited signal has a
zero-crossing rate equal to (at least) 2W. In the light of the sampling
theorem the transformation into this process might very well be the mapping
we are looking for (by the two previous techniques we can only approach
the rate 2W). Thus we consider the linear estimation of x(t} from the zero-
crossings of its optimum process., The results obtained in I-2 for the
characteristic function of an optimum process however indicates that this
approach leads to serious analytical difficulties which will be outlined here.

We first show that the two problems of optimum linear filtering of

yz(t) to recover x(t) or yl(t) have the same solution (Fig, 1I-6),

X(t) y, (€) -1 v® ¥ (6) x(t)

s Mapping - _J \zﬁfner
er

T gnx, :

Fig, LI-6

(I\’laqsping)"‘1

We have seen in 1-2 that the optimum process can be written as
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o

t K
n =2 T bl (I1-4-1)

=00

We shall presume that we are able to achieve a small mean-squared-error;

then v,(t) is itself optimum and we can write
b4 P

+00 K
fiw =2 2 () EMENO (L-4-2)

If we minimize Eu_yl(t)-frl(t) ] } the following quantity is minized

s l +T ; ~ 2} K - 2
lim »m E{Ly(t)-5y(t) 1°f= E {([xk{ - 1% D) } (11-4-3)
-T
But x,_and X, have the same si nandE{( | - | % \)2} .
k k g K K is also
minimized, Now
+T
Eq (xk-ﬁk)z} = lim S E{ [x(t)-% (£)] 2 } at (II-4-4)

-T
Therefore E {[x(t) - ;c(t)] 2} itself is minimized,
yl(t) is nonstationary and a is given by (I-3-1)i,e.,

+00
hi{t,u)R t,u) d
S (t,u) Y1V2( ) du

a 1 =max]l - ) (1I-4-5)

where h is given by
+00 _
Ryly2 (tl,tz) = S h(tl,u)RYZ(u,tz) du (I1-4-6)
-0
Thus the problem reduces to finding RYle(tl’tZ) and RYZ(tl,tz).
By (I-1-15)

08
i -1 Vi
R (tsgt") = m e S Way e —} d(&)z (H=4-—7)
YLYZ " 4 ﬁam & LU(.U}‘ _.wlm() &
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where
, +00 5 1 2
@Y1=§xRea1 E_w[1+jﬁ(-1)*‘wkl 1(““2’)] (1I-4-8)
o = Ty Loy et + 0y ¥(ty) ] (11-4-9)
Thus
1 -1
g t 2, k @
+ % Real 5—1 kn (14 = (-1 @ F) (=) _}» " dw
= o) =
f’+w ~
= ‘ﬁl‘ 3 “’21 1Ry (b -tp) 0y 3 (wyit))
- 00
C’i“’g r 5 @ 2, k “1?; 3
+exp(-—2———)LRea1-quH [l+j\/ﬁ- (-1) mlel (T)J O}dwz
= =00 :
222
+00 ) W Py (t,)
1 -1 2¥1't2
=2R_(t.-t.)f (O3t )-— )JReal = j (1)<r¢(t)F( )
(k,-t ) (Ost,) w_{owzexp(—z— el__wfz- 1 [11—7——
52 ng( CJzw?_ ‘”1?2
+oZ “’z “’1 (t, 1 F (——r—_)]k;?l [1+3\/—( 1o <92 Ve (t ) F) (——-2————) ]
(n-4-10)

k= -00
The second term cannot be further reduced. Ry (tl,tz) is given by
2

+00

DR (¢ ‘c‘:--1 ((’ww)'lD'é {w,, w5t , 1t )dw, dw
Virr 2t ;‘ZJJ‘}.Z yl‘ 1?7201 721 T2
-5

) For convenience we drop the arguments of the characteristic functions
as well as the two parameters of the hypergeometric function.
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where D is the appropriate differential operator, With D:d/d(tI -_tz)

we get a first term
Lt -tp) £ (0,05t t5) (I1-4-12)
A 11 X s

Again the second term cannot be put in a nice form,

5., Mapping of the signal into an optimum process, clipping, and estimation

by means of a computer algorithm.

It is well-known from the sampling theorem that 4WT samples in an
interval (-T,+T) define a signal (deterministic or random) bandlimited to
(-W, +W)., When the Fourier transform of the signal exists a theorem due
to Titchmarsh”) proves that when all zeros of the complex function

x7(0) = 2— S x(w) 39 %a 8 =t+jT (II-5-1)

-
are real the zero-crossing rate of x(t) is equal to 2W, and the signal is
completely defined (except for a scale factor) by its zero-crossings zZ) ¢
o0

x(t)=x(0) T (-z5), (II-5-2)
k=l 2k

On the other hand Polya' (8 and Appendix A)

of the signal alternate in sign, e.g,

shows that when the samples

sen | x(o5 )% (%) ] =1 for an x (-5-3)

x (t) has one zero-crossings in each Nyquist interval, This is more than
required by Titchmarsh's theorem, but it is a very useful property when
the zero-crossings are known in a finite time interval only. ‘

Do these results hold for a bandlimited stochastic process? Let
us consider the following argument. Since the signal is bandlimited we
can write

+o0
x (t) = Z %1 d!k(t) (II-5-4)

in the mean-square sense, Or for T — o
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2WT
x(t) = % x, V() for |t < T (II-5-5)
k=-2WT -

The zero-crossings z,  determine the samples Xy if and only if the

zero-crossings rate iskequal to 2W( for instance if x(t) has one zero-crossings
in each Nyquist interval), indeed
ZWT
X % W () =0 &= -2WT,..., 2WT (I1-5-6)
=-2WT
(where T is assumed large) is a set of 4 WT equations in 4WT unknowns
(the ratios xk/ xo). Therefore if the conditiox’; is satisfied the zero-crossings
define the process in the mean-square sense .
Therefore the optimum process defined in I-2 is completely defined
by its zero-crossings., If x(t) has a zero-crossing rate smaller than 2W
the mapping into an optimum signal is straightforward: sample x(t), change
the sign where necessary to satisfy the condition of Polya's theorem and
low-pass filter to get a function with the same bandwidth as x(t), l
Previously we designed an algorithm to find an estimate of an )
1 9 .

We recall the principle of the algorithm, Since it is usual for a communication

optimum signal in an interval of time from the zero-crossings in that interva

engineer to expand in a Fourier series a signal truncated in time we write
the estimate

+N Jkw t

o

yl(t) = L CN-ke

(o, =1 /T; ltl< T) (I1-5-7)
k=-N

Since the signal is optimum the interval contains 4WT zeros; from the
zero-crossings location we are able to compute the coefficients in (II-5-7)
if we let N = 2WT and require that yl(t) and frl(t) have the same zeros.
With the change of variable" |

q=exp (] wot) (I1-5-8)

% We ignore the underlying mathematical problems

* Since lt ‘ <T and w, = /T this is a one-to-one mapping between the

real variable t and the complex variable q,
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we can write

%;?@ (a-q.) = %‘;N -uﬁmCNm“‘ q e (f-5-9)
i=l . k=-N 0o

where q is the value taken by q at the i-th zero-crossings. From (II-5-9)

we derive the 2N equations

2N C

1

L g, = -

e o

2N C

2

PN q.9. = + (I1-5-10)
i=l,j>i 7 o

2N C3

z qquqk = - Kol

i=l, k>j>i 0

etc,
We note that the algorithm determined §rl(t) except for a scale factor,
An ambiguity of sign also exists(+). In general the algorithm will give a
complex approximation, but experience shows that the imaginary part is

small (some 5 percent of the real part) and therefore we finally use the

estimate

+IN
y.(t) =Real ¥ C .exp(j)kwt) for |t|< T (I1-5-11)
1 k-:-'N N"k 0 bl
The scale-and-sign factor is defined by (I-3-19), i.e.,
o +T
5 vy (t)y, () dt

A= 2L (I1-5-12)
+T

S §,%() at

-T

and the signal-to-mean-square -error ratio by (I-3-20)

| 2
i [(’t yy(8) §,(t) at |
a =1 il (I1-5-13)
!+T +T
gyf(t) dt 5 ?ff(t) dt
=T =T

* However for the general bandlimited signal the ambiguity of "sign
disappears because we have to transmit the samples sign in addition

to the associated optimum signal,
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In our Master's thesis we considered intervals of time with 6 zero-crossings
and reached values of a of some 20 dB. In recent investigations increasing
the number of zeros to 30, using double precision in the computation, and
using a guard time band at the ends of the interval (in other words by
computing (II-5-13) for the central part of the interval) we were able to reach
33 dB(+) . These results will be described in detail in chapter 1V,

To close this section we describe closely related results obtained by

Voelcker(14). The starting point is the analytic signal:

xylt) = x(t) + () = | xy(t) | exp [§8 ()]
Q
- .1}7 g X(w) eIt d o (II-5-14)

A"

o

where ¥(t) and X(w) are the Hilbert and Fourier transform of x(t)

respectively:
400
¥t) = ﬁl’S x(0) g+ (I1-5-15)
- Q0
+c0
X(w) = S x(r) e 9T ar (I1-5-16)
-0
The function
0
xv(e) = El- S X(w) ejwedw (6=t+jT) (IL-5-17)
o

is free of singularities in the finite complex plane for finite energy signals
(an entire function), At infinity such a function is of the order of

exp(k lG l }, k some constant,

xy(8) = 0 [explic |8))] _ (L1-5-18)

In this section we have considered estimation of an optimum process
from itg zeros, It is easy to show, since in this context the sign of the
samples of x(t) itself are exactly known, that a is practically the same
for x{t} and Yl(t) if T is large; W
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Next we consider the integral

( dnxg®) 44

=) 3o TR (L-5-19)
C

where C is the infinite circle. Eaquation (II-5-18) shows that this integral

vanishes. Therefore the sum of the residues at the poles of the integrand

is zero. This yields

d@(t) d &(t) .5 "k Tk + 3 k k I-5-20
\' t=0 k tkz + Tﬁ X (t-tk)z+ rkz ( )

din ‘x (t)l - din |x (t)l r, (t-t, )
dy - L dtV ] I Zktk 7 t X k& x Y (II-5-21)

t=0 k L k (t-tk) Ty
where Bk = t, + jT, is the position of the k-th zero of xV(e) and 1
its order. (II-5-20) and (II-5-21) show that in the bandlimited case the envelope
and phase (and therefore the signal x(t) = ]xv(t) l cos &(t) itself) are deter-
mined by the zeros of the analytic signal. .
At this point we note that the function xT(e) considered by Titchmarsh

is also entire since

A |
‘xT(Q)lZi(Z‘ﬁ’)—ZS | %(w) | 2 do 5e_sz dw
0 S

(II-5-22)
E sinh(2QT)
an T

where E is the signal energy. Therefore (II-5-20 and 21) are applicable to
X.T( 8) and as already said the zeros of xT(e) define x(t) completely, The
advantage of XT(G) is that the real zeros of the entire function are the
zero-crossings of the signal (which, in general, is not true for the analytic
signal Xy (€) ); zero-crossings are directly o
the analytic signal are not physical ouantities (m find these zeros Voelcker
proposes the factorization of the Fourier series representation of x;v( g) J.
To find the signal from its zero-crossings Voelcker has proposed a nonlinear

device called "Real-Zero Interpolator® ., We shall describe the mathematics
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behind the device . The purpose of the real-zero interpolator is to recover
a signal which has real zeros of order one only {and more generally the part
of the signal which corresponds to its real zeros). It is therefore an inter-
esting alternative to the computer algorithm we shall use in this work.

Applying (II-5-20 and 21) to x..(t) and ignoring the constant terms we get(ﬂ

§(t)= lim <% 3 ——T*z'——z dt
, T0o k (t-tk) + 1T
1, %
=lim £ tan " ( = ) (T>0) (II-5-23)
T—0o k

where 2z, is the k-th zero-crossing of the signal, Thus

%(.E)_; m s b (t-z, ) (I1-5-24)
and
din | x.(t)| 1
= T (t-z)
a0 T U

(II-5-25)
= (a8 (f)/dt) |
Thus from the knowledge of the zero-crossings we generate the derivative

of the phase, A device which approximates the Hilbert transform gives the
derivative of the logarithm of the envelope. An integrator followed by a
nonlinear device with exponential characteristic gives the envelope of the
signal. On the other hand (II-5-24) shows that % (t) increases by m at

each zero-crossing therefore x(t) itself can be recovered by multiplication

of the envelope by the clipped version of x(t) (known from the zero-crossings).

(

while however going in the direction opposite to the purpose here, namely

Vioelcker and recently Sekey 15) have shown the feasibility of this technique,

* (I1-5-20) shows that i%tﬁ-)— = 0 everywhere except at the position of

a zero-crossing. The limiting process is necessary to get the amplitude
of the impulses of the phase derivative at these points.
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the transmission of 2-levels signals with a bandwidth saving (and consequently

an increased vulnerability to noise}.

6. Conclusions.

In II-2 and 1I-3 we have seen that the estimate of a signal derived
from a set of related zero-crossings cannot be improved by two linear
techniques, In II-4 we have seen that optimum linear filtering of the random
square wave which carries the zero-crossings of the optimum process
related to the signal leads to analytical problems. By contrast the approach
considered in II-5 gives excellent results, However in this case we could
not derive an expression for the signal-to-mean-square-error-ratio vs T
when the signal to be transmitted is random (such an expression can be derived

for the waveform sin(t)/t (9-p. 27)).

Thus iﬁ the following chapters we shall consider the transmission
of a bandlimited process by means of its associated optimum process, We
underline that the failure encountered in II-3 and II-4 does not mean differ-
entiation or addition of a narrow-band gaussian process are not worth to be
considered; indeed we have investigated linear filtering only. Thus further
research in this direction should deal with nonlinear filtering. We think
that the success of the mapping and algorithm technique is essentially related

to the nonlinear nature of the transformations involved.
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CHAPTER III
PROPERTIES OF THE TRANSMISSION OF A RANDOM SQUARE WAVE.

We investigate here the second point pertinent to the transmission
of a signal by means of a related set of zero-crossings. After clipping of
the optimum signal we have to transmit a random rectangular wave; does
this result in an advantage at the transmission point of view?

We shall first consider the case B/W- =, where B is the channel
bandwidth. Next we shall take the effect of bandwidth into account, We
shall assume the channel noise n(t) Gaussian, zero-mean, additive,
independent of the signal.

To estimate yz(t)(+) from the received signal we consider the
following scheme (Fig. III-1): an ideal clipper followed by an amplifier
with gain properly chosen to minimize the mean-squared-error. This
scheme has the advantage of eliminating a great deal of noise in a simple

way.

y,(t) y3(®) r | vat® 7,(t)
——s CHANNEL 1 T - A |

RANDOM SQUARE WAVE
TRANSMISSION

This is not the best nonlinear receiver however, but it exhibits a very

n(t)
Figure III-1

interesting property. We shall not attempt to optimize the structure in
some way (for instance by a Wiener filter between channel and clipper).
because of the analytical difficulties involved.

By (I-3-4)  we have
a -mln max [l - Y (tl,tZ)J (III-1)

Where for the sake of generahty we have assumed yz(t) and n(t) non-station

(++)
ary.

+) To be consistent with previous chapter the random square wave is
denoted by yZ(t) and has fixed unit amplitude.

(++) Again we note however that !yz(t)l = 1 and E {n(t)} =
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1. Asymptotic properties (B/W= o)

As ;B; increases the impulse response of the channel tends to
8(t) and "

y3(t) = y,(t) + n(t) (ITII-1-1)
From

y4(t) = jlﬁ- '{.+°° w-l exp {jwl:yz(t) + n(t)]} dw (III-1-2)

Y

Ry,v i, £2) ) 3%'?' f:‘”él E {Vz('ﬁ)exl’[jw 2 (t, ):] } E {eXP[jwzn(tz )]} dw,

fe 08, (wy.wpity,ty)
= -i[ -1 2 5 (w,t,)d
ml Y 3w, _ o a2t My
- wy = 0
(I1I-1-3)
Let us denote by Pij(tl’tz) (i, j=+, -) the transition probabilities of the

random square wave yz(t), e.g.

P_I__(tl,tz) = l{yz(tl) =+ 1 and yz(tz) CR 1] (III-1-4)
etc.

The density function of the optimum process Yl(t) is symmetrical, there-

fore yz(t) is zero-mean since

P, (t;,t,) + P+_(t-1,t2) = P[yz(tl) =+1|=1/2 (I1I-1-5)

P_,(t;,t,) + P__(t),t,) = P;yz(tl) =-1f=1/2 (111-1-6)

P++(t1,t2) + P_+(tl,t2) = P yz(tz) =+1]|=1/2 (I11-1-7)

el _.‘ -

P+_(t1,t2) + P__(t)st,) = Ply,lt,)=-11= 1/2 (II1-1-8)
Therefore

P_‘},m{t}_gﬁz} = pm+{tlst2’) (I1I-1-9)
and

P, (t;,t,) = P__(t;,¢,) (IT1-1-10)
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The correlation function of yz(t) is

R, (tut)) = P +P _-P,_-P,
2
=AUP, - P )
= 4P, (t,t,) - 1 (II-1-11)

Therefore the P's can be expressed in terms of the correlation function

_ 1 '
P, (t]»t,) = z[l + Ryz(tl,tz)] (I11-1-12)

_ 1
P+_(tl.t2) = Z[l - Ryz(tl,tz)J (III-1-13)
And the characteristic function of yz(t) can be written as

éyz(‘”r‘”z‘tl'tz) = E{e"pE‘ <‘”1V2(t1) + ‘”2”2“2))]} |

oy +w,) -iwy + w,)
= P, (t),t,) e L P_(tpt)e & °

iwy - wp) miw) - wp)
+ P, (t),t,) e + P_(t),t,) e

= 2P++(tl,t2) cos (w1 + wz) + 2P+_(tl,t2) COSA(UJI - wz)

(III-1-14)
"By (III-1-12) and (III-1-13)
éyz(wl.wz;tl,tz) = cos (u)l) cos (wz)
« R (tl,tz) sin (wl) sin (wz) (I11-1-15)

¥,
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Therefore
uZ
R (t,,t,) - " TE Y
_ Vo 1'"2 + sin (u) ac t:2
R, (t),t,) = [ e du (ITI-1-16)
274 i Ym0 u
where ac(tz) is the channel signal-to-noise ratio at time ts
_ -2
aC(tZ) - on (tz) (HI"I"l?)
and by Parseval's formula
2
— A (ty)) _u
R (t,st,) = R (¢ t)JZrczeEdu (II-1-18)
H - ’ oy e
YoV4 1772 Y, 1727 A m N
When a - ®
c
R 1
Vo Vyltysts) = Ryz(tl.tz) (I11-1-19)

as expected since in this case y4(t) - yz(t).

From (III-1) and (III-1-17) we get finally the performance of the system

NE (t25
2 2 ¢
a = max min 1 -R (tl,t ) =1 r

t t

uZ

- 2
e Tdu] ( (I11-1-20)
1 2

For practical considerations 1:2 - tl is constant. On the other hand maxi-
mization of a over tz would require knowledge of ac(t). The best choice if

the channel signal-to-noise ratio is not measured is tl =t,. Therefore

Jagmy w? 1
a,(tl)ml -1 - L 2z !‘Jac le %‘—du} (I11-1-21)
e}

Or with the Q-function defined as
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2
© -2
Qx) = __1___ r e % du (I1I-1-22)
Jem  x

oty = 1= 1= ag(amy) |

40 (Jac(tl) ) El -0 W ) ] (III-1-23)

[1 - 20 <A/ac(tl$>‘]2
aQ(tl) = a(t) - 1 = (I11-1-24)

sa(/agip) 1 - al/agin) ]

When x = »

2
- X
Q(x) ~—_—1._—— e z (1II-1-25)
2T x

Thus for high channel signal-to-noise ratio

ac(tl)
-1 JO—— 4 - 2
a(t;) = 4QlV/a (t,) ) » ———————e (I1I-1-26)

and the output signal-to-noise ratio behaves asymptotically as

a (t,)
1
J2ma (t,) <
a(t;) = alt;) = < . 2 (III-1-27)

Therefore we get a very fast improvement (essentialfy exponential) of the
output signal-to-noise ratio with the channel signal-to-noise ratio. In
Chapter IV it will be shown that this property remains true for the complete
communication system.

For purpose of comparison with this result we shall consider the

performance for optimum linear filtering of the channel output. From
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(I-3-9 and 11)

+w@
a..l L J‘_m h(tl,u) Ry2y3( l,u) du
Ry'z(tl’tl)
with h given by
+

Yzy3(t1,t) f h(tl.u)Ry3(u,t2)du

Since yz(t) and n(t) are independent and zero-mean
t,»t
Yzy3(t1st ) R 2( 1’ 2)
Ry3(t1,t2) = Ryz(tl,tz) + Rn(tl,tz)
therefore h is solution of the integral equation
+o r
Ry (byt) = f_wh(tl,u)LRYZ(u,tZ) + R (u,t,) | du

and

40
j h(t),u) R (t),u) du
- 2

Ryz(tl’tl)

We shall consider the special case (generalisation of a_ = SY

Then

Ryz(tptz} = [z, +a’ :”m h(t;,u) (u t,) du

(I1I-1-28)

(I1I-1-29)

(III-1-30)

(III-1-31)

(111-1-32)

(III-1-33)

2(w)/Sn(w) )

(III-1-34)

(I11-1-35)
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and
.1 - i - r + g”l:f ‘-T‘l = r}; Log ft sTﬂl (TIT-1- 341
a - s 7 L: "% \"IIJ = R -'C‘\“lr'-j VRELT & T ARy
Therefore
a = a (I11-1-37)
o c

i.e. a noise with correlation function given by (III-1-34) is the worse which
can be encountered since the optimum linear filter cannot improve the
signal-to-noise ratio. (III-1-24) which has been derived for nonlinear
"filtering' is exact here since we can let B = @ without getting an infinite
amount of noise in the receiver. As we can see on Fig. III-2 the point
where our simple nonlinear receiver behaves better than the Wiener filter
in the worse type of noise corresponds to a channel signal-to-noise ratio
of 1.5 dB. For low channel signal-to-noise ratio the scheme is worse by
a factor 2/m. However, some improvement are possible if we allow a
more complex receiver structure, a Wiener filter followed by the clipper
for instance.

Finally it is worthwhile to mention that (III-1-24) only depends
on the total amount of noise which gets into the receiver and not on its
spectral distribution; also it is actually independent of the statistics of the
signal from which the random square wave yz(t) is derived. If they are

known one might take advantage of these to improve the performance of the

receiver,
_sinwT . . .
2. Effect of the channel HC(w) = ——g— on clipped optimum signals

In general the channel output can be written

foo
y4lt) = f h_(t - Thy, (T)dT + nt) (111-2-1)

- 0B

o 21 (+)
When we specialize to hc(i‘:) = ?fp"l‘(t) we get

(%)Ha(w} = wﬁ%m(%—llﬂe This channel although a nonphysical one has one of the
features of an actual channel, namely it is Iifgé: perfectly bandlimited, Iis
bandwidth can be defined, for instance, by f HCZ (w) dw = 47w B which leads

o 00
to B = 1/4T. The noise power density is—% [sin (0 T)/w T} 2 and the noise

power is cr%1 = Ny B if we assume white noise at the input.
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t+T
1

yalt) === [ y,(T)dT +n(t)= y_(t) + n(t) (ILI-2-2)

3 T ) :
On the other hand

+00 jo 5 [y, (t,) + n(t,)]
_ 1 -1 22 2
Yzy4(t t)) = 5 [wwz E;yz(tl)e dw ,

- 00 1

4o 9% 2 2
L a3 Y2Ve _“n®2
T 2 w w.= 08 2 do

1 2

(III-2-3)
where we denote by yc(t) the channel output in the noise-free conditions.
We shall make the following hypothesis: for all t the random square
(4,

wave process yz(t) has only one zero-crossing in the time interval (t-T,t+T

Then if a zero-crossing occurs at t+ 7 (-T < 7 < T) we have

v (t) = =% Sgn[yz(t-T)]
= I y,(t-T) (III-2-4)
otherwise
Y (t) = y,o(t-T) = y,(t) (III-2-5)

Let us denote by pij"(tl’tz + 7)d T (i, j= +, -) the probability densities defined

by the following

P, dr =P ;Yé(tl) = +1 and yz(t) has a downward zero-crossing
| | between tz + T and t2-+ T+ d'r$ (III-2-6)
p++d-r . Piyz(tl) = 41 and yz(t) has an upward zero-crossing
betweent, +7 and t, + 7 + dTé ' (III-2-7)

{++) Since yz(t) is the clipped version of an optimum process there is o‘ny'
one zero-crossing in each Nyquist interval. Therefore the hypothesz.s is

true for each Nyquwt interval (k/ 2W, (k+1)/ 2W) when t is in ( + T, % -T}.

If t belongs to (—x ZW 2}\;, + T) or (55— ;:;1 - T, “’E;z\%]‘) we note that the hypothesis

will not be true (and this will not happen for all these values of t) if the
interval between zero-crossings of 2 successive Nyquist interwvals is small-
er than 2T. Anticipating experimental results which will be described in
chapter IV we quote that for B=5W (2T=1/10W) this probability is already

as small as . 0l, For B=2, 5W the probability is . 04.
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and similarly for P_, and p . Then
YoV, © Eje .
. T
+T J[wl+w2——T] J[wl—wz——T—]

il
s
_I;U

®
+

. T
. K [o) - @, —F] J [0+, 7] q
Pry --
j("ol + wz) “j(wl +w 2)
+ P++O © + P--O e
j(wl 'wz) "j(wl wz)
+ P e + P_+0 e (I11-2-8)

where

p++o = P Yz(tl) = 4], Yz(tz) = +1, and no zero-crossing occurs in

o,

in

ty - T, E,+ T)% (III-2-9)

etc,
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Since each realization of an optimum process has been multiplied by

the random variable Z ( 1 with probability 1/2) we have complete symmetry

P, =P, (LII-2-10)
Ppy =P__ (lI-2-11)
P, =P 4o (LI-2-12)
Poo=P. o (I1I-2-13)

On the other hand
T
S p,, dT+ S p,_dr=P { yz(tl) = 1, y,(t;) = +1, and
-T o]
y,(t) has a zero-crossing in (tZ-T,t2+T)}

=Pii-Prio (HI-2-14)
o T
S Py dat + S p++d’r = P{ yz(tl) = 41, yz(tz) = -1, and
-T o
yz(t) has a zero-crossing in (tZ-T, t2+T) }
=P, - P+-o , (III-2-15)
Therefore
4T
_ } T T
$ Y¥e =2 S [p+_ cos (wl+w2T) + p,4cO8 (u)l-wz T) ] dr
-T
o T
+2 [P++=(S Py, drt S p+_dT)]cos (wtw,)
-T o
0 T
+2 [P%-(\S p, dr+ J( pyy dT) Jeos (@) -w,) (I1-2-16)

-T o
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and
R +T
| Y2¥c ‘I -2 . T
l o, J =-2 ) (Py_-pyylsinle; o) dT
- w, =0 -T
1
, o T
o A
-2 [_(P -P, )+ S (py_-py ) AT - S (P, _-p, ) dT | sin (w,) (LI-2-17)
-T °
Now
szz
+T . T n 2
R 2 7 r +o sin(w, m) = — .
Y2Y4(t1,t2) =7 y (P+_"P++) L —'—03-2-:——-6 dwz —\ dr
Y -00
o T
2
t |l Ppe-Pot ‘S (Py_-Pyy) dT - S (Py_-Pyy) dT] .
-T 2 o
c 24
+oo . n 2
- sin(w. =
5 ‘e 2 d w (I1I-2-18)
w5 2
-00
By Parseval's formla and (II-1-12 and 13) we get
T u2
\/’i . r -TE-n A A
Ry2y4(tl’tf =2, = { 5 (p+_-p++) [5 e du JdT
_T [o)
; ' 5
(. t5) o T ~ u
[ -2 +\ yar- (o >d¢75ne'7du
Fl-vmz—— " ) P+.Pyy S Py "Pig J
-T ° (III-2-19)

i,e., the cross-orrelation function of channel input and output is completely

defined by the 1tocorrelation function of the random square wave and the two

quantities P, and Pyge To check (III-2-19) we let T — 0: the first term

vanishes as il as the last part of the second and

. 1 uz

|2 o_ 7z

taty) = R(t),t = 11-2-20

Ryzf 1* 2) YZ( 1 Z)’\/ﬁ 5 n e du,' ( )
o
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i.e., as expected, the result found for the zero time-delay channel investigated

in section 1 (equation II1-1-18)., On the other hand if we let o, 0

! T
Ry2y4(tl’t2) "2 - S (p,_-p,)dr + 5 (P, _-pyldr
-T (o)
Ryz(tl,tz) o T -
+ —— S Py _-pyy) drT - S (Py_-py ) drT |
=T (o}
= Ryz(tl,tz) (111-2-21)

as expected since when the channel is noise free there is no zero-crossing
displacement (with the hypothesis of at most one zero-crossing in any time
interval of width 2T),

To go further we must find the two quantities Py and Py Since

yz(t) is the clipped version of the optimum process yl(t) we can obviously

write
p+_d'r = P{ yl(tl) >0, and yl(t) has a downward zero-crossing
between t, +T and t, +7 +dT7 [, and similarly for p+?_. For convenience
. Tdyp(t
we shall write Xy = yl(tl), X,= Y, (tz-‘r ), and X3 :L—%t—)——- ot 4 .
- - 2
Then(lz pp. 190-191)
o0 o) : , A
Py = - S dx1 S x3f(x1, 0,x3) dx3 (II-2-22)
xl= [e) . x3: =00
0
o0
Ppy = + S dxl S x3f(x1, 0,x3) dx3 (I11-2-23)
Xl-‘- (o} }%= o}

Except for gaussian processes these quantities cannot be derived at the
present time., Thus we shall derive Py_ and Py, as if yl(t) was Gaussian,
with autocorrelation function and variance given by (I-2-33 and 35). Shortly
we shall be able to quote a result which shows to what extent this is justified.
With this hypothesis TR and xg have joint charac?eristic function

_ 1,2 2,2 2, .2 2 ) ]
§ = exp L-7 (0‘10)1 t0, w,t 05 w3+ZR1zwlm2+2R13wiw3+2RZ3wzw3) (II1-2-24)
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{We shall use the characteristic function rather than the density
function itself to avoid inversion of a 3x3 matrix), In (III-2-24) the

coefficients are given by

2 2 . 2
o) = cxfl-ﬁ—sm (tl)]

2 2 .2
o, = ox[l - = sin"(t,+71) ]

5 2 sin(t2+'r -tl) 2
Rlz.—.Ryl(tl,t2+'r) = 0 L(l - 7'1') (t2+'r ~ tlT + Zcos (t2+'r ) cos(tl)]

R13=RY /(t +T)—-

s (LII-2-25)

(t2+'r -tl)cos(t2+‘r -tl)-sin(tz-!-'r -tl)

27, 2
-0 0Z[0-2)
b n‘ Z
(47 - t))

- ;2;— sin(tz-l-‘r) cos (tl) :\

R,y=R__ s(t,+7, t

N 2 2 .
vy, 2+’I‘) = -0, Qg sm(t2+'r ) cos (thT )

2 _ 2[ 2 ]
03_Rylzyll(t +'r, t +'r)— Q o (1-—)-3-+—51n (t2+'r)

For convenience we have dropped () in these expressions. Thus in the

following each time we write t it actually means Qt. Now for bandwidth

expansion factor of, say,at least 2.5
2.5W<B = (4T)" (I11-2-26)
and

alr] < ny/s _ (111-2-27)

we can use the approximation

sin{QT )~ QT (I11-2-28)

cos (Qr) ~ 1 - —i-%i}- (IlI-2-29)
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On the other hand there is no time delay in the system, therefore we

let t.=t, in {III-1) and actually we need p+-€tl’tl+T } and p++(t1,tl+T IR

2 27 2 .2 ]
1 OXLl -F sin (tl)

Q
i

02 = oi 'l:l -2 sin®(t)) - 57 sin (t,) cos (tl)]
G§=Q2 2 [(1--—)3-4-2 sin (t)+—’rs1n(t ) cos (t)]
R, =021 - Z sin®(t))- 7 2 sin(t)) cos(t,) 1 (111-2-30)

R.13 =Q 0}2; g- -2—s1n(t ) cos(t )= Tl_(l--——) -3-+ 2 cos (t ) ]f
R23 = -0 0}2( [%— sin (tl) cos (tl) + 'ré-[cosz(tl)-sinz(tl) ]]

Now (LII-2-22) becomes

Py =- (50 S S SSS @(u‘l,wz.w3)e-j(u’:l-xl+w3x3)dwldw2dw3dxldx3

"OX ==00 =00 -

(L1I-2-31)
Integrating over w, we get
. 2 ' . © =jlonx tw,x,)
1 1 O X TO3%3
— 1 X
Py_ = - ‘Tﬂ) —————-G Nex S S SS X,€ doy dw3dx1 dx3 .
2 X, 50 X,=-00 =00
1 3 -
z 2
R R
- 2 Ry 2 Ras Ri2R23
BXP{”Z‘L(% =)oy Fl0g- =T ) oy "*"Z(Ria —z Jo @ 3]5

Q
A

Q
(o8]

72 (I11-2-32)
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or with the following notations
RZ
2 2 23
A- =0 - II1-2-33
5 T ( )
2
R 02 -R, ,R
B = 13 2 12- 23 (I1I-2-34)
2 42 2
o 0% .
2 73 "Ra3 ,
| = P12 Res
2 13 oy
2 2 BIZ. 2
c™ = (“1 - ) - > (I11I-2-35)
°2 ;2 Bas
3 02
2
i |
o= ) =" xexp[J(wx-!-wx)]
P+ am 62 K x1=o x3=-oo -0 3 33
exp {-3[CP0f+ A% (Boj+o )} do dodx dx, (II1-2-36)
Integrating over w 3 we get A
1 2 1 00 o) +00 xz C2w2
pt- = -(5r) Ac, f_ J ) J xgexp (- =) expl-—5 ERSLY
X 50 X3%-0 - ZAdw &
1 1‘3"3 (1I1-2-37)
Integrating over w ; we get
2 2
0 ) X (x,~-Bx._)
= 1 3 1 3
p,_ - 3 f f X, exp( 2)exp R dxldx
%3% =00 X O 2A 2C
(21r) g AC

(111-2-38)

3

Bx,)]




Integrating over X we get
e
- 1 \
Py = - 3F5 K 3 xzexp \ -
2 x3:-00
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From (III-2-23) we get immediately

*3

2

[W8)

B
“;2) Q(- g x3) dx;

0 2
_ 1 ( *3 B
Pyt = * 2W0,E ‘S X3 exp ( Sh2 ) Q(- zx3) dx;

We can check these results in the following way

2(p+_+p++) dt=P iyl(t) has a zero-crossing between

dr
2m GZK

On the other hand Rice gives for this probability

+o0

t,+T and ¢t +T+d’T‘}

1 1
) Y
OS x4exp (-Zz) Q
00 X;Z:,'
Sl (- 2) ey

ar S |x3 | £(0,%5) dx,

=00

where f is the joint density of X, and X33 we write it down at once:

f(XZ’X3) = 1 exp
; RZ
2T 0 : 1. 23
203/ 1=
N 0’2 0’3

where the parameters are given by (III-2-30),

2
%2
=32
o)

(48]

=2

(12-p.190)

2
Ry L3
KXy T ——
3

Q

g

Therefore

(II1-2-39)

(LII-2-40)

(-8 x3) + QB x,) ] dxg (LI-241)"

(ILI-2-42)

(I1I-2-43)

(LL1-2 -44)
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2
3

If we use this expression in (III-2-43) we get (III-2-42).
(IlI-2-42) gives us a relation between p,_ and p,,, namely

T2
A 1T 23

c
3
+ P = = M e (IH-2-46)
Pr- 7 P47 270, 2 m )
Going back to (III-2-38) we can write %2
1
T2 2.2
, 1 a 2C A°B® -1
P+_'P++" 3 f (1 + > ) Xm.
Z *17°
(2m)" 0,AC
N S A%g® ' _a%p % \2
f”’°° L o 2A° c? T3 %1+ a%B?
- 3 2 dx
X, = -0 Cc 3
3
2 2 -1
1 A%p . A%g? S b (P'AZBz )
=2C2(1+2)fxe2C2CdX
Tog c c %70 ! | 1
2
- _AB 1
2 1+-A°B
2
C
and from (III-2-35 through 37) we get:
‘ 2
b ip = T2 R13-RyaRo3
+- " Pit 2"“’22 /62 2 o2 (1I1-2-52)
1 2 "1z :

There is no time delay thus we let tl = t2=t. From (III-2-30) we get

(neglecting the terms of order higher than one)

L2 _ 4 4 . 2 2
o“z R13 ”RIZRZS“Q(TX‘?;—;Z, gin t cos t -

(1-% sin’t) [(1-

ERLY

) é‘ +%ZTF sin?‘t]z
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_ 4 2 4 . 2
= -0 o -—3-(1--;) (1 + p sin't ) (II1-2-53)
and
-2 2 2 .2 -1 4 sintcost
UZ - 0—x (1 - - sin t) (1 + 7T - 2 ) (IH— 2-54)

1-"2- sin t
™

To evaluate the square root we must keep the terms up to the order two; from
(II1-2-25) we get

2

2 4 2 , 2 2 . T . 2
o {(1'."- sin"t) [1-“_ (sint + Tcost - sint)’]

o

2 2
o, Ry

2 2
-[(1-4:_'-)(1--16—)+§ (coszt- T sin t cost - 12— coszt) ]2}

=¢x 2{(1-; smt)[— sm2t+ (1-—-)]-—4— smzt cost}

2
™
4 21 2 4 . 2
=0T 3(1-w)(1+-n' sin't)
or
2 2 2 2 1 2 4 . 2
.\/Gl o, R/, =0 |T|\/'§(l-;)(l+; sin t) (III-2-55)

4 2 ,
As a check we can see that the coefficient of ¢ <7 is always positive as

expected since we have to take the square root. Now (III-2-52) becomes

-(1--)(1+- %t)
WJ i (1+a7= 4 2indt cos L) gon r  (ImI-2-56)

P "P
+- o l-f;smzs’lt 1 -331n Qt

Now we can return to (III-2-19). We shall consider two cases. For

low channel signal-to-noise ratio ( o >1)
2 ¢ tT 0
R £, t) z,\/: { - o
yzy4( ) ™ f“T (p+- p++) To dr + | f (p+_ '*p++)d"?'
n -T

T
- (p,_-p ) dT7 ] "fj' }*’«jf %
0 n

n

(I1I- 2-57)
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Then by (III-2-56)

C el 2[1 . J'—%(l-%)(u-‘-’;sin‘zm .
Lty = L /.__ ; (I1I-2-
Ya¥e L o VT “b (1 - = sin®qt)

n

where

b= B (I1II-2-59)
W

is the bandwidth expansion factor for optimum signals, By (III-1) we get

-1 { 1 2 1
a —rntax) 1- -T -—T;- [1 - —z—b—‘ d(t)]i (111-2—60)
’n
where
«[-31_ (1- __2_) (1 + —?T—sinZQt)
d(t) = T (III-2-61)
(1- —T—ZT- s‘inZQt)
The maximum of d(t) is 1, 44, therefore
12 1. 44
a = 1+—2— w (1- 5 ) (IH-Z-GZ)
“n
and
_ 1 2 1, 44
ao = —0——2—- —-nj’(]. - b ) (111-2—63)
n .

On the other hand if we average a.-1 over t in (III-2-60) (which corresponds
to averaging the mean-square-error at the receiver output) we get (average
of d(t) is . 767)

B 12 . 767
a o= lt—p — (1 - =20 | (I1I-2-64)
“n
and
1 2 . 767
a S e e - -2-65
“oave O_Z T a b ) (111 63)
n

We still need the expression of the channel signal-to-noise ratio
(which is not 0_;2 because of the finite bandwidth). By (III-2-4 and 5) the signal

power at the



64

channel output is

+T _2
E {y%(t)}: f “I"'Z P{vy,(t) has a zero-crossing between t + T and
o ‘_ T— L

t+ 7 +dT}+ 1xP{y2(t) has no zero-crossing in (t-T, t+T)}
=7 °f 2(p,_ +p, )T dTH41- fT 2(p,_+p,)dr  (III-2-66)

By (III-2-30 and 46)

A
2Py Py = o
g  sinft cos 0t (1 + = sin’qt)
= 2wd(t) |14+ — T
T (L4 = sin“Rt) (1 - _T.r.sinzszt)
(III-2-67)
Therefore
E yzc(t) =1- z*.vvavc)—"‘-3I

=1- —:f;-—%f-‘il- (ILI-2- 68)

d(t) is plotted on Fig. III-3 for the first half of a Nyquist interval (the func-
tion is even about the center). Its average is . 767 and therefore the average

signal power at the channel output is
1

S=1-.5l1b" © (L1I-2-69)
Now we shall define the channel signal-to-noise ratio as (+)
.8 |
a_ = N W (III -2-70)
o _
=S pb=—t (b-.511
-T2 2 )
| o o .
Then (I10-2-62) becomes
- o -1
_ 2 1-1440
% T 7 b - . 511 gc (I1-2-71)

(+) Such a definition was not possible in section 1 because of the ''infinite'!
bandwidth,
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2.0

d(t)

0 1 1 ] ]

0 0.l 0.2 0.3 0.4 0.5
2wt

Fig. III-3 Normalized instantaneous zero-crossing density

" of the optimum process

1 2 4 . 2
a(t) = A (t) _ j‘3"(1' ;) (1+ = sin"Qt)
2W

1 --2-- sinz Qt
i1
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and (I11-2-64)

a
_ 2 c . 767
%.,ave = B-.511 U Tp ) (II1-2-72)

The output signal - to noise ratio is plotted on fig. III-4 for b=4 and 9,
(III-2-71 and 72 gives essentially the same results).

‘ Going back to (III-2-67) we can see that the instantaneous zero-
crossing density is 2Wd(t). Thus its average is . 767(2W). But we know
that the zero-crossing density for optimum signals should be 2W. This
discrepancy follows from out main hypothesis in this section! actually an
optimum signal is not a Gaussian process. The difference between these
two results (23 %) is in some way a measure of the relevance of the
hypothesis. ,

Finally we considef the large channel signal-to-noise ratio case

(°n<1)' From (I11I-2-19)

+T

— '1 T
Ry 4 (tyt) =1-20(0 )+2 | [ (p,_ -p,,) [1-20( Tcn)] dr (III- 2-73)

+ [foT (p,_-p,)dT - f: (p, _-P,,)d 'r] [I—ZQ(.EJ)]

. and by (III-2-56)

1
- '1 Zd!tt Gn __1
RV2V4(t’t)'1'2Q(°n) "o on Jo | Qu)du - Q7 (I11-2-74)
Integrating by parts
1 1
o, =
n 1 -1 1 n
Q(u)du = - Q( ) + ue - =\du
fo (w)du = o, On ' JZm fo xp(-3)
S S 1, .2
= g (o, ) + [1-exp (-0 ")] (II1-2-75)
2m
Therefore since
2
Q)= =, exp () (I11-2-78)
~1 2 o i d(t) d(t ) .
Ry2y4(t;t) 1 -N= o exp S 2 M-S+ 1-52 o, \/F (III-2-"79)
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Averaging over time for comparison with experimental results we get

1
aflz 2 ¥ i N ( lT- ye 20 2+ .Zé7 ] (I11-2-80)
Lo L b/ n > /
and by (III-2-70)
a
c
-1 2 Jz b-.511 TI® - 51D
S o Ay (b - .76T) e L767| (11I-2-81)
wherea = S/N W
c o
As b— » 1

-1 /[ 2 2«72
a — 2 — € n
T n

i.e., (III-1-27) as expected.
ao = a - 1 is plotted on Fig. III-4 again for b =4 and Q. For comparison
with the asymptotic behavior a_ is also plotted vs S/NOB on Fig. III-2.

In this section we have considered the transmission of the clipped
version of an optimum signal through the channel —%&l . We have
assumed white, additive, Gaussian noise, independent of the signal, at the
channel input. We have shown that the hypothesis of one zero-crossing in
~any time interval of width 2T was reasonable for the bandwidth expansion
considered. These hypothesis leads to an expression for the .cross-correla-
tion function between clipped optimum signal and output of the clipper which
depends on the correlation function of the clipped optimum signal and the
probabilities of the optimum process to take a positive or negative value at
t, and to have a downward.or upward zero-crossing in the interval

(t2 + 7, t,+ v +dv). To go further we have used these probabilities for

2
Gaussian processes as an approximatlion. In the expression for a."1 "finite"
channel bandwidth adds a term in ac-z to the exponential term obtained

in Section 1.
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30

a, (dB)

=10 £ i I
0 10 20 30
S
A= (dB)
€ NoW
Fig. III-4

Output signal-to-noise ratio for the transmission of the clipped
optimum process. b=B/W.
Plain curves: experimental results for H (w)= wp {(w)
c 2r B
sinwT

Dashed curves: theoretical results for Hc (w) = —

(Parameters for the experimental results: N4 =10,
N5=5¢;9) or 12 (b=4), N, =250, L=8).

'

3. Effect of the channel Hc(w )= pz(ﬂ_w% on clipped optimum signals

For the previous channel the probability of a zero-crossing
displacement in the noise-free conditions is small provided B >>W. The
channel we consider now displaces all the zero-crossings by an amount
decreasing as the bandwidth increases,

Here the channel output is

+00

y3(t) = [ v, (1) BRI an g (IT1-3-1)
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Yz(t) is the clipped version of the optimum process

T k
v (t) =2 ), (-1 ]xkiq;k {t) (I11-3-2)
k=-w0 .
It has a zero-crossing between two consecutive samples. If we denote by
Zy the zero-crossing between k/2W and (k+1)/2W
k+
y,(t) = Z(-1) b for 2 <t<z (III-3-3)
Therefore
zZ
+00 k+1 .
k+1 2B (t-
ys(0 =z Y (-1) I 20 2nBLET) 4y 4n(h)
k=-00 4
k
=z Y (-1 {si[anB(z, , -t)] -Si[2nB(z, -t)+n(t) (111-3-4)
k+1 k
k
_ K ..
=2Z ), (-1) Si[2mB(z, -t)] +n(t) (I1I-3-5)
k
Now
R ) _
¥YoYaltysty) oo
2,2
2j0Z Y (-l)kSi[‘ZwB(zk-tz)] Oy
L f+oo @-lple (t e T e
iw -00 Y2\ e
. (111-3-6)

or with the characteristic function
' +00

t
1 ° =" 3 i -
Hw', w K’ tl, tZ) 'Eiexp[g(fo yz(tl) +k=z—oowk81 21rB(zk tz)]
’ . : (III-3-7)

o @i, @)
Ry ,v4 G ta) = %*-foo N {{aé( dw ! ] w!=0 " y
© w_ = 2w (-1)
k
&2 2
N 28 (0o k)} T TIT (I11-3-8)
Dow! w! N Zw(al)k%

¥
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The density required to solve the problem is as in Section 2 of the type

fly, (). v,

3
- £

(£, ¥y (6 )51 = o0 oo, +oo] (11I-3-9)
where actually for practical purpose the number of indices k must

be finite.
Going back to (1II-3-4) it appears that we have to consider at

least the zero-crossing in the interval which contains t and the zero-
crossing in the interval to the left or to the right. This already requires

the density
tlyy (600 ¥; Gy v (60 ¥y Gy 100 ¥ Gy 4 p)]

and, say,

2w B

A = b®l5 or bN5 (OI-3-10)

This last condition is required to neglect the other terms in the series
(III-3-4)(+). Therefore in conditions similar to those encountered in
Section 2 we need the density of the optimum process at three different
instants of time and its derivatives at two of these instants. Thus the
analysis is even more difficult and will not be considered here.

However we can quote experimental results for this case. In
chapter IV we shall see that the communication of a signal (Gaussian,
zero-mean, bandlimited with a flat power spectrum) by the clipped version of
the optimum process can be easily simulated when the channel is TPy B(w),
In the simulation we g.lso compare the two random square waves yz(t) and
y4(t) = ?2(1:) at the tra.nsmitter and receiver (see Fig. IV-2). The signal -
to-mean-square-error ratio for the random square wave transmission is
given by '

\

oL T e el | 11
2l [y, 08,0 g (IL-3-11)

+) for t >15 the difference between maximsa and minima of

Si(t) is less than 5% of Si(0) = -
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Ag described in (IV-4d) the device which follows the channel is more

than a clipper: it detects one zero in each Nyquist interval. Then

T

fo y, ©F, (t) = }; (1-2]|z,-2_|) (I11-3-12)

(o]

where the second index indicates that zy is the position of the zero-
crossing in the k-th interval at the system input or output, and 2W
has been set equal to 1 without loss of generality. Finally since

T=N (number of zero-crossings in the time interval T)

-1

N
a =1-(1- —Tz\l_k21|zki'zko| )2

(I0-3-13)

The experimental results are plotted on Fig. III-4.
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CHAPTER IV.
PERFORMANCES OF THE COMMUNICATION SYSTEM.

In this chapter we shall investigate the properties of the communi-

cation system shown in fig, IV-2, We shall again assume that the signal

to be sent, x(t), is a stationary, zero-mean, bandlimited,Gaussian process
with flat power spectrum in (-W, 4+ W) 3(t) is first mapped into an optimum
signal yl(t). Fig, IV-3 shows a possible implementation of the black-box
labeled '"mapping''s The clipped version of the optimum process is sent
through the channel Hcl(w) = _s_1£_1_'fw_'_l_‘
In the receiver a computer estimates the optimum process from the re-

for which we have just given the analysis. *

ceived zero-crossings by means of the algorithm previously described,
Finally by inverse mapping an estimate of the original signal is found, Fig,
IV-4 gives a block-diagram for the inverse mapping, The samples sign
required for the inverse mapping are sent by means of the signal z 1(t) =

Z sgn (xk)¢k(t) through the channel ch(w) = pQ(w)Q-l**, A, and A2 are

two amplifiers which set the two transmitted signals at an appropriate level,
The ratio A]‘/A2

output is minimized while the total power of the two signals is fixed, Fig,

should be such that the mean-square-error at the receiver

IV-5 suggests a way to generate the signal zlft) which carries the sample
signs, )
We shall first derive a relation (for high channel signal-to-noise

ratio) between R (t, t) and R_alt, t) for t=k/2W. R {t, t) has been de-
V2% 4 xx Y274
rived in III-2, From these results we shall be able to find the signal-to-

noise ratio at the receiver output for optimum signals, then to generalize
to any bandlimited signal,

1, Fundamental relation for high channel signal-to‘-noise ratio,

yz(t) is the clipped version of the optimum signal yl(t), therefore
" we can write
+oo : ’
1 -1 (t)
v lt) = = f_m o eV1Mg,, (IV-1-1)

\

* However, Hcl(m) = 7 PZwB(w) Willkbe assumed in the experimental in-
vestigation,

*%Since the two signals yZ(t) and zl(t) have to be multiplexed before modula-
tion, this is justified if zl(t) is allowed to occupy the low frequency part of

the complete channel,
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x(t) (1)
- >I¢~—ﬁ>9‘— I x |
-0 +Q Q
SN
Z ) (-1) B(t-——)
ka—00 ew
Fig. IV - 3. Mapping
fin NP T L= P
" f -o__+a| | &
o | |
ngnzg(t)a(h-z-%—)

. k--w

Fig. IV - 4, Inverse Mapping

-—x—(i)—_]f A Oz [

Zl(ﬂ

Fig. IV - 5, Generation of the Signal which Carries the Sample Sign
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Similarly v, (t) is the clipped version of the approximation v,(t) given b

the computer (y4(t) and y’l(t ) have the same zero-crossings) therefore*
1 TR eyt
4t = 75 [ w Y1ty (IV-1-2)
-0

It follows that

1 +00 | +oo -1
’t = - =5
Ry vt = - 3 I TN XA SIEAC RO
(Iv-1-3)
where & (wl’ wz) is the joint characteristic function of the random vari-

%

ables yl(tl) and '};1(t2). We shall have to remember that in this expression
w~ " must be interpreted as a distribution since we have represented the
clipper by a Fourier 1:1'a.nsforrn(16 - Appendix 1). (IV-1-3) is valid for any
pair (tl,tz)‘ However, to go further we must consider t1=t2=k/2W. In I-2
we have seen that yl(k/ZWZ) are normally distributed random variables with
mean zero and variance T On the other hand, for high channel signal-to-
noise ratio ’fl(t) is a close approximation of yl(t), therefore ’}71(k/2W) is al-
most Gaussian, We shall assume in the following that the two random vari-

ables yl(k/ZW) and yl(k/ZW) are jointly Gaussian, i,e.,

2 2 (b tg) 2 2
-1-4
Ylyl(wl,w )= exp 5 (Iv-1-4)

Then plugging (IV-1-4).in (IV-1-3) and expanding exp[-Ry $ (k/2wW, k/ZW)wlwz]
171

in series we get

(k/ 2W, k/zvv)- “'2‘ }“

=00

=2 A n 2
v.¥, (k/ 2W, k/ 2W) 2
[ 171 ] f+oo un-le-u du

The first term is actually the only one which requires the interpretation

-1 ) . .
of u ~ as a distribution:

\

too > +00 5
f u exp(-u )du = Zf uln iu ;exp(mu ydu= 0 (IV-1-6)
- 00 -
+00

- -1 .
#* We can write y4(t)=(w3) zf @ expljws(t))dw for any signal st} which

has same zero-crossings - asg y4t) However, this is useful only
if s(t) is a close approximation of y’l(t)
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Then with n = 2k + 1 (all terms with n even.vanish)

o - 1‘2k+1 ( '12
poced 4 !. - ]
Yoy 1‘_2 k% o (2k+1)% l_ J LW ) (2k+1) Vi
= Zsint(r A) forall t,=t =k/2W (IV-1-7)
™ 1Yy 12
or
[2W,k/2W)zsin| = R k/2W,k/2W IV-1-8
ryl?l(k ) Y=s > Y2Y4( ) ) ( )

Therefore from an hypothesis certainly appropriate for high channel
signal-to-noise ratio we have been able to derive a relation between an
already known quantity and the cross-correlation function between the
communication system input and output (when the input belongs to the

class of optimum signals). Now since the system has zero time-delay
-1 2
a (k/2W)=1-r I (k/2W, k/2W)
1"

= cos’ | IR (k/2W,k/2W) (IV-1-9)
2 Y,V .

But at high channel signal-to-noise ratio

R (t,t) = 1 (IV -1-10)
VoYy

and therefore

Cak/zw)Y 4 [1 - R (k/ZW,k/ZW)] "2 for allk (IV-1-11)
2 Y,V
L 274
At this point we should try to find the minimum of the signal-to-
mean-square-error ratio, Actually we cannot carry this out, On the
other hand when we are dealing with experimental results we have to de-

fine a by (see I-3-20)

T n 2
[ ]y 0ae]
[0}

a = - @]
1 = = (IV-1-12)

[ vitrat [ $3myat
(o] O
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{(compared to (I-3-20) we have dropped the limit for T —e oo since, as we
shall see, in IV-4, we cannot really achieve very large value of T), Thus
a theoretical definition more appropriate for purpose of comparison with
experimental data is

-1

T
-,-},-f E 3[y1(t) - Agr\l(t)] 2 2 dt
a”'= lim 2 .

T
,—}-fo Egylz(t)i dt

(IV-1-13)

By (I-2-13) and from the fact that yl(t) and yl(t) are both bandlimited signals

o b )

= IV-1-14)
2 1 (
O'X (1- ;)
Therefore a is maximized by the same A as a(k/2w) and*
a, -4 5 [1-& (k/2wW, k/2w)] ~2 (IV-1-15)
71 - Ya¥a

The final goal is to find the performances of the system for the
general bandlimited signals, Thus in section 2 and 3 we shall need the
expression of a for x(t) when there is no error in the transmission of the

samples sign:

2l E {[x(‘;) - A§(t)]_§}_ | (IV-1-16)

(o
X

Since x(t) and ?c(t) are stationary and bandlimited, we can write

1,7 2
N ST E;[z x4 (t) - A§k¢k(t)] f
a = lim o k .
T—-@OO 0_2
X

- Eleg-a8)%

2
s
X

(IV-1-17)

* The subscript associated with a underline that this expression is for

optimum signals,
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Or with the optimum A = E {kuk‘ /E {g{}

E §£i§ - E !Y 1,2 5
- “ =1 —@mf-i-' A° (IV-1-18)
E {x‘k* E ’Ylk‘

(o]

a =1-=

If there is no error in the transmission of the samples sign, the gain A

is exactly the same as for the optimum processes, i,e,,

E {Ylk?’lk*

As — IV-l-1
= (1V-1-19)
and therefore
a = 4 [1 -R__ (k/2W, k/ZW)] -2 (IV-1-20)
b'd 2 y2Y4

Thus, we have found a relation (IV-1-18) between the cross-correla-
tion of the two random square waves in the system and the cross-correla-
tion of the optimum process and its estimate (this relation holds only at the
sampling times and for high channel signal-to-noise ratio), From this re-
lation we have been able to derive the signal-to-mean-square-error ratio
for the optimum process and for the general bandlimited signals (however,
not taking into account the effect of error in the transmission of the samples
sign for the last case),

2. Asymptotic properties

In III-1 we have found that if the channel noise is Gaussian, zero-
mean additive, independent of the signal and if the channel bandwidth is such

that we can assume negligible distortion of the random square wave yz(t)

C 11
R f e” 2 d
V2V4 f *

= 1-20( JZ’Z) (IV-2-1)

(Here we have assumed the noise stationary in the wide sense, i, e,, the
channel signal-to-noise ratic independent of time,)} From (IV-1-15) the out-

put signal-to-noise ratio achieved for the class of optimum signals is
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1,2
~(1 - ;r-) = a_exp (ac) = ,434 a_ exp (ac) (IV-2-2)

or in decibels

2, v (dB) = -3,63 + a_ (dB) 4 4.34 a_ (IV-2-3)

b3
(IV-2-3) is plotted on fig, IV-6, The exact formula

- 1 -2 fx [2
ao, ¥, = (1- _").cos gz [1 - 20 ( ac)]i -1 (IV-2-4)
does not give significant differences with (IV-2-2): at a = 3 dB the dif-
ference is only 2 dB,

For the general bandlimited signals we shall proceed in the following

way, Noise at the receiver is of two kinds:

i) noise due to imperfect recovery of yl(t) because the zero-cross-
ings have been displaced by the channel noise and filtering,

ii) noise due to a wrong decision on the sign of the samples of x(t).
But nl(t) and nz(t) are independent since they are Gaussian, zero-mean and
occupy different frequency bands therefore the two noise contributions at
the receiver output are themselves independent and the total noise power

is merely the sum. The first contribution is given by (IV-1-20).

al‘l = n2n? (o) (IV-2-5)

C

where a1 is the signal-to-noise ratio for the channel which transmits the

wle

cxs . Wk
random square wave, The probability of error for the second channel is

P =0 (@) (IV-2-6)

#
which still rely on the hypothesis made in IV-1,

since x(t) is zero<median,
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Fig. IV-6

Signal-to-noise ratio at the output of the

communication system. (Asymptotic behavior: %—ooo),
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where a is the signal-to-noise ratio for the channel which transmits the

2
samples sign, If a wrong decision is made at k/2W the resulting additional

error at the receiver output is about
2x (k/2W) Uy (t) (IV-2-7)

The corresponding noise power is

g T
lim  (2T)" [

[ 2 T x(k/2W) g, (1) ]Zdt  (IV=2-8)
T —e 0o -T

k
where the summation is extended over the samples for which a wrong de-
cision is made, Therefore the second noise contribution is merely about

4P o* and
e X

a-lﬁ 4P P4 -——é—-—. exp (_ —E-g- (IV—Z-g)
2 e > 2
Ta
c2
Finally
a-l,ﬁvf —.—.ﬁ_ exp (.. _a_c—?.'.) + —11 a-l exp (.. a ) (IV—Z-IO)
Z“acz 2 2 cl cl

Maximization of a by choice of an optimum sharing of the available power
between the two channels leads to a transcendental equation; on the other
hand, the optimum sharing is function of the noise level, Thus, it is more
convenient to consider the following sub-optimum system

a, = aCZ/Z‘ : (IV-2-11)
When Al

‘dent of the channel conditions, On the other hand, the main factor in

and A2 have been set at the appropriate value (IV-2-11) is indepen-~

(IV-2-10) is the exponential: by chosing the same exponent the two terms

remain of the same order of magnitude, Then

) exp (=ac1) (IV-2-12)

But
a = &yloy (IV-2-13)
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2, 2
a.p = A3/, (IV -2-14)
2 2 2 2
a_ = (A1 + AZ)/(O'nl + crnz) (IV-2-15)
2
o]
2
=a (14 a
cl 2 2
%n t %2
and since
2 o W2
an Gnl (IVv-2-16)
a® a (IV-2-17)
Finally
5 S | %c L my -l
aO,X~ ax ~ (2 —T-r- + -2—) ac exp (-ac) (IV-2-18)

(IV-2-18) is plotted on fig, IV-6, The output signal-to-noise ratio is es-
sentially an exponential function of the channel signal-to-noise ratio.

This property is related to the transmission of the information by a random
square wave and the Gaussian nature of the channel noise,

3, Effect of the Channel H (¢) = el
C wT

For optimum signals and high channel signal-to-noise ratio we

have shown in section IV-1 that

a, ® (-2 L [1-Rr_ (k/2W, k/2w) [ (IV-3-1)
Y ™o Y2¥4
Ry v is given by (III-2-79) where d(t) (given by (III-2-61) has to be evalu-
ated gt k/2W:
1 2

d(k/2W) = 3 (1- ;) = , 348 ‘ (IV-3-2)

Therefore N
61’1 AZ
2 1 . 348 1 . 348
RY2Y4 (k/2W, k/2W)= 1 m,\[j: wAl (1 - +=) exp (- .;;T).{,. —_

3
st
!

(IV-3-3)
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and Nz A32 5
oo 1lv2z 1o b, .348 1 . me
a, = (1-2)2 (=) | - 2322 exp (-—5) + 2228 (IV-3-4)
V1 T 26
n, L nl
or since by (III-2-70)
S -2 2
aC - T\I-(-)W— - dnl (b < e 511)A1 (IV"3"5)

a a -2
- 1.2 c . 348 c ., »348
a, = -7V - 5 En [(1 - ) exp s Em) T S } (IV-3-6)

a = a_~-1vs, a_1is plotted on fig, IV-7 for b = 4 and 9,
0 ¥y b4 c

For the general bandlimited signals (IV-1-20) gives a first contribu-

tion (noise in the recovery of the optimum signal transmitted)

2 2
-1 T
a;” = T 1-RY v (k/2W, k/2W) (IV-3-7)
274
2
6 2
n A 2
2,2 b 2 b
A 26 «
1 n,

The second contribution due to errors on the sign of the samples of x(t) is
given by (IV-2-9)

o} 2 _
a-l - 4 _._...nz exp (.. AZ ) (IV‘3-9)
N zcszn
2

And therefore, the output signal-to-noise ratio for general bandlimited

signals is given by

s 2 ‘
1w, ™2|p-138 A .348 | 2
2, =3 (7 g1 o%P 7 )t
1 262
L ny
8 2 N
P S exp ( Aa) (IV -3-10)
A = = o
J 2w 2 262
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Signal-to-noise ratio at the output of the

Communication System, Optimum signal.

Dotted curves : theoretical results., ‘Hc(w) = s;r‘ler
Plain curves : experimental resgltsa Hc(w) = -ﬁpsz(w) .

b=B/W.
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where B is the bandwidth expansion factor for the complete system
(B=Db+1y,

Now, to optimize a by appropriate signal power sharing we define the

parameter k:

A% A%
- = k—< : (IV-3-11)
é8 6
nl nz
Then 5
.2 511 _ a2
S= Al (1-=3=)+4, = A [(p -1L51) k+ 1} (IV-3-12)
and AZ
S 2
2. = oW T3 [([3 - L5k + 1] (IV-3-13)
o C
2
(IV-3-10) becomes
slozlk(e-1sy|p-t3s oo K2 )
x 2 kac - B-1 2 [1+k(p- L 51)
,2348 1% 4 [TE(B-TLEY exp (- 2 )
p-1 J—-Z_T; Vv a. 2[1+k([3-1. 51)]
(IV-3-14)
or with :
a.C
M= T¥X (B -1 50 (Iv-3-15)
al= T ﬁ_1'35 exp (- km, 4 2348 : + : exp (- =)
x  2km| p-1 Pi=o v s—— P 177
(IV-3-16)
Ay
(IV-3-17)

To make things easier we shall consider two cases, When a_ is big enough

we have
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-1 348,24
N e B — exp (- ) (IV-3-18)
) ' JZwm

a

and the optimum value of m is given by

3
z
x g (B~ 15D (2202 B exp () = (a-m)’ (1V-3-19)

For lower values of a_ where the exponential is the main term in the brackets
we choose k = 1/2 which makes the two exponentials in (IV-3-16) identical as
in section IV-2, Then

l_mp-.49|p-1.35 2

.348
x °2 = 5 P (-5

a

2 [p-.49 B
+J'T ac exp ( ﬁ - .49)

a = a_ -~ lis plotted for B = 5 and 10 on fig, IV-8,
0, X x

(IV-3-20)

For purposes of comparison we have plotted on the same figure the
output signal-to-noise ratio given by an FM system for the same bandwidth
expansion. We assume that the signals to be transmitted in our system
(clipped version of the optimum signal and signal carrying the samples sign)
are f;cquency multiplexed, and the composite signal transmitted by SSB.

Then the curves plotted previously give the output signal-to-noise ratio as
we have seen in I-5 and the bandwidth required by the system is B+W = BW,
The performance of the FM system are given by (3-8-25a) of (17) (p. 152)

" for unmodulated carrier and rectangular channel bandwidth, In our notations

3 2
7 (B - 2)
s = 8 < | (IV=3-21)

Figure IV -8 shows that the system based on the transmission of the zero-
crossings of the optimum process associated to the signal x(t) gives better
performances than the classical FM system in the linear region (+ 8dB for

B=25 +3dB for B = 10). This is paid, however, by a shift of the threshold
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Fig., IV-8 \
Signal-to-noise ratio at the output of the Communication system. Non-
optimum signals. :
Dotted curves : theoretical results. Hc(w) = S?;T .

Plain curves : FM performances for unmodulated carrier and rectan-
gular channel bandwidth. P = total channel bandwidth /information bandwidth.

toward higher channel signal-to-noise ratio, and by a more rapid decrease
of the performances below threshold.

4. Experimental results for the channel H {(w) = wl,
C\ ’ 4

i prB

The listing of the program used to simulate the communication

Y

system of fig, IV-2 is given in appendix C, Actually only part of the sys-
tem has been investigated, namely the transmission of the optimum sig-
nal itself, Without loss of generality, we set 2W = 1 in the following;

sampling occurs at the integers which is convenient for programming,
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4a, Generation of ¥y {t) and its zero-crossgings.

The first problem we encounter is the computation of the optimum
signal itself, By standard IBM subroutines (GAUSS and RANDU) we can
generate independent Gaussian random variables Xy with specified mean and
variance. Thus we can easily generate a realization of a bandlimited
Gaussian zero-mean random process with power spectrum flat in (-2, +Q)

(+)

by means of the sampling formula

+00

x(t) = ) x U () | | (IV-4-1)
o0

and similarly the optimum signal

+00 Kk
y () = Y (D)7 g () (IV-4-2)

k=-00
(the random variable Z of (I-2-7) can be dropped since we consider one

realization only). Actually (IV-4-1 and 2) must be truncated:

[t] +N,
x(t) = ) X, U () (IV-4-3)
k=[t] -N,+1
[t] + N,
k
y () = ), (-1)° |, | (t) (IV-4-4)
k=[‘t] -N,+1
ZN4 is the number of samples around t which are taken into account and

[t] is the largest integer smaller than or equal to t. In appendix D the
signal-to-mean-square-error ratio due to truncation (at) is derived. The
result is plotted in fig. IV-9. Thus a first limitation appears: with a
reasonable amount of computation, namely 20 terms in the sampling formula,
we cannot find the signal itself with an accuracy better than 20 dB (to reach
25 dB we need about 70 terms). However this does not mean that we shall

be unable to find output signal-to-nocise ratioc higher than 20 dB if we set

\

(+). See (10) section 10-6., Other techniques are available which from
independent random variables gives a process with any power spectrum

(S. Stein and J,E. Storer, '"Generating a Gaussian Sample, " IEEE Trans.,
IT-2, n°2, pp. 87-90; June, 1956). Filtering of white noise leads to the

same precision as this technique but is less tractable; the other technique
proposed in this paper would require manipulation of large matrices (150x 150).
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Fig. IV-9 '

Signal-to-mean-square-error ratio for the truncation of the sampling

formula {(case of a zero-mean Gaussian process with independent

samples, '
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N4=10 in the simulations (IV-4-3 and 4) define a new signal and its associated
optimum process, and the zero-crossings used by the computer algorithm
are now those of (IV-4-4). Thus the approximation will tend to this last
expression.

The zero-crossings of yl(t) as defined by (IV-4-4) are determined by
the subroutine ZERO. This step naturally introduces a quantization effect:
the error on the position of each zero-crossing is less or equal to 2-L where
L is a parameter to be specified. L.=8 was finally chosen after investigation
of the behavior of the signal-to-mean-squared-error ratio vs L (a higher
value does not improve the final result). This corresponds to a rate of about
9 bits/sample (1 bit for the sample sign)(+).

We are now in a position to investigate a fundamental limit of the
simulations from the zeros just found and the algorithm described in II-5
we can find the estimate of yl(t) and plot a curve of the signal-to-mean-
square-error ratio achieved vs the number of zeros in the interval! we get
fig. IV-10 for N4

a first increases with the number of zero-crossings (as expected) then drops

=10, L=8 and double precision used in the algorithm itself,

above 30. In single precision the same occurs above 10 zero-crossings. The
problem is obviously one of truncation errors each series coefficient is the
sum of a number of complex exponentials (all terms are therefore =1 in
magnitude) increasing very quickly with the number of zero-crossings. In

the following we shall therefore set the length of the interval of time at 30.

4b., Distribution of the zero-crossings of an optimum signal,

A problerﬁ which is often considered in the literature is the distri-
bution of the interval between successive zero-crossings. Even in the case
of Gaussian processes the theoretical problem is a difficult one to analyze.
For optimum processes we can obviously write

F_(1) = 1 for 72wl (IV -4 - 5)

since each zero belongs to an interval of length (ZW)_l. On fig, IV-11 we
have plotted an experimental distribution of + and also the distribution of
the zero-crossing in the Nyguist interval (tﬁe left end being taken as origin).
The density associated with the latter is symmetrical about the mid-point

of the interval and this has been used in deriving the experimental distribution.

(+) For the exact rate we should take the distribution of the zero-crossings
into account. Some information on this point of view will be given in the
next section.
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Fig. IV-10

Signal-to-mean-square-error ratio
vs, number of zero-crossing

(N, =10, L =8, double precision)
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Fig. IV-11

Distribution of the zero-crossings of the optimum signal derived frora
a Gaussian process with independent samples.

1. Interval between successive zeros (in percentage of W_l) ‘
2. Position of the zero in the Nyquist interval (in percentage of (ZW)-I)



86

The probability density of a zero-crossings interval close to 0 or
wlis very small, For instance

F ((1/W)=.01 (IV-4-6)
a result \xlzhich has already been used in III-2. As expected the probability
density is maximum near ¢ = (ZW)—I. Similar conclusions hold for the

density of the zero-crossing position,

4c,. Computation of the channel output.

The effect of the channel on the random square wave which carries the
zero-crossings of the optimum signal is obtained by the subroutine CHNNLI1.
We have seen in 4a that we can easily generate a realization of a Gaussian
zero-mean process with a flat power spectrum. For this reason we assume
here the ideal channel TPy B(m'). Another reason is that the channel output
is perfectly bandlimited and therefore defined (in the mean-square-sense)
by its samples. Thus CHNNLI computes at the sampling times k/2B the
channel output due to the random square wave and adds to it a Gaussian
zero-mean random variable of specified variance given by the subroutine
GATUSS.

In 1I1-3 we have seen that the response of the channel TPy B(w ) to a
random square wave of unit amplitude is

T k+1 :
y5(t) = Y, (-1) Si[mb(zy, ,-tN-Silab(z -t)l} +nlt) (IV-4-7)

=-00

(we have dropped the random variable Z; b=2B/2W=2B is the bandwidth ex-
pansion factor for optimum signals). Again we have to truncate an infinite
series. Taking account of N5 zero-crossings on the left (on the right) of

the Nyquist interval containing t we get

[t-i+N5-1
yslt) = -kt ;Si [mb(z,,, ~t)] -Silwb (=, ~t)] { + n(t)
k=[] -Ng . (IV -4 -8)

We chose N in such a way that the terms left are negligible; for instance

mhN = 1 50

To find the variance of the noise for a given channel signal-to-noise
ratio we need a first run of the program (without noise}) to get the signal
power S at the channel output (function of B). The specified channel signal-

to-noise ratio a_ = S/NOW is achieved with a noise variance
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2 _
oo =1S/a (Iv-4-10)
n c
4d. Zero-crossings at the receiver input.

Clipping at the receiver input is implemented by RECCLP. Actually
this subroutine also performs a decision task: it picks in each Nyquist
interval the received zero-crossing close (hopefully) to the zero-crossing
of the random square wave, This decision is ﬂecessary since in the algorithm
the number of zeros is not allowed to exceed the length of the interval of
time, The decision is based on the following property: when the received

(+)

signal is noise free we can write

k+1
2(z,-k)-1 = sgn[y,(k )]{ y (t)at (IV-4-11)
or
. k+1
2, =k+3 [1 + sgn [ y,(k )] k[ y4(t)dtJ (IV-4-12)

We use this formula to get an approximate position of the zero-crossing in
the noisy case. From there we go to the left and the right until we hit the
actual first zero-crossing. For numerical purpose we replace the integral
by a sum. Thus we compute the sign of the receiver input at N6 equally
distant points in the Nyquist interval, then
Ne .
z) = k+ 3 [1 + Nél sgn [y;(k)] Z sgn y3(k+—;]-(;):’ (IV-4-13)
’ 150
and we compare sgn [y3(zk)] with sgn [y3(k +—=) ] as indicated above. Thus
at high channel signal-to-noise ratio the actual received zero-crossings are-
determined with an error less than N_61 . N6 has been set at 7;50 which
= 256),

The end of the main program computes the approximation Yl(t) of

corresponds to the same quantization as in the transmitter (2

the optimum signal from the set of these zero-crossings by (II-5-10 and 11).
It also computes the output signal-to-noise ratio for the entire interval and
also for the 10 Nyquist intervals in the center (the 10 first and last being

considered as a guard time}. '

(+) Experiment shows that as soon as B > W the number of zero-crossings
of the channel output and the optimum signal is the same.
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The results obtained for the central part of the interval (and the
parameters: N4 =10, N5bz50, N6 = 250, L = 8, length of the interval = 30)
are plotted on fig. IV - 7 for b = 4 and 9. At low channel signal-to-noise
ratio we get better performances than the theoretical ones found in IV-3,
This comes from replacing the ideal clipper by a device which eliminates
all but one of the received zero-crossing in each Nyquist interval. Thus
our knowledge of the structure of the optimum signal has merely been used,
At high channel signal-to-noise ratio (ac = 30 dB) we lose 14 (b = 9) or
16 dB(b = 4) by truncation error in the algorithm. Thus from here a special

attention should be given to the design of other computer techniques.,
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Summary and Conclusions,

We have started with the fact that in some well defined cases (speech
and signals with real zeros only) bandlimited signals are determined by their
zero-crossings,

In chapter II we have investigated the recovery of a signal from a
set of related zero-crossings. Among the solutions available mapping into
what we have called an optimum signal is the only one acceptable. The scheme
suggested for estimating the signal from the zero-crossings of the associated
optimum process is the algorithm (II-5-4) followed by inverse mapping,

Random square waves as clipped versions of the optimum process
are the simplest way to send the zero-crossings. Thus in chapter IIl a
detailed analysis of the transmission of random square waves has been carried
out. We have investigated the performances of an elementary receiver to
recover a square wave from the channel output, namely the ideal clipper. We
have found that as the channel bandwidth increases the normalized cross-

correlation function between the two random square waves behaves as

t,t) ~ 1 - 20 III-1-18
Tyt Wa_) ( )
2
a =~—2—A1
¢ 0
!

where A1 is the amplitude of the random square wave and CJrz1 the channel

noise power, As a consequence a_ behaves exponentially L
- -1 erac
- N | =)

We were able to analyze the effect of finite channel bandwidth for

‘Hc(w) =sin (wT)/wT. An additional term proportional to o, b -1 appears
where b is the bandwidth expansion factor for optimum signals (see I1[-2-79
and 8l), This result is based on the approx\imation of some properties of

the optimum process by their expressions for a Gaussian process.
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In chapter IV the communication system of fig, IV-2 is analyzed,
First we derive a relationship valid for the range of output signal-to-noise

ratio of interest:

roo (k/2W,k/2W) = sin | Tr (/2 W,k/2W) | (IV -1-8)
"1 ’ B LZ YaYa ’ T

From this relation we get the performances for the transmission of optimum

signals:
a =a-3 L 1-rR /2w k/zvxr)]_2 (IV -1-15)
4! vzl Y2Y4 ’

and for b —
a_ — ,434 a, exp(ac) (Iv-2-2)

41

When we take account of the finite channel bandwidth we get (IV-3-6 and 10)
for optimum signals and general signals respectively. To find to what extent
finite bandwidth impairs the exponential behavior we have plotted (IV-2-2) and
(IV-3-6) as functions of ac=signa1 power /total channel noise power (fig, IV-12),
Very large bandwidth expansion are required to get close to the limit in the
range of interest (say up to 40 dB). Also the system is inefficient as far as
~exchange between bandwidth and signal-to-noise ratio is concerned.
When we compare the performances for general signals to those

of a classical system with bandwidth expansion we can see from fig., IV-8
that the system gives better results than FM in the linear region (3 dB
and 8 dB for a total bandwidth expansion factor P =10 and 5 respectively).
A threshold appears at a channel signal -to-noise ratio slightly higher than
for FM; this is due to the sharp increase of the exponential terms when
a, = 0 (equation IV-3-14). The linear term introduced by finite bandwidth

is related to the appearance of extra zeros in the 2T interval of time about
| the zero-crossing in each Nyquist interval; the exponential terms and the
threshold associated with them are related to extra zeros occurring outside

the 2T interval at low channel signal-to-noise ratio.
X
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The experimental data are for a rectangular channel bandwidth.
While keeping in mind that the theoretical results are for the channel with

rectangular impulse response we think that the most interesting result is

[t

1 K
ne i

nprovement of the performances by the zerc-crossings detector used
in the simulation: the device takes advantage of the fact that only

one zero-crossings should appear in each Nyquist interval, We have shown
in IV -4a that truncation errors places a limit on the performances of the
computer algorithm, Also the channel investigated introduces a loss of
performances when compared to the channel pT(t) because here bandlimiting
itself displaces the zero-crossings.

At this point we like to suggest a few directions of research, In
fig, IV-2 we have the simplest scheme, Thus the clipper could be replaced
by a nonlinear memoryless device with a smoother characteristic. In general,
the channel should be followed by a filter to minimize the zero-crossings
displacement. Actually the characteristic of the nonlinear device and the
filter should be matched to the characteristic of the channel in order to
get the minimum zero-crossings displacement. The mapping itself could
be preceded by a nonlinear memoryless device to control the distribution
of the zero-crossings of the optimum process, No attempt has been made
to optimize the zero-crossings detector, and in the theoretical analysis a
clipper has been assumed. The algorithm for estimation of the optimum
process from the received zero-crossings is also an open question; we
have considered a series approximation; Voelcker's real zero interpolator
is another possible choice. Finally advantage could be taken of the statisiics
of the signal sign (a first improvement being to send a pulse only if the

sign has changed).
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APPENDIX A.
A the i due to

[51e]

"‘J

(o]
’TJ
p.....a
N
D=

A function which has an absolute integrable Fourier transform

vanishing outside an interval (-£s+ Q) has one zero in each interval

k-1 k
(=gt oy tae) (k=01 (Al)

0<a<l/2W ;Q = 20 W
if and only if its values at
Proof.

i) When the function y(t) has one zero in each interval the values at

§W 4+ a alternate in sign.

71-%,— + a
must alternate in sign since y(t) keeps the same sign between successive
zeros.,

ii) When the samples alternate in sign there is at least one zero-crossing in
each interval, Therefore all that we have to show is the uniqueness of this

zero. Without loss of generality we may assume that a = 0, Since ]Y(w)| is
+£

yiw) e’ edw where 8 = t4+jT (A2)
-$2

integrable

v, (8) =

is an entire function., On the other hand sin(26) has all its zeros on the real

axis since
Q(jt-1) _-Q(jt-T) -Q7T 2T
|sin (Q0)] = e - |2 le - | (A3)

Therefore the poles of Y, (6)/ sin(226) are on the real axis and at + k/ 2W
(k=0,1,2,...). Let C, be the circle of radius (n + >= )/ ZW centered about

the origin in the 6- plane.

K
1 f Va(u) du  _ Ya(e') _é Ya( W ) (A4)‘
s c, sin(u) u-6 sin(20) Y& (o . “ZIEW) cos (km)

Liet us denote by fn(e) the right-hand side of this equality which is an ana-
lytic function. Since y_(6)/ sin(Q6) is bounded on C_

(n + ) =
£ (6)] <« M lTIZW for some M (A5)
L0 <
(n + >} = - |0]
and ,
£(6) = lim £ (6) M (A6)

Therefore the analytic function £{6) is actually a constant K and we can write



k
sin {§26) =K Y] k (A7)
k=-n (0 - 53 ) cos (km) \
The right-hand side becomes + « at the points t = k/ 2W of the real axis and

has only one zero between these points. Therefore since sin (2t) is bounded
y(t) vanishes only once between k/ 2W and (k + 1)/ 2W for all integers k.
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APPENDIX B, Memoryless nonlinear transformation of a broad class of

(I - 1 - 4) has been found previously by J. J. Bu;ssgang(zo) un -
der more general conditions. Consider two processes x(t) and y(t) jointly
Gaussian; assume they are zero-mean for the sake of simplicity, If one of

them, say y(t), is subject to a memoryless nonlinear transformation T then

E {x(t))T [vit)]} = KE {x(t)) yit,)} (B-1)

where K is a constant depending on T, The proof given by Bussgang merely
requires T instantaneous. Here we shall again illustrate the Fourier trans-
form technique for the description of a nonlinear device, while deriving his
result. Thus we write

T(y) = —5= f L) Y do (B-2)
-0
Then
+00 . .
jo 5y(t,)
+00
_ 1 a@xy(w l’w 2; tl, tz )
T 2mj [wg(wz) { Bwl w, = 0 de (B-3)
and since ) )
2 2 -
3 (w itot,) = ex ‘—- o) Or ZRXV(tI’f?_)wlwz * %y (t2) @3
Xy l’wZ’ 1! 2 - P L 7
(B-4)
va(tl,tz) 400 ) (rz (tz)wg
E{xt)T [y} = - —F f @, Lo ,) exp (- ~L 2o
(B-5)
-00 dw 2
Therefore in (B-1)
400 Z 2
. o (tz)w
K=—2-:lﬁ——f wg(w)exp(=—l—T——-—=)dw (B-6)
and by Parseval's formula
o0 2 ‘
K= 1. f 3’1” exp ( - ~~m§%wmr»w} dy (B-7}
qlz'ﬁ’ O’Y o0 ¥ 2o (tZ}



After integration by parts

+00
_ - 2
K = —3 j yT(y) exp ( - —5———) dy (B-8)
2w o'y (tZ) ”» Zcry (tz)

which is identical to result (19) in Bussgang's report. Now if we let

yl(t) = x(t) = y(t) and yz(t) = ’I‘[yl(t)] = ggn Yl(t) we get

_ =1 2
K = cryl (tz),\[; (B-9)

R (t.,t
R (t.,t,) Y1(12) /2 (B-10)
. = - [ B-
Y]_Yz 1 2 Uyl(tz) T

and

i.e. (II-1-4) for a non-stationary process.
The result extends to the class of processes such that the joint charac-
teristic function has a diagonal expansion in a series of orthonormal functions(19)

Consider the two sets of functions solutions of the integral eq:.ations (+)
+00

fx(x) Pm(x)Pn(x)dx = Gmn (B-11)
- 00
+00
f 70, (IR, ()Y = 6, (B-12)
-00

If the sets are complete we can write the joint density function fxy(x’ Y;tl’ tz)

as
0

(x)Q_(y) (B-13)

P
mn’ m n

We restrict our attention to the class of processes such that the joint density

can be written in the form

g ) = L) 0, Co P (00, () (B-14)
It follows from (B-11) and (B-12) that

0

o () _153
[[ feyteyIP 00,0 (B-15)
I,
(+)fx and the P's are functions of tl; similarly f“}f and the O's are functions

of ts. This dependence is not explicitly shown here.




C6

Ty =), T _Q_(y) (B-16)
m=0
where oo
To= [ T e ) (B-17)
=0
Then 400 400 .
E{xt)T [y )]} = ) T_c, f )P (x) [ £ (5)Q (¥)Q,(y)
m, n=0 - 00 -00
- +o0
= L TnCnffo(x)Pn(x) (B-18)

For the sake of simplicity we shall assume zero mean processes then

——Z—f—— is one of the orthonormal functions with respect to fX(x) and therefore

b'e
E{x(t)T[ylt,)]} = T,C o (1)) (B-19)
with © X'-{’l) YUJZ)
C,= [ 1§ [ {s,y.58,,8,) == mop —mme dx a3
1 f xy\ y ) . fl) 0\"(t2) y
- 00 2
R__(t.,t
B (B-20
Gx(tl) Uy(tz)
and +00
T, = f T(y)t_(y) —Lrey 1y (B-21)
i y o (t5)
- y
Finally form (B-19) and (B-20)
R (t,,t,)
=4 _ xy 1" "2 R
E{ x(t))T [y(t,)]} = T, -, (E5) (B-22)
Again for yl{t} = x{t} = y{t} and T(""l) = sgn {y’l) we get
< 2
roo [2 IS T “J 2 B.23)
Tl = A\j"—“%-“ G_Vl i’yl eXp { - MME;TWM;} dyl = ‘MT?W {BQZ“};
71

and



Vﬁz(t t)) = Uy;(tz) J:g (B-24)
Finally the most gener i ss for which the result is valid is the class
of separable processes.( )We call two processes x(t) and y(t) jointly separ-
able when (+)
« (t7)
E {x(t)) [ylep) b = yieg) v, (b)) —7—7— (B-25)

Then

E{x(t,)T [y(t,)]} = E 3 E{x(t)T[y(t;)] |y}

E{rlye)] Bixt)| v(tzwf

o tl)
fy—(-t-;E{ y(t)T [yt ]} 7, (), t)) (B-26)

Gaussian processes belongs to the class, Thus again for a zero-mean Gaus-

sian process and the ideal clipper

; 2
E{y,t,) T[yy(t,)]} = E{lyyt)]] = oyl<t1)J;— (B-27)

and (B-24) follows. Processes with diagonal expansion of the joint charac-

teristic function also belong to the class since from (B 14)we get

E{x(t)]|y(t,)} = i c Q (y) f xf_(x)P (x) dx
n=0

= o_(t,)C Q[ vit,)] (B-28).
and by (B-20)
, o (tl)
E{x(t)[y(t)} = ylt)r, (t),t)) e (B-29)

(+) In the report just mentioned only one process is considered, and called
separable if E {x(t + ’r)' x(t)} = x(t) r_ (7). As it is shown here extensgion to
two nonstationary processes is straight forward.
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APPENDIX C - Computer Program

QO O o a0

aan

160S

C
C

DOUBLE PRECISION DARG, Ql,Q2, Cl, C2, DCOS, DSIN, DBLE
INTEGER VECTOR

DIMENSION VECTOR (251)

DIMENSION Q1( 30), Q2(30),C1(30), C2(30)

DIMENSION SY1(64), Z(45), SY3(307), RECZC(30)

DIMENSION Y1(151), YIHAT(151)

DIMENSION CROSS(151), VAR1(151), VAR2(151)

DIMENSION A(151), B(151), D(151), R(151)

DIMENSION CROSSC(51), VARIC(51), VAR2C(51)

DIMENSION AC(51), BC(51), DC(51), RC(51)

PI= 3.1415927

IX = 6433645

N1 = 64

N2 =5

N4= HALF THE NUMBER OF SAMPLES TAKEN INTO ACCOUNT IN THE
SAMPLING FORMULA TO FIND THE ZERO-CROSSINGS (TRANSMITTED
AND RECEIVED) AND ALSO TO COMPUTE THE SIGNAL (OPTIMUM OR
NOT) IN GENERAL

N4 = 10

N5=NUMBER OF ZEROS OF Y1(T) TAKEN INTO ACCOUNT ON THE LEFT
AND THE RIGHT OF T FOR THE CALCULATION OF THE CHANNEL OUT -
PUT

N5 = 5

PRECISION OF THE RECEIVED ZERO-CROSSINGS IS 1/Né6

N6 = 250

IBEFBANDWIDTH EXPANSION FACTOR FOR OPTIMUM SIGNAL

IBEF = 9

L=8

N6A = N6 + 1

BN6 = 1.0/Né

NS5A = 2 *N5

N5B = N4 + N5

N5C = (N1-2%N5B)*IBEF+1

N4A = 2%N4

N4B = N4/IBEF+1

N4C = N4B+N5B

N4D = N4B+N5

NI1A = N1-2%N4C

N1B = N1A*N2+1

N1C= N1B-1

N1D-= N1B-5

NIE = N1-2%N4+1

PI2 - PI*IBEF

{1 T S | I 1

GENERATION OF Nl INDEPENDENT NUMBERS WITH DISTRIBUTION
N(0, 1)

1.0

100 1= 1, NI

LL GAUSS(IX, 1.,0., V)

/1(I) = G*ABS(V)

wlelele)
a » Oy

=

DETERMINATION OF THE ZERO-CROSSINGS OF YI(T)
DO 1051= 1, NIE

Js H+N4-1

CALL ZERO(J, L, T,SY1l, N1, N4, N4A, PI)

105 Z(I) = 1

C



410

305

O

420

430
C

505

510

520

515

525

550
116
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POSITION OF THE ZERO-CROSSINGS

WRITE (6, 410)

FORMAT ('ZERO-CROSSINGS OF THE OPTIMUM SIGNAL')
WRITE (6, 305) (Z(I), I=1, NIE)

FORMAT (10F8. 3)

CALL CHNNLI(N5A, N5B, N5C, IBEF, Z, N1E, PI2, SY3)

CALL RECCLP(N1A, SY3, N5C, N4C, N6, N6A, VECTOR, IBEF, N4, N4A,
1 PI2, PI, BN 6, RECZC, N5B)

WRITE (6, 420)

FORMAT ('RECEIVED ZERO-CROSSINGS')

WRITE (6, 430) (RECZC(I), I=1, N1A)

FORMAT (10F8.3)

COMPUTATION OF THE SERIES COEFFICIENTS
W=2%PI/NI1A

DO 505 I=1, N1A
DARG=DBLE(W*RECZC(I))
Q1{1)=DCOS(DARG)

Q2(I)=DSIN(DARG)

CONTINUE

DO 510 1I=1, N1A

Cl(1)=0.0DO0

C2(I)=0.0DO

CONTINUE

DO 515 1I=1, N1A

J=N1C
Cl(J*t1)=Cl(J+1)y-C1(J)*Q1(I)-C2(J)*Q2(I)
C2(J+1)=C2(JF 1 C2(J)*QI(IF C1(J)*Q2(I)
J=J-1

IF(J.GE. 1) GO TO 520
Cl(l)=CI(1pQI(I)

C2(1)=C2(1)-Q2(1)

CONTINUE

G=1.0 .
DO 525 I=1, N1A

G=-G

Cl(I}= GxCI(I)

C2(I)= G*C2(1)

CONTINUE

CALCULATION OF YI1(T) AND Y1HAT(T)
DO 110 I=1,NI1B

T=N4C+(I-1.0)/ N2

CALL SIG(T, SY1, N1, N4, N4A, PIL, F)
Y1({I)=F '

ARG=PI¥T

YIHAT(I)=COS(ARG)

DO 550 J=1, N1A

ARG={(NIA/2-J}*W*T

LBLY d AN b

YIHAT(I)=YIHAT(I)+ SNGL (C1(J))*COS(ARG)-SNGL(C2(J)}*SIN(ARG)
CONTINUE

CALCULATION OF THE SMSER
DO 120 I=1, N1B
CROSS(I)= Y1 (I)*Y1HAT (I)

VAR (D)= Y1 (I)*Y1(I)
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120 VAR2(I) = YIHAT(I)*Y1HAT (I)

CALL QSF(.2, CROSS,A,N1B)
CALL QSF(.2, VARI, B, N1B)
CALL QSF(.2, VAR2, D, N1B)
DO 1251= 1, N1D

J=1+5

R(I) = (A(J)*A(J))/ (B(J)*D(J))

125 R(I) = -10.0*%ALOG10(1. 0-R(I))

WRITE (6, 460)

460 FORMAT ('SMSER')

WRITE (6, 320) (R(J), J = 1, N1D)

320 FORMAT (10F8.2)

C
C
C

CALCULATION OF THE SMSER FOR THE CENTRAL PART OF THE
INTERVAL

DO 1401= 1, 51

CROSSC(I) = CROSS(50+1)

VARIC(I)= VAR 1 (50 + I)

140 VAR2C(I) = VAR2(50+I)

CALL QSF(.2, CROSSC, AC, 51)
CALL QSF (.2, VARIC, BC, 51)
CALL QSF(.2, VAR2C, DC, 51)

DO 150 1= 1,46

J=1+5

RC(I) = (AC(J)*AC(J))/ (BC(J)*DC(J))

150 RC(I) =-10. 0*ALOG10(1.0-RC(I))

WRITE (6, 170)

170 FORMAT (‘SMSER FOR THE CENTRAL PART OF THE INTERVAL')

WRITE (6, 180) (RC(J), J =1,46)

180 FORMAT(10F8.2)
C
C
C CROSSCORRELATION OF THE INPUT AND OUTPUT RANDOM SQUARE
C WAVES
CORRSW=0.

DO 2001I= 1, NIA
CORRSW =ABS(Z(I+ NdD)-RECZC(I)) + CORRSW

200 CONTINUE

CORRSW =1.0-2.0%¥CORRSW/NIA
WRITE (6, 210)

ZI%FORMAT('CORRELATION OF THE INPUT AND THE OUTPUT RANDOM

SQUARE WAVES')
WRITE (6, 220) CORRSW

220FORMAT (F12.4)

STOP
END
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SUBROUTINE CAUSS(IX, S, AM, V)
A =0.0

DOS0I=1,12

CALL RANDU(IX, IV, Y)

IX = IY

A =A+Y

V = (A-6.0)*%S+AM

RETURN

END

SUBROUTINE RANDU(IX, IY, YFL)
1Y =IX*65539

IF(IY)5, 6, 6

IYy=1Y+2147483647+1

YFL =1IY .

YFL =YFL*.4656613E-9

RETURN

END

SUBROUTINE ZERO(J, L, T, SY1, N1, N4, N44A, PI)
DIMENSION SY1(N1)

T =J

CALL SIG(T, SY1, N1, N4, N4A, PI, F)
IF (F) 10, 50, 20

Kl=-1

GO TO 25

Kl=1

DT1=.5

DO 30 I=1, L

T=T+DT1

CALL SIG(T, SY1, N1, N4, N4A, PL, F)
IF (F) 35, 50, 40

K2=-1

GO TO 45

K2=1

IF(IABS(K1-K2)) 50, 55, 60

Kl=-K1

DT1=-DT1/2.0

RETURN

END
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SUBROUTINE SIG(T, SY1, N1, N4, N4A, PI, F)

®
C COMPUTES Y1(T) BY MEANS OF THE SAMPLING FORMULA
C
DIMENSION SY1(N1)
C
C CHECK FOR T INTEGER
C

IT=T
IF (T-IT) 200, 205, 200
205F =SY1(IT)
RETURN
200F = 0.
K1 =IT-N4
DO 210 J =1, N4A
K= KI+J
X=PI*(T-K)
210 F=F4SY1(K)*SIN(X)/X
RETURN
END

SUBROUTINE RECSGI(T, IBEF, N5B, SY3, N5C, N4, N4A, PI2, PI, F)
DIMENSION SY3(N5C)
Tl = T-N5B+1e0/IBEF
I=TI1*IBEF
F =0e
K1l =1-N4
DO 210 J =1, N4A
K =K1+J
X =PI12%T1-PI*K
IF (ABS(X)sLLEeleQE-03) GO TO 200
G =SIN(X)/X
GO TO 210
200G = le0 y
210 F =F+SY3(K)*G
RETURN
END
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SUBROUTINE CHNNLI(N5A, N5B, N5C, IBEF, Z, N1E, PIZ2, 5Y3)
THIS SUBROUTINE PERFORMS THE FOLLOWING

1) IDEAL LOW-PASS FILTERING OF THE OPTIMUM RANDOM SQUARE
WAVE (OF UNIT AMPLITUDE) TO THE BANDWIDTH
IBEF*W.IBEF IS THE BANDWIDTH EXPANSION
FACTOR FOR OPTIMUM SIGNALS (FOR NON OPTIMUM
SIGNAL THE BANDWIDTH EXPANSION FACTOR IS ACTUALLY
IBEF+1).

2) ADDITION OF A ZERO-MEAN, GAUSSIAN NOISE WITH SINGLE-
SIDED POWER DENSITY NZERO (CHANNEL SNR = S/(NZERO%*
IBEF*W). NOTE THAT S IS NOT EQUAL TO 1 SINCE THE
UNIT AMPLITUDE RANDOM SQUARE WAVE IS SUBJECT TO
FILTERING-)

THE SUBROUTINE COMPUTES THE SAMPLES (IBEF*2*W SAMPLES/SEC)
OF THE CHANNEL OUTPUT.

DIMENSION SY3(N5C), Z(N1E)

PI = 3-1415927

aaaaaaaanaaaaaaanan

IX = 267331
SN = .98
CNR = 100

SIGMA = PI*SQRT(SN*IBEF/CNR)
DO 110 1= 1, N5C
T = N5B + (I-1.0)/IBEF
SY3() = 0.
DO 115 J = 1, N5A
K=T - N5B+J
ARG =(Z(K)-T)*PI2
CALL SICI(U, ARG)
ARG = (Z(K+1)-T)*Pl2
CALL SICI(W, ARQG)
115SY3(I) =SY3 (I} ((-1)*xK)*(W-T)
CALL GAUSS(IX, SIGMA, 0., V)
SY3(I) =SY3(IpV
110 CONTINUE
CNR = 10%¥ALOGI0(CNR)
WRITE (6, 125)
125 FORMAT ('CHANNEL SIGNAL TO NOISE RATIO S/NO*W IN DB')
WRITE (6, 120) CNR
120 FORMAT (F8.2)
RETURN
END
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SUBROUTINE RECCLP(N1A, SY3, N5C, N4C, N6, NbA, VECTOR, IBEF,
1 N4, N4A, PI2, PI, BN6, RECZC, N&B)

THIS SUBROUTINE GIVES THE ZERO-CROSSINGS OF THE CHANNEL
OouUTPUT.

Qaon

INTEGER VECTOR
DIMENSION RECZC(NI1A), SY3(N5C), VECTOR(N6A)
ANb6 = Né6
SIGPOW = 0.
DO 1051 =1, N1A
T =N4C+1I-1
T1l=T
CALL RECSGI(T,IBEF, N5B, SY3, N5C, N4, N4A, P12, PLF)
POWER = ,5%F*F
300IF (F) 10,15,20
10 Kl =-1
GO TO 25
20 Kl=1
25 SUM=Kl1/2.0
VECTOR(1)=K1
DO 100 J=1, N6
T=T1+J/AN6
CALL RECSGI(T, IBEF, N5B, SY3, N5C, N4, N4A, PI2, PI, F)
POWER = POWER+F*F
3101F (F) 30, 15, 35
30 K2=-1
GO TO 110
35 K2=1
110 VECTOR (J+1)=K2
100 SUM= SUM+K?2
SUM= SUM-K2/2.0
POWER=POWER=. 5}%F*F
T=TI1+.5%(1. 0+tK1*%SUM*BN6)
CALL RECSGI(T, IBEF, N5B, SY3, N5C, N4, N4A, PI2, PI, F)
320 IF (F) 40, 15,45
40 K=-1
GO TO 50
45 K=1
50 ITI=(T-T1)*N6+1
IT2=1IT1+1
80 IF (IABS(VECTOR(IT1)-K)) 55, 60, 65
65 T=(IT1-1.0)/N6+T1
GO TO 15
60 CONTINUE
IF (IABS(VECTOR(IT2)-K)}) 55, 70, 75
75 T=(IT2-1.0)/N6+T1
GO TO 15
70 IT1=IT1-1
IT2=1IT2+1
GO TO 80
15 RECZC{=T \
o SIGPOW=SIGPOW+POWER
105 CONTINUE
SIGPOW=SIGPOW/(N6*NIAXPI*PI)
WRITE({6. 200}
200 FORMAT (*SIGNAL POWER AT THE CHANNEL OUTPUT!)
WRITE (6, 210) SIGPOW
ZIOFORMAT (Fl12.4)

55 RETURN
END
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SUBROUTINE QSF(H, Y, Z, NDIM)

DIMENSION Y(1), Z(1)

HT =.3333333%H
IF (NDIM-5)7, 8, 1

NDIM IS GREATER THAN 5. PREPARATIONS OF INTEGRATION LOOP
SUMI=Y (2} Y(2)

SUMI1=SUMI+SUMI

SUMI1=HT*(Y (1 }rSUMI+Y(3))

AUX1=Y (4} Y (4)

AUX1=AUXI+AUX]1

AUX1=SUMI+HT*(Y (3} AUXI+Y (5))
AUX2=HT*(Y(1)3.875%(Y (2)F Y (5))}F 2. 625%(Y (3} Y (4))}+ Y (6))
SUM2=Y (5 Y(5)

SUM2=SUM2+SUM2

SUM2=AUX2-HT*(Y(4)}-SUM2+Y(6))

Z(1)=0.

AUX=Y@BFY(3)

AUX=AUX+AUX

Z(2)=SUM2-HT*(Y (2} AUX+ Y (4))

Z(3)=SUM]I ‘

Z(4)=SUM2

IF (NDIM-6)5, 5, 2

INTEGRATION LOOP
DO 4 1= 7, NDIM, 2
SUM1=AUXI
SUM2=AUX?2
AUX1=Y(I-1)+ Y(I-1)
AUX1=AUXI+AUX]
AUX1=SUMI+HT*(Y (I-2F AUX 1+ Y (1))
Z(I-2)=SUM1
IF (I-NDIM) 3, 6, 6
AUX2=Y (I} Y (I)
AUX2=AUX2+AUX2
AUX2=SUM2+HT*(Y (I- 1} AUX 2+ Y (E- 1))
Z (I-1)=SUM2
Z(NDIM-1)=AUX1
Z(NDIM)=AUX2
RETURN
Z(NDIM-1)=SUM2
Z(NDIM)=AUX1 -
RETURN
END OF INTEGRATION LOOP

IF(NDIM-3)12, 11, 8

NDIM IS EQUAL TO 4 OR 5
SUMZ2=1, 125%HT*(Y(1)+ Y(2)+ Y{(2)+ Y(2)+ Y(3)+ Y(3)+ Y(3) + Y(4))
SUM1=Y(2) +Y(2)

SUM1=SUMI+SUMI

SUMI=HT* (Y(1)+ SUMI + Y(3))

Z(1)=0.

AUX1=Y(3)+ Y(3)

AUX1=AUXI1 +AUX1
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Z(2)=SUM2-HT*(Y(2) + AUX1 + Y(4))
IF(NDIM-5) 10, 9, 9

AUX1=Y(4)+ Y(4)

AUX1=AUX1+ AUX1

Z(5)=SUMI + HT*(Y(3) + AUXI + Y(5))
Z(3)=SUMI

7.(4)=SUM?2

RETURN

NDIM IS EQUAL TO 3

SUMI=HT*(1.25%Y (1) + Y(2) + Y(2) -.25%Y(3))
SUM2=Y(2) + Y(2)

SUM2=SUM2 + SUM2

Z(3)=HT*(Y (1) + SUM2 + Y (3))

Z(1)=0.

Z(2)=SUM]I

RETURN

END

SUBROUTINE SICI(SI, X)
TEST ARGUMENT RANGE

Z = ABS(X)
IF(Z-4.) 10, 10, 50

Z IS NOT GREATER THAN 4

10 Y=2Z%Z

0SI=-1.5707963+X%((((((- 97942154 E-11%Y-. 22232633E-8)%Y+.30561233E-6
%Y -. 2834 1460E-4)*Y+. 16666582E-2)*Y~. 5555554 7E-1)%Y+1.)

40 RETURN

C
C
C

5

Z 1S GREATER THAN 4.

0 SI=SIN(Z)

Y =CO0S(Z)
Z=4_=/Z

0 U= ((((((((-40480690E-2%Z~.022791426)%Z +.055150700)%Z~. 072616418)*Z
1+.049877159)%Z-. 33325186 E-2)%Z-. 023146168)%Z-. 11349579E-4)%Z
2+062500111)%Z+. 25839886 E-9

0V=(((({(({({-- 0051086993%Z + .028191786)*%Z-.065372834)%Z + . 079020335)%

. 12-.044004155)%Z-.0079455563)*%Z +.026012930)%Z-.37640003E-3)*Z

~000 aaa

2-.031224178)*%Z-.66464406E-6)*Z +.25000000

SI=-Z*(SI¥U +Y*V)

TEST FOR NEGATIVE ARGUMENT
IF(X) 60, 40, 40

X IS LESS THAN -4.
SI=-3.1415927-SI

RETURN
END
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APPENDIX D,

Truncation of the sampling formula,

if we take account of N4 samples to the left and N4 samples to the

right of the time t the error on x(t) is
e(t) = L x, by () (D-1)
k <[t] N, +1
and k >[t] +N,

Since the samples are independent and zero-mean

i

E e’(t) Y E{x. %)} by (8) ¢ (t)

k, £ <[t] -N, + 1

and k, £ >[t] +N,

= o Yo (D-2)

X
k<[t]-N +1

and k >[t]+ Ny

This quantity is a periodic function of time (with period equal to the Nyquist
interval), We are interested in its time average
(i+1) (i+1)
[ Efefwia =42 \ [ i a (D-3)
. 0x Z 1 k

1

k<i-N4+1

and k>i+N4

Therefore the signal-to-mean-square-error ratio a, for truncation of the

sampling formula is given by

(i+1-k)m
-1 1 . 2
a,~ == kz ‘{;_k)n [ngu)' du
<1—N4+1
and k>i+ N,
1 Fwa{mf &u+f°b [m ]2 du
TTL w u N u
- AT
N .
Sp kot [eER@]T g (D-4)
TN o u
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D-4 is plotted on fig. IV-6. The corresponding expression for yl(t)

is more complicated and is not reported here,
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