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We consider  the t r ansmis s ion  of a s ignal  bandlimited to ( -W,  9 W) 

by the ze ro -c ros s ings  of the optimum signal  

We desc r ibe  a computer  a lgor i thm to e s t ima te  y(t) f r o m  i t s  z e ro -c ros s ing  

in a finite t ime  interval .  

We show that  a s  the channel bandwidth i n c r e a s e s  the output signal-  

to -no ise - ra t io  a for  the clipped vers ion  of the  opt imum signal  tends  to an 
0 

exponential function of the channel s ignal- to-noise  r a t i o  a 
C 

A s imi l a r  behavior i s  obtained for  x ( t )  i t se l f .  

We analyse  the effect of the channel H ( w j .- s i n  (a T)/  o T, "Finite" 
G 

channel bandwidth in t roduces  an additional t e r m ,  l inear  in a . This  t e r m  
c 

is re la ted  to the appearance of extra zeros in the Z ' I '  in te rva l  of t i m e  about 

the  ze r o- i I 0s sj ilgs ~f the crptirn~~un s ignal ;  tLe expar~erltiall term i s  related 

to  e x t r a  z e r o s  occur lng ou ts ide  this  in te rva l  at  low channel signal-to- 

noise ratio 



Dir~ectiions For fu r the r  research on this problem are: nonlinear 

memoryless  t rans format ion  of x ( t )  to control  the  dis t r ibut ion of the  zero-  

c ross ings  of the opt imum signal  y( t ) ,  nonlinear m e m o r y l e s s  t rans for rna-  

tion of y ( t )  and f i l ter ing a t  the r ece ive r  input to  minimize the z e r o - c r o s s -  

ings displacement ,  optimization of the  ze ro -c ros s ings  detector ,  and 

es t imat ion of the  opt imum signal  f r o m  i t s  z e ro -c ros s ings .  
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INTRODUCTION - 
Signal trag?,smiss.i/r>n by means of zers - .c rosa ings  takes i t s  root  

in a phenomena, clipped speech intelligibility, reported in the l i t e r  attare 
! ; I  

some 20 y e a r s  ago' " I .  Advantage has been taken sf this property f o r  

the communication of speech signals ( 2 - 5 ) .  Clipped speech makes possible 

the t ransmiss ion  of intelligible speech through channels of poor quality: 

typically for  the same intelligibility clipped speech needs about 114 of 

the channel capacity required for  normal  speech(6).  In this work, we 

investigate the t ransmiss ion  of the bandlimited signal ( in  general)  by  

means of a se t  of related zero-crossings.  

In Chapter 1 we describe the main s tat is t ical  propert ies  of a sub- 

c l a s s  of bandlimited processes  (called optimum) character ized by one 

zero-crossing in each Nyquist interval (it wil l  appear  that the ze ro -  

c ross ings  of this subclass a r e  the related zero-crossings we a r e  looking 

for) .  The ideal clipper destroys al l  information but the zero-cross ings  

of i ts  input ;  thus we give a description of this device by the t ransform 

method. We 'define a measure  of communication sys tems per formances  ; 

we show that in our case ,  since the bandwidth expansion occurs  by 

clipping the optimum process ,  the suitable types of modulation give the 

same  performances a s  a direct  t ransmiss ion  of the signal. We advise 

the r eade r  to s t a r t  by Chapter II and to  come to the appropriate sections 

of Chapter I a s  the understanding of the mater ia l  requi res  it. 

In general  a bandlimited signal is not completely defined by i ts  

zero-crossings.  Thus the se t  of these points contains l e s s  information 

than the signal itself. In order  to use the zero-crossings as  information 

c a r r i e r s  we should therefore find the mapping which maximize the 

amount of information in the new se t  of zero-crossings.  But, a t  the 

present  t ime, even for  Gaussian processes ,  we do not have a nice 

analytic f o r m  for  the distribution of the zero-cses  sings interval,  Thus 

the approach just mentioned cannot be rased. We ra ther  process  in an 

heuris t ic  way by investigating in Chapter 11 various ways of increasing 

the zero-crossings ra te ,  The two  f i r s t  methods (differentiation and addi- 

tion of a sine wave) have a common property : as the zero-crossings rate 

increases ,  the spacing between two  successive zeros becomes m o r e  

r e g u l a r ;  we  show that these techniques fail to give a signal completely 

defined by i ts  zero-crossings.  From the theorems discovered by 



 itchm marsh'^' and P o l ~ a  '" we de p;vp a t h i r d  efirhnique (n;a;;gi~,~ i,);.. 

an optimum preree w s )  which sat? a f i e e  the above .-..equire;mer~t~ 

At this point we have a bandlimited signal  - completely de f i ned  

by its zero-crossings and related in a known way to the original signal, 

The next s tep is  the investigation of the effect of noise and fi l tering on 

these zero-crossings.  This is  u~ldertaken in Chapter 111, W e  f i r s t  

derive the propert ies  of random square waves t ransmission for large 
B 

bandwidth (---- -+ a) and additive Gaussian noise. F o r  finite channel band- W 
width we find an approximate expression when the channel t ransfer  

sin " (this channel has  no exact finite bandwidth: function is H (w)  = 
C 

however it has  a filtering action and its bandwidth, although somewhat 

a rb i t r a ry ,  can be defined). 

Finally, in Chapter IV we assemble the various pa r t s  of the syster-rL: 

the mapping of the signal into an optimum process ,  its t ransmiss ion  

through the channel, the estimation of the optimum process  f rom the 

received zero-crossings by means of a computer algorithm and the 

inverse mapping into the est imate of the signal. The overall  per form-  

ances a r e  then related to the resu l t  found in the previous chapter.  



CHAPTER 1 

TOOLS OF T H E  RESEARCH ~- 

We shall  investigate the t ransmiss ion  of a signal by a set of 

related zero-crossings.  Thus the ideal clipper appears  an an essen-  

t ia l  element in our sys tem and we need a convenient representat ion of 

this device, 

Let y(t) and z(t)  be the ideal clipper input and suQut  respectively.  

~ ( t )  = sgn l y( t ) l  (I- 1-2) 

we can  write 

(I- l -3 )  

Let  f (y lS  y2 ; t l ,  t2) be the joint density function of y(t  ) and y(tZ) %. 
(denoted by yl and y2 respectively in the following), and # (wle w2 i t l .  t2) 

the joint charac ter i s t ic  function 

(I- l -4)  

Than (since we consider r e a l  processes  only) the cross-csrreEatisn Func- 

tion between the clipper fqut  and output is 



since 

For  t 1= t2  (1-1-5) leads to 

where # i s  now the characteristic function of the random variable y(t) 

4 (a ; t)  = E {ejwy(t') (I- 1-8) 

Similarly the autocorrelation of the clipper output is 

+ @  += (I- 1-91 

Formulae (I- 1 - 5, I- 1 - 7 and I- 1-9) make sense only i f  in the inte - 
grand the pole at  the origin cancels with a zero in the other factor. How- 

ever if this does not happen we can still  get a correct  result by the use of 

differentiation on both sides of these relations followed by appropriate 

integration (the constant of integration being derived from the known 

initial conditions). To illustrate this point let us investigate the auto- 

correlation of the output of a clipper when the input is a stationary Gaussian 

process. The answer is  khown to be given by the arc-sine law 

2 
where r (7) = R  ( T ) / u  (1-1-11) 

Y Y Y 
Taking account of the stationarity we write (1-1-9) as 



where the differential operator D = d / d ~ .  We get in this way a relation 
"f 

where the pole at the origin disappears 

where R' stands for dR1d.r. With the change of variables 

we get 

By integration 

(I- 1 - 16) 

But 

R (0)  = 1 and therefore C = 0. 
Z Z  

%he technique we have described implies no restriction on the non- 

linearity involved (except the existence of its Fourier transform). It 

irnplies also no restriction on the input process (thus this result . is  not 

restricted to the Gaussian case). Therefore we have here a very general 

tool. 

In chapter I1 we shall weed the properties of a special class s f  p ro-  

c e  sses, introduced in our Mas te r"  sthesis, which w e  called "optimum 

signals."'". For convenience we recall first the definition. Let x(t) be a 

signal bandlimited to (-n, S- $l ) (deterministic o r  randem at the present  time) 



vanishes outside ( - R  , t Q). In both cases the sampling theorem holds, e. g. 

In the random case we must understand this equality in the mean square 

sense. 

The optimum signal, y(t), is derived from x(t) in the fol l~wing way: 

we leave the sample amplitudes unchanged but we change their polarities 

so  that the following equality is true 

k sgn [y(m) y(G)] = - I  for all k 

Thus 

It follows that between two consecutive samples y(t) has at  least one zero- 

crossing. In the deterministic case Polya has shown that there ks only 

one zero-crossing (appendix A). In the random case there is no proof 

that such a property exists ; we will just say that in the simulation par t  

of this work we were unable to find an interval with more than one zero- 

crossing and we a r e  tempted to say that "there is only one zero-crossing 

in each Nyquist interval with probability one". The occurrence of a zero- 

crossing in each interval is the basis of the optimum signal properties. 

To find the cross-correlation function between the optimum process 

and its clipped version section 1 shows that we need the second-order 

characteristic function, x(t) wi l l  be assumed stationary in the wide sense, 

Gaussian, zero-mean with a power spectrum uniform in (-0, + 0). Then 

the samples % are independent, Gaussian, zero-mean random variables 



0 
with identical distribution, It will. be useful t s  multiply each realization 

of y(t) by the following random variable, independent of the \ IS ; 

Z = + 1 or  - 1 with probability 112 (1-2-12) 

This will not d f e c t  the optimaliw of y(t), and the sign of y(t)  is already 

undetermined when the zero-crossings a r e  known. Thus 

+a, 

k 
~ { y ( t ) )  = o Y & 7 L;j (-1) $k(t) (I- 2 - 6 )  

k=-@ 

- But +; +a0 

k 8 k ( t ) m ~ . a ( w )  l 1 exp[ - jk (m+n)  w (1-2- 7) 
3 

= ,a k = -0 

The finite sum 

is periodic with period 2.n . On Ihe other hand 

' and 2 ~ 1 6  ( @ l +  Q )  = 2rr + h % )  

Therefore (1-2-8) is a sequence of hgrslses of strength 277 and (1-2- 7 ) is 

equal to 

T [a(@-n) + 6 IU -ti ~ $ ~ - c o s  (nt ) (1-2- I. eg 

cos a t  with (1-2-5) as definition of y( t). 



It is easy  to Bee t h a h t  each sampling time y(t) is a wcslmaLly distributed 

random variable with mean zero  and same variance oZ a s  dt). 
X 

First we consider the f i r s t -o rde r  ehafaceerii?tice fQnctior, of ..E*i 
Y I L I .  

Since Z i s  independent of the xkl 

Thus I ( W  ;t) is a rea l  function ; this comes from the fact that the random 
Y 

variable Z makes the density of y(t) symmetrical. Since the %Is a r e  

independent 

For  t = n / 2 ~  we get 

8 (w;n/zW) = Real ~ { e x p  
Y 

* 
as e%g%ec&ed. mherwise since 

Products,  " Ac. Press, section 3.896 (p. 480). 



where F (a ;b ; z )  i r J  Kuanmer" fbunctisn 
1 1  

and a, 

.-au 
2 1 b2 
cos (bu) du = Z ,E exp ( - 

'i> 

(1-2- 16) becomes - 

where \= W ox $k(t) 

and since for Lwro bandlimited functions f(t) and g(t) with finite energy and 

same bandwidth W 
+a0 

we get 

kzz -ee 

and 

and f i n d 7  



The second-order characteristic function fe l lows immediately 

from the above result: 

i. e. , the same result as  (1-2-8) except the replacement of w $ ( t )  by  
k 

wltk(tl) + w $ (t  ). Therefore the second order characteristic function 2 k  2 
i s  given by (1-2-21) where 

Now tbe f irst  factor becomes 

* 
by the use of (1-2-24) . 

Therefore the characteristic function ( f i rs t  or  second order) of the 

optimum process can be written a s  the product of the original characteristic 

function and the factor 

9inn-r where rX(7) = is the normabizad correlation function s f  the process 

w(t). 



respectively, so that this factor appears as  the perturbation of the charac- 

teristic function of x(t) due to the mapping. 

W e  shall also derive the auto-correlation function of the optimum 

process. 

o r  with t2-tl= 7 and t l = t  

Particularly the variance is given by 

1%- e .  , the variance (and the carre%alion function) a re  modulated at twice  the 

highest frequency in the sign& w(%), At a sampling time the variance is 

maximum and equal 4 0  &e variance of x($) ; at the mid-point of a Nyquist 
2 2 interval the variance achieves its miqimum o (1 - - ) which shows that the 
X n 

process ~ ( t )  is "pinched'qn the center of each Payauiat interval, Taking 

the Fourier transform sf (1-2-34) we get 



i. e .  , the power spectrunn of the optimum process has a component identical 

to that of x(t) and two modulated delta-function at f 0. It i s  clear  that these 

components a re  correlated (for the sample s sign to alternate). 

These results can be obtained from (1-2-27) and (1-2-28) since 

2 2 " ( t )  when w -+ 0 t - 1 - 2 

2 2 + a2 cr (t2)] when UI and w2 - 0 1 

fo r  zero-mean processes. Since F + 1 when the argument tends to zero 1 1  
(1-2-27) becomes for small values of the argument 

Therefore 

whish cheeks with (1-2-351, Similarly - 



and by (1-2-35) and (1-2-38) we get  

which is identical to (1-2-33). 

In chapter 11 we shall investigate how close a signal x(t) can be 

recovered after some transformation and passage through an ideal clip- 

per  . The system is followed at  least by an amplifier with appropriate 

gain A and more generally by a filter h(t)(Fig, 1-1). The final output which 

is an approximation of x(t) will be denoted by $(t). We shall use the follow- 

ing measure of the closeness of x(t) and %(t) 

E {x2( t 1) 
a = max min max 

where the f i rs t  maximum is  taken over the set of parameters pi describing 

the system. Maximization over t fo r  a given t1 provides a means to 2 
take account of a possible time shift in the systemr There is no res t r i c -  

tion on the 

system which may be nonlinear and perturbed by noise. Assumigrg zero- 
2 2 2 2 

mean processes E {P (t2)) = o2 ( tZ)  and E{k (tl)} = vX (tl), and . 

(1 -3 -1) may be written 

a -. max min max 

Pi  

We can at least m a x h i z e  - a by an amplifier placed after the system ; for 

this i t s  gain e h o d d  be 



When the system introduces no time delay t l =  t2 ; if furthermore the pro- 

ce s se s involved a re  stationary the quantity - a i s  independent of time ; then 

(1-3-4) becomes 

We can do better than (1-3-4) by replacing the amplifier with appro- 

priate gain by a filter. Because of its mathematical tractability we shall 

consider the Wiener -Kolmogoroff filter which given the data y(t) (the 

output of the system) gives the linear-minimum-mean-square-error est i-  

mation of the signal x(t). We shall recall  the theory of the unrealizable 

f i l ter( lO'  l).  Linear estimation implies that g(t) derive from y(t) by 

an expression of the type 

. 2 
The mean-square-error E([x(tl) - :(tl)] 1 achieves its minimum when the 

J -3. 
0- 

weight h(t19 u) is such that the e r r o r  i s  orthogonal to the data, e. g. 

E! b ( t l )  - 2( t l ) l y (o ) )  = 0 for -0 < o < = (1-3-7) 

and it i s  easily shown that the minimum mean-square-error i s  given by 

Therefore the Wiener-Kslmogoroff filte r is the solution of 
n += 

the system since the weight hit, %a) is chosen to minimize the e r r o r  ( in  

the mean-square sense) and all data (from -= to + 1 are used to build 

the e stimate, 



and the minimum mean-square-error i s  given by  

Therefore with the Wiener-Kolmogoroff f i l ter  (1-3 -1) becomes 

-00 
a = max min 

Pi Rx (tl, tl) 1 
F o r  stationary processes (1-3-11) simplifies in 

-00 
= max I I - I 

while (1-3-9) becomes 

o r  
4-00 

R ( t )  = 1 h(t-u)R ( u ) d u  
XY Y 

Finally by the use  of the Four ier  t ransform of the quantities involved 

we can write 



= max 

Pi 

In chapter IV we shal l  simulate a communication sys t em on the 

computer. In this case  we cannot define the quality of the receiver  output 

in t e r m s  of expectations. Thus we shall  use  a definition of the signal-to-mean- 

squa re -e r ro r  ratio using integrals over the t ime domain: 

2 : + Tx ( t )  dt 
1 

a ( T )  = max min max 

Pi tl t2 
t l tT  

T 

(where t2  is  to be understood a s  a function of t )  and 

F o r  our  purpose in that chapter  since we shall  consider the passage of a 

stationary process  (integrals become independent of t for  T -+ oo ) th rough  a 1 
sys tem with ze ro  t ime delay (t2 = t )  and fixed pa ramete r s  (no max over  the 

p igs )  (1-3-17) becomes 



The optimum amplifier gain is he re  given b y  
Cf 

and "'. 

- 1 
a = 1 - l im  

0 

4. -noise 

ratio. 

In section 3 we have considered the mean-square-er ror  a s  a measure  

of the sys tem performance. The quantity a = signal power has the 
mean-square - e r r o r  

\ 

desirable  property that it is monotonic with the channel signal-to-noise 

ratio a But a s  i t  can be seen  f r o m  (1-3-4) and (1-3-11) when the channel 
c 

signal-to-noise ratio tends to zero  a tends to one. Thus for  comparison - 
with other communication sys tems in t e r m  of quality of the output vs. quality 

of the channel the quantity a would lead to erroneous conclusions since the - 
output signal-to-noise ratio should tend to zero  with the channel signal-to-noise 

ratio. ~awton ' " )  has  proposed the following theoretical definition for  the 

output signal-to-noise ratio 

wi th  



and where  x f t )  i s  %he s ignal  d o  be t ransmit ted and y( t)  the output a6 the 

system. This definition assumes  that the input and output processes  

a r e  zero-mean (otherwise f o r  high channei signal-to-noise ratio a would 
0 

not tend to infinity); i t  a lso a s sumes  that the processes  a r e  stationary 

and that no delay occurs  in the sys t em (o r  that the output i s  properly shifted 

in t ime f o r  comparison with the signal). With a. defined a s  above we can  

s e e  that 

fo r  a " 0 r (0)  .-s 0 and a. * 0 
C XY 

a -+ oo 
C 

r (0) 4 1 and a. * co 
XY 

a s  desired,  The definition a lso  sat isf ies  the requirement that i f  the 

flcomrnunication system" mere ly  consis ts  of an addition of zero-mean 

noise independent of the signal (Fig.  1-2)  the output signal-to-noise ratio 

i s  equal to the channel signal -to -noise ratio indeed 

F i g ,  1-24 

Firoally the definition leads to a resul t  that is independent s f  the level of 

the system outgut, 

From (1-3-5) we find that a and a are related by the simple 
0 

relationship 

a = a - l  (1-4 - 6 )  o 



Therefore for  nsnstationa ry prates s e s  and communication systems 

with time delay followed by the optimum amplifier (1-3-4) leads to 

.2(, ; o "it + r ' 
-1 x l y ' l  i a = min max rnin - 1 
o 

pi T 

For  nonstationary processes and communication systems with o r  without 

time delay followed by the unrealizable Wiener-Kolmogoroff filter (1-3-11) 

leads to 

-1 RX(tl. tl ) a = min max -1 
0 

pi '1 $00 

and finally i f  the processes a r e  stationary the previous formula becomes 

5. Gomparison of the performance of the communication system with 

and without modulation. 

We intend to show here that the system may be investigated without 

t akbg  modulation into account. Pndeed we shall send a bandlimited signal 

by the clipped version of the associated optimum process which means a 

bandwidth expansion before modulation. This expansion will give the noise 

i m m n i t y  and the refore no further bandwidth increase (by means of modulation) 

will be necessary, Thus double-sideband suppressed ca r r i e r  (BSB-SG), and 

single -sideband (SSB ) a re  suitable types of modulation for our problem. 

We shall assume the noise gaussian, wide -sense stationary, and 

zero-mean. Then the noise outside fac- n , uc C Ci ) or ,  for  instance. 

( U ~ P  ac + n ) (where wc i s  the carr ier  angular frequency) i s  independent 

of the noise in that band and the refsre carnot help in estimating y(t), the 



signal. sent, The signal to be demodullated now can be writ ten respectively 

a S 

~ ( t )  f i  ~ 0 s  (act) - ( t )  f i  sin (act) + n(t) 

where y(t) i s  the clipped version of the optimum process filtered by the 

channel, $(t) i s  the Hilbert t ransform of y(t),  and n(t)  can be written a s  

(the noise n(t) i s  obviously not the same in the two cases:  in SSB i ts  

bandwidth and power a r e  reduced by a factor 2). 

In DSB -SC and SSB i f  the phase of the ca r r i e r  i s  known we get, 

multiplying by n c o s  (act) and filtering. 

In DSB -SC the channel signal-to -noise ratio i s  given by 

and the signal-to -noise ratio after demodulation i s  

therefore we get a 3 dB improvement. In SSB 



and therefore a .I a We note that any phase difference betweela. the c 0' 

carrier and the local asci%lator entails a loss of performance, 

Therefore with the types of modulation suitable fo r  our  problem 

the performances a r e  easily derived from the performances under the 

assumption that transmission takes place in the baseband. 



CHAPTER 11 

M OF RELATED 
ZERO -CROSSINGS 

In this chapter, as  well a s  in the following ones, we assume that 

the input x(t) of the communication system is a stationary, bandlimited, 

Gaussian, zeso-mean process, with a flat power spectrum in (-cl , t Q ). 
2W (''-pa 'g3), A band- Such a process has a zero-crossing rate X = -- 
n 

limited process i s  defined (in the mean-square sense) from its samples 

taken at  the rate 2W per second; just by intuition we might expect that 

the zero-c rossings do not ca r ry  enough information to define the signal 

completely; in section 1 we prove that this i s  indeed true. 

The aim now would be to find the mapping such that the information 

carr ied  by the new set of zero-crossings i s  maximum. This approach 

cannot be used because of our lack of knowledge on the distribution of the 

ze ro-crossings interval. We use a less  ambitious approach, namely we 

shall increase the zero crossing rate (one of the factors which determine 

the amount of information carried by the zero-crossing s t ream) and then 

check whether the new process is better defined by its zero-crossings 

than the original signal itself. 

We f i rs t  consider multiple differentiation of the signal, and addition 

of a sine wave with the highest frequency Q (Sections 2 and 3) .  In these 

two sections the signal x(t) is estimated by the optimum unrealizable 

(Wiener-Kolmogoroff) filter from the zero-crossings of its mapping. In 

both cases we get a decrease of the output quality with the increase of the 

sero-crossing rate. 

Section 4 is  an attempt to estimate the signal x(t)  from the 

xero-crossings of its associated optimum signal by means of optimum 

linear filde ring, Were we run into analytical difficulties. 

In section 5 we state two theorems due to Titchmassch and ~ o l ~ & .  

These theorems, valid when the signal has a Fourie r transform ,vanishing 

outside some in terva l ,  give the maximum zero-crossing rate to be expected 

and the conditions under w E c h  the signal (then called o p t i m u m )  is comp%etePy 

defined by its ze rs-crossings, We extend these theorems to b a n d i h t e d  

stochastic processes, and we give an. algorithm far the estimation of the 

optimum process from its zero -crossings, 



1, Some ~ r e l i m i n a r v  resul ts  

7.ef us f i r s t  the sys tem *JJC c&ii ' - .+ - ~iiiiik about: 

no manipulation of the signal and clipping followed by an amplif ier  to 

minimize the mean-square - e r r o r  (Fig,  11-1). 

By (1-3-5) 

! 

Fig. 11-1 Signal Clipping 

and by (1-1-7) 

where yl(t) and yZ(t)  a r e  the clipper input and output. Thus 

Fig. 11-2 Signal Clipping and Ideal Filtering 

A f i r s t  improvement i s  obtained by an ideal low-pass fi l ter(witb the 

same bandwidth a s  the signal i tself)  between the clipper and the amplifier 

(Fig ,  U - Z ) ,  The sys tem introduces no t ime delay; therefore we apply (I-3-5),  

W e  denote b.7 J -r ~ 3 ' t ~ t - ~ -  *"Q o x t p ~ t  of the idea? filter. From (1.-I -5) we get 



Extension of this result  to a broad c lass  of processes and nonlinear t r a n s -  

formation i s  given in appendix B. Now 

We a lso  have 

which for  a Gaussian zero-mean signal becomes 

Thus by (I- 3 - 5 )  

Finally for a signal with flat power spectrum, e. g. 

and with the dimensionless variable t = R T  

-1 -1 
a = I - n  sin t I 

The value of the above integral is 3. 89'13'. Therefore 



A last irezyro-~emenl (if w e  require linear filtering and directly 

apply the signal to the clipper) is  obtained by a Wiener-Kolmogoroff fil ter.  

We already know that 

Applying (I -3  -15 ) 

and since 
+m 

-1 
.S ( a ) =  2 1 sin r ( T ) ]  c o s ( w ~ ) d ~  

Y2 TT 
,OD 

Y1 

-11 " - 

I T T  1 I & \  

Again for  a signal with flat power spectrum 

and with the dimensionless variables t = R r and u = a/ Q 

- - 1 
sin(t) cos (ut) dt 

t du 

0 0 

Since ( la)  

c o s ( ~ t ) d t < l . 9 8 2  - far \ u  \ < l  (u-1-19) 

Actually we are  doing better than with the ideal low-pass fil ter and we 

can replace (E-1-20] by 



Thus in this case it  does not pay to replace the ideal filter by the optimum 

fi l ter  (this i s  expected since (a-1-19) shows that the spectrum of the 

clipped signal is almost flat in ( - R , 4- !2 ): the main function of the filter 

i s  to remove the frequencies gene rated outside this interval). 

2. 

Differentiation of the signal increases the zero-crossing rate a t  the 

clipper input, and therefore one of the factors which determine the amount 

of the information available after clipping to recover the signal, Thus we 

consider the following scheme (Fig. II-3) 

Fig. 11- 3 Differentiation, Clipping and Wiener Filtering 

where Hl(w) = ( j  w)" (n differentiators) and H2(w) i s  the Wiener filter 

Since yl(t) i s  stil l  Gaussian we have 

From (U-1-4) 



and 

The structure of HZ(@) i s  bet ter  understood when we write 

which i s  a fil ler with t ransfer  function proportional to S (o)/S (a) 
Y l  y2 

followed by the inverse of the preemphasis fil ter,  Now by (1-3-15) 

Up to here we did not specify H1(o) and Sx(w). Now we specialize to  

and 

(Gaussian signal with flat power spectrum in ( -. R , t Q ) and n differentiations 

to h e r e a s e  the zero-crossing rate). F o r  this case (1I-2-7) becomes 

(n-2-10] 

r 1 oZ" d kl 

where 

s (a) 
2 - - %. 
n sin r ($1 

%* 2 Y l  



Therefore 
(; 

- 1 
cos ( U T  ) d ~ ]  d w (H-2-11) 

o r ,  with the dimensionless quantities u = w / Q  (in the f irst  integral), 

v = w/R (in the second), and t = Q T  

where 

When we let n = 0 in (n-2-12) (no differentiation of the signal before clipping) 

we get 

a result which checks with (11-1-18) 

The normalized correlation function r ( t )  of the n-th derivative 
Y l  

of the process x(t) can be esrnputed by the following recurrence f ~ s r n u l a  

which we get a f t e r  two integration by parts, 

Finably since w e  can wri te  ( f l -2 -12)  as  



we get 

- 1 
which i s  more convenient for  computation since sin [ ryl(t,n)] - r (t ,  n) 

tends more  rapidly to zero than sin-'[ r (t ,  n)] itself. 
yl 

y1 

The zero-crossing rate at  the clipper input i s  easily found since 

shows that the condition R sfied. For  this case the 

0 -Section 14 -4) 
zero-crossing rate i s  given 

- 1 - - - sd - -  
'A IT 

0 
.The? following table gives the normalized zero-crossing rate 



Fig. 11-4 

S.;sgs\al-to -mean-square-er ror  rat io  for  the estimation of the signal from 

a get  of related zero-crossings vs.  the normalized zero-crossing sate 

A. = X / ~ W  (Q : differentiation of the signal; t : addition of a Gaussian, 
Y1 

W 
r~ar rsw-band  process  with center frequency W , and bandwidth o +O). -- 

W 



(81-2-17) has been evaluated on a computer, The results are plotted (dots) 

on F ig ,  U-4  vs, the normalized zero-crossing rate rather than the num-ber 

of diffe rentiations, The dashed curve has been drawn merely for convenience. 

As long as we consider linear estimation differentiation, although it increases 

the zero-crossing rate, does not decrease the mean-squared-error. However 

differentiation also decreases the variance of the zero-crossings interval 

and therefore the result i s  not completely surprising. 

Another way to increase the zero-crossing rate at  the clipper input 

i s  the addition of the sine wave s ( t )  = A sin c2 t to the signal x(t) (Fig. 11-5). 

It i s  obvious that this technique as well a s  differentiation leads to a ZG rate 

at the clipper input as  close to 2W as  we wish. Here however the theoretical 

investigation would not be so straightforward because we lose the Gaussian 

character of the clipper input. Thus we shall consider the addition of a 

narrow -band Gaussian process centered about the frequency W. 

F i g .  XI-3 Addition of A(t) - .  sin(glt + 8), Clipping, and Wiener Filtering 

Now the clipper input 

I 

yl(t) = ~ ( t )  + A(t) sin (R t + 8 ) (U-3-1) 

where 8 has uniform distribution in (0,2 pr ) and A(t) has Rayleigh 

distribution with parameter a x(t)  + ~ ( t )  i s  Gaussian with mean zero,  
2 2 

s * 

variance er 4- cr d n d  autocorrelation function R (T ) = K x ( r )  + Rs(T ) 
x. yl 

since x(t) and s ( t )  rare independent. Therefore 



On the other hand 2 2 

- O S  w2 

R ( T ) ;  -1 it*w2-1 2- 
XY2 n w =O 

& 

-00 
1 

A 

Thus the closeness between the output x(t)  of the Wiener f i l te r  and the 

signal x( t )  i s  given by (I-3-15), i. e. , 

where 

Therefore,  with the dimensionless parameter  y = 
2 2 

lax  

W e  now specialize to  the following case: Sx(a) flat in 1 u \ - (2 is e e  



where we use the notation 

0 otherwise 

Fo r  this case 

where 

sin QT 
sinw T 

0 

2 - 1 [ T  S (a)*- sin + Y  COOT 

Y 2  w l + Y  
cOs nT I 

When wo = 0 , s ( t )  = A sin (Q t + B ) where 8 i s  a random variable with 

uniform distribution in ( O , 2 n  ) and A a random variable with Rayleigh 

distribution. In this case 

A periodic component appears in the clipper output. Since this component 

is irrelevant to the information we seek from yZ(t) i t  can be eliminated 

by an appropriate filter.  We shall denote the output of this filter by y3(t), 

Now - a is given by (E-3-51 with y2 replaced by y3. Obviously 



(Fq, (a -3-4)  shows that S (w) i s  free of 6 -functions). To  find 
"Y 2 

S (a) we shall need the following theorem: 
Y3 

Theorem, -If a nonlinear device is such that the correlation function of i t s  

output y(t) can be written a s  some function f ( .  ) of the correlation function 

of i ts  input x(t),  then for  an input sum of a periodic process (whose cor re la -  
2rr 

tion R (T ) has period T = Sr)  and a process with continuous power spectrum 
P 

(correlation R (T ) ) independent of the former,  i. e., 
C 

the correlation function of the output of an ideal filter band-stop at the 

multiples of the fundamental frequency of the periodic process i s  given by 

Proof. We expand the function f( .  ) in a Taylor series:  

f C R  (7 )  + R c ( T )  1 = f [ R ~ ( T )  I+ ~ ~ ( 7 )  f '  [Rp(7)1 + . . . (U - 3 -18) 
P 

The Fourier t ransform of the f irst  t e rm  leads to a succession of impulses 

in the frequency domain at  k R , ( k = 0, +1, - t 2 . .  . ). Therefore if we remove 

these impulses by a band-stop filter we a r e  left with the autocorrelation 

function (II-3-17). Applying this theorem to (11-3-14) we get 

2' -.I Y cos n T  
S (a)-  R ( T ) = ~ L S ~ - ' (  - sin (- )I (a-3-19) 
Y3 Y3 

Therefore with the dimensionless quantities 

(LZ-3 -12) becomes 



and for the case uo .- 0 

The process - y 1 ( t)  i s  Gaussian, and R '  (0) = 0 since R ~ ( o )  and 
Y1 R:(o) both vanish. Therefore the zero-crossing. rate i s  given by 

with -R" (0) = 
y1 

n 
0 

2 
3 

O x  {n3 + k [ ( n + a 0 )  - ( a -  j) = m  

Finally 

As a check we find at  the limits the expected results: 

y + 0 (no narrow-band process added): An -+ 1 1 f i  

y m (narrow-band process alone) and a = 0: Xn +l 

The following is a table of the normalized zero-crossing rate a s  a function 

of the power of the narrow band process for  a - 0. 



The numerical results corresponding to (II-3 -22) (i, e ,  , addition 

of a sine process) a r e  the + on Fig. 11-4, We encounter the same problem 

a s  in Section 2: in spite of a zero-crossing rate increase there i s  no improve- 

ment of the estimate of the signal. But the drawback of the technique is  also 

the same: the variance of the zero-crossings interval decreases as  the power 

of the sine wave increases, 

Finally we underline that in both sections we have considered the 

linear optimum filte r e  Nonlinear filtering would obviously give better 

performances. However, in the light of the previous results the nonlinear 

approach does not seem promising since a t  a zero-crossing rate close to 

2W the quality of the linear estimate i s  very poor. 

4. Mapping of the Signal into the Optimum Process,  Clipping, and 

Wiener Filtering 

The optimum process associated to a bandlimited signal has a 

zero-crossing rate equal to (at  least)  2W. In the light of the sampling 

theorem the t rans f~rmat ion  into this process might very well be the mapping 

we a r e  looking for  (by the two previous techniques we can only approach 

the rate 2W). Thus we consider the linear estimation of x(t) f rom the se ro - 
crossings of i ts  optimum process, The results obtained in 1-2 for the 

characteristic function of an optimum process however indicates that this 

approach leads to serious analytical difficulties which will be outlined he re. 

We first  show that the two problems of optimum linear filtering of 

y2(t) to recover x(t) o r  yl(t) have the same solution (Fig. 11-6). 

sgn 5 
Fig ,  E-6  

We have seen in 1-24 that the optimum process can be written as  



W e  shall presume that we are able to achieve a small. mean-squared-error; 

then f l( t)  is  itself optimum and we can write 

' I- 2 
If we minimize E i yl(t) -irl(t) ] ) the following quantity is  minized 

- 
-T 

2 
B U ~  xk and Sk have the same sign and E { (xk 1 - 1 1 ) ) is also 

minimized. Now 

CT 
1 = l i m Z T  j ~ ( [ ~ ( t ) - ; ( t ) j ~ )  tit 

- 1 
Therefore E itself i s  minimized. 

y 1 (t) i s  nonstationary and - a i s  given by (1-3-11) i. e. , 
r 4-00 3 h(t,u)R ( t , u )du  

-1 -00 
YlY2 

a = max 1 - 

where h i s  given by 

4-a3 

Thus the problem reduces to finding R (tl, t2)  and R (tl, t2). 
)ply2 

By (1-1-15) 
y2 



+m 
L 

i = Q )  Real Il 1 t j - l ~ k  
Y1 k =  -00 

Thus 

t c a  +Ca 
2 

"k 
Real k=-ca n ~ l + j k ( - l ) ~ % ~ F ~ ( ~ ) ]  

-00 

t c a  
+ PxReal a n [ l t ~ & ( - l ) ~ % ~  

1 k=-00 

2 2 
4-00 7 

2 

+exp( - O x  ("2- r )L Real 
a W k l  n [l+j,/g (-llkw, j ) dw2 

k=..ca q = o  

toa 0- 
2 

i-00 
1 - 1 xW2 

=2R (t -t ) f  (O;t2) - - / a2 exp(- 7 )Real 2 j F ( - l ) % x + l ( t l )  
X 1 2 Y 1  I T .  -00 I =-00 IT 

k= -00 (II-4-10) 

 he second t e r m  cannot be further  reduced. R (tl, t 2 )  is given by 
Y2 

(*I For convenience we drop the arguments of the character is t ic  functions 
a s  well a s  the W o  parameters  of the hypergeometric function. 



where D i s  the appropriate differential ope rator. W i t h  D=d/d(tl  -t2) 

vJe get a first term 

Again the second t e rm cannot be put in a nice form. 

It i s  well-known from the sampling theorem that 4WT samples in an 

interval (-T,  CT) define a signal (deterministic or  random) bandlimited to 

(-W, CW), When the Fourier  transform of the signal exists a theorem due 

to ~ i t c h r n a r s h ' ~ '  proves that when all zeros of the complex function 

-R 

a r e  real  the zero-crossing rate of x(t) i s  equal to 2W, and the signal i s  

completely defined (except for  a scale factor) by its zero-crossings zk: 

On the other hand Polya ( 8  and Appendix A' shows that when the samples 

of the signal alternate in sign, e. g, 

sgn [ X ( & ) x ( ( ) )  = -1 for all k 

x ( t)  has one zero-crossings in each Nyquist interval. This i s  more than 

required by Titchmarsh's theorem, but it  i s  .a very useful property when 

the zero -eros sings a re  known in a finite time interval only. 

Do these results hold for  a bandlirnited stochastic process ? Let 

us consider the following argument. Since the signal i s  bandlimited we 

can write 

in the mean-square sense, O r  for  T cm 



x ( t )  -+ C c,(t) Is for \ k t <  14% - 
k= -2W T 

The zers-crossin-= 5" zk dete rrnine the samples x ,_ if and only i f  the 
K 

zero-crossings rate is equal to 2W ( for instance if xjt) has one zero-crossings 

in each Nyquist interval), indeed 

(where T is  assumed large) i s  a set of 4WT equations in 4WT unknowns 

(the ratios xk/xo). Therefore if the condition is  s a t i~ f i ed  the zero-crossings * 
define the process in the mean-square sense . 

Therefore the optimum process defined in 1-2 i s  completely defined 

by its zero-crossings. If x ( t)  has a zero-crossing rate smaller than 2W 

the mapping into an optimum signal i s  straightforward: sample x(t), change 

the sign where necessary to satisfy the condition of Polyals theorem and 

low-pass f i l ter  to get a function with the same bandwidth a s  x(t). 

Previously we designed an algorithm to find an estimate of an 
( 9 )  optimum signal in an interval of time from the zero-crossings in that interval , 

We recall the principle of the algorithm. Since i t  i s  usual for a communication 

engineer to expand in a Fourier ser ies  a signal truncated in time we write 

the estimate 

Since the signal i s  optimum the interval contains 4WT zeros; from the 

zero-crossings location we a r e  able to compute the coefficients in (LI-5-7) 

if we let N = ZW T and require that yl(t) and f l ( t )  have the same zeros. 

With the change of variable 
9 

* W e  i g n o ~ e  the a d e  rlyizag mathematical problems 

' Since I t 1 - < T and wo = n /T  this is a ,one-to-one mapping between the 

real variable t and the complex variable q,  



we can wr i te  

where q i s  the value taken by q at  the i - th zero-crossings. F r o m  (2121-5-9) 
i 

we derive the 2N equations 

etc. 

We note that the algorithm determined ?l(t) except for a scale factor. 

An ambiguity of sign also exists"). In general the algorithm will give a 

complex approximation, but experience shows that the imaginary pa r t  i s  

small  (some 5 percent of the real  par t )  and therefore we finally use  the 

estimate 

4-N 
f l ( t )  = Real CN-ke~p(jk s t )  for  1 t 1 - < T (U - 5 -11) 

k= -N 

The scale-and-sign factor i s  defined by (I-3-19), i. e . ,  

y,(t)i,(t) dt 

and the signal-to-mean-square - e r ro r  ratio by (1-3 -20) 

r (+T 
- 2 

y,(t) fl(t) dt j 
-1 

a = 6 - -  
LJ -1 

' However for  the general bandlimited signal the ambiguity of .s ign 
disappears because we have to t ransmit  the samples sign in addition 
to the associated optimum signal, 



In our  Master ' s  thesis we considered intervals of t ime with 6 zero-crossings 

and reached values of - a of some 2 0  dB. In recent investigations increasing 

the number of zeros to 30, using double precision in the computation, and 

using a guard t ime band a t  the ends of the interval (in other  words by 

computing (11-5-13) for  the central  par t  of the interval) we were able to  reach 

3 3  d ~ ( + )  . These resul ts  will be described in detail in chapter IV. 

To close this  section we descr ibe closely related resul ts  obtained by 
(14) Voelcker . The s tar t ing point i s  the analytic signal: 

0 

where % ( t )  and X(w) a r e  the Hilbert and Four i e r  t ransform of x( t )  

respectively: 

The function 

n 
x ( e )  = ( x(w) . jag d a ( e  = t + j ~  ) v rr J 

i s  f r e e  of singularit ies in the finite complex plane f o r  finite energy signals 

(an ent i re  function). At infinity such a function is of the o rde r  of 

exp(k 1 0  I ), k some constant, 

-- ' In this section we have considered estimation of an optimum process  
from i t s  zeros. It i s  e a s y  to show, since in this context the s ign  of the 
samples of x ( d )  i tself  a re  exactly known, that a i s  practically the sarne 
fo r  ~ ( t )  and y h t )  i f  'T is large,  



Next  we consider the integral 

LJ 

where C i s  the infinite circle.  Equation (8%-5-18) shows that this integral 

vanishes. Therefore the sum of the residues at  the poles of the integrand 

i s  zero. This yields 

where €Ik = \+ j~~ is the position of the k-th zero of xV(B) and rk 

i t s  order .  (11-5-20) and (11-5-21) show that in the bandlimited case the envelope 

and phase (and therefore the signal x(t)  = IxV(t) I cos G(t) i tself) a r e  de ter -  

mined by the zeros  of the analytic signal. 

At this point we note that the function xT(B) considered by Titchmarsh 

is also ent ire  since 

where E is the signal energy, Therefore (LI-5-20 and 21) a r e  applicable to 

x ( 63) and as already said the zeros of xT(B) define x(t) completely. The T 
advantage of ~ ~ ( 8 )  i s  that the rea l  zeros of the entire lunction a r e  the 

zero -crossings 01% the signal (which, in. general, is not t rue  for  the analytic 

signal x (-8) ); z e r o - c r o a s i w  are  dix-ectly observable while the z e r o s  o f  
V 

the ana~y-tic s ig r rahare  not physical auanlities (to find these zeros %"oelcker 

proposes the factorization of the Fourier series representation of x ( B )  ), V 
To find the signal from its zero-crossings Vselcker has proposed a nodinear  

device called "Real - Z e  ro  hterpo&atssm W e  shall describe the mathematics 



bekaad the device The purpose sf the real-zero in taqola tor  is to recover 

a signal which has real zeros  of order  one o d y  (and more generally the park 

of the signal which corresponds to its real zeros). It is therefore an in ter-  

esting alternative to the computer algorithm we @hall uee in t f i s  work. 

Applying (lI-5 -20 and 21) to xT(t)  and ignoring the constant t e rms  we ge 

@ ( t ) =  l im C dt 
T 4 0  k 

t -zk - 1 = l im C tan ( T  ) ( T > o )  
T 4 0  k 

where z i s  the k-th zero-crossing of the signal. Thus k 

and 

~ ~ ( ~ 1 1  -1 
= c ( t - q )  
k 

(U-5-25) 

= [ d l  <)/dt] 

Thus f rom the knowledge of the zero-crossings we generate the derivative 

of the phase. A device which approximates the Hilbert transform gives the 

derivative of the logarithm of the envelope. An integrator followed by a 

nonlinear device with exponential characteristic gives the envelope of the 

signal. On the other hand (11-5-24) shows that Q (t) increases by TT a t  

each zero-crossing therefore x(t)  itself can be recovered by multiplication 

of the envelope by the clipped version of x(t)  (known from the zero-crossings),  

Voelcker and recently ~ e k e y " ~ )  have shown the feasibility of this technique, 

while however going in the direction opposite to the purpose here, namely 
. < - 

(11-5-20) shows that @ (t '  = 0 everywhere except at the position af 

a zero-crossing. The limiting process  is necessary  to get the amplitude 
of the impulses 0% the phase derivative at these poh t s .  



the transmission of 2-levels signals with a bandwidth saving (and e o n s e q u e ~ ~ t l y  

an increased wlnera"Bilty to noise). 

6. C;onclusions. 

In 11-2 and II -3  we have seen that the estimate of a signal derived 

f rom a se t  of related zero-crossings cannot be improved by two linear 

techniques. In II-4 we have seen that optimum linear filtering of the random 

square wave which carr ies  the zero-crossings of the optimum process 

related to the signal leads to analytical problems. By contrast the approach 

considered in II-5 gives excellent results. However in this case we could 

not derive an expression for the signal-to-mean-square-error-ratio v s  T 

when the signal to be transmitted is  random (such an expression can be derived 

for the waveform sin(t) / t  (9-PO 27)). 

Thus in the following chapters we shall consider the transmission 

of a bandlimited process by means of its associated optimum process. We 

underline that the failure encountered in 11-3 and 11-4 does not mean differ - 
entiation o r  addition of a narrow-band gaussian process a r e  not worth to be 

considered; indeed we have investigated linear filtering only. Thus further 

research in this direction should deal with nonlliraear filtering. We think 

that the success of the mapping and algorithm technique i s  essentially related 

to the nonlinear nature of the transformations involved. 



CHAPTER El 

PROPERTES O F  'I 'WE TRANSMESLON O F  A R A m O M  SQUARE WAVE. 

We investigate here the second point pertinent to the transmission 

of a signal by means of a related set  of zero-crossings. After clipping of 

the optimum signal we have to transmit a random rectangular wave; does 
- 

this result in an advantage a t  the transmission point of view? 

We shall f i rs t  consider the case B / W - ) ~ ,  where B i s  the channel 

bandwidth. Next we shall take the effect of bandwidth into account, We 

shall assume the channel noise n(t) Gaussian, zero-mean, additive, 

independent of the signal. 

To estimate y2(t)(f) from the received signal we consider the 

following scheme (Fig. III-1): an ideal clipper followed by an amplifier 

with gain properly chosen to minimize the mean- squared-error . This 

scheme has the advantage of eliminating a great deal of noise in a simple 

way. 

n(t) 
Figure III-I RANDOM SQUARE WAVE 

TRANSMISSION 

This i s  not the best nonlinear receiver however, but i t  exhibits a very 

interesting property. We shall not attempt to optimize the structure in 

some way (for instance by a Wiener filter between channel and clipper) 

be-cause of the analytical difficulties involved. 

By (1-3-4 ) we have 

Where for the sake of generality we have ass  

ary. (++ 1 

('I To be consistent with previous chapter the random square wave is 
denoted by yZ(t) and has fixed unit amplitude. 

"" Again w e  note however that ~ ~ ~ ( t ) l '  = 1 and E { n(t) 1 = 0. 



I ,  

B As -- increases t he  i m p d s e  response of the channel tends $0 W 
6(t) and 

y,(t) - y2(t) + n(t9 
From 

Let us denote by P. .(t , t ) ( i ,  j=+, - )  the transition probabilities of the 
1J 1 2 

random square wave y ( t ) ,  e . g .  2 

etc. 

The density function of the optimum process y l ( t )  is symmetrical, there-  

fore yZ(t) i s  zero-mean since 

P+_(tld2) + P_,("&lst2 )= I&" (111-1-8) 

Therefore 

p+-(tl. t2 i = ~ - + ( 5 ,  . t2) (UI- 1-9)  

and 



The correlation function, of y. (k) is 2 

Therefore the P's can be expressed in terms of the correlation function 

And the characteristic function of y2(t) can be written as 

= z ~ + + ( t ~ , t ~ )  cos ( w ~  + w 2 )  + 2P+-(tl,t2) cos ( w l  - w 2 )  
(III-1-14) 

By (IH-1-12) and (In-1-13) 



Therefore 

where a ( t  ) i s  the channel signal-to-noise ratio a t  t ime t c 2 2 

and by Parseval 's  formula 

When ac  - 

a s  expected since in  this case y ( t )  - y2(t) .  
4 

From (111- 1 ) and (111- 1-1 7 )  we get finally the performance of the system 

FOP practical considerations t - t i s  constant. On the other hand m a i -  
2 l 

rnization of a over t would require knowledge of a ( t ) .  The best choice i f  - 2 c 
the channel signal-to-noise ratio i s  not measured i s  t l  = t 2 .  Therefore 

0 s  with the Q-function defined as 



When x 

Thus for high channel signal-to-noise ratio 

(III- 1-23) 

(III- 1-25)  

and the output signal-to-noise ratio behaves asymptotically a s  

Therefore we g e t  a very fast improvement (essentially exponential) of the 

output signal-to-noise ratio with the channel signal-to-oeise ratio. In 

Chapter iV it w i l l  be shown that this property remains true for the complete 

communication s yetem, 

For purpose of comparison wi th  this resul t  we shall consider the 

performance for optimum linear fi l tering of the channel output. From 



(1-3-9 and 11) 

with h given by 

Since y2(t)  and n(t) a r e  independent and zero-mean 

therefore h is solution of the integral equation 

and 

W e  shall consider the special case (generalisation of ac  = S Y2 (w) /Sn(w))  

R,(t,.t2)ac(t2) = ( t l ' t 2 )  
Y 2  

Then 



Fig. 111-2 

Estimation of the clipped optimum process  
B 

Plain curve : clipping and amplification (asymptotic behavior: -- m) 

Dotted curve : clipping and amplification for the channel 

s in  w T  
Hc (W ) = - 



and 

Therefore. 

a = a  
0 C 

i. e .  a noise with correlation function given by (111- 1-34) i s  the worse which 

can be encountered since the optimum linear fi l ter cannot improve the 

signal-to-noise ratio. (IM- 1-24) which has been derived for nonlinear 

t tfi l tering't  i s  exact he re  since we can let  B = without getting an infinite 

amount of noise in the receiver .  As we can see  on Fig. 111-2 the point 

where our simple nonlinear receiver  behaves better than the Wiener fi l ter 

in  the worse type of noise corresponds to a channel signal-to-noise ratio 

of 1 .5  dB. For  low channel signal-to-noise ratio the scheme i s  worse by 

a factor 2 / n .  However, some improvement a r e  possible i f  we allow a 

more  complex receiver  s tructure,  a Wiener fi l ter followed by the clipper 

fo r  instance. 

Finally it is worthwhile to mention that (111- 1- 24) only depends 

on the total amount of noise which gets into the receiver  and not on its 

spectral  distribution; also it is actually independent of the statistics of the 

signal f rom which the random square wave y ( t)  is derived. If they a re  
2 

known one might take advantage of these to improve the performance of the 

receiver .  

2 .  Effect of the channel Hc(w) = sin * on clipped optimum signals 
u, T 

In general the channel output can be written 

When we specialize to h (t) = 
I 

e (+ )  we g e t  m P T ( ~ )  

This charnel although a nonphysical one has cane of the 

features of an actual channel, rarne%y it .$is ot perfectly 43andTimited. Its 
7-w 2 

bandwidth can be defined, for  instance, by Hp (a) da - 4n B which leads - 
-9 2 

t o  B = 1/ 4 ~ .  The noise power density is*m [s in  (w T) / ~w T J and the  noise 
3 

power is C P ~  = No B if we assume white noise at the inprPac. n 
1 



On the other hand 

where we denote by y (t) the channel output in  the noise-free conditions. 
C 

We shall  make the following hypothesis: for  a l l  t the random square 

( + + I  w a v e p r o c e s s y  (t)hasonlyonezero-crossinginthetimeinterval(t-T,t+T) , 2 

Then if a zero-crossing occurs at  t + T ( -T  - < T - < T) we have 

otherwise 

Let us denote by p. .(t , t t T ) d ~  (i, j =  t, - )  the probability densities defined 
1J 1 2 - -  - 

by the following 

P+ - d~ y (t ) = t1  and y2(t) has a downward zero-crossing 
2 1 

1 
between t + T and t + T t d r  

2 2 I 
p+ tdT  y (t ) = 91 and y ( t )  has a n  upward zero-crossing 

2 1 2 

between t 2  +T and t 2  + T 4- d~ (IE- 2- 7 )  

(++) Since y (t)  is the clipped version of an  optimum process there i s  oaly 2 one zero-crossing in each Nyquist interval. Therefore the hypothesis is 

true for each Nyquist inte rval (k/ W , (k+l)/ N ) when t is in ( k+l - c T s m  - T ) a  
k k  k4-l 2w 

aB t belongs to 4- - m9 m 4- T) o r  (- - T, - rn "l ) we note that the hypothesis 
%W 

will net be t rue  (and this will  net happen for all these values of t )  if the 
interval b e w e e n  zero-crossings of 2 successive Nyquist intemals  is small-  
e r  than 2T. Anticipating experimental resul ts  which will  be described in 
chapter IV we quote that for  B=5W ( 2 ~ = 1 /  10W) this probability is already 
a s  smal l  a s  . 01. F o r  B=2. 5W the probability is .04. 



and similarly for p , and p . Then - f - - 

where 

y2(tl) ' 4-1, ~ ~ ( t ~ )  = fl, and no zero-crossing occurs i n  
I 

etc, 



Since each realization of an aptimum process lszs been multiplied by 

the random variable Z ( f l with probability I./ 2) we have complete symmetry 

~ ~ ' 4  t h ~  ~i . f i i i -0 -a - "a*" * - - - - 

On the other  hand 

y2(t)  has  a zero-cross ing  in  ( t 2 - ~ ,  t2+ T)) 

- 7 0 

y2(t)  has  a zero-cross ing  in ( t  2 -T,  t 2 + T ) )  

Therefore  

(IJ.1-2-10) 

(III -2 -11) 

(111-2-12) 

(III-2 -13) 



0 - T 
7 

-2 I (PC+-P+-) + J (P+--PC+) dT - J (P+- -p++) dl- , sin ( w 2 )  (LII-2-17) 

-T 0 

Now 
2 2 

ST 
u w 

T n 2 
2 '  +" sin(w2 T) -7 

R 1 
y2y4(tl*t2) = ;T , (P+--P++) e dw2 J d~ 

* r -oO 

By ParseVal ' s  for r ) . la  and (111-1-12 and 13) we get 

i e ,  , the c r o s s  - orrelat ion function of channel input and output is completely 

defined by the l tocorrelat ion function of the random square wave and the two 

quantities p4 *nd PS+* To check (811-2-19) we le t  T --+ 0: the f i r s t  t e r m  

as  x v i l  as the l a s t  part  of the second and 

I u 
2 



6,  e. , as  expected, the result  found f o r  the zero time-delay cha~lnel investigated 

in section 1 (equation LII-1-18). On the other  hand if we let on - O 

as  expected since when the channel i s  noise free there i s  no zero-crossing 

displacement (with the hypothesis of at  most one zero-crossing in any time 

interval of width 2T). 

To go further we must find the two quantities p and pt+. t- Since 

y2(t) i s  the clipped version of the optimum process yl(t) we can obviously 

write 

pi- - d r  = P{ yl(tl) > O  , and yl(t) has a downward zero-crossing 

between t2  + T and t2  t T C d~ and similarly fo Fo r convenience 

we shall write xl = y ( t  ), x2= y (t T ) ,  and x3 = 1 1  1 t . 
Then (12 - pp. 190-191) 

Except for gaussian pmcesses  these quantities camot  be derived at  the 

present time. Thus we shall derive pt - and p,+ as  i f  yl(t) was Gaussian, 

with autscorrelatiorx function and variance given by (1-2 -33 and 3 5 ) .  Shortly 

we shall be able to auste  a result which shows $0 what extent this i e  Bstified, 

With this hypothesis xl, xZ, and xg have joint characteristic function 



(We shall use  the characteristic function rather than the density 

function itself to avoid inversion of a 3x3 m a t r k ) ,  Xn (EX-2-24) the 

coefficients a r e  given by 

2 2 2 2 
a 2  = u x [ l  -ii sin ( t2+7) ] 

2 2 (t  + T -tl)cos(t2+ 7 -tl)-sin(t2+ 7 -tl) 
= n ox [(l - ) 

2 

~ i n ( t ~ i - 7  ) cos (t2+7 ) R =R r ( t 2 + r ,  t2+7)  = - Ox 0 
23 YIYl 

2 1 -  2 1 2  t sin 2 (t2+ 7 )] 
a 3  = R r t ( t 2 + 7 ,  t2+ 7 )  = Cl Us 

Y l Y l  

F o r  convenience we have dropped 0 in these expressions. Thus in the 

following each time we write t i t  actually means Q t . Now for  bandwidth 

expansion factor of, say, a t  least 2.5 

2.5W < B = ( 4 ~ ) ~ '  - 
and 

n \ T  \ - < n / 5  

___- wc: La.ls -_- use the approximation 



On the other hand these is no t ime delay in the system, therefore we 

le t  t. =i- in (31-1) and actually we n e e d  pt (tl* tl+ r j 2nd p++(tll tl+ 7 ), 
L -62  --- - 

Thus (1J-I-2-25) simplifies in 

2 
0 - 0  

2 - 1  2 2 - - s in  (tl) ] 1 -  X L  n 

2 - 2 -  2 2 u - " xi 1 - s in  (t l)  - $ T s in  (tl) cos (tl) ] 

2 2 2 -  u 3  = WX L(1- k)  i t  k sin2(tl) + 4 T s in  (tl) cos ( t l ) ]  
PI 

2 2 2 1 q2 = 0 x [l - - PI s in  (t l)-  T - sin(tl) cos( t l )  J n 

Now (Kt-2-22) becomes 

Integrating over w2 we get 



o r  with the  following notat ions 

Integrat ing o v e r  w we ge t  

In tegrat ing o v e r  w 1 we ge t  



Integrating over x we get 1 

F r o m  (IU-2-23) we get immediately 

06 2 
1 B 

P++ = + j X3 exp (- ) a(-  C ~ 3 )  dx3 
x3= 0 

We can check these resul ts  in the following way 

2(p+-+p++) d T = P i y l ( t )  has a zero-crossing between 

t1+7 and t1 + T + d~ ) 

On the other  hand Rice gives for  this probability (12-p. 190) 

where f is the joint density of x2 and x3; we wri te  it down a t  once: 

-4 

f(x24X3) = 

where  the parameters a r e  given by 6U1-2-38), Therefore 



f ( O , x  ) = 1 
3 

exp (,- Xs \ / 

If we use  this expression in  (%][I-2-43) we get (U-2 -42 ) .  

(LII-2-42) gives us  a relation between p+ - and p++, namely 

Going back to (111-2-38) we can wri te  2 
X1 

and f r o m  (111-2-35 through 37) we get: 

There  i s  no t ime delay thus we  le t  t = t Z = t  F r o m  (111-2-30) we get  
1 

(neglecting the t e r m s  of o r d e r  higher than one) 

2 2 a z sin2t ( 1  - 2' sin t )  ( E -  --I + ;  
B 



and 

- 2  2 2 4 sin t cos t 
u 2  = a  ( I - -  

X Tr lr 2 2 
sin2 t )-  (1 + T - 1 

1 --- sin t 
Tr 

To evaluate the square root we must  keep the t e r m s  up to the order  two; f r o m  

(111- 2-25) we get  

2 2 2 2 7 
2 

sin t )  [ 1 - - (s in t + T cos t - 2 
= u 4 { ( l - T  u 1 " 2 - R 1 2  x Tr 

sin t )  ] 

2 T 2 2 T 
2 

- [ ( I - -  ) ( 1 -  (COS t - ~ s i n t  cost  - 
lr 

cos t )  l2 } 

2 2 2 2 1 2 4 2 
TT 3 Tr 

1 siri t )  [ -  sin t + - ( 1 - - )  ] - -2 s in t cos t 
X 

Tr 

= CT 
2 4 2 

1 2 + ( 1  --I ( I + ;  sin t )  
X lr 

2 2 2 2 4 2 
Jul c 2 -  R 1 2 = u 2  x 1 -  Tr 1 -  lr sin t )  (111- 2-55) 

4 2 
As a check we can s e e  that the coefficient of o T i s  always positive a s  

X 

expected since we have to take the square root. Now (111- 2-52) becomes 

- 4 
P+, "P++ - (1 + S l 7 -  2 2 ) sgn T (111-2-56) 

Tr 1 - - - s i n  Slt 
IT Tr 

Now we can re tu rn  to (111-2- 19). We shall  consider two cases .  F o r  

low channel signal- to-noise ratio ( u > 1) n 

(Ian- 2- 5'9) 



Then by (III- 2- 56) 

where  
B b = -  (111- 2 - 5 9 )  
W 

is the bandwidth expansion factor f o r  optimum signals. By (111-1) we get 

where  

. . 
2 . 2  (1 - - s i n  a t )  
TT 

The maximum of d( t )  is 1.44, therefore 

and 

On the other hand if we  average a-' over t in (111-2-60) (which corresponds 

to  averaging the mean-square -e r ro r  at  the receiver  output) we get (average 

of d ( t )  i s  . 767) 

= 14- 1 2  ---- (1 - .767 
a ave TT 

0- 
b  

n 
and 

a - 1 2  - - -  . 7 6 9  - (1 - - b !  
(111-2-65) 

opve Z r 
0- n 

We still need the expression of the channel signal-to-noise ratio 
- 2 

(which i s  not r n  because of the finite bandwidth). By (111-2-4 and 5)  the signal 

power a t  the 



channel output i s ,  

2 +T T2 
- { y  s P{y,(t) has a zero-crossing behveen t + T and 

L - I 

- T  T- - 
- - 

t + T +dr}+ lxP{y2( t )  has no zero-crossing in ( t -T ,  t+T)}  

- 2 +T 
= T IT 2(p+- + p++) r2  d r  + 1 - 2(p+- + p++) d r  (111-2-66) 

- T  - T 

By (111-2- 30 and 46) 

1 2 s i n n  t cos S2t (1 + 7 s in  a t )  
= 2Wd(t) + $ T  I 

Therefore 

2 4T 
E y c ( t )  = 1 - 2Wd(t) 

d( t )  i s  plotted on Fig. 111-3 for  the f i r s t  half of a Nyquist interval (the func- 

tion is even about the center).  Its average i s  .767 and therefore the average 

signal power at  the channel output i s  

S = 1 - ,511 b-' (111- 2- 69) 

Now we shal l  define the channel signal-to-noise rat io  as (ti 

Then (111- 2- 62) becomes 

(III- 2-71) 

not possible in  section I becaue.e of the v"infinit.te" 
bandwidth. 



Fig.  111-3 Normalized instantaneous zero-crossing density 

of the optimum proces s  



and (111-2-64) 

The output signal - to noise ratio i s  plotted on fig. 111-4 f o r  b=4 and 9. 

(111-2-71 and 72 gives essentially the same results) .  

Going back to (111-2-67) we can see that the instantaneous zero-  

crossing density is 2Wd(t). Thus i t s  average i s  . 767(2W). But we know 

that the zero -crossing density for  optimum signals should be 2W. This 

discrepancy follows f r o m  out main hypothesis in this section: actually an  

optimum signal i s  not a Gaussian process .  The difference between these  

two resu l t s  (23 %) i s  in some way a measure  of the relevance of the 

hypothesis. 

Finally we consider the la rge  channel signal-to-noise ratio case  

< ). F r o m  (111-2-19) ( o n  1 

(t, t)  = 1 - 2 ~ ( ~ - ~ ) + 2  -p++) [ 1 - 2 ~ ( ~ )  1 d r  (111-2-73) 
Ry2y4 n T a n  

= -1 - 1 
) + 

1 
u n  Q (, [ I - exp (-r-2) 1 f i  n 

(111-2-75) 

Therefore s i n c e  

X 
2, 

"XP (-7) 

I? (t, t )  .: 1 - exp ( -  1 
Y 2 Y 4  PT n 

a ] - y  (," ,/z - b 
IT 

n 



averaging  over time for  comparison with experimental resul ts  we get  

and by (111-2-70) 

where a = S/NoW 
C 

i. e . ,  (111- 1-27) a s  expected. 

a = a - 1 is plotted on Fig.  ILI-4 again for  b = 4  and 9. F o r  comparison 
0 

with the asymptotic behavior a. is a l so  plotted vs  S/NOB on Fig.  111-2. 

In this  section we have considered the t ransmiss ion  of the clipped 
s i n  w T version of a n  optimum signal through the channel 

w T We have 

assumed white, additive, Gaussian noise, independent of the signal, at the 

channel input. We have shown that the hypothesis of one zero-crossing i n  

any t ime interval of width 2T was reasonable for  the bandwidth expansion 

considered. These hypothesis leads to an expression fo r  the .c ross-cor re la -  

tion function between clipped optimum signal and output of the clipper which 

depends on the correlat ion function of the clipped optimum signal and the 

probabilities of the optimum process  to take a positive o r  negative value a t  

t, and to have a downward o r  upward zero-crossing in  the interval 

(t2 C T ,  t2  + T + d ~ ) .  TO go fur ther  we have used these probabilities for  
- 1 Gaussian processes  a s  an approximation. In the expression for  a "finite" 

1 -- 
channel bandwidth adds a t e r m  in a to the exponential t e r m  obtained 

C 

in Section I .  



Fig. 111-4 

Output signal-to-noise ratio for  the t ransmission of the clipped 
optimum process .  b =  B/ W. 

Plain curves: experimental resul ts  for H c (a)= n pZn B ( ~  ) 
sin w T  

Dashed c w v e s :  theoretical resul ts  for  Hc (a ) = 

(Pa ramete r s  fo r  the experimental resul ts :  N4 = 10, 
~ ~ = 5 6 . 9 )  or  12 (b=4), '  N6=250, L=8) .  

3. 

F o r  the previous channel the probability of a zero - c ros  sing 

displacement in the noise-free conditions i s  sma l l  provided B >> W. The 

channel we  consider now displaces a l l  the z e r o - c r o s s h g s  by an amount 

decreasing a s  the bandwidth increases ,  

He re  the channel output is 



y Z ( i )  is the clipped version of the optimum process  

It has  a zero-crossing between two consecutive samples.  If we denote by 

Zk 
the zero -crossing between k/2W and (k+1)/2W 

y2(t)  = z(-llkc1 for  Z k  < t < z k + l  

The ref0 r e  
z 

+a3 

y3(t) = Z C (-Uk+l S k+l 
s in  2nB ( t -T )  dT +n(t) 

k= -m t -T 
Zk 

k 
= 22 C (-1) S i  [ Z I T  ~ ( z ~ - t ) ]  +n(t) (111- 3 - 5) 

k 

Now 

R 
y2y4(\9 t2) = +m 

2jwZ ( - l ) k ~ i [ 2 n ~ ( z k - t 2 ) ]  

1 +m k= -m 2 
- J-m a - 1 ~ l y 2 ( t 1 ) e  
jn 

(111-3-6) 

o r  with the charac ter i s t ic  function 

+m 



The density required to solve the problem is as in Section 2 of the type. 

where actually for practical purpose the number of indices k must 

be finite. 

Going back to (111-3-4) i t  appears that we have to consider a t  

l eas t  the zero-crossing in the interval which contains t and the zero- 

crossing in the interval to the left o r  to the right. This  already requires  

the density 

This las t  condition is required to neglect the other t e r m s  in the s e r i e s  

(IU- 3-4)"). Therefore in conditions s imilar  to those encountered in 

Section 2 we need the density of the optimum process a t  three different 

instants of time and i t s  derivatives at  two of these instants. Thus the 

analysis is even more  difficult and will not be considered here.  

However we can quote experimental resul ts  for this case. In 

chapter IV we shall  s e e  that the communication of a signal (Gaussian, 

zero-mean, bandlimited with a flat power spectrum) by the clipped version of 

the optimum process can be easily simulated when the ch e l  i s  n pZT (a)' 

In the simulation we also compare the two random square waves y (t)  and 2 
y4(t) = 92(t)  at the t ransmit ter  and receiver  (see Fig. IV-2). The signal-  

to-mean-square-error ratio fo r  the random square wave transmission i s  

given by 

(+) fo r  % > 15 the diff ereace bet-seen muima  and mii~rna sf 

Si(t)  is less t h a  5 %  of S;i(oo) = 'TP 

2 



A s  described in (IT-4d) the device which follows the channel i s  more  

than a clipper: i t  detects one zero in each Nyquist interval. Then 

where the second index indicates that z is the position of the zero-  k 
crossing in the k-th interval at  the system input o r  output, and 2VV 

has been se t  equal to 1 without loss  of generality. Finally since 

T = N  (number of zero-crossings in the time interval T )  

The experimental resul ts  a r e  plotted on Fig. 111-4. 



C r n r n E R  wa 
P E R F O R U N C E S  O F  THE: COMMUNICATION - SYSTEM. 

In this  chapter we shal l  investigate the propert ies  of the communi- 

cation system shown in  fig. IV-2. We shal l  again assume that the signal 

to  be sent,  x(t) ,  i s  a stationary, zero-mean, bandlimited,Gaussian process  

with flat  power spectrum in (-W, t W), x(t) i s  f i r s t  mapped into an  optimum 

signal yl(t). Fig. IV-3 shows a possible implementation of the black-box 

labeled "mapping". The clipped vers ion  of the optimum process  i s  sent 
s in  w T  through the channel Hcl(w ) = - for which we have just given the analysis.  

* 
w T 

In the rece iver  a computer est imates  the optimum process  f r o m  the r e -  

ceived zero-crossings by means of the algorithm previously described. 

Finally by inverse  mapping an estimate of the original signal i s  found. Fig. 

IV-4 gives a block-diagram for the inverse  mapping, The samples  sign 

required for  the inverse  mapping a r e  sent  by means of the signal z (t) = 
-I** 1 

sgn (xk)$ k(t) through the channel H (a)  = pn(a)n . A1 and A a r e  
c2 2 

two amplif iers  which se t  the two transmit ted signals a t  an appropriate  level. 

The ra t io  A ~ / A  should be such that the mean-square-er ror  a t  the r ece ive r  
2 

output i s  minimized while the total  power of the two signals i s  fixed. Fig. 

IV-5 suggests a way to generate  the signal z i t )  which c a r r i e s  the  sample 

signs. 

We sha l l  f i r s t  der ive a relation (for high channel signal-to-noise 

rat io)  between R (t, t)  and RA(t, t )  for  t=k/2W. R .(t, t) has  been de- 
Y2Y4 '2'4 

rived i n  111-2. F r o m  these resu l t s  we sha l l  be able to  find the  signal-to- 

noise ra t io  a t  the receiver  output for  optimum signals, then to  general ize 

to  any bandlimited signal. 
, 

yZ(t)  is the clipped version of the optimum signal y (t), therefore  
1 

w e  can wri te  

* However ,  H c l ( ~ )  = T p Z n B  (a) w i l l  be a s s u m e d  i n  the experimental in -  

**Since the two  s igna l s  y (t) and z It) have  to be multiplexed before moduda- 
2 I 

tion, this  i s  justified i f  z (t) i s  allowed to occupy the low frequency part of 
1 

the complete channel. 





Fig ,  W - 3. Mapping 

Fig .  IV - 4. Inverse Mapping 

Fig.  I V  - 5. Generation of the Signal which Carries the Sample Sign 



A S i ~ ~ i l a r l y  yd(t)  is the clipped vers ion  of the approximatlora y 1 it.) given by 
* 

t h e  computes ( y (t) and y (t) have the same zero-crossings j therefore 
4 1 

It follows that 

where cP A (a , a ) i s  the joint character is t ic  function of the random var i -  
YlY, 1 2 

ables yl(tl) and Fl(t2). We shall  have to  remember  that in  this expression 
- 1 

o must  be interpreted a s  a distribution since we have represented the 

clipper by a Four ier  t ransform (I6 - Appendix l'. (IV-1-3) i s  valid for  any 

pair (t t ). However, to  go further  we must  consider tl= t2=k/2w. In 1-2  
1, 2 

we have seen that y,(k/2w) a r e  normally distributed random variables  with 

mean ze ro  and v a r k n c e  s2 x ' On the other hand, f o r  high channel signal-to- 

noise rat io  T,(t) i s  a close approximation of y 1 (t), therefore 9 1 (k/2W) is a l -  - 
most  Gaussian. We shall  assume in the following that the two random var i -  

ables y ; ( k / 2 ~ )  and s l (k /2w)  a r e  jointly Gaussian, i. e. ,  
2 2 

u~,.l 2 R ~ , ~ l  
9 A (al, w2)= exp 2 (IV-1-4 ) 

Y l Y l  

Then plugging (IV-1-4)in (IV-1-3) and expanding exp[-R A ( k / 2 ~ ,  k / ~ W ) ~ ~ w ~ ]  
Y l Y l  

in  se r i e s  we get 

The f i r s t  t e r m  i s  actually the only one which requi res  the interpretation 

of u-I as  a distribution: 
\ 

+04 -1 * W e  can w r i t e  yd(t)= ( n j ) - ' ~  w exp(jws(t))dw for any signal s ( t )  which 
-8D 

has same zero-crossings as y t) ,  However, this is useful  only 
i f  s(t)  is a close approximation of y (t). 4 

P 



Then wi th  n =r 2k -k 1 (all terms wi&ka n even vanish) 

2 - 1 - - - sin (r r ) for  al l  t l=t2=k/2W 
n Y l Y l  

Therefore f r o m  an hypothesis certainly appropriate for high channel 

signal-to-noise ratio we have been able to  derive a relation between a n  

already known quantity and the c r o s s  - co r r  elation function between the 

communication system input and output (when the input belongs to the 

c lass  of optimum signals). Now since the system has zero time-delay 

But a t  high channel signal-to-noise rat io  

R (t,. t) = 1 

Y2Y4 

and therefore 

a 0 ( / 2 ~ ) g  1 - R &/2W,k/2W)] " for a l l  k 
Y2y4 

At this point w e  should t r y  to  find the minimum of the signal-lo- 

mean-square-error  ratio, Achal ly  we cannot carry  this out, 8.w the 

other hand when w e  a r e  dealing with experimentd resu l t s  w e  have t o  de- 

fine & by ( s e e  1-3-20] 

- 1 a = l e  
T T 

Y i ( t ) ' d t ~  $$(t)dt 
0 0 



(compared to  (f-"3-.21)) w e  have dropped the limit for  T since,  as we 

shal l  see,  in IV-4, we cannot real ly achieve ve ry  la rge  value of T),  Thus 

a theoretical definition more  appropriate for purpose of comparison with 

experimental data i s  r p .  

By (1-2-13) and f r  (t)  and yl(t) a r e  both bandlimited signals 

- 1 
a = 2 1 (IV-1-14) 

ax (1 - - 1  
71 

Therefore 2 is maximized by the same A a s  a ( k / 2 ~ )  and* 

The final goal i s  to  find the performances of the sys tem for  the  

general  bandlimited signals. Thus in section 2 and 3 we shall  need the  

expression of - a for x(t) when there  i s  no e r r o r  in  the t ransmiss ion  of the 

samples sign: 

Since x(t) and s(t) a r e  stationary and bandlimited, we can wri te  

- 1 
a = l im  

2 
9, 

* The subscript associated with a underline that this expression is for  - 
~pt imum signals, 



O r  with the ap(.imum A -. E (x k%l /E 

If there  i s  no e r r o r  in the t ransmission of the samples sign, the gain A 

i s  exactly the same a s  for the optimum processes ,  i. e. , 

and therefore 

Thus, we have found a relation (IV-1-18) between the c ross  -corre la-  

tion of the two random square waves in the sys tem and the cross-corre la-  

tion of the optimum process  and its estimate (this relation holds only at the 

sampling t imes  and for  high channel signal-to-noise ratio). F r o m  th i s  r e -  

lation we have been able to derive the signal-to-mean-square-error ra t io  

for the optimum process  and for the general  bandlimited signals (however, 

not taking into account the effect of e r r o r  in  the t ransmission of the  samples 

sign for  the l a s t  case).  

In 111-1 we have found that if the channel noise i s  Gaussian, zero-  

mean additive, independent of the signal and if the channel bandwidth is such 

that we can assume negligible distortion of the random square wave y (t) 
2 

(Mere w e  have a s s  ed the noise stationary in  the wide sense, i, e,, the 

channel signal-to-noise rat io  independent of t ime, ) From (%V-1-15) the out- 

put signal-to-noise rat io  achieved for the c lass  of optimum signals i s  



or  in  decibels 

a (dB) = -3.63 + a c  (dB) + 4.34 ac  
0 8  Y1 

8 
(IV-2-3) is plotted on fig, IV-6. The exact formula 

a 
1 = (1 - ;) cos 

0, Y1 
-' 1: 1 - 2 ] - 1 

does not give significant differences with (IV-2-2): a t  a = 3 dB the  dif- 
C 

ference i s  only 2 dB. 

F o r  the general  bandlimited signals we shall  proceed in the following 

way. Noise a t  the receiver  is of two kinds: 

i) noise due to imperfect recovery of yl(t) because the zero-cross-  

ing s have been displaced by the cha nnel noise and filtering, 

ii) noise due to  a wrong decision on the sign of the samples of x(t). 
But nl(t) and n (t) a r e  independent since they a r e  Gaussian, zero-mean and 

2 
occupy different frequency bands therefore the two noise contributions a t  

the receiver  output a r e  themselves independent and the total noise power 

i s  merely the sum. The f i r s t  contribution i s  given by (IV-1-20). 

where a i s  the signal-to-noise ratio for  the channel which t r ansmi t s  the c l %* 
random square wave. The probability of e r r o r  for the second channel i s  

* 
which sti l l  re ly on the hypothesis made in IV-1, 

** 
since x(t) is zero-median, 



S a,=- (dB) @: 
Fig. IV-6 

Signal-to-noise rat io  at  the output of the 
B communication system. (Asymptotic behavior: ---m). 
W 



where  a i s  the signal-to-noise rat io  for  the channel which t ransmi ts  the 
(22 

samples sign, If a wrong decision i s  made at k / % W  the resulting additional 

e r r o r  at the receiver  output i about 

The corresponding noise power i s  

where the summation i s  extended over the samples for which a wrong de- 

cision i s  made. Therefore the second noise contribution i s  mere ly  about 
2 4Peux and 

Finally 

Maximization of - a by choice of an optimum sharing of the available power 

between the two channels leads to a transcendental equation; on the  other 

hand, the optimum sharing i s  function of the noise level. Thus, it i s  more  

convepient to  consider the following sub- optimum system 

When A1 and A have been set  a t  the appropriate value (IV-2-11) is indepen- 
2 

dent of the channel conditions. On the other hand, the main factor in  

(IV-2-10) i s  the exponential: by chosing the same  exponent the two t e r m s  

remain of the same  o r d e r o f  magnitude. Then 

But 



0 
n 2 = a  ( l t  

c 1 2 
&nl + On2 

and since 

Finally 

(IV-2-18) i s  plotted on fig. IV-6. The output signal-to-noise rat io  i s  es-  

sentially an exponential function of the channel signal-to-noise ratio. 

This property i s  related to the t ransmiss ion  of the information by a random 

square  wave and the Gaussian nature of the channel noise. 
s in  wT 

3. Effect of the Channel Hc(u) = uT 

F o r  optimum signals and high channel signal-to-noise ra t io  we 

have shown in  section IV-1 that 

R i s  given by (III-2-79) where d(t) (given by (111-2-61) has  to  b e  evalu- 
Y Y 

at& at k / 2 W :  

Therefore t 



and - - 7 
1. 2 a z z ( ~ - ; ) ; (  (TV-3-4) 

Y l  
"1 

o r  since by (III-2-70) 

a a 
C 

' 348]-2 (IV-3-6) 2 (b- . 511)) + b 

a = a - 1 vs. ac  i s  plotted on fig. IV-7 for b = 4 and 9. 
0, Y1 Y1 

F o r  the general  bandlimited signals (IV-1-20) gives a f i r s t  contribu- 

tion (noise in the recovery of the optimum signal t ransmit ted)  

.348)  A", 
(1 - -6 exp ( -  T ) +  

26n1 

The second contribution due to  e r r o r s  on the sign of the samples of x(t) i s  

given by (IV-2-9) 

6 
- 1 4 "2 - exp (- 

a ~ =  A~ 

And therefore,  the ,output signal-to-noise rat io  for general  bandlimited 

signals i s  given by 



. Pig . IV-7  

signal-to-noise ratio at the output of the 

Communication System. Optimum signal. 

Dotted curves : theoretical resul ts . ,  Hc(w) = sinwT 
wT " 

Plain curves : experimental resul ts .  Hc(o) = rr pZnB(u)  . 
i 

b = B/W, 



where  (j is the baridwidtti expansion factor for  the complete sys tem 

(p = + 11, 

Now, to  optimize a by appropria te  signal power sharing we define the - 
pa rame te r  k: 

Then 

(IV- 3-10) becomes 

o r  with 
a -  

To make things eas i e r  we shal l  consider  two cases ,  When a i s  big enough 
C 

w e  have 



and the optimum value of m i s  given by 

F o r  lower values of a where the exponential is the main t e r m  in the brackets  
C 

we choose k = 1/2 which makes the two exponentials in  (IV-3-16) identical a s  

in  section IV-2. Then 

a = a - 1 is plotted fo r  f3 = 5 and 10 on fig. IV-8. 
0, x X 

F o r  purposes of comparison we have plotted on the same figure the 

output signal-to-noise ra t io  given by an  FM sys tem for the same bandwidth 

expansion. We assume that the signals to be t ransmit ted in our sys tem 

(clipped version of the optimum signal and signal carrying the samples sign) 

a r e  frequency multiplexed, and the composite signal transmitted by SSB. 

Then the curves plotted previously give the output signal-to-noise ra t io  a s  

we have seen in I- 5 and the bandwidth required by the sys tem is B+W = PW. 

The performance of the F M  sys tem a r e  given by (3-8-25a) of (17) (p. 152) 

for unmoduiated c a r r i e r  and rectangular channel bandwidth. In our  notations 

Figure IV -8  shows that the system based on the t ransmiss ion  of the  zero-  

crossings of the aptdmm process associated to the s ignal  x(&) gives better 

performances than the c lass ica l  F M  system in the l inear region (+ 8dB for 

6 -- 5, t 3dB for (3 = IQ). This is paid, however, by a shift of the threshold 



Fig. N -8 

Signal-to-noise ratio a t  the output of the Communication system. Non- 
optimum signals. sinwT 
Dotted curves : theoret ical  resu l t s  . H~ (a) = -- oT ' 
Plain curves : F M  performances for unmodulated c a r r i e r  and rec tan-  
gular channel bandwidth. f3 = total  channel bandwidth/inf ormation bandwidth. 

toward higher channel signal-to-noise ratio,  and by a rhore rapid dec rease  

of the performances below threshold. 

The listing of the program used to simulate the csmmunicat isn 

sys tem of fig, PV-2 is given in  appendix C ,  Actually o d y  past 06 the sys-  

t e m  has been iwes t iga ted ,  namely the t ransmiss ion  of the optimum s ig -  

nal its&If, Without loss of generality, we set 2W = I in  the following; 

sampling occurs  a t  the integers  which i s  convenient for  programming, 



The f i r s t  problem we encounter i s  the cornlputation of the optimum 

signal itself. By standard IBM subroutines (GAUSS and RANBU) we can  

generate independent Gaussian random variables  x with specified mean and k 
variance. Thus we can easi ly  generate a realization of a bandlimited 

Gaussian zero -mean random process  with power spec t rum flat  in ( -0, +a) 
by means of the sampling formula (+) 

and s imi lar ly  the optimum signal 

(the random variable  Z of ( I-  2- 7 )  can be dropped since we consider one 

realization only). Actually (IV-4-1 and 2) must  be truncated: 

It1 +N4 
x(t) = C Xk C ,(t) 

k=[t] -N4+l 

(IV -4 - 3 )  

2N is the number of samples  around t which a r e  taken into account and 
4 

[t] i s  the la rges t  integer .smaller  than o r  equal to t. In appendix D the  

s ignal- to-mean-square-error  ratio due to truncation ( a  ) is derived. The t 
resul t  is plotted in fig. IV-9. Thus a f i r s t  limitation appears: with a 

reasonable amount of computationr namely 20 t e r m s  in the sampling formula,  

we cannot find the signal itself with an accuracy better than 20 dB (to reach  

25 dB w e  need a b u t  70 t e rms) .  However this  does not mean that we shal l  

be amable to find a ~ t p " t  signal-lo-noise ratio higher khan 20 dE if -we sat 

\ 

0-6, Other techniques a r e  available which f rom 
ariables  gives a process  with any power speets  

(S, Stein and J. E. Stores,  "Generating a Gaussian Sample, " IEEE Trans . ,  
IT-2, no2, pp, 8 L 9 0 ;  June, 1956). Fil tering s f  white noise leads to the 
szme precision a s  this technique but is l e s s  tractable;  the other technique 
p r o p s e d  in this paper would require  manipulation s f  large mat r ices  (1 50x 150), 



N4 
(NUMBER OF SAMPLES TO THE RIGHT (TO THE LEFTIOF t )  

Fig.  IV-9  

Signal-to -mean-square - e r r o r  ra t io  for  the truncation s f  the sampling 

formula (case of a zero-mean Ga-iis sbai-i process ~ ; / i t h  independent 

samples. ), \ 



N = $  C) in the simulation: ( IV-4 - 3  and 4) define a new signal and its assoc ia ted 4 
optimum process,  and the zero -crossings used by the cornputer algorithm 

a r e  now those of ( IY-4  -4 j. Thus the approximation w i l l  tend to this last 

expression. 

The zero-crossings of y (t) a s  defined by (IV-4-4) a r e  determined by 
1 

the subroutine ZERO. This step naturally introduces a quantization effect: 

the e r r o r  on the position of each zero-crossing i s  l e s s  o r  equal to 2-L where 

L is  a parameter to be specified. L= 8 was finally chosen after investigation 

of the behavior of the signal-to-mean-squared-error ratio vs  L (a higher 

value does not improve the final result). This corresponds to a rate  of about 
(+ 9 bits/sample (1 bit for  the sample sign) , 

We a r e  now in a position to investigate a fundamental l imit of the 

simulation: f r o m  the zeros just found and the algorithm described in 11- 5 

we can find the estimate of y (t) and plot a curve of the signal-to-mean- 
1 

square - e r r o r  ratio achieved v s  the number of zeros  in the interval: we get 

fig. IV-10 for  N4=10, L=8 and double precision used in the algorithm itself. 

a f i r s t  increases with the number of zero-crossings ( a s  expected) then drops - 
above 30. In single precision the same occurs  above 1 0  zero-crossings. The 

problem is  obviously one of truncation e r ro r :  each s e r i e s  coefficient is the 

sum of a number of complex exponentials (a l l  t e r m s  a r e  therefore 5 1 in  

magnitude) increasing very  quickly with the numbe r of zero -crossings. In 

the following we shall  therefore set  the length of the interval of t ime a t  30. 

4b. 

A problem which i s  often considered in the l i terature is the d i s t r i -  

bution of the interval between successive zero-crossings. Even in the case  

of Gaussian processes the theoretical problem i s  a difficult one to analyze. 

F o r  optimum processes  we can obviously write 

FT (7) = 1 for  T > W  - 1 (IV-4 - 5) 
- 1 since each zero belongs to an interval of length (2W) . On fig. IV-11 we 

have plotted an experimental distribution of T and also the distribution sf 

the zero-crossing in the Nmuist interval (the left end being taken a s  origin),  

The density associated with the latter is sy  etrical a b u t  the mid-point 

sf the interval and this has been used in deriving the e q e r i m e n t a l  distribution, 

(+) For the exact rate  we should take the distribution of the z e r o - c r s s s b g s  
iPa%o account, Some information on this point of view will be given in the 
ne* section. 



10 20  30 40 
NUMBER OF Z E R O - C R O S S I N G S  

' Fig. IV-10 

Signal-to-mean-square - e r r o r  ratio 

vs. number of zero-crossing 

(N4 1 10,  L 1 8, double precision) 



:DISTRIBUTION 
FUNCTIONS) 

Fig. IV-11 

Distribution of the zero-crossings of the optimum signal derived f rom 

a Gaussian process  with independent samples.  
- 1 

1. Interval between successive zeros  (in percentage of W ) 

2.  Position of the zero  in the Nyquist interval (in percentage of ( 2 ~ ) - ' )  



The prsbabilit"&gPdensit.dy o f  a zero-crossings interval close to O o r  

w-' is ve ry  small. F o r  instance 

F (,1/W) = . 01  (IV -4 - 6 )  
'P 

a result  which has already been used in 111-2. As expected the probability 
- 1 density is maximum near  T = (2W) . Similar conclusions hold for the 

density of the zero -crossing position. 

4c. Computation of the channel output, 

The effect of the channel on the random square wave which c a r r i e s  the 

zero -crossings of the optimum signal i s  obtained by the subroutine CHNNLI. 

We have seen in 4a  that we can easily generate a realization of a Gaussian 

zero-mean process with a flat power spectrum. F o r  this reason we assume 

here  the ideal channel np (w.). Another reason i s  that the channel output 
  IT B 

i s  perfectly bandlimited and the ref0 re  defined (in the mean- square -sense)  

by its samples. Thus CHNNLl computes at the sampling t imes k / 2 ~  the 

channel output due to the random square wave and adds to it a Gaussian 

zero -mean random variable of specified variance given by the subroutine 

GAUSS . 
In 111-3 we have seen that the response of the channel apZnB(u ) to a 

random square wave of unit amplitude i s  

(we have dropped the random variable Z;  b = 2 ~ / 2 W = 2 B  is the bandwidth ex- 

pansion factor for  optimum signals). Again we have to truncate an infinite 

ser ies .  Taking account of N5 zero-crossings on the left (on the right) of 

the Nyquist interval containing t we get 

We chose N5 in such a way that the t e r m s  left  are negligible: for  instance 

s b N 5 =  150 

To find the variance of the noise for  a given channel signal-to-noise 

ratio we need a first run cab the program (without noise) to get the signal 

power S at the channel output (function s f  B), The specified channel sigaal- 

to-noise ratio a = S I N  W is achieved with a noise variance 
C o 



A d  - 
2 U e  

Clipping at the receiver input is implemented by RECCLP.  Actually 

this subroutine also performs a decision task: it picks in each Nyquist 

interval the received zero-crossing close (hopefully) to the zero-crossing 

of the random square wave. This decision i s  necessary since in the algorithm 

the number of zeros  is not allowed to exceed the length of the interval of 

time. The decision i s  based on the following property: when the received 

signal is noise f r ee  we can write (+ 

We use  this formula to get an approximate position of the zero -crossing in 

the noisy case. F r o m  there we go to the left and the right until we hit the 

actual f i r s t  zero -crossing. F o r  numerical purpose we replace the integral 

by a sum. Thus we compute the sign of the receiver  input at  N equally 6 
distant points in the Nyquist interval, then 

N6 

Zk 1 + N i l  sgn Ly3(k)] 2 sgn Y 3 ( k + k ) ]  (IV-4 - 13) 
i = o  6 

i 
and we compare sgn [y ( z  )] with sgn [y3(k.+ --) ] a s  indicated above. Thus 3 k  N6 at high channel signal-to'-noise ratio the actual received zero-crossings a r e  

determined with an e r r o r  less  than N-' N6 has been set at  250 which 6 " 
corresponds to the same quantization a s  in the t ransmit ter  (28 = 256). 

A The end of the main program computes the approximation y ( t )  of 
1 

the optimum signal f rom the set of these zero-crossings by (11-5 -10 and 11). 

It also computes the output signal-to -noise ra"r;o for  the entire interval and 

also for the 1 0  Nyquist iratervals in the center  (the f 0 first and las t  being 

considered as a guard time), \ 

(+I Experiment shows that a s  soon as B > W the number of zero-crossings 
sf the channel output and the optimum signal i s  the same, 



The re su3ids o btaiared for the central  part  of the rnte rval (and the 

parameters:  N4 10, N b r 5 0 ,  N6 ' 2 5 0 ,  L = 8, length of the interval  = 30) 
5 

a r e  plotted on fig. IV - 7 for  b = 4 and 9. At low charrnei signal-to-noise 

ratio we get better performances than the theoretical ones found in IV-3. 

This comes  f r o m  replacing the ideal clipper by a device which eliminates 

a l l  but one of the received zero-crossing in each Nyquist interval. Thus 

our  knowledge of the s t ructure of the optimum signal has  mere ly  been used. 

At high channel signal-to-noise ratio ( a  = 30 dB)  we lose 14 ( b  = 9)  o r  
C 

16 dB(b = 4 )  by truncation e r r o r  in the algorithm. Thus f r o m  h e r e  a special  

attention should be given to the design of other  computer techniques. 



Summary and Conclusions. 

We have s t a r t ed  with the fact that in some well defined cases  (speech 

and signals with rea l  zeros only) bandlimited signals a r e  determined by their  

ze ro  -c ros sings. 

In chapter I1 we have investigated the recovery of a signal f r o m  a 

se t  of related ze ro  -c ros sings. Among the solutions available mapping into 

what we have called an  optimum signal is the only one acceptable. The scheme 

suggested f o r  estimating the signal f r o m  the zero-c rossings of the associated 

optimum process  is the algorithm (II-5-4) followed by inverse mapping. 

Random square  waves a s  clipped versions of the optimum process  

a r e  the s implest  way to send the zero-crossings.  Thus in chapter ILI a 

detailed analysis of the t ransmission of random square waves has been c a r r i e d  

out. We have investigated the performances of an elementary receiver  to 

recover  a square wave f r o m  the channel output, namely the ideal clipper. We 

have found that a s  the channel bandwidth increases  the normalized c r o s s  - 
correlat ion function between the two random square waves behaves a s  

r ( t ,  t )  d 1 - Z Q ( ~ )  
Y2Y4 

2 
where A is the amplitude of the random square wave and the channel 1 n. 
noise power. As a consequence a behaves exponentially 

1 

0 
7 

We were  able to analyze the effect of finite channel bandwidth for  

Hc(a) = s in  (aT)/ w T. An additional t e r m  proportional to 0 ,b-' appears  

where b i s  the bandwidth expansion factor f a r  optimum signals ( s e e  IEL-2-79 

and 8E), This result i s  based on the approximation s f  some propert ies  s f  
\ 

the optimum process  by their expressions for  a, Gaussian process, 



In chapter IV the comm~~nicaticara. system of f ig, I V - 2  i s  analyzed, 

First we derive a relationship valid for  the range of output signal-to-noise 

ratio of interest: 

- - 
r A (k/2W, k/2W) = sin 

' n  

Y l Y l  
(IV -1 -8) 

F rom this relation we get the performances for  the transmission of optimum 

signals : 

.-. 

and for  b 00 

(IV -1 -15) 

When we take account of the finite channel bandwidth we get (IV-3 -6 and 10) 

fo r  optimum signals and general signals respectively. To find to what extent 

finite bandwidth impairs  the exponential behavior we have plotted (IV-2-2) and 

(IV-3-6) a s  functions of a =signal power /total channel noise power (fig. IV-12). 
C 

Very large bandwidth expansion a r e  required to get close to the limit in the 

range of interest ( say  up to 40 dB). Also the system i s  inefficient a s  f a r  a s  

exchange between bandwidth and signal -to-noise ratio is  concerned. 

When we compare the performances for  general signals to those 

of a classical system with bandwidth expansion we can see  f rom fig. IV-8 

that the system gives bet ter  results than F M  in the linear region ( 3  dB 

and 8 dB for a total bandwidth expansion factor P = 10 and 5 respectively). 

A threshold appears a t  a channel signal-to-noise ratio slightly higher than 

fo r  FM;  this i s  due to the sharp increase of the exponential te rms when 

a " 0 (equation IV-3 -14). The linear t e r m  introduced by  finite bandwidth 
e 

i s  related to the appearance of extra zeros in the 2T interval of time about 

the zero-crossing in each Nyquist interval; the exponential te rms and the 

threshold associated with them a r e  related to extra zeros occurring outside 

the 2T interval at low charnel signal-to-noise ratio, 



Fig,  IV -1 2 Performance& of the Communication System 
fo s Optimum Signals and the Channel 



The expe rrrnentdl datd a re fo r  a rec tarlgula r ciia~zr~ei bandwidth. 

While keeping in mirid that the theoretical results are f o r  t h e  charznel with 

rectangular inipulse response we think that the msstiinte res ting resul t  is 

t he  irriprovesr~ei~t i;i thz p e r f ~ r ~ a n c e s  k y  the zerc-cr3ssix?,gs - rlete.-"tc?rp csed 

in the simulation: the device takes advantage of the fac t  that only 

one zero-crossings should appear  in each Nyquist interval.  We have shown 

in IV-4a that truncation e r r o r s  places a l imit  on the per formances  of the 

computer algorithm. Also the channel investigated introduces a loss  of 

performances when compared to the channel pT( t )  because he re  bandlimiting 

itself displaces the zero-crossings.  

At this point we like to suggest a few directions of research .  In 

fig. IV-2 we have the s implest  scheme. Thus the clipper could be replaced 

by a nonlinear memoryless  device wi th  a smoother character is t ic .  In g e n e  rci I ,  

the channel should be followed by a f i l ter  to minimize the zero-crossings 

displacement. Actually the charac ter i s t ic  of the nonlinear device and the 

f i l te r  should be matched to the characrer is t ic  of the channel in o rde r  to 

get the minimum zero-crossings displacement. The mapping itself could 

be preceded by a nonlinear memoryless  device to control the distribution 

of the zero-crossings of the optimum process .  No attempt has been made 

to optimize the zero-crossings detector ,  and in the theoretical analysis a 

clipper has  been assumed.  The algorithm for  estimation of the op t imum 

process  f r o m  the received zero-crossings i s  a l so  an open q d e a t i 0 ~ 1 ;  LVC 

have considered a s e r i e s  approximation; Voelckert  s r ea l  7ero interpolator 

i s  another possible choice. Finally advantage could be ta lce~x of the s td t l s~ i r . ;  

of the signal sign (a f i r s t  improvement being to send a pulse only i f  the 

sign has changed). 



A function which has an absolute integrable Fourier  t ransform 

vanishing outside a n  interval (-S2,+ 0) has one zero in each interval 

if and only if i ts  values at - + a alternate in sign. 
2w 

Proof . 
i) When the function y(t)  has one ze ro  in each interval the values a t  ----- & + u  
must alternate in sign since y(t)  keeps the same sign between successive 

zeros.  

ii) When the samples alternate in sign there  i s  at  least  one zero -crossing in 

each interval. Therefore al l  that we have to show is  the unquenes s of this 

zero. Without loss  of generality we may assume that a = 0. Since I Y(w) 1 i s  

integrable 
1 

~ ~ ( 0 )  = ,, y(w ) ejw @dw where 8 = t t j ~  (A21 

is a n  ent ire  function. On the other hand sin(S28) has all  i ts zeros on the r e a l  

axis since 

( s i n  (ne)l = I 
Therefore the poles of ya(8)/ sin(S28) a r e  on the rea l  axis and at  + k/ 2W - 

1 
1 

(k- 0, 1, 2, . . . ). k t  C be the circle  of radius (n + )/ 2W centered about 
n 

the origin in the 8 -plane. 
k 

1 Y,(u) - -  du - Y,(@ 1 ya( 7 ) 
2.w j sin(~2u) u-0 sin(ne) k= -n  (0 - -Z-) k cos (krr ) (A4) 

n W 

Let us denote by f ( 0 )  the skght-hand side of this equality which is a n  ana- n 
lytic function. Since ya(8)/ sin(R8) is bounded on Cn  

1 I t"+z)m I m ( e ) l  5 M k L - f o r  some M (A5) 
( n + Z f m -  10 

and 

Therefore the araalyeic function f ( B j  i s  achuaily- a constant K and we can wr i t e  



k 
Y,(@ 1 1 Y,( m) 

sin (Q8) 
= K - i - 3  k 

k= - n  (8 - ------I GOS (kr) 
2W 

right-hand side ber,oixes + o? ;7t the  iii.;*i+.: t = k/ 2W =f the real axis and - !Y-**""- 

has only one zero  between these points. Therefore since s in (m) i s  bounded 

y(t)  vanishes only once between k/ 2W and (k t 1 ) /  2W for all integers  k. 



(II - 1 - 4) has been found previously by J. J. ~usssan~'") U n  - 
.'+ 

der  more  general conditions. Cswsfder  W o  processes x( t )  and y(t) jointly 

Gaussian: assume they a r e  zero-mean for the sake of simplicity. E one of 

them, say y(t) ,  ie subject to a memsryless nsnlinesr t ransfsrmatisn T then 

where K is a eansl;ant depending on T. The proof given by Buesgang merely  

require8 T iastantaraeous. Here we ohall. again il lustrate the Four ier  t rans-  

f o r m  technique for  the description of a nonlinear device, while deriving his 

result .  Thus we wri te  

1 
T(Y) = --2;; 5 ( w  ) ejw Y dw 

Then 

and since 

(ol, w *t . t ) = exp 
XY 2" 2 

J-m dw 
Therefore in (B-1) 2 

and by Parseval' s formula 
4-09 



A f t e r  inkggsakisn by pasts 

which i s  identical to resul t  (19) i A  Bussgangf s report .  Now if  we let 

yl(t) = x(t)  = y(t) and y2(t)  = T [yl(t)] = sgn yl(t) we get 

and 

i. e. (II-1-4) for  a non-stationary process.  

The resul t  extends to  the c lass  of processes such that the joint charac-  

t e r i s t i c  function has  a diagonal expansion in a s e r i e s  of orthonormal functions(l9) 

Consider the two se t s  of functions solutions of the integral eq ations (+) 

If the s e t s  a r e  complete we can wri te  the joint density function f (x, y;tl, t 2 )  
XY 

We res t r i c t  our attention to  the c lass  of processes  such that the joint density 

can be wri t ten in the form 

It follows from (B-PI] and (B-92) "cat 

Y ) ~ , ( ~ I Q  ll (Y)  (B-15) 

-- - 
(+)fx  and the P ' s  are functions of t similarly f and the Q ' s  are  functions E ; M 
of t2. This dependence is not explicitly shown here; 



Furthermore w e  consider the class of rnernoryless t ~ a n s f o ~ r n a t i o n s  which 

can be expanded in the Q '  s 

where 

F o r  the sake of simplicity we shal l  assume zero  mean processes  then 
X - i s  one of the orthonormal functions with respect  to  f (x) and therefore 
o x 

X 

and 

Finally form- (33-19) and (B-20)  

~l x(tl)T [ ~ ( t ~ ) ]  1 = T1 

A g a i ~ l  f o r  yl(t) = x(t) = y(t)  and T(y ) = sgn  {yl) we get 
1 

s kr 

Y I  y1 ""p ( .-.-----.-----.--- 2 
2cr 

Y1 

(B- 19) 



Finally the most general class f o r  which idle result is valid is &%e class 

of separable processes. (18) We cal l  two processes x(t) and y(t) jointly separ-  

able when (+I 

Then 

Gaussian processes  belongs to  the class.  Thus again fo r  a zero-mean Gaus- 

sian process and the ideal clipper 

E{ yl(t2) T [yl(t2)] = E 1Yl(t2) I 1 = it J$ (B- 27) 
Y1 

and (B-24) follows. Processes  with diagonal expansion of the joint charac-  

te r i s t ic  function also belong to the c lass  since f rom (B-14)we get 
4-00 

and by (B-20) 

(B- 28) 

P mm t r e  repqst j-d- 
separable if E i x ( t  C r ) l  x( t ) )  = x(t) r ( r ) .  A s  it is shown here extenqion to  
two nonstatiomry processes is straig& forvvard. 



A P P E N D I X  C -. Computer Program 

DOUBLE P R E C E I B N  DARG, Ql, Q2, G I ,  62, DCOS, BSPN, D B L E  
INTEGER VECTOR 
DIMENSION ( 2 5 % )  
DIMENSION Q1(  30), Q2(30) ,Cl(30) ,  C2(30)  
DIMENSION S Y I ( 6 4 j ,  Zi45j,  SY3(307j ,  RECZC(3Oj  
DIMENSION Y1(151), Y lHAT(151)  
DIMENSION CROSS(151), VAR1(151), VARZ(151) 
DIMENSION A(151), B(151), D(151), R(151)  
DIMENSION CROSSC(51), VARlC(51), VARZC(51) 
DIMENSION AC(51), BC(51), DC(51), RC(51)  
PI = 3.1415927 
M = 6433645 
N1 = 64 
N 2 =  5 

c N45  H A L F  T H E  NUMBER O F  S A M P L E S  TAKEN I N T O  ACCOUNT IN T H E  
C SAMPLING FORMULA T O  FIND T H E  ZERO-CROSSINGS (TRANSMITTED 
c AND RECEIVED)  AND ALSO T O  C O M P U T E  T H E  SIGNAL (OPTIMUM OR 
C NOT) IN G E N E R A L  

N4 = 10 
C N5=NUMBER O F  ZEROS O F  Y 1 ( T )  TAKEN INTO ACCOUNT ON T H E  L E F T  
C AND T H E  RIGHT O F  T FOR T H E  CALCULATION O F  T H E  CHANNEL OUT- 
C P U T  

N5 = 5 
C PRECISION O F  T H E  RECEIVED ZERO-CROSSINGS IS 1 / N 6  

N6 = 250 
C IBEF'BANDWIDTH EXPANSION FACTOR F O R  OPTIMUM SIGNAL 

I B E F  = 9 
L =  8 
N6A = N6 + 1 
BN6 = 1.O/N6 
N5A = 2 *N5 
N5B = N4 + N5 
N5C = (Nl-2*N5B)*IBEF+ 1 
N4A = 2*N4 
N4B = N4/ IBEF+1  
N4C = N4B+N5B 
N4D = N4B+N5 
N1A = N1-2*N4C 
N I B  = N1A*N2+ 1 
N I C  = N I B - 1  
N I B  = N I B - 5  
N1E = N1-2*N4+1 
P I 2  PI*IBEF 

C 
C GENERATION O F  N1 INDEPENDENT NUMBERS WITH DISTRIBUTION 
C N(0, 1 )  

G =  E , O  
DO 100 I = 1, IS1 
CALL CA--USS(X, 1 . ,  O., V )  
G =  - G  I 

~ o o  SY n (1) = (Z;*ABS(V) 
6: 
C DETERMINATION O F  THE ZERO-CRBSSINCS O F  Y I ( T )  

DG 105 1 = 1,  NIE 
J s l-I-N4-1 
GALL Z E R B ( J ,  L, T, SY1, N1, N4, N4A, P I )  

105 Z( I )  =: 1 
C 



99 
P O S n I O N  OF THE ZERO-CROSSINGS 
WRITE (5 ,410)  
FORPUT ('ZER 0 - G R  BSSINGS OF THE OPTIMUM SIGNAL') 
WRITE (6, 3 0 5 )  ( Z ( % ) ,  I= I., N1E)  
FORVAT f10F8-3 )  

G A L E  CHNNL%(E95A, N513, N5C, I B E F ,  Z ,  N I E ,  P12,  SY3) 

C A L L  RECCLPQNILA, SY3,  NLiC, N4C, N6, N6A, VECTOR,  I B E F ,  N4, N$A, 
I PI2, PI, BN 6, R E C Z C ,  N5B) 

WRITE (6 ,420)  
F O R M A T  ( 'RECEIVED ZERO-CROSSINGS') 
WRITE ( 6 , 4 3 0 )  (RECZC(I) ,  I= 1, N l A )  
FORMAT (10F8 .3 )  

COMPUTATION O F  T H E  SERUES C O E F F I C I E N T S  
W= 2hkPI/NlA 
DO 505 I= 1, N1A 
DARG=DBLE(Wh'RECZC(I))  
Q l ( I )=DCOS(DARG)  
Q2 ( I) = DSIN(DAR G) 
CONTINUE 
DO 510 I= 1, N l A  
Cl ( I )=O.  OD0 
C2(I)=O. OD0 
CONTINUE 
DO 515 I= 1, NIA 
J = N 1 C  
Cl(J+1)=C1(J+l~C1(J)*Ql(I)-C2(J)*QZ(I) 
C2(J+ 1 ) -  C2(J+ 1 l C 2 ( J ) * Q l  (I)+ C l  (J)*Q2(1) 
J-J-1 
W ( J .  GE,  1 )  GO T O  520 
C 1 ( 1 ) = C l ( l ) + Q l ( I )  
C2(1)=CZ(l )+Q2(%) 
CONTINUE 
G = 1 . 0  
DO 525 I= 1, N1A 
G = - G  
C l  (I)= G*CI (I) 
C2(I )=  G*C2(1) 
CONTINUE 

CALCULATION OF U1(T)  AND Y l H A T ( T )  
DO 110 I = 1 ,  N I B  
T=N4C+( I -1 .  Q) /N2  
C A L L  SIG(T,  SY 1, N1, N4, N4A, PI, F )  
Y 1 ( E ) = F  
A R C =  PI*T 
YlEJAT(1)-COS(AR6) 
DO 550 J =  I,  NIA 
A R G z  (NIA/Z-J)%W*T 
Y SiHA'a" (I)-- Y 4; HAT (I) -I-. SNGL ( C  1 ($))*COS(AR @)-SNCL(C2 (J))*S%N(AR G) 
CONTINUE 

CALCULATION OF THE SMSER 
DO 120 I=E, N I B  
GROSSCP) = Y S ("I)*Y PHAT (1) 
VARk(I)=Yst(I)*YI(I) 



I 2 5  VAR%(P) = YIMAT(P)*YPHAT(P) 
C A L L  Q S F ( .  2, CROSS,A,Nl B) 
CALL. QSF(. 2, V A R I ,  Es, 1\SP B) 
C A L L  Q S F ( .  2, VAR2, D, N l B )  
D O  125  I = 1, N1D 
J =  I + 5  
R (I) = ( A ( J ) ~ ~ A ( J ) ) /  (B( J )*D(J ) )  

1 2 5  R(1) = -lO.O*ALX)GlO(l. 0-R(1)) 
WRITE ( 6 , 4 6 0 )  

460  F O R M A T  ( 'SMSER' )  
WRITE (6, 320)  (R( J ) ,  J = 1, N1D) 

320 F O R M A T ( l O F 8 . 2 )  
t-. 
L 

C CALCULATION O F  T H E  SMSER F O R  T H E  C E N T R A L  P A R T  O F  T H E  
C I N T E R V A L  

DO 140 I = 1, 51 
CROSSC(1) = CROSS(50t-I) 
VARlC(1)  = VAR 1 (50 + I )  

140  VARZC(1) = VAR2(50t-I) 
C A L L  QSF( .  2, CROSSC, AC, 51)  
C A L L  Q S F  (. 2, V A R l C ,  BC, 51)  
C A L L  QSF( .  2, VARZC, DC, 51)  
DO 150 I =  1 , 4 6  
J = I + 5  
RC(1) = (AC(J):RAC(J))/ (BC(J)*DC(J) )  

150  RC(1) = -lO.O*ALOG lO(1.0-RC(1))  
WRITE (6, 170)  

170  F O R M A T  ( 'SMSER F O R  T H E  C E N T R A L  P A R T  O F  T H E  INTERVAL') 
WRITE (6 ,180)  (RC(J) ,  J = 1 , 4 6 )  

180  F O R M A T ( l O F 8 . 2 )  
C 
C 
C C R O S S C O R R E L A T I O N O F  T H E  I N P U T A N D  O U T P U T  R A N D O M S Q U A R E  
C WAVES 

CORRSW=O. 
DO 200 I = 1, N l A  
CORRSW =ABS(Z(I+N4D)-RECZC(1))  + CORRSW 

200 CONTINUE 
CORRSW = 1.0-2.O*CORRSW/NlA 
WRITE (6, 210)  

210 F O R M A T  ( 'CORRELATION O F  T H E  I N P U T  AND T H E  O U T P U T  RANDOM 
1 SQUARE WAVESZ)  

WRITE (6, 220)  CORRSW 
22OFORWtAT(F12.4) 

STOP 
E N E  



SUBROUTINE CAICdSS(IXD SI AM, M) 
A - 0 . 0  
DO 5 0 1 -  k , 1 %  
C A L L  RANDU( bW, ZU, U )  
IX = Iy 

50 A =A+Y 
V = (A-6.O)*S+AM 
R E T U R N  
E N D  

SUBROUTINE RANDU(IX, IY, Y F L )  
IY =IX*65539 
IF( IY)5 ,  6, 6 

5 IY=IY+2147483647+ 1 
6 Y F L = I Y .  

Y F L  = Y F L * .  4656613E-9  
R E T U R N  
END 

SUBROUTINE Z E R O ( J ,  L, T, SY1, N1, N4, N4A, P I )  
DIMENSION SY 1 (N1 ) 
T = J  
C A L L  SIG(T, SY1, N1, N4, N4A, PI, F )  

10  K1='-1 
GO T O  25  

20  K l = l  
25  D T 1 = . 5  

D O  30 I= 1, L 
55  T = T + D T l  

C A L L  SIG(T, SY1, N1, N4, N4A, PI, F )  
IF ( F )  35, 50.40 

3 5  K 2 = - 1  
GO T O  4 5  

4 0  K 2 = 1  
4 5  IF(IABS(K1-K2))  50, 55, 6 0  
6 0  K1=--K1 
30 D T 1 = - D T 1 / 2 , 0  
50 R E T U R N  

END 



SUBROUTINE SLG(T, SY I ,  N I ,  N4, N4A, PI, F)  
G 
C C O M P U T E S  Y l ( T )  BY MEANS O F  T H E  S A M P L m G  F O R M U L A  
r-- 
L 

DIMENSION SY I  (N1 ) 
C 
C CHECK F O R  T INTEGER 
C 

IT= T 
IF (T-IT)  200, 205, 200 

205 F =SY 1 ( IT)  
R E T U R N  

2 0 0 F  = 0. 
K 1  = I T - N 4  
DO 210 J =1, N4A 
K = K l + J  
X= PI*(T -K)  

210 F = F + S Y  1 (K)*SIN(X)/X 
R E T U R N  
E N D  

SUBROUTINE RECSGI  (T, I B E F ,  N5B, SY3, N5C, N4, N4A, PI2, PI, F )  
DIMENSION SY3 (N5C) 
T 1  = T - N 5 B + l e O / I B E F  
I = T 1 X B E F  
F =O. 
K1  =I-N4 
D O  210 J =1, N4A 
K = K l + J  
X = P I 2 * T l - P I * K  
IF (ABS(X)@LEel.OE-03) GO T O  200 
G =SIN(X)/X 
GO T O  210 

2 0 0 G =  1 e o  
210 F =F+SY3(K)*G 

R E T U R N  
E N D  



SUBROUTINE CHNNLjl JN5A, N5Bs N5C, IBEF, Z ,  NHE, PI2, S Y 3 )  
C: THIS SUBROUTINE PERFORMS THE FOLLOWING 
C 
C 1) IDEAL LOW-PASS F L T E R I N G  O F  T H E  OPTIMUM RANDOM SQUARE 
C WAVE (OF UNXT  AMPLITUDE^ T O  T H E  BAISD'flDSFH 
C IBEF*W. I B E F  IS T H E  BANDWIDTH EXPANSION 
C F A C T O R  F O R  O P T I M U M  SIGNALS (FOR NON O P T I M U M  
C SIGNAL T H E  BANDWLDTH EXPANSION F A C T O R  IS A C T U A L L Y  
C IBEF+ 1 ) * 
C 
C 2)  ADDITION O F  A ZERO-MEAN,  GAUSSIAN NOISE WITH SINGLE-  
C SIDED POWER DENSITY N Z E R O  (CHANNEL SNR = S/ (NZERO* 
C IBEFakW)- NOTE T H A T  S IS NOT E Q U A L  T O  1 SINCE T H E  
C UNIT A M P L I T U D E  RANDOM SQUARE WAVE IS S U B J E C T  T O  
c FILTERING.) 
C 
C T H E  SUBROUTINE C O M P U T E S  T H E  S A M P L E S  (IBEF*2*W S A M P L E S I S E C )  
C O F  T H E  CHANNEL O U T P U T *  

DIMENSION SY3(N5C), Z ( N 1 E )  
PI = 3.1415927 
IX = 267331 
S N  = 98 
CNR = 100 
SIGMA = PI*SQRT (SN*IBEF/ CNR)  
D O  110  1 = 1, N5C 
T = N5B + (I- 1. O) / IBEF 
SY3(I)  = 0. 
D O  1 1 5  J = 1, N5A 
K =  T - N5B+J 
ARG = (Z(K)-T)*PIZ 
C A L L  SICI(U, ARG) 
A R G  = (Z(K+ 1)-T)*P12 
C A L L  SICI(W, AR G) 

11 5 SY3(I)  =SY3(I)+ ((-l)**K)*(W-U) 
C A L L  GAUSS(IX, SIGMA, O., V) 
SY3(I )  =SY3(I)+V 

110  CONTINUE 
CNR = lO*ALOGlO(CNR) 
W R I T E  (6, 125)  

1'25 F O R M A T  ( 'CHANNEL SIGNAL T O  NOISE R A T I O  S/NO*W IN DB' )  
W R I T E  (6, 120)  CNR 

120  F O R M A T  (F8 .  Z) 
R E T U R N  
E N D  



SUBROUTINE R E C C L P ( N I A ,  SY3, N5C, N4C, N 4 ,  N6A, VECTOR, IBEF, 
1 N4, N4A, PI2, PI, BN6, RECZC,  N5B) 

C 
C: THIS SUBROUTINE GIVES THE Z E R D - C R B S S I N a  O F  THE C W N N E E  
C O U T P U T ,  
C 

I N T E G E R  VECTOR 
DIMENSION R E C Z C ( N l A ) ,  SY3(N§C), VECTOR(N6A)  
AN6 = N6 
SIGPOW = 0. 
DO 105  I =  1, N1A 
T =N4Ct-I-1 
T 1 = T  
C A L L  R E C S G l ( T ,  I B E F ,  N5B, SY3, N5C, N4, N4A, P12,  PI,F) 
POWER = .5*F*F 

300 IF ( F )  10 ,15 ,  20  
10  K1  =-1  

GO T O  2 5  
20 K l = l  
25 S U M = K 1 / 2 . 0  

V E C T O R ( I ) = K l  
DO 100  J = 1 ,  N6 
T = T 1+ J / A N 6  
C A L L  R E C S G l ( T ,  I B E F ,  N5B, SY3, N5C, N4, N4A, P I 2 ,  PI, F )  
POWER = POWER+F*F  

3 1 0 I P  ( F )  30, 15, 3 5  
30 K 2 = - 1  

GO T O  110  
35  K 2 = 1  
110 VECTOR ( J + l ) = K 2  
100  SUM= SUM+K2 

SUM= SUM-K212.0 
P O W E R =  POWER-.  5*F*F 
T = T 1 + .  §*(I.  OtKl*SUM*BN6) 
C A L L  R E C S G I  (T, I B E F ,  N5B, SY3, N5C, N4, N4A, P I 2 ,  PI, F )  

320 IF ( F )  40, 1 5 , 4 5  
40  K = - 1  

GO T O  50 
4 5  K = l  
50 I T l = ( T - T 1 ) * N 6 + 1  

ST2=IT1+1 
8 0  IF (LABS(VECTOR(IT1)-K)) 5 5 , 6 0 , 6 5  
65 T =  (IT1-1.O)/N6+Tl 

GO T O  1 5  
6 0  CONTINUE 

IF (LABS(VECTOR(IT2)-K)) 55, 70, 7 5  
75 T =  ( I T 2 - l e O ) / N 6 + T 1  

GO T O  l 5  
'70 IPGab=%Tab-l 

FF2=TT2+1 
GO T O  8 0  

15 RECZ(I;(P)=T \ 

SIGPBW = SXGPOTN+ POWER 
105 CONTINUE 

SIGPOW =SIGPBW/ (N6*NIA*PI*PI)  
'iibrRDEI"6, 2001 

208 F D R U T  ("SIGNAL POWER AT' THE C H A m E L  O U T P U T 8 )  
WRITE (6, 2 18) SPCPBW 

%IOPORn/LAT ( F 1 2 , 4 )  
55 R E T U R N  

E N D  



105 

SUBROUTINE QSF(H, 51, Z, NDIM) 
6: 
e; 

DIMENSION Y (11, Z ( 1 )  
C 

&ST=. 3333333eH 
IF(NDIM- 5)9 ,  8, 1 

e: 
C ND%M bS GREATER T H A N  5. PREPARATIONS O F  INTEGRATION L O O P  
1 S U M l = Y ( Z p Y ( Z )  

SUM1 =SUMl+SUM1 
SUM1 =HT*(Y (1 ) tSUMl+Y (3))  
A U X l = Y ( 4 F Y ( 4 )  
AUX1 = A U X l + A U X l  
A U X l  =SUMl+HT*(Y (3)+AUXl+Y (5))  
AUX2=HT*(Y (1)+3.875*(Y(Z)+Y(5))+2.625*(Y(3)tY(4))tY(6)) 
SUMZ=Y(S)+Y(5)  
SUM2= SUM2+SUM2 
SUMZ=AUX2-HT*(Y(4)t.SUMZ+Y(6)) 
Z ( 1 ) = 0 .  
AUX=Y(3) tY(3 )  
AUX=AUX+AUX 
Z(2)=SUM2=-HT*(Y (2)+AUX+Y(4)) 
Z ( 3 ) = S U M 1  
Z(4 )=  SUM2 
IP(ND1M-6)5, 5, 2  

C 
C I N T E G R A T I O N L O O P  
2  D O  4  I = 7, NDIM, 2  

SUM1 = A U X l  
SUM2 = AUX2 
A U X I = Y ( I - 1 )  + Y(1-1) 
A U X l = A U X l + A U X l  
AUX1 =SUMl+HT';(Y (I-2)t.AUXl+Y (I)) 
Z ( I - 2 ) z S U M l  
IP (I-NBIM) 3, 6, 6 

3 AUX2=Y (P)+Y(I) 
AUX2=AUX2+AUX2 
AUXZ=SUMZ+HT*(Y(I-l)+AUX2+Y(Itl)) 

4 Z (I-1)=SUM2 
5 Z(NDIM-1)zAUXl  

Z(NDLM)=AUX2 
R E T U R N  

6 Z(ND1M-1)=SUM2 
Z (NDIM) = AUX 1 
R E T U R N  

C E N D  OF INTEGRATION L O O P  
&: 
'7 %P(ND%Ra-3)PZS 11, 8 

e: 
G NDIM IS EQUAL TO 4 OR 5 
s s r r~ /%z=  a ,  I Z ~ * H T * ( Y ( ~ ~  + ~ ~ 2 1  i- Y C ~ ) +  ~ ( 2 )  -I- ~ ( 3 )  + ~ ( 3 )  +- ~ ( 3 )  -r- ~ ( 1 % ) )  

SUM1 --U(Z) + Y ( % )  
SUMl=SISMl+SUMI 
S U M l = H T *  ( (Y(%) + SUM1 -I- Y ( 3 j )  
Z[l)-O,  
sauxl= '*ir(aj -I- Y ( 3 )  
AUZ$%=AUX% +AUXI  



Z(Z)=sUM2-%%T*(Y(2) + AUX1 + Y(4))  
E ( N B % M - 5 )  10, 9, 9 

9 A I I X P = Y ( 4 ) + Y ( 4 )  
AUXl - -LaUXl+  AUX1 
Z(s)--SUMl + HT*(Y(3) -4- A U X I  d- Y ( 5 ) )  

% O  Z(3)=SUMI 
Z(la)=SUM% 
R E T U R N  

C 
C NDIM IS EQUAL T O  3 
11 SUM1=HT*( le25*Y(1)+  Y ( 2 ) +  Y(2) -.25*Y(3)) 

SUMZ=Y (2)  + Y (2) 
SUM2=SUM2 4- SUM2 
Z(3)=HT*(Y( l )  + SUM2 + Y (3))  
Z ( l ) = O .  
Z (2 )=SUMl  

12 RETURN 
END 

SUBROUTINE SICI(S1, X)  
C 
C T E S T  ARGUMENT RANGE 
C 

Z=ABS(X) 
I F ( Z - 4 .  ) 10, 10, 50 

C 
C Z I S N O T G R E A T E R T H A N 4  
c 
10 Y = Z * Z  

O§I= - 1 .5707963+~*( ( ( ( ( ( .  9 7 9 4 2 1 5 4 ~ -  11*Y-o 22232633E-8)*Y+. 30561233E-6 
l)*Y-. 28341460E-4)*Y+ 0 16666582E-2)*Y -. 55555547E- l)*Y+ 1. ) 

40 RETURN 
C 
C Z IS GREATER THAN 4. 
C 
50 SI=SIN(Z)  

Y = COS(Z) 
z=4; / z  

0 TJ= ((((((((. 4048069OE-2*Z-. 022791426)*Z +. 0551507OO)*Z-0 072616418)*Z 
1+. 0 4 9 8 7 7 1 5 9 ) * ~ - .  33325186E-2)*Z-. 023146168)*Z-0 11349579E-4)*Z 
2+062500111)*Z+. 25839886E-9 
OV= (((((((((-. 0051086993*Z + .028191786)*Z-. 065372834)*Z + .079020335)* 
Z-. 044004 155)*Z- 0079455563)*Z + 026012930)*Z- 37640003E-3)*Z 
2-. 031224 178)*Z-. 66464406E-6)*Z + e 25000000 

S I =  -.Z*(SI*U +Y*V) 
C 
C T E S T  FQR NEGATIVE ARGUMENT 
e; 

I F ( X )  6 0 , 4 0 , 4 0  
C 
&; X IS LESS T m N  -4, 
c i 

6 8  SZ= -3,1415927.-$1 
R E T U R N  
END 



If wc k c i k e  a c c o u r ~ t  of N . samples to the left  and N samples to the 
4 4 

right of the t ime t the e r r o r  on x( t )  i s  

and k > [t] +N4 

Since the samples a r e  independent and zero-mean 

and k, i > [t] +N4 

k < [t] -N4+ 1 

and k > [t]+ N4 

This  quantity i s  a periodic function of t ime (with period equal to the Nyquist 

interval),  We a r e  interested in its t ime average 

and k > i+N4 

Therefore the signal-to -mean- square - e r s o r  ratio a for  truncation of the 
t 

sampling formula i s  given by 

( i +  1 -k)v 

and k>i-I- M4 
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B-4 is plotted on fig, EIP-6* The corresponding express ion  f o r  y I t )  
1 

i s  anore complicated and is not repor ted  here, 
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