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A STUDY OF HIGH PERFORMANCE ANTENNA SYSTEMS
FOR SPACE COMMUNICATION

I. INTRODUCTION

The objective of this program is to study the most recently de-
fined parameters for a high data rate of communication system which
can operate between an earth station and a vehicle in space over great
distances. An effort will be made to describe and delineate the char-
acteristics of radiating subsystems and their internal sub-divisions
which can satisfy the requisite performance criteria for an S-band sys-
tem. Considerations will be given to the advance technology concerned
with the ground based antenna, and where pertinent, to the spacecraft
antenna as well. An effort will be made to determine the feasible
design approaches for the ground antennas and its component parts.
Appropriate design criteria will be investigated analytically, and
where possible a comparison will be made with empirically determined
results in an effort to define areas of research and development which
need long term attention.

The ground-based antennas are discussed in this program as com-
ponents of a link designed to fulfill the specific function of providing
uninterrupted communication from a spacecraft to the earth at planetary
distances. For obvious reasons, the most attention is given the down lint:
aspects using a carrier frequency of 2.3 GHz, since a frequency in this
region has advantages for an all-weather ground station and is presently
in use in the NASA Deep Space Instrumentation Facility. It is assumed
also that future mission plans will require information rates of the order
of 104 to 10 7 bits/second with a given probability of error, 10- 2 to 10-5.
These parameters imply a specific system performance in terms of bandwidth
and signal-to-noise ratio. When the characteristics of the available
transmitter and receiver are evaluated or assumed, the required per-
formance characteristics of the overall radiating system are determined
either directly or by implication. The overall radiating system -is taken
to include the combination of the spacecraft and the ground or relay
station antenna equipment in their inevitable environment. Thus, for
this study, certain gain and aperture requirements will be assumed
nominal as parameters to satisfy a variety of space missions.

There are two general areas of concern that must be investigated
relative to the ground-based receiving system which of necessity must
be large compared to wavelength to achieve the desired performance char-
acteristics. The first involves questions about the received signal to
noise level ' or the gain that must be provided to handle it. Considerations
must be given to methods by which it may be enhanced, and the limitations
that may be encountered during the various phases of a mission. The
second area embraces questions about the contributions made to the nois(,
of the communications link, the manner in which these are introduced, (and
methods by which they may be minimized. These questions are, of course,



interrelated, and the limitations encountered are intensely practical
and economic, as well as theoretical. For this study, emphasis will
be given to the first area and when necessary, results of other investi-
gations into the questions involved in the second area will be used.

The requirement of a minimum signal to noise level forces the sum
of the gains of the space and ground antennas to be of some value that
can be specifically determined for a particular mission. It is im-
portant to be able to allocate the antenna gains at each end of the link
according to reasonable expectations concerning the practical designs
and performance characteristics that can be accomplished in the next ten
to fifteen years. An optimum allocation of these gains is difficult al-
though some progress has been made along these lines. For this study
nominal values are used as parameters in an effort to establish quanti-
tative relationships between pertinent dimensions and techniques. It
has been shown that at 2.3 GHz, the sum of the antenna gains on future
missions can be estimated to be about 110 d5 to achieve a data rate of
106 bits/second. This is about a 20 dB increase over the gains specified
for the 1971 Vogager Mission at 1 AU as a basis for comparison. If the
spacecraft antenna is postulated to be capable of 30-40 dB of gain using	 k

a transmitter with 50-100 watts of power, then the ground based receiving
system must be studied for the following range of parameters:

Antenna Gain, -- 60 to 80 dB
Data Rate -- 104 to 107 its/second
Error Probability -- 10-2 to 10

Final results will be given for this entire range of parameters although
nominal values will be used to illustrate and expedite the discussion of
various techniques during the intermediate phase of this program.

Because of the significance of the noise level in determining the
overall gain requirement, many studies have been directed to a con-
sideration of the noise that competes with the signal and is collected
and introduced at the ground end of the down link. The convention of
treating the noise as resulting from an equivalent antenna temperature
has been followed in this program. Since the noise level is highest when
the antenna beam is directed at or near a noise source, attention is
being paid to techniques which can be used to mitigate these deleterious
effects in certain special mission circumstances. 	 ..

The characteristics of high gain techniques, either electrical or
mechanical, form essential parts of tradeoffs in system accuracy,
reliability, and cost. Of course practical compromises must be made
for certain aspects of a particular mission. These compromises will
depend on the techniques available for directing or steering the re-
ceiving beam on the ground as compared with those for controlling the
vehicle attitude. Three types of steering mechanisms are possible
for spacecraft antenna systems: mechanical (as for large appendage
antennas); electromechanical; and electronic or inertialess. Elec-
tronic techniques offer the greatest versatility with regard to

2
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communications between a vehicle in space and earth. These are two
generic types: those that require external controls to phase the
elements properly and those that are self-steering. The externally
controlled systems, such as the conventional phase array, need an
external sensor (IR, RF, or ground station) to point the beam, and a
computer, a phasing network, and an attitude sensing device to point
the beam appropriately. In the self-steering system, however, attitude
information is presented to the antenna system by ap ilot beam from a
ground station, and electronic circuitry senses the phase► of incoming
pilot signals to position a beam in the direction of these pilot signals.
Multiple beam systems may be accommodated by the use of diplexers and
multiple electronic channels. Each of these spacecraft systems is being
worked on by various research and development groups throughout the country
and abroad. Appropriate results of these efforts will be used to achieve
stated objectives of this program.

II. PROGRAM DESCRIPTION

As it has been discussed in earlier reports on this program, there are
basically two fundamental kinds of antenna systems that can be used in
applications requiring large apertures. The first is a large mechanically
steerable paraboloidal reflector or a number of smaller reflectors of this
type which are connected and fed as an array and mechanically steered as
individual radiators. The second is a phased array with stationary or
fixed apertures composed of subapertures whose relative phasing controls
the direction of the antenna beam. Thus, this program considers the
various aspects and organizations of the following generic types of large
ground based antenna systems:

A. A SINGLE LARGE APERTURE -- mechanically steerable.

A system of this type will be discussed in this study only to
provide a basis for the comparison of performance characteristics
with the other systems listed below. Technical descriptions and
data appropriate to this portion of the program have been obtained
from several organizations not directly involved in this study.

B. AN ARRAY OF LARGE DISHES -- each of which is mechanically
steerable.

The appropriate organization of a system of this type is
considered herein with respect to the element spacing and their
interaction..

C. A PHASED ARRAY OF SMALL CLOSELY SPACED ELEMENTS ORGANIZED
INTO SUBAPERTURES -- electronically steerable.

Most of the effort in this program will be concerned with
the various organizations, the feeding techniques, and the elements
appropriate to this type of system.

3
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D. A SELF-STEERING ARMY -- rapidly switched multiple beams or
adaptive systems.

Systems of this type can be used to mitigate the effects of
high intensity noise sources and employed in conjunction with the
system of type C to accomplish optimum mission performance. The
feasibility of application of these techniques for a high data
rate communication system is being investigated during the course
of this program.

Consideration is being given to the capabilities and limitations
of each of the above types during the course of this study and a report*
made in the above listed categories. Although some of the results and
information described therein were obtained in one research or industrial
institution and some in another, this report, as have previous reports,
was written with the idea of integrating the results of various research
efforts and techniques in such a way as to implement the objectives of
the program without regard to the actua l source of the material.

This present program has been active for the past eight months in
the ElectroScience Laboratory (ESL) at The Ohio State University. How-
ever, it is a natural outgrowth of a cooperative effort between the
personnel of the Center for Research in Engineering Science (ORES) at
the University of Kansas and ESL, which has been running under Grant
Number NGR 17-004-013 for the previous 2 112 years. Thus, the entire
program has uncovered a number of technical details with regard to the
ground based portion of the system and has been able to provide a
framework for evaluating various large ground-based antenna systems.
Additionally it has uncovered a number of technical details that need
further consideration and invention. However, recent efforts on other
programs have indicated that information concerning performance char-
acteristics and production costs of low-loss transmission lines,
radiating elements, and other systems are now being determined and
can be used in the design of any reasonable ground-based system. To
provide an optimum overall communications system, there is a need,
however, for more effort to determine the behavior of various high
performance antennas on spacecraft which are designed for future earth
orbital mission operations.

III. ACTIVITIES DURING THE PERIOD

In this period, several aspects of the program description given
in Section II were pursued and essentially completed. Primarily, these
concerned the efforts on the adaptive array techniques which have been
completed and culminated in a report Number RF 2902-1 that represents
the doctoral dissertation of Robert L. Riegler. In addition, studies

*Status Report IV, Grant Number NGR-17-004-013, CRES - University of Kansas.
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involving aperture blockage among arrays of closely spaced large dish
antennas which are mechanically scanned have been pursued on both a
theoretical and an experimental front. These items are to be summarized
briefly in a goal i tati ve manner in this section and reported in detail
in the appropriate section of the Technical Summary in Section IV.

1) During this semi-annual period the signal processing equipment
for an adaptive array study was completed, tested, and reported as
RF 2902-1. The following is an abstract of this report:

Adaptive optimization of signal-to-noise ratio in receiving
arrays is presented for both background sky noise and coherent
jamming type noise interference.

The array weighting coefficients which maximize SNR are derived
for an array subjected to uniform background antenna noise. An
array model of half-wavelength dipoles placed over a ground plane
is analyzed in detail to show the effects of such factors as mutual
coupling.

An adaptive array that rejects undesired or interfering signals
is presented. The array pattern is controlled by an adaptive feed-
back system based on a steepest-descent minimization of mean square
error. Here error is defined as the difference between the array
output and a locally generated reference signal. Minimization of
mean square error is closely related to maximization of signal-to-
noise ratio.

A two-element S-band adaptive array has been built, and its ex-
perimental performance is discussed. Typical antenna patterns for
various desired and interfering signals are shown, as well as measured
transient response. Finally, some experiments showing the array behavior
with modulated signals are described.

The results show that such an antenna system is capable of auto-
matically rejecting interfering signals, subject only to certain basic
constraints. No a priori information concerning the angles of arrival
of the signals is required. Detailed knowledge of the waveforms of
the desired and interfering signals is also not needed, although the
spectral density of the desired signal must be known.

2) A continuing effort is being made to determine quantitatively
the performance characteristics of an array of independently
steerable paraboloids by mechanical means. Consideration is
being given to the proper size and separation of large disk
antennas to achieve the requisite high performance character-
istics over a +60° angle of scan. A minimum separation distance
must be determined in order to utilize a given aperture size most
Afficiently. However, as the separation is decreased, the inter-
ference between adjacent paraboloids becomes important, especially
at large scan angles. This interference phenomenon is being in-
vestigated by several theoretical approaches in an effort. to

5
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determine quantitatively the pattern degradation of closely spaced
paraboloidal antennas which can be mechanically scanned. As the
separation is increased, the formation of grating lobes in a large
array of parabolic reflectors presents a problem which requires
a detailed study and a quantitative assessment of the results of
overall system performance.

The activities on this portion of the program are continuing on
both a theoretical and computational basis as well as on an experi-
mental verification approach. The theoretical results in this portion
of the program have been completed using the geometrical theory of
diffraction (GTD). The employment of the GTD to solve the blockage
problem associated with an array of closely spaced paraboloidal
antennas turned out to be straight-forward application of a simple
technique. if has been used very successfully to predict radiation
patterns of various antenna systems, especially antenna systems with
reflector surfaces. The computational effort to present these results
is in progress and should be completed shortly. There remains, however,
some simple experimental activities which are to be completed shortly
in an effort to verify the basic theoretical formulation that is to be
presented. This work comprises the doctoral dissertation of Mr. Che,ng
Don, and it is described in detail under S ,, ,.!ction IV-B. It is expected
that the entire effort on aperture blockage will be completed during the
summer of 1970 and carefully documented in a separate technical report.

IV. TECHNICAL SUMMARY

The discussion summarizing the technical effort of this report
period will be given in a condensed format using the program description
described in Section II in an effort to delineate the work accomplished
according to the appropriate documentation for this effort.

A. A SINGLE LARGE APERTURE - MECHANICALLY STEERABLF
(See Status Report Number 4, dated 15 February 1970
on Grant Number NGR-17-.004-013)

B. AN ARRAY OF LARGE DISH ANTENNAS

1) Introduction

As it has been mentioned before, an array of independently mechanically
steerable paraboloids with proper size and separation may be one of several
workable approaches capable of achieving the high vain requirement for the
DSCS. To provide the requisite scanning angle of +60" without interference
between adjacent paraboloids, the spacing between reflectors must be kept
at a reasonable distance which is larger than the diameter of the paraboloids.
Thus, a minimum separation distance must be determined which utilizes a
given aperture size most efficiently. As the separation is increased, the
formation of grating lobes in a large array of parabolic reflectors con-
stitutes a serious difficulty for which no generally satisfactory solution
has yet been developed. The problem can be visualized if the array pattern
is considered as the product of an element pattern and an array factor.

6
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The element pattern consists of the radiation pattern produced by a
parabolic reflector, while the array factor is the pattern of an array
of isotropic radiators which is a two-dimensional grating lobe pattern.
The array factor can be steered electronically by shifting the phase be-
tween elements while the element pattern is directed by the mechanical
movement of the individual dishes. In the ideal case, the element pattern
and a single lobe of the array factor will both point in the uesired
direction. Multiple beams appear, however, when more than one grating
lobe falls within the main beam of the element factor; this condition
occurs when the array spacing is substantially greater than the diameter
of the subapertures.

gratinq lobes from
separation of

this spacing is
the
de-

creased, the diameter of the reflectors must also be decreased so that
the effective scan range can be maintained, while at the same time more
array elements must be added to meet the gain requirement. The end
result will be a broader element pattern which in turn will ensure that
the grating lobes will have essentially the same amplitude relative to
the main beam. The beamwidth of both the main beam and the grating lobes
will, for all practical purposes, remain the same as long as the overall
array dimensions remain unaltered. The fine grain structure around the
various lobes will change, however, as more elements are added. Similarly,
if the spacing between the elements is increased, and the diameter of the
reflectors is increased correspondingly, the grating lobes will be moved in
closer to the principal beam. Once again the relative amplitude and beam-
width of all the grating lobes should remain essentially constant.

There are some esoteric techniques available to suppress the size
of the grating lobes. A possibility exists that the grating lobes
adjacent to the principal beam may be reduced in am 	 by the use of
random spacing among the array elements. However, it is anticipated that
the selection of such a design will prove to be an extremely difficult
problem. Another means of suppressing the grating lobes might involve
the use of an auxiliary array that could be steered and phased to cancel
out any given lobe. A major difficult; that might be anticipated from
such a scheme would be the obtaining of sufficient gain from the
auxiliary array.

The juxtaposition of spacing and reflector size discussed above
is predicted on l^^ttle or no interaction between the elements as a
function of scan angle. When this interaction effect is taken into
account an entirely different solution may be obtained for the com-
peting parameters. Thus, it shall be the purpose of this section to
study the problems associated with being able to an 	 determine
a spacing and antenna size which is optimum between the interference
effects at minimum separation, and the grating lobe effects at a maxi-
mum distance commensurate with high aperture efficiency. Since the
theory and manipulation of the array factor and element pattern is
available elsewhere, the effort herein shall be concerned with methods

It can be easily shown that the spacing of the
the main beam can be increased by a decrease in the
parabolic reflector antenna elements. However, if

7
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and techniques for analyzing the interaction effects between large
parabolic reflectors in a relatively closely spaced array.

An analysis of the blocking effect of a closely spaced array ob-
tained by the consideration of the geometric optics only has been done
in paragraph (2). First, the field in Franhofer region for an antenna
system of two closely neighboring paraboloids has been formulated; then
the field for a linear array of N-paraboloid is obtained. In these ex-
pressions, they show clear evidence of the interaction between neigh-
boring paraboloids due to the close separation between them.

The analysis in Sec. B-2 is based only upon the geometrical ray
theory which is a valid high frequency approximation. The first cor-
rection factor to this geometrical ray approximation is obtained in
Sec. B-5 by applying the geometrical theory of diffraction. The
surface current density on a parabolic reflector due to this cor-
rection factor has been obtained in addition to the current density
due to the geometrical ray contribution.

2) Theoretical consideration of the interaction between
ne g orinparaboloid antennas: 5e M ock ing a ect
of a closely  space array

a) Introduction - It has been learned that some mutual coupling
measuremene^s on ne^gTiboring paraboloid antennas has been done by
Andrews (Ref. B-1) for Collins Radio Co. and a similar measurement
also has been done recently by Reiche ( Ref. B-2) at the Hughes Aircraft
Co. It seems, however, that there is no literature concerning theoretical
analysis available. Therefore, it is desirable to develop the analytical
form which governs the fields of a paraboloid antenna as a function of
scan angle in the presence of neighboring array elements of an identical
kind.

The far field transmitting and receiving patterns of the neighboring	 a
paraboloidal antennas with their vertices far apart will be the vector
sum of individual contributions at the field point and the vector sum of
the receiving fields at individual feeds respectively. In fact, the
transmitting and receiving patterns of the paraboloidal antennas system
in Fraunhofer region are the same in this case. As the positions of the 	 ^►
vertices of the paraboloidal antennas get near enough, the interaction
between them can no longer be negligible. The interaction between the
paraboloidal antennas for which the system being used for transmitting	 =.
function and that for which the system being used for receiving function
will constitute different problems. However, the final analysis for
both transmitting and receiving functions of the system will lead to
the same result. Thus the transmitting and receiving modes of the
system merit no separate investigation. In this report, the following
paragraphs are devoted to the transmitting mode of an array of paraboloidal
antennas.

8 ^I
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The elements used in the array are parabolic reflector antennas.
The reflector is assumed to have a perfectly conducting surface and
;s illuminated by a primary feed antenna located at its focal point.
The aperture of the rc-:flector is assumed to have a tapered illumination.

The fields in the far-zone region of a two-element array are ob-
tained both with and without blockage in Sec. B-2c. The field in the
far-zone region of a linear array of N identical parabolic reflectors
is formulated in Sec. B-2d. A simple case in which the array pointing
direction is	 and the observation point locates at P(R,e,^) with
0' = o = 7/2 is studied in Sec. B-2e. The angles	 and (e,^) are
defined in Sec. B-2b and Sec. B-2c respectively.

(b) Consideration of the Coordinate Systems - The fixed coordinate
system (x,y,z) with origin at point "6 will Be used to define the observation
point ire space. The paraboloid coordinate system (x',y',z') with origins
at the vertex of each paraboloid will be used to define the source points
-in space. The condi t , on of the paraboloid coordinate system is specified
in such a way that when the axis of the paraboloid (z'-axis) points in
its zenith direction (in the direction of z-axis) the remaining x' and y'
axes coincide with the fixed x and y axes respectively. That is, when
paraboloid is at its zenith direction, the coordinates x', y' and z'
coincide with the fixed coordinates x, y and z respectively. In order
to define uniquely the pointing direction of the paraboloid in the
direction (0,0 1 ) in the fixed coordinate, the axes of the paraboloid
are being rotated as follows: first, x'-axis is rotated by an angle q)'
in azimuth direction with z-axis as the axis of rotation. Herne,
the angle between axes y' and y is 0'. Next, z'-axis is rotated
by an angle e' with y'-axis as the axis of rotation. Thus, the angle
between axes z' and z is e' and the angle between x-axis and the pro-
jection of x'-axis on the xy plane is 01.

Z

X'
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Let the direction of the projection of x'-axis on the xy plane
be &, then

ay ,ay , = ^'

aax,^
az ,az , = e'

ax „a - e'

By these two rotations, the paraboloid coordinates have been uniquely
defined in the fixed coordinate system. Hence.,

B-1(	 )

ax , = ax cos e cos 0' + ay cos e' sin	 + a z (- sin e')

ay , = aY (- sin 0 1 ) + ay cos 0' + az 0

az , = ax sin e' cos o' + ay sin e' s in	 + az cos e'

(c) Fields in Fraunhofer Region for an Antenna System
of wo Nei ghbori ng Parabol oids

A two-element array of identical parabolic reflector antennas with
their axes pointing in the direction (e',^') is shown in F'ig. B-1. The
first parabolic reflector is located with its vertex at the origin 0 of
the fixed rectangular coordinate (x,y,z). The second parabolic reflector
is located with its vertex at point A along the y-axis a distance "d"
away from the origin. The aperture radius and the focal length of the
parabolic reflectors are denoted by "a" and "f" respectively. The unit
vectors av 1 , av 2 , and aR are in the direction of vl, v 2 , and R respectively.
The distance from the vertex to its aperture for a parabolic reflector is
denoted by z  which can be found to be a /4f.

Let the field distribution over the circular aperture by designated
by

(B-2)	 F(p o*) = A(p,*) ejky(p,^)

with amplitude distribution A(p,^) and phase distribution Y(p,^); where
p and ^ are the variables for the polar coordinates on the aperture.

For the far zone region, the field due to a single aperture is
given by

io

1

1,



P (X,Y,Z )

0)

Y

r

0

(B-3)

L 
e-jkR	 jkzoy

up	 2a	 R	 (1 + Y^ e

2 Tr a

f 
F(p,V)dkp[a cos ^ + ^ sin ^] pdp d^

0 p =0
where

_ 2

(B-4) z	
a

o - a

y = sin a sin 8' cos	 + cos a cos e'

a = sin a cos e' cos	 cos e sin e'

s = sin a sin (0-09

Z

X

Fig. B-1.
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For the configuration in Fig. B-1,, the total field at observation
point due to the identical aperture distribution F(p,^) on apertures
No. 1 and No. 2 is	 ,

(B-5)

Up = Up 	+Up
1	 2

-jkR	 jkz Y

27r	 a F	 ejkp[a cos	 + s sin	 d	 d

°	 e-jkR	
jkz0Y jkd sin e sin

+	 R — (1+Y)e	 e

21r	 a
'	 F(P.^)ejkP[a cos 	 sin V-J	 d^P d A

0	 0

Equation (675) is the total field at observation point without considering
the blocking',,effect.	 In the case that the separation between the neighboring
paraboloids is not large enough, the blocking effect due to the geometric
optics obstacles has to be taken into account; when the system scans away
from its zenith direction.	 In the latter case, the first aperture of the
paraboloid with vertex at origin is partially blocked by the presence of
the second paraboloid with vertex at A in Fig. B-1.

If it is assumed that the beam diameter equals the element aperture
diameter, the separation between two adjacent elements required for no
blockage is given by

(B-6)	 d = — a
cos em

where F	 4

d	 = separation between elements (parabolic antennas)
a	 = radius of element apertures
e	 = maximum polar angle coverage for which ;io aperture

m	 p	
p

whenblockage occurs	 scanning.

Theoretically, for an angle coverage up to 90 degrees, the separation d
has to be infinity in order to have no blockage. 	 The normalized minimal
separation with respect to the diameter of element apertures vs the maxi-
mum polar angle coverage is shown in Fig. B-2. 	 It is seen that for an

12
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aperture diameter of 30 ft with maximum angle coverage em of 60 degrees,
the minimal separation required for no blockage is 60 ft (twice the size
of the aperture); however, fore of 87 degrees (i.e., for an elevation
angle of 3 degrees above horizon, the separation increases up to approxi-
mately 600 ft (20 times the size of the aperture).

On the other hand, with a given aperture radius "a", the blockage will
not occur until the array pointing direction e' reaches certain value for
a given element separation d = pa in terms of the aperture radius by a
constant p. Let this "certain value" of array direction o' for a given
d = pa be eb. Then eb can be obtained as

(
2a^= cos-1 p

For the scan angles less than or equal to ob, there exists no blockage in
a geometrical optics sense; for scan angles larger than eb, blockage occurs.
The dependence of eb on the element separation d is shown in Fig. B-3.

Considering the blocking effect due to the geometrical optics obstacles,
the field in far-zone region can be taken care of as follows: looking back
along z'-axis toward the vertices, the overlap portion of the adjacent
apertures due to scanning away from its zenith direction is shown in Fig.
B-4. The distance d' can be found as

(B-8) d' = d J1 - sin 20, sin2^'

and

(B-9) d91 = 2a - d' = 2a - d J 1 - sin 2 6' sin2^'

where d' is the distance between the axes, which is the projection of
the separation d of the vertices of the paraboloids on the plane per-
pendicular to z'-axis, when the axes point at (e',^') direction and
d is the overlap distance along this projection. It is noted that if
d^ is larger than or equal to the aperture diameter, there is no blockage.
The blockage occurs when the corresponding d' for an arbitrary array pointing
direction (e',0 1 ) is less than the aperture diameter. For the latter case,
the overlap angle P is given by

(B-10) o = cos -1 1 - !i)
2a

The blocked area Ab which is the shaded area in Fig. B-4 can be found as

d
(B-11) Ab = 2 a2 1 - a - 2 )
	 I
 a sin Q

(B-7)	 eb = cos-1 
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Fig. B-4.

The blocking effect can be taken care of by subtracting the part of
contribution due to the blocked aperture, thus

(B-12)
U	 - 

J	
e-jkR (1+

y ) e jkzOY [I - Ipl	 2a	 R	 b

with

27r a

(B-13) I = (
	

f(p.^)ejkp[a cos ^ + ^ sin ] pdp d^
J 
0 0

o l	 a
(B-14)

I 
	

+Q
 =	 F(t.^)ejkt[a cos ^ +	 sin k t dt d*

A l —Sa PW

where I is the contribution from the whole aperture and I b is the con-
tribution from the blocked part of the aperture. The pRrameter Al is
the angle between the unit vector of the projection of y onto the x'y'-
plane of the blocked aperture and the unit vector x', it is found to be

(B-15) of = tan- 1
 cos os s f

16
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The lower limit of integration, p(+ ), is governed by

(8-15)	 a2 = P 2 + d' 2 - 2pd' cos( ► - A1)

One of the two possible roots has to beproperly chosen for different
ranges of the pointing angle e' as it will be shhown in Sec. B-2d. Therefore,
the total field at observation point due to both apertures with blockage)
becomes

(B-17)
Up = Upl (partially blocked) + Up2 (unblocked)

-JkR	 jkz Y
_	 R- ( 1+Y) e °	 D - Ib]

-JkR	 jkz Y

	

+ 47 _T_ (1 +Y) e °	 I

where I and Ib are given in Eqs. (B-13) and (B-14).

(d) Fields In Fraunhofer Region for a Linear Array of N-Paraboloidsr.—^arr.r.r.—.	 ^^r r	 r

The array is composed of N identical paraboloids and it is assumed
that they point in the same direction simultaneously without delay.

The total blocked area Ab for a linear array of N identical parabo-
loidal antennas is the sum of the first (N-1) blocked area for the sys-
tem of two-element array given in Equation (B-11). Hence, A. becomes

(8-18)	 Ab = (N-1)	 2a2 	-	 cos e' 1 - 
2

&.:- cost 
of 1J2

The total aperturc A of an array of N-element with no blockage is given
by

(B-19) A = NOW

The total effective aperture Au of an array of N-element with blockage
thus becomes

(B-20) Au = a2 Nor - 2 st - 2	
2

cos 0'	 1 - 2 cos t e' 
1J2

 )

where

N = number of elements in an array
a = radius of individual aperture
P = angle of overlap defined in Equation (B-10)

17
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p = a constant defined by the relationship given as d = pa,
where d is the separation between adjacent elements

e' = angle of scan or the pointing direction of an array.

It is desirable to
apertures over the
the ratios of Ab/A

(6-21)	 rb = 7-

know the percentages of the blocked
total aperture A with
and Au/A respectively,

2 Q - R cos e' 1
7r 
1

and the effective
Let rb and ru be
given as

1/2i

J

no blockage)
then they are

2
- ^ cos t 0

(B-22)	 ru : 1 - rb

It is noted that the ratio rb and ru are functions of parameters N, p
(or d, the element separation), and the array pointing direction e'.
They are independent of the aperture size. It is also noted that the
above expressions are valid for an aperture distribution of uniform
amplitude and phase.

The ratios rb and ru vs the element separation for a given array
direction e` have the same significance of the curve eb vs the element
separation as given in Fig. B-3. It has shown that for the scan an les
less than or equal to the corresponding angle eb given in Equation ?B-7),
there exists no blockage, rb = 0 and ru = 1. For the scan angle larger
than e6, the blockage occurs. On the other hand, for the case of the
smallest element separation of which the element separation is equal to
the diameter of the aperture and it corresponds to the best case of the
grating-lobe-problem, the ratio rb vs the scan angle is shown in Fig. B-5
for the array elements of 2, 10, 20, and 200. The percentage of the ef-
fective aperture of an array ru is equal to (1-rb) as shown in Equation
(B-22). It is, therefore, obtained that ru is 100/ for any number of
elements in an array when the array is pointed at zenith. However, when
the array is pointed horizontally, ru becomes 50% for two-element arrays,
10% for ten-element arrays, 5% for twenty-element arrays, and 0.5% for
two-hi,indred-element arrays. The dependence of r u on parameters N and 8'
is tabulated in Table B-1.

Number of
E 1 emen is

Pointing	 N 2 10 20 200 2000
Direction e'

Oo 100 100 100 100 M	 100
400 93.45 88.21 87.56 86.97 FĜ.	 1

r% 600 80.45 64.81 62.86 61.10 60.92 u
800 60.99 29.80 25.90 22.39 22.04
900 50 10 1	 5 1	 0.5 1	 0.05

TABLE B-1.
The effective aperture ru in percentage for various

array elements and array pointing directions
with an aperture distribution of uniform

amplitude and phase

18
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The total field at observation point P(R,e,^) due to a linear array
of N-a erture with the arrangement in Fig. B-6 will be the sum of the
contribution of the first (N-1) partially blocked apertures and the last
unblocked aperture, thus

(B-23)
N-2

U	 U	 (partially blocked) + U 	 (unblocked)
p n a0 pn 	 pN-1

=	 e-JkR	 jkzoy •

--T-- (1+Y ) e

	

N-2	 jk nd sin a sin

	

• n^0 e
	 ( I - Ib)

+	 e	 (l+Y)e	 o
-^kR	 ^kz y
—

	

-JkR	 jkz y
fir— ( l +Y) e ° •

N-1 
e 
jk nd sin a sin	

lb	 ^
N-2 

e 
Jk nd sin a sin• I	 ^	 - 

n=0	 n=0

where the factors I and N l 
e
jk nd sin a sin 0 are the element factor

n=0
and the array factor respectively for a linear array of N-paraboloid
without blockage; the factors l

b
 and

N^2 
eJk nd sine sink

N-0

are the element factor and the array factor respectively for taking
into account the blockage; the factors I and Ib are given in Eqs. (B-13)
and (B-14) respectively and the parameters z° ,Y are given in Eq. (B-4).

(e) Consideration of a Simple Caser^r^r ^^ rte. r

In order to observe the pattern of the system in Fraunhofer region,
a simple case is considered in which the array lies along y-axis and the
scanning will be performed in the right corner sector of the yz-plane.
For the given condition, 0 is w/2 and 0' is w/2. Hence, from Eq. (B-4)

19
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(B-24) y = cos (e - e')

« = sin (e - e')
s=0

From Eqs. (B-8) and (B-9),

(B-25) d' = d cos e'

(B-26) d k = 2a - d' = 2a - d cos e'

From Eqs. (B-13) and (B-14)

(B-27) I = 21T 
j a F(p,^)ejk sin (e-

e l )cos	 pdp d^

0 0

(B-28) I b = f+Q a	
F(t.*)eJkt sin (e-e l )cos ^ pdp d,

-0 pW

For the aperture distribution F(p,*), it is assumed that the feeds are
normally designed to illuminate the parabolic reflectors with an intensity
at the edges that is approximately 10 dB below that at center. For a
tapered illumination F(p.^) is given to be

2
(B-29) F(p,o) = 1 - (1-6) 27
	

for p < a
a

For a 10 dB tapered illumination, the value of a has to be 0.1.

To obtain the desired aperture distribution, in the present case,
the W dB tapered aperture illumination, is itself an attractive problem
namely aperture synthesis. For the purpose of analyzing the blocking
effect of the closely spaced linear array of N-dish, it is assumed
that the desired aperture distribution has been achieved without
worrying about the actual technique to obtain it. The effect of
tapeiiI ng the illumination down toward the edge is: reduction in gain,
increasing beamwidth, and reduction in side lobes as compared with
the uniform aperture distribution, and reduction of the energy
spilled over the edge.

The integration in Eq. (B-27) can be performed for two different
cases; one is that for e = e'

(8-30)
27r a

I(e=e
, ) = J
	

l _ 1-a	 p2 pdp d^

0 J o	 a

_ fa2 1 +d

L

21
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and the other one is that for e ^ e', hence

(B-31)
2

I(e¢e') -27ra l _ 1-cs	 p 2 ejkp sine-©') cos	
pdp d^,

= 27ra 2 u-- ) + 4^a2(1-6)
u

with

(B-32)

u = ka sine-e').

The integration of Ib in Eq. (B-14) will, in general, be a complex
number, hence I b may be denoted by its real part Ibr and imaginary part
Ibi ; thus

(B-33) I b = Ibr + j Ibi

and

(B-34)
+o a

Ibr =	 F ( p)cos[kp sine-e' )cos	 pdp d^

- SI PW
(B-35)

+st a
Ibi =	 F(p) sin[kp sin e-e')cos ^] pdp d^

PW
The integration of Ib in Eq. (B-33) can be obtained for three cases 	 .`
depending upon the range of the value of d' = d cos e'. The first
case is that d' > a, then

i	 e=e' = sta2 (1 +a 	 2 +^ [P2 _ (1-^ )	 p-	 d
br (	)	 e	

_	
2	 a2	 4'

o	
M

where Q is defined as the overlap angle given in Eq. (B-10) and p_, one
of the two roots of Eq. (B-16), is given as 	 L
(B-37)	 p_ = d cos e' cos 	 a2 - (d cos e' sin *)2
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Let

(B-38a)	 A = k sine-e') cos

(B-38b)	
T = 1 _ 1 -6	 3A2a 2 - 6
14

A	 a	 A

(B-38c)	
T = a - 1 -6) A2a3 - 6a

	

2 A 
a 
T	 A

A

11_g	 3A2 p 2 - 6
(B-38d)	 T 3 = 	 - 5--

a 2-----Al
A 	A

	

p - 1 -d	 A2p3 - 6p-(B- 38e) T4 A - 2 —3 A

(B-38f)	 T5 = - ^.^. 	 1-6	 64
A	 a	 A

then for e # e',

(B-39a)
+s^

I br( e#e ') 
= 

2
f
 [T1 cos ( Aa) + T2sin ( Aa) - T 3cos ( Ap_) - T4sin ( Ap_)]d,

0

(B-39b)
r+0

I bi ( e#e') = 2
J 

[T 1 sin(Aa) - T
2 
cos (Aa) - T 3sin(Ap_) + T4cos(Ap_)]d^

0

The second case is that d'=a; for this rase P = fr/3. Hence

(B-40a)

I ( e=e') 
= ta 	 + 33a2(3-78

br	 3	 8

(B-40b)

Ibi.(e=e) = 0
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(B-41 a)

I (e#e') = 2 -	 3	 ...^ -	 1-^	 123

b r	 ^^k s7n°(e-e )	 a7 	k sin (a- e )
0

+ 2	 [T 1 cos(Aa) + T 2 sin(Aa)] d^

0,^/2

+ 2	 [T3 cos(AO+ ) + T4 s%n(Ap+ ) + T 5 ]d^

Q

(B-41 b)
Q

I bi (e#e') = 2 f [T 1 sin(Aa) - T 2 cos(Aa)]d^

0
^r/ 2

+ 2	 [T3 sin(Ap + ) - T4 cos(Ap+)]d*

0

where A is given in Eq. (B-38a); T1 and T 2 are given in Eqs. (B-38b) and
i(B-38c) respectively; T3 and T 4 are given n Eqs. (B -38d) and (B-38e) with

p - replaced by p+ . For d' = a case, p + is found to be

(B-42)	 p+ = 2a cos ^

The third case is that d' < a, then

	

2	 4

(B-43a)	 I ( e=e') = ga2(1+6) + 2	 [P+ - 1-6	 44	 d^br	 2	 2

	

^	 a

(B-43b)	 Ibi (e=e') = 0

(B-44a)

I ( e#e`) = 2 _ 
40-6)	 2+1 /cos 20) • tan 0

b r	 ^'(e-e'a	 k sin	 )
r^

+ 2 
J 

[T 1 cos(Aa) + T 2 sin(Aa)] d*
0
fTr

+ 2 
	

[T 3 cos (Ap + ) + T4 sin (Ap +) ]d*
0
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(B-44b)
SI

Ibi (e#e') = 2	 [T i sin(Aa) - T 2 cos(Aa)]d,

;R o

+ 2	 [T3 sin(Ap+ ) - T4 cos(Ap+)]d*

Again, A is given in Eq. (B-38a); T1 and T2 are given in Eqs. (B-38b)
and (B-38c) respectively; T3 and T4 are given in Eqs. (B-38d) and
(B-38e) with p- replaced by p+ ; for d' < a case, p+ is found to be

(B-45)	 o = d cos e' cos	 a2 - (d cos e' sin *)2

where

e' = the array pointing angle or the scan angle

a = radius of the circular aperture

d = separation between the adjacent paraboloids

27r
k=x

The array factors in Eq. (B-23) for 0 = ff12 case are

N 1sin kNd s
in a	 k(N-1)d sin e

ejknd sin e =	 2	
e^	

2

n=0	 sin k---. n —

N-2	 sin 
k(N-1)d sin a	 j k N-2) d sin e

jknd sin e =	 2	 2

n =0 
a	

sin ----^ i n e	 e

Let	 kNd sin, e
sin kNd 2s -

(B-46a)	 F1(e) = s in	
sin e

—2----

sin 
k N-1 d s in

(B-46b)	 F2 (e)	 sin esin --2-----
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Therefore, the total field U p at observation point in Eq. (B-23)

becomes

(B-47)
-jkR	 jkz Y

OP	

j 
k(N-1)d sin e	 k(N-2)d sin e

• F l (e) I e	 2	 - F2 { e)
 

l
b e 2

7	 The angular distribution g(e, ^) of U
p 

is

(6-48)	 ^

j	 kd sin ekd sin e 2
( l+Y) 

IF 1 (e)I-F 2 ( e) (Ibr cos ---2 ----^- + I bi sin	 2

kd sin 8	 I	 Cos kd sin a	 112
+ F2 (e) Ibr sin --2 --- - b i	 2	 .

jkz Y	
j k N-1 d sin e

e ° +	 2

	

F (e) I	 sin kd sin 	 - I	 cos kd s in e
j tan -1 	2	 br	 _2	 bi

e	 sin a	 kd sin e
F 1 (e) I - F 

2 
(e) Ibr cos -- ------- + I bi sin

Let the amplitude and phase distributions of g(e,^) be denoted by

A(e,^) and ty(e,^) respectively, then

(B--49)	 g(e,o) = A(e,^) eMe, )
a

with

(B,50a)

kd sine	 kd sinel 2A(e, ^)	 1	
I
F (e)I-F_ ( +Y) Ibr cas -- - -- + Ibi sin 2 1

r	 1	 2 (e) ^	 '^

kd sin e _	 kd sine	 112
+ F2 (e) I

brsin	 2	 Ibi 
cos	

2

(B-50b)

Y(e,^) = kz Y 
+ k(N-1)d sine

o	 ,

+tan
-1 F2 (e) Clbrsin kd-- sine - I bi cos kd---^ e

Ka sine	 kd s i ne1
F 1 (e)I-F	 I2 (e) brcos 2 -- + Ibisin 2

26
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I21/2
bi

tan-1 
-Ibi )
!-I -

br
i

se

d

•

where Fl(e) and F2(e) are defined in Eqs. (B-46a) and (B-46b) respectively;

rbr and Ibi are defined in Eqs. (B-34)  and (B-35)  respectively and I
is defined in Eq. (B-27) .

The formulation of Eq. (B-48) is -the linear sum of N individual
element signals of the array without adding any signal processing. It is
found that the beam maximum is not at the direction where the array pointing
direction (0.0 1 ) is. This is due to the fact that when the scan is per-
formed, signal path difference is introduced for individual aperture in
addition to the blockage. For a means of tracking and communication, it
is desirable to have the beam maximum of the array coincident with the
array pointing direction. To achieve this goal, the transmitting or re-
ceiving signal of each element must be compensated for phase difference
with respect to a reference phase, both for phases introduced by signal
path and the blockage, in order to add the signals in phase at the ob-
servation point in space or at summing point at receiving terminal.

For the simple case considered in this section, the field of the
mth-element at point P(R,e,^) is

(B-51)	 U (P) _ ^-- a
-jkR (1+y)ejkz

OYejk(m-1)d sin e
m	 2a ^R

• [I - Ib]

The numbering of the elements in the array in Eq. (B-51) is shown below.

Substituting Eqs. (B-24) and (B-33) into (B-51), it yields

(B-52)

Um(P) - 2a . 71-	
l+cos(e-e') (I-Ibr ) 2 +

• ej 7TH 2 a -j kR

• ejkxocos(P-e') eik(m-1)d sin

27
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In order that the fields due to each element in the array are in phase
at the observation point R(R,e,^), it is necessary to introduce a phase
factor % for the mth-element in the array to compensate the signal path
and blockage resulted from scanning. The phase factor wm introduced in
the circuit associated with the mth element can be found from Eq. (B-52)
as

(B-53)
1	

( 
- I

^m = - kzo cos(e-e') + k(m-1)d sin e + tan -1 I-b
br

where zo, I, Ibr, and Tbi are given in Eqs. (B-4), (B-27), (B-34) and
(B-35) respectively,, 	 t is noted in Eq. (B-53) that for the partly
blocked element, in addition to the phase introduced by the signal path,
there is this phase contribution resulting from the blockage.
The last element in the array is not blockod, hence its field at the
observation point P(R, e, ^) is

(B-54)

(P) _

	 e-jkR (1+^ ) e	
e	

I
jkzOY jk(N-1)d sin e

UN	 iT ^;

12x 
R [1 + cos(e-e')]

jkzo cos(e-el)
•e

Consequently, the phase factor for the last element becomes

(B-55) ON = -[kzo cos(e-e') + k(N-1)d sin e]

The total field, at point P(R,e,^) in space, of an array of N-element
with phase compensation for each element in the array is then the
linear sum of the first (N-1) processed signals with blockage and the
Nth processed signal without blockage; it is found to be

(B-56) u	 L e jkR [1 + cos(e--e')] I(N-1) 	 + 1 2+ I]p 2x ^—	 r	 bi

3) The Blocking Effect of a Closely Spaced Array Employ
the Geometrical Theory of Diffraction

(a) Introduction

The formulation in the previous sections are based only upon the
geometrical optics theory (geometrical ray theory). The geometrical
optics theory is accurate only as the operating wavelength approaches
zero; nevertheless it is a valid high frequency approximation. The
first correction term to the geometrical ray approximation can be ob-
tained by employing the geometrical theory of diffraction (GTD) de-
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veloped by Keller (Ref. B-3, B-4). The geometrical theory of dif-
fraction is an extension of the geometrical ray theory to take into
account the fields produced by the incident rays which hit edges,
vertices of boundary surfaces, or which graze such surfaces. The
geometrical theory of diffraction is a valid high frequency approxi-
mation in complement with the geometrical ray theory. It has been
shown, for example edge diffraction from truncated paraboloids and
hyperboloids (Ref. B-5,6), diffraction by a cylinder of any cross
section (Ref. B-7), diffraction by a smooth three-dimensional object
of any shape (Ref. B-8) and other diffraction problems (Ref. B-3,9),
that the technique employing both the geometrical ray theory and the
geometrical theory of diffraction predicts successfully the radiation
pattern for various shapes of scattering bodies. In these cases,
excellent agreement between GTD results and previously known exact
results have been obtained. It is found that GTD results agreed per-
fectly with the leading terms in the asymptotic expansion of the
exact solutions of the diffraction problems, the expansion being
with respect to the wave number k = 2ff/a, as k approaches infinity.
The technique of ray tracing is employed in the geometrical theory of
diffraction. It has been shown that it gives even better results when
additional higher order diffracted rays (multiple diffracted rays),
such as doubly diffracted, triply diffracted, -, and nth order dif-
fracted rays, are taken into account (Ref.  B-3,4) . The basic formu-
lation of the theory of GTD can be found elsewhere, for example
Reference 4, it will not be repeated here.

For a parabolic reflector with a focal feed, there are edge-
diffracted rays generated by the incident ray which hits the edge of
the parabolic reflector. These edge-diffracted rays predict success-
fully the wide angle side lobes of a parabolic reflector antenna (Ref. B-6).
For a two-element array of parabolic reflector antennas, the blocked re-
flector is generally in the wide angle side lobe region of the unblocked
one when the scanning is performed. Thus the edge-diffracted rays gen-
erated by the unblocked reflector are partly collected by the blocked
reflector. It is then the interaction between the neighboring parabolic
reflectors can be investigated.

In the geometrical optics approximation as investigated in Sec. 29
the contribution to the aperture distribution is assumed to come solely
from the feed. Considering the edge diffraction mechanism, the con-
tribution to the aperture distribution of a blocked reflector is the y sum
of the following two types of edge diffracted rays in addition to the
direct ray from the feed: rays generated by the unblocked reflector and
rays generated by the edge of the same blocked reflector. For the un-
blocked reflector, the contribution will be the direct ray from its
feed and the edge diffracted ray from its aperture edge.

Both the current and aperture distribution methods can be used to
predict the radiation pattern in the forward axial region of an array.
To obtain the wide angle radiation pattern of an array, the reflected
rays reflected by a convex surface of a reflector must be included.

29



(B-70b)	 e = x' (-sin 6) + y' cos 6

CB-70c)	 p = x' (-cos , cos 6 ) + y' (-cos V sin

30

6) + z' (-si n ,y}

r

The field associated with the edge-diffracted ray of a parabolic
reflector is obtained in Sec. 3b. The surface current distribution
on a paraboloidal surface due to the direct ray from its primary feed
and the edge diffracted ray from its own edge is obtained in Sec. 3c.
The surface current distribution on a paraboloidal surface due to the
edge diffracted ray from an adjacent reflector in an array is obtained
in Sec. 3d. A brief summary is given in Sec. 3e.

b) The Field of Edged-Di ffracted Rays of a
ara o is Reflector Antenna

In Fig. B-7, a parabolic reflector antenna is shown with its vertex
at the origin 0 of the rectangular coordinate system (x',y',z') with its
axis coincident with z'-axis. To describe an observation point Po in space
a spherical coordinate system P©(v,r;,6) with its origin at point 0 is
employed, where v is the distance from the origin to the observation
point; ^ is the polar angle measured from z'-axis; and 6 is the azimuth
angle measured from x'-axis. A point Q on the paraboloida li surface
can be described by a cylindrical coordinate system Q(p 5 6,z 1 ) with its
origin at point 0, where p is the radical distance measured from z'-
axis; this point Q on the surface can also be defined by a spherical
coordinate system Q(z q ^ 0 6) with its origin at the focal point F. where
z is the distance from the focal point to point Q; t is (fr-6 0 ) with eo
being the polar angle measured from z'-axis; and again 6 is the azimuth
angle measured from x'-axis. The distance from the focal point to an
edge point Qi on the circular edge of a parabolic reflector -is denoted
by to and the angle subtended at the focal point by a radius of the
aperture is To. Let the radius of the aperture and the focal length of
the parabolic reflector be denoted by "a" and "f" respectively, then
an edge point can be described either as 

Qi(QO'Yo'6) 
or by Qi(a, 6,zp)

with z  being a2/4f.

The reflector is assumed to have a sharp edge and a perfectly con-
ducting surface. The reflector is illumi nated  by a primary feed antenna
located at the focal point. For the present analysis, the feed is assumed
to be a radiator whose dimension is small compared with the aperture diameter
and its pattern is assumed to be broadly directional with its maximum
value coincident with the reflector axis. It is assumed, that the reflector
is in the far-zone region of the feed antenna; consequently the incident
field at a point on the paraboloidal surface is essentially a TEM wave
and its polarization can be specified in its transverse plane with
respect to the propagation direction of the 'incident ray I. A^ any point
on the paraboloidal surface Q(t 5 q)., S) , let the unit vectors 1, e, and p
form a set of orthonormal basis where e Aand

	
are in the transverse

plane of I and p = e x	 It is noted I and p are in the constant
6-plane; a is perpendicular to this 6-plane. The unit vectors at point
Q(t., .6) on the paraboloidal surface are found to be

(B-70a)	 1 = x' sin ^ cos 6
	

+ y' sin ^ sin 6
	

+ Z ' (-Cos ^}

i

1



y'

4

I

Fig. 6-7.
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The unit vectors X 6 and X 
Q are given as

X6 = e

tangent to the paraboloidal surface at point

h
X  s x cos 

f 
cos 6+ y' cos 2 sin s+ z' sin

The unit vector normal o thq paraboloidal surface at,, point Q punting
toward the aperture is i p x X a ; let it be denoted by n, then it can be
obtafned as

(B-70d)	 n = x' (-sin	 cos 6) + y' (-sin 
2 

sin d) + z' cos

The polarization of the incident field at point Q on the surf,.
can be expressed to be

--jkx
(B-71) (Q) = Ce A g (^96) + p B h(^as)]	 A,

where A and B are amplitudes; g(*,6) and h(w) are angular distribution
functions of the electric field at„point„Q on the paraboloidal surface
from the primary feed antenna for e and p polarization respectively.

For an observation point Po(v,^,d) in space in i =ig. B-7, consider
the path from the feed to the observation point which includes a point
on the edge of the reflector; the path consists of two straight line
sections in a homogeneous medium. There exist two points Ql and Q2 on
the edge of the reflector which make the distance along the path a
minimum and maximum, respectively. According to Keller's extension of
Fermat's principle (Ref. B-4), both minimum and maximum paths are
trajectories of two edge diffracted rays. The edge points are defined
by the meridian plane which intercepts the edge of the reflector at Q1
and Q2.

Since high frequency diffraction is essentially a local phenomenon,
the edge diffracted field can be determined in terms of the reflector
and ray geometries at the point of diffraction Q i !i = 1,2) on the edge.
The field of an edge diffracted ray r(P ) at the observation point P
is given by (Ref. B-10). 	 1 0	 0

Pi

- jkr
(B-72) f̂ rPo ) = 0 ( Q i ) • E f ( Q i ) r---(- +r	 e

where	 D is the dyadic diffraction coefficient for a straight edge,

€f(Qi ) is the electric field of the feed at point Qi on edge,
i = 1,2,
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P i is the distance of the caustic from the edge at Qi,

r  is the distance from Q i to the observation point Po.

The dyadic diffraction coefficient for a straight line $ and the caustic
distance p i are given in Appendix I and II respectively.

From Appendix I, the dyadic diffraction coefficient at edge point
Q, with normal incidence on the edge is given to be

(B-73)	 $(Qi ) = e e Ds (Qi ) + G P Dh(Qi)

where	 a is the unit vector tangent to the edge at Qi,

p = e x I; I being the unit vector in the direction of the
incident ray,

q = e x d; d being the unit vector in the direction of
the diffracted ray.

The scalar edge diffraction coefficients Ds(Qi)
soft and hard boundary conditions respectively;
dition it implies that the total scalar field u
for hard boundary condition, it means au/an = 0
being in the direction normal to the edge. The
coefficients Ds (Q i ) and Dh (Q i ) are given as

and D4 (Qi) stand for the
by sort boundary con-
= 0 at the edge, and
at the edge with n
scalar diffraction

(3-74)	 D (Qi ) = Ds(sd (Q i ), si(Qi))
h

_e
 _j	

iT	 F(kL a_) _ ML a+)+	 i
2 72	 cos sd-si	

cos 
sd+si

with

(B-75) a_ = 1 + cos(sd + 009

	jkL.a_	 2
(B-76) F(kL i a_)	 j2 kL i a_ e	 +	 e-^T dT

+	 +
JkLia

F	 +

(B-77) L i = r +9'o for spherical wave,
i r

Xo is the distance from the focal point to point Qi on the edge.
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It is seen that the dyadic diffraction coefficient 11 is a function of the
incident and diffracted ray geometries at the point of diffraction Qi on
the edge; it does not depend on the edge curvature. The curvature of the
edge is taken into account by the divergence factor,

P i	1/2

ri ^ai+ri

which is expressed in terms of the caustic distance at the edge.

The Edge Diffracted Field €d(Po ) at the Observation Point Po(v,C,$)
t

.,Due. to the Diffraction at	 ge Point Q,

In FiB-7 at edge point Q1(a,s,zo) the unit vectors in
Eqs. (B-701 and JB-73) are obtained to be

(B-80)

el = x' (-sin s)	 +y cos s
A	 A	 A	 A

I 1 = x' sin To cos s	 +y' sin T  sin s	 + z' (-cos TO)

p  = x' (-cos TO cos s)	 +y' (-cos To sin s)	 + i' (-sin 4'0)

d= X, (v sin E - a)cos s +^, v sin	 - a sin s + z, (v cos
	 - zo)

1	 rl	 y	 rl	 _.'	
r1

_	 (v cos	 - z0 )Cos s +	 (v cos	 - z0 )sin-(
ql	 X

1
	 rl	 y	 r1	 + z	 r1

A	 A	 A

net = x' cos a	 +y' sin s	
a

t1=x'	 cos h 	 +y.	 sinr 6 	 +z

1+27	 1+ 2 	̂ T-7T

wi th

(B-81) rl = [(v sin C -a) 2 + (v cos E 
_zo)211/2

2
(B-82) zo = 4^ ; To = tan- 1 f- a-z-

A	 O	 A

The	 unit vector nel is defined inA ppendix II and t is the unit vector
tangent to the paraboloidal surface at edge Roint Q in the constant
s— lane. It is noted that the unit vectors e a d * A are in theP	 ^	 1 0	 pl .
transverse plane of 1 1 ; the unit vectors e l and q 1 are in the transverse
plane of dl . from Appendix II, the divergence factor at edge point Q1
is found to be
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(B-83)
Pi
	1

rl Pl+r^ r- v sin

The incident field at edge point Q 1 is given in Eq. (B-71) to be

(B-84) e(Q,) = e l Ee(Q l ) + p 1 Ep(Q1)

wi th

e`^k^°(B-84a)	 Eef(Q1) = A g(`^o' a)	 X0

f	 e-JkRo(B-84b) Ef ( Q l ) = Bh(^Y° ,a ) --
0

Substituting Eqs. (B-83), (B-82) 9 (B-8) 9 (B-74), and (B-73) into (B-72),
the field of the edge diffracted ray l (P

0
) becomes

1 

(B-85) ^(Po )	 el Ee l (Po ) + q 1 Eg1(Po)

where E
d 
(Po)and Eql(P) are two components, in the transverse plane of

the ray direction, of tie edge diffracted rays originated at edge point
Q l ; they are found to be

(B-85a)

Ep (P ) = Ef (Q l ) (Q )[—F,P1
	

a kr1

,.1 o	 e 1	 s 1P1+r1

J Tr

f	 -e= Ee MY .
24 2^rk

F(kL 1 a_ ( Q1 ))	 F(kL1a+(Ql))

cos sd 1 -si 	 cos sd 1 +^i 1

	

2	 2

1	 a	
-^kr1

f
°-- v sin e
r1
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(B-85b)

S

	

Ed(P)=Ef(Q)p(Q)F—rlpl+	
a-jkr1

ql o	 p l	 h 1 ^^1 r 1 T

f	 -e-3 ^p= E(Q 1 ) •

2 12 Trk

•	 F(kL1a-(Ql)) +	 F(kLla+(Ql))

	

cos sd 1 -yQ1	 cos ^d 1 +Y 1
2	 2

	

1	 a	 -jkrl•	 e
ri v sin

with

(B-850	 a_(Q l ) = 1 + cos[s d ( Q l ) - si(Ql)J

(B-85d)	 a+(Q l ) = 1 + cos lsd (Q l ) + sMl)]

(B-85e)	 L	
rl^o

1	
r1+Qo

akLla_(Ql)

(B-85f)	 F( kL 1 a_(Q l )) = J 2 kL l a - (Q l ) e	 +

CO 2

	

•	 e
-jr dT

kLla7 Ql)

The incident angle s i (Q 1 ) is found to be

(B-86)	 si(Ql) _ T - Yo+ tan-1
	

f

To obtain the diffracted angle sd (Ql), there are five regions to be
considered. The difference and sum of the incident and diffracted
angles, gd(Ql ) and g i (Q l ), are given in these five regions in Table B-2.
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ad(Ql) - Ri(Ql)

2 + Yo	 o

2 +Y0 	
2r0 +27

-^'0

Tr + 
TO	

2r 0  + 7r _ To

-ro +

2
—rr+T

o 	 ro+L^- ^o

Y
0	

2r  + n - Y0

sd(Ql) + ai(Q l)

7r
I o + 2 - 'Yo

2r+ 2 e T
o	

o

s

^i

Sd (Q l )

0

r0

ro+f

r  + 7T

+ro ^^

27r

+A°	 V sin g._+ a)
r2

a

+z'
(aJ2f)2

r

•

The parameter ro , the angle between the unit vectors -t(Q i ) and -ne(Q1),
is given as

(B-87)	 ro = tan-1 a

The angle Yo is the angle subtended at the focal point by a radius of the
aperture. For the values of ^d(Ql) at the boundaries, the difference and
sum of 6d (Q l ) and 

si(Ql) 
are given in Table B-3 below.

TABLE B-3

The Edge Diffracted Field Y'2(po) at the Observation Point P0(v,t,a)

Due to the Diffraction at the Edge Po1n__f __Q 2_

In Fig. B-8, the unit vectors associated with edge point
Q 2 (a,,r+b,zo ) are obtained as

(B-88)

A	 A	 A

e 2 = x' sin 8	 + y' (-cos ^)

1
2 

= x' (-sin 
T 

cos 6)	 +y'	 (-sin 
Y 

sin  )	 +^z' ( --cos Yo )

^	 A	 ^	 ^

P2 = x' cos 
TO 

cos 6	 +y'	 cos Y
0 

sin S	 +z' (-sin Y )

d = ^ I (v sin Jr + a)cos a +	 (v sin ^ + a)sin s	 +z° 
( v cos ' - zo)

2	 r 2	
Y	 r2 	^r 2

-(v cos E - z )cos s „ 

° 

-(v cos	 - z

Q 

)sinA

	 ^	 o	

d

=	 +2 
x	

r2	 Y	 r2

ne2 = x' (-cos)	 +y' (-sin 6)

t	 x,	 -cos 8	 +^ °	 -sin S
2

l + (a/2f ) 2 	 l + (a/2f')2
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Fig. B-8.

With

(B-89)	 r2 = [(v sin E + a) 2 + (v cos E - z0)21112

and z is given in Eq. ( B-82). Again, it„is noted that the unit vectors
e2 and p2 are in the transverse plane of I2; the unit vectors e2 and q2
are in the transverse plane of d2 . The divergence factor at edge point
Q2 is found to be

(B-90)
P2
	^--	 a

r_ 2^p 
2+r2	 v s._..i_n
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As the incident field at edge point Q2 given as

(B-91) -Ef (Q2 ) = e2
Eef (Q2 ) + p2 Ep(Q2)

with
.-jkk

(B-91 a)	 Eef (^Q2) = 
A g ( Yo, ,T+6 ) e 

Q
0

-jkz0

(B-91 b) Ep(Q2 ) = B h(Yo,7r+d) 
e Q

0

the field of the diffracted ray --'4 (Ptheat observation point P o (V $ r; % )
becomes

(B-92)	 (Po) = e2 Ee2 (Po ) + q 2 Eq Po)

where

(B-92a)

Ed (P) = Ef(Q) 0 (Q) -- p2
	

ewJkr2
e2 o	 e 2	 s 2 r2 r2+p2

= Eef(Q2 ) • -e
2 2 irk

	

F(kL 2a_(Q2 ))	 F(kL2a+(Q2))

^d(V-YQ2) - Vd 2 + i 2
cos	 2	 cos - - - 2 — --

j- 
a	 ^-jkr2

.	 e
J'2 v sin
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(B-92b)

Ed (P ) Ef (Q ) ^ (Q)
F77

R2	 a ^kr2
q2 o	 p 2 h 2p2+r2

y	 = Ep(Q2) ..^.
2 2^rk

F(kL2a_(Q2 ))	 +	 F(kL2a+(Q2))

cos s-d - 
Y -si(Q2)	 cos sd 2 +s i 2

.------= e- -j k r2
^2 v sin

wi th

(B-92c)	 a_ (Q2) = 1 + cos [sd (Q2 ) - si(Q2))

(B-92d)	 a+(Q2 ) = 1 + cos[sd(Q2 ) + si(Q2)J

(B-92e) L2 = r2=
2 0

3kL2a_(Q2)

(B-92f)	 F( kL2a_(Q2 ) _ 2 kL 2a_(Q2) e	 ++	 +

	

f

^ 	 2
• 	e-`^T dT

kl 2a_ Q

The incident angle B i (Q2 ) is found to be the same as a i (Q1 ) as given in
Eq. (B-86). Also there are five regions to be considered to obtain the
diffracted angle at edge point sd (Q2 ). The difference and sum of the dif-
fracted and incident angle, B (Q? )- (Q2) andOd (Q2 ) + Oi(Q2), respectively
are given in Table B-2 and B-3 with term (v sin E - a) replaced by (v sin E + a).

It is obvious the total edge diffracted field at the observation
Point Po(v,E,a) is the sum of the fields which are edge diffracted at Ql
and Q2. However, over a certain range of angle &, the contribution to
the edge diffracted field at point Po comes only from one of the two edge
diffracted rays as the other one blocked by the paraboloidal surface.
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Thus, the total edge diffracted field at point P o 41')

r"(Po ) + e" (P
2 o

-d
(B-93)	 Td (P 0 )	 E l (Po)

^(Po )

The range of the diffracted angle
fracted ray generated at edge point Q.
follows:

Po visible from Q, and Q2

P o visible from Q, only

Pa visiblf ,., from Q? only

fi d(Q-', ) in which the edge dif-
i l luminates can be found as

For the observation points on the paraboloidal surface inside the region
bounded by the parabolic reflector and its surface, the range of 6 d(Qi)at edge point Q i is

(B-94) 0 < R d (Q i ) "o

For the observation outside the region mentioned above, th range of the
diffracted angle	 P^d(Qi) in which the edge diffracted ray' i (P O ) is not
shadowed by the paraboloidal sur face is

(B-95) r <
0	 d (Q i ) - ro < zIE + tan-' 

2f

where r 0 is the angle between - n e (Q i ) and -t(Q 
i ) 

given in Eq. (B-87).

(c) Surface Current Distribution of a Parabolic Reflector
Antenna with Both the C66-tri-EUT1 ons T romT—he Tee—ed 
the_ Edge Diffracted _Rays

In Fig. B-9, it shows a single parabolic reflector antenna with its
vertex at the origin of the rectangular coordinate system (x l ,y l ,z l ) and
its axis coincident with the z'-axis. A point Po on the paraboloidal
surface can be defined by a spherical coordinate system with its origin
at the focal point F as PO (k,,,6) where x, is the distance from the
focal point to point P O ; ^ is (7,-oo) with uo being the polar angle
measured from z'-axis; 6 is the azimuth angle measured from x'-axis.

At point P09 in addition to the direct ray from the feed there
exist two edge diffracted rays originated at edge points Ql(a,6, zo) and
Q2(a l 7+6 1ozo) which are defined by points of intersection of the constant
6-plane and the circular edge of the parabolic reflector. The current
density induced on the paraboloidal surface due to both e r'je diffracted
rays from its own circular edge becomes the first correction factor to
the  primary current density indu(,ed by the direct ray from its teea.
In the text to follow, the surface current contributions due to both
the direct ray and the edge diffracted rays will be formulated.	 11
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Fig. B-9.

Current Density Due to Direct Ray:

As the electric field at point Po on the paraboloidal surface
from the feed given in the form in Eq. (B-71), the corresponding
magnetic field can be found as

(B-96)

ITf (Po) = nI x ff(Po)

n [e Bh(*,a) - p Ag(v,a)J 
e-jkx

where n = e—o = 377 ohms is the characteristic impedance of free space.
0

In terms of components in rectangular coordinates (x',y',z'), it
becomes
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(8-97)

A	

- 

j k
ff, ( P0 	x	 [-Bh(^.flsin ^ +	 cos
 r)

	

+ y' n	
[Bh(q),$)cos	 + ACk^,. ,̂ ,, 	,^) CC,

' _ 

jk
I

^

	

Tj	 k

The surface curre,it density ZF (Po) induced on the paraboloidal surface
at point P 0	 due to above magnetic field then becomes

(B-98)

1 RI (P	 n(P ) x 71 f(PT	 0	 0	 0

A	 - ikkX	 e1 [-Ag(^,flcos	 sin 6 - Bh(i^,6)cos ^', co,
Tj	 2	 2

A 

1 n 	 I	 -	

_j k P,
+ y 	 [ Ag(0,6) cos	 cos 6	 bh f̂  ^,6)cos	 sin 6]2

+ z
2

Current Density Due to Edge Diffracted Ray from Q1(a,,S,;,. 0):

As shown in Fig. B-9, a point Po(v,r j,6) on the p l-abo l o l dal surface
can also be defined as P 0	 it can be found that

(B-99)	 v	 sin j I + l y, sin
^ 4f

tan- 
I	 4f

z sin

6 = 6

and

(B-100)	 v sin E = z sin V

v cos ^ = (k sin ^) 2/4f

j (po)From Eq. (B-85). the corresponding magnetic field of 	 at the
point P O (xq^ t s) on the paraboloidal surface can be found as I
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(B-101)

pd ( Po ) = n dl x '(P0)

= n [e l Egl (Po ) - ql Eel(P0)1

( v cos	 - z ) cos
= x' 

n
- Eg l (PO ) si n d - Ee l (P0 )	 r	 °

1

+ Y	 Ed ( P )cos a - E d ( P ) 
(v cos 4 - z 

° 
)sin a

---n	 ql o	 el o	 rl

+ Z. 1 [Ed,(PO) v sin	 - a
n	 e 	 r1

The surface current density 0,(Po) induc d on the paraboloidal surface

	

at point Po due to this magnetic field 	 (P0 ) at that point is

(B-102)

R' (Po ) = " (Po ) x A'(Po)

= x' ^ - gE l (P0 ) cos 
I 

cos 8

+ Ed (P )sin d 
_ (v sin	

a)sin I + 
(v cos r,- z0)

e1 o	 rl	 2	 rl

+ y' ^ -E J (Po )cos	 sin b

______	 - a	
- ( v cos	 zo )

+ Eel(Po)Cos 6 
(y sinr	 sin 2
	 r1	 1

+ z' 1 - Ed (P0)sin Z

cos
^+ I

Cos

where rl, the distance from the edge point Q 1 to P0 , can be found as

(B-102a	 rl = {[z sin	 cos 6 - k0 sin 
TO 

cos 6 12

+ ER sin	 sin 6 - R0 sin TO sin 61 2 + Ek cos	 Q cos +012}112

Current Density Due to Edge Diffracted Ray From Q2 (a, ff
+69zo):

From Eq. (B-91), the corresponding magnetic field of 2(P 0 ) at the
point Po (2,,,a) on the paraboloidal surface can be found through

45



6

01

(B-103)

 n(P ) x 2(P o )2(Po )	 0
I

e	
d	 ..	 d

q2 E q 2 (p ,, )	 2 E q 2(po)l
(v cos z 	o, S 's

	

n
	 d	 d	 0X	 E	 , q2(PO )sin 6 + E 

P2
(P 0 ) 	 r

	

n
	 d	 d	 (v Cos r;	 z 

O
)sin 6+

y 	 E 2(Po)cO 6 + E(P) q	 e2 0	 1 
2

+ z
A	

- 

E 
d	 ) iv sin

0	 rn	 e2 ( 
P

1	 2

The surface current density induced on the paraboloidal surface at the
point P 0	 due to this magnetic field is then

(B-104)

1 Wd	
A

	
2(Po)2 2(Po) 	n(PO ) x

A
X	 d

n 
E

t 
q 2 (po )cos f cos 6

(v cos F, - Z-)

	

sin ^	 IL cos

	

2 -	
r2	

211

A, 
n
	 d+ y 	 E(P)cos ^sin q2 0 	 2

d	 (v sin+ E (P )Cos 6	 sz- + a) 
sine2 0	 r	 2L	 2

1+ z	 d— E
n q 2 (PO )sin 2

where r2 , the distance from the edge point Q 2 to P 0 .  can be obtained as

(B-104a)	 r2 = { [ z sin ^ cos 6 - k0 sin 'Y 0 Cos (,[T+6)] 
2	 1

+ [k sin ^ sin 6 - k 
0 
sin Yo

 
sin(7T+6)] 

2 
+ EP, cos	

k 0 
cos T 01 

2 ^j 1/2 1, 11

The current density due to both 	 diffracted rays is the sum of the
contributions of '^'-(P O ) and	

2 
(

p 
0 ).	 Let the sum be denoted by Ts(Po)

where the subscri p t "s"1 stands for the contribution from the circular
edge of its own reflector where the point P o is considered.

+ Ed (P )sin 6
e2 0	

1	 r2

(v cos	 z 
0)

cos
r 
2	

2

4	 1

46
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Rd P = x'	 -Ed P + Ed P	 cos ^ cos d2 s ( o )	 n	 q ( o )	 q2 ( o )	 2

+ [-Edl(po)  (v sin C - a) + Ede 	 rl
	

e2(Po) 

Eel (Po )	
Ee2(Po)

+	 - -------- ( v cos ^ -
r l	 r2

y sin& + a	 sin 
2 

sinr

z

o)cos 
Z
s in s

+y'	 - Ed(P)+Ed(P) cos =  ̂sin 6n	 ql o	 q2 0	 2

d	 (v sin	 - a	 d	 (v sin ^ + a)

+ Eel (Po )	 r	 ^ - Ed

	
( v

r	 sin ^ cos ^

	

1	 2

	

+ - EeiCPo) -
 Ee2( Po)
-- 	 _	 i

	

r	 r	
(v cos ^	 zo ) cos 2 

cos a

	

1	 2

+ z' n -Egdl ( Po ) +Eg2 (Po ) sin
]
	 2

where n is the characteristic impedance of free space; the components of
the diffracted field, E d l (P ), Ed l(Po ), Ee 22 (P ), and Ed 2(P2), are given
in Eqs. (B-85a), (B-85b?f, (9-92at and (B-92b? respectively. The
parameters in the above equations are also given in Eqs. (8-85) and
(B-92) respectively. It is noted that the region under consideration
is the one bounded by the parabolic reflector and its aperture; in this
region the coordinates of point Po(v,^,6) on the paraboloidal surface
are given in Eq. (B-99), and the difference and sum of the diffracted
and incident angles,(Q i ) and o•(Q i ), for both edge points are
given in Table B-2 as he formulation for Region 1.

(d) Surface Current Contribution on a P
Through d e Diffraction MechanisF
Parabolic Reflector in a C1oseTy-^p

rabolic Reflector,
rom	 scent
ced Arrav

A two-element array of parabolic reflector antennas with their axes
pointing in (0,0') direction is shown in Figs. B-10,11. The first
parabolic reflector antenna is located with its vertex at the origin 0
of the fixed rectangular coordinate (x,y,z). The second parabolic
reflector antenna is located with its vertex et point A along y-axis
a distance "d" away from the origin 0. For the scanning performed in
the yz-plane, a portion of the edge diffracted rays originated from
edge points T l and T2 on the circular edge of the second paraboloid is
collected by the first paraboloid. These edge diffracted rays col-
lected by the first paraboloid introduce a secondary, current density,
on the first paraboloidal surface, which becomes the second correction
factor to the primary current density induced by the direct ray from
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its feed antenna in addition to the first correction factor discussed
in Sec. 3c. Consequently the mutual coupling and the blocking effect
may be investigated.

a

Fig. 0-11

A oint PoU19*1961) on the f_ r,,it paraboloid is also defined by
E.	

(v,E,a2^ in the spherical coordinate with its origin at point A where
v is tfie distance from point A to point Po; ^ is the polar angle meas-
ured from the P -axis of the second paraboloid; 62 is the azimuth angle
measured from x' -axis of the second paraboloid. A point on the second
paraboloidal surface is defined by (z22^2'a2)'

The edge diffracted field, originated both from edge points
Tl(x 9T0962) and'T2(z ,T ,'n+a 2 ) on the second parabolic reflector, at
poin P (v,C,62) on t9Z ?first paraboloid is given in Eq. (B-93). In
the ana^ysis to follow, it is assumed that the point Po( k l q ^ls s l) is
visible from both edge points, T1 and T2 , on the second paraboloid, hence

49



I	 ,

6

_d
(p 	-,-d(B-106)	 E	 0 ) = E 1 (PO ) + 2 (Po)

For the case that one edge point is not visible from the point P O (R1, 1961)
then the diffracted field originated from that point is simply zero. 	 he
fields Ed(Po) and 12 (Po ) are the edge diffracted fields on mated from

I
edge oint T1 and T2 respectively. They are given in Eqs. 

I- B-85) and
(B-92^ respectively. The magnetic fields associated with E l ( P Q ) and

	
(P")

generated by the second parabolic reflector are given in Eqs. k101) ana"
(103). For the reason to avoid confusion, they are repeated below as

	

- 
Ed	 (v cos r, - z 

0 
)Cos 8 2

el (P o ) — - 
FT

E d 	
(v cos	 z 

0 
)sin 

6 2
6 2 - E e 1 (P 0)	

F, 
	

1

+ z,1 1	
E d l(po) (v sin t, - d)

n	 e	 ri	 I

(B-1 08)

H2 (P0)d	
I [ 

d	 d  = X 
n E q2(Po )sin S 2 + E e 2 (P 0

+ 
y —
^1 1 - d	 d

E (P )cos	 + E
TI I q2 0	 2	 e2('

+ Z 11 1	
E d(P

) v sin ^ + a
—
n I- e2 0	 r2'

The magnetic field at the point Po(x ll^1,61) on the first paraboloid due

4tthe edge diffraction generated from the second parabo1 ,'21' "^> denoted
Hm(PO ) where the subscript "m" and the superscript "d" stand' for the
contribution from th adjacent reflector through ed 	 diffraction
mechanism. Hence, PM,(P3 ) is the sum of 7(PO ) and q(PO ) given in
Eqs. (B-107) and (B-108 respectively, it is given as
(8-109)

O(P0 )	 1	 - E d ) + EI(Po	 d	 s
m 	 n	 q	 q 2(po)

in
l 	 62

d	 (v cos E	 Z O)COS 6 2 d	 (v cos	 Z 0 )Cos 6 21
-Eel (P0 )	 r'I

	4. E e2(PO)
I

+ y 1 [E 
d (P	 E d (P0	 cos 6

2n	 q l o	 q2 
d	 (V cos	 Z 

0 
)sin d 2
	 d	 (v cos F,	 z 0 )sin d 2

-E el (P 
0)	 r	 Eel (P 

o )
*r r2

	

a	 d	 v sin ^ ++ z 
1 

E d	 v sin
l ( Po )	 -E— 

e	 rTI f	 i	 e (P2 0	 r 2
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1Ad(Po )	 x n	
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1	 62

+ y' n E d
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(V cos	 z 
O
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where, from Eq. ( 85) and Eq. (92)

	

(B-110a)	 j 7T

2 2^rk

	

q]	 p 

MLla_(T1))	 F(kL1a+(T,))

cos	
2	

cos	
2

1	 a	 e -j k rl• 
Tril vsin

(110b)	 j 7r

Ee o

	

(P) = Ee	
e(T2) . - 

	

qi	 p	 2 fi7rk

F(kL 2a_(T2 ))	 F(kL2a+(T2))

cos d 2	 i 2	 cos d Z. 
) -

a i 2
2	 2

a	 -j k 
r2Frs ne

with -jkQo
(B-1100 Ee(T l ) = Ag(yo ,a2 ) eQ

0

-jkQo

(B-110d) Ep( Tl ) = Bh(To,s2) eQ
0

-jkQo

(B-110e} Ee(T 2) = Ag(TO^7+62) eQ
a

-jkQo
(B-110f) Ep( T2 ) = Bh(^Yo,7r+82) eQ

0

(B-1108) a_(Ti ) = 1 + cos[sd(Ti) + s i (T i )] 9 i = 192

51



.1

6

r I

(B-1 10h) L	
r! +

1 
0Q

1 0

i = 1 ,2

(B-110i )	
jkL i 	 (Ti)

F(kL i a (T i )) = j2 kL i a_(T
	 e

T	 +

•	
j	

e- 
j T	

dT

Fk L 
i a,

( T i )

Since the first parabolic reflector is behind the second one when
scanning is performed in yz-plane as shown 

in 
Figs. B-10,11, the region

under consideration is the space behind the aperture plane of the second
reflector.	 The difference and sum of ^ d (Tand ^ i (T^) are the values
given in Regions 4 and 5 in Table B-2 for both  i 	 = 1,	 The values on
the boundaries are given in Table B-3.

This magnetic field Iff-d (P O )	 at point P (z	 6	 on the first1 m (Po)
lj$ ^^ O j, induces a surface current densi?Y	 at that particular

point, which becomes the second correction factor to the primary current
density induced by the direct rap, at point Po from the feed 	 addition

Pm
to the first correction factor	

(P
given in Eq.	 (B-105);	 (P 	 can

be found by	
s	 0	 0

A

(B-111)	 4(P.)	 n (P	 x 'O (P
0	 m	 0

where n(Po) is the unit vector normal	 to the first paraboloidal surface
at point P

0 
(z	 it is given as

(B-112)	 n(PX'(-sin	 cos6	 -sin	 sin 6	 Cos) + Y ,	 ) + z	
2o )	 01	 2	 1

Substituting Eqs. 	 (B-109)	 and (B-112)	 into (B-111),	 q(P O ) becomes

ti

g.
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1 
4(P0) - x' n -Eg l (Po ) + Eg 2 (Po ) cos 21 cos 62

Ee1(Po)	 Ee2(Po)
+ -	 r---^--- (v sin 	 - a) + r---r2 0 (v sin ^ + a) •

sin " sin 61

'd
e1 (Po )	Ee2(Po) + —^--- --- -- r---r--- ( v cos ^ - zo ) cos 2 sinn d2

1	 2

+ y' n	 -Ed l (Po ) + Ed	 Coscos	 sin 82

EO N)	 Ee2(Po)	 ^1
+ — r

1 
r--^ (v sin c - a) - —r- j	 (v sin E + a) sin z cos 61

Ee l (Po )	 Ee2(Po)1	 ^'1+ - --^--- + ---^----^ (v COS 	 Zo )Cos ^ COS 6 ^
1	 2

+ i'	 -Eal(Po) + Ed 2(Po ) sin
1
 cos(sl -62j

n	 G	 G

Eel (Po )	 Ee2(Po)	 ^l
+ - —r-r—-- +- r u--- sin g s i n (s 1 - 6 2)

1	 2

(e) summary

With a two-element array of parabolic reflector antennas as arranged
in Fig. B-10, the total induced surface current density at a point P
on the first parabolic reflector is the sum of the contributions of ^he
direct ray from its feed antenna, two singly edge-diffracted rays originated
from edge points Q l (a,8 9zo) and Q (a,Tr+B,zo) on the same parabolic reflector
where P 4 (R1,^1,81) is located, and two singly edge-diffracted rays,
originated f rom edge points Tl(a,62,zo) and T2(a,Ir+62,zo) on the second
parabolic reflector, incident on point Po(R^,^,1 ,8 ). Thus, the total
induced surface current density K(Po ) at point Po^R, l ,^ 1 ,s 1 ) on the first
parabolic reflector becomes

(B-114) K(Po ) = Kf(Po ) + KS( Po ) + 4.,(po)
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where

Kf(P0 ) is the current density induced by the direct ray from the
feed ofthe first parabolic reflector; it is given in
Eq. 

o

R$ (Po ) is the current density induced by two singly edge-
diffracted rays from edge points Q1 and Q? on the first
parabolic reflector as fot°mulated in Eq. (105)9

4(Po ) is the current density induced by two singly edge-
diffracted rays from edge points T1 and T2 on the
second parabolic reflector as given in Eq. (B-113).

The total surface current density U(Qo ) at a point Q (X 21 02 ,87) on the
second parabolic reflector is the sum of the contribu 'ions of the direct
ray from the feed on the second parabolic reflector and two singly edge-
diffracted rays from edge points T i and T2 on the second parabolic
reflector. Thus,

(B-115) W(Qo ) _ Uf(Qo ) + Kk_(Qo)

where RKf(Qo) and	 5(Qo ) are given in Eqs. (B-98) and (B-105) respectively
with ^, b, and R, replaced respectively by *21 8 2 , and Q. 2 for the second
paraboloid in the array.

The electric and magnetic fields in the far-zone region of a single
paraboloid can be obtained by an integration of the surface current
density over the reflector surface. The fields in the far-zone region
of an array of parabolic reflector antennas are the linear sum of con-
tributions from each paraboloid in the array. The fields for a single
paraboloid are given as (Ref. B-il)

-jkRe 	 [ 'T	 K R
 A) 11
 R e-ik .R d827r	 R	 2	 2

A

A(R,e,^) = n [R x E(R,e,^)]

Where R is the distance from the origin to the observation point and
R is a unit vector in that direction ; p i s^ the distance from the origin 
to the element of surface and 	 = pp with p being the unit vector in that
direction; K is the surface current density on the surface.

The formulations in this section employ the current distribution
method. The radiation pattern of the array can also be obtained by
employing aperture distribution method. In aperture distribution method,
there are two correction factors which arise from the edge diffraction
mechanism in addition to the distribution of the direct ray from the

-
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feed through single reflection on the concave surface of a paraboloid;
one is the aperture distribution of the singly edge-diffracted rays from
edge points of the reflector where the field is obser s!ed and the other
one is the aperture distribution due to the singly edge-diffracted rays
from edge points on the adjacent reflector. Both the current and aper-
ture distribution methods predict successfully the radiation pattern of
a parabolic reflector in the forward axial region ( Ref. B -12). It
will not, however, give an accurate wide angle radi^1ion pattern
especially in the backlobe region. It is known that an accurate noise
temperature of the overal i system depends upor the accuracy of the
radiation pattern of the overall system. To n4tain wide angle radiation
pattern of the system, one vital type of ray: gust be considered in addition
to the three types of rays mentioned above. the fourth ray is the reflected
ray by the convex surface of a reflector. The most difficult task in the
ray tracing technique in a three dimensional problem, such as this one,
Is to find the boundaries of regions where each single type of ray is
valid.

There are no numerical calculations obtained for Eqs. (8-114) and
(8-115) at this time. The results will be included in the future
report.

array of two dishes has been
lic reflector which has been
this laboratory owns will be
reflector will be an open ended
support will consist of a tripod
outdoor supporting structure for

The preparation for an experimental
initiated. One 2-foot sharp edge parabo
ordered with another identical one which
used to form the array. The feed of the
flanged rectangular waveguide. The feed
which is fabricated of polystyrene. The
the array is in progress.

The following steps are going to be taken in the course of this
study:

1) A continuing effort will be devoted to the theoretical study
of this problem. The current-distribution and aperture.
distribution methods, and the geometrical theory of dif-
fraction will be applied to solve the proposed problem.

2) A comparison between the results obtained by using different
methods will be made in order to observe any discrepency and
hopefully it may be interpreted.

3) During the above investigations, it may be necessary to look
into the possibility to apply a combination of the afore-
mentioned methods at different stages along the course of
solving the proposed problem in order to obtain better results.

4) While the theoretical study is being performed, an experimental
array of two dishes with a diameter of a few feet will be
designed and tested in S-band (or in X-band depending upon
the availability of equipment) in order to compare the meas-
ured data with theoretical results predicted by the above
methods.
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5) An experimental array of more elements, four or six dishes
(again, depending upon the availability of equipment) may
be tested in order to observe any unusual behaviors which
are not predictable by a two-dish array.
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C. A PHASED ARRAY OF SMALL CLOSELY SPACED ELEMENTS ORGANIZED
INTO SUB-APERTURES - ELECTRONICALLY STEERABLE
(See Status Report Number 4, 15 February 1970,
Grant Number NGR-17-004-013)

D. A SELF STEERING ARRAY - ADAPTIVE SYSTEM STUDIES
(See Technical Report 2902-1, July 1970 on Grant
NGL 36-008-138 by Robert L. Riegler).

V. PLANS FOR FUTURE ACTIVITIES

This program has now or will shortly complete the assigned tasks
and studies that have been outlined in Section II of this report. This
means that an assessment of the virtues of one type of large ground-
based antennas over another for a specific application and within the
available technology can be easily accomplished to achieve the basic
objectives of this program as described in Section I. Thus, future
attention in this program will be turned to the problems concerning
the antennas on the spacecraft itself and methods for analyzing their
performance characteristics on complex structures.

The Application of Integral Equation Techniques
to the Evaluation of Spacecraft Antenna Parameters

When one or more antennas are mounted on an aircraft, satellite,
space shuttle, or other vehicle, their performance characteristic in
terms of vehicle configuration, antenna orientation, and mutual ir-
teraction is of primary interest to the basic communication system
design. Thus, the patterns and impedances, and the coupling between
each pair of antennas must be carefully and accurately evaluated.
These parameters may be analyzed using the geometrical theory of
diffraction (GTD) at high frequencies where the antenna and its
environment may be many wavelengths in extent. However at low fre-
quencies where the antenna or the vehicle itself is small in terms
of wavelength, other types of mathematical representations can be
successfully applied to describe witri good agreement the behavior
of antennas on odd shaped vehicles or those involving complex in-
teractions among themselves or with a ground plane. The need for
both approaches is emphasized when consideration is being given to
space shuttles which will be as large as the Boeing-747 aircraft
and where antennas are contemplated operating with frequency ranges
located appropriately from 40 MHz to Ka-band. Thus, many diverse
antenna types such as slots or arrays of slots and other flush
mounted antennas appropriate to a particular application are to be
examined in an effort to develop methods for analyzing viable
structures. Antenna evaluation for complex vehicles has traditionally
been achieved by means of experimental models. This costly and time
consuming approach should be supplemented by computer analyses,
particularly In the design state.
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At low frequencies it is convenient to formulate the radiation
problem as an integral equation. By suitable finite expansion of the
unknown function (such as the current density on the surface of the
vehicle), the integral equation is reduced to a system of simultaneous
linear equations by enforcing the boundary conditions at discrete points.
We have solved numerous problems in using this point-matching technique
as illustrated by the following examples.

1. Scattering by dielectric cylinders 

2. Arbitrary array of thin wires 

3. Scattering by conducting targets with arbitrary shape3

4. Dipole antenna on conducting cone, 4 sphere s or cylinders

5. Dipole and loop antennas on aircraft 

In 1969, Richmond used Rumsey's reaction concept to develop a
stationary solution for a wide class of wire antennas and scatterers.
In contrast with the op +int-matching method , the reaction technique has
no lower limit on the wireradius. For a straight or curved wire with a
length of one wavelength, our reaction approach yields a system of ten
or less simultaneous linear equations, whereas the point-matching method
requires 32 to 100 equations. We have applied this new technique to
the analysis of numerous problems concerning wire antennas. Several
examples are listed below:

1. V-antenna array on NASA satellite?

2. Three-dimensional dipoles  and loop antennas 

3. Scattering by wire tripods and quadripods10

4. Yagi array of V-dipoles))

5. Array of TEM-line antennas 12913

6. Adaptive array 14

In addition, the technique is currently being employed in the
analysis and design of arrays for short-pulse transmission and reception.

The reaction technique is not limited to thin-wire problems. It
readily yields the solution for scattering by conducting cylinders that
are not figures of revolution (two-dimensional). For example, Fig. 1
shows the calculated results for backscattering by a square cylinder.
The calculated current distributions agree with data published by Mei
and Van 61adel. Figure 2 shows the calculated pattern of a half-wave
slot antenna on a square cylinder.
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Fig. 1. Backscattering by square cylinder,
normal incidence, TM case.
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Fig. 2. Field patterns of half-wave slot antenna in
square cylinder, TM case. Ez (^) versus ^.
Slot width: g = 0.5a
Aperture distribution: E  = cos ky.
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Our solution proceeds as follows. We set up an array of "test
sources" in the interior of the conducting body and force the unknown
surface current to have the correct reaction with each test source.
This yields the system of simultaneous linear equations. By locating
the test sources in the interior region, some distance away from the
surface, we avoid difficult and expensive integrations. With the square
cylinder, fo v- example, we placed the test sources on an interior square
cylinder with width w'. The results were found to be insensitive to
the size of the testing surface. The calculated echo-width was identical
for w' /w = 0.5, 0.6, 0.7 9 0.8 and 0.9, where w represents the half-width
of the conducting cylinder.

Although we have not yet applied the reaction technique to three-
dimensional problems, the advantages are already apparent. First, this
technique yields a stationary solution. Second, the technique is
versatile and easily programmed for digital computations. Finally, it
leads to nonsingular integrals that are readily evaluated. This effort
will supplement the antenna evaluation using high frequency being pursued
at NASA and other existing programs at OSU. We propose to employ low-
frequency techniques when the vehicle is small, a hybrid solution when
the antenna is small but the vehicle is large, and high frequency tech-
niques when both the antenna and the space shuttle craft are large in
terms of wavelength.

Proposed New Work Statement

In keeping with the basic objectives of this program, the ElectroScience
Laboratory of the Ohio State University proposes that a new phase of the
effort be started to assist in the design of antennas on complex vehicle
structures appropriate to the space shuttle operation between the earth
and an orbiting satellite. Here we propose to develop computerized
solutions for antenna elements mounted on odd shaped three-dimensional
bodies which might be portions of an aircraft, a satellite or space
shuttle vehicle. The characteristics to be obtained in an effort to
provide useful design data are the three dimensional patterns and the
impedance matrix which includes the various self and mutual impedances
involved in the interactions amongst the antennas themselves and with
their complex ground planes. This effort is to concern itself with
integral equation techniques to evaluate the various pertinent antenna
parameters and to provide solutions that would be useful for computerized
antenna design. This effort shall include but not be limited to the
following tasks:

1. An investigation of various mathematical modeling techniques
for describing the radiation characteristics of antennas on the fuselage
and/or wings of vehicles capable of reentry missions from space stations
using:

Y	 a) wire-grid models
b)reaction conceptC) 

other types of models.
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2. An investigation of the optimum numerical parameters and techniques
for computational speed, storage, and accuracy such as:

a) location of test sources
b) testing functions
c) expansion modes.

3. A test of the validity and degree of accuracy of the various
techniques by applying them to two-dimensional problems:

a) an infinite slot on infinite cylinders for the TE and TM cases
(cylinders with square, elliptic, etc., cross-sections).

4. An investigation of low frequency techniques for the solution
of various three-dimensional conducting bodies such as:

a	 a finite slot on an infinite cylinder (wing)
b	 a single slot on a spherical, spheroidial, ellipsoidial

surfaces (fuselage)0 coupled slot,. on the surfaces described in a) and b).
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APPENDIX I
DYADIC DIFFRACTION COEFFICIENT OF A STRAIGHT

EDGE WITH NORMAL INCIDENCE

The diffraction of a scalar plane wave field by a half-plane has
been solved exactiy by Sommerfeld (Ref. BB-1). Pathak and Kouyoumjian
(.Ref. BB-2) have recently obtained an asymptotic solution for the
spherical illumination of the edge. In this appendix, the results for
the half-plane diffraction with normal incidence will be considered
in the text to follow.

Z

SOURCE

Po rte:̀  I I Rd ^
_'
 '^o

y

Let the total scalar field in space be denoted by U. then the total
scalar field is the sum of a geometrical optics field and a diffracted
field Ud . The soft boundary condition implies that U=0 at the surface
of the half-plane; the hard boundary condition is aU/az = 0. Let
U (z ,0tt) be the field of the spherical wave incident at the edge of
the ^ialf-plane. The diffracted fields for the soft and hard boundary
conditions are

(BB-1) 	Us( r ,Bd ) = U i 0,0 0 i ) DS (sd ,a i ) r r+^	
a-jkr

A	 h	 o
where D Ud , ^ i ) and Dh(ad ,O i ) are scalar diffraction coefficients for
the soft and	 hard boundary conditions, respectively. They are given
as	

a-J T	 F(kLa_)	 F(kLa+)
(BB -2) 	 D S Cad , s;) _ -	

2,^k	
_	 +

h	 2	 cos d i	 cos d i+2	 _-.2 
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where

	

jkLa-	 00	 2

(BB-3)	 F(kLa - ) _ j2 kLa - e	 +	 e- 
	
dT

+	 +
kLa-

h	 +

(BB-4)	 a	 l + cos(a	 )
-	 d^ i

(BB-5)	 L	
rRo

= r o

In Eq . (BB-2) 9 it shows that the diffraction coefficient is a function

Of sd and 61 only. It is noted that F(kLa ) is a correction factor need
only in the transition regions of the refliction and shadow boundaries.
Away from these boundaries, more precisely, when kLa + > 10, F(kLa+ ) ^ 1
and it may be replaced by unity in Eq. (BB-2).

The integral in the F(kLa-) factor is related to the Fresnel in-
tegral. It is given as	 +

°°	 2	 °^	 2	 2
(,BB-6)	 a-jT dT =	 e-jT d T -	 e

-jT dT

X	 o	 0

=	 -C,ff7x -j	 -S	 x

The dyadic diffraction coefficient W for the straight edge can be
expressed in terms of the two scalar diffraction coefficients Ds and
Dh for the soft and hard boundary conditions, respectively. For rays
normally incident on the edge of a perfectly-conducting half-plane, the
dyadic diffraction coefficient (Ref. BB-3) becorrs

(BB-7)	 = ee D + qp Ds	 h

where

A
e is the unit vector tangent to the edge,

p = e x I with I being the unit vector in the direction of the
.incident ray,

A	 A	 A	 A
q = e x d with d being the unit vector in the direction of the

diffracted ray.
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The vector diffracted electric field at % is

Q ^.
(BB-8)(r r sd ) _ ^(O ;. ^R)	 ^^(Q ^^^)	 o	 e-jkr

.1 i	 o f	
r r*Qo

1
I
1

II ,I
f
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APPENDIX II

Employing differential geometry, Kouyoumjian (Ref. BB-4) has
obtained the caustic distance p from the caustic to the point of
diffraction on a curved edge to be

A	 A	 A

1-1- ne•(I-d)
(BB-10)

	

P 	
Pe sin 2 s

for spherical wave illumination of the edge. The parameters in
Eq. (BB-10) are defined as follows:

t is the distance from the phase center of the source to
point of diffraction,

is the radius of curvature of the edge,
A A

e,n are the unit vectors tangent and normal to the edge
e directed outward from the center of curvature,

A A

r	 I,d are the unit vectors in the direction of the incident and

diffracted rays at point of diffraction,

	

A	 A

a is the angle between a and I.

For a parabolic reflector antenna with a focal feed, it is found

P
e 
= a, the radius of the aperture

t
_	 normal incidence

'o , a fixed distance depending on the size of the parabolic
reflector and its focal length f

for All points on the circular edge.

Substituting the above parameters into Eq. (BB-10), it becomes
A	 A	 A

l	 I = 1 	 n ei ' (Ii - d i )

Pi 9 	 a

with i = 1,2 corresponding to the points of diffraction, Q 1 and Q21
respectively, on the edge.
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(a) Diffraction at Point Q1 on the edge:

Referring to Fig. B-10, the unit vectors at Ql are found to be

A	 A	 A

nel = x' cos	 + y' sin d
A	 A

e 1 = x' (-sins)	 + y' cos 6

A

I l
A

= x'	 sin	 Yo cos	 6
A

+ y'
A

sin	 To sin	 b + z'	 (-cos TO)

A
X,	 (v sin	 - a)cos	 S

A
l (v	 sin	 ^ -a)sin	 s	 Z, (v cos	 r -^zo)+ +

1 r l , r1 rl

where rl = J(v sin C - a) 2 + (v cos ^ - zo) 2

hence

A	 A	 A

nel . (I	 d l ) 	sin	 _ v sin	 - a)
1 - 	 o	 rl

Thus

1	 1	 1	 (v sin ^ - a)pl 
=R^-a 

sin ^o -	 r
1

It is noted that sin To = a /z0. Finally, the caustic distance p
l 

becomes

a rl
	(BB -11)	

p 1 	 v sin	 - a

(b) Diffraction at Point Q2 on the Edge:

The unit vectors at Q2 are found to be

A	 A	 A

net = x'	 (-cos 6)	 + y'	 (-sin s}

A	 A	 A

e2 = x' sin S	 + y'	 (-cos 6)
A	 A	 A	 A

I 2 = x'(-sin Yo cos 6)	 + y'	 (-sin Yo sin d)	 4- z'(-cos 
'YO)

d = ^, (v sin c + a)cos	 + y, (v sin ^ + a)cos s + 	
(v cos f - zo)^

	2 	 r2	 r2	 r?
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where

r2 = J(v sin F, + a) 1 + (v Cos	 - zo)z.

It is f 	 Hh-

'e2	 (I2 - d
2 ) = sin Yo + 

v sine + a

1

Thus

1	 1	 1	 (v_ sin ^ + a)
(BB-12) 

p2 
Ro - a sin ^o +	

r2

a r2

p 2 =- vsin c + a

t

r

5

k

r
i
r
t
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