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i. Abstract

A limitation to the capability of first generation computer

aided network design programs occurs for the case of networks

characterized by so-called stiff systems of first order differ-

ential eauations. A study of methods for strengthening this

capability is reported here. A matrix method for a limited

class of networks is ueveloped, which avoids numerical integration,

the usual source of difficulty. The performance of Gear type

implicit linear multistep methods of nur„erica1 integration is

investigated, and the rr.athematical structure essential in the

construction of this class of algorith..s is obtainer'_.

t
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E	 II. Introduction and Summary

In the last several years a number of computer aidec', circuit

analysis programs have been developed [1,21. Such programs have

proven invaluable for research and (resign work in both industry

and the academic community. However, many of the first generation

circuit analysis programs share a common shortcoming; severe

numerical problems occur in the approximate integration techniques

employed, when applied to netwcrkc characterized by 'large tire

constant spreads. In order tc obtain a reliabl-a design anF:_lysis

in this ill-conditioned case, extremely small time steps must be

taken, with the step-size usually inversely proportional to the

largest time constant present. Such a measure proves highly

uneconomical,  since quite often the high frequency eiyen-modes

are pur?sitic effects, havir._ slight dominance in the circuit

except at very high frequencies, or during the very early initial

periods in transient analysis. Thus, it would appear that the

step size could be increased when observing the more dominant

long time effects in the circuit. However, for ordinary inte-

gration techniques such as Adam's or the Runge-Nutta methods,

increasing the step-size concomitantly proC=es severe numerical

problems, even when the high frequency modes have decayed.

The present study aims at the alleviation of these numerical

problems, through search of existing techniques as well as

research on new algorithms. As it turns out, the approaches can

be divided into two categories! a direct matrix approach avoiding
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numerical integration, and investigation of the implicit linear

multistep numerical integration techniques First discovered by

Gear, purposely designed for stiff systems of differential

equations.

The first method is concerned with the application of matrix

theories in solving a specialized class of linear network problems

frequently encountered in a large percentage of design problems;

namely, linear time invariant neti ,yorks forced by sinusoidal,

co-sinusoidal, or step inputs. This method employs a spectral

decomposition of the matrix{ exponential exp(At), in terms of the

eigenvalues of the systera matrix of a linear network forced by

one of the previously categorized inputs. This allows one to

obtain a closed form solution, which avoids numerical integration

and has the advantage that output time points may be arbitrarily

selected without effecting program efficiency. The theoretical

basis of the matrix method is reported in Section III 1 , and

computational results appear in Section V.

The second Grea of investigation concerns the use of implicit

#	 numerical integration techni ques specifically designed for systems

of first order differential e quations with wide-spread eigen-

values, the so-called stiffly stable implicit linear multistep

algorithris of Gear. A program obtained from Gear has been used

to process typical networks which ordinarily experience numerical

&ifiiculty. Computational results are reported in Section V.

1Sections III and IV consist of exact reproductions of papers
currently submitted for publication in technical journals.



A survey of the literature concerning implicit integration tech-

niques has been made, and an editing of the principal results

appears in a previous report [3].

Although the stiffly stable algorithms of Gear appear

extremely effective, as regards the purposes for which designed,

the present literature survey has not indicated any results con-

cerning the general properties of this class of algorithms, or

of methods for constructing members of the class other than the

specific algorithms detailed by Gear [4]. Thus, we have devoted

some effort to the isolation of the essential mathematical

structure of the stiffly stable algorithms. Necessary conditions

for constructing the general member of the class have been dis-

covered, and are reported in Section IV.



Section III

The Matrix Method
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I'UTERICAL SOMTTIO*! OF LITIFAR STATr

EQUATIONS T'1ITE LAP.GE FIGI-11VALUr SPrrADS

S UT II ARY

An algorithr., is presented for solving linear state equations

excited by sinusoidal and rectangular 7aveforms without numerical

integration. This method is valid in the entire X ni.tne and is

especially advantageous when a system. has large eigenvalue

spreads.

In the last severed  -v ears, a nur^)er of computer aided circuit

analysis programs (1,2,3) have been eevelopeC, and are now widely

in use as an aid to the electrical engineer. However, they share

one coru;on shortcoming ir that they cannot solve rnrohlems with

large time constant spreads. The difficulty lies in the fact that

ordinary integration techniques will most likely become unstable or

in some cases become nonconvergent in this ill--conditioned case.

As a result when large spreads of eigenvalues exist, extremely

small time steps have to be taken,with some criteria of the form

(ha
max 

I < C. This is certainly inconvenient and uneconomical

since quite often the high frequency eigen modes are parasitic

effects in the system, and are not dominant except at very high

frequencies or during the very initial periods in transient analysis.

Since these modes decay rapidly in time then it seems reasonable

that the step size can he increased to observe the more prominent

long time effects of the circuit. This is exactly hcxi ordinary

integration techni ques such as Adam's or the Runge Rutta methods
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fail. The step size cannot he increased even %• ►hen the high fre-

quency r,.odes have decayed. rear (4,5) has i. ,ritten a very power-

ful algorithm to solve a set of linear anA nonlinear differential

equations using multistep methods. In the linear case, hcr.yever,

certain matrix maninulations may actually brine about advantages

that are not found in the implicit methods. !fence, this prompted

the present investigation.

The set of linear differential equations describing a network

can be cast in the state variable form

x- ^x+nu= Ax+ u '
ti— ti—

and the solution of I,quation (1) is

expWt-to))x(to ) + ft exp(A(t- T))u'(i)c'T	 (2)
to

?'hen Ais ill -conditioned with larve spreads in eigenvalues then

the integral solution given by Equation (2) experiences the diffi-

culty mentioned above. One way to elir-.inute the problem is to

integrate exactly for certain waveforms such as sinusoids and block

puises.,which probably constitute many of the excitations encounteree

in electronic circuits. The explicit integration can be carried out

if t..",e transition matrix exp(k(t-t o )) can be expressed in terms of

the eigen modes. The eigenvalues of the A ratrix are solved
ti

using the nP, transformation (6,7), which is the best method

available. The particular expansion of the transition r.atrix, in
1

terms of the eigen modes was studied by I:irchner (6) and is

essential for this algorithm. At the present moment the discussion

is limited to noneegenerate modes: the case for repeated eigen-

values is somewhai complex but still solvable and the computational

(1)
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aspects of the probler;,lave not peen examined. Por the case

<<+ith distinct eigenvalues the transition matrix is expressed as

n	 n
exp(At)	 E	 E	 C 

A^..1 
erp(Xit)	 (3)

ev	 i=1 j=1	 i7

The coefficients Cij forril a matrix •Yhich turns out to he the

inverse of the Vandermonde matrix

-1
1	 1

^ 1	 ^2	 ^n

C- [Cijl=

^1-1	 ^2-1	 0-1	 (a)

The Vandermonde inverse can be computeO efficiently through the

method developed by Kaufman M.,

;Z- j

E a n-j-1,

Cij =	 k=0 k i 	 (5)
n
n (ai -ak)

k= ].
)-,#i

where the a  values are the coefficients of the characteristic

equation

PM = ao an + a,Xn-1 + . . . + an_1X + a n	 (6)

with a  = 1

%I
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The a  coefficients can he formed fror. the combination of the

traces of ak: k = 1,	 n
ti

1	 }:
a  = --k E	 a	 T	 (7)

M 1	 )^._"`
r_

Tr" = trAm = E	 ( X r")	 (G )ti	 R=1

The total number of operations involved in forming the C matrix
ti

is about 4.5 k72 operations, which is consicerahly faster than Gauss

elirination, for la-rere Fl . It is vent cumhersopie to store the

transition matrix as cxnressec? by Equation (3). Since the matrix

is always rultiplieC into a vector such as e:.n (' ►_ (t-T) ) u' , then it
ti	 -

would be convenient to consiC.er the vectors

exp(A(t--T))u' = p lexr?(X 1 ( I-_ . T)) +	 +pn°-xp(^ (t-T)) (9)

where

P = (C^1^ + c,^2A
r%O
 +	 + C^nAn- 1)u,

( Cj1Y1 + Cj2 `_'2 +	 + CjnYn )	 (10)

with the Ym+l vector C:efined by

Y 1 = u'

Y
	 - A Ya+1	 (11)ti ^-1



This, can be easily set up as a recursivY process and use is made

to tare -dvantage of the sparseness of the n matrix so that the
M4

programming is more efficient.

The integral in ?cuation (2) can nor: re expresses as

t	 n t
t exp('!(L-T)) u' (T) dT = E	 t n• exp(a.(t-T)) RT	 (12)
to
	

't,
	

V	 j=1 to _^

For a finite number of excitation sources p j can be written as

k=:
P, = Erk'k(T)
-^ k=1

where rk	 columna constant colun vector, anc' 	(1:') becomes

: ► 	 I	 t

j=i k=1 rk 
Io exn (a

i
 (t- • T)) S (T) JT	 (14)

Notice the integrals in Equation (14) are nrw -alar c*uantities andZ	 -	 -
these are Nothing more than convolution integrals. Since the inte-

gral

t	 t	 to
ff dT = f f dT - f f dT	 (15)
to	 0	 0

it is sufficient to examine the integral

t
f exn(a j (t-T))sk (T) d 
0

(13)

(16)

P- j	 P-xj d P	 n-Tj TrpT	 (17)

L
from which Equation (15) can be computed. The Laplace transform

of the above integral is

1 S(p) =	 1	 n( ) _ _a	 + ),(0)
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The first term in the ahove equation is the natural mode in the

nircuit while the remainder term is the -esponse due to the forcing

function. If X. an,' the poles of the driving function are situated

widely apart, then the ill-conditioned case comes up. In the

present algorithri, an exact explicit integration will he performed

for Equation (16) for certain e.-:citation waveforms, thereby

eliminating the difficulty. In theory, X i can be anvwhere in the

complex plans, and it seems that this method_ may also he extended

to quasil.inear cases. ': ben there are ccovnlex eigenv .lees, then

the fo).iowinq inte gral air is ccnsic?e_ed.

*	 t
exn(n i (t-T))rs(T) C,T + f exr);;, (t--T))r^::.,.L: jT}	 (18)

0	 0

wharc r l%s an element in the co "_^,mn vec}ar c;f 7,rpi°ti_on (14i .

Equation (18) ;.s -a:.^d if the original 'ate ec;u ;:-.tions consist of

real. gl l.antities only.

:^s an example the exp licit i.r..1-egration of the rectangular

waveform is given. Tic integral

t
f exp(1(t-T))E(T) dT	 (19)
0

is a solution of

dx _ ax = E(t)	 (20)7C__t

with x(0) = 0,



rLi	 Tl <t<T

E o _.r l

2 -

_IF (t + nT)	 n = 0. 1; 2,	 (21)

If the problem was solved by the Laplace transform method, the

soluticn would l)e in the form of an infinite series and this would

be undesirable foi- contrutati.onlal pur,)oscs . It is -n ch simp ler to

replace i,6 c;if:forr ntial equ -,tion Z-)t , a segdence of c , `ferential

equations

1	
(_2)

;J Yn , 
2  • n < t< (-I+

n,4	 i

dt	 -

where n = C), 1,

Since x is to be conti.nuc-as, Vie beriL,niY , of "n 2 and the end

points of xn,l must coincide with each other. Thus, a sequence of

points are defined at 0, Tl , T; T + Tl , 2T, . . .. This sequence

can be solved from the sol. !ztions of Equations (22 and 23) with the

aid of z transform theory. For the case Re(a) is negative then the

natural node will he a decaying mode, and is expressed as

:cn 1 (t - t' + nT) _ -	 exp ,k T+ nT)) 1 (	 ) ){	 1-exp (a (T-T1)

+Eo e x.p(AT) (1-exn(--XTl)) } 0<t' <T1	 (24)
1

^ y



xn,2 (t = t' + nT + T i ) = -exp (a(t' + nT + Tl)) 1 1 
exp aT))

1 (1 - exp (a (T - T l ) ) + E0 exp (AT) (1 - exp (XT 1 )) }

Tl<t'<T
	

(25)

T'?hen n -► - the two above expressions will tend to zero. The terms

due to the forcing function are

	

xn ^ l (t	 t' + nT) _ -Eo 1(1 - exp (At ) ) + exp (Xt ) (1-exp (AT)
a

. {E1 (1 - exp (A (T-Tl )) ) + '̀o exp (AT) (1 - exp (-XT 1 ) ) }

0 <t' <T1
	 (26)

xn , 2 (t = t' + nT 1) = JE11(1 - exp(at'))--rO  (1--exp(AT1))exn(\t

ex (A(t'+T )) E1	 F

	

1-exp T	 {	 (1-exp (A (T-Tl) ) + o exp (AT) (1-exn (- XT 1 )) }
X

Ti < t'< T	 (27;,

Notice the factors exp(AT), (1-exp(AT)) and others will always have

their conjugate pairs when complex eigenvalues are considered.

The complex terms can be combined to form real terms only, thus

the result can be applied to all eigenvalues. The separation of

the transient term from the forcing function is a real asset in

this algorithm. It may take many periods to reach a steady state,

however, in many circumstances only the steady state solution is of

interest which can be obtained directly from E quations ( 26 and 27).

The numerical integration techniques do not have this convenience.

1
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T'Then a finite pulse train is considered, the excitation can be

realized by a superposition of two infinite rectangular pulses, and

the analysis is again the same. The development for sinusoidal

waveform is simpler in theory but involves some tedious manipulation

and will not be covered here. A flow chart of the complete zlgorit:u

is given below

I given A, x(to), u', to	

,I
operation count

find eigenvalues of A
ti

8P13

4
form Vandermonde matrix 4.5N

find coefficients of 112
I	 characteristic equation

Lform Vandermonde inverse	 1
1

3N2

`	 sp"- up sparse matrix code 	 I

find response due to initial

j
2N3conditions

I

Ifind response due to particular
integral, integrate explicitly ?N3

1 

express desired output in 3rT2
Total,-,%12 i•T3terms of state variables

I end I

1 operation=l multi-
plication + 1 addition	

ti

FLOW CHART AND OPERATION COUNT OF ALGORITHM
TO SOLVE LINEAR STATE EQUATIONS
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The total operation count is of the order of 12 N 3 . This is

a?aout a factor of N times less operations compared to the eigen

vector method (10). The method used in Pottle's program (3) is

about 16 N 3 for a single output. For multiple outputs, Pot.tle's

program also approaches N 9 units of operation. The present scheme

has been found to work well for several trial problems. Some

further work is being carried out in examining the case for repeated

roots, the processing of the convolution integral for arbitrary

waveforms, and the search for a sparse technique method in obtaining

the eigenvalues, which is the most time consuming part of the

program.

The authors wish to acknowledge the support by NASA under

grant #NGR47003026 for this work.
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ON THE CLASS OF STIFFLY STABLE IMPLICIT LINEAR
MULTI-STEP NUMERICAL INTEGRATION ALGORITHMS

Charlie H. Cooke +

Abstract

An analysis of the mathematical structure of the class of stiffly

stable implicit linear multi-step numerical integration algorithms is

presented. Conditions sufficient for constructic., of typical members

of the class are obtained. These conditions in general consist of

one-to-one-ness of the stability mapping on the unit circle, together

with analyticity on its exterior.

I. Introduction

The usual analysis of the properties of numerical ir.':egration

algorithms for the solution of the initial value problem in ordin-•

ary differential equations entails a study of the converge!ca of-

the numerical solution to the exact solution as the stepsiz-3 h

approaches zero, the so-called asymptotic theory [1, 2, 3 11. Fow-

ever, in most instances the prime concern is numerical accuracy

and stability in tandem with maximum stepsize. This is partic-

ularly exemplified by the case of stiff systems of ordinary

differential equations, ouch ao occur in electrical networks

'Old Dominion University, Norfolk, Virginia, 23508. This investi-
gation sponsored by NASA Grant NGR-47-003-026, Langley Research
Center, Hampton, Virginia.

1
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characterized by large snre4.Gs in the time constants of the various

components (5). Such syste::s exhibit some rapidly decaying com-

ponents which quickly become of no interest. However, the maxi-

mum step size allowable in the numerical integration of such

systems is usually of the order of magnitude of the smallest time

constant present. Severe numerical problems occur, for most

general purpose integration techniques, if a larger step size ie

attempted.

The motivation to increase the step size with no degradation

of numerical accuracy and stability has led to the discovery o::

particular members of the class of so-called stiffly stab.l.e in.-

plicit linear multistep algorithms. Although specific algorithms

have been developed, it is not known precisely how to construct

the general member of the class except "by usin-7 common sense

and investigating the properties of the guess" [6). In this

paper an investigation of the mathematical structure of this

class of algorithms is presented. Conditions sufficient for con-

struction of typical members of the class are obtained.

2.	 Stiffly Stable Methods

The general implicit linear k-step method for the numerical

solution of the initial value problem

dt - ? (x, t) , x (o) - Teo, (xeRs, t>o)	 ( 2.1)
is defined by the relation
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a k xn+k	 ox 	 k n+k	 o n
+....+ a x a h1s f	 +....+5 f 1 1	(2.2)

with ak, 
Sk 0 0. In what follows it is assumed that the ai , sit i =

0, 1, 2 1 . . ., k, are real constants; h>0 is the step size; tn, - mh;

and fm	 f(xm ,tm). Given vectors xo , x1 , . . ., xk-11 then xk,

xt;+1'	 are computed recursively from (2.2) by predictor-

corrector methids 16). It is further assumed that the convergence

of the predictor is such that it has no influence on the computed

solution of (2.2). If the Jacobian matrix 8f of system (2.1) is

slowly varying, the numerical stability of eqn. (2.2) is then deter.

Mined by the location of the roots of the associated polynomial

equations 11,41
p(z) - hA ia(z) - 0.	 (2.3)

Hr,.re
k.	 kP  = I; a z i , a 	 = E S 0	 (2.4)

the Ai, i - 1, 2, . . . J S are the eigen-values of the Jacobian matri::;

and p,a are assumed to have no common factors. System (2.2) is said

to be stables (absolute stability) provided the roots of (2.3), for

each A i , lie within the unit circle, with the possible exception of

at most one simple root occurring on the unit circle.

Recall that (2.1) is a stiff system if the eigen -values Ai

are widely spread, presumably over the left half plane in the case of

a physically stable system. The requirements (6) that (2.2) be a

stiffly stable algorithm are summarized by Fig. (1). Let A i be an

eigen-value of 3f	 For hAi having a real part less than the

parameter D < 0, or for hAi within the rectangle bounded by the
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lines X=D, x-a, and y=+6 , it is required that the

corresponding roots of (2.3) be inside the unit circle in

the Z-plane, with the possible exception of at most one

simple root on the unit circle. If, in addition, for ha i with-

in the rectangle the one step truncation error is of the order

hp+l then (2.2) provides a stiffly stable method of order p

with respect to the parameters D,9,a• Hence stiff stability

requires an algorithm which is numerically stable in the region

of hA corresponding to the rapidly decaying system components

of little significance, and which is both stable and accurate

in the region corresponding to reasonably large step sizes and

less slowly decaying system components.

The usual definition of accuracy is that of order. The order

of the method (2.2) is determined by the operator (4)

L s p (E) - hW (E) ,

where D = d	 and E is the shift operator,
dt

E(g(t)) = g(t+h), or E(gn) = gn+l*
The order of the method is the largest integer p such that

L(g(t)) = 0	 for all polynomials g(t) of degree p. The

definition of order and alternate formulations of it are thorough-

ly discussed by Henrici.

>>

A method is said to be consistent if p > 1. The condition of
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consistency may be expressed by the ,:onditions (4).

PM - 0, P' (1) = c)(1).
The property of consistency assures that (for an infinite

precision machine) the solution of the difference equation (2.2)

will converge to that of the differential equation (2.1) as h

approaches zero.

3. Regions of Stability and Instability

Consider the stability mapping

H = P(z) /Q(z ),	 (3.1)

implicitly defined by eqn. (2.3). H is a rational function map-

ping the extended z-plane	 k-to-one and onto the ha plane, anO

there is a one-to-one correspondence between the class of ration-

al functions with real coefficients and the class of algorithms

of the form (2.1). Hence the problem of determining stiffly

stable algorithms is essentially that of analyzing the properties

of a certain subclass of rational functions. For instance, in

practice it is too cumbersome to apply the definition of absolute

stability to each individual hX value in order to determine the

H-plane stability charac6eristics of a method (2.2). One thus

needs global criteria for determining the subset U of the ha 	 ;A

plane which is the region of instability, and whose complement

S is the region of &t&Ility. -̂!y c:eterninincr coiic?iti•ons under whic;

S contains the"stable" plus "stable and accurate" regions of
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Fig. (1) we thus obtain stiffly stable algorithms.

We assert that the region U is composed of the set of hA values

which are either the images under H of points z which are exterior

to the unit circle in the z-plane, or else points which have more

than one pre-image on the unit circle. In the next section we

present conditions on H which allow a ready determination of U

and S.

4. Complex Mappings which Preserve Boundary Points

Consider the problem of determining the image under the complex

transformation w - f(z) of a region R in the extended z-plane,

which is the interior or exterior of a bounded simple closed

curve C. In what follows theorems are stated which allow one to

do so by merely determining the image of C. The essential prop-

erty required of the function f(z) is that the boundary of the

image of R be the image of the boundary of R.

A simple cic-sed curve C: z = z (t) , a < t < b, z (a) - z (b) ,

and z(tl) # z(t2 ) otherwise, is positively oriented if as t

varies between a and b the point z(t) traverses C counter-clock-

wise. If C': w - f(z), z - z(t) is the One-to-one image of

C under w = f(z), then C' takes an orientation with respect

to that of C which is positive if as the point z traverses

C counter-clockwise, w = f(z) traces C' in the same manner.
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Let E(C) denote the exterior of a simple closed curve C, I(C)

the interior, and A the closure in the extended plane of a subset

A. If f(z) is one-to-one on C, then variants of the following

theorem give conditions under which f(z) is boundary preserving

on I(C) (7,8]:

THEOREM lr

Given a closed rectifiable positively oriented Jordan curve

C, suppose f(z) is analytic on i((5) and one-to-one on C. Then

a) C' - f(C) is positively orientedland

b) f(z) maps YTU one-to-one and onto TFC7.

By applying Theorem 1 to the function f(1/z)one can prove the

following:

Corollary 1 - Let C be a closed rectifiable Jordan curve on which

f(z) is one-to-one. If f(z) is analytic on EMCj, and C' = f(C),

then f(z) maps E (C) one-to-one and onto I(C').

The hypothesis of analyticity of f(z) in Theorem 1 may be weakened

slightly by addition of another requirement (7):

rnuvnDIV II 13.

Given a closed rectifiable Jordan curve C, suppose f(z) is

analytic on I(C) except for a pole on C, and one-to-one on C.

If there is a point WO which is not the image of any point of

I(C , then f(z) maps I(C) one-to-one and onto one of the domains

with boundary f(C) - C'; i.e., the domain on the left of an



observer moving with the point w = f(z) as z traverses C counter-

clockwise.

5. A Class of Stiffly Stable Algorithms

The central result of this paper is the following:

THEOREM 3

Let GP be the class of consistent implicit linear multistep

algorithms of order p whose stability mapping (3.1) is a rational

function Hp which is one-to-one on the unit circle C, and analytic

on E(C). Then each member A:p of G  is stiffly stable of order p

with respect to suitable parameters Dp , ep ,ap ,	 with Dp , ap<011

and 0p>0.

P r o o f

Let Mp be a typical member of Gp with stability mapping Hp.

Applying Corollary 1, Hp maps E(C) one-to-one and onto I(C),

C' _(C).	 Then I(C')is the region of instability, and E(CI)

the region of stability (see Fig. 2). By consistency of Mp,

and the one-to-oneness of Hp,C' is a bounded simple closed curve

which passes through the origin. Further, since the coefficients

of Hp are real, C' is symmetric with respect to the real axis,

and intersects it a second time at(Xp,O). It may be inferred

from the consistency conditions and the curve orientation char-

acteristics of Theorem 1 that Xp is positive.

n

ti
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The boundedness of C' implies the existence of a finite

Dp < 0 such that the vertical line Re(h a)=Dp is tangent to C',

and Mp is stable for Re(ha ) < Dp. Furthermore, the lines

y = + tan $x, x < 0, are tangent to but do not cross C', for

some 6, 0<0<n/2.	 Let 6p , ap be defined by

0 < ep < IDptansl, ap - ep/tans.

Then Mp is stiffly stable with respect to the parameters Dp,ep,ap.

Theorem 3 follows.

Theorem 3 provides sufficient conditions for constructing a

class of stiffly stable algorithms. It is not known whether the

one-to-oneness condition of this theorem can be relaxed ; however,

the requirement of analyticity on E(C) cannot. For, if Hp has a

pole in E(C) the region of instability necessarily contains a

neighborhood of infinity; hence, no appropriate Dp exists. It

is now shown that analyticity on the unit circle is not required

at all points:

THEOREM 4

Let Gp be the class of consistent algorithms of order p

referred to in Theorem 3, but whose stability mapping Hp satisfies

the conditions.

(1) Hp is one-to-one on C, ane analytic on fF̂ r , except for
a simple pole on C;

(2) Hp satisfies the boundedness condition

Inf (Re Hp (z)]	 Dp, Dp < 0 but finite,

for z restricted to C; and

G) Hp does not map the domain E(C) onto all of the hA plane.

zv



Concluding Remarks

It is known that the class Gp of Theorem 3 is not vacuous,

J .

6

Then the corresponding algorithm Mp is stiffly stable of order p,

with respect to Dp and suitable parameters 9P, ap .

The proof of Theorem 4 is analagous to that of Theorem 3.

We apply Theorem 2 to the function Hp (1/z) and assert that the

ha plane image of the unit circle C is an unbounded simple curve

C'pymmetric with respect to the real axis, which intersects it

once, passing through the origin and the point at infinity. By

considerations similar to the previous, the region of instability

lies to the right of C', for consistent Mp, and the existence of

appropriate parameters B P , aF , Dp O Dp is readily verified (see

Fig. 3) .

2 < p <6, as it may be verified that the algorithms of Gear [6)

satisfy the hypothesis of Theorem 3. Indeed, these algorithms

have the very desirable property that a  is very nearly zero.

For p - 2, Dp is zeros a circumstance whose occurrence for

p > 2 is excluded, for all consistent methods, by a negative

result of Dahlquist 14).

The central problem in constructing stiffly stable algorithms

using the results presented here is that of finding rational func-

tions which are one-to-one on the unit circle. A procedure for

doing so has been obtaine4 for the cases k - p - 2, 3; the general

case is still under investigation and will be reported on in the
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V. Computational Results

A typical network whose state variable re presentation is

characterized by a system of simultaneous "stiff" first order

differential equations may be represented by the circuit diagram

of Figure 1. This network consists of two series resonant cir-

cuits loosely coupled by a small resistor Rc. The circuit

whose elements are Rl, C l , and L1 is tuned to a higher frequency

than the circuit composed of elements R21 C21 and L2 , which is

overdamped. The eigen-modes present in the circuit are plotted

in Figure 2. In this section results obtained when processing

the circuit using SCEPTRE, Gear's program, and the matrix method

program are presented.

SCEPTRE Solution

In processing the circuit using SCEPTRE, the numerical

integrations were accomplished using each of the three schemes

it provides: the trapezoidal rule, the Runge-Kutta Dlethod, and

an exponential method. The results appear in Figures 3 through 8.

Figures 3, 4 were obtained using trapezoidal integration; Figures

5, 6 by Runge-Kutta methods; and Figures 7, 8 by the exponential

scheme. The results obtained from the trapezoidal rule are

generally accurate; however, the computation of the component

appearing in Figure 4 is decidedly unstable. The Runge-Kutta

results appear superior to the previous; nevertheless, ni rical

inaccuracies are seen to occur, in Figure 6. The graphs of two

separate components obtained using the exponential method appear

6



in Figures 7 and Q. Although it is claimed [Z) that this method

is superior for the case of stiff equations, the results for this

particular example are to the contrary, the exponential method

giving poorest overall results.

The total central processing time for the three methods was.

Trapezoidal Rule	 100 sec.

Runge-Kutta Method	 75 sec.

Exponential tiethod	 90 sec.

Gear's Method

The state variable equations for this circuit, manually

obtained, are:

d3E - Ax + R sin 2t
RE

- where

-
VC 0

- 1
VC 0

_- 2
X•	 IL R• 1.0

1
IL .01

UT
2

and

0	 0 105	 0

0	 0 0	 100
A •

-1	 0 -1	 -1

0	 -.01 -.01	 -10.01

The results of applying Gear's program to this system of equations

were found to be very good; two components of the computation

are shown in Figures 9 and 10. Here central processing time was



IP

21 seconds; however, this figure does not include circuit trans-

lation time, in the neighborhood of an additional 4 seconds

maximum.

Matrix Method

These state variable equations were solved using the matrix

method program. The closed form solution obtained was*

V` = -.045e-lot + .10e - ' lt + .02e- - 5t sin(100t - .01) + sin(2t-.1)
1

VC = -.002e-lot + .05e-- 1t + .2e-- 5t sin(100t - .01)
2

+ .05 sin (2t + 1.5)

iL = -1.5 x 10-5 a-lot + 5 x 10-4 e- it + 2 x 10-8 e-' 5t
1

sin(300t + 1.5) + 3 x 10-4 sin (2t -.15)

iL = 2 x 10-4 e- lot - 5 x 10-5
 e-' it + 2 x 10-8 e-' 5t

2
sin(100t + .1) + 10 -3 sin(2t - .15)

This solution agreed with that of Gear's program within 5

significant figures and thus gives the same plots as in Figures

9 and 10.

The central processing time for the matrix program was 3.4

sec. Here, again, no circuit translation times (time required to

obtain the circuit differential equations from an input circuit

description) is included.

The matrix theory underlying the matrix method technique

*All numbers shown were rounded to two significant figures for
illustrative purposes.
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6

applies only to the case of a system matrix with distinct eigen-

values. Hence, as should be expected, the numerical performance

of the algorithm deteriorates as the eigen-values become close

together, and was found to be rather poor for a pathological

network characterized by smail eigen-value spreads.
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VI. Recommendations for Future Work

Consider the essential features of an effective network

analysis program. Such a program needs:

(1) The capability of translating the circuit description

of a network from the language of the electrical

engineer into a mathematical description involving

an initial value problem concerning simultaneous

differential equations for the state variables of

the network,

(2) the capability of obtaining a numerically accurate

solution of this initial value problem over desired

ranges of the independent variables, and

(3) the capability of representing thi3 solution data

and/or solution data on any dependent non-state

variable circuit parameters in a form amenable to

analysis by the circuit designer.

The present research has focused on the investigation of methods 	 Ma

for strengthening capability (2) above, for programs such as the

SCEPTRE program, and the matrix method program as well as Gear's

program contain only this capability. Each program starts with

a state variable initial value problem and produces a state

variable solution over a desired time interval. Here Gear's

program has a non-linear capability, and the limitations of the

matrix method are as previously described in Sectior. I.



•

In view of this aspect of the present results, future work

might very usefully be pursued along the following lines: a

strengthening of existing circuit design capabilities might be

accomplished by means of a merging of the matrix method and/or

Gear's method with a program which incorporates capabilities (1)

and (3) as well. This might be accomplished by merging the matrix

method and/or Gear's method limited to linear networks with

SCEPTRE, or with some program such as Pottle's [5), which contains

capability (1) (for linear systems). Of the two, a merger of

Gear's program with SCEPTRE as the base program is clearly the

most advantageous, from the point of view of a broader general

capability, since SCEPTRE accepts circuits with certain types of

non- linearities.

However, the installation of Gear's method with its full

non- linear capability in SCEPTRE represents a systems programming

task of no small magnitude, from two aspects: First, Gear's

program requires the requires the Jacobian matrix of the right

merabers of the first order state variable differential equations

for a network; this matrix is at present not obtainable within

the SCEPTRE program, in the non-linear case. To obtain it would

require extensive revisions and/or additions to phase I of

SCEPTRE. Secondly., phase I of SCEPTRE is'a large systems program

which, for-each individual input network, obtains its state

variable differential equations and then manufactures another



program which contains them. This program is compiled and

executed in phase II, to yield the desired numerical integrations

and outputting of results. Hence, a great deal of knowledge of

the structure of SCEPTRE is essential; a merging of these two

programs could most efficiently be obtained by means of a sub-

contract to a programming outfit such as the source 2 of the

SCEPTRE program.

A preliminary study of the structure of the program CORNAP

indicates that the programming skills and manpower resources

required for a merger of this program with Gear's program and/or

the matrix method appear within university capability. However,

a drawback of this approach is the limitation to the processing

only of linear, time invariant systems; stiff or otherwise.

An inquiry into the state of the art of various second

generation nonlinear analysis type computer aided circuit design

programs indicates development by the following sources: ASTAP

and ECAP-II, by IBM Corporation; TRAC, by Harry Diamond Labora-

tories; and CIRCUS (or CIRCAL), by Boeing Scientific Laboratories.

Such programs usually employ sparse matrix techniques, to cut

circuit translation time; Gear type integration techniques, for

stiff-system capability, and have some type of non- linear capa-

bility. The strong points and limitations of these currently

being developed programs have not been investigated. They are

not readily available, their reasons for development being chiefly

commercial distribution through sales or rentals.

2Developed by IBN, Owego, N. Y.
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