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ABSTRACT

As a result of mutual collisions that are frequent
on a geologic time scale the mass distribution of asteroids
undergoes constant change. Nonetheless, for an arbitrary range
of asteroid masses the distribution can be faithfully represented
by the solution of a steady state approximation of the stochastic
equation that describes the evolution of the asteroid population.
For such a mass range a power law with index ~11/6, obtained
earlier by the writer, is shown to be the only term left of a
convergent power series expansion solving the steady state equation,
and is therefore unique. The approximate steady state solution
fails for the largest asteroids: these are broken up by collisions
without being replenished. For asteroids in this mass range an
approximate time dependent solution is obtained, which asymptotically
approaches the solution valid for the lower mass range. This time
dependent solution is sensitive to the comminution law for collisional

fragments which is here assumed to be similar to that derived from




laboratory experiments with semi-infinite basalt targets,
impacted by high velocity projectiles. The good agreement

of the theoretical predictions with observations in the
accessible mass range lends confidence in the validity of

the stochastic model. The cosmological implication is that

the present distribution of asteroids is not likely to reveal
much about the original distribution, since the latter has been
altered beyond recognition by the frequent occurrence of random

inelastic cellisicns.
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1.0 INTRODUCTION

This paper is the continuation of a study
undertaken by the writer, in an effort to model some of
the physical processes that have given rise to the observed
size distribution of stray bodies in the asteroidal belt.
Interest in this problem is due to a desire to gain insight
into the origin of asteroids and to estimate their distribution
in size ranges too small to be telescopically observed.

In a previous study (Dohnanyi, 1969), which will
be referred to as D-I, a stochastic model of asteroidal
collisions was formulated in the form of a differential equation
defining the rate at which the number density of asteroids, in
a given mass range, changes in time because of inelastic
collisions, which break up some objects but create many colli-
sional fragments. D-=I is therefore seen to be more detailed
than earlier particles-in-the-box calculations (cf Jones, 1968;
Piotrowski, 1953), which did not include the fragmentation
process. D=1 is furthermore complementary to studies of the

statistics of asteroidal orbits (see Wetherill, 1969, for review
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and references) as well as statistical studies based on the
astronomy of individual asteroids (Anders, 1965, Hartmann
and Hartmann, 1968).

A particular solution to the asteroidal number
density was obtained in D-I. This solution is valid for
asteroids whose masses are far away from the limiting largest
and smallest masses of the distribution, provided that the pop-
ulation of asteroids has reached a steady state distribution
under the action of mutual collisions. This solution has the
simple form of

o

f(m)dm = Am ~ dm, o % 11/6 (1.1)
where f(m)dm is the number of asteroids per unit volume having
masses in the range of m to m + dm.

In this paper we have made a slight change in the
mathematical modeling of the fragmentation process (D-I), which
results in an improved physical model and simpler mathematics.
We then discuss some of the asymptotic properties for long
times in the model, and show that eg. 1.1 is the only steady
state solution expandable in a power series in m far away
from the limiting masses of the distribution. We conseqguently
obtain an approximate solution for the distribution of large
asteroids with masses near the limiting largest mass of the

population.

2.0 OBSERVATIONAL EVIDENCE

The observational material on asteroids we shall

discuss is presented in Fig. 1. Plotted in this figure are the
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cumulative number of observed asteroids (solid histogram) as
well as the probable true number of asteroids (dashed-line
histogram) versus absolute photographic magnitude g, as given
by Kuiper et al (1958). The curve of Kuiper et al is complete
up to g = 9.5; i.e., the observed number of these objects is
believed to equal the true number. Above g > 9.5 the difference
between the true and the observed number of asteroids begins
to increase owing to selection effects. The dashed-line
histogram is the probable number of asteroids determined by
using the "completeness" factors of Kuiper et al (1958).
These authors have tabulated the maximum and minimum probable
numbers of asteroids, and the dashed-line histogram in Figure 1
is their mean. A mass scale, based on a material density of
3.5 x lO3 Kg/m3 for spherical asteroids with an albedo of .2
(D-I), gives a nominal relation between the mass m (Kg) and
absolute photographic magnitude:
loglom = 22.67 - 0.69g. (2.1)

This mass scale is also indicated in Fig. 1.

The solid curve in Fig. 1 is the cumulative number

N (M) of asteroids heavier tha? M,
.’joo

N(M) = § £ (m) dn. (2.2)
1
as a Ffunction of mass M (or g) obtained in D-I. In that paper
we took M_ = 1.86 x 1020 Kg corresponding to g = 4 and
Fim) = 2.59 x 10°0m1.837 (2.3
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The exponent on m was obtained theoretically and the numerical
(normalization) factor is empirical. It can be seen from
Figure 1 that there is close agreement between theory and
experiment.

The theoretical formula (eqg. 2.3) was derived only
for masses m

m<<M_, or g >> 4 (2.4)

where M_ is the largest mass present. Furthermore, the
uniqueness of the result of Eg 2.3 was not examined, nor was
the effect on the asteroidal population of the depletion
of large asteroids by collisions analyzed quantitatively.
The purpose of the present study is, therefore, to examine
the uniqueness of Eq. 2.3 as well as the applicability of this
equation to the distribution of large asteroids.

3.0 COLLISIONAL MODEL

3.1 Collision Equation

The asteroid belt contains over 1,600 catalogued
asteroids; it is generally assumed that it contains many more
smaller ones that cannot or have not been telescopically
detected because they are not bright enough. It has been
estimated (See e.g., Piotrowski, 1953) that collisions between
asteroids must be freguent, when measured on an astronomical
time scale.

Collisions between asteroids must undoubtedly affect

their mass distribution. In order to see how thlisg occurs,
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one may regard them as molecules in a box and then use the
methods of kinetic theory of gases insofar as they apply.
This has been discussed in D-I, where an equation was derived
for the number density of asteroids as their population evolves
under the influence of collisions.

Let f(m,t)dm be the number density per unit volume
of space of asteroids having a mass in the range m to m + dm at
a time t. Assuming uniform spatial distribution within the
asteroid belt, it can be shown that the influence of collisions

on the number density f(m,t) can be expressed as the sum

of
ot

of
b 22 + 2F (3.1)

. ot . ot .
!er051on catastrophic creation
cnlliasiong

af(m,t)/at =

where 3f/dt is the rate at which the number density of the
asteroids changes because of collisions.

The first term on the right hand side of this equation
is the contribution of the erosive reduction in the particle
masses. We define erosive collisions as collisions where the
small projectile particle is too small to catastrophically
disrupt the larger target object. The result of such a collision
is then the removal of some mass from the target object by
cratering.

The second term on the right hand side of Eg. 3.1

ig the reduction rate due to catastrophic collisions in which,
in addition to a crater at the site of impact by a small pro-

jectile, a spall is detached from the opposite side of the larger
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target object. This definition is more detailed than that
used in D~I and reflects new information on this process
provided by recent experiments (Gault and Wedekind, 1969).
The last term on the right hand side of Eg. 2.1 denotes
the contribution of particle creation by the fragmentation
of larger objects; it is the number of fragments in a mass
range m to m + dm created per unit volume and unit time by
both the erosive and catastrophic fragmentation of larger
colliding objects.
3.2 Simplified Model for Fragmentation
We shall derive here an explicit expression for the

term 3f/5t in Eg. 3.1. We shall revise slightly the

creation
earlier physical model, employed in D-I, and obtain a simpler
mathematical formulation.

Using experimental results by Gault et al (1963),
the following crushing law for the mass distribution of fragments
produced during impact was assumed in D-I.

g(m;M,Mz)dm = C(M,Mz)mnndm (3.2)

where g(m;M,MZ)dm is the number of fragments in the mass range
m to m + dm produced when a projectile of mass M impacts a larger
target mass Mzﬁ For n = constant < 2 and from mass conservation

during collisions it follows that

L -2
C(M,M,) = (2-n) MeMb” (3.3)

where Mﬁ ig the total ejected mass and Mb is the limiting mass

of the largest fragment.
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In D-I we assumed that M is proportional to the mass
of the projectile particle. We now assume, more correctly,
that Mb is proporticnal in catastrophic collisions to the mass
M2 of the larger colliding object and in erosive collisions
to the total ejected mass produced during impact.

M, = Me/Ae (erosive collisions) (3.4)

Mb = MZ/A (catastrophic collisions)

where ) and xe are constants to be determined by experiment.

In terms of the notation of D-I,

e = T/A (3.4a)
where T' is the total mass of fragments cratered out by a
projectile with unit mass and A is a constant.
The comminution law, Eg. 3.2, is based on experiments
by Gault, et al., (1963) who fired high=-velocity projectiles
into effectively semi-infinite blocks of basalt. They found
a value for n of approximately 1.8 + 0.1 and therefore the approximate
form of C(M,MZ) in Eq. 3.3 for n<2 is justified.
More recently, Gault and Wedekind (1969) fired high
velocity projectiles into "finite" glass spheres. They found
that the resulting fragments, including the "core" were dis-
tributed according to n ~ 1.7. While glass has generally dif-
ferent properties from basalt, it is interesting to note that the
high velocity impact experiments with effectively semi-infinite
glass targets, reported in the same paper, yvielded a value of

n x 1.8, just like basalt.
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These authors also found that at a certain threshold
impact energy, a spall fragment was formed and "ejected" in
addition to the ordinary, erosive, cratering process. Such a
spall forms at the surface of the sphere opposite the point of
impact, above the threshold of an observed impact energy of
about lO6 erg/gram for single-piece glass spheres.

We now proceed with the derivation of our fragmentation
nmodel. The number of collisions per unit volume of space and
unit time, 62n between spherical particles with masses in the

range M, to M, + dM, and M, to M, + dM, is (cf., Dohnanyi 1969):
1 1 1 2 2 2

2. 1/3 1/3,2 .
§“n = K(Ml + M ) f(Ml,t) dle(Mz,t) sz (3.5)
where
K = (3ﬂ1/2/4p)2/3\7 (3.6)

— . 1/3 1/3,2 .
with V the effective encounter velocity. K(Ml + M2 YT is

the product of the geometrical collision cross section of two
spherical particles with masses Ml and M, and their encounter
velocity.

The total ejected mass Me when two objects with masses
Ml and M2 collide catastrophically, is

M, = Ml + M, (3.7)

Combining this with Eg. 3.2 - 3.4 and 3.5, we obtain

the number of fragments in a mass range m to m + dm created

per unit time and volume by catastrophic collisions between

masses in the range M, to My o+ 6M1 and M, to M, + am, {with M2>Ml)”
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This is:

m " dm(2-n) A 2=

f(Ml,t) dMl f(Mz.t)dM2

and holds for
M

2
m_<_-—5\-

i/3
(Ml + M2) K(Ml + M

1/3,2
5 )

(3.9)

since m cannot exceed the mass of the largest fragment produced

by the catastrophic collision of My with M2.

(cf Eq. 2.4).

Integrating expression 3.8 over all permissible

masses M2 and Ml' we obtain the positive contribution of

fragmentation to 3f/3t:

Moo M2
(mrt) - -
%%_____ = K(2-n) 227" 7" SS au,, am,
creation
Am M,/T'
2
n=-2 1/3 1/3,2
M2 (Ml + M2)(Ml + M2 ) f(Ml,t) f(Mz,t)

Here M_ is the limiting mass of the largest asteroid present

and, 1/r*' is the mass of the smallest projectile capable

of catastrophically disrupting a target object of unit mass (cf D-I).

3.3 Explicit Mathematical Formulation

The explicit mathematical form of
been given in D-I. In the previous section
have modified the creation by fragmentation
catastrophic process. Thus, replacing that

D= by Eg. 3.10 and replacing A by P/ke (BEq.

Eq. 3.1 has

of this paper, we

term for the

term as given in

3.48)

in D~1I's

(3.10)
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expression for particle creation by erosive collisions, we

obtain:
Moo
m
Fl
M 1\/_:2
(ml/3 + Ml/3)2 aM + K(2-n)>\2_nm-” sz dMl
Am MZ/F'
n-2 1/3 , 1/3,2
M, My + M) (My + M) f(Ml,t) £(M,, t)
- 5}% [£(m,t) (dm/dt)] + K(2-n) r1 527" p7n
e
M _/T' M_
n-1 1/3 1/3,2
dMl S <ilM2 My (M1 + M, )
Ao/ T I'My

f(Ml,t) f(Mz,t) .

The first two terms on the right hand side of this
egquation are the contributions of catastrophic processes and the
last two are the contributions of the erosive collisions. The
first term on the right hand side of Eg. 3.11 is the rate per
unit volume at which objects in the mass range m to m + dm are
destroyed by catastrophic collisions and the second term is

the rate per unit volume at which objects in this mass range are
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created by the fragmentation of colliding larger objects.

The third term, on the right hand side of Egq. 3.11,
is the rate per unit volume at which the number of objects in
the relevant mass range is changing because their mass changes
in time as a result of erosive collisions.

The rate of mass change, dm/dt, of an object because
of erosion is (D-I),

m/T"'

dm _ ¢ MoEM, ) mi/3 + /3% am (3.12)

Here I' is the mass cratered out by an erosive particle of unit
mass and T' is the largest mass catastrophically fragmented by
a projectile of unit mass; u is the mass of the smallest particle
present.

The last term on the right hand side of Eg. 3.1l1
is the rate at which objects are created in the relevant mass

range by erosive collisions.

We now derive a simpler form of Eg. 3.11, valid for laxrge

masses. It can readily be shown that as the value ¢f the mass m
approaches (I'/T"') (Mw/xe), particle creation by erosive collisions
ceases. This happens because the largest erosive projectile, M_/T',

craters out of M_ a total mass of I'M_/I'', and the largest individual

object so formed is (F/F')(Mw/ke), according to Eg. 3.4.
Furthermore, when m approaches M_/i, the creation

term due to catastrophic fragmentation vanishes: no creation

mechanism by catastrophic collisions is possible for masses
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greater than the largest fragment produced when M_ is disrupted
catastrophically.
We now assume, for the moment, that

F 1
ASF o Ag e (3.13)

The significance of this assumption will be considered later
and it will be found satisfied in the cases of interest in this
study.

Then, we can write, for mz2 M /A,

éﬁé%LEl =7 5% [f(m,t) dm/dt] ~ K £(m,t) (3.14)
Moo

S f(M,t) (ml/3 + Ml/3)2 dMm.

m/T"'

This is the collision eguation for masses near the limiting
value M_; it only contains the contribution of erosive mass
reduction and of catastrophic collisions.

4.0 STEADY STATE SOLUTION FOR SMALL MASSES

4.1 Steady State Solution

The general solution of the collision equation
(Eg. 3.11 and 14) is difficult to obtain. We shall, therefore,
solve it for an important special case. We shall show that a steady
state solution exists and is unique; this solution is identical
with the result of D(I).

In the absence of a source to replenish the largest
asteroids (Eg. 3.14) the number of objects in all finite mass

ranges will go eventually to zero.
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Hence

Lim f(m,t) = 0, m > 0 (4.1)

>
Also, according to Eg. 3.11 and 14, it follows
from Eq. 4.1 that

lim 3f(m,t)
troo st

= 0 m > 0, (4.2)
Thus, the time rate of change in the particle number density
goes smoothly to zero as t+=, indicating that no collapses
or other discontinuities occur as t»w,

We also note that Eq. 4.1 implies 4.2 for all
masses but vice versa Eg. 4.2 does not imply Eg. 4.1 for
masses smaller than M_/i. Indeed, if the time derivative
3f(m,t) /3t goes to zero much faster than f(m,t) for small
masses, the solution of the homogeneous equation (obtained
by letting 3f/3t = 0 in equation 3.11) gives a first
approximation to the solution as t»». The significance of

this approximate solution becomes clearer if we note that the

condition
lim 3F (m,t) _
gre 3t o0 m >0
means that a constant t exists, such that
I—af(m,t) P < f(m,t) (4.3)
ot T f

for sufficiently large t. Whence if Eg. 4.3 is satisfied,
the homogeneous equation obtained from Eg. 3.11 by letting

3f(m,t) /3t = 0 is a reasonable first approximation as tow.
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4.2 Series Solution for Small Masses

Assuming that Eq. 4.3 is satisfied, we obtain a first
approximation for the number density of particles, by solving
the homogeneous version of Eg. 3.11 resulting from setting
3f (m,t) /5t equal to zero. It then follows that the various
collisional processes balance, i.e., the rate of removing
objects by collisions from a given mass range equals the rate
of supplying objects into this mass range by the collisional
fragmentation of larger objects. It is clear that such a
steady state situation can be attained even in an approximate
way only for masses much smaller than M_/A, because in the
range of larger masses, from M_ /X to M_, no fresh objects are
created by fragmentation and all collisions decrease the number
of objects in this mass range. However, for mathematical
convenience we shall approximate the statement m << Mw/x by
the mathematically stronger statement,

M, » (4.4)

[s0]

In order for Eg. 3.11 to be valid, it is also necessary

that m >> 'y, For m 5 I''p all collisions are catastrophic in
the framework of the present model and the influence of

erosion on our model is expressed by a different mathematical
relation. We shall take, therefore, the mathematically stronger

statement,
(4.5)
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After discussing the solution for the unlimited
population characterized by Eg. 4.4 and 4.5, we shall relax
Eg. 4.4 and discuss in the next section the influence of a
finite limiting mass M_ on the distribution.

Since power law functions successfully approximate
the distribution of interplanetary particles over various mass
ranges, a trial solution of the form,

f(m) = Am & (4.6)
was attempted in D-I. It was found that with o » 11/6, Eq. 4.6

solves the homogeneous part of Eg. 3.11 for the unlimited
distribution, Egq. 4.4 and 4.5.

In an effort to examine the uniqueness of the solution
Eq. 4.6 and to find alternate solutions if they exist, we use
here a systematic method for solving the homogeneous part of
Eq. 3.11 with the conditions Eg. 4.4 and 4.5.

We let,

Y

f(m,t) ¥ f(m) = z: a.m_Gj (4.7)
j=0

where f(m) is positive definite for 0 < m < = and where the
complex numbers aj and Sj, dependent on j, are to be determined
from the boundary conditions of the problem. A priori, the
series in Eq. 4.7 may be an infinite series or a polynomial,
depending on whether the numbers j form an infinite or a finite

seqguence.
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We substitute Eg. 4.7 into the homogeneous part of
Egq. 3.11 and, under the boundary conditions Eg. 4.4 and 5 we
obtain an explicit equation for the coefficients aj and exponents
§. in Eqg. 4.7. Detailed derivation of the resulting equation

J
is given in Appendix A; this equation has the form,

| E: w. w8578 53 L g (4.8)
. Jr 2

. = a. -K + q. + p. V.
Wj,z ajaﬂ[ g£ qjlz erﬁ VJ:K

where

] (4.9)

and where the quantities inside the square brackets are defined
by Egs. A-3, 6, 10, and 13 of Appendix A.
We let

(‘Sj =8"J + a (4.10)

where o is some constant.
Equating the coefficients of like powers of m in

Eq. 4.8 to zero gives

n
Wir L= 0 n=0,1,2... (4.11)
3=0

The term defined by n = 0 gives an indicial equation,

w2 (ownTh e T I3 et
0 a -1 20 = n= 5/3 o = 1
(2-n) 12078/3 \720 * 1L/3 (piyme + 5/3
20 = n = 5/3 o - 5/3
r (20 - 8/3) (r')%2 -

2 - o v




BELLCOMM, INC. - 17 -

where only the leading terms have been retained, as discussed
in Appendix A. The conditions

(a4) R(de) > 5/3

(A8) R(cSj + dﬂ) > n + 5/3

(Al5) R(éﬂ) < 2

4 _ 10%

and the fact that I'' is a large number (of the order of 10

have also been used to obtain Eg. 4.12. The expressions inside

the brackets in Eg. 4.12 are the respective contributions of

catastrophic collisions, catastrophic creation, erosive creation

and erosion. The latter two expressions are small because

I' << 7' and have only been included for the sake of completeness.
The remarkable property of Eqg. 4.12 is that it has

the non-trivial solution,

a = 11/6 (4.13)
for which the catastrophic and erosive processes balance
individually i.e., the sum of the first two terms as well
as the sum of the last two terms individually equals zero.

It was shown in D-I that if the neglected terms
are included in Eq. 4.12, the result is only a small perturbation
on a. The solution to the leading terms of the indicial equation
Eg. 4.13, as well as the corresponding solution to the complete
indicial equation were shown in D-I to be the one and only

solution for real values of o that satisfy the conditions Eq. A-4,

8, and 15.
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We shall presently show that the real part of 65 in
Eq. 4.10 must be zero. Obviously, the expansion of f(m), Eg. 4.9
is either the sum of an infinite or a finite number of terms.
If it is an infinite series, then accofding to Eq. 4.10, the
condition Eg. A-15 will be violated for sufficiently large
values of j. It therefore follows that the power series,
Eq. 4.9 and Eg. 4.10 must be a finite polynomial. If, however,
f(m) is a polynomial in m-é'ja, then for m » 0 or for m » =
some term in the polynomial other than m * will dominate‘and
we have,

f (m) » constant m_é'j-a (4.14)

In view, however, of the uniqueness of o (or the corresponding
solution of the complete equation) Eq. 4.14 cannot be satisfied

for real §'.

If §' is complex, say

6' = X + iy’ (4.15)
where i = J -1, Eg. 4.14 becomes
f(m) - constant m—Xj—a {cos(yjlnIm] + (4.16)

+ i sin(yjln[m])}
which expression is not positive definite and is therefore not
a physically admissible solution. It therefore follows that

§' must be zero and the exponent o must be real.
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We conclude that
£f(m) = aom ° (4.17)
with real a, and o is the only physically admissible solution
that can be expanded into a Taylor series in m. The parameter
¢ 1s approximately 11/6 and can be obtained more precisely by

numerically solving Eqg. 4.11 with n = 0.

5.0 SOLUTION FOR LARGE MASSES

5.1 Asymptotic Form of the Collision Equation for Large Masses

In the preceding sections, we obtained a steady-state
solution for the collision equation (Eq. 3.11), for small
masses m << M_. We shall.in this section examine the
influence of a finite limiting mass M_ on this solution.

We do so by obtaining an approximate solution valid for small
masses (m << M_) as well as large ones (m ~ M_ ).

We note again that the chief difference between the
number density of small masses and large ones is that for large
enough masses the creation by fragmentation processes is no
longer sufficient to replenish the objects removed from a given
mass range by collisions and a net change in the particle
population results. It is therefore clear that, as m » M_,
the time derivative of the number density 3f(m,t)/5t can no
longer be assumed neglible in comparison with the collision terms.
It thus becomes necessary to solve the complete time dependent
equation. That task is, however, difficult and we shall derive
an approximate form for the time dependent equation that can

readily be solved for the number density function £ (m,t).
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We first note that a number density of the form

f(m) = Am ° (5.1)
with

a ~ 11/6 (5.2)
fits remarkably well the observational data of large asteroids
(Fig. 1). It has been shown in D-I that for such a distribution,
the erosive contribution to the collision equation is small in
comparison with the contribution of catastrophic collisions.
We shall, therefore, disregard the contribution of erosion to
the evolution of the population of large asteroids. It has
also been shown in D-I that for a population of the form
Eq. 5.1 and 5.2 the dominant contribution to 3f(m,t)/3t arises

o=-1

from collisions with much smaller objects provided that (T') >> 1.

Since I'' is of the order of 104 to 105 and o = 11/6, we see
that this inequality is satisfied.

Using these considerations, we obtain the approximate

linear equation

Mm
§__f__;_r§_r_t_)_ v _km?/3 £ (m,t) S AM®Yam (5.3)
m
F|
Mes M
L 2
+R(2-m) 227N o og" aM.f (M., t) mMDTY/3
2t My 2
m M
Fl
am. am.“
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for
m < Mm/AZ. (5.4)
and where the contribution of masses in the range Mm/x to
M_ has been neglected from the creation term.

The upper bound, Eg. 5.4, on the range of validity
of Eq. 5.3 follows because the largest mass that can be
created by the disruption of M_/) is Mm/xz. The fragmentation
term in Eq. 5.3 therefore vanishes for masses m > Mw/xz.

The first term on the right hand side of Eqg. 5.3 is
the rate at which f(m,t) changes with time because of collisions
with point objects capable of disrupting objects with masses
in the range m to m + dm. Corrections to Eg. 5.3 because of
the finite size of the projectile masses are quite small for the
distributions we shall consider; we approximate the number density

of projectiles by Am °

with o obtained from a steady state
solution of masses far away from M_.

The second term on the right hand side of Eq. 5.3 is
the rate of change of f(m,t) because of the creation of objects
into the mass range m to m + dm. The creation by catastrophic
fragmentation term is dominated by the rate at which target
objects with number density f(m,t) are catastrophically impacted
by smaller projectile objects with a number density aM %,
Clearly, this creation term approaches 0 as m > M_/).

We have neglected in Eg. 5.3 the contribution to

the particle creation by fragmentation of objects having masses




BELLCOMM, INC. - 22 -

greater than M_/A. Since we shall be mainly interested in
solutions of the collision equation for A close to one, this
approximation is reasonable.

It is easily seen that 5.3 can be solved by using the
method of the separation of variables. Let, as a mathematical

device,

o=n-2/3 dW (m)

f(m,t) = -m T(t) am (5.5)

Substituting Eq. 5.5 into Eq. 5.3 gives, after

integration and rearrangement of terms:

1 o=-1 dT (t)
- = ~C (5.6)
T(t) AK(T')® 1 dt
and
-a + 5/3 dWw(m) _ 2~n_=-a + 2/3

0 = (m -C) (2=-n) A m X (5.7)

dm

x [W(M,/2) =W(im)]

where C is the constant arising from the separation of variables

@=1 .. 1 has been used. The physical

and the approximation (T')
significance of C can be readily seen by noting that for

m = Mw/k2 Eq. 5.7 becomes

-0 4+ 5/3 dw (m)
¢ / ~-Cl dm |m = M% (5.8)

A

0= [ /%

Since

Aaw (m) 0
@ Im=un?7 (5.9)

it follows that

c= et 53 (5.10)
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is an effective "cut—-off mass" raised to the power indicated.
The quantity C is a scaling criterion and determines whether

a certain mass m is large or small, depending on its numerical

1/(=0 + 5/3),

value relative to C i.e., if

m 33, ¢ (5.11)
then m is small and, to a good approximation, Eq. 5.7 reduces
to 4.9 with the erosion terms disregarded. For sufficiently
small masses then, the solution of Eg. 5.7 for f(m,t) approaches
asymptotically the solution of Eg. 4.8 (or 4.12).
We now solve Eg. 5.7 for the simple case*
A= 1. (5.12)
We now let
¢ = W(m) - W(M_);: (5.13)
using Eq. 5.12, 13 we can express Eg. 5.7 in this form

-a + 5/3_ -a + 2/3

(m C) d¢/dm + (2=n)m o (m) = 0. (5.14)

This is readily solved for ¢; the result is

-a + 5/3 =(2~n)/(-a + 5/3) (5.15)

6(m) = ¢ (m -C)

*The general solution with arbitrary A but infinite C has been

discussed elsewhere by Chu (1970). He has proven the interesting
.57

2=

result that for 1 < ) < e " the general solution of Eqg. 5.7

with C = » is of the form Eg. 4.17 with o = 11/6.
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and using Egq. 5.5 and 5.13, we get

2=n -1

a-11/3 a=5/3,a-5/3 £ T(t). (5.16)

f(m,t) = m (1-C m
where
£,= (2-n)¢,
To obtain the time dependent function T (t), we

note that Eq. 5.16 should approach,

f>Am? as m/M_ > o (5.17)

and whence, the normalization factor A should have the same
time dependence as T(t). From Egs. 5.3, 16 and 17 we obtain

T(t) = A(t), fo =1 (5.18)
and, from Eq. 5.6 we get,

A

A(t) = -1—;—8-,——22-5 (5.19)
where A is the value of A(t) at time t = 0 and,
c' = ¢k (r")% 1/ (a-1) (5.20)
is constant.
It can be shown (D-I) that
cr = L (5.21)

where 1/t_ is the dominating term of the probability per unit
time for any of the limiting masses M_ to undergo a catastrophic
collision (cf Eq. 64 of D-I); a is the value of A(t) at the
present time. Since T(t) is a monotonically decreasing function

of time, it is clear (from Eg. 5.19) that for long times Eq. 4.3

is satisfied and our asymptotic formulae are justified.
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Collecting terms, we get,

2-n
£(m,t) = A(t) m* /3 (1 - Cma—5/3)m—l (5.22)
where A(t) is given by Eg. 5.19.
Using Eg. 5.17 and 22 we conclude that
- o =o0o = 11/3 (5.23)
and hence
o« = 11/6 (5.24)

is the self-consistent solution of the problem.

6.0 DISCUSSION AND CONCLUSIONS

The main analytical result of this paper is that the

number density f(m) of asteroids is
1/6} 6(2-n)-1

where we have used Egs. 5.10, 16, 17, and 24. For masses that

£(m) = am 11/6 {1 - (m/M_) (6.1)
are small in comparison with M_ the quantity within the curly
brackets has a value very close to one. Eg. 6.1 is valid
only if a long period of time has elapsed since the creation
of the asteroidal population, to the extent that the specific
form of the initial distribution has been obliterated and
the resulting distribution is the asymptotic limit for long
times.

For masses that are very much smaller than M_
the distribution is a power law type with exponent - 11/6
and is independent of n. For large masses, close to M_, the
distribution is no longer a simple power law type and depends

on the wvalue of n.



BELLCOMM, INC. - 26 =

Eg. 6.1 has been derived for the condition 1 = 1
(cf Egs. 3.4, 5.7, and 5.12). This means that the largest
possible fragment in catastrophic collision is the total
ejected mass Me' For small projectiles, the projectile mass
may be neglected and A = 1 means that the largest possible
fragment is the mass of the target object itself.

The simplest way to compare Egq. 6.1 with observation
is to integrate it and obtain the cumulative number of asteroids

N(M) having a mass m or greater.
M

N(m) = f(m) dm (6.2)
m
The result is Figure 2. This is a repetition of Figure 1
with plots of Eg. 6.2 (for various values of n) superposed.

A value of 1.86 x 1020

Kg(g = 4) has been taken for M_ and a
value is used for A that brings N(m) into agreement with the
observed cumulative number at g = 9.

It can be seen from the figure that a fragmentation
index n = 11/6 provides excellent agreement between theory
and observation. The agreement is also good for n = 23/12
and n = 5/3; in the former case the observed number of large
asteroids is somewhat overestimated and in the latter case it
is somewhat underestimated. The curve for n = 3/2 shows that
the agreement with observation begins to deteriorate; for

this case the observed number of large asteroids is substantially

underestimated.
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Experimental values for n have, however, been
obtained for objects whose cohesive energy was much greater
than that of asteroids. Since the surface to volume ratio
decreases with the size of an object, one might expect that
the relative number of small fragments is greater when a large
object of the order of kilometers is shattered than is the
case when an object of the order of centimeters is shattered.
It appears then, keeping other variables fixed, that n would
tend toward a higher value for large target masses. Consideration
of this effect, therefore, gives further support to our results.

Using the particles-in-a-box approach, an empirical
power-law-type comminution law with a constant exponent n
and scaling parameters T, T'', A and xl, we have derived a
stochastic model of asteroidal collisions. It was shown
that, after a sufficiently long time, asteroids may reach the
unigue steady state distribution derived in the text. This
distribution is shown to be in good agreement with observation
by Kuiper et al (1958). These results imply then that the belt
asteroids of Kuiper et al (1958) are in statistical equilibrium
with respect to the various collisional rate processes discussed
in the text. It does not appear possible, therefore, to estimate
the age or the initial distribution of the asteroidal population

from the present observational data. ;\m%&%%%%w/

'
2015=-J5D~dmu J. 5. Dohnanyi
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APPENDIX

This appendix discusses the derivation of Eg. 4.9 in
the main text by substitution of the series expansion, Eqg. 4.7,

represented as follows,

catastrophic + catastrophic
collisions creation
(A.1)
erosive + erosion _ f(m,t) 0
creation 3t v

The explicit form of the separate terms is given in the main text,
and we present these terms now in expanded form, subject to the

conditions Egs. 4.4 and 4.5, M > e and u » 0. We thus obtain

) -6.-6 + 5/3
catastrophic | _ _ _ 3L A.2
collisions K Zj ZE 245899, ( :
where
5£—1 5£—4/3
g, = (r+) /(62—1) + 2(T") /(65—4/3) + (A.3)
6£—5/3
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provided that
R(Gﬁ) > 5/3 (A.4)

where R denotes the real part.
g}Z (Eg. A.3) includes the contribution of three processes.
The first term on the right hand side of Eg. A.3 is the contribu-
tion of projectiles able to produce catastrophic collisions,
treated as geometrical points. The second term, on the right hand
side of Eq. A.3, is the contribution of grazing collisions defined
as collisions in which the target object m would be missed if the
projectile were a point particle. These grazing collisions give
rise to the second term in Eq. A.3 that depends on the product of
the radii of the colliding objects (second term on the right hand
side of Eg. A.3). The last term (Eg. A.3) represents catastrophic

collisions where finite sized projectiles are impacting point

particle targets, m.

If GE = 5/3, the right hand side of Eg. A.3 can be shown
to diverge as 1ln M«; for 6£ < 5/3, the divergence is even stronger
-8, + 5/3

(Mw L ). This behavior indicates, that terms with

63 2 5/3 are dominated by masses near the limiting mass of the
distribution M. Since these large masses do not have a steady
state distribution, it follows that if they dominate the colli-
sional processes for smaller objects, the distribution of the

latter will also be transient. The condition Eqg. A.4 is therefore

necessarye.
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Next, using Egs. 3.11, 4.4 and 4.7, we obtain

-8 ,-8. + 5/3
catastrophic | _ ¥ )} 4 q. m )
creation A e ¥ (A.5)
where
A-dj-sﬁ + 11/3
gj = K(2-n) ESJ T 6[/ “h-5/3 Qg (A.6)
with
§ ~1 §p=4/3 §,-5/3
2 £
o - =unt o i-an L 1= . a7
- - -8,
£ 1 Sp 4/3 8o 5/3-6,
1-¢( )6£‘2 1-(r )53“7/3 1-(T )6£_8/3
— I'-' - 1 — 1
+ + 2 +
S T - -
2%, 7/3-8, 8/3-5,
and provided that
R(6j+6£) >n + 5/3 (A.8)

where R denotes the real part.
We note that Q is non-singular because each of its

terms converges to In(l'') as its denominator goes to zero. Since

is of the ordexr of 104 - 105 and by Eg. A.4, 6@ > 5/3, the
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first term in Qp is dominant. The factors in Eg. A.5 multiplied
by the first term in Qﬁ, represent the rate of supply into the
mass range m to m + dm by fragmentation of target objects witn
mass m or greater, by projectiles of mass im/T' or greater,
treated as point masses, and not contributing to the total mass
of fragments. The other terms in Q, are smaller corrections due
to grazing collisions and finite projectile mass.

The condition Eg. A.8 1s necessary because Eqg. A.5
diverges for 6j + 62 i n+ 5/3 for M, » = If n were greater than
permitted by Eg. A.8, an excessive amount of small debris would
be created, and in any finite mass range the population could not
be replenished at the required rate to sustain a steady state.

The next term in Eg. A.l is

. -8 -8, + 5/3
erosive _ j L
creation z% Zé ajal pjg m (A.9)
and
6§, +8, - 8/3 =8.-8 + 11/3
r J j <L
p = K(2-n) A P (A.10)
3L 6. +68, - = 5/3 I
3 L
where
-6+ 5/3 =6+ 4/3 =85, + 1
Py = {ng ‘ + 2 (T‘>é ’ + () ‘ (p.11)
’ .- 5/3 ¢ 4/3 6£ -1

and where the boundary conditions Egs. A.4 and A.8 are assumed

satisfied.
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Because of Eg. A.4, the first term on the right hand
side of Eg. A.ll dominates. This is the contribution to the
creation rate of objects in the mass range m to m + dm by point
particle projectiles having masses Aem/r or greater erosively
impacting finite sized targets having masses of F’Aem/r or
greater. The remaining two terms of PE (Eg. A.ll) are small

corrections due to grazing collisions.

Finally,
-§,-8, + 5/3
. £
= - J
erosion Zj ZZ ajaﬂ Vjﬂ m (A.12)
where
Vj@ = TK(Gj + 52 - 8/3) \7 (A.13)
and where
8, - - -
v, = “")£2+2 (F')Gz 7/3+ (F')% e (A.14)
£ 2—8£ 7/3 - 6£ 8/3 - 62
‘and provided that
R(ée) < 2 (A.15)

where R represents the real part of the succeeding expression.
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The dominant term in VE e the first one on the right
hand side of Eq. A.14. This is the contribution of point pro-
jectiles with masses m/T' or smaller, erosively impacting finite
target objects in the mass range m to m + dm, thereby reducing
the number of objects in this mass range. The other two terms

defining V, (Eg. A.l4) are small corrections due to the small

L
but finite size of the small projectiles.

If the condition Eg. A.15 is violated, Eg. A.1l2 can be
shown to diverge when u - o and no series solution for a steady-
state distribution far away from the limit p exists. Physically,

this means that erosion by small particles will dominate over

other processes giving rise to a transient distribution.
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