General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

MULTI-ENVIRONMENT MODEL VERIFICAYION TEST

Contract No. NAS 5-21027
Prepared by
Hughes Aircraft Company
Culver City, Calif.
for Goddard Space Flight Center
National Aeronautics and Space Administration Greenbelt, Maryland

OCTOBER 1970

-

$+$ $5+2)^{3}+\cos ^{2}$

FINAL PROJECT REPORT

DESCRIBING RESILTS OF 4000 HOURS
OF
MULTI ENVIRONMENT MODEL VERIFICATION TEST

Report No. P70-467

October 1970

Prepared for
Goddard Space Flight Center
National Aeronautics and Space Administration Greenbelt, Maryland

S. L. Webster

Research and Development Division AEPDSPACE GROUP
Hughes Aircraft Company - Culver City, California

SUMMARY

The prior contracts NAS5-9638 and NAS5-10325 took a fresh look at the categorization and formulation of stress and strength factors for semiconductor diodes so as to provide an improved rationale for prediction based on realistic mathematical models. A general modei for the failure race of diodes was first developed and then the values of a?i the specific constants and parameter values were determined for the $1 N 3600$ genera! purpose diode. A final report describing the validated model was dated 31 Jaruary 1968, (Contract NAS5-10325).

As a result of the above studies a multi-environment model test program was undertaken. This test envolved 4,000 hours on 700 diodes under combined stresses. This is the final project report describing the interpreted results.
it the conclusion of the 4,000 hours of test at maximum rated load and $100^{\circ} \mathrm{C}$, with a total cumulative gamma radiation of 1.6×10^{8} Rads(Si) and programmed vibration of 10 g there resulted: only one catastrophic (intermittent open) diode failure; 5 degradation failures for recovery time out of specification; and 31 degradation failures for reverse current (leakage) beyond specification of 100 namp.

These results can be interpreted as complete verification of the mathematical model for failure rate prediction from stresses applied in actual service use when the type of circuit application and its sensitivity to failure mode are considered. Since the model was developed to fit data of actual failure events, the definition of failure must be considered in interpreting the result. For example, the model predir.ted a total of 11 failures for the 700 diodes tested for 4,000 hours in the combined environment with radiation and maximum rated load. The factor not defined was whether these failures would have occurred in a digital or analog application circuit.

When the shift in performance characteristics caused by the combined stress with time is considered, only eight of these diodes would have failed in a typical digital logic circuit that is insensitive to reverse leakage less than 10μ amp but critical of recovery time. However, if the diodes had been used in linear amplifiers which typically are insensitive to recovery time but critical to leakage currents greater than $1.0 \mu \mathrm{amp}$, the total number of diodes degrading beyond this failure limit (thus indicating that they would have failed in this service) is 15 . From this it can be seen that the
model predicted very closeily the number of failures that would have occurred in a typical system application of 700 diodes used in a variety of circuit types including both linear and digital.

If conservative application of the model is desired the results of this verification project can be summarized in the recommendation "For digital high speed circuits use the model results directly. For sensitive linear circuits multiply the model results by a factor of two." For general mixed rircuit applications intermediate adjustments to the results predicted by the model can be deduced from knowledge of the circuit applications and from failure mode and me:hanism studies.
List of Tables
I Anomalous Parameter Measurements 19-26
iI Diode Failures 27
III Specification Limit Failures 30
IV Failure Rates Experienced 31
List of Figures
1 Block Diagram: Diode Radiation Test Installation 9
10
10
3 Thermal Control Mounting 11
4 Complete Therma? and Vibration Assembly 12
5 Diode Mounting Module (Heat Control Side) 13
6 Diode Mounting Module (Diode Mounting Side) 13
Contents
I Iritroduction 2
II Verification of the Model 2
A Summary of Test Design 2
B Failures Predicted by Model 3
1 Math Model 3
2 Prediction Factors for Diodes in Test 3
3 Predicted Failure Rate 4
4 Number of Predicted Failures 4
C Interpretation of Test Results 5
IIi Experimental Method 7
A Electrical Parameter Measurements 7
B Multi-Environment Facility 8
C Diode Handling 14
D Environmental Effects and Maintenance 15
IV Data Analysis 17
A Data Handling 17
B Specific Analyses 17
C Anomalous Parameter Measurements 18
D Diode Failures 18
E Specification Limit Failures 18
F Failure Rate Determination 28
\checkmark Conclusion 28
Appendix A Data Analysis Computer Program 32
Appendix B D.C. Parameter Histograms 37

In review, a total of 700 diodes, type $1 N 3600$ manufactured by Fairchild Semiconductor and selected at random from among large incoming stocks and without any screening or special testing were irradiated for 4,000 hours at a constant gamma flux of $40,000 \mathrm{R}$ per hour from a 600 curie cobalt 60 source. The diodes were temperature controlled at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and alternately loaded (60 Hz) at 150 ma , forward current and at 50 volts inverse bias, (maximum rating). The vibration tables on which the test fixtures were mounted were adjusted to give 10 g at a programmed 93 minutes out of each 8 hours. At these test conditions the model predicted a total of 11 failures as is explained in the next section. The following sections describe the data resulting and explain how these data closely verify the previously developed and validated model.

Following a discussion of the verification, other sections of this final report describe the experimental metnod and the data analysis procedures. Two appendices contain the data analysis computer program and histograms of the DC parameter measurements.
II VERIFICATION OF THE MODEL
Using the model and its related π factor curves as described in the Final Report for Diode Reliability Prediction Technique (Contract NAS 5-10325) dated 31 January 1968 the following prediction applies for the conditions of test as performed.
A. Summary of Test Design

1. Test diodes - Quantity 700 JAN IN3600

Manufacture - Fairchild Semiconductor Corporation
2. Test Time - 4000 hours (2.8×10^{6} part hours)
3. Test Environment and Stress
a. Operating temperature $-100^{\circ} \pm 5^{\circ} \mathrm{C}$
b. Vibration - 10 g 's peak, 60 Hz 93 minutes every 8 hours (19.4\% duty cycle)
c. Electrical stress - 60 Hz rectification power dissipation $=225 \mathrm{~nm}$ average forward current $\mathrm{Io}=150 \mathrm{~mA}$ peak reverse $V_{R}=50$ volts (junction temperature $\mathrm{Tj}=150^{\circ} \mathrm{C}$)
d. Radiation (Cobalt 60) - 40,000 Rad(Si) per hour (total radiation $1.6 \times 10^{8} \operatorname{Rad}(\mathrm{Si})$)
e. Shock - none

B. Failures Predicted by Model

1. Math Model

$$
\lambda_{p}=\lambda_{a}\left(\pi_{T M} \pi_{S} \pi_{V T}{ }^{\pi} Q_{a}\right)+\lambda_{b}\left(\pi_{T E} \pi_{U} \pi_{V T}{ }^{\pi} Q b\right)
$$

where:
λ_{a} is a base mechanical failure rate dependent upon the part type
${ }^{\pi} T M$ is an adjustment factor dependent upon the body temperature and which works in conjunction with λ_{a}.
${ }_{-}$; is an adjustment factor dependent upon shock level and number of shocks which works in conjunction with λ_{a} and $\pi_{T M}$.
$\pi_{V T}$ is an adjustment factor dependent upon vibration level and temperature; it works in conjunction with all other factors in the equation.
$\pi_{Q a}$ is a vendor quality factor. It depends upon his control of the mechanical parameters of the device during production and works in conjunction with λ_{a}.
λ_{b} is a base electrical failure rate dependent upon the part type.
$\pi_{T E}$ is an adjustment factor dependerit upon electrical stress and temperature and act on λ_{b}.
π_{U} is an adjustment factor dependent upon rate of radiation exposure (low levels of radiation only) and acts in conjunction with λ_{b} and $\pi_{T E}$.
$\pi_{Q b}$ is a vendor quality factor; it depends upon his control of the electrical parameters of the device during production and works in conjunction with λ_{b}.
2. Prediction Factors for Diodes in Test
a. Mechanical factors
$\pi_{T M}=4$ for $100^{\circ} \mathrm{C}$ test temperature
$\pi_{S}=1$ for no shock
$\pi_{Q a}=1$ for Fairchild
$\pi_{V T}=40$ for 10 g 's at $100^{\circ} \mathrm{C}$
$\pi_{V T}=1$ for zero g 's
$\lambda_{a}=.0007$ for base mechanical failure rate
b. Electrical Factors
${ }^{\pi} T E=12$ for $T j=150^{\circ} \mathrm{C}$
$\pi_{V T}=40$ for 10 g 's at $100^{\circ} \mathrm{C}$
$\pi_{V T}=1$ for $0 \mathrm{~g} \mathrm{~g}^{\mathrm{s}}$
$\pi_{U}=18$ for $4 \times 10^{7} \mathrm{Rad} / 1000$ hours
$\pi_{Q U}=1$ for Fairchild
$\lambda_{b}=.0002$ base electrical failure rate (in $\% / 1000$ hours)
c. Composite $\pi_{V T}$ factor - The vibration factor for the prediction of failure rate is a combination of the $\pi_{V T}$ for zero g and 10 g vibration. They are combined by weighting them by their duty cycle and adding them together as follows:
$\pi_{V T_{(10)}}=40$ at 10 g 's for 93 minutes every 8 hours
${ }^{\pi} V T_{(0)}=1$ at 0 g 's for 387 minutes out of every 8 hours
The composite $\pi_{V T_{(c)}}$ is then:

$$
\begin{aligned}
{ }^{\pi} V T_{(c)} & ={ }^{\pi} V T_{(10)} \times \frac{93}{8 \times 60}+\pi_{V T}(0) \frac{387}{2 \times 60} \\
& =\frac{40 \cdot \frac{93}{480}+\frac{1}{480} 387}{2}
\end{aligned}
$$

or

$$
{ }^{\pi} V T_{(c)}=8.55
$$

3. Predicted Failure Rate - Combining the values from 2 (a, b and c) above into the prediction equation as follows:

$$
\begin{aligned}
\lambda_{p} & =\lambda_{a}\left(\pi_{T M} \pi_{S} \pi_{V T}(c){ }^{\pi_{Q A}}\right)+\dot{\lambda}_{b}\left(\pi_{T E}{ }^{\pi} C{ }^{\pi_{V T}}(c){ }^{\left.\pi_{Q b}\right)}\right. \\
& =.0007(4 \times 1 \times 8.55 \times 1)+.0002(12 \times 18 \times 8.55 \times 1) \\
& =.024 \text { (mechanical)}+.360 \text { (electrical) }
\end{aligned}
$$

$$
\lambda_{p}=.384 \% / 1000 \text { hours or } 0.384 \times 10^{-5} \text { failures per hour }
$$

4. Number of predicted failures - Seven hundred diodes on test for a duration of 4000 hours gives a tctal of 2.8 million part hours. Using the failure rate of 3 above the number of predicted failures is 11 computed as follows.

$$
\begin{aligned}
\text { Number of Mechanical Failures } & =.024 \times 10^{-5} \times 2.8 \times 10^{6} \\
& =0.67 \text { mechanical failures }
\end{aligned}
$$

This checks remarkably well with one intermittent mechanical open diode.

$$
\begin{aligned}
\text { Number of Electrical Failures } & =0.360 \times 10^{-5} \times 2.8 \times 10^{6} \\
& =10.1 \text { electrical failures } \\
\text { Total predicted number of failures } & =10.10+0.67=10.77 \\
\text { or } & \approx 11 \text { failures }
\end{aligned}
$$

C. Interpretation of Test Results

The conditions used in the prediction of 11 failures were experimentally reproduced in this test experiment. The later section herein on data analysis describes the detailed test results. These are believed to closely confirm the model when the types of failure observed are interoreted in terms of probable failure in typical application circuits.

The final test results as described in section IV "Data Analysis" can be summarized as follows:

A total of 37 diodes were found out of specification at the end of the test. The specification limits are general procurement requirements and depending on the circuit application do not define probable failures in actual circuit appilications. Many minor variations outside the specification limits will not cause failure in specific circuit applications.

A total of 20 diodes of the 37 out-of-specification are believed degradiad to the point that they would be classed as real failures in some sort of circuit. For this purpose two basic classes of circuits are considered. These are those in digital service where the circuitry is critical of recovery time but generally insensitive to leakage, and those in linear or analog service where the circuitry is usually insensitive to diode recovery time but more critical of leakage.

A total of 15 out of the 20 probable application failures are judged to be probable failures in analog circuitry and 8 of the 20 are probable failures in digital circuitry. This means that 3 of the 20 would be failures in either type of circuit application.

If it is assumed that the model predicted the probable failures in digital circuitry the 11 predicted is pessimistic compared to the 8 actual. On the other hand if the prediction is assumed to apply only to analog circuitry the 11 predicted is optimistic compared to the 15 actual failures. If there is a general mix of circuitry in a system containing both analog and digital circuitry the predicted 11 failures is probably a more accurate prediction than could logically be expected.

From thit it is believed that the model is verified as a reliable predictor of probable fallure of the 1 N 3600 diodes when used in typical known applications. A futuri improvement in the model would be to include a bern which takes into consideration the requirements for a specific application. This application factor (π_{A}), wo:lld be a function of the definition of failure in each application. Inclusion of this term would make possible a more precise prediction of failure rate where specific circuit requirements are known.

III EXPERIMENTAL METHODS

A. Electrical Parameter Msasurements

The electrical paraneters of the diodes tested and their specification limits are as follows:

Parameter	$\frac{\text { Limits }}{0.66 \mathrm{~V}}$ to 0.74 V
Forward voltage at 10 ma	0.1 microampere maximum
Reverse current at 50 V	0.1 masecond maximum

The forward voltage was measured with a digital voltmeter, Hewlett-Packard, Model 3400 with accuracy of $\pm 0.05 \% \pm 1$ digit. Reading four places the uncertainty is between 0.06% and 0.15%. The reverse current was measured with a microammeter, Hewlett-Packard, Model 425A :"ith a 11021A probe with accuracy of $\pm 2 \%$. The reverse recovery time was measured with a sampling oscilloscope, Hewlett-Packard, Model 175A with a switching time tester plug-in unit, Hewlett-Packard Model 176A with a rise time measurement capability of 1 nanosecond.

The reverse recovery time measurements were made in accordance with the test plan described in MIL-STD-750B, Method 4031, test condition B. By this method each diode is loaded at a 20 ma forward current through a 100 ohm load. A 2 volt reverse pulse is then applied and the recovery time $t_{r r}$ is the measured time from the zero crossing to the time that the current reduces to 10% of the peak reverse current.

The initial recovery measurements were made on all the diodes prior to their mounting on the test modules. The final recovery measurements were made after the 4000 hours of irradiation and the diodes had been removed from the modules. I: was not possible to measure the recovery time with the diodes on the modules because of the large shunt wiring capacitance of the fixtures.

The initial, final, and intermediate measurements of forward vo?tagt and reverse current were all made with the diodes mounted on the test modithes and wired to the electrical power cables. For diode test these cables were plugged into a test set up with a diode selection switch. This alloved ratid measurement of the $d-c$ parameters. During the course of the 4000 hour combined environment some of the diodes' external solder attachments failed and some of the wires to the modules failed. In these cases d-c measurements were made via manual probes. Failed solder connections at the diodes were repaired before restart of the environmental exposure.
B. Multi-Environment Facility

The facility to provide the multi-environment consisted of four primary control systems and three monitoring systems all intercoupled for remote operation. The test installation is illustrated in the block diagram of figure 1. The four major controi systems are:

1. Radiation Control System
2. Vibration Control System
3. Thermal Control System
4. Electrical Loading System

The two monitoring systems providing information concerning the operation within the sealed concrete cave are:

1. Radiation Monitoring
2. Intercom and Audible Noise Monitoring
3. Radiation Control System - This system consists of a mecharical actuator equipped with a remote controlled safety release that withdraws the cobalt source up from its lead pig (shield) into the active radiation position. In the event of a power failure the source is dropped by gravity into the safe position. If for any other reason an emergency occurs, the source can be safely lowered into the pig from the remote control station.
4. Vibration Control System - The diode;s being tested were mounted on cantilever base plates attached to two mechanical (balanced eccentric weights) vibration tables. The installation is shown in the photograph of Figures 2, 3 ind 4. The cantilever mounts were dynamically balanced with the solid extended plate to apply a 10 g sine wave vibration on the diodes. The on-off cycles of the vibration tables were programmed from the remote control station. Here a set of motor driven cams actuated appropriate control switches.
5. Thermal Control System - The diodes under test were mounted at. a fixed radius from the radiation source on a set of 14 thermally controlled plates. The photograph of Figure 3 shows seven of the fourteen thermal control mounting plates. Visiole on the near plate are two 25 watt (740 ohm) heater resistors, two thermal sensors (Bonded Platinum Wire Thermistors) and a safety thermal cutout at the center. The position of the heaters and sensors was later changed as shown in Figure 5 in order to achieve minimum temperature gradient across each mounting plate. The fifty diodes mounted to the radiation front of the plates were connected individually at the rear to a printed circuit wiring board as shown in Figures 5 and 6.

Figure 1. Hybrid Block Diagram: Diode Radiation Test Installation

Figure 2. Vibration Mounting Installation

Figure 3. Thermal Control Mounting

Figure 4. Complete Thermal and Vibration Assembly

Figure 5. Diode Mounting Module: Heat Controi Side View

Figure 6. Diode Mounting Module: Diode Mounting Side View

Thermal isolation between the plates and the mounting base was achieved by means of the l" thick phenolic insulating block shown beneath each plate. Insulation of the assembly from the ambient room air was provided by a fiberglass mat and an encompassing balsa wood box (not shown).

The photograph of Figure 4 shows the complete thermal and vibration assembly without the insulating covers. This photo reveals the printed circuit wiring board and the spherical radiation position profile achieved by the cantilevered vibration mounts.
4. Electrical Loading System - Electrical loading of the diodes was achieved by a solid state synchronous switch which alternately coupled a low power inverse voltage supply and a high current low forward voltage supply to the two halves of the system. This system maintained a constant high current load on the power supply.
5. Independent Monitoring System - A radiation monitoring system and an audible noise monitoring system were included in the facility instrumentation.

The Radiation Monitoring System contained a basic radiation sensor, ionization chamber, Victoreen Model 605, and Victoreen Model 575 Radocon meter. Also there was a back up detector consisting of an air-ionization chamber and a Keithley electrometer.

These devices were used to assure that the proper radiation existed during the radiation periods and that the radiation level was safe to entry into the cave erring maintenance and equipment test periods. These basic devices were augmented for safety requirements iy a hand operated counter (Model 440 manufactured by Victoreen).

The audible noise remote monitoring system was in effect, a special intercom which allowed the test operator to listen to the vibrator action from outside the closed radiation area. Any unusual sounds could be detected without removing the heavy concrete blocks which sealed the entrance to the cave.
C. DIODE HANDLING

A quantity of 750 JAN $1 N 3600$ diodes manufactured by Fairchild Semiconductor Corp. (date Code 6848) were drawn from Hughes electronic stores, serialized and tested for recovery time. After the initial measurements 700 diodes were then soldered to the modules with the anodes connected to the common ground terminal and the cathodes to a printed circuit wiring board to which the electrical power cables were attached. The diodes were soldered in place before the excess lead length
was clipped off to prevent shock to the diodes. During the solder process, the leads adjacent to the diodes were heat-sinked to preclude thermal damage. Four diodes damaged during installation were replaced and not included in the failure data. Following the 4000 hours environmental test and final d-c electrical test the diodes were removed for reverse recovery time test. Each cathode lead was unsoldered and the diode then removed by peeling back the anode lead out of the solder connection to the ground return plate. This avoided thermal damage and mechanical damage to the diode.
D. ENVIRONMENTAL EFFECTS AND MAINTLNANCE

The test fixtures were adversely affected by the multi-environment. Occasional failures required maintenance where practicable. Several electrical power wires to the printed circuit boards on the moduies opened at the point of attachment to the modules. The elevated temperature and gamma radiation both accelerate chemical processes which stiffen the polyvinyl chloride insulation on the wire. Figure 6 shows the insulations darkening which accompanies physical degradation, which is significant at about 10^{8} rad.

The initial or zero hour data taken after the diodes were mounted on the test modules showed that 22 devices had leakage currents exceeding the 100 nA specification limit. The leakage current histogram for zero hours in Appendix B shows these devices as the upper tail of the distribution. During the first 1000 hours of operation the leakage current on all 22 devices decreased to less than 100 nA and remained within the specification limit throughout the test program. The most probable cause of these initial high readings was the effects of soldering heat and possible external contamination from the soldering flux used during the assembly of the diode test modules. The subsequent high temperature operation cleaned up the contamination and improved the ability to make accurate readings of the actual diode leakage currents. Since the high leakage readings were attributed to assembly and measuring problems and not to device defects the diodes were not counted as failures and their data was included in the final fallure rate calculations.

During the second 1000 hour exposure interval several of the wires to the diodes on two modules failed open. The apparent failure mechanisms were loss of resilience of the insulation under the phenolic clamp with resultant motion and abrasion with ultimate failure of the wires. These wires were not repaired because
to do so would have required disturbing many wires considered to be at incipient failure. This resulted in the loss of less than 20,000 part hours of electrical loading. The diodes were still subjected to the vibration temperature and radiation. Since the equivalent loss of diode test hours was negligible compared to the total test program of 2.8 million part hours it was neglected in the final failure rate calculations. The cable on one module was repaired where the break in the wire was before the phenolic clamps.

Figure 6 also shows the nylon spiral wrapping for the cable is discolored at the end nearest the source of radiation. Cable clamps of this same material used to clamp instrumentation cables to the rear edge of the modules broke a.s a result of the degradation due to heat and radiation and stress due to cable vibration. These nylon clamps were repla by metal clamps with rubber linings.

Short lengths of cables mounted on the modules were subject to resonant vibration and were attached to the modules with epoxy. Several of these attachments parted after 1000 and 2000 hours of environment and required reattachment with fresh epoxy. The epoxy noticeably darkened after 4000 hours of the environment as may be seen by comparing the fresh epoxy in Figure 5 with aged epoxy in Figure 6. Colored photographs are used in order to make this discoloration visible.
A. Data Handling

A large quantity of test data resulted from the test program. for each diode there were five time sequential readings of forward voltage drop (V_{f}), five values of the reverse leakage $\left(I_{r}\right)$, and two of the reverse recovery time ($t_{r r}$). For the 700 diodes on test a total of 8,400 parameter readings were obtained.

To simplify the problem of accurately examining this large quantity of data for out-of-specification condition or unusual diode behavior, use was made of a GE265 time-sharing computer. The 7000 readings of V_{f} and I_{r} were punched on paper tape and loaded into the computer memory files for further processing.

A computer program was written in "X Basic" language for processing the data. This data analysis computer program is attached as appendix A of this report. The program computed the mear,standard deviation, skewness and kurtosis for each of the sets of parameter readings and time delta change of the parameter readings. The computer then printed out a frequency distribution histogram of the data. Provisions were made for removing extreme values from the histogram and listing their values separately.
B. Specific Analyses

The first analyses made using the computer were to prepare histograms of each of the zero hour, 1000 hour, 2000 hour, 3000 hour and final 4000 hour reading of the V_{f} and I_{r} measuremenis. These computer histograms were transferred to graph paper and are presented in appendix B of this report.

The V_{f} histograms are plotted using a linear scale for the parameter values and it can be seen that distributions are non-normal due to upper and lower extreme values. The shift of the mean value of V_{f} with test time is statistically significant. However the mean downward shift of less than 10 miliivolts over the test period is within the variation which could be accounted for in the measurement test conditions of changing temperature of the room and in the accuracy of test measurement. Thus no significance is attached to the apparent downward trend in the forward voltage drop. An increase with time of the apparent quantity of outliers was at first thought significant but later discredited when the diodes were removed from their connections anc tested individually. It was found that the apparent increase of forward voltage drop was generally caused by degradation of the connections and the test circuitry rather than by changes in the diodes themselves. Thus the test result can be interpreted that forward voltage drop is not a critical parameter and does not seriously degrade even after 4000 hours at maximum rated load and with the total radiation dose of 1.6×10^{8} Rads.

For all practical purposes the analysis of degradation hinges about the values of reverse leakage (I_{r}) and recovery time ($t_{r r}$). Since the recovery time could not be measured while the diodes were mounted in the test circuit, the major indication of degradation with time and stress was the shift of values of the reverse leakage.

The computer was programmed to indicate those sets of data which appeared anomalous to the normal. These were then given closer scrutiny in order to verify the anomaly as a real failure or as an indication of instrumental error.
C. Anomalous Parameter Measurements

A total of 64 diodes were related to data which appeared to be anomalous in some respect. Many of these showed measurement of a forward voltage drop which was increasing with a definite trend in time. As shown in the conclusion column of Table I all of these V_{f} trends were traced to the connection network and no failure could be confirmed to the diodes from increased voltage drop.

The asterisks on Table I indicate the parameter measurements which were anomalous and which required further investigation before faiiure of the diode in question could be affirmed. The Table I Conclusion Comments describe the decisions reached by these further investigations. In most cases these investigations consisted of careful remeasurement of the diode characteristics after the individual items had been removed from the test setup and returned to the laboratory for careful analysis.
D. Diode Failures

Of the 64 diodes listed in Table I a total of 20 were confirmed as potential application failures. These are shown in Table II together with information concerning the failure mode and an interpretation of the type of application in which failure would have been likely. From Table II it can be seen that a total of 8 diodes would have been likely to fall in a digital application and 15 of the 20 in a linear circuit application as explained in section II C. This is based on a leakage current of 10 times the specification value for analog circuits and 1 microampere or a recovery time exceeding the 4 nanosecond specification limit for fast digital circuits.
E. Specification Limit Fallures

Al though the specification limits are generally artificial in regard to failure of devices because of design safety factors, it is important to see how many diodes degraded out of specification during the 4000 hours of combined stress. This information is summarized in Table III.

Table l. ANIOMALOUS DIODES PARAMETER MEASUREMENTS

Serial Number	$\begin{aligned} & \text { Parameter } \\ & \text { and } \\ & \text { Units } \end{aligned}$	$\begin{gathered} 0 \\ \text { Hours. } \\ \hline \end{gathered}$	$\begin{aligned} & 10010 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { Hours } \end{aligned}$	4000Hours	Confinm Final	Conclusion			
										Applica	tion fallure
								OK	$\begin{aligned} & \text { of } \\ & \text { spec } \end{aligned}$	Anslog Ciralí	Digital circult
007	$V_{f}-m v$	707	711	707	856 *	700	695	\times			
	$l_{r}-n A$	13	12.5	13	13.2	15.9	-	x			
	${ }^{\text {trrr }}$ - nsec	2.7	-	-	-	3.2	-	x			
010	$V_{f}-m v$	707	710	730	766 *	691	-	x			
	${ }^{1}{ }_{r}-n A$	16	15.2	$\underline{15.6}$	68.4. ${ }^{\text {* }}$	19.5	17 nA	x			
	$\mathrm{t}_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	2.6	-	x			
011	$\mathrm{V}_{\mathrm{f}}-\mathrm{mv}$	206	711	205	222	688		8			
	$l_{r}-n A$	14	$1.38{ }^{\text {A** }}$		17	0.49 ${ }^{\text {a }}$.	-		x		
	$\mathrm{t}_{\mathrm{rrr}}-\mathrm{nsec}$	2.7	-	-	\bullet	2.7	-	x			
013	$\mathrm{V}_{\mathrm{f}}=\mathrm{mv}$	707	711	705	845 *	782*	697	x			
	${ }^{1} \times n A$	15	14	14	12	20.8		x			
	$t_{r r}-n s e c$	2.8	-	-	-	2.6		x			
028	$V_{f}-m v$	708	711	205	706	702		x			
	${ }^{\prime} r$ - n A	15	$1.64 \mathrm{~A}^{*}$	1.2 $\mu^{\text {A* }}$	3. $8_{\mu} A^{*}$	$2.35{ }^{\text {a }}{ }^{\text {a }}$	$2.54{ }^{4}$		x	x	
	$t_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	2.7	-	x			
039	$V_{f}-m v$	704	709	704	745	852 *	688	x			
	$l_{r}-n A$	17	16	16	14.8	21	-	x			
	${ }^{t_{r r r}}$ - n sec	2.8	-	-	-	2.6	-	x			
050	v_{f}-mv	708	710	705	706	703	-	x			
	$\frac{1}{I_{r}-n A}$	27	$3_{4} A^{*}$	${ }_{1}{ }^{\text {A }}$ A	50μ A*	105y ${ }^{\text {a }}$	18 nA	x			
	$t_{\text {rr }}-n: e c$	2.8	-	-	-	2.6	-	x			
088	V_{f}-mv	709	725	716	727	721 *	712	x			
	$\mathrm{I}_{r}-n A$	30	14	12.4	12.5	15.1	*	x			
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.7	-	-	-	3.7	-	x			
096	$V_{f}-m v$	704	707	-702	703	698	\cdots	x			
	${ }_{1}{ }_{r}-n A$	26	150 *	440 *	780 *	228 *	215*n的		x		
	$\mathrm{t}_{\mathrm{rr}}{ }^{-n s e c}$	2.8	-	-	-	2.8	\cdots	x			

TABLE I. ANOMALOUS DIODES PARAMETER MEASUREMENTS (Continued)

Serial Number 124	$\begin{aligned} & \text { Parameter } \\ & \text { and } \\ & \text { Units } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \text { Hours } \\ \hline \end{gathered}$	1000Hours	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { Hours. } \end{aligned}$	$\begin{aligned} & 4000 \\ & \text { Hours } \end{aligned}$	$\begin{array}{\|} \text { Confirm } \\ \text { Final } \end{array}$	Conclusion			
								$\begin{array}{\|c\|c} & \begin{array}{l} \text { out } \\ \text { of } \\ \text { of } \\ \text { Spec } \end{array} \\ \hline \end{array}$		Application Fallure	
										Analog Circuit	Digital circuit
	$V_{f}-m v$	704	706	714	707	718 *	692	\times			
	$l_{r}-n A$	4.1. ${ }^{\text {A }}$	17nA	15.2 nA	15.2 nA	19.6 nA	-	\times			
	${ }^{t_{r r r}}-\mathrm{nsec}$	2.9	-	-	-	2.7	-	x			
130	$V_{f}=m v$	709	711	707	706	695	-	x			
	$l_{r}-n A$	13	13	12	14	15.2	-	x			
	$t_{r r}-n s e c$	2.8	-	-	-	4.0 *	-	\times			
142	$v_{f}-m v$	775	710	706	710	693	-	${ }^{x}$			
	$I_{r}-n A$	13	13	12	12	15	-	x			
	$t_{r r}$ - $n s e c$	2.8	-	-	-	4.0 *	-	x			
145	$\bar{V}_{f}=\overline{m v}$	706	708	704	705	703	-	\times			
	$\mathrm{I}_{r}-\mathrm{nA}$	15	570 *	460 *	560 *	1.2, ${ }^{\text {a }}$	$810 \mathrm{nA*}$		x		
	${ }^{t_{r r r}}-\mathrm{nsec}$	2.8	-	-	-	3.8	-	\times			
147	$\mathrm{V}_{f}-m v$	709	708	705	705	699	-	-			
	${ }_{1}{ }_{r}-n A$	21	$0.31 \mu^{* *}$	55	65	$0.52 \mu A^{*}$	-		x		
	$t_{r r r}-\mathrm{nsec}$	2.8	-	-	-	3.0	-	x			
158	$V_{f}-m v$	704	706	703	703	698	-	x			
	$\mathrm{I}_{r}-\mathrm{nA}$	17 nA	4.2 ${ }^{\text {A** }}$	140 nA*	$130 \mathrm{nA}{ }^{\text {* }}$	$2.2 \mu^{*}{ }^{*}$	140 nA*		x		
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	2.9	-	x			
160	V_{f} - mv	702	705	702	702	704	-	x			
	$L_{r}-n A$	24	2.3yA*	$1.1{ }^{1} \mathrm{~A}^{*}$	$1.8{ }^{1} A^{*}$	1.37 ${ }^{\text {A* }}$	920nA*		\times		
	$\mathrm{t}_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	2.9	-	x			
161	$V_{f}-m v$	705	708	705	705	700	-	x			
	$L_{r}-n A$	19	17.8	16.2	15	17.7	-	x			
	$t_{r r r}-n s e c$	2.8	-	-	-	4.1 *	-		\times		x
166	$V_{f}-m v$	708	709	706	706	701	. ${ }^{\text {d }}$	x			
	$\mathrm{I}_{\mathrm{r}}-\mathrm{nA}$	12	12	11	11.2	14.4	- ${ }^{\text {a }}$	x			
	$\mathrm{t}_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	4.0 *	-	x			

TABLE I. ANOMALOUS DIODES PARAMETER MEASUREMENTS (Continued)

Serial Number	Parameter and Units	0 Hours	1000Hours	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { Hour. } \end{aligned}$	$\begin{aligned} & 4000 \\ & \text { Hours } \end{aligned}$	Confirm Final	Concluston			
										Applicat	tion fallure
								OK	of Spec	Analog Circuit	$\begin{aligned} & \text { ofgital } \\ & \text { circuit } \\ & \hline \end{aligned}$
179	$V_{f}-m v$	706	706	703	703	697	-	x			
	$I_{r}-n A$	15	2.8uA*	$1.6 \mu A^{*}$	$3.4 \mu^{*}$	$3.4 \mu^{*}$	3.8 .4		x	x	
	$t_{r r r}-n s e c$	2.9	-	-	-	3.4	-	x			
185	$V_{f}=m v$	704	707	705	705	699	-	x			
	$\mathrm{I}_{r}-\mathrm{nif}$	13	$2 \mu A *$	1.3 ${ }^{\text {a }}$ *	$5.5 \mu A^{*}$	$3.5 \mu{ }^{\text {® }}$	4.3 ${ }^{4}$		x	x	
	$t_{r r}=n s e c$	2.8	-	-	-	3.8	-	x			
209	$v_{f}-m v$	707	709	706	707	698	-	x			
	$I_{r}-n A$	14	3.4 ${ }^{\text {A }}$ *	$0.45 \mu A^{*}$	0.62uA*	$2.3 \omega A^{*}$	590 nA ${ }^{\text {a }}$		x		
	$t_{r r r}-n s e c$	2.8	-	-	-	4.0 *	-	x			
224	$V_{f}=m v$	708	710	705	721	754 *	691	x			
	$I_{r}-n A$	16	$1.35 \mu A *$	0.68 A^{*} *	0.4 A^{*}	$1.1 \mu A^{*}$	295 nA*		X		
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	3.1	-	x			
233	$V_{f}-m v$	709	715	709	723 *	721*	711	x			
	$I_{r}-n A$	19	17.8	17	17	21	-	x			
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	3.0	-	x			
235	$V_{f}-m v$	710	716	708	673	664	-	x			
	$I_{r}-n A$	14	13	12	26.2	34.0	-	x			
	$t_{r r}=n s e c$	2.8	-	-	-	4.0*	-	x			
255	$V_{f}-m v$	702	772 *	OPEN *	694	691	693		x	X	x
	$l_{r}-11 A$	15	14.4	14.2	16.2	17.4	-	x			
	$\mathrm{t}_{r r r}-\mathrm{nsec}$	2.8	-	-	-	3.6	-	x			
274	$V_{f}-m v$	700	704	703	711	721 *	690	x			
	$I_{r}-n A$	17	16.2	19	16	19.8	-	x			
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	3.3	-	x			
284	$V_{f}-m v$	705	708	705	706	699	-	x			
	$\mathrm{I}_{r}-n A$	15	1.5μ A*	.984 ${ }^{\text {* }}$. $7 \mu A^{*}$	$1.7 \mu^{*}$. $86 \mu A^{*}$		x		
	$t_{r r}-n \sec$	2.8	-	-	-	3.8	-	x			

TAELE I. ANOMALOUS DIODES PARAMETER MEASUREMENTS (Continued)

Serial Number	$\begin{aligned} & \text { Parameter } \\ & \text { and } \\ & \text { units } \end{aligned}$	$\begin{gathered} 0 \\ \text { Hours } \end{gathered}$	$\begin{aligned} & 1000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { Heurs } \\ & \hline \end{aligned}$	$\begin{aligned} & 4000 \\ & \text { Hours } \end{aligned}$	Confirm Final	Conclusion			
									Out	Applicat	tion failure
								OK	of Spec	Analog Circuit	Digital circuit
288	$V_{f}-m v$	708	709	706	706	700	-	\times			
	$\mathrm{I}_{r}-n A$	24	2.6 , ${ }^{*}$	1.3 μ^{*}	$1.1 \mu^{*}{ }^{*}$	1.94 ${ }^{\text {A }}$	1.15uA		\times	x	
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	\bullet	-	3.0	-	x			
318	$V_{f}-m v$	709	712	708	709	702	-	x			
	${ }^{1} r_{r}-n A$	10	11	11.5	10.5	13.2	-	x			
	$t_{\text {rr }}-\mathrm{nsec}$	$2 . \varepsilon$	-	-	-	5.5 *	-		\times		\times
332	$V_{f}-m v$	702	707	704.	704	697	-	x			
	$\mathrm{l}_{\mathrm{r}}-\mathrm{nA}$	85	72	28	$0.76 \mu \mathrm{~A}^{*}$	$0.3 W^{*}$	-		x		
	$t_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	3.0	-	\times			
362	$\bar{v}_{f}=m$	707	712	712	710	705	-	x			
	$\mathrm{T}_{r}-\mathrm{nA}$	15	. $72 \mu \mathrm{~A}^{*}$. $44 \mu \mathrm{~A}{ }^{*}$. $25 \mu \mathrm{~A}{ }^{*}$	1.6 A^{4}	. $46_{\mu} \mathrm{A}^{*}$		$\underline{ }$		
	$i_{r r}-\mathrm{nsec}$	2.8	-	-	-	3.8	-	x			
363	$\frac{V_{f}-m v}{}$	706	708	709	707	764 *	695	x			
	$I_{r}-n A$	14	13.8	14	12.5	16.8	-	x			
	$t_{r r}-n s e c$	2.8	-	-	-	3.5	-	\times			
367	$\mathrm{V}_{f}-\mathrm{mv}$	703	704	705	703	697	-	x			
	$\mathrm{I}_{r}-n A$	20	17.4	20	2.2uA*	1.0μ A*	. $84 \mu A^{*}$		x		
	$t_{r r}-n s e c$	2.8	-	-	-	3.0	-	x			
379	$\mathrm{V}_{\mathrm{f}}-\mathrm{mv}$	705	675 *	705	704	668 *	691	x			
	$\mathrm{I}_{r_{r}-n A}$	17	52	51	46	62	-	x			
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	2.8	-	x			
380	$\mathrm{V}_{\mathrm{f}}-m v$	709	654 *	710	709	669 *	694	x			
	$\mathrm{I}_{r}-n A$	22	52	50	46	62	-	x			
	$t_{r r}-\mathrm{nsec}$	2.8	-	-	-	2.7	0	x			
381	$v_{f}-m v$	708	654 *	709	707	702	695	x			
	${ }^{1} r_{r}-n A$	17	52	50	46	62	-	x			
	${ }^{\text {trr }}$ - nsec	2.8	-	-	-	2.9	-	\times			

TABLE I. ANOMALOUS DIODES PARAMETE? MEASUREMENTS (Continued)

Serial Number	$\begin{aligned} & \text { Parame ter } \\ & \text { and } \\ & \text { Units } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \text { Hours } \end{gathered}$	$\begin{aligned} & 1000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { Hours } \end{aligned}$	4000Hours.	$\begin{aligned} & \text { Confirm } \\ & \text { Findal } \end{aligned}$	Conclusion			
										Applica	tion failure
								OK	$\left.\begin{gathered} \text { of } \\ \text { of } \\ \text { Spec } \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Analog } \\ & \text { Circuit } \end{aligned}$	$\begin{aligned} & \text { Digital } \\ & \text { circuit } \\ & \hline \end{aligned}$
424	$V_{f}-m v$	711	706	707	795	695	-	x			
	$I_{r}-n A$	14	. 64μ A*	. $42 \sim \mathrm{~A}^{*}$	$1.4{ }^{\prime}{ }^{*}{ }^{*}$	$1.29 \mu^{*}$	$1.15 \mu^{\text {A }}$		\times	x	
	${ }^{t_{r r r}}-\mathrm{nsec}$	2.8	-	-	-	2.9	-	x			
425	$V_{f}-m v$	711	706	707	705	698	-	x			
	Ir ${ }_{r}$	14 nA	32uA*	240 ${ }^{\text {a* }}$	122uA*	44 HA*	18.0uA ${ }^{\text {a }}$		x	x	x
	$t_{r r r}-n s e c$	2.8	-	-	-	3.0	-	x			
443	$v_{f}-m v$	709	708	708.	707	701	-	x			
	$l_{r}-n A$	14	$3.54 \mathrm{~A}^{*}$	$1.15 u \mathrm{~A}^{*}$	$2.8{ }^{\text {ma* }}$	$1.8 \mu \mathrm{~A}^{*}$	$1.65 \mathrm{AA}^{+}$		\times	\times	
	$t_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	3.6	-	x			
447	$V_{f}=$ mv	712	710	710	709	704	-	x			
	${ }^{1} r_{r}-n A$	14	2.1uA*	$1.34 A^{*}$	$2.5 \mu{ }^{*}$	$2.7 \mu \mathrm{~A}^{*}$	$2.75 \mu \mathrm{~A}$		x	x	
	$t_{r r}-\mathrm{nsec}$	2.8	-	-	-	3.8	-	x			
449	$V_{f}-m v$	707	708	709	706	702	-	x			
	$I_{r}-n A$	15	$2.33 \mu \mathrm{~A}$	20.2	17	$0.34 \mu \mathrm{~A}^{*}$	-		x		
	$t_{r r r}-n s e c$	2.8	-	-	-	4.0 *	- ${ }^{-1}$	x			
463	$V_{f}-m v$	715	707	709	707	701	-	x			
	$r_{r}-n A$	13	12.4	11	11.8	14	-	x			
	$t_{r r}-n s e c$	2.8	-	-	-	4.0 *	- ${ }^{-}$	x			
466	$\bar{V}_{f}^{-}-\overline{\pi v}$	711	707	708	706	799	-	x			
	$\mathrm{l}_{r}-n A$	32	14.5	.37 ${ }^{\text {A* }}$	20	. 44μ A*	-		x		
	$t_{r r r}-n s e c$	2.8	-	-	-	2.9	-	x			
501	$V_{f}-m v$	702	704	705	703	696	$-$	x			
	$L_{r}-n A$	16	.7uA*	$24 \mu \mathrm{~A}$ *	$10 \mu \mathrm{~A}^{*}$	$96 \mu \mathrm{~A}^{*}$	$16 \mu \mathrm{~A}^{*}$		x	x	x
	$\mathrm{t}_{\text {rr }}-n \mathrm{sec}$	2,7	-	-	-	3.0	-	x			
504	$\bar{v}_{f}-m v$	709	722	704	695	OPEN * wiring	692	\times			
	${ }_{1}{ }_{r} \cdot n A$	16	25	25.2	16.2	20.3	-	x			
	$\mathrm{t}_{\text {rr }}$ - nsec	2.8	-	-	-	3.0	-	x			

table I. ANOMALOUS DIODES PARAMETER MEASUREMENTS (Continued)

Serial Number.	$\left\lvert\, \begin{aligned} & \text { Para, wter } \\ & \text { and } \\ & \text { Units } \end{aligned}\right.$	$\begin{gathered} 0 \\ \text { Hours } \end{gathered}$	$\begin{aligned} & 1000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { Hours } \end{aligned}$	4000Hours	$\left\lvert\, \begin{aligned} & \text { Confirm } \\ & \text { Final } \end{aligned}\right.$	Conclusion			
										Application Failure	
										Analog ciraui	$\begin{aligned} & \text { Digital } \\ & \text { Cirauit } \end{aligned}$
			713			OPE4 ${ }^{\text {a }}$					
505	${ }_{f}$					miring					
	$r_{r}-n A$	12	14.5	22	12	14	-	x			
	${ }^{\text {tr }}$ - ${ }^{\text {nsec }}$	2.8	-	-	-	4.0 *	-	x			
518	$V_{f}=m v$	711	706	712	711	705	-	\times			
	${ }_{r}-n A$	11	11	9	10	12	-	x			
	${ }^{t_{r r r}-n s e c}$	2.9	-	-	-	4.0 *	-	x			
524	$V_{f}=m v$	716	699	704	713	748 *	690	x			
	$\mathrm{I}_{r}-n A$	22	21.8	17.2	18.5	22	-	x			
	$t_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	2.6	-	x			
548	$v_{f}=m v$	716	700	706	703	697	-	\times			
	$\mathrm{I}_{r}-n A$	15	$1.9, A^{*}$	$1.1 \mu^{*}{ }^{*}$	$2.3 \mu^{*}{ }^{*}$	2.55u ${ }^{\text {* }}$	$2.15{ }_{\mu} \mathrm{A}$		*	x	
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	3.4	-	\times			
565	$V_{f}-m v$	703	708	711	710	705	-	x			
	$l_{r}-n A$	42	16	11.2	12.5	30	-	\times			
	$t_{r r r}-$ nsec	2.8	-	-	-	4.1 *	-		x		x
571	$V_{f}-m v$	703	707	711	709	704	-	x			
	$I_{r}-n A$	14	13	37	. $38{ }^{\prime}$ A* *	$0.16 \mu^{* *}$	-		\times		
	$t_{r r}-n s e c$	2.8	-	-	-	3.3	-	x			
582	$\mathrm{V}_{f}-m v$	703	673 *	707	705	699	690	x			
	$\mathrm{I}_{r}-\mathrm{nA}$	13	28	26	27	32	-	x			
	$\mathrm{t}_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	3.2	-	x			
583	$V_{f}-m v$	705	673 *	707	705	700	691	\times			
	${ }_{1}{ }_{r}-n A$	19	28	26.2	27	32	-	x			
	$t_{r r r}-n s e c$	2.8	-	-	-	2.9	-	\times			
588	$v_{f}-m v$	709	707	710	708	702	-	x			
	$t_{r}-n A$	13	$1.9 \mathrm{\mu}{ }^{*}$	$1.54{ }^{\text {* }}$	$2.4{ }^{\mu}{ }^{\text {* }}$	$3.3 \mu A *$	2.84A*		x	x	
	$t_{r r r}-\mathrm{nsec}$	2.8	-	-	-	3.8	-	\times			

TABLE I. ANOMALOUS DIODES PARAMETER MEASUREMENTS (Continued)

Serial Number	$\begin{aligned} & \text { Parameter } \\ & \text { and } \\ & \text { Units } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \text { Hours } \end{gathered}$	$\begin{aligned} & 1000 \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 2000 \\ & \text { Hours } \end{aligned}$	3000Hours.	4000Hours	Confirm\|Final	Conclusion			
										Applica	tion failure
								OK	of spec	Analog Gircuit	$\begin{array}{\|c} \text { Digital } \\ \text { circuit } \end{array}$
624	$V_{f}-m v$	704	703	707	714	699	-	\times			
	$l_{r}-n A$	16	$10,4 *$	$2 \mu^{*}{ }^{\text {* }}$	$4 \omega^{*}{ }^{*}$	36 ~4**	7.6 A* $^{\text {* }}$		\times	\times	
	$t_{r r r}-n s e c$	2.8	-	-	-	3.3	-	x			
633	$\mathrm{V}_{f}=\mathrm{mv}$	704	703	707	705	700	-	x			
	${ }_{1}{ }_{r}-n A$	14	13	12	13	14.4	-	x			
	$t_{r r} \cdot n s e c$	2.8	-	-	-	4.0 *	-	x			
556	$v_{f}=-m v$	704	703	706.	705	700	-	\times			
	$\mathrm{I}_{\mathrm{r}}-n{ }^{\text {ma }}$	16	$1{ }^{\prime} A^{*}$. 86μ A*	$1.8 \mu^{\text {A }}$	$1.9, \mathrm{~A}^{\text {a }}$	$1.85 \mu \mathrm{~A}$		x	x	
	$t_{\text {rr }}-\mathrm{nsec}$	2.8	-	-	-	3.0	-	*			
665	$V_{f}=m v$	706	704	707	706	701	-	\times			
	${ }^{1} r$ - n A	18	. $65 \mu \mathrm{~A} *$	$1.0{ }^{\text {A }}$ *	0.9μ A*	$40{ }^{\text {a }}$	3,3 A^{*}		x	x	
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	2.8	-	x			
676	$V_{f}-m v$	701	700	704	702	697	-	x			
	${ }^{r_{r}-n A}$	16	17.2	28	32	$0.36 \mu^{\prime *}$.		x		
	$t_{r r r}-n s e c$	2.8	-	-	-	2.8	-	x			
689	$V_{f}=m v$	707 *	723 .	726	731	725	716	\times			
	$\mathrm{I}_{r}-n A$	24	66	33	0.32 ${ }^{\text {a* }}$	82 nA	-	x			
	${ }^{t_{r r r}}$ - nsec	2.8	-	-	-	2.9	-	x			
706	$\mathrm{V}_{\mathrm{f}}-\overline{\mathrm{mb}}$	707	708	711	710	704	699	x			
	$l_{r}-n A$	12	11.8	11.0	11.2	13.3	-	x			
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	5.6 *	*		x		x
704	$\mathrm{V}_{\mathrm{f}}-\mathrm{mv}$	712	715	722	734	764 *	699	x			
	${ }^{1} r$ - $n A$	19	16	14.2	13.2	20	-	\times			
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	2.6	-	x			
709	$\bar{v}_{f}-m v$	701	708	704	705	701	-	x			
	$\mathrm{I}_{r}-n A$	17	72.2 2 A	48	44	160*	-		x		
	$\mathrm{t}_{\mathrm{rr}}-\mathrm{nsec}$	2.8	-	-	-	3.0	-	x			

TABLE I. ANOMALOUS DIODES PARAMETER MEASUREMENTS (Continued)

* Anomalous Readings: Note that several of the leakage readings marked anomalous and not counted as true failures were caused by leakage in the test fixtures. The final determination of the diode condition being out of specification or outside defined application failure limits was made based on measurements of the diodes after their removal fro time test fixtures.
** The number cf devires out of specification (37) includes one intermittent diode.

Table II: Critical Diode Failures (20 Devices)

SERIAL NUMBER	FAIIURE MDDE		APPLICATION - FAILURE	
	PARAIIETER	MGASUREMENTI	DIGITAL	LINEAR
28	I_{r}	$2.5 \mu \mathrm{~A}$		X
161	$t_{r r}$	4.1 n sec	X	
179	I_{r}	$3.8 \mu \mathrm{~A}$		X
185	I_{r}	$4.3 \mu \mathrm{~A}$		X
255	A11	Open Intermittent	X	X
288	I_{r}	$1.15 \mu \mathrm{~A}$		X
318	$t_{r r}$	5.5 nsec	X	
424	I_{r}	$2.15 \mu \mathrm{~A}$		X
425	I_{r}	$18 \mu \mathrm{~A}$	X	X
443	I_{r}	$1.65 \mu \mathrm{~A}$		X
447	I_{r}	$2.75 \mu \mathrm{~A}$		X
501	I_{r}	$16 \mu \mathrm{~A}$	X	X
548	I_{r}	2.15μ		X
565	$t_{r r}$	4.1 n sec	X	
588	I_{r}	$2.8 \mu \mathrm{~A}$		X
624	I_{r}	$7.6 \mu \mathrm{~A}$		X
656	I_{r}	$2.85 \mu \mathrm{~A}$		X.
665	I_{r}	$3.3 \mu \mathrm{~A}$		X
700	$t_{r r}$	5.6 n sec	X	
711	$t_{r r}$	5.5 n sec	X	
Number of failures			8	15

Table III shows that no diode failed by degradation of the forward voltage drop outside of the specification limits of 660 mv to 740 mv . This fact suggests that the various combined stresses may have been beneficial in counteracting any single stress tendency to change the forward conductance.

Reverse leakage current increased beyond the 100 namp specification limit on 31 diodes. This fact could lead to the conclusion that the combined stresses tend to decrease the inverse impedance of the weaker devices. This is confirmation that this phenomena can be used as a valuable screening test using accelerated combined environments for relatively short times and checking the change of reverse leakage. Unfortunately there is no correlation between changes of recovery time and changes of reverse leakage. These apparently are independent degradation mechanisms and must be measured separately.

As Table III shows there are a total of 37 diodes which degraded out of specification including the intermittent open.
F. Failure Rate Determination

Because the model was derived to predict the probable failure rate of devices while in specific stress service it is interesting to compare the predicted with measured failure rates. The predicted failure rate from the model relating to the 11 predicted failures for 2.8 million part hours is $.39 \%$ per thousand hours. This relates roughly to a computed statistical "best estimate" which can be compared to the figures computed from the actual measurements as shown in Table IV.
V. CONCLUSION

The models for predicting failure rate and the quantity of failures to be expected in a given environment was developed under NASA-Hughes Contract NAS 5-9638, validated for values of the constants under Contract NAS 5-10325 and now verified by an independent combined environment life test under this Contract NAS 5-21027. The Hughes Aircraft Company believes that the successful accomplishement of this project represents the completion of a major milestone in the progress of Reliability Engineering. For the first time in history it is now possible to predict from a verified mathematical model, and in advance of tests, what the failure rate and quantity of failures will be under given conditions of environment and loading.

It is recommended that this same approach be applied now to the development and verification of a similar model for predicting the reliability of microcircuits. It is believed that this can be accomplished much more easily now that this and other modeling projects have been completed.

The failure rate prediction model used in this study was intended to predict the failure rate of the device in typical circuit application. On these devices where the predominant mode of failure is parameter or performance degradation the actual number of failures is dependent on the degree of degradation that is allowable before circuit failure occurs. In some applications an extremely large degradation may be tolerated and for other applications extreme stability may be necessary. The definition of failure becomes dependent on the specific requirements of each application.

A further improvement in the failure rate prediction model would be the inclusion of an application factor (π_{A}). Inclusion of this term would make possible a more precise prediction of failure rate and would further improve the ability to predict system failure rates. Further study and experimentation is recommended to establish how the π_{A} factor should be included in the model and what is its specific functional relationship with the circuit application requirements.

TABLE III: Specification Limil Diode Failures

Parameters and Test Conditions	Limits Min.	Max	Number of Failures
Forward Voltage, V_{i} at $I_{i}=10 \mathrm{~mA}$	660 mV	740 mV	1 (intermittent open)
Reverse Current, I_{r} at $V_{r}=50 \mathrm{~V}$		100 nA	31
Reverse Recovery Time, $t_{r r}$ at	--	4.0 ns	5
$\mathrm{I}_{\mathrm{f}}=20 \mathrm{nA}$.
$\mathrm{V}_{\mathrm{r}}=2 \mathrm{~V}$			
$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohms}$			

Table IV: Failure Rates Experienced (Percent Per 1000, hours)
(Bost istimate, 60,\% and 90; confidence
limits based on chi - square distribution)

$\begin{aligned} & \text { Failure } \\ & \text { Definition } \end{aligned}$		Spec Limit	Inear Circuit Application	Digital Circuit i:pplication	Catastrophic
Number of Failures		37	15	8	1
	reasured	$\begin{aligned} & 1.32 ; / 9 \\ & 1000 \mathrm{hrs} . \end{aligned}$	0.54;	0.29;	. 030%
	Best Estimate	$\begin{aligned} & 1.35 ; \% / \\ & 1000 \mathrm{hrs} . \end{aligned}$	0.56\%	0.34,	. 060 ;
	$\begin{aligned} & 60, \\ & \text { Conf. } \end{aligned}$	$\begin{aligned} & 1.40 ; \% / \\ & 1000 \mathrm{hrs} . \end{aligned}$	0.59\%	0.46;	.072\%
	90; ; conf.	$\begin{aligned} & 1.54, \% / \\ & 1000 \text { hrs. } \end{aligned}$	0.76\%	0.5\%	. 14%

APPENDIX A

DATA ANALYSIS COMPUTER PROGRAM

(PLUS PORTION OF AN ACTUAL
COMPUTER RUN HISTOGRAM)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR．

$v * r$


```
\prime I vrill Aots
I(1 1.fl T((1) =1
1:3 1)1: (% (1!0)
1; 111\because, (1bu)
```



```
\becauserLH': }:1=
(1) L;'1:C=0
34 1, 1' }\therefore3=1
3% 1.1.1 }\therefore=A=
<l Lerl i=1
4.| L.F'| |=1
A! 1.t1 1.1=1-(ith(i
4(LL` L_c=-1•1) b
<4L!! Fl=0,
Sa!1:I vI
```



```
(l INrlil lis
```



```
    OS L.E! X(1)=T(E)-T(!)
    GIF 人(1)>LI THE\ ソ%
    91 JF x (1)<LEZ IHE\ >7
94 (% T: 10.3
Y7 LEI E1=E1+1
    9% トNINl \therefore(1)
    10U (!, I.S !%%
    103 Lr.l iv1=%(1)
    1UELE.T MB=天(1)
    104 (% l!; 157
    110 IF FNUFILF % IHKN 17%NLET LJ=W+1
    111 r゙NNM "l:="!
    11% IF FVDFILF D IHFN 11(;
    113 L.FT N=N+1
    11b KEAI: FILF ;,T(1),T(', ,T(3),T(A),T(5)
    11HLFM| \therefore(N)=i(t)-i(A)
    1<4 IF K(v)>LI THEN 133
    1&7 IF X(V)<La THEN 133
    130 %
    1.3.3 L.FT F1=F1+1
    134 rrINT N(V)
    136 (6)TG 11b
    134 1F S(N)>A1 THFN 14%
```


vimb Covilv（IE．U

1．5．1．1． 157

151 （゚．． 16157

$1571, F 1 \quad \therefore 1=S 1+x(N)$

163 LFIS $3=53+x(v)+3$

1（i）（！T： 11%
17ヶトイ．IVT
17 Lト7 シニら1／V

1ソ0 rifvT

196r：9I：17

$\because 051 \cdot 1 \mathrm{INT}$

$\because 1<1 \Leftrightarrow \mathrm{IV}$

戶36 トッ1さ7

643 rros T

2 $\triangle 7$ LFT $(K)=0$
C．SO VEKT K

9．56 トKINT
659 トゥINl

2 6o I virlit He．i3．in 4
$271 \mathrm{LFT} \mathrm{h}=(\mathrm{M} 3-64) / \mathrm{H}$
C． 4 LET C（1）$=4+\cdots$
277 Fon $\mathrm{L}=\mathrm{C}$ 万人 H
C＇U LET C $C(L)=C(L-1)+K$
C） 3 NKXT L
206 FOW， $1=1$ TOV


```
    Biy L_HT = - 
    ,i% LHT K=k+1
    <uS lt \therefore(I)<=C(K) ! ht: \{1
    240 (: 1.: ,9%?
    B.1 1.FT , (k)=(.(k)+1
    3(< 有:T 1
    307 :% J=H 7:N 1 5TH1-1
    31(:1.iT (:= (.J)
    \:S , 口IN (%(J)
    31% L+! (=\:(J)
    31" 1. \1" ";(.(.):
    3c:r 1H, (J)<3k 7HFV 3:34
    3^!2 1.+7'(.1)=(.1)-3,
```



```
    301 If (.(J)>=636 TH4N S6:口
```



```
    3`% Lt"l (0.J)=(.J)-16
```



```
    34( L_F (J) J)={(J)-:
```



```
    3.51F (J)<, < 1HFV ふ(1
    ing LYl (.J.J)=(.(J)-a
```



```
    367 1.,1NT TAF(G);"\therefore几";
    370 IF .(J)<1 THW.V 3%6
    373 r, 14'THAF(%);","';
    376 1.1\1
    37y 4Fィi J
```



```
    3us rlavN
    36% 1.IN7
```



```
    394 I 小r|t Z
    39% |NIN"
    400 IF Z=0 THFN A15
    403 IF %=1 7HFY %ム4
    4U6 нんI!'I'"-----------------------------------------------
    409 \thereforeFSTUOE FILE W
    410 LFI Z=0
    <1% (%)T,4
    415 1.40
```

$?$
i..i
$1 x$
7.
$\therefore \quad x i$
i...
(i)
$\because 3$
j ハイス
$7 \therefore-$
$\begin{array}{rr}\therefore \\ 7 & \therefore 1\end{array}$
$1 \quad x$
$7: 0$
$1 \quad \because$
719
ن
713
717
2 x
716
5 スパンにス
715
$\therefore \quad \because$ ソインスがス
71%

713

T1官

$71 \because$

76

$6 こ に$
70

767

766

703

7. C

iol

700

609
4 Kススス
69:

APPENDIX B

D.C. PARAMETER HISTOGRAMS

1

