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Specific heat measurements of Ne and

22Ne are reported in the temperature range of
2.5-23.5 K. The measurements were made simul-
taneously on the two isotopes in a calorimeter
employing a mechanical heat switch. The re-
sults are presented in the form of tables of
smoothed values of the following thermodynamic

properties: specific heat at constant pressure,

specific heat at constant volume, entropy,
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enthalpy, and the Gr&neisen parameter. The
results are compared with the Nernst-
Lindemann Equation, Graneisen equation of
state, and the theoretical calculations
of Barron, Gupta, et. al., Gillis, et. al.,
and Goldman, et. al.

Excellent agreement is found at low
temperatures between the present results
and calculations based on anharmonic models.

However, discrepancies arise at higher tem-

peratures.

In recent years renewed interest has been shown in
the solid state properties of the noble gases. The first

review article on this subject was published in 1957,l

6 In-

and since then several others have appeared.z-
terest in the noble gas solids (NGS) is due mainly to
the following factors:

(a) The atoms of these solids have closed electronic

shells. Thus, no free electrons or magnetic moments are

available to contribute to the thermodynamic properties.



The thermodynamic properties of the NGS are therefore
determined only by lattice dynamics.

(b) The intermolecular forces between NGS atoms
are to a good approximation spherically symmetric, cen-
tral, two body forces. The intermolecular potential
can then be written in a simple analytic form. And one

often uses the Mie-Lennard-Jones potential:

o(r) = —= [m(D" - (D™, (n > m) (1)

where the parameters € and ¢ represent the potential
minimum between two NGS atoms and the separation at the
potential minimum respectively.

(c) This class of solids, which consists of Rn,
Xe, Kr, Ar, Ne, and He forms a series whose behavior
ranges from classical to quantum.7 The heavier NGS,
such as xenon, exhibit classical behavior, while the
lighter ones such as neon exhibit quantum behavior.

The rare gas solids, then, form an ideal testing
ground for the study of the various models of lattice
dynamics which have been proposed. Due to the fact that
the intermolecular potential is pairwise additive and of
a simple form, the very complicated sums found in lattice

dynamical theories can be evaluated and compared with ex-



perimental results. In addition, by applying a lattice
dynamics theory to various members of the NGS, one is,
in effect, able to "turn on" quantum effects and deter-
mine at what point the theory breaks down.

Some of the above statements represent an idealized
solid. There is reason to believe, for example, that the
intermolecular forces are not completely pairwise additive.
Many-body effects may be present. However, it is general-

*58 that they do not play an important role in

ly believed
the thermodynamic properties of these substances. The
question of using the empirical Lennard-Jones potential
to represent the real potential between two NGS atoms
has been the subject of a great deal of discussion. The
consensus is that this potential still provides the best
source of information about atoms with closed shells,
especially in the neighborhood of the potential minimum.
The assumption of pairwise additive forces together with
the Lennard-Jones potential allows one to make very use-
ful comparisons between the various theories of lattice
dynamics and experimental measurements.

We have measured the specific heat at constant

20 22Ne between 2.2 K and the

pressureg of solid Ne and
triple point. Neon is a particularly interesting member

of the NGS because it exhibits moderate guantum behavior.



Theories which are capable of accurately predicting the
properties of the heavier noble gas solids may fail when
applied to neon. Thus, solid neon provides a more
stringent test of lattice dynamical theories. On the other
hand it is simpler than solid helium, and so it may be
used as a preliminary stage in the development of a
theory with which the thermodynamic properties of all NGS,
including solid helium, may be understood.
Earlier measurements of the specific heat of solid
neon isotopes were reported by Clusius et. al.10 at tem-~
peratures above 8 K. 1In addition, the specific heat of

2ONe, 8.8% 22Ne, and .3%

12,13

natural neon (composed of 90.9%

21Ne)ll

has been measured independently by two groups.
The present data will be compared with these previous
measurements as well as with the results of various models

of solids and theories of lattice dynamics.

I. EXPERIMENTAL METHOD

The specific heat measurements were performed in a
modified version of the apparatus described by Shinozaki

and A:rvrw;ti:.,‘ll+

Two cylindrical calorimeters, constructed
of thin-walled tellurium copper (.018" thickness),were

incorporated into the cryostat so that the specific heat



of 2ONe and 22Ne could be measured simultaneously. Soldered
to the inside of each calorimeter was a rolled strip of
corrugated copper foil which served to distribute the

heat to all parts of the sample. When full, each calori-
meter held .2 moles of solid neon.

The calorimeters were suspended by means of their
filling tubes from a copper platform which served as a
heat sink. This platform was itself suspended from the
top of the vacuum can Ly three thin-walled stainless steel
tubes. All electrical leads and capillary tubes were
thermally anchored to the top of the vacuum can as well
as to the copper platform. The temperature difference
between the platform and the calorimeter was monitored
by means of a Au-Co vs. chromel thermocouple. By heating
the platform when necessary its temperature could always
be kept very nearly the same as that of the calorimeters.
This procedure reduced the flow of heat between these parts,
thereby improving the temperature stability of the
calorimeters. The initial cooling of the calorimeters
was provided by a mechanical heat switch which was ther-
mally anchored to the top of the vacuum can.

Temperatures were measured with two germanium re-

15

sistance thermometers of similar characteristics, one

attached to each calorimeter by means of G.E. insulating



varnish No. 703;;16 These thermometers were calibrated
simultaneously in the cryostat described above. At
temperatures below 4.2 K they were calibrated using the
vapor pressure of liquid helium and the N. B. S. 1958
temperature scale17 using the calorimeters themselves
as vapor pressure bulbs. Above 4.2 K the calibration
was done by means of a helium constant volume gas ther-
mometer.18 The helium virial coefficients of Keesomlg

were used. The temperature - resistance data were fitted

to the equation given by Ahlers and Macre.20

21

The neon samples were obtained from Mound Laboratories.

The following are the purities quoted by the supplier:

22Ne - 99% 22Ne in total neon
99% total neon
20Ne - 99.5% 20Ne in total neon

99% total neon

20 22

Only .14 moles of Ne and .18 moles of Ne were
available for the experiment; thus it was important to
transfer as much of the samples as possible to the calori-
meters and to minimize the amount left in the storage
tanks. A toepler pump was used for this purpose. A

given amount of the sample to be measured (usually about
.01 mole) was first allowed to flow from its low pressure

storage cylinder into a measuring chamber built of pre-

cision bore tubing. Here the quantity of gas was found to



an accuracy of .4% by measuring heights of mercury with a
cathetometer. The sample was then transferred to the
calorimeter, which was kept at liquid neon temperature
(24.5 to 27 K). This process was repeated several times
until most of the available gas had been measured and
transferred to the calorimeter. Towards the end of the
filling procedure the pressure of the neon in the storage
tank fell to such a low level that it became necessary
to use the toepler pump in order to transfer gas from
the storage tank into the measuring chamber. The temp-
erature and pressure of the samples in the calorimeter
were carefully monitored during the entire filling process
in order to prevent formation of blocks in the filling
lines.

After filling the calorimeters the temperature of
the cryostat was kept at the triple point of neon for
several hours while the helium exchange gas which was
necessary in the filling process was pumped out of the vacuum
can. The samples were then allowed to cool slowly to 4.2 K.
Typically it took six hours for the samples to cool from
the triple point to 4.2 K. It was hoped that this slow
cooling would cause the neon to solidify into a small number
of single crystals with a minimum number of imperfections.

The usual heat pulse technique was used to measure the



specific heat. The voltage across each germanium resis-
tance thermometer was measured with a Guildline22 model
9160 GD six dial potentiometer whose off balance dc signal
was amplified with a Keithley23 type 148 nanovoltmeter and
fed into a strip chart recorder. This resulted in a
temperature vs time graph for each specific heat data
point. By switching the potentiometer from one resistance
thermometer to the other, temperature vs. time plots were
obtained simultaneously for both solids. At temperatures
below 5 K the combinations of heat leaks and low heat
capacity of the samples caused their temperatures to change
rapidly with time at different rates. It was much more
difficult to carry out simultaneous measurements at these
low temperatures, although each sample could be measured
individually.

It should be noted that the simyltaneous measurement
of specific heat as outlined above does not increase the
accuracy or sensitivity of the measurements. It was found,
for example, that the scatter of experimental points
between several runs was no longer than the scatter within
a run. The advantage of the simultaneous method is that it
allows the measurements to be done more quickly. The gain
in accuracy comes about in the simultaneous calibration of

the germanium thermometers. Any systematic error will
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affect both thermometers in the same way and will tend to

cancel out.
II. RESULTS - COMPARISONS WITH PREVIOUS MEASUREMENTS

Simultaneous specific heat measurements of solid
20Ne and 22Ne were made in three separate runs in the range
2.2K and 23K. The experimental data are given in Appendix
I and II for 20Ne and 22Ne respectively.zu

The calculated experimental error below 18K is 2%.
Above 18K uncertainties in the temperature given by the
gas thermometer resulted in an error of 6%. In addition,
at higher temperatures there is a systematic error in-
troduced by the fact that as the sample is heated some
of the heat goes into vaporizing the solid. This error
reaches about 10% at the triple point.13 We estimate the
error in ACP, the difference in the specific heat be-~
tween the two isotopes, to be 8% for temperatures below
18K, and higher above.

After examining the data we found no systematic dif-
ferences in the data from different runs. That is, the
scatter of experimental points within a run was the same

as scatter between several runs. In additions there was

no significant difference in the specific heat when measured
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in different calorimeters. For these reasons it was felt
justified to fit all the data points from all runs for each

isotope to a polynomial curve. The smoothed CP valuesg

20 22

for Ne and Ne thus obtained are given in Table I and

Table II respectively.

Using the smooth values of C_ we have calculated the

specific heat at constant volume CV from the relation:25

- n2
Cp - CV = B T/pr, (2)

where the experimental values for the expansivity B8,

density p, and isothermal compressibility Xop of Batchelder

26,27

et al. have been used. In addition, the entropy S

and the enthalpy H have been calculated by direct inte-
gration of the CP data. OSmoothed values of these quantities

appear in Tables I and II. These tables also include the

1]
Gruneisen parameter y of each isotope as a function of

temperature. This was calculated from the expression25

Yy = B/xTCV, (3)

The present results may be compared with the pre-

10

vious isotope measurements of Clusius et al. and with

12,13

recent natural neon measurements. We find that our
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measurements are generally 6% higher than those of Clusius
et al. We cannot find any reason for this; however, since

our 20Ne data are in good agreement with the natural neon

12

measurements of Fenichel and Serin and of Fagerstroem

13

and Hollis-Hallet we feel that our calorimetry techniques

are sound. When the differences in the specific heats of
20Ne and 22Ne are compared (see Fig. 6), the data of
Clusius et al, and the present data agree to within

the combined experimental errors.

In making comparisons between various sets of specific
heat data, it is convenient to compare the Debye temperature
¢ rather than the specific heat data itself. This is done
in Fig. 1 where we present our results together with all
other available data. The tables of Giguere and Boisvert28
were used to convert the specific heat at constant volume
to @C. The figure demonstrates the large discrepancy be-
tween the Clusius work and the present results. The ag-
reement between our 20Ne curve and the natural neon of
Fenichel and Serin is quite good. However, we note that the
oscillations in the Debye temperature curve appearing in
their data are not as pronounced in the present results.

In Fig. 2 is plotted the Debye temperatures corrected

for thermal expansion. Such a procedure is followed in

order to facilitate comparison of the experimental results
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with the quasiharmonic theory. This is done by reducing
the Debye temperature corresponding to the actual crystal
volume, @C(V,T), to the Debye temperature corresponding
to the crystal volume at 0K, OC(VO,T). The following

relation29 was used to obtain Fig. 2 from Fig. 1.

oCv_,m) = oC(v,T) [RLO2qY (1)
O v
p(T)

1"
The values of the Gruneisen parameter y, were taken from
Tables I and II and p from Batchelder27. In addition

to all the other points of Fig. 1, Fig. 2 also includes

the natural neon data of Fagestroem and Hollis-Hallet13

taken from the paper of Batchelder et a1.27
By extrapolating the present measurements to absolute

zero we have calculated the Debye temperature Gg and the
20

sublimation energy Lo at T = OK. We obtain for Ne :
og(zo) = 74.5 + 1.2K and L_(20) = 461 * 9 cal. for 2ZNe:
eg(zz) = 71.7 + 1.2K and L (22) = 469 * 9 cal. These

results have been discussed in greater detail elsewhere.3O

ITI. DISCUSSION

In comparing our results with theory we shall restrict

the discussion to temperatures below 18K. The reason for
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this is that the error in Cy at high temperatures is
considerably greater than at lower temperatures. This
large error arises not only from the error in the CP
data discussed in Section II, but is also due to the large
error in the measured values of compressibility at high
temperatures.27 In addition to this, at temperatures
near the triple point thermal generation of vacancies in
the crystal begin to contribute significantly to its
thermodynamics properties.sl No attempt was made to ac-
count for this fact in our data analysis. We estimate
that this omission will contribute at most an error of
5% at the triple point and much smaller for temperatures

below 18K.
A. Early Theories

Although, as previously mentioned, the isotopes
of neon are expected to deviate significantly from clas-
sical behavior, it is of some value to compare the present
experimental results with some of the early model theories.
This comparison is especially interesting in view of the
conclusions of the frequency shift model of Barron32 which
predicts that in the low temperature limit the thermo-

dynamic properties of anharmonic crystals as functions of
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temperature will appear to be like those of harmonic
crystals. The temperatures must be low enough and in the
range where, the zero point energy is much larger than the
thermal energy of the crystal. For neon at the triple
point the zero point energy is three times the thermal
energy, so that the harmonic-like behavior should be noti-
ceable over a large portion of the temperature range of
the solid neon isotopes. This type of comparison was

made for argon by Peterson et al.33 It was found that the
experimental results for argon were in good agreement

with some of the early model theories of solids. It

seem therefore worthwhile to make the same kind of com-
parison for the more anharmonic crystals of neon.

One of the early empirical relations is the Nernst-
Iindemann equation:25 (CP - CV)/CgT = A, where A is
assumed to be independent of temperature. In the case of
the neon isotopes it is found to be approximately a
constant, varying by only 3% in the temperature range
between 5K and 16K. The average values of A in this
range are:

> moles/joule for ggNe

moles/joule for Ne

A (49.2 =
A (48.5 *

Pt

e
@

10_
10

O

®ox

)
)

{1

There is a drop in A at low and high temperatures for both

isotopes. The low temperature drop is caused by ex-
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perimental uncertainties which arise from the fact that
A is proportional to the square of the coefficient of
thermal expansion - a quantity which is very difficult
to measure accurately at low temperatures. The high
temperature drop in A is real.

Another early empirical relation we shall discuss is

1"
the Gruneisen equation of state. The equation is:?’ur
Vp = V5 = By (5)
v Q-BE,

where V., is the molecular volume at temperature T, VO

T
is the molecular volume at absolute zero, and ET is the

thermal energy. The constants Q and b are given by:

Q = o (6a), b = (6b)

where xcand Y, are the absolute zero values of the com-
pressibility and Gr&neisen parameter, respectively. The
integers m and n are the exponents of the intermole-
cular potential equation when written in the form:

Vir) = =A r ™+ B p 1 (7)
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The thermal energy ET has been calculated by graphic

integration of CV' According to Eq. 5 a plot of ETvo

AV
Vs ET should yield a straight line whose intercept on

the vertical axis is Q and whose slope is b. This graph
has been plotted for the neon isotopes in Fig. 3. 1In
the temperature range 9K to 18K the experimental points
do indeed fall along a straight line. The values of

Q and b obtained from the graph are:

20

For Ne Q 5.51 x 103 joules/mole

6.67

22

b
For ’Ne Q = 5.66 x 10° joules/mole
b .

6.23

The self-consistancy of this theory can be checked by
calculating the constants Q from Eq. 6a and comparing them
with the above values. In order to do this the parameter
Y has been taken to be 2.78 for both isotopes. This is the
value obtained from Fig. 4 if the apparent drop of the
curve at low temperatures is ignored. The values of VO and
X, are taken from Batchelder.27 The results are: Q = 5.35 x lO3
joules/mole for 20Ne and Q = 5.51 x 103 joules/mole for
22Ne, which are in good agreement with the values of
calculated from Fig. 3. In particular the 2.7% difference
between Q of 20Ne and 22Ne obtained'from Fig. 3 is in ex-

cellent agreement with the value 3% obtained using Eq. 6a

and experimental values of VQS Xo s and Yoo However, the



value obtained from Eq. 6b for the sum of the exponents
appearing in the intermolecular potential equation (Eq.7)

is 33.4 for 20Ne and 37.6 for 22

Ne, which are much larger
than the value of 18 commonly used for both.

The final empirical relation we shall discuss is also
due to Gruneisen. According to this model, there exists
a parameter (the Grﬁneisen parameter y) which is a measure
of the dependence of the normal frequencies of the crystal
on volume. It is related to several thermodynamic quanti-
ties of the solid as shown in Eq. 3 and is assumed to be
independent of temperature. In Fig. U4 the Grﬁneisen para-
meters for the neon isotopes are plotted against temperature.
The upper curve gives the results of Clusius et al. and
the lower curve, the present results. The data of Batchelder
et al. for B, p, and XT have been used. In the range be-
tween 5K and 17K this parameter is essentially temperature
independent. The graph also shows no isotopic difference
in y. This is in agreement with the specific heat ex-

35; who found that y is

periments of Sample and Swenson
isotopically invariant in the solid helium isotopes. As
in the case of the Nernst-Lindemann constant, the present
experimental results indicate that the Qr&neisen parameter
has a very sensitive temperature dependence below 5K and

above 17K. Again the high temperature drop is real while
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the drop at low temperatures is caused by the large un-
certainty in the coefficient of thermal expansion and most
likely does not represent the trueproperties of these crys-
tals.

The high temperature drop of the Graneisen parameter
is in qualitative agreement with theoretical calculations

36,37 which in-

based on the quasiharmonic approximation
dicate that the main variation in Yy with temperature occurs
in the neighborhood of .20. An anharmonic theory has been
used recently to determine the temperature dependence of

the Graneisen parameter for the heavier noble gas solids38’8;

however, such calculations for neon have not yet appeared.
B. Modern Theories

Most modern theoretical calculations of the thermo-
dynamic properties of solid neon as functions of tempera-
ture have employed the quasi-harmonic approximation al-
though recently several anharmonic models have been used.
Unfortunately, most theoretical studies have been limited
to natural neon. Only one set of calculations for 22Ne has
been published; this is based on the self-consistent phonon
model and will be discussed at the end of this section.

In the absence of exact theoretical calculations we
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have computed theoretical Debye temperature OC vs tem-

22 . .
perature curves for Ne in an approximate manner from

existing calculations on natural neon based on the quasi-

harmonic theory and on the frequency shift theory of

Barron.32

The following procedure was used to obtain the theo-

retical quasi-harmonic curve OC vs T for 22Ne: (a) The

quasi-harmonic specific heat values of Leech and Reissland39

(based on anharmonic potential parameters) obtained from the

paper of Batchelder et al.27 were converted to Debye tem-

peratures, using the tables of Giguére and Boisvert.28

C

(b) Since these values of 0~ are based on the quasi-harmonic

theory, it was assumed that the corresponding values of OC

22

for Ne could be obtained from the relation:

o° (*%Ne) . M(PNe) 11/2

o (Me)  M(?2Ne) 9eT8 )
where M("Ne) and M(22Ne) are the molar masses of natural
neon and 22Ne respectively. That this approximation is
plausible may be seen from the fact that this method
yields 4.7% for the percent difference between the absolute
zero values of @C for the two neon isotopes. This agrees
quite well with the value of 4.9% obtained by Barron and

. 40 . . . . .
Klein using quasidharmonic theory. These quasi-harmonic
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o€ vs temperature curves for 20Ne and %%Ne (labeled Q(20)

and Q(22) respectively) are shown in Fig. 5.ul The same
figure also includes the experimental e® curves corrected
for thermal expansion. These are labeled X(20) and X(22).
Note that although the guasiharmonic curves fall well below
the experimental ones their shapes are quite similar.

This agrees with the frequency shift theory of Barron
mentioned earlier.

The frequency shift model of Barron32 is an anharmonic
model which yields numerical results that may be compared
with experiment. The analysis is based on the formal
anharmonic Born van Karman calculations of Leibfried and

42 According to this model the large non-harmonic

Ludwig.
atomic motions in crystals (due to thermal and zero point
effects) cause a shift in the individual frequencies of the
quasi-harmonic spectrum. The relative shift is proportional
to the total vibrational energy of the lattice. That is:

Av _

‘\—)-——Ae (9)
where v is the frequency and e is the vibrational energy
(thermal plus zero point) in units of 3R, R being the gas

constant. The anharmonic coefficientu3 A can be appro-

ximated from the experimental Debye temperature at absolute
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Zero @iXP. The following equation may be used:32
oS*¥P = oM(-3)[1 + 30" (2)] (10)

where Gh(~3) and Oh(Z) are the low and high temperature
limits of the Debye temperature obtained from the specific

heat in the quasi-harmonic approximation. Other methods

of evaluating the constant A may also be used.usfu7

Using our experimental value of OiXP = 74.5K for 20Ne

and the quasi-harmonic values of @h(-3) and @h(2) obtained

from Leech and Reissland we obtain the value of 4.8 x 107° deg._l

for A, which is very close to previous es‘cimates.l'l?’27

However, the value obtained for 22Ne using ngP = 71.1K,

and the values of @h(-3) and Oh(2) obtained from Eq. 10

3 deg."l.

This cannot be correct because 22Ne, being heavier thanZONe,

and the Leech and Reissland data is A = 5.3 x 10

should exhibit smaller anharmonic effects and thus have a
smaller value of the anharmonic coefficient A. This small
discrepancy is undoubtedly due to the large number of ap-
proximations used in these calculations. A study of the
range of A has been made by Batchelder et al27 for neon.
Their conclusion that A is uncertain by a factor of 2 is still
valid.

As a result of the frequency shift given by Eq. 9

the anharmonic thermodynamic quantities are shifted relative
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to the corresponding quasi-harmonic quantities. In the
case of the specific heat it can be shownL+ that the an-
harmonic specific heat cH(T) at temperature T is related
to the quasiharmonic specific heat Ch(T') at slightly dif-

ferent temperature T' by the equation:

a _ 1 + Ae - AcT h,my
c?(T) = T e C(T'), (11)
where
T' = T/(Ae + 1). (12)

The quantity c is the quasi-harmonic specific heat in units
of 3R. Thus if the quasi-harmonic specific heat is known
as a function of temperature, Eqs.ll and 12 allow one to
generate the corresponding anharmonic curves. This

was first done by Batchelderet al for natural neon,27
We have taken the quasi-harmonic curves Q(20) and Q(22)
of Fig. 5 and used them to generate anharmonic Debye tem-
perature curves using Eqs. 11 and 12. These curves are
labeled B(20) and B(22) in Fig. 5. In obtaining B(20)

and B(22) we took the anharmonic coefficient A to be 5 x 10—3

degml, Eq. 4 was used to refer these curves to the crystal

volume at 0 K. We also include in the figure the experi-
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mental results of Fagestroem and Hollis Hallet
and of Fenichel and Serin. For clarity only the high
temperature data of these experimental curves are in-
cluded in Fig. 5. At low temperatures the three sets of
experimental data are in good agreement with each other.
It can be seen from Fig. 5 that the theoretical
calculations based on Barron's frequency shift model give
a better agreement with experiment than is given by the
quasi~harmonic theory, especially at low temperatures.
Above 9 K, however, the frequency shifted curves begin
to diverge from the experimental curves. The difference
in the Debye temperature at T = 13 K is 3 K which corresponds
to a 5% difference in specific heat. This difference in-
creases rapidly with rising temperatures. Thus at high
temperatures the simple frequency shift model of Barron
tends to underestimate the specific heat. We note however
that the percent difference in the Debye temperatures of

20 22Ne predicted by this theory does agree with

Ne and
present results quite well throughout the entire temperature
range.

Recently some quasi-harmonic calculations on natural
neon by Gupta and Gupta48 have appeared in which a Buckingham

intermolecular potential function was used instead of a

Lennard-Jones potential. This potential is more satisfactory
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from a theoretical point of view but has not often been
used because of the calculational difficulties involved.
The Debye temperature curve for 20Ne calculated with this
model,Url using anharmonic potential parameters, is shown
in Fig. 5 as the curve labeled GG(20). This curve is in
remarkably good agreement with experiment even though
anharmonic effects have been taken into account only at
absolute zero in fixing the potential parameters. Below
10 K this curve deviates more from the experimental curve
than does the frequency shift curve B(20), however above
10K it keeps the same shape as the experimental curve
while the frequency shift curve diverges. Above 11 K

the quasi-harmonic curve of Gupta and Gupta is actually
in better agreement with experiment than is the anharmonic
frequency shift curve.

It is tempting to try to apply Barron's frequency
shift method described above to the curve of Gupta and
Gupta to see if it results in even better agreement with
experiment. However, this is not possible because when
the GG(20) curve is extrapolated to absolute zero the
resulting value Oh(—3) so obtained is almost identical
to the experimental value OiXP. This causes the anharmonic

coefficient,and consequently the frequency shifts, to vanish.

The excellent agreement between these calculations and
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experiment leads one to question the usefulness of the
Lennard-Jones potential in describing the forces between
neon atoms. It is usually tacitly assumed that this poten-
tial provides an adequate description of these intermole-
cular forces and the reason that satisfactory results are
not obtained is blamed on the inadequacy of the dynamical
theory rather than on the inadequacy of the Lennard-Jones
potential; i.e. on the fact that instead of using a proper
anharmonic theory at all temperatures, a quasi-harmonic
theory is employed with anharmonicity introduced only at
absolute zero in the calculation of the potential para-
meters. The fact that precisely the same dynamical theory
with a different intemolecular potential (i.e. the
Buckingham potential) yields good results would seem to
indicate that it is not the dynamical theory which is at
fault.

A very promising anharmonic theory of solids which
is currently much in use is the self-consistent phonon
modelqg’so. In this model the solid is assumed to consist
of a collection of phonons whose frequencies are determined
self-consistently. No assumption is made about the small-
ness of the amplitudes of atomic vibrations. This overcomes
the major weakness of the Born-van Karman theory. An ef-
fective Hamiltonian of the harmonic oscillator form is as-

sumed. The coupling parameters are left as variation
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parameters which are determined by minimizing a trial
free energy. An iterative process yields the self con-
sistent frequencies as well as the polarization vector.
The calculations have employed a Lennard-Jones intermole-
cular potential.

The self-consistent phonon model was first used to
calculate the thermodynamic properties of the noble gas

solids by Gillis et al.49

and, included only 20Ne. However, improved calculations

51

The results were not very accurate,

based on this model have been made by Goldman et al
who computed CP and Cv between 7 K and the triple point
for solid 20Ne and 22Ne using a 6-12 and a 6-13 model
Lennard-Jones intermolecular potentials. It was not pos-
sible to extend these calculations below 7 K because

the method involves using temperature derivatives of the
free energy, which varies very slowly at low temperatures.
In order to compare the results of Goldman et al with

those discussed earlier their CV values have been converted
to Debye temperatures and then corrected for thermal ex-
pansion. The 6-13 results shown in Fig. 5. The open

20Ne and the closed to 22Nee The

circles correspond to
data derived from a 6-12 potential deviate more from ex-
periment and are not shown on this ddagram.

The results of the self-consistent phonon calculation
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are in good agreement with experiment at intermediate
temperatures. However, the shape of the curves differ
from the experimental ones and diverge from them at high
temperatures. This divergence is less pronounced than
that of the frequency shift curves B(20) and B(22).

In Fig. 6 we show the isotopes effect in the specific
heat. The figure includes the calculations of Goldman,
et. al., the present experimental results and Clusius'
data. The agreement between the calculations of the self-
consistent phonon model and present results is very good.
Although the 6-13 potential data lie closer to the ex-
perimental curve than do the 6-12 data, they are both with-
in experimental error.

Finally, we compare the present work with the in-

52, who

elastic neutron scattering data of Leake et. al.
obtained dispersion curves for a single crystal of natural
neon in all principal symmetry directions at 4.7K. The
experimental data were represented by smooth curves de-
rived from a force constant analysis using a Born van
Karman model. A Mie-Lennard-Jones intermolecular potential
model was used, and the analysis was carried out to second
and third nearest neighbor approximations. The density of

states curve which was calculated from the force con-

stants was used to find specific heat and Debye temperature
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curves. The Debye temperature curve which results from
the second nearest neighbor approximation appears in
Fig. 5 labeled INS(20). The inelastic neutron scat-
tering curve shows the best agreement with the present
experiment. The agreement is quite good throughout the
temperature range shown. Above 8K the two curves are
within the experimental error of the present work. At
high temperatures the inelastic neutron scattering curve
remains flat and does not rise rapidly with temperature

as do the theoretical curves of Barron and Goldmann et. al.

V. CONCLUSION

In comparing our experimental results with various
theories of lattice dynamics we conclude that purely
quasi-harmonic theories are not satisfactory. Present
anharmonic theories agree much better with experiment, al-
though the results depend greatly on the intermolecular
potential used. For example, the introduction of an-
harmonicity at absolute zero in fixing the intermolecular
potential parameters yields results which are in good
agreement with experiment only when a Buckingham potential
is used. The Mie-Lennard-Jones potential does not give

good results in this case. When anharmonicity is in-
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cluded at all temperatures, as in the Barron and self-
consistent phonon models, agreement with experiment
is good below 14K when a Mie-Lennard-~Jones potential is
used. However, at high temperatures (above 14K) a dis-
crepancy between theory and experiment arises which in-
creases with increasing temperature.

We conclude that existing anharmonic theories
are appropriate for the description of the noble gas
solids. However, it is likely that better agreement
with experiments would result by using an improved poten-
tial function rather than the Mie-Lennard-Jones potential.
In particular, more calculations using the Buckingham
potential in the style of Gupta and Gupta would be most

welcome.
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Table I. Smoothed Values of Some Thermodynamic Functions of
ZDNe, Cp = Specific heat at constant pressure; CV = Specific
heat at constant volume; 5 = entropy; H = enthalpy; vy =
graneisen parameter.
T Cp Cy S H Y
(K) (J/mole-K) (J/mole-K) (J/mole-K) (J/mole)
3.0 <143 <143 . 0527 .322 - 625
3.5 242 <242 .0821 445 1.8u48
4.0 .367+.,007 .366%,007 «122 .568 2.u436%.,216
4.5 .529 .528 174 .837 2.706
5.0 <746 <Thy 241 1.106 2.759
6.0 1.362+.027 1.357+£.027 ch27 2.140 2.699%.150
7.0 2.170 2.154 .696 3.895 2.686
8.0 3.118 3.079 1.046 6.522 2.741
9.0 4.254 4.173 1.476 10.19 2.746
10.0 5.541+.111 5.,392+.111 1.990 15.08 2.723%,213
11.0 6.915 6.659 2.582 21.30 2.754
12.0 8.329 7.922 3.244 28.92 2.782
13.0 3.747 9.137 3.967 37.96 2.824
14.0 11.15%.17 10.28%.19 b,741 4g.ul 2.888%.276
15.0 12.55 11.36 5.558 60.26 2.901
16.0 13.96 12.43 6.413 73.51 2.864
17.0 15.43 13.54 7.303 88.20 2.738
18.0 17.00%,23 14.75%.35 8.229 104.4 2.555+.284
19.0 18.69 16.11 9.193 122.2 2.302
20.0 20.49 17.61 10.20 141.8 2.037
21.0 22.36 19.38 11.2Y4 163.3 1.661
22.0 24,14 21.05 12.32 186.5 1.390
23.0 25.59 22.34 13.43 211.4 1.211
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., Table II. Smoothed Values of Some Thermodynamic Functions

of 22Ne° CP = Specific heat at constant pressure; C, =
Specific heat at constant volume; S = entropy; H = enthalpy;
Yy = graneisen parameter.
T Cp Cy S H Y
(X) (J/mole~-K) (J/mole-K) (J/mole-K) (J/mole)
3.0 .157 «157 .05879 «353 .584
3.5 . 264 . 264 .0901 488 1.915
4.0 .405+.008 405,008 <134 .623 2.383%+.203
4.5 . 591 . 590 .192 924  2.724
5.0 .841 .839 . 266 1.224 2.792
6.0 1.541%,015 1.534%,015 478 2.395 2.786%.14Y4
7.0 2.423 2.403 .780 4.368 2.762
8.0 3.465 3.418 1.168 7.286 2.767
9.0 4.665 4,572 1.643 11.33 2.726
10.0 6.016+.060 5.848+,062 2.204 16.66 2.704%,213
11.0 7.457 7.173 2.84y 23.39 2.729
12.0 8.936 8.489 2.556 31.59 2.757
13.0 l10.41 g9.7u4y 4,330 41,26 2.807
1.0 11.86%.12 lO.Qli.lSv 5.155 52.u40 2.875%,281
15.0 13.28 12.00 6.022 64%.97 2.881
16.0 l4.68 13.02 6.923 78.95 2.898
17.0 16.11 14.07 7.856 94.35 2.787
18.0 17.60%£,18 15.21+.32 8.819 111.2 2,599+,297
19.0 19.22 16.48 9.813 129.6 2.355
20.0 20.99 17.97 10.84 1u48.7 2,072
21.0 22.92 19.72 11.91 171.6 1.722
22.0 24,98 21.76 13.03 195.6 1.393
23.0 27.05 23.67 14,18 221.6 1.185




APPENDIX I - Measured specific heats of solid

T

(X)

2.235
2.377
2.395
2.404
2.469
2.552
2,559
2.702
2.745
2.878
2.920
3.046
3.050
3.090
3.230
3.249
3.348
3.450

3.478 -

3.512
3.735
3.895
3.8989
3.903
4.029
4,245
4,220
4,247
4,388
4. 474
4,544
4,547
4,575
4.681

c
P

(J/mole K)

.0572
.0713
.0697
.0713
.0769
.0879
. 0863
.1020
1125
.1234
1340
1524
1467
.1635
.1865
.1898
.2084L
«2274
.2364
» 2407
.2934
.3583
.3380
»3390
.3798
L4499
4376
L4524
4963
.5388
.5uhl
. 5483
. 5561
.6020
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Run 1
(.0889 moles)

20

Ne.

C
p

(J/mole K)

.60u5
6431
.8326
.7036
.6929
.7503
.7628
.8522
1.018
1.198
1.258
1.452
1.560
1.673
1.859
2.040
2.377
2.877
3.562
4.004
4.558
6.759
8.115
9.036
9.534
9.917
10.80
10.94
1l1l.u46
13.47
15.54
19.96
23.46
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T
(X)

.798
. 873
. 132
224
<341
480
. 746
.788
. 813
. 835
.906
.973
.026
.166
.210
. 301
. 308
. 389
. 396
.502
507
.646
. 685
. 839
012
. 157
. 315

. 515

.652
<753
. 835

. 184

. 330
.662

C
p
(J/mole K)

1185
1348
.1669
.1811
L2047
.2319
.1126
.1136
<1184
.1178
.1336
. 1360
. 1488
. 1685
.1784
.1853
.1910
.2130
.2080
.2377
. 2320
L24Th
. 2826
. 3207
. 3735
UL 86
<4716
. 5318
. 5864
.6325
.6660
. 8340
. 9154
1.129

Cad
i

Run 2
(.1084 moles)

(K)

5.855
6.063
6.292
6.51
6.702
6.853
7.166
7.412
7.677
7.973
8.319
8.706
9.056
9.355
9,741
10.18
10.67
11.25
11.62
12.03
12.42
12. 84
13. 35
13.69
14,15
14.65
15.90
16.62
17.52
18. 34
19.29
20. 35
21.93
23.30

C
P
(J/mole K)

.259
403
. 584
. 753
. 830
024
. 308
535
.793
.090
475
797
. 305
718
.189
751
431
288
. 845
. 566
133
<771
10. 37
10.66
11.48
12.05
i4.23
15.07
16.04
17.67
15.28
21.10
23.85

26.03

L]

®
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Run 3
(.1070 Moles)

T C T C
P P
(K) (J/mole K) (K) (J/mole K)

2.919 «1259 6.771 1.959
3.068 .1492 7.229 2.366
3.236 +1711 7.521 2.614
3.460 .2117 7.857 2.958
3.582 s 2414 8.094 3.212
3.685 2971 8.524 3.678
3.786 .3114 8.963 4,219
3.877 .3365 9.517 4.909
4,006 «3757 9.894 5.393
4,140 L4169 10.24 5.856
4,337 L4795 10.45 6.075
L.496 5357 10.71 6.386
4,599 . 5642 11.29 7.168
4,71k .6090 12.07 8.249
4,897 .6874 1l2.45 8§.821
4,773 .6252 13.09 9.637
5.054 - 7599 13.46 10.27
5.243 .8661 13.91 11.05
5387 . 9u67 14,33 11.52
5.547 1l.0u44 15,72 13.40
5.655 1.119 l6.46 14,33
5.768 l1.191 17.43 16.02
5.964 1.327 18.50 17.95
6.126 1.u29 20.09 20.35

6.439 1.687 21.88 23.41
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APPENDIX II - Measured specific heats of solid 22Ne

Run 2
(.0999 moles)

T CP T CP

(X) (J/mole K) (X) (J/mole K)
2.863 .1U453 6.461 1.927
2.910 +1u432 6.636 2.066
3.035 . 1644 6.788 2.230
3.069 .1800 7.078 2.u87
3.1u48 .1837 7.338 2.742
3,201 .1927 7.566 2.965
3.249 "L 2141 7.877 3.305
3.286 .2099 8.188 3.650
3.346 .2306 8.596 4,178
3.369 2293 8.951 L,593
3.426 L2451 9.257 5.004
3.440 . 2434 9.613 5.503
3.483 »2548 10.05 6.068
3.489 .2587 10.54 6.782
3.595 .2864 11.07 7.554
3.604 .2876 l11l.u44 8.117
3.729 .3416 11.82 8.653
3.760 . 3440 12.20 9.299
3.840 .3613 12.65 9.975
4,027 L4184 13.08 10.53
4,172 L4711 13.45 11.07
4,358 . 5424 13.86 11.61
4,534 .6096 14.33 12.25
4,682 .0783 14.86 13.19
4.799 .7193 15.50 13.88
4.909 . 7594 16.26 14.91
5.130 .9161 17.15 16.29
5.267 1,007 17.95 17.60
5.399 1.108 18.87 19.16
5.541 1.202 19.93 20.96
5.700 1.316 21.47 23.76
5.864 l1.438 22.70 26.25

6.255 1.775 23.36 27.19



(XD

2.612
2.665
2.725
2.765
2.812
2.916
3.035
3.154
3.262
3.385
3.419
3.511
3.600
3.710
3.853
3.998
4.188
4,345
b.541
h.673
4.882
L.914
5.135
5.229
5.293
5.478
5.700
5.849

C

P

(J/mole K)

. 0962
.1040
<1134
1204
«1297
<1437
1617
.1828
. 2036
. 228U
<2424
2632
. 2870
.3165
3587
Jh4ouy
<4736
5358
6211
. 6681
L7542
. 7705
. 9183
<9749
1.015
1.142
1.319
1.425

37
Run 3
{.1054 moles)

(X)

6.093
6.357
6.712
7.160
7.413
7.767
8.000
8.415
8.839
9.380
g.7u48
10.09
10.03
10.55
11.12
11.86
12.25
12.84
13.21
13.64
14.02
1l4.60
15.34
16.06
17.01
18.04
138.59
21.34
23.21

]

(J/mole K)

l.614
1.831
2.153
2.589
2.835
3.202
3.468
3.945
h.461
5.179
5.668
6.146
6.393
6.7u43
7.550
8.642
9.330
10.22
10.83
11.43
11.95
12.69
13.70
lh.64
16.18
17.75
20.03
23.62
28.27
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FIGURE CAPTIONS
Fig. 1. Experimental temperature dependence of the Debye
temperature GC reduced from the specific heat at constant
volume. o=-0 present result. x-x Clusius et. al. (Ref.
10), e e natural neon measurements of Fenichel and Serin.
(Ref. 12). The extrapolation to 0K was achieved by fit-
ting the low temperature points to a parabola. The curves
have not been corrected for thermal expansion of the solid.
Fig. 2. Temperature dependence of the Debye temperature
OC(VO,T) corresponding to the crystal volume at absolute
zero. In addition to the data found in Fig. 1, the natural
neon data of Fagestroem and Hollis Hallet (Ref. 13) is
also included (AA).
Fig. 3. Test of the empirical Gr&neisen equation of state
for the solid neon isotopes. The numbers adjacent to the
points on the graph correspond to the temperatures at
which the quantities appearing in the Graneisen equation
of state were evaluated.
Fig. 4. Temperature dependence of Gr&neisen parameter
Yy = B/p CVXT“ The lower curve shows the present results
for both isotopes. x x is 2ONe and o o is 22Ne. The
upper curve shows the results of Clusius et. al. (Ref.
10). e e is QDNe and AL is ZzNe@ In all cases the
quantities B, p, and Xp were taken from Batchelder et al.

{Ref. 273,



Fig. 5. Comparison of the temperature dependence of the
Debye temperature o® from various theoretical models and

experimental measurements.

Q(20), Q(22) Quasi-harmonic calculations of Leech and
Reissland (Ref. 39).

B(20), B(22)

Frequency shift calculations
GG(20) - Quais-harmonic calculations of Gupta and
Gupta (Ref. 48).

X(20), X(22)

f

Present experimental results

INS(20) - Inelastic neutron scattering calculations
of Leake et. al. (Ref. 52).

00, @@ - Are self-consistent phonon calculations
for 20Ne and 22Ne respectively using a
6-13 model potential. (Ref. 51).

AL, Ab - represent the experimental data of Fenichel

and Serin (Ref. 12) and Fagestroem and
Hollis Hallet (Ref. 13) respectively. All
curves refer to the crystal volume at ab-
solute zero.
Fig. 6. Isotopic differences in the specific heat at con-
stant pressure for 2ONe and 22Ne. ® @ present results,
x x Clusius et. al. (Ref. 10), o o 6-13 theory of Goldman
et. al. (Ref. 51), AA 6-12 Theory of Goldman et al. The

solid curve in a smooth fit of the present data.
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