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PREFACE

This Report summarize3 the results of a group of com-

puter system analysis and simulation studies performed under

a research contract w:',th the National Aeronautics and Space

Administration (NASA). It is basically the text of a brief-

ing presented at four NASA centers (Goddard, Langley, Marshall,

and MSC-Houston) in April 1970. Detailed results of the

studies are reported in the following publications (1-4]:

Nielsen, N. R., ECSS: Extendable Computer System
Simulator, The RAND Corporation, RM-61,32-NASA,
January 1970.

Bell, T. E., Computer System Measurement and Analysis,
The RAND Corporation, R-584-NASA/PR (in process).

Watson, R. A., Measurement and Analysis of Computer
System Performance: Applications of Accounting
Data, The RAND Corporation, R-573-NASA/PR (in
process).

Seven, M. J., B. W. Boehm, and R. A. Watson, Problem-
Solving with an Interactive Computer: A Study of
User Behavior, The RAND Corporation, R-513-NASA
(in process).

This Report concentrates on the key results of indi-

vidual studies and their applicability to the design,

development, and management of complex computer systems.

It should be of interest to planners, managers, and analysts

of both complex computer systems and the mission-oriented

systems in which they are embedded.

N
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SUMMARY

This Report summarizes the results of a group of com-

puter systems analysis and simulation studies performed

under a NASA research contract. It represents the text of

a briefing presented at four NASA centers (Goddard, Langley,

Marshall, and MSC-Houston) in April 1970. The discussion,

which concentrates on the key results of individual studies

and their applicability to the design, development, and

management of complex computer systems, should be of in-

terest to planners, managers, and analysts of both complex

computer systems and mission-oriented systems.

The studies were coordinated into three major efforts:

1) The development of a set of design principles for

languages to model and sirr^ula^e computer systems

by attempting to design and implement a prototype

language called ECSS (Extendable Computer System

Simulator).

2) The evaluation and extension of the state-of.-the-

art of using software and hardware devices to

measure and analyze the performance of complex

computer systems.

3) she provision of greater perspectives on the re-

lationship between computer performance and man-

computer performance by performing and analyzing

controlled experiments in man-computer problem-

solving.

ECSS

The Extendable Computer System Simulator (ECSS) is a

prototype language, designed and implemented to investigate

ways of making the simulation of complex computer systems a

less formidable task. A general-purpose language usually

requires much effort to represent common computing processes.
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On the other hand, existing computer system simulators are

aver.-specialized and, in many applications, difficult tc,

modify. Our overall approach is to provide a ecivenient

and natural means of describing computer system character-

istics and computing activities while maintaining the flexi-

bility and power of a general-purpose simulation language.

This report illustrates the strength of this approach by

presenting a small model. Future plans include various im-

proveme-its and additions to the language, and the develop-

ment of larger and more sophisticated models for it.

C'cmputer System Measurement and Evaluation

We briefly discussed Rand research in the application

of hardware and software measurement tools to the evalua-

tion of computer systems. The phenomenon that measurements

indicate a strong instability in gross measures of multi-

programmed system performance with respect to load charac-

teristics, disk data set allocation, and scheduling

algorithms is discussed and exemplified.	 '^ 1

Man-Computer Problemsolving Experiment

The observation and measurement of man-computer per-

forniance characteristics have received little attention

compared with the great effort dedicated to the study of

various computer hardware and software systems. In attempt-

ing to contribute to the currently scant store of quantita-

tive information on man-computer problemsolving processes,

and to evaluate available experimental techniques in the

area, we designed and implemented an exploratory experiment

in man-computer problemsolving. Twenty subjects performed

a planning task, using the JOSS interactive computer system
	

N 

as a decision aid, to test the effects of forced temporal

lr ckout intervals on performance. The experimental findings

indicated that some of the lockout effects interacted with
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the subject's level of experience, In general, however, the

group of subjects having a five-minute lockout period after

each trial not only achieved better solutions to the problem,

but also used far less computer and personal time in doing

SO.
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I. INTRODUCTION

Rand's research into computer systems analysis method-

ology aims to provide better techniques for the design,

evaluation, and analysis of computer systems. This Report

describes three coordinated efforts toward achieving this

goal:

1) The development of a set of design principles for

languages to model and simulate computer systems

by attempting to design and implement a prototype

language called ECSS (Extendable Computer System

Simulator).

2) The evaluation and extension of the state-of-the-

art of using software and hardware devices to

measure and analyze the performance of complex

computer systems.

3) The ^rovision of greater perspectives on the re-

lationship between computer performance and man-

c ,Dmputer performance by performing and analyzing
controlled experiments in man-computer problem_

solving.

Figure 1 and Table 1 indicate some of the reasons

for concentration on techniques for the analysis of com-
puter systems. Figure 1 relates the calendar time re-

quired to complete a spaceborne--software project to the

size of the resulting computer program and to the degree

of the project's original definition [ti,61. Figure 1

depicts that programming proceeds quite rapidly once a

project is well-specified. However, the earlier "analysis"

phases--e.g., determining hardware-software tradeoffs and

integrating information system design with mission design--

constitute a major contribution to the "technology gap,"
the time-lag between the availability of computer hardware
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and its integration into an operational mission. An attempt

to place the NASA Space Shuttle and Space Station missions

into the context of Fig. 1 indicates that this time-lag

problem will become even more serious for these missions

unless techniques to reduce it become available.

Table 1

•

COMPUTER PROGRAM DEVELOPMENT BREAKDOWN

Analysis Coding Checkout
and and and

Software Pro ect Design- Auditing Test

Spaceborne:	 Hardware 62% 14% 24%
and	 Software Unspecified

Spaceborne:	 Hardware 33 26 41
only	 Specified

Spaceborne:	 Hardware,
Software Techniques 36 17 47
Specified

SDC	 General	 R;;le	 of
Thumb	 Estimation, 40 20 40
Spaceborne

SAGE	 (Semi-Automatic 39 14 47
Ground Environment)

NTDS	 (Naval	 Tactical 30 20 50
Data	 System)

SETE	 (Secretariat for
Eloctronic	 nest	 Equip- 35 17 48
ment,	 NYU)

SDC General	 Rule of
Thumb	 Estimation, 40 15 45
Ground	 (Real-Time)

Table 1, derived from the SDC study of Ref. 6 and an

earlier Rand study [7], confirms the indications in Fig. 1

that the major proportion of -iffort in an initially undefined
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software project goes into analysts, and that, in any case,

relatively little effort is devoted to programming individ-

ual routines. Thus, research efforts directed toward im-

^eroving the "analysi ," phase will have a more significant
impact on the overall software development process than

will research directed toward improving the "programming"

phase, relatively over-emphasized at present. (A. separate

Rand research effort on software testing and certification

techniques is also currently underway, under Air Force

sponsorship.)

R.
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II. ECSS: EXTENDABLE COMPUTER SYSTEM SIMULATOR

SIMULATION OF COMPUTER SYSTEMS: CURRENT STATE

In designing and implementing simulation models of

general-purpose, time-sharing systems in FORTRAN and SIMULA

[ 8 ] , time r-shared graphics systems in GPSS ( 9) , and -omputer-
communications :systems in FORTRAN (10), project members

found many drawbacks in using existing programming languages:

tedious, repetitive patterns of program statements for stan-

dard conversion and updating jobs, a lack of specialized

terms to deal with common computing processes and desired

outputs, and (particularly in GPSS) overspecializations that

must be "programmed around" to achieve the desired model.

Also, in reviewing [1] zxisting special purpose packages

for simulating such computer systems as SCERT [11], S3 [12],

and CSS [13], we found for many applications that these

packages were not only overspecialized, but also extremely

difficult to "program around" because this generally re-

quired a good deal of assembly-language programming and
A

knowledge of internal table structures.

THE ECSS APPROACH

We felt that these difficulties were not necessarily

inherent in languages that simulate computer systems. The

design (primarily by Nielsen [11) and preliminary imple-

mentation (primarily by D. W. Kosy of Rand) of ECSS attempts

to test this hypothesis. ECSS, detailed in Ref. 1, provides

a set of fairly "natural" terms and phrases for modeling com-

puter ^iystens, and a set of service routines that automatically

handles much of the rotework involved in such models. Most

important, it allows the modeler to extend ECSS, via special
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definition statements or supplementary SIMSCRIPT II state-

ments, t whenever he has difficulty describing his system
with the standard ECSS facilities.

An Exam2l.e

For example, suppose that one wishes to model the

transmission of a message, 58 bytes long, sent with a

priority of 3 over a message path between a processor and

a terminal.

ModeZed in SIMSCRIPT 1I:

LET COMPLETION = 58* TRANSMISSION.RATE(TERMINAL.A)

CALL TIME .OF . FREE . PATH (PROCESSOR, MESSAGE . PATH (*)r3)

YIELDING EXTRA.WAIT

IF CURRENT. PRIORITY < 3

LET EXTRA.WAIT = 0

REGA1.1DLESS

SCHEDULE A MAKE.TRANSMISSION AT EXTRA.WAIT + TIME.V

SCHEDULE AN END.TRANSMISSION AT

EXTRA.WAIT + COMPLETION + TIME.V

Mode Zed in ECSS:
i

SEND MESSAGE OF LENGTH 58 FROM PROCESSOR TO

TERMINAL.A VIA MESSAGE.PATH WITH PRIORITY 3

ECSS IMPLEMENTATION

Figure 2 illustrates the relationship between ECSS and

SIMSCRIPT II. Such ECSS statements as the one above, de-
	 n

scribing the computer system, its job Load, and any specially

tSIMSCRIPT II [14], currently available and supported
on IBM 360 computers, is a language with both general-
purpose and simulation-oriented capabilities.

1



O	 O

u	 U

V V
m	 v

O O

-pO
O
U

U

}
O o 0

N

O

"

V

N
a^
^

C `

CL
._

•; N C

o

.2' Ci .c
•CL

•N
UN N̂ a.-

^i

cn

W	 N to

It

1=
O

ro

N
C
ro
L

N
NU
W

4-

O

u

ro
E
tu
N

1

1N

cm
.r—

U-

Q> j

o a,c

E ^` Ln
Q

is 4—

J

v±

C

O

N

a
C

0

c

G

a^
N

I	 N
^:	 C
U	 O

°'	 a

N
a	 a^
E

'^	 C
N	 •O

o	 ;}c
co	 D

a^
v xN ^
_E
N ^
c 3

o ^
Jn c

(D
N ,^

N
c
.^	 c

^	 a
O	 •U

E	 ^v

•



r

r

_,8-

defined terms, are processed by a translation program into

SIMSCRIPT statements, and augmented by both the necessary

members of a set of SIMSCRIPT-coded service routines in the

ECSS library and any data required to initiate the simu-

lation. These SIMSCRIPT statements, and any supplied

directly by the modeler, are then compiled into object cede

and executed. In order to allow small changes to ECSS models

without having to recompile the entire model, a binary summary

deck is also provided.

Example: A Simple Spaceborne Multiprocessor

The following simple, model of a Spaceborne multiprocessor

represents a more complete example of an ECSS model. As seen

in Fig. 3, three processing units are available to execute

both periodic guidance and control (every 50 msec) and bio-

monitoring programs (every 100 msec), and to process requests

for data processing and display from any of five data inter-

pretation terminals available to space-based personnel. These

requests can result in demands for more memory space or pro-

cessors than are available. A simulation can indicate the

resulting waiting times and queue lengths, and give insights

into system configuration improvements to better serve a given

class of job loads or request patterns. Figures 4, 5, and 6

show the resulting ECSS code, with some annotations for 	 v

clarity.

ECSS: CURRENT STATUS; AND FUTURE PLANS

Currently, the essential. parts of the ECSS translator

are implemented and mostly debugged. Most of the associated

service routines have been incorporated. We are testing the

translator on a set of simple models, such as the spaceborne
	 N 

multiprocessor, and also validating results of a series of

increasingly complex models of our IBM 360/65 system (in-

cluding some extensions of OS/360 to handle time-sharing)
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DEFINITION DESCRIPTION

DEFINE UNITS KWORDS = SPACE.UNIT (represents

1000 words of memory)

DEFINE UNITS WORDS	 TRANSMISSION.UNITS,

MIX.A.INSTRUCTIONS, MIX.B.INSTRUCTIONS (ECSS now

"knows" what these mean)

END

SYSTEM DESCRIPTION

SPECIFY 3 PROCESSORS, EACH EXECUTES 500000

MIX. A. INSTRUCTIONS PER SECOND

EXECUTES 400000 MIX.B.INSTRUCTIONS PER SECOND

ABSORBS 1 MILLISECOND PER MESSAGE

CONNECTS TO FAST.MEMORY, TERMINALS

IS INTERRUPTABLE WITH THE OPERATION CONTINUING

HAS CAPACITY OF I EXECUTION USER

SPECIFY 1 FAST.MEMORY, HAS CAPACITY OF 85 KWORDS

CONNECTS TO BULK.MEMORY,PROCESSORS

SPECIFY 1 BULK.MEMORY, HAS CAPACITY OF 100000 KWORDS

CONNECTS TO FA&ST.MEMORY

TRANSMITS 1000000 WORDS PER SECOND

SPECIFY 5 TERMINALS, EACH TRANSMITS 1000 WORDS PER SECOND

CONNECTS TO PROCESSORS

HAS CAPACITY OF 1 EXECUTION USER

PATH REQUEST.PATH IS TERMINALS, PROCESSORS

PATH ANSWER.PATH IS PROCESSORS,TERMINALS

PATH DATA.PATH IS BULK.MEMORY,FAST.MEMORY

END

E

Fig. 4--Spaceborne Multiprocessor System Description
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(E)	 LOAD DESCRIPTION	 ((E) : ECSS statement; (9): Simscr_ipt

statement; note that they can be

mixed)

(E)	 JOB GUIDANCE. AND. CONTROL

(S)	 IF TIME.V > 10000.0 1 STOP	 (terminates simulation)

(S)	 OTHERWISE

(E)	 EXECUTE 10000 MIX.B.INSTRUCTIONS WITH PRIORITY 3

(3 is highest priority; will override data

interpreter jobs)

(S)	 IF UNIFORM.F (0.0 1 100.0 1 1) < 50.0	 (50% chance of more

execution)

(E).	EXECUTE 5000 MIX.A.INSTRUCTIONS WITH PRIORITY 3

(S)	 REGARDLESS WRITE CPU(.JOB), TIME.V USING SYSTEM.LOG

(diagnostic output)

(E)	 LAST

(E)	 JOB BIOMONITORING

(E)	 EXECUTE 8000 MIX.B.INSTRUCTIONS WITH PRIORITY' 3

(S)	 IF UN,IFORM.F (0.0 1 100.0 1 1) < 70.

(E)	 EXECUTE 3000 MIX.A.INSTRUCTIONS WITH PRIORITY 3

(S)	 REGARDLESS WRITE CPU(.JOB), TIME.V USING SYSTEM.LOG

(E)	 LAST
	 0

f

G
(E)	 JOB SET.UP (TERMINAL)

(E)	 EXECUTE 20000 MIX.A.INSTRUCTIONS WITH PRIORITY 1

(E)	 SEND MESSAGE OF LENGTH 300 FROM CPU(.JOB) TO TERMINAL

VIA ANSWER.PATH WAITING HERE FOR COMPLETION

(CPU can't proceed until transmission completed)

(E)	 LAST
5
F

Fig. 5--Spaceborne Multiprocessor Load Description: I

' I I

y
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(E)	 JOB DATA. INTERPRETER 	 HE):  ECSS Statement; (S) Simscript)
(E)	 GET 10 KWORDS FROM FAST.MEMORY

(E )	 START JOB SET. UP (CPU ( . JOB) ) ON PROCESSORS (log-on

processing)

(S)	 LET ITERATIONS = UNIFORM.F(1.0 1 7.0, 1)

(random number of data interpreta-

tion passes)

(S)	 FOR I=1 TO ITERATIONS DO

(E)	 WAIT FOR EXPONENTIAL.F(3.0, 1) SECONDS 	 (thin} time)

(E)	 GET 20 KWORDS FROM FAST.MEMORY

(S)	 LET Q = UNIFORM.F (5000.0, 20000.0, 1)

(size of rhis batch of data)

(E)	 SEND MESSAGE OF LENGTH Q VIA DATA PATH (don't start analysis

WAITING HERE POR COMPLETION 	 until all data is in memory)

(E)	 START JOB DATA.ANALYSIS GIVEN TERM(.JOB),Q ON PROCESSORS

(E)	 FREE 20 KWORDS FROM FAST.MEMORY 	 (now available for
other jobs)

(S)	 LOOP	 (continue for specified number of passes)

(E)	 FREE 10 KWORDS FROM FAST.MEMORY 	 (sign off)

(E)	 LAST

(E)	 JOB DATA.ANALYSI.S (TERMINAL,Q)

(E)	 EXECUTE .01*Q**2 + 4.0*Q + 50000 MIX.B.INSTRUCTIONS

WITH PRIORITY I	 (correlation of Q data values)

(E)	 SEND MESSAGE OF LENGTH 500 FROM CPU(.JOB) TO TERMINAL

VIA ANSWER. PATH 	 (display results)

(E)	 LAST

(E)	 INITIALLY START GUIDANCE.AND.CONTROL ON PROCESSORS AT

0.0 SECONDS AND EVERY 50.0 MILLISECONDS AFTER

ARRIVAL

(E)	 INITIALLY START BIOMONITORING ON PROCESSORS AT 0.0

SECONDS AND EVERY 100.0 MILLISECONDS AFTER

ARRIVAL

(E)	 INITIALLY START DATA.INTERPRETER ON EACH TERMINALS AT

.40 SECONDS AND EVERY EXrONENT„IAL.F(2.0,1)

MINUTES AFTER COMPLETION

(E)	 END

Fig. 6--Spaceborne Multiprocessor Load Description., ZI*

e
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by collecting measurements on the 360 for comparison with

the simulation.

In ,';ie future, we plan to improve and complete the

existing translator and service rou tined, extend and refine

the capabilities of ECSS in modeling software control systems

and automatically collecting performance statistics, improve

its efficiency where possible, and use it to construct and

validate more extensive models of current and future computer

systems outside Rand.

4F
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III. COMPUTER SYSTEM MEASUREMENT AND EVALUATION

BACKGROUND

Language development pro ,^rides only one part of the

capability required for even a simulation-based analysis

of a computer system. Techniques must be developed for

accurately characterizing both input parameters to the

simulation and appropriate models of the system and its

workload. This will avoid the risk of a "garbage in,

garbage out" exercise. Furthermore, the simulation must

be carefully validated against actual performance data, and

appropriate performance criteria must be developed so that

different simulation runs may be usefully compared. These

considerations have guided our companion area studies of

computer system measurement and evaluation, and man-computer

performance analysis.

Our studies in measurement and evaluation of computer

systems have included not only such aspects directly re-

lated to computer system simulation as validation of the

simulation and workload characterization, but also more

extensive investigations into the relative advantages and

disadvantages of hardware and software measurement tools

for executing various classes of performance evaluation.

These latter investigations are directly applicable to

problems of computer system procurement (particularly in the

use of benchmark jobs), and to performance improvement or

"tuning" of existing computer systems.

CRITICAL AREAS

Detailed results of these investigations are found in

the studies by Bell (2] and Watson (3]. Frequently, the

measurements indicate a strong instability in gross measures

of multiprogrammed system performance (central processing

unit (CPU) utilization, throughput, etc.) with respect to

If

t
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changes in load characteristics, disk data set allocation,

and scheduling algorithms. t Small changes in load charac-

teristics, etc., can easily produce y arge changes in multi-

programmed system performance. This phenomenon has the

following significant operational implicat:;ons:

1) Significat,L improvements in 	 utilization or

throughput;„ (usually at least 30 percent; sometimes

over 300 percent) can be rea.x.ized from ,investments

in "tuni;ig" multiprogrammed computer systems.

2) Computer systems selected and procured because of

their performance on a series of "benchmark" jobs

can lead to disastrous mismatches if great care is

not taken to assure that the benchmarks are fully

representative. It is relatively easy for a vendor

to tune his system to look exceptionally goad on a

small number of benchmark jobs.

3) As workload characteristics change with time, the

maintenance of a well-tuned computer requires a

continuous rather than a one-shot effort.

The complexity of multiprogrammed computer systems also

creates a situation in which a set of measurement trends

may result from any of several dominant causes, requiring

considerable detailed examination of interactions before

the key contributing factors are isolated for subsequent

decisions and actions. Using the simplest explanation as

a basis for decisions can lead to highly dysfunctional

results.

An Example

One of our studies provides a good example of this
l

phenomenon. Figure 7 summarizes the performance of our

A multiprogrammed computer system is one in which
several independent programs simultaneously reside in the
main memory and compete for the computer's various resources
(CPU, input-output channels, disk arms, et-.) during their
execution„

i
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IBM 360/65 computer system over a period of 11 months,

measured in terms of the percentage of CPU cycles produc-

tively utilized. (The remainder of the cycles were not

used because the current programs in the computer were

waiting for the completion of some input-output operation.)

Figure 7 shows that measures for performance improvement--

adding four IBM 2311 disk drives on a second channel, re-

placing the 2311s by a high-capacity 2314 drive, and adding

50-percent more core memory--strongly correlate with actual

performance increases. (The curves represent an "eyeball"

fait to the data points.) However, more detailed analysis

of the evolution of performance component elements indicates

that the ].atEr increase actually correlates with a decrease

in the average number cf jobs residing in the increased

core storage (Fig. 8), and is primarily due to an otherwise

undetected increase in average CPU usage by individual user

jobs (Fig. 9). Similarly, detailed analysis indicates that

the earlier increase in performance is due as much to de-

creases in input-output characteristics of the workload

(Fig. 10) as to configuration changes. Thus again, the most

direct explanation of computer system measurement data is

often not the appropriate one.

MEASUREMENT AND EVALUATION: FUTURE PLANS

^e will continue our evaluations of the utility of such

software monitoring packages as IBM's Advanced Multiprogramming

Analysis Procedure (AMAP) and System Measurement Facilities

(SMF), and the packages developed by Stanford Linear AGcel-

erator Center (SLAG) and Boole & Babbage, by continuing to

use them in-practical Investigations of core fragmentation,

channel and disk-arm contention, CPU slowdowns clue to bulk

core access, etc. These investigations have led to signifi-

cant insights and improvements in the performance of Rand

Computational Center compu,}ing systems over t1%e past year.
4'
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We are currently planning to experiment with a mini-

computer hardware monitor to measure aspects of the per-

formance of Rand's time-shared Video Graphics System. This

will allow us to capture and analyze data on detailed in-

teractions on a level impossible to attain with software

monitoring, and extremely difficult with conventional hard-

ware monitors. It will also allow us to compare the measure-

ments with results of previous and upcoming simulations of

the system.

Furthermore, we will continue and extend our work in

determining the inherent variability (the practical "ncise
level.") in computer systems, in refining methods for charac-

terizing benchmark jobs in terms of their effects on system
performance, and in developing indicators of computer system

performance from low-cost data, primarily existing accounting

data. We also plan to broaden the interface between our

measurement and evaluation studies, the simulation studies,

and the man-machine studies, particularly in validation and

load characterization measurements for simulations and in
deeper investigations of user responses to changing computer

performance characteristics.
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IV. MAN-COMPUTER PROBLEMSOLVING EXPERIMENTS

THE NEED FOR QUANTITATIVE MAN-COMPUTER DATA

one danger inherent in computer system measurement and

tuning is an ever-present temptation to consider computer

system performance as an end in itself, rather than as a

means to better serve people. Such "performance improvement"

methods as universal use of one language, large blocking of

data input and output, and intricately designed code and

procedures can increase machine productivity. However, it

costs users an abnormally high effort to achieve any re-

sults. On the other hand, text editors, extended debugging

aids, and conversational programming systems tend to reduce

user-time investments at the expense of machine efficiency.

In general, then, there is a tradeoff between machine

efficiency and user time invested. Philosophical arguments

will yield to factual analysis of this tradeoff only when

the effects on both the humans and machines can be quan-

titatively measured and related to overall goals. In an

attempt to contribute to the currently scant store of

quantitative ,information on man-computer problemsolving

processes, t and to evaluate available experimental techniques

in the area, we designed and implemented an exploratory con-

trolled experiment in man-computer problemsolving.$

CHOICE OF EXPERIMENT

We structured this experiment to test Gold's hypothesis

that restricting one's access to the computer for a period

of time after the presentation of current results ("lockout"

Sackman [151 has provided an excellent review of re-
sults to date.

The Appendix describes some of the rationale leading
to the structure of this experiment, beginning with an attempt
to define a reasonably measurable and human-oriented computer
system performance criterion called the "Productive Thought
Ratio."

Q
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period), might improve performance by inducing the user to
concentrate more on problemsolving strategy than on tactics

(161. Figure 11 shows that the lockout requires the user

to spend a certain amount of what ;.s generally called "think

time."

User submits request
to computer

Completed request returned
to user

User allowed to submit
next request

User submits
next request

Time

Turnaround time,	 Lockout period
response time

" Think time"

Fig. 11--Sequence of Events for Submitting
a Trial Solution

The general problemsolving situation required the sub-

ject to solve a geographical area servicing problem with

the aid of JOSS, Rand's interactive computer system (17).

Subjects were allowed two hours to solve the problem, but

the problem was open-ended to the extent that a range of

solutions existed. A protocol of each subject's performance

was gene_,ated from automatic recordings within the JOSS

system, written records kept by an observer, and audio tape

recordings of the subject's vocalizations. The resulting

data were analyzed using analysis of variance and regres-

sion techniques.
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THE TEST PROBLEM

Each subject was given a map showing a grid of surface

streets, two freeways, and contour lines that indicated the

frequencies of emergencies per day per intersection through-

out the area (Fig. 12). Transit times between intersections

were defined as two minutes on North-South surface streets,

three minutes on East-West surface streets, and one minute

on freeways. A time penalty of one minute was assessed for

entering or leaving the freeway at any intersection.

The subject's task was to specify three surface inter-

sections at which to locate three emergency hospitals, and

to specify a set of decision rules regarding when and when

not to use the freeways. His goal was to minimize the

average response time per emergency for the entire area,

taking into account the different accident densities. His

solution was subject to the constraint that the maximum one-

way response time to any given location be no more than

12 minutes. It was made clear that the number of ambulances

was unlimited; scheduling and ambulance turn-around time

were not factors.

The JOSS system was pre-programmed to provide the sub-

ject, on demand, with an evaluation of the effectiveness of

his location and decision-rule inputs, and with certain

other feedback relating to the problem. Hospital locations

were specified in X,Y coordinates shown on the map. Vari-

ables used in the decision rule were specified so that the

subject could refer to specific hospitals (i=1, 2 or 3),

hospital. locations (x,y), or emergency locations (v,w) in

terms understood by the special program. As a result of

an Evaluation computation ("Do part 1."), the program pro-

vided 1) the average response time per emergency, and 2) the

maximum response time to any emergency. If requested, the

program also provided various types of infoismation matrices:

I

i
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w or y

--r^ 3 min ^-.—	 3	 4

N

W^E
S

5	 6	 7	 8

Transit times between intersections
1 min on freeway

2 min on north-south surface streets
3 min on east-west surface street

Time to both enter (1 min) and leave (1 min) freeway system from
surface streets: 2 min
	

1 n

Pig. 12--Problem Map, On-line Experiment
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1) A na trix showing minimum response time to each

intersection from arty of the three hospitals

("Do part 210.11);

2) Three individual matrices showing respcnse times

to each intersection from each of the three
hospitals ("Do part 220.");

3) An individual matrix showing response times from

each hospital. specified ( "Do part 221 for i= 	 . ") .

The use of the special program was illustrated

with a reproduction of an actual JOSS record of

three "trials" (Fig. 1.3).

TREATMENT GROUPS

The primary experimental treatment was provided by

programming the JOSS system to lock the subject out of the

system for a specified length of time after each trial,

i.e., after a current set of results had been presented to

him. Lockout conditions were different for each of five

groups of subjects, and included both fixed and variable

intervals.

The subjects, primarily graduate students at Rand for

the summer, were divided into the following five groups:

0 -- No lockout; free access to console;

5 -- Five-minute lockout period;

8 -- Eight-minute lockout period;

V -- Variable lockout period (5-min mean);

c -- Choice; subjects were instructed to "lock

themselves out" as much as possible, but

otherwise had free access to console.

On the basis of a questionnaire, subjects were ranked from

1 to 20 with respect to computing and operations research

experience. The experimental groups were balanced in re-

gard to experience.

4
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Example:	 Using the JOSS program

X C 11	 3
Y(1)	 3
X (2)	 6 Hospital	 locations
Y (2)	 3
X (3)	 5 You supply these
Y (3)	 b
100.1	 S(..:^t	 x 1	 if v ^	 2 or w	 6. —	 a decision rule
200 Do part 210, — a print option
Do part	 I.

Average , 5.40496
Maximum 16

16	 7 10	 7 4	 7 10 13

14	 6	 8	 5 2	 5	 811
6	 5	 4	 3 2	 3	 4 5

10	 6	 4	 5 2	 4	 7 10 Shortest response times 	 Program types out these
8	 6	 2	 5 4	 2	 5 8 to	 intersections
6	 5	 0	 3 3	 0	 3 6

8	 6	 2	 5 5	 2	 5 8
10	 7	 4	 7 7	 4	 710
Y(3)..7
200 Do part 221	 for i -3. You supply revisions
Do Bart 1

Average	 ; 5.44628
Maximum' 14

14 9 8 5 2 5 811
12 8 6 3 0 3 6 9

8 7 6 5 4 5 6 7
16 8 10 7 4 7 10 13 k	 Response times, from Program responds
18 9 12 9 6 9 12 15 hospital 3
20 10 14 11 8 11 14 17

22 11 16 13 10 13 16 19
24 12 18 15 12 15 18 21

Y(3) `-8
100.2 Set z ry 1 if w -il5. You supply revisions
200 Do pa y' 210, 
Do Part 1 

Average == 5,89256
Maximum ; 14

12 10 6 3 0 3 6 9
14 9 8 5 2 5 8 11
9 8 8 7 6/ 8 9

10 7 10 9 8 9 10 11 Shortest response times 	 Program responds
8 6 2 5 5 2 5 8
6 5 0 3 3 0 3 6
8 6 2 5 5 2 5 3
10 7 4 7 7 4 7 10

1. 19. 13— Sample JOSS printout

6
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BASIC RESULTS

The primary measure of a subject's.performance was the

minimum average emergency response time he could achieve

during the two-hour period. For analysis purposes, this

performance was transformed into a percentage of optimal

performance. Figure 14 shows the resulting performance of

each individual, organized with respect to experimental

group and presented with group averages. In this case, the

group wi*h a moderate lockout period (5 min) performed

better than both the group with free access (0 min) and the

group with a relatively severe lockout period (8 min). The

variable lockout group performed almost as well as Group 5,

and the "choice" group almost as well as Group 0. (However,

Group C achieved this performance with half as many computer

trials as Group 0) .

The numbers next to each data point in Fig. 14 indi-

cate the subject's experience ranking, "1" being highest.

It is evident that performance strongly correlates with

experience. This comparison is highlighted in Fig. 15, 	
t

which plots each subject's performance rank versus his

experience: rank. The associated symbol identifies the sub-

ject's group. Most subjects fall quite close to the

equivalence line bisecting the figure. However, the less

experien%edtembers of Groups 5 and V generally performed 	 r

better than their experience might predict. The more ex-

perienced members of Group 8 and the less experienced
	 I^

members of Groups 0 and C generally performed worse than

their experience might predict. Analysis of variance

calculations indicates that lockout is significant at the

0.025 level, experience significant at the 0.005 level, and

the interaction between lockout and experience significant	 k

at the 0.10 level.

Over 40 other performance measures were collected and

analyzed along with considerable anecdotal data of interest,
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20
"Worse" than experience would predict

18

16	
0. .0

8
14	 8.	 8.
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detailed in Ref. 4. Significant further results demonstrate

that:

1) The subjects with free access (Group 0) average

twice as much computer usage as groups with

restricted access.

2) Group 0 subjects show no relative economies of

their own time in attaining their high performance
levels; however, Group 5 subjects do.

3) In general, subjects express dissatisfaction with

restricted access, even in the groups with high

performance.

TENTATIVE CONCLUSIONS

Perhaps the most impressive aspect of the experiment-

was the subjects' tremendous variability in problemsolving

approaches. It is difficult to imagine anyone ever formul-

ating a single model of man-computer problemsolving that

would fit even our small group of subjects, which included

some whose performances were so irregular that they had to

be dropped, from the analysis, For example, one subject

promptly began by dumping our JOSS control program; after

two hours, his only result was a set of undebugged modifica-

tions of this program. Another preferred to work almost

completely by hand, saying "- didn't trust computers," and

never achieved a feasible solution.

However, with respect to the large majority of problem-

solvers who achieved feasible solutions in the experiment,

the results of this small exploratory study raise some

interesting questions regarding popular beliefs about man-

machine problemsolving. Our evidence suggests that, at

least in this experimental context, users tend to recome dis-
	 1

satisfied if mild restraint is placed on their free inter-

action with the computer. They also tend to problemsolve

more effectively, using less computer time and less of their
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own time in the process. Such shibboleths as "faster is

better" and "more computer time means less human time" may

at times serve the computer salesman more than the consumer.

The results also cast doubt on the validity of user accep-

tan e^e as a general index of system effectiveness. The user

may want what inconveniences him least in the short run,

or he may want what he has been led to believe he should

want, but the general efficacy of such desires cannot be

taken for granted.

Definitive answers to questions relating to the nature

of relevant parameters of problemsolving systems are of more

than academic value. For example, under some circumstances,

organizations under presstir..e to expand their hardware in-

ventory to meet increased demand might find it far more

productive to keep the system they have and introduce some

form of constraint (e.g., an accounting system) that will

encourage more judicious and creative use of the existing

computational capabilities. However, without more informa-

tion and better understanding, it would be a mistake to

conclude that either approach is the "right" one. The only

general conclusions that can be reached on the basis of the

present work are that the relationships involved in man-

machine problemsolving are neither obvious nor simple, and

that there is reason to believe that further investigation

could have practical significance.

MAN-COMPUTER EXPERIMENTS: FUTURE PLANS

We are currently testing the same problem on another

group of subjects, under lockout conditions 0 and 5, to

determine whether the initial results are confirmed by a

larger sample. Also, because earlier subjects indicated

in their debriefings that a graphic display capability

could have helped them, and since Rand has an interactive

Conversational Programming System (CPS) working on both
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typewriter and graphic consoles, we are considering a

modification of the current experiment to test the relative

efficacy of typewriter and graphic terminals in this context.

However, before plunging into another experiment, we

feel it important to devote more thought to two fundamental

questions:

1) The classification of problem characteristics and

problemsolving activities, at least in the neighbor-

hood of our current study.

2) Determination of better measures of human problem-

solving experience, attitudes, and capability.

Without solid foundations in these areas, future studies

will progress no further in operational utility than the

one reported here: provocative, useful as a cautionary

indicator, but hardly a predictor for any operational

situation.

i<

5
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V. CONCLUDING REMARKS

This Report is the product of a relatively modest

effort (two to three .man-years) , yet it .includes several
results of far-reaching significance to the practical de-

sign, development, and management of oomputer systems,

particularly during the "analysis" phase,, When this is

coupled with the data in Sec. I--showing that for each

dollar spent for program coding on large or real-time

projects, two to four dollars are spent can analysis--it

,indicates that a reconsideration of national computer

research priorities may be warranted. Further gains in

computer systems analysis techniques with strong practical

significance may be as easily accessible as the results

presented here.

rv'
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APPENDIX

TOWARD A PERFORMANCE CRITERION FOR MAN-COMPUTER SYSTEMS:

THE PRODUCTIVE THOUGHT RATIO

The following approach guided our research efforts in

the analysis of man-computer systems:

1) Formulate a performance criterion for man-computer

systems that appears reasonably discriminating and

measurable.

2) Investigz^ ;_e the implications of using this criterion

operationally.

3) Identify the resulting key problems and experiment

for insight into them.

FORMUhATE A PERFORMANCE CRITERION

Current performance criteria for such computer systems

as throughput, component utilization efficiency, and turn-

around or response time, tend to concentrate on the servicing

of individual -omputer run requests rather than on the project

advancement for which a given run is being made. Computer

systems optimized with respect to the above criteria tend

to emphasize machine efficiency at the expense of such

amenities as ease of learning, programming, debugging, or

modif,, ^- programs, which tend to increase human efficiency.

Suppose, however, that one could characterize the com-

puter support of various types of projects (e.g., an engi-

neering research and development project) as time series

of individual computer run requests (Fig. 16), and that one

could separate the time spent on the project into three

activities, essentially mutually exclusive:

T1 : Time spent thinking about the project;

T2 : Time spent thinking about the programs supporting

th4 project;

i r
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T3 : Time spent waiting for the computer to respond.t

Then consider the following performance criterion, the

productive thought ratio (P.T.R.):

Tl
P.T.R. = T + T + T '1	 2	 3

A computing system that maximizes the P.T.R. (over

some mix of projects) will not only try to increase machine

efficiency (by decreasing T 3 ), but also human efficiency

(by decreasing T2 through reducing the time spent learning

languages, programming, debugging, and modifying programs).

Also, with the time series characterization of a project,

the P.T.R. is a reasonably measurable quantity; it requires
the currently available machine measurements plus an approxi-

mate breakdown of how people use their time.

INVLSTIGATE OPERATIONAL IMPLICATIONS; IDENTIFY KEY PROBLEMS

Suppose the manager of a computer system received the

following statement:

"This month our P.T.R. was 0.37. Last month it was
0.29.'"

What would this statement tell him?

Such a characterization is appropriate for a computer
service facility and the maintenance aspects of a Deal-time
control system. It is less appropriate for the operating
aspects of a real-time control system, which are better
judged directly with respect to the objectives of the system.

'.The P.T.R. is intended to function best in evaluating
changes relative to an existing operation. Its current
form does not exclude extreme cases that produce unwarrantedly
good results. For example, not using a computer yields

"2 = Ti,	 0 and P.T.R. = 1, an "optimal" solution. These

could be fixed by adding more terms, but this would obscure
the subsequent discussion of more fundamental difficulties.

E

N
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1) Nothing, unless he was sure the variation was not
attributable to changes in workload. To eliminate this
difficulty, some means must be found to normalize the P.T.R.

with respect to workload. One possibility would be to measure

it only with respect to standard project types (large event

simulations, small scientific investigations, multi-tape data
analyses, etc.), under the assumption that the projects with-

in each type are relatively homogeneous. At present, no

solid data are available to test this assumption, which

suggests one potential research area: the collection of

detailed case histories of several projects within one of

the above standard project types, and their characterization

and comparison in terms of such schemes as Fig. 16.

2) Very little, without some correZation between think-
ing time and insight. This correlation can vary markedly

for different systems, particularly in such areas as computer

graphics. t However, some properly instrumented experiments

in man-computer prob?emsolving could shed some light on the

quostion. This became one of our experimental design

considerations.

3) Nothing, if based on bad measurements. How capable
and how motivated are people to separate their time accurately

into categories T 1 , T2 , and T3 ? Our experimental observations

and debriefing forms were structured to pick up such informa-

tion. As one example of the results, we found that some of

the subjects' estimates of time spent waiting for the com-

puter to respond (T 3 ) were underestimated or overestimated

by a factor of at least two, though on the average the

agreement with observations was fairly close.

4) Very little, if a significant number of ueere are

productively using their computer wait time (T 3 , on one

tIn practice, of course, measures of effectiveness must
also be balanced with measures of cost.
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project to advance another project (time-sharing themselves).
This avenue leads to a host of fundamental questions in-

volving human thinking and problemsolving processes, generally

couched in such elusive terms as "concentration," " subcon-

scious," "mo , .vation," etc. At this early stage, the most

definitive statements possible are:

• The F.T.R. is not a sufficiently delicate metric to

illuminate this phenomenon, and at best its use must

be restricted to "dedicated" activities.

• To make any headway with the fundamental questions

above, one needs a larger problemsolving data base.

Our increased appreciation of this need strengthened

the case for performing experiments to gather more

data.

• Such phenomena as "lockout" cannot be neatly fitted

into the categories T 1 , T 2 , and T3 ; our considera-

tions of the possible Effects of lockout led to the

major hypotheses to be tested via controlled

experiment.

5) Probably about as much as can any other general

man-computer performance criverion at this time. Most of

these enumerated P.T.R. difficulties would arise with any

alternative criteria that attempt to assess the computer's

contribution to human performance over a wide spectrum of

activities. As the spectrum of activities is narrowed,

ways can be found around some of the difficulties (e.g.,

workload variation), but others will remain quite thorny

(e.g.,' accuracy of measurements and value of results).t

However, the potential payoffs of even partial insights in

this area are sufficient to warrant an increased level of

activity in gathering and analyzing man-computer performance

data.

Some care must also be taken to avoid criteria that
overemphasize the machine-like aspects of human performance
(e.g., number of designs tried in a day).

% n
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