General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

HR EC-4927-1 LMSC/HR EC D162482

LOCKHEED MISSILES & SPACE COMPANY HUNTSVILLE RESEARCH & ENGINEERING CENTER HUNTSVILLE RESEARCH PARK 4800 BRADFORD DRIVE, HUNTSVILLE, ALABAMA

EXTREME DISTRIBUTIONS OF GROUND WINDS (3 TO 150 METERS) AT CAPE KENNEDY, FLORIDA

August 1970

Contract NAS8-24927

Prepared for National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

> J.L. Wood B.L. Palmer B.C. Johnson J.E. Tyson

APPROVED:

? Carter

E.A. Carter, Supervisor Meteorology Section

buck M: Jonal

D. McDonald, Manager Structures & Mechanics Dept.

Z J.S. Farrior / Resident Director

FOREWORD

This report presents the results of work performed by Lockheed's Huntsville Research & Engineering Center for Marshall Space Flight Center under Contract NAS8-24927, "Functions of Atmospheric Extremes."

The NASA technical coordinator for this study is Mr. O.E. Smith of the Aerospace Environmental Division of the Aero-Astrodynamics Laboratory, MSFC.

ACKNOWLEDGMENT

The authors wish to thank Mr. O. E. Smith, Dr. G.H. Fichtl, and Mr. L.W. Falls of MSFC and Dr. W.A. Bowman of Lockheed/Huntsville for several helpful discussions.

ii

CONTENTS

Section		Page
	FOREWORD	ii
1	INTRODUCTION AND SUMMARY	1
2	STATISTICAL ANALYSIS OF CAPE KENNEDY TOWER WIND DATA	3
	2.1 The Data Sample	3
	2.2 Applications of Extremal Functions to the Tower Data	4
	2.3 Application of Bivariate Distributions to the Tower Data	6
	2.4 Peak Wind Profiles Based on the 152.4-m Reference Level	10
	2.5 Use of the Tables and Graphs	14
	2.6 Statistical Comparison of Wind Directions	17
3	CONCLUSIONS AND RECOMMENDATIONS	20
	REFERENCES	22
	APPENDIXES:	
	A: Sample Distributions for Extremal Functions	A-1
	B: Tables and Figures	B-1

iii

Section 1 INTRODUCTION AND SUMMARY

The behavior of atmospheric extremes is a subject of continuous interest in aerospace applications. Much of this interest has been centered on the study of ground winds and their effect on space vehicle design and operations. Apollo and related launch operations impose a requirement for increasingly reliable wind profile information between the surface and 150 meters. Extremal statistics and the related distributions have been used to great advantage in establishing usable wind criteria. The purpose of this report is to extend work completed earlier (Ref. 1) by introducing new approaches and modifications to previous efforts. These additional considerations are warranted primarily by: (1) availability of new multi-level tower data and (2) adoption of a new wind reference level for use in studying design and launch wind criteria. Multi-level wind measurements make possible the use of a more direct approach in such studies, thereby increasing reliability of results and their applicability to design and operational problems.

Previous distributions of peak winds in the 10 to 150-m region over Cape Kennedy, Florida, were derived indirectly from the 10-m level winds and an empirical expression relating winds between levels (see Eq. 4). The present report develops probability distributions by using three years of Cape Kennedy tower winds available for seven levels from 3.0 to 152.4 m. The three-year sample of tower data is subjected to a statistical test which demonstrates its suitability in establishing such probabilities. The multi-level set of winds is fit to a Fisher-Tippett Type I (FTI) density function. The parameters of the distributions are compared with corresponding results from Ref. 1.

Because several levels of tower data are available, bivariate extremal functions can be considered. The bivariate techniques of Gumbel and Mustafi (Ref. 2) are applied to the wind samples. Resulting parameters describe the

correlation between peak winds at two different levels for a particular exposure period.

There is continuing emphasis on launch area wind environments modeled in the form of synthetic wind profiles. These profiles provide critical information needed to evaluate such effects as dynamic loads and resistance to vehicle bending moments. The present study establishes profiles using the new reference level of 152.4 m (in contrast to earlier work (Ref. 1) which used the 18.3-m level). Also, earlier studies used one annual set of parameters to describe the wind profiles. This report extends these efforts by presenting profile parameters for several seasons and hourly class intervals.

The various applications of extremal distributions to the tower data and the development of synthetic profiles provide the following specific results:

- The probability of not exceeding the wind speed at each of seven levels between the surface and 152.4 m.
- The joint probability of not exceeding the wind speed at 152.4 m and any other level below.
- The joint probability of not exceeding a given wind speed at 152.4 m and a given profile for a particular exposure period.

Supporting tables, graphs, and examples of applying these results are included.

A preliminary analysis on the behavior of peak wind directions is presented. This compares the directions of the wind measured on the hour with the peak wind direction during the associated hour.

Finally, an appendix documents (1) the feasibility of integrating extreme distributions with analytical techniques; (2) the development of a sample distribution assuming Fisher-Tippett Type I parameters; and (3) a proposed method for determining the sample variance.

Section 2

STATISTICAL ANALYSIS OF CAPE KENNEDY TOWER WIND DATA

2.1 THE DATA SAMPLE

The three-year data sample of Cape Kennedy tower winds which are analyzed in this report includes measurements of peak winds at the 3.0-m and 18.3-m levels from a small tower, and peak winds from a higher tower at the 18.3, 30.5, 61.0, 91.4, 121.9 and 152.4-m levels. From a meteorological standpoint, however, three years is considered a very short time, and even an abundance of data over this period does not change the fact that one season characterized by unusually strong or light winds would greatly bias the data. In order to test the validity of using the relatively small sample available at this time, a comparative study was made of a twelveyear peak wind sample from Cape Kennedy against a three year sample, both of which consisted only of 10-m peak winds. The three-year sample was actually a subset of the twelve-year record, but the three years chosen were for the same time period as the multi-level sample of tower data. The hypothesis tested was that the twelve-year sample and its three-year subset represent the same population. An acceptance of this hypothesis lends support to the use of only three years of tower data in constructing bivariate and univariate extremal distributions. The 10-m tower data were not used in the comparison primarily because the tower winds were measured at a location different from the site of the twelve-year sample. Because of the different roughness characteristics of the underlying surface, the value of such a comparison would be suspect. Futhermore, a portion of the 10-m tower data was not available.

Specifically, the two samples compared consisted of daily peak wind speeds at the 10-m level and for the following time periods and sample sizes n_A and n_B .

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Sample A: Dec 1956 - Dec 1968 (n_A = 4405) Sample B: Jan 1966 - Dec 1968 (n_B = 1096 Same time period as multi-level tower data).

The two-sample Kolmogorov-Smirnov test was chosen to test the null hypothesis that the samples are from identical populations (Ref. 3). The basic statistic, D, employed in this test is defined as

$$D = \sup F_A(x) = G_B(x)$$

where the right-hand side expresses the maximum absolute difference in the distribution functions of samples A and B. In the above expression, the respective distribution function values are the cumulative relative frequencies of the peak wind speeds which can be readily computed from the data.

A test with level α is obtained by rejecting the hypothesis when the test statistic exceeds D. In the present case this is written

 $D > \left[-\frac{1}{2} \left(\frac{1}{n_{A}} + \frac{1}{n_{B}} \right) \ln \frac{\alpha}{2} \right]^{1/2} .$

The samples compared gave D = 0.0309. For $n_A = 4405$, $n_B = 1096$, and $\alpha = 0.05$, the right hand member of the above inequality is 0.04583. Thus, at the 5% level, the hypothesis of identical populations cannot be rejected. This is the conclusion desired from the comparison test. Therefore, it was permissible to assume that a three-year sample of peak winds at Cape Kennedy could be used in constructing probability distributions.

2.2 APPLICATIONS OF EXTREMAL FUNCTIONS TO THE TOWER DATA

The tower data introduced in the previous section can now be used to derive information about the extreme winds in the 3 to 150-m region.

LMSC/HREC D162482

Extreme winds, defined here as the peak wind registered during a predetermined period of exposure, have been found in previous studies to fit the Fisher-Tippett Type I distribution (Ref. 1). The Fisher-Tippett Type I density function for a peak wind speed u with parameters α and μ (determined from the mean and variance of the wind sample) is written^{*}

$$f(u) = \alpha \exp\left[-e^{-\alpha (u - \mu)} - \alpha (u - \mu)\right].$$
(1)

Figures 1 and 2 show examples of the plots of the three years of Cape Kennedy multi-level tower data. The lines on these plots, representing the Fisher-Tippett Type I theoretical distribution and 10 confidence bands for the tower data, give some indication of the fit.

The data were divided into reference periods composed of four seasonal groupings (see appendix) and a composite annual reference period. For all reference periods, extremal parameters (α and μ) were found for: 1, 5, 10 and 15 day exposure periods. For the annual case, 30- and 60-day exposure periods were also studied. Gumbel's estimators of α and μ from Ref. 4 were used; and since the data sample was small, a correction, also available from Ref. 4, was added.

The results presented in Table 1 indicate that the exposure period and seasonal groups of data have an effect on the parameters calculated. Figures 3 through 42 show distributions at a particular level and season with varying exposure periods. These give the probability of not exceeding a given wind speed at a specified level.

A comparison of the present results for the annual reference period with corresponding results in Ref. 1 shows that the μ values in Ref. 1 are somewhat conservative. One explanation for this difference at the higher

*Gumbel, in (Ref. 4), presents a well-developed study of the FTI distribution.

LMSC/HREC D162482

levels and for longer exposure periods is the limitations inherent in the powerlaw relation (Eq. 4) for a 10-minute interval. The wind speeds measured over a 10-minute interval are likely to be relatively low, and inferences on wind speed behavior greater than about 32 knots were somewhat limited. Also, in Ref. 1 peak winds at each of the seven tower levels were assumed to occur within the same 10-minute interval, regardless of the exposure period. The validity of such an assumption decreases as the exposure period increases.

Another apparent discrepancy is an absence of a decreasing trend of α values over longer exposure periods in the present results. Such a trend was clearly indicated in the results of Ref. 1. Unfortunately, the α 's in the present report could not be investigated for exposure periods beyond 60 days because of a lack of data. Conversely the α 's for the base level of 10-m in Ref. 1 for short exposure periods were simply interpolations between one day and 30 day-values. Therefore, further investigation seems practical to establish actual trends of extremal parameters employing a more complete set of data (e.g., the twelve-year peak wind record for Cape Kennedy available at the 10-m level).

It can be seen, however, by examining the slopes shown on applicable graphs in Ref. 1 that α 's (if not the μ 's) fall within the confidence intervals established in the present report for the appropriate level and exposure period.

2.3 APPLICATION OF BIVARIATE DISTRIBUTIONS TO THE TOWER DATA

In Ref. 2, Gumbel and Mustafi present the following equations associating two extremes

$$F_{(1)}(x, y, a) = F(x) F(y) \exp \left[a \left(\frac{1}{-\ln x F(x)} + \frac{1}{-\ln y F(y)} \right)^{-1} \right]$$
 (2)

$$F_{(2)}(x, y, m) = \exp\left[-\left\{\left(-\ln F(x)\right)^{m} + \left(-\ln F(y)\right)^{m}\right\}^{1/m}\right]$$
(3)

LOCKHEED . HUNTSVILLE RESEARCH & ENGINEERING CENTER

where F(x) and F(y) denote the Fisher-Tippett Type I probability function of extreme values x and y respectively, and the parameters of association, "a" and "m" behave such that 0 < a, 1/m < 1.

The bivariate distribution, described by two random variables considered simultaneously, can be handled in a variety of ways in the present context of peak winds. Consider the two random variables to be peak wind speeds at two levels for the same exposure period. The peak winds are actually specified by a "parent" random variable which, in this case, is the epoch (exposure period) over which the peak winds occurred.

If, for example, the epoch is taken to be five days, then the random variable for one level is the five-day maximum of the hourly peak winds which occurred at that level. Similarly, the second random variable is the corresponding five-day maximum of the hourly peak winds at some other level. The epoch which specifies these two peak winds is the five-day interval of exposure. There is, of course, no guarantee that the five-day maxima for the two levels will occur in the same hour, and this becomes even more unlikely for longer epochs.

A more reasonable procedure is to define two random variables respectively as:

1. ^u152.4[:] Maximum of the hourly peak winds at the reference level for a given epoch.

2. u_h:

Hourly peak wind at another level h which occurs during the same hour as the peak wind in (1.) but which may not be the maximum wind at this level for the entire epoch.

This approach actually serves a dual purpose. First, it gives a more meaningful form of the bivariate; secondly, the results α and μ derived from this choice of variables give an indirect test of the validity of assuming that peak winds at two levels occur over an exposure period at the same time (i.e., same hour). Specifically, the winds described in (2.) above must be less than or equal to the peak wind at this second level for the given epoch. If the peak winds at both levels (reference level and second level) occur simultaneously for a particular epoch, then the extremal parameters (α 's and μ 's) calculated from the array described by (2.) will be the same as those given in Table 1 for the appropriate level, exposure period, and season. As discussed in subsection 2.2, Table 1 gives extremal parameters determined from a univariate distribution, but for several levels of tower data. Thus, as a comparison, the bivariate α and μ values determined from the definition (2.) above are presented in Table 2. Comparing Tables 1 and 2, it can be seen that as the exposure period and the distance between the two levels increase, the assumption of simultaneous occurrence of peak winds at two levels is weakened. Figures 43 and 44 are plots of the data as described in (2.) above. The figures indicate how well the data fit the Fisher-Tippett Type I distribution.

The quantities x and y as used in Eqs. (2) and (3) are called "reduced variates" and are calculated by

 $x = \alpha_1 (u_{152.4} - \mu_1)$ $y = \alpha_2 (u_h - \mu_2)$

Here, $u_{152.4}$ represents the wind speed defined in (1.) above and α_1 and μ_1 are values for the 152.4-m level from Table 1. Similarly, u_h denotes wind values above in (2.), and α_2 and μ_2 are the values for a particular level h from Table 2. As can be seen in Figs. 1 through 44, there is a non-varying relationship between the reduced variate and probability.

In Ref. 2, several methods are presented for estimating the bivariate parameters a and m introduced in Eqs. (2) and (3) respectively. The first method depends on criteria which may be quantitatively determined by considering the number of pairs of reduced variates which satisfy certain inequalities. The criteria for both distributions are based on

$$F_{13} = (F_1 + F_3)/2N$$

8

Here N is the total number of pairs of reduced variates and F_1 is the number of pairs of variates whose members (x, y) satisfy the condition

and F_3 is the number of pairs whose members (x, y) satisfy

If $0.25 \le F_{13} \le 0.35355$, then the parameter "a" can be estimated using quadrant frequencies and,

If $0.25 \le F_{13} \le 0.50$, then the parameter "b" = 1/m can be estimated using quadrant frequencies.

In all but two of the 42 cases presented, the criterion for estimating "b" was satisfied. In only 4 of the 42 cases was the criterion for estimating "a" satisfied. Thus, only estimates for m(=1/b) are presented (Table 3), and it is assumed that only Eq. (3) fits the data satisfactorily. Table 3 also contains a "difference" estimate of m which is based on the standard deviation of the difference of the reduced variates x and y. Table 3 shows that, as the level approaches 152.4 m in each exposure period, the \hat{m} (m estimate) increases. The parameter m is related to the correlation ρ between the wind speeds by

$$m = (1 - \rho)^{-1/2}$$
.

The correlation between wind speeds at 152.4 m and any lower level would be expected to increase as this level approaches 152.4 m. The above relation shows that m increases in the same sense.

2.4 PEAK WIND PROFILES BASED ON THE 152.4-m REFERENCE LEVEL

Reference 1 presented a method for obtaining probabilities of winds at 18.3 m and wind profiles from 18.3 to 152.4 m. In this report, the levels are reversed; i.e., probabilities are given for 152.4-m winds and profiles constructed downward from 152.4 to 18.3 m. This reflects the change which establishes 152.4 m as the reference level, in contrast to the old reference level of 18.3 m.

The peak wind profiles require a distribution of the winds at 152.4 m and a relationship between winds at two levels. The distributions at 152.4 m are discussed in subsection 2.2 and distribution parameters are included in Table 1. The relationship between levels is such that given an operationally critical wind at some reference level, the peak wind speed at other levels can be prescribed by the power-law relationship

$$u_{h} = u_{r} (h/r)^{k}$$
(4)

where u_h is the peak wind speed at level h and u_r the peak wind speed at the reference level r.

Using a large sample of peak wind profiles for the Eastern Test Range, Fichtl (Ref. 5) has established that the exponent k can be expressed in the form

$$k = c (u_r)^p .$$
 (5)

Statistical techniques have been applied to Eqs. (4) and (5) in constructing a wind profile extending upward from some lower reference level r, usually 18.3 m (Refs. 1 and 5). Using such an approach, Fichtl has found that k is very nearly normally distributed for any particular value of the peak wind speed at the 18.3-m level (Ref. 5).

In Eq. (5), p is an empirically determined exponent and the quantity c is a random variable distributed normally with mean \overline{c} and standard deviation σ . Taking logarithms and expressing c in terms of this distribution, Eq. (5) becomes

$$\log k = \log(\overline{c} + n\sigma) + p \log u_{\mu}.$$
 (6)

The factor n in Eq. (6) determines the number of standard deviations from the mean and, for a normal distribution, has the value 0, 1.6, and 3.0 for the 0.50, 0.95, and 0.999 cumulative probabilities, respectively.

Consider now a procedure which will allow the construction of a peak wind profile downward from an upper reference level r = 152.4 m. For such a procedure, Eqs. (4) and (5) are rewritten with r = 152.4 m.

$$u_{h} = u_{152.4} (h/152.4)^{k}, h(m), u(m/sec)$$
 (7)

and

or

$$k = cu_{152.4}^{p}$$
 (8)

$$\log k = \log(\overline{c} + n\sigma) + p \log u_{152.4}$$
 (9)

In constructing such profiles "downward" from a specified upper reference level, the variate c can now be interpreted as a risk. The term "risk" in this sense denotes the probability that the peak wind at level h is greater than u_h .

In order to derive a useful form of Eq. (8), wind profiles were investigated for each of 32 time divisions. These divisions consisted of eight 3-hour observational intervals for four seasons^{*} of the year. These particular seasonal groupings were chosen in an attempt to ensure homogeneity of the samples

* See Appendix. and to give the best description of winter, summer, and transitional periods of ground wind behavior. All sample profiles in each of these 32 time divisions were grouped into class intervals according to the peak wind speeds at 152.4 m. Equation (4) or (7) shows that each profile within such an interval corresponds to a particular value of k. Cumulative frequency values of k for the 50, 95, and 99.9 percentiles were plotted as a function of the 152.4 m wind speed. A curve was fit to each of the three percentile plots using the method of least squares. The equation of the resulting three curves can be written

$$\log k = \log \overline{c} + p_1 \log u_{152.4}$$
(10a)

$$\log k = \log(\bar{c} + 1.6\sigma) + p_2 \log u_{152.4}$$
 (10b)

$$\log k = \log(\overline{c} + 3\sigma) + p_3 \log u_{152,4}$$
(10c)

If the k values are distributed in this manner, then the slope values p_1 , p_2 , and p_3 must be equal. In order to determine if the slope values for a given hour and seasonal division were (or were not) significantly different, the statistical F test was applied to the values p_1 , p_2 , p_3 . All slopes for the 32 time divisions passed the F test with the exception of those associated with class intervals 1, 2, 3, 7 and 8 of Season 2, and class intervals 1, 2, 3 and 8 of Season 4 (see the Appendix for key to seasons and class intervals). Therefore, the results of the test indicated that the empirical Eq. (5) is acceptable.

Insofar as the slope values in Eq. (10) are not significantly different, the three equations contain only the two unknowns \overline{c} and σ for the given sample values of k and $u_{152.4}$ available from ETR data. A maximum likelihood method was applied to Eq. (10) to determine \overline{c} and σ . Thus, p, \overline{c} , and σ were found through statistical analyses and curve fitting methods of the sample profiles and 152.4-m peak wind data. They then become known quantities for a given time of day and season. A particular multiple of σ corresponds to a certain percentile value of the distribution of the wind profile parameter k. Equation (9) now provides a useful formulation of the distribution of k as a function of peak wind speed at 152.4-m. Once the parameter k is found, the complete

wind profile is specified for a given peak wind speed at the upper reference level r = 152.4 m.

Figures 45a through 45c are graphs of the quantities \overline{c} , σ and p for four seasons plotted against eight three-hour class intervals. The results are also given in tabular form in Table 4. It can be seen that the hourly variations are much greater than the seasonal changes. Although there are some shifts in the times of maxima and minima, the general shapes of the curves for each parameter are preserved from season to season. However, there are large hourly amplitudes in most cases. This justifies the use of class interval divisions in determining the parameters \overline{c} , σ , and p; and thus represents an improvement over the use of average values as employed in Ref. 1.

Although wind profiles are constructed with reference to the 152.4-m level in this report, the basic theory described in Ref. 1 is still applicable. For a given value of $u_{152.4}$, the wind profile through lower levels is uniquely determined by the variable c; see Eqs. (7), (8), and (9). The probability that a profile will not be exceeded is equal to the probability that c will not be exceeded. Figures 46 and 47 represent the joint probability (ordinate value) that $u_{152.4}$ (abscissa value) and the profile indicated in the legend will not be exceeded. No special significance should be attached to the use of Fisher-Tippett Type I graphs in these figures; these graphs simply provide a convenient mode of display. In addition to the graphs, curve fit parameters β and γ were determined from the linear expression $y(c,t) = \beta(c,t) [u_{152.4} - \gamma(c,t)]$. These parameters appear in Table 5. Approximate joint distributions $F(u_{152.4}, c)$, for a specific 152.4-m wind and profile may be computed from

$$F(u_{152.4},c) = \exp\left[-e^{-y(c,t)}\right].$$

Tables 6, 7 and 8 are α 's and μ 's corresponding to the three-hourly class intervals, but are given for monthly instead of seasonal divisions.

2.5 USE OF THE TABLES AND GRAPHS

Probabilities for the Fisher-Tippett Type I distribution can be determined through use of the reduced variate as defined in subsection 2.3. The relationship between the wind value and the reduced variate is linear. The relationship between a reduced variate y and the cumulative probability of y is one-to-one and does not change, as can be seen from the equation

$$P(y) = e^{-e^{-y}}.$$

This relationship is given on all of the ordinate scales in Figs. 1 through 44. When probabilities are being determined, it is convenient to find the reduced variate and then read the probability from the ordinate that corresponds to the particular variate.

Figures 3 through 42 show the calculated distributions of the peak winds at the seven levels of Cape Kennedy tower data. The graphs, or the corresponding α 's and μ 's in Table 1, can be used to calculate: (1) the probability that a wind A' will not be exceeded in a given exposure period; i.e., $P(A \le A')$ or (2) the risk or probability that a wind A' will be exceeded in a given exposure period; i.e., P(A > A').

• Example

Calculate the probabilities for a peak-wind in an exposure period of 10 days during season 3, and for a level of 61 m. Table 1 has $\alpha = 0.1428$ and $\mu = 33.0591$. Set A' equal to 34 knots, then the reduced variate is

$$y = \alpha(u - \mu)$$

= 0.1428 (34.0 - 33.0591)
= 0.1345

The probability corresponding to the reduced variate 0.1345 is 0.40. (See any ordinate scale Figs. 1 through 44.) Therefore, $P(A \le A') = 0.40$. For the risk, $P(A > A') = 1 - P(A \le A') = 0.60$.

Using the appropriate tables and graphs for the bivariate, peak wind profile, and univariate distributions, probabilities of the following forms can be found:

<u>Case I</u>: The probability that the wind A is less than a given value $\overline{A'}$, and the wind (or profile) B is less than a given B'; in other words, neither A nor B is exceeded, is given symbolically by $P(A \le A' \cap B \le B')$.

<u>Case II</u>: The probability that at least one of the conditions in Case I is violated; i.e., either the wind A is exceeded or the wind (or profile) B is exceeded or both are exceeded is given by $P(A > A' \cup B > B') = 1 - P(A < A' \cap B < B')$.

<u>Case III</u>: The probability that both the wind A and the wind (or profile) B are exceeded is given by $P(A > A' \cap B > B') = 1 - P(A \le A') - P(B \le B') + P(A \le A' \cap B \le B')$.

2.5.1 The Bivariate Distribution

Parameters that represent the first variable of the bivariate (i.e., wind A in Cases I, II, III above) are those labeled 152.4 m under the annual case in Table 1. Figures 43 and 44 are examples of the second variable of the bivariate distribution. (This variable corresponds to B in Cases I, II, III above). Parameters for this second variable are given in Table 2.

In the bivariate procedure, first select the desired exposure period. From Table 1, the α and μ for that exposure period are selected for the annual case and the 152.4-m level. Next, a second level is chosen. Using the same exposure period, the α and μ are selected for the second level in Table 2. (All parameters in Table 2 are for an annual reference period.) The estimate for the parameter "m" is found in Table 3 for the appropriate exposure period and level. These parameters are then applied to Eq. (3), (subsection 2.3), which can be simplified for the Fisher-Tippett Type I distribution to

$$F(x, y, m) = \exp\left[-\left(e^{-mx} + e^{-my}\right)^{1/m}\right]$$
 (11)

• Examples

Case I: As an example of the calculations for the bivariate distribution, consider an exposure period of one day, the second level equal to 18.3 m, the wind at 152.4-m equal to 37.5 knots, and the wind at 18.3-m equal to 32.2 knots. From Table 1, the parameters are $\alpha = 0.1548$, $\mu = 22.8319$. The reduced variate is x = 0.1548 (37.5 - 22.8319) = 2.25. From Table 2, the parameters are $\alpha = 0.1640$, $\mu = 17.1384$, and the reduced variate y = 0.1640 (32.2 - 17.1384) = 2.50.

From Table 3, $\hat{m} = 2.53885$. Applying these quantities to Eq. (11), F(2.25, 2.50, 2.54) = 0.878. Thus, 0.878 is the probability that the 152.4-m will not exceed 37.5 knots and that the 18.3-m wind will not exceed 32.2 knots. That is, P(A < A' \cap B < B') = 0.878.

<u>Case II</u>: The probability that one or both of the winds in Case I will be exceeded at their respective levels is 0.122. That is, $P(A > A' \cup B > B') = 1 - 0.878 = 0.122.$

<u>Case III</u>: Here it is necessary to obtain $P(A \le A')$, which is the probability that the 152.4-m wind will not exceed 37.5 knots during a one day exposure period. Since the reduced variate for the 37.5 knot wind is 2.25, the corresponding probability value is 0.90. It is also necessary to have $P(B \le B')$. In accordance with definitions of random variables in subsection 2.3, this is the probability that B' = 32.2 knots at the 18.3-m level will not be exceeded during the hour in which the 152.4-m daily peak wind occurs. Corresponding to the reduced variate 2.50, the probability is 0.92. Thus, $P(A > A' \cap B > B') = 1 - 0.900 - 0.920 + 0.878 = 0.058$. As expected, this is less than the probability 0.122 of one or both winds being exceeded.

2.5.2 Peak Wind Profiles

For these examples, consider the variable B in Cases I, II, III to be a peak wind profile instead of a single wind speed. From Table 5, find the β and γ corresponding to the desired profile and time; substitute these parameters along with the 152.4-m wind into the reduced variate equation $y = \beta(u_{152.4} - \gamma)$.

• Examples

Case I: Consider a 1 σ wind profile and a 152.4-m wind of 31.2 knots during the month of January at 1200 EST. January is in Season 1, and 1200 falls in hour group 4. From Table 5, $\beta = 0.1408$, $\gamma = 16.6299$. Then $\gamma = 0.1408$ (31.2 - 16.6299) = 2.05. The probability corresponding to this reduced variate is 0.875; i.e., the probability that neither 31.2 knots at 152.4 m or the 1 σ envelope of 31.2 knots is exceeded is equal to 0.875.

Case II: The probability that either the 152.4 m-wind or the 1σ envelope is exceeded, or both are exceeded, is 1 - 0.875 = 0.125.

<u>Case III</u>: First determine $P(A \le A')$ and $P(B \le B')$. A' is 31.2 knots, and the parameters for January (Season 1) and 1200 EST (hour group 4) found from Table 6 are $\alpha = 0.1399$, $\mu = 16.5100$. Thus, y = 0.1399 (31.2 - 16.5100) = 2.06. The corresponding probability, $P(A \le A') = 0.875$. Determine the quantity $u_{B'}$ from the power-law equation,

 $u_{B'} = u_{152.4} \left(\frac{18.3}{152.4}\right)^{(\overline{c} - n\sigma)} (u_{152.4}^{/1.94})^{p}$

Table 4 has values for \overline{c} , σ , and p tabulated by seasons and hour groups. For this example, $\overline{c} = 0.09463$, $\sigma = 0.20820$, p = -0.15599. Substituting these values into the above power-law relation along with $u_{152.4} = 31.2$ knots yields $U_{B'} = 36.5$ knots. The α and μ for associating B' with a reduced variate are found in Table 7. Table 7 gives $\alpha = 0.1744$, $\mu = 12.8536$. Thus, y = 0.1744 (36.5 -12.8536) = 4.1. The corresponding probability, $P(B \le B') = 0.983$. Thus, $P(A > A' \cap B > B') = 1 - 0.983 - 0.875 + 0.875 = 0.017$. This is the probability that both the 152.4-m wind of 31.2 knots and the 1 σ profile are exceeded.

2.6 STATISTICAL COMPARISON OF WIND DIRECTIONS

In addition to considering the behavior of peak wind speeds, the associated wind directions assume importance with regard to possible launch azimuths and vehicle shapes. A distribution which can usually be obtained is that of hourly peak winds plotted by speed and direction. An even more desirable distribution would consist of hourly peak winds for 10-degree directional classes, also plotted by speed and direction. Since the latter

LMSC/HREC D162482

distribution is not readily available, it is practical to test the hypothesis that wind directions are fairly constant over an hour. To the extent that this is true, the direction associated with the hourly peak wind represents all the wind directions occurring during the hour.

For this test, an eight-year sample of 10-m wind directions from Cape Kennedy was subjected to statistical analysis. The data employed consisted of the direction of the wind (d_i) , measured on the hour, and the direction of the peak wind (d_j) , during the succeeding hour interval. The random variate to be analyzed was $\Delta d = d_i - d_j$, given in degrees. The distribution of the variate was characterized by the following statistics:

> mean = 0.60 standard deviation = 27.40 skewness = 0.35 kurtosis = 15.28

These values show that the directional distribution by hourly peaks closely approximates the distribution of the hourly peaks by direction over the same time period. The mean is near zero. The dispersion about the mean indicated by the standard deviation of 27.4 degrees is also small. Thus, a large portion of the values Δd are grouped around the mean. The small skewness can be assumed to indicate a rather symmetrical distribution. The large kurtosis value generally shows that more values of the sample are close to the mean value than is true with a normal distribution. Thus, each statistic emphasizes that most sample values are very close to zero, indicating the small difference in d_i and d_i.

There are, of course, certain weather events which may cause d_i to be quite difference from d_j . These include frontal passages during the hour and pronounced wind directional changes associated with thunderstorms. It is not uncommon to experience brief directional changes of 180 degrees at locations affected by strong thunderstorms. No attempt was made to remove

such cases from the sample under investigation. A further and useful refinement to the above results would be the directional analysis of stratified samples in which separate consideration could be given to: (1) thunderstorm and other strong wind regimes, (2) extremely light winds, and (3) time-ofday stratifications.

Section 3 CONCLUSIONS AND RECOMMENDATIONS

The results of this study indicate the practical value of using multilevel wind data to establish guiding probabilities for design and operational purposes. On the basis of appropriate tests, the validity of using a relatively small sample of tower data was justified. Even more definite conclusions could be derived from a larger sample; and it is hoped that a continuing program of multi-level wind measurements will provide the increased data sample required for further investigations in this area.

In applying Fisher-Tippett Type I distributions to several levels, parameters were obtained which are in general agreement with those derived for a single level in Ref. 1; however, definite trends in the parameter values were not as obvious in the present report. Further study is needed to determine if such trends are characteristic of the parameters developed from atmospheric extreme values.

Although the significance level was not determined for the bivariate distribution, 40 out of 42 cases passed the criteria for estimating the "b" (=1/m) parameter. Such results do not justify the rejection of the hypothesis that the data fit the bivariate distribution described by Eq. (3). In contrast, since only 4 out of 42 cases passed the criteria for estimating the "a" parameter, a data fit to Eq. (2) was rejected.

Variations in those parameters which define a synthetic wind profile indicate that an average value for these parameters may not be sufficient. More realistic profiles should result from considering seasonal and hourly variations. However, because of the divisions into 32 cases for the 152.4-m reference level, it was difficult to make a valid comparison of the resulting

probabilities with Ref. 1, which used 18.3 m as the reference level. There is also some question as to the accuracy of subjecting the wind profile parameters to a linear fit at wind speeds greater than about 30 knots. A second degree fit may be more suitable. Further study of the power-law and its associated parameters is recommended to resolve such questions. In view of these uncertainties concerning the peak wind profile, the bivariate distribution is believed to give a more straightforward approach to the problem of bi-level winds.

The second s

I

ALC: NOT THE OWNER.

REFERENCES

- Wood, J.L., and W.A. Bowman, "Cape Kennedy Peak Wind Profile Probabilities for Levels from 10 to 150 Meters," NASA Contractor Report No. 61308, George C. Marshall Space Flight Center, Ala., September 1969.
- 2. Gumbel, E. J., and C.K. Mustafi, "Some Analytical Properties of Bivariate Extremal Distributions," Amer. Stat. Assn. J., June 1967, pp. 569-588.
- 3. Lindgren, B.W., <u>Statistical Theory</u>, Macmillan, New York, 1965, pp. 334-336.
- 4. Gumbel, E.J., <u>Statistics of Extremes</u>, Columbia University Press, New York, 1966.
- Daniels, G. E., ed., "Terrestrial Environment (Climatic) Criteria Guidelines for Use in Space Vehicle Development, 1969 Revision," NASA TM X-53872, George C. Marshall Space Flight Center, Ala., 15 March 1970, (2nd printing).

Appendix A

SAMPLE DISTRIBUTIONS FOR EXTREMAL FUNCTIONS

by

B. C. Johnson

Appendix

This Appendix presents theoretical topics related to extremal functions. Although emphasis is given to theoretical development, a consideration of these topics may contribute to future practical applications in the statistics of atmospheric extremes. Various integration techniques of extremal density functions will become important as these functions are used to solve aerospace design and operational problems. The feasibility of analytically integrating the Fisher-Tippett Type I density function is explored in Section A.1. In Section A.2, a procedure is developed which can be applied to test the goodness-of-fit of extreme value samples to a univariate Fisher-Tippett Type I distribution. A computer program is outlined for application of the technique. Section A.3 proposes a method for determining the sample variance. Further consideration of the methods discussed in these latter two sections may lead to useful testing procedures applicable to extremal statistics.

A.1 ANALYTICAL INVESTIGATION OF EXTREMAL FUNCTIONS

Consider the empirical power-law relationship (Ref. A.1)

$$u_{h} = u_{18.3} \left(\frac{h}{18.3}\right)^{cu_{18.3}^{-3/4}}$$
 (A.1)

between u_h , the peak wind speed (m/sec) at level h (m) and $u_{18.3}$, the peak wind speed at the reference level, 18.3 m. Equation (A.1) represents a power-law profile with parameters c and 3/4 derived by statistical analysis of Cape Kennedy wind records for a specific exposure period. Equation (A.1) can also be written

$$u_{18.3}^{3/4} \left[\ln \frac{u_h}{u_{18.3}} \right] \ln \frac{h}{18.3} = c$$
 (A.2)

In the statistical analysis from which (A.1) is derived, the quantity c is considered a normal random variable with standard deviation σ_c . This allows the expression of Eq. (A.2) in probability terms, or:

$$P\left\{u_{h} \leq u_{18.3} \left(\frac{h}{18.3}\right)^{u_{18.3}^{-3/4}} \right\} = \int_{-\infty}^{C} \frac{1}{\sqrt{2\pi}\sigma_{c}} e^{-(c'-\overline{c})^{2}/2\sigma_{c}^{2}} dc' \quad (A.3)$$

Now let

K = u_{18.3}
$$\left(\frac{h}{18.3}\right)^{u_{18.3}^{-3/4}}$$
 c

The upper limit of integration for c then becomes

$$c = u_{18.3}^{3/4} \left[\ln \frac{K}{u_{18.3}} / \ln \frac{h}{18.3} \right]$$

A change of variables from c' to v is expressed by

c' =
$$u_{18.3}^{3/4} \left[\ln \frac{v}{u_{18.3}} \right] \ln \frac{h}{18.3}$$

A-2

Equation (A.3) becomes

$$P\left\{u_{h} \leq K\right\} = \int_{0}^{K} e^{-\left\{u_{1}^{3/4}\left[\ln \frac{v}{u_{18,3}} / \ln \frac{h}{18,3}\right] - \frac{1}{c}\right\}^{2} / 2\sigma_{c}^{2}} \cdot \left[u_{18,3}^{3/4} / \sqrt{2\pi} \sigma_{c} v \ln \left(\frac{h}{16,3}\right)\right] dv .$$
(A.4)

Equation (A.4) is the integral of the normal probability density function with the normal variate involving logarithms. Its value can be expressed in terms of the normal distribution function. However, the normal distribution cannot be expressed in terms of elementary functions. Consequently, both sides of Eq. (A.4) cannot be integrated analytically with respect to $u_{18.3}$. The integration, of course, may be carried out by numerical methods.

Another approach is to employ conditional probabilities. However, this approach also does not lend itself to an analytic solution, as shown in the following development.

For a given wind speed $u_{18.3}$, the derivative of Eq. (A.4) is the conditional probability density function $f(u_h \mid u_{18.3})$. The probability density function for any level is given by (Ref. A.1)

$$f(u_{h}) = \int_{-\infty}^{\infty} f(u_{h}, u_{18.3}) du_{18.3}$$
$$= \int_{-\infty}^{\infty} f(u_{h} | u_{18.3}) f(u_{18.3}) du_{18.3}$$

(A.5)

A-3

The function $f(u_{18.3})$ is assumed to be of the form described by the FTI density function

$$f(u_{18,3}) = \alpha \exp \left[-e^{-\alpha(u_{18,3} - \mu)} - \alpha(u_{18,3} - \mu) \right]$$
 (A.6)

where α and μ are parameters determined from the mean and variance of the wind sample.

The conditional probability can be written in terms of the normal variate c by the transformation

$$f(u_h | u_{18,3}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(c-\overline{c})^2/2\sigma^2} | \frac{\partial c}{\partial u_h} |$$

where c and $\frac{\partial c}{\partial u_h}$ can be found from Eq. (A.2).

These substitutions when applied to Eq. (A.5) yield

$$f(u_{h}) = \int_{-\infty}^{\infty} \frac{u_{18.3}^{3/4} \alpha}{\sqrt{2\pi} u_{h} \ell_{h} \frac{h}{18.3} \sigma_{c}}$$

• exp
$$\left\{ -e^{-\alpha (u_{18.3} - \mu)} - \alpha (u_{18.3} - \mu) \right\}$$
(A.7)

$$-\left[u_{18.3}^{3/4} \left(\ln \frac{u_{\rm h}}{u_{18.3}} \right) \ln \frac{h}{18.3} - \frac{1}{2} \right]^2 / 2\sigma_{\rm c}^2 du_{18.3}$$

The immediate problem with Eq. (A.7) is that $ln u_{18.3}$ is not defined for negative values of $u_{18.3}$. Since $u_{18.3}$ is never negative, $f(u_{18.3})$ can be defined equal to zero for negative values of $u_{18.3}$. The lower integration limit then becomes zero.

The substitutions $\sigma_{K} = \ln \frac{h}{18.3} \sigma_{c}$, $c_{K} = c \ln \frac{h}{18.3}$, and $u_{18.3} = e^{-y}$ transform Eq. (A.7) into

$$f(u_{h}) = \int_{-\infty}^{\infty} \frac{-\alpha e^{-3/4y}}{\sqrt{2\pi} \sigma_{K} u_{h}} \exp \left[-e^{-\alpha (e^{-y} - \mu)} - \alpha (e^{-y} - \mu) - y \right]$$

• $\exp \left\{ -\left[e^{-3/4y} (\ln u_{h} + y) - \overline{c}_{K} \right]^{2} / 2 \sigma_{K}^{2} \right\} dy.$ (A.8)

The last exponential in Eq. (A.8) is the normal probability density function with the variable equal to $e^{-3/4y}$ ($\ln u_h + y$). The integrand in Eq. (A.8) includes $e^{-3/4y}$ in the first term of the product, but this is not related to the derivative of either of the other exponential terms in the product. The fact that the integrand contains the normal probability density function and other unrelated functions would in general preclude the possibility of expressing the integral in terms of elementary functions required for analytic integration.

A.2 SAMPLE DISTRIBUTION OF A VARIATE WITH A FISHER-TIPPETT TYPE I DISTRIBUTION

A.2.1 Development of Theory

10110-01100

It may be practical to test the goodness-of-fit of n sample values to an extreme value distribution, such as the Fisher-Tippet Type I (FTI), whose parameters α and μ are readily obtained from the given sample.

LMSC/HREC D162482

ć

The density function for the FTI is Eq. (A.6). The corresponding distribution function is

$$\mathbf{F}(\mathbf{x}) = \exp \left\{ -\mathbf{e}^{-\alpha(\mathbf{x}-\mu)} \right\}$$
(A.9)

where the variable x is used for generality instead of the wind speed u.

Hypothesize that a sample statistic, Z, is the sum of n independent extreme samples,

$$Z = x_1 + x_2 + \ldots + x_n = \sum_{i=1}^{n} x_i$$
 (A.10)

The approach is to compute the probability that the sum of n independent samples from the FTI distribution is less than Z. The characteristic function of the FTI distribution is (Ref. A.2)

$$\phi(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx = \Gamma (1 - \frac{it}{\alpha}) e^{i\mu t}$$
(A.11)

The characteristic function of the sum of n sample values is the n^{th} power of the population characteristic function (Ref. A.3). If Z can be defined as in Eq. (A.10) then

$$\mathbf{F}^{i}(\mathbf{Z}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{e}^{-i\mathbf{t}\mathbf{Z}} \phi^{n}(\mathbf{t}) d\mathbf{t} \qquad (A.12)$$

Except for n = 2 or 3, the integral in Eq. (A.12) cannot be evaluated in terms of classical functions. However, the integral can be evaluated numerically. For the sum of the n samples the density function can be expressed as

A-6

f(Z) = h(w) $w = e^{-\alpha(Z - n\mu)}$ (A.13)

An appropriate series of substitutions * converts the integral in Eq. (A.12) into a form such that

Probability
$$\left(\sum_{i=1}^{n} x_{i} < Z\right) = 1 - \int_{-\infty}^{\infty} h(w) dw$$
 (A.14)

where;

where

$$h(w) = \frac{w}{2\pi \alpha} \frac{\left(\frac{\cos \phi}{\alpha} - v \sin \phi\right)}{\left(\frac{1}{\alpha^2} + v^2\right)} \exp\left\{-nP(1, v)\right\}$$
(A.14a)

and,

e,

$$\phi = -\alpha \mu n v - \alpha v \ln w + n\theta (1, v) - nv \gamma$$
 (A.14b)

$$v = \frac{t-1}{i}$$
 (here "i" refers to the imaginary unit) (A.14c)

$$\theta (1, \mathbf{v}) = \sum_{\mathbf{s}=\mathbf{0}}^{\infty} \left(\frac{\mathbf{v}}{1+\mathbf{s}} - \arctan \frac{\mathbf{v}}{1+\mathbf{s}} \right)$$
(A.14d)

$$P(1,v) = \frac{1}{2} \sum_{s=0}^{\infty} \ln \left[1 + \frac{v^2}{(1+s)^2} \right]$$
(A.14e)

 γ = Euler's constant

*See Refs. A.4, A.5 and A.6 for a more detailed treatment of the substitutions and transforms required in the above development.

A-7

It can be seen that the variable of integration in Eq. (A.14) is v, where t = 1 + iv. The quanity n is the sample size; α and μ are extremal parameters estimated from the sample values; and s is a parameter as specified in Eqs. (A.14d) and (A.14e). The quantities w and Z are defined in Eq. (A.13) and Eq. (A.10), respectively. Although complex variables were introduced in the substitution, it can be shown that the imaginary components of the integral ' in Eq. (A.14) for any positive increment of dv will be cancelled by the corresponding negative increment. Thus, the integral represents a real-valued function.

The limits of integration in Eq. (A.14) (say $-v_m, v_m$) must be chosen such that the contribution to the integral for $v < -v_m$ and $v > v_m$ are neglible. These limits can be estimated from the asymptotic expansion of the gamma function

$$\lim_{|\mathbf{v}| \to \infty} |\Gamma(1 + i\mathbf{v})| \mathbf{e}^{\frac{\pi}{2} |\mathbf{v}|} |\mathbf{v}|^{-\frac{1}{2}} = (2\pi)^{\frac{1}{2}}$$

(see Ref. A.4).

Also,
$$\left| \Gamma (1 + iv)^n \right| \sim (2\pi)^{\frac{1}{2}n} e^{-\frac{\pi}{2}n |v|} |v|^{n/2}$$

and the limit $v_m > 0$ is chosen such that

$$w(2\pi)^{\frac{1}{2}(n-1)} e^{\left(-\frac{\pi}{2}nv_{m}\right)} v_{m}^{(n/2-1)} < e^{-\epsilon}$$
 (A.15)

where ϵ is the desired accuracy in the distribution function.

A-8
A.2.2 Computer Program Outline

The following is a proposed program outline to compute the probability distribution discussed above:

- 1. The programmer will select the numerical integration scheme. Since the integrand contains the sine and cosine functions, the integrand will change sign frequently. The step size will in part be governed by the values of v which make ϕ a multiple of π .
- 2. The program will read n, μ , α and Z. The μ and α are parameters of the FTI distribution. The quantity n is the number of samples. The output of the program will be the probability that the sum of n independent samples, $x_1 + x_2$, $+ \dots + x_n$, from the Fisher-Tippett Type 1 distribution is less than Z.
- 3. Compute w = $e^{-\alpha(Z n\mu)}$
- 4. Select limits of integration based upon the inequality (A.15).
- 5. Select integration step size.
- 6. Determine end points of integration interval, (v_{i-1}, v_i) and select v'_i in the interval.
- 7. Compute $P(1, v_i)$ and $\theta(1, v_i)$ from Eqs. (A.14d) and (A.14e)
- 8. Compute ϕ from Eq. (A.14b)
- 9. Compute sine and cosine of ϕ .
- 10. Compute

$$h(w) = \frac{w}{2\pi\alpha} \frac{\left(\frac{\cos\phi}{\alpha} - v'_{i}\sin\phi\right)}{\left(\frac{1}{\alpha} + v'_{i}^{2}\right)} \cdot \exp\left\{-nP(1, v'_{i})\right\}$$

A-9

(A.16)

11. Compute value of integral on the interval (v_{i-1}, v_{j})

$$I = I + h(w) \cdot (v_i - v_{i-1})$$

or by the integration scheme adopted in step 1.

- 12. Repeat steps 5 through 11 until upper limit of integration is reached.
- 13. Probability = 1 I
- 14. Write results.
- A.2.3 Comments on Program Development:
 - 1. The value of I for n=2, $\mu=0$, $\alpha=1$ can be reached by summing the series

$$I = \sum_{m=0}^{\infty} \frac{2(-1)^{2m} \psi(1+m)}{m!} \frac{(e^{-2})^{m+2}}{2+m}$$

where,
$$\psi(1+m) = -\gamma + \sum_{s=0}^{\infty} \left(\frac{1}{s+1} - \frac{1}{1+m+s}\right)$$

 γ = Euler's constant.

The series in Eq. (A.16) is an application of the Cauchy residue theorem from complex variable theory. It is the integral of the sum of the residues in the integral representation of the density function (Ref. A.7). The numerical integration can also be checked for n=3 with a similar but more complicated series expansion.

2. Since the computation of P and θ is time consuming, it may be expedient to compute I for several values of Z at the same time.

A.3 DEVELOPMENT OF THE SAMPLE VARIANCE

If a parent distribution is denoted dF(x), the simultaneous distribution of n values x_1, x_2, \ldots, x_n is $dF(x_1) dF(x_2) \ldots dF(x_n)$; and if Z is a statistic

$$Z = Z(x_1, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2$$
 (A.17)

the distribution function of Z is given by (see Ref. A.3)

$$F(Z_0) = \int \dots \int dF(x_1) \dots dF(x_n), \qquad (A.18)$$

the integration being taken over the domain of the x's such that $Z(x_1, \ldots, x_n) \leq Z_0$. A usual method of determining $F(Z_0)$ is to make a transformation to the variables $Z_1, \theta_1, \theta_2, \ldots, \theta_{n-1}$; so that the limits of integration for the θ_1 's are fixed constants. Equation (A.18) becomes

$$F(Z_0) = \int \dots \int f(x_1) \dots f(x_2) \frac{\partial(x_1, \dots, x_n)}{\partial(Z, \theta_1, \dots, \theta_{n-1})}$$

• dZ d $\theta_1 \dots d\theta_{n-1}$.

A proposed transform is

$$-\mathbf{x}_{1} = \ln \mathbf{e}^{-\mathbf{Z}^{\frac{1}{2}}} \cos^{2} \theta_{1} \cos^{2} \theta_{2} \cdots \cos^{2} \theta_{n-1}$$

$$-\mathbf{x}_{2} = \ln \mathbf{e}^{-\mathbf{Z}^{\frac{1}{2}}} \cos^{2} \theta_{1} \cos^{2} \theta_{2} \cdots \cos^{2} \theta_{n-2} \sin^{2} \theta_{n-1}$$

$$\cdots$$

$$-\mathbf{x}_{j} = \ln \mathbf{e}^{-\mathbf{Z}^{\frac{1}{2}}} \cos^{2} \theta_{1} \cos^{2} \theta_{2} \cdots \cos^{2} \theta_{n-j} \sin^{2} \theta_{n-j+1}$$

A-11.

$$\dots = \ln e^{-Z^{\frac{1}{2}}} \sin^2 \theta_1$$

Substitution of the above variables into the equation

yields

$$F(Z_{o}) = \int \dots \int \exp \left\{ -\left(e^{-x_{1}} + e^{-x_{2}} + \dots + e^{-x_{n}}\right)\right\}$$

$$\cdot \exp \left\{ -\left(x_{1} + x_{2} + \dots + x_{n}\right)\right\} d_{x_{1}} d_{x_{2}} \dots d_{x_{n}} \qquad (A.20)$$

$$F(Z_{o}) = \int \dots \int \left\{ \exp \left[-\left(e^{-z^{\frac{1}{2}}} \cos^{2}\theta_{1} \cos^{2}\theta_{2} \dots \cos^{2}\theta_{n-1} + e^{-z^{\frac{1}{2}}} \cos^{2}\theta_{1} \cos^{2}\theta_{2} \dots \cos^{2}\theta_{n-2} \sin^{2}\theta_{n-1} + \dots + e^{-z^{\frac{1}{2}}} \sin^{2}\theta_{1}\right)\right\}$$

$$\cdot e^{-z^{\frac{1}{2}}} (\cos^{2}\theta_{1} \cos^{2}\theta_{2} \dots \cos^{2}\theta_{n-2} \sin^{2}\theta_{n-1})$$

$$\cdot (\cos^{2}\theta_{1} \cos^{2}\theta_{2} \dots \cos^{2}\theta_{n-2} \sin^{2}\theta_{n-1}) \dots$$

$$\cdot (\sin^{2}\theta_{1}) - \frac{\theta(x_{1}, \dots, x_{n})}{\theta(Z, \theta_{1}, \dots, \theta_{n})} dZ d\theta_{1} \dots d\theta_{n-1} \qquad (A.21)$$

The last equation simplifies to

$$F(Z_{o}) = \int \dots \int \exp \left\{ -e^{-Z^{\frac{1}{2}}} - nZ^{\frac{1}{2}} \right\}$$

A-12

(A.23)

•
$$(\cos^2 \theta_1 \ \cos^2 \theta_2 \ \dots \ \cos^2 \theta_{n-1})$$

• $(\cos^2 \theta_1 \ \cos^2 \theta_2 \ \dots \ \cos^2 \theta_{n-2} \ \sin^2 \theta_{n-1}) \ \dots$
• $\sin^2 \theta_1 \ \frac{\partial (x_1, \ \dots, \ x_n)}{\partial (Z, \ \theta_1, \ \dots, \ \theta_{n-1})} \ dZ \ d\theta_1, \ \dots \ d\theta_n$. (A.22)

The Jacobian of transform (A.19) is given by

$$\frac{\partial (\mathbf{x}_1, \ldots, \mathbf{x}_n)}{\partial (Z, \theta_1, \ldots, \theta_{n-1})}$$

which is equal to $\frac{Z^{\frac{1}{2}}}{Z}$ times the determinant

It is conjectured that the integral in Eq. (A.22) can be reduced to the form

$$F(Z_0) = K \int_{0}^{Z_0} \exp\left\{-e^{-z^{\frac{1}{2}}} - n z^{\frac{1}{2}}\right\} z^{-\frac{1}{2}} dz$$

A-13

The preceding integration can be performed by n applications of the standard formula for integration by parts. The sample variance about the mean can be computed by the standard formulas.

A formal procedure for developing another sample statistic, the coefficient of variation, is given in Ref. A.3. The procedure depends on the sample variance whose distribution function was developed in the preceding discussion. It will also involve an integral of the type used for computing the distribution of the sample mean.

REFERENCES

- A.1 Wood, J. L., and W. A. Bowman, "Cape Kennedy Peak Wind Profile Probabilities for Levels from 10 to 150 Meters," NASA CR 61308, George C. Marshall Space Flight Center, Ala., September 1969.
- A.2 Abramowitz, Millon, and Irene A. Stegun, eds., <u>Handbook of Mathematical</u> <u>Functions</u>, Dover, New York, 1965, p. 930.
- A.3 Kendall, Maurice G., and Alan Stewart, <u>The Advanced Theory of Statistics</u>, Vol. I, Hafner, New York, 1963, pp. 259-266.
- A.4 Er delyi, Arthur, et al., <u>Higher Transcendental Functions</u>, Vol. I, McGraw-Hill, New York, 1953.
- A.5 Tables of Integral Transforms, Vol. I, McGraw-Hill, New York, 1954.
- A.6 Nielson, Niels, Die Gammafunktion, Chelsea, New York, 1965.
- A.7 Churchill, Ruel V., <u>Complex Variables and Applications</u>, McGraw-Hill New York, 1960.

A-15

Appendix B

TABLES AND FIGURES

Table		Page
1	Univariate Fisher-Tippett Parameters	B-1
2	Fisher-Tippett Parameters for Bivariate Variables (Annual Reference Period)	B-4
3	Bivariate Parameters	B-5
4	Power-Law Parameters	B-7
5	Peak Wind Profile Parameters	B-8
6	Extremal Parameters for Hourly Peak Winds (152.4-meter level)	B-10
7	Extremal Parameters for Hourly Peak Winds (18.3-meter level)	B-11
. 8	Extremal Parameters for Ten-Minute Peak Winds (152.4- meter level)	B-12
Figur	e	
1	Data Fit of 1 Day Peak Winds in Summer at 18.3	B-13
2	Data Fit of 30 Day Peak Winds All Year at 152.4 Meters	B-14
3	Cumulative Distributions in Winter at 3.0 Meters	B-15
4	Cumulative Distributions in Spring at 3.0 Meters	B-16
5	Cumulative Distributions in Summer at 3.0 Meters	B-17
6	Cumulative Distributions in Fall at 3.0 Meters	B-18
7	Cumulative Distributions for the Year at 3.0 Meters	B-1 9
8	Cumulative Distributions in Winter at 18.3 Meters (Small Tower)	B-20
9	Cumulative Distributions in Spring at 18.3 Meters (Small Tower)	B-21
10	Cumulative Distributions in Summer at 18.3 Meters (Small Tower)	B-2 2
11	Cumulative Distributions in Fall at 18.3 Meters (Small Tower)	B-2 3
12	Cumulative Distributions for the Year at 18.3 Meters (Small Tower)	B-24
13	Cumulative Distributions in Winter at 18.3 Meters (Large Tower)	B-25
14	Cumulative Distributions in Spring at 18.3 Meters (Large Tower)	B-26
15	Cumulative Distributions in Summer at 18.3 Meters (Large Tower)	B-27

Figure		Page
16	Cumulative Distributions in Fall at 18.3 Meters (Large Tower)	B-28
17	Cumulative Distributions for the Year at 18.3 Meters (Large Tower)	B-29
18	Cumulative Distributions in Winter at 30.5 Meters	B-30
19	Cumulative Distributions in Spring at 30.5 Meters	B-31
20	Cumulative Distributions in Summer at 30.5 Meters	B-32
21	Cumulative Distributions in Fall at 30.5 Meters	B-33
22	Cumulative Distributions for the Year at 30.5 Meters	B-34
2 3	Cumulative Distributions in Winter at 61.0 Meters	B-35
24	Cumulative Distributions in Spring at 61.0 Meters	B-36
25	Cumulative Distributions in Summer at 61.0 Meters	B-37
26	Cumulative Distributions in Fall at 61.0 Meters	B-38
27	Cumulative Distributions for the Year at 61.0 Meters	B- 39
28	Cumulative Distributions in Winter at 91.4 Meters	B-4 0
29	Cumulative Distributions in Spring at 91.4 Meters	B-41
30	Cumulative Distributions in Summer at 91.4 Meters	B-42
31	Cumulative Distributions in Fall at 91.4 Meters	B-4 3
32	Cumulative Distributions for the Year at 91.4 Meters	B-44
33	Cumulative Distributions in Winter at 121.9 Meters	B-4 5
34	Cumulative Distributions in Spring at 121.9 Meters	B-46
35	Cumulative Distributions in Summer at 121.9 Meters	B-47
36	Cumulative Distributions in Fall at 121.9 Meters	B-48
37	Cumulative Distributions for the Year at 121.9 Meters	B-4 9
38	Cumulative Distributions in Winter at 152.4 Meters	B- 50
39	Cumulative Distributions in Spring at 152.4 Meters	B-5 1
40	Cumulative Distributions in Summer at 152.4 Meters	B-52
41	Cumulative Distributions in Fall at 152.4 Meters	B-53
42	Cumulative Distributions for the Year at 152.4 Meters	B-54
43	Data Fit for the Second Bivariate Variable over 15 Days Exposure Period at 61.0 Meters	B-55
44	Data Fit for the Second Bivariate Variable over 1 Day Exposure Period at 18.3 Meters (Small Tower)	B-56

Figur	e	Page
45a	Wind Profile Parameter, c	B-57
45b	Wind Profile Parameter, σ	B-58
45c	Wind Profile Parameter, p	B- 59
46	Wind Profile Cumulative Distributions for Winter, Hours 1800 - 0200 EST	B-61
47	Wind Profile Cumulative Distributions for Summer, Hours 0000 - 0200 EST	B-62

Biii

Appendix B

Listed below are definitions of various legends which appear on some of the tables and figures presented in this appendix.

Seasons

Season 1 - December, January, February, March (Winter) Season 2 - April, May (Spring) Season 3 - June, July, August, September (Summer) Season 4 - October, November (Fall)

Hour Groups (Class Intervals)

Hour	Group 1:	0000-0200	EST
Hour	Group 2:	0300-0500	EST
Hour	Group 3:	0600-0800	EST
Hour	Group 4:	0900-1100	EST
Hour	Group 5:	1200-1400	EST
Hour	Group 6:	1500-1700	EST
Hour	Group 7:	1800-2000	EST
Hour	Group 8:	2100-2300	EST

Appendix B

Listed below are definitions of various legends which appear on some of the tables and figures presented in this appendix.

Seasons

Season 1 - December, January, February, March (Winter) Season 2 - April, May (Spring) Season 3 - June, July, August, September (Summer) Season 4 - October, November (Fall)

Hour Groups (Class Intervals)

Hour Group 1:	0000-0200	EST
Hour Group 2:	0300-0500	EST
Hour Group 3:	0600-0800	EST
Hour Group 4:	0900-1100	EST
Hour Group 5:	1200-1400	EST
Hour Group 6:	1500-1700	EST
Hour Group 7:	1800-2000	EST
Hour Group 8:	2100-2300	EST

Biv

	S	EASON	, N	EASON	5	1 A S ON	U	FACE	:	
				N		5	1		4	
3.0 meter (m) Level	l Alpha	Mu	Alpha	Mu	Alpha	Ми	Alpha	Mu	Alpha	Mu
	. 1980	17-6962	1922.	19-1252	• 2334	17+3724	-225	16.2453	-2219	17.6601
5 DAV(S)	. 2276	25+5303	+2083	25 . 5664	·1847	22.9542	• 2056	21.7843	-2107	24.1230
ID DAY(S)	.2676	28.9075	-2043	28.8255	-1909	27.1345	.1757	24.5034	. 2156	27.2205
IS DAY(S)	• 2523	29 - 38 34	.1938	30+9572	-2012	28.9273	.1519	26.2155		
30 DAY (S)									2162.	525 s + 52
60 DAY(S)									1642*	32.5136
									-2583	35.1433
18.3-m Level (Smal	l Tower)	.*								
I CAY(S)	.1533	19.6025	.1.79	20.8151	1791.	19.1755	.1905	218-2184	1700	
5 DAY(5)	.1722	23.430	1113	29.3026	.1504	25.1547	CLEI			
IU DAY(S)	.1918	33.5404	. 1646	11.9750			3061.	1157-12	•1/53	27.7173
IC DAVICI					2001.	5151-15	.172	2P.3257	. 1525	31.7676
	9//1.	34 • 3 34 E	.1623	34.0357	.1500	33°315g	.1676	30.3746	+ 1794	33-6522
									-2133	38.4312
									-2012	PG20-1#
18.3-m Level (Large	Tower)									-
1 244(5)	10 10 11 11	20.0570	91.1.	21-5853	•193	13.3263	. 1850	25.97.61	CC 81.	1110 00
5 DAY(S)	.1827	29.4499	.1512	29.3424	• 1 = 65	26 • 3965	.1846	26.9031	5764 -	
ID DAY(S)	1661 ·	32.3912	.1529	33.1131	.1795	30.7303	3			
IS DAY(S)	• 1359	34.4975	.1591	36,2563	.1932	33.7431	.1554	31.9942		
30 DAY(5)								I 1 1 1 1		
6U DAY(S)									- 2053	37.9565
									.2214	41.3155

B-1

lable l ATE FISHER-TIPPETT PARAMÉT

1

LMSC/HREC D162482

Station Station Station Station Station Station Mont 1 0011(1) .1150 2.0.116 .1101 2.1961 Maps Ma Apps 5.1723 .1051 2.2730 5 041(5) .1156 2.0.116 .1101 2.1.126 .1101 2.1.126 .1101 2.1.126 2.1.230 .1112 2.2.230 .1112 2.1.230 .1113 2.1.126 2.1.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.230 .1112 2.2.201 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301 .1112 2.2.301						Table I (Cou	ntinued)				
			EASON		SEA SON 2	LA L	SALON S	S	E A SON 4		NNUAL
5 014151 11516 01-4061 11843 21-3056 11941 27-1966 1799 26-1723 11515 22-2094 10 014(5) 1136 11-315 31-2555 11935 31-5533 11935 31-5594 15533 21-3094 15533 21-3094 15533 21-3094 1553 21-3094 1553 21-3094 1553 21-3094 1553 21-3094 1553 21-3094 1553 21-3094 1553 21-3094 1553 21-3094 1554 21-3094 1554 21-3094 1564 21-559 21-5994 1554 21-559	0.5-m Level 1 DAY(S)	Alpha • 1550	a Mu 20.7166	Alpha 1707	t Mu 21.6851	Alpha	Mu 19_29481	Alpha	Mu 10 7055	Alpha	- Me
0 0 W (S)	5 DAY(S)	. 1516	30.4067	.1454	29.9979	1 4 1 4	27.1968		CGC1.C1	9131	324C 8C
10 14 1<	10 DAY(S)	.1386	33.5950	"124 D	33.5265	.1492	32.2300			0 1 1 1 1 1 1 1 1	dC12+02
0.0 MV(5) .1561 .1562 2.45912 .1682 20.1919 .1666 3.99997 10 MV(5) .1866 2.55919 .1163 2.16912 .1682 20.1919 .1663 21.6529 .1663 21.6523 21.652	15 DAY(S)		36.1877	.1157	36 + 2534	1496	34.1653	1427			36- 10 14
0.01V(5) .156 22.5844 .1763 22.6612 .1662 20.3979 .1803 20.3977 .1633 21.6529 5 0V(5) .1963 .1561 27.6012 .1565 27.2076 .1693 21.6529 .1633 21.6529 5 0V(5) .1953 31.5627 .1514 30.5726 .1363 21.6321 .1633 21.6529 .1567 30.6477 .1633 21.6529 5 0V(5) .1133 31.5621 .1516 34.653 .1143 30.1464 .1572 34.3613 15 0V(5) .1139 37.6321 .1166 36.7166 .1428 35.1851 .1961 34.6005 .1572 34.3669 10 0.1(5) .1139 37.6321 .1146 .1482 35.1851 .1181 34.6005 .1572 34.1569 10 0.1(5) .1135 31.656 .1182 35.1651 .1181 34.6005 .1572 35.600 .1562 25.2411 10 10.1(5) .1182 21.707 .1543 25.5400 .1562 </td <td>U DAY(S)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 + 01 •</td> <td>50+070B</td>	U DAY(S)									1 + 01 •	50+070B
-1112 -1112 -1112 -1112 -1112 -1112 -1112 -1112 -11050 -1156 -1567 <t< td=""><td></td><td></td><td>······································</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•1660</td><td>19892</td></t<>			······································							•1660	19892
10-m Level .1566 22.5949 .1163 22.6912 .1692 20.1379 .1603 21.5529 5 04Y(5) .1953 31.5627 .1514 30.5726 .1355 27.2076 .1645 26.0352 .1567 30.647 5 04Y(5) .1953 31.5627 .1514 30.5726 .1365 31.0501 .1972 31.567 30.647 10 04Y(5) .1126 36.614 .1966 34.5543 .1428 33.0551 .1572 31.567 36.564 10 04Y(5) .1379 31.5621 .1360 36.7166 .1482 35.1451 .1151 41.572 31.567 31.567 36.564 10 04Y(5) .1379 31.6921 .1180 36.7166 .1482 35.1451 .1151 41.366 1.572 31.567 31.567 31.567 31.567 1.567 31.567 36.569 .1567 25.281 1.156 25.281 1.156 25.781 1.156 26.760 .1567 25.581 1.5678 25.576 1.5572 25.581 1.5678 25.5781 1.5678 25.5781							The second	9 - -		.1712	43.8426
5 04V(5) .1953 31.5627 .1514 30.5726 .1565 27.2076 .1545 30.0647 10 0AV(5) .1526 36.614 .1966 34.5543 .11428 33.0591 .1134 30.1672 34.3613 10 0AV(5) .1576 36.614 .1966 34.5543 .1928 33.0591 .1574 30.1672 34.3613 15 0AV(5) .1379 37.6921 .1966 34.5643 .1982 35.1951 .1612 34.369 16 DAV(5) .1379 37.6921 .1982 35.1951 .1612 34.369 .1576 36.716 .1576 36.7166 .1576 27.2810 .1576 27.2811 .1972 37.699 .1966 34.7869 .1976 .1576 27.2811 .1972 37.5690 .1956 27.2811 .1975 25.2811 .1975 25.2811 .1975 25.2781 .1912 .1976 27.281 .1912 21.569 .1976 27.250 .1362 27.281 10.0175 27.2781 .1965 27.281 .1912 27.579 136.715 27.281 .137.012	1.0-m Level	. 1566	22.5848	.1763	22.6912	.1682	20.3879	.1808	20.9437	.1693	21.5529
ID DAY(5) .1326 36.6614 .1465 34.6543 .1426 35.1951 .1344 30.1664 .1625 36.3613 IS DAY(5) .1379 37.6321 .1360 36.7166 .1482 35.1951 .1861 34.8405 .1625 36.5649 IS DAY(5) .1379 37.6321 .1360 36.7166 .1482 35.1951 .1861 34.8005 .1672 36.3649 ID DAY(5) .1379 37.6334 .1705 35.71337 .1576 20.4785 .1649 27.5400 .1562 25.2311 A-m Level .1055 23.7334 .1705 23.7332 .1576 20.4785 .1643 20.5600 .1562 25.2311 5 DAY(5) .1166 32.2334 .1903 36.780 .1572 26.780 .1562 25.570 .1382 36.8765 0 DAY(5) .1062 16.7256 .1313 34.7230 .1415 31.0037 .1372 35.5570 .1376 35.5570 .1376 35.0539 0 DAY(5) .0991 34.7820 .1415 31.0437 .1276	5 DAY(S)	.1453	31.5627	• 151 •	30.5726	.1365	27.2076	.1645	28-0252	. 1567	30.0617
5 Dav(5) .1379 37.6921 .1360 36.7166 .1482 35.1951 .161 34.805 .1525 36.6849 10 Dav(5) .1379 37.6921 .1360 36.7166 .1925 35.489 10 Dav(5) .1051 23.0332 .1576 20.4785 .1649 22.5400 .1562 23.489 .4-m Level .1035 23.0337 .1576 20.4785 .1543 22.5400 .1562 22.53611 5 Dav(5) .1166 32.2934 .1930 34.7820 .1823 33.2107 .1382 30.6765 0 Dav(5) .1062 16.7226 .1330 34.7290 .1392 33.2107 .1382 35.5700 .1366 37.0831 0 Dav(5) .1062 16.7226 .1331 34.7290 .1392 35.5570 .1366 37.0561 .1366 37.0561 .1366 37.0570 .1366 37.0561 .1362 35.5570 .1362 35.5570 .1363 .1286 35.5570 .1365 35.5570 .1365 35.5570 .1365 .1286 .1378	DAV(S)	• 1526	36.8614	• 1 4 66	34 .6543	.1428	33-0591	#SE1 •	301464	°1572	34.3613
0 DAY(5) .1912 41.3469 .0 DAY(5) .1995 85.4489 .1 DAY(5) .1705 23.0332 .1576 20.4785 .1649 22.55400 .1562 22.2811 .1 DAY(5) .1166 32.2334 .1705 23.0332 .1576 20.4785 .1649 22.55400 .1562 22.2811 5 DAY(5) .1166 32.2334 .1705 30.1156 .1304 28.7280 .1543 29.9619 .1382 30.8765 5 DAY(5) .1166 36.7226 .1330 34.7820 .1824 34.7290 .1392 33.2107 .1352 35.5785 5 DAY(5) .1062 36.7226 .1330 34.7290 .1873 33.2107 .1352 35.5785 6 DAY(5) .09997 39.840 .1057 35.2870 .1342 37.0037 .1240 .1352 42.2595 0 DAY(5) .09997 39.840 .1415 37.0037 .1240 .1307 .1308 42.2595 0 DAY(5) .0937 .1077 .1240 .1240 .1285 42.2595	S DAY(S)	.1379	37.6921	.1360	36. 7166	-1482	35.1451	.1451	34.8405	. 1625	36.6849
0 DAY(S) .1995 23.0332 .1576 20.4735 21.549 22.5500 .1562 22.2811 1 DAY(S) .1105 23.0332 .1304 28.7280 .1543 29.9519 .1382 30.8765 5 DAY(S) .1166 32.2334 .190 30.1156 .1304 28.7280 .1543 29.9519 .1382 30.8765 0 DAY(S) .1162 16.7226 .1330 34.7830 .1324 34.7230 .1592 31.2107 .1352 35.5765 5 DAY(S) .00997 39.8340 .1057 35.2870 .1415 34.7230 .1392 31.2107 .1352 35.5765 6 DAY(S) .00997 39.8340 .1057 35.2870 .1415 .1240 35.5570 .1365 32.0559 8 DAY(S) .00997 39.8340 .1057 35.2570 .1373 .1245 %2.2599 0 DAY(S) .00991 .1057 35.2670 .1365 .1365 %2.2599 .1245 %2.2599 0 DAY(S) .0101 .05570 .1366 %2.2599 .1285 <td< td=""><td>O DAY(S)</td><td></td><td></td><td></td><td>a o a company company and</td><td></td><td>naam maharan - saman katala di kuman katala sain 1 - saman wa 1</td><td>annan shiriy kata - a san a manja man undumu</td><td></td><td>.1312</td><td>41.3469</td></td<>	O DAY(S)				a o a company company and		naam maharan - saman katala di kuman katala sain 1 - saman wa 1	annan shiriy kata - a san a manja man undumu		.1312	41.3469
.4-m Level .1v35 23.3464 .1705 23.0332 .1576 20.4705 .1649 22.55400 .1562 22.201 5 Dav(5) .1166 32.22334 .1940 30.1156 .1304 28.7260 .1543 29.9619 .1382 30.8765 0 Dav(5) .1166 32.22934 .1940 30.1156 .1304 28.7260 .1543 29.9619 .1382 30.8765 0 Dav(5) .1162 16.7226 .1330 34.7820 .1424 34.7290 .1392 33.2107 .1352 35.5705 .1356 37.0531 5 Dav(5) .0997 39.8340 .1057 35.2870 .1342 31.0037 .1240 35.5570 .1306 37.0539 0 Dav(5) .00937 .39.8340 .1057 .1415 37.00437 .1240 .1306 37.0539 0 Dav(5) .00937 .1240 .1240 .1305 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 .1205 <td>DAY(S)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• 1995</td> <td>#5~##89</td>	DAY(S)									• 1995	#5~##8 9
1 DAYES) .1835 23.035 .1705 23.0332 .1576 20.4785 .1649 22.5500 .1562 22.5361 5 DAYES) .1166 32.2934 .1705 30.1156 .1304 28.7280 .1543 29.9619 .1382 30.6765 5 DAYES) .1062 36.7266 .1330 34.7820 .1372 33.2107 .1352 35.5785 5 DAYES) .0997 39.8340 .1057 35.2670 .1372 35.5570 .1305 35.5570 .1305 35.0531 0 DAYES) .0997 39.8340 .1057 35.2670 .1376 35.5570 .1306 37.0531 0 DAYES) .00453 .1415 37.0437 .1280 .1306	.4-m Level										
5 Dav(5) .1166 32.2934 .1940 30.1156 .1304 28.7280 .1543 29.9619 .1382 30.8765 0 Dav(5) .1062 16.7226 .1330 34.7820 .1424 34.7290 .1392 33.2107 .1352 35.5785 5 Dav(5) .0997 39.8340 .1057 35.2870 .1415 37.0837 .1240 35.5570 .1306 37.0531 0 Dav(5) .0997 39.8340 .1057 35.2870 .1415 37.0837 .1240 35.5570 .1306 37.0531 0 Dav(5) .09Y(5) .1057 35.2870 .1415 37.0837 .1240 35.5570 .1306 37.0595 0 Dav(5) .00Y(5) .10Y .1415 37.0W37 .1205 %2.2599 .1205 %2.2599 .00Y(5) .00Y(5) .10Y .1415 .1415 .1107 %6.7773	I DAY(S)	.1435	23.3464	.1705	23.0332	.1576	20.4785	• 1649	22.5100	.1562	22.2911
0 DAV(S) .1062 J6.7226 .1330 34.7820 .1424 34.7290 .1392 33.2107 .1352 35.5785 5 DAV(S) .0997 39.8340 .1057 35.2870 .1415 37.0437 .1240 35.5570 .1306 37.0531 0 DAV(S) .1245 42.2599 0 DAV(S) .107 %6.7773	5 DAY(S)	.1166	32+2934	. 1940	30.1156	•1304	28-7280	.1543	29.9619	.1382	30.8765
5 DAY(S) .0997 39.8340 .1057 35.2870 .1415 37.0437 .1240 35.5570 .1306 37.0531 .1245 42.2598 U DAY(S) .1107 %6.7773	DAY(S)	.1062	36 - 7226	.1330	34.7820	.1424	34 .7 290	.1392	33.2107	-1352	35.5785
0 DAY(S) U DAY(S) .1107 %6.7773	5 DAT(S)	1660 -	39.8340	.1057	35.2870	.1415	37.0430	1240	35.5570	• 1306	37-0531
(J DAY(S)	DAY(S)									.1245	\$2.2595
	U DAY(S)									.1107	1;6 . 7773

Table l (Concluded)

									*			•				-				
INUAL	n 22,5951	30-6353	35.0139	38.5405	42.6849	46.2697		22.8319	31.3873	36. 3330	7633.AF			\$8.9235		•				
2	Alpha • 1615	.1395	• 1 405	÷ 1563	.1514	1, 1667		.1548	1459	1527	2891			G781.						
4 5 0 N	Mu 27.4192	1977.95	30 - 42 03	34 .0037				22.4727	29-3745	32 . 6426	33.7381					•			i	
SE	Alpha •1910	.1743	.1468	.1242				"1594	• 1438	.1260	.1045								* , : : }	
SON	Mu 21-1240	28.1976	33.4353	38.0943				20.6758	23•0055	33 • 0125	38+5324	•				· · · · · · · · · · · · · · · · · · ·				
SEA	Alpha .1571	.1288	.1251	1:07				• 1555	.1253 2	•1358	- 1543	•								
S ON	Mu 23•4462	31-0996	35.3804	38.9293				23-1952	31.8098	35 • 764 4	39.1298									
	Alpha .1729	.1406	•1348	.1313		1 1 1 1		.1749	645[*	•1290	.1297					:				
NOS	Mu 23.8716	34.0139	38.4955	40.7446				24.6936	34.8325	39.0290	41.1537					1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		:		
SEA	Ålpba • 1485	. 1458	1741.	.1382				. 1 . 7	.1560	.1609	.1524				•					
	121.9-m Level 1 DAV(S)	5 DAY(S)	10 DAY(S)	IS DAY(S)	30 DAY(S)	6U DAY (51	152.4-m Level	CSIAVO I	5 DAY (S)	13 DAY(S)	IS DAV(S)	30 DAY(S)	60 DAY (S)							

LMSC/HREC D162482

ļ

٠

•

ł

;

i

÷

 Table 2

FISHER-TIPPETT PARAMETERS FOR BIVARIATE VARIABLES (ANNUAL REFERENCE PERIOD)

	60	Ц	32.6667	39.7986	39.2638	40.4169	46.6340	47.5267	47.8719
		α	.1910	.1883	.1748	.1454	.2349	.2164	.1977
	30	π	30.2577	36.2384	36.7650	37.720	41.0930	42.8504	42.9857
		α	.2052	.1894	.1872	.1677	.1633	.1688	.1666
	15	ц	26.0837	30.7555	31.0774	32.7241	35,3118	36.6726	37.2572
ıys		α	.1736	.1534	.1534	.1522	.1424	.1467	.1455
Da	10	π	24.6429	28.7317	29.0300	30.6032	33.0903	34.7413	35.0481
		ש	.1769	.1560	.1527	.1491	.1453	.1517	.1510
	5 L	Ц	20.6778	24.8372	25.0676	26.3781	28.9721	30.1034	30.5050
		Ø	.1662	.1515	.1516	.1478	.1462	.1455	.1480
	-	π	14.2878	17.1384	17.4830	18.3746	20.4027	21.6060	22.2269
		ຮ	.1810	.1640	.1652	.1623	.1591	.1585	.1596
		Level (m)	3.0	18. 3 [*]	18.3**	30.5	61.0	61. 4	152.4

*Small Tower **Large Tower

B-4

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

LMSC/HREC D162482

Torrol				D	ays		
(m)	Parameters	1	5	10	15	30	60
	^* b	.56969	.36294	.43289	.41158	.43683	+
3.0	S. \mathbf{D}^{**} of $\mathbf{\hat{b}}$.03319	.06428	.10020	.11962	.16898	+
	1/b = m	1.75534	2.75528	2.31006	2.42966	2.28922	+
	$\hat{\mathbf{m}}$ (difference)	2.10511	2.35289	2.38506	2.20417	1.68561	1.55911
	∧ b	.44632	.36450	.34117	.35626	.48122	.82993
18.3	S.D. of \hat{b}	.02970	.0 6097	.08439	.10539	.16758	.28567
(Small	$1/\hat{b} = m$	2.24054	2.74348	2.93109	2.80694	2.07805	1.20492
100017	$\hat{\mathbf{m}}$ (difference)	2.53885	2.68170	2.71930	2.54904	2.05584	1.69033
	∧ b	.42578	.34117	.35469	.52044	.74680	.99999
18.3	S. D. of b	.02904	.05967	.08735	.12164	.19611	.30042
(Large	1/b = m	2.34863	2.93109	2.81936	1.92145	1.33905	1.00001
Tower)	m (difference)	2.53189	2.74505	2.66802	2,42463	1.86083	1.79496
	^ b	.39285	.34117	.36681	.50083	.53854	.61401
30.5	S.D. of $\hat{\mathbf{b}}$.02823	.05967	.08671	.11777	.17057	.25145
	1/b = m	2.54550	2.93109	2.72621	1.99669	1.85687	1.62864
	$\hat{\mathbf{m}}$ (difference)	2.86603	2.99636	2.83738	2.59808	2.05660	1.89005
	∧ b	.25586	.26440	.30120	.24418	.08596	.33689
61.0	S.D. of \hat{b}	.02446	.05547	.08205	.09177	.08346	.21274

Table 3BIVARIATE PARAMETERS

(Continued)

* ^ = Estimate

** S.D. = Standard Deviation

+ No Data Available

	na ann an t-christeann an t-christeann an t-christeanna ann ann ann ann ann ann ann ann an	· · · · · · · · · · · · · · · · · · ·		Da	ays		
Level (m)	Parameters	1	5	10	15	30	60
61.0	$l/\hat{b} = m$	3.90839	3.78215	3.32005	4.09534	11.63332	2.96833
	\hat{m} (difference)	3.66767	3.84697	3.78167	3.52995	3.26068	3.25222
91.4	\hat{b}	.17722	.18587	.23795	.27857	.08596	.17060
	S.D. of b	.02053	.04663	.07317	.09584	.08346	.16096
	$1/\hat{b} = m$	5.64270	5.38010	4.20256	3.58976	11.63332	5.86166
	\hat{m} (difference)	4.63840	4.84765	4.70826	4.68941	3.91131	4.45607
121.9	\hat{b}	.13190	.15551	.14252	.25946	+	.18587
	S.D. of b	.01839	.04446	.06071	.09702	+	.17446
	$1/\hat{b} = m$	7.58150	6.43045	7.01656	3.85416	+	5.38010
	\hat{m} (difference)	6.75227	6.55409	6.63867	7.67962	6.78042	5.56431

Table 3 - (Continued)

 $^* \wedge = \text{Estimate}$

;

** S.D. = Standard Deviation

+ No Data Available

B-6

			Sea	asons	
HR	Group],	2	3	4
	р	21462	21406	16695	.05858
- 1	c	.43701	.43701	.35409	.21158
	σ	.26566	.07989	.14986	.06116
	p	.11185	36407	.03017	.22149
2	c	.21659	.64234	.24597	.15327
	σ	.13806	.15223	.10604	.03804
	р	.15735	.00236	.05304	04912
3	c	,15663	.19020	.15447	.25423
	σ	.11924	.09164	.10686	.08622
	р	15599	.64863	.44611	.37386
4	c	.09463	.01172	.02425	.02434
	σ	.20820	.01472	.02802	.02128
	р	.66795	22159	11499	.12271
5	ī	.00920	.07826	.06279	.02840
	σ	.01312	.07669	.10824	.02268
	p	.30195	37912	15348	.72094
6	ī	.03857	.09798	.07583	.01471
	σ	.04290	.13380	.11513	.01240
	р	09675	32209	26251	09029
7 .	c	.24682	.27933	.22946	.23852
	σ	.14055	.14976	.21505	.08621
	р	.04346	19451	11263	.13888
8	c	.23350	.36757	.26270	.16746
	σ	.12614	.12106	.15159	.04144

Table 4 POWER-LAW PARAMETERS

			<u></u>	Seas	ons			
		1		2		3		4
HR Group l	β	γ	β	γ	β	γ	β	γ
0σ	.1156	17.4977	.1982	16.6153	.1970	12.0225	.1271	14.7881
lσ	.1413	16.5633	.2057	16.1509	.2199	11.3656	.1383	14.3608
2σ	.1495	16.3734	.2075	16.0332	.2276	11.2726	.1410	14.2542
3σ	.1502	16.3338	.2077	16.0203	.2283	11.2548	.1413	14.2413
HR Group 2			· · · · · · · · · · · · · · · · · · ·					
0σ	.0909*	15.6637*	.1842	14.8119	.1770	10.8550	.1297	14.8598
1σ	.1361*	16.3170*	.1914	14.2182	.2097	10.5237	.1441	14.6007
2 σ	.1496	16.3745	.1938	14.1035	.2184	10,4447	.1475	14.5276
3σ	.1507	16,3519	.1940	14.0872	.2193	10,4321	.1478	14.5175
HR Group 3								
0σ	.0898*	15.3327*	.1575	14.2544	.1797	8.2004	.1383	15.6891
lσ	.1325*	16.0953*	.1770	13.6590	.2140	8,1154	.1501	15.1069
2σ	.1445	16.1435	.1827	13.5638	.2230	8,0829	.1531	14.9676
3σ	.1454	16.1178	.1832	13.5482	.2238	8.0751	.1534	14.9503
HR Group 4			•					
0σ	.1151	17.4992	.1401	14.3857	.1847	13,4352	.1602	16.3330
lσ	.1408	16.6299	.1626	14.4909	.2147	13,2431	.1740	16.0187
2σ	.1487	16.4549	.1674	14.4740	.2229	13.2461	.1773	15,9545
3σ	.1493	16.4148	.1678	14.4670	.2235	13.2377	.1776	15.9447
		1			1			

Table 5 PEAK WIND PROFILE PARAMETERS

(Continued)

*Not valid for winds that give probability less than 0.80

B-8

				Sea	sons			
		1		2		3	4	1
HR Group 5	β	γ	β	γ	β	γ	β	γ
0σ	.1105	16.3016	.2064	18.1298	.1927	15.8762	.1661	16.8306
1σ	.1272	16.3683	.2141	17,5751	.2139	15.1458	.1713	16.5326
2 σ	.1309	16.3678	.2160	17,4420	.2204	15.0154	.1726	16.4634
3σ	.1312	16.3605	.2162	17.4277	.2209	14.9949	.1727	16.4548
HR Group 6								
0σ	.1222	15.8042	.2000	16.3750	.1768	14.6395	.1319	14.5622
1σ	.1432	15.6559	.2076	15.7243	.1932	13.9872	.1593	15.0120
2 σ	.1483	15.6035	.2095	15.5626	.1974	13.8311	.1651	15.0454
3σ	.1487	15.5899	.2097	15.5423	.1978	13.8118	.1656	15.0411
HR Group 7								
0σ	.1308	17.1791	.1879	15,4179	.1771	12.4247	.1494	15.2955
lσ	.1506	16.3800	.1984	14.7104	.2031	11.6861	.1596	14.7055
2 σ	.1562	16.2137	.2011	14.5375	.2110	11.5222	.1625	14.5910
3σ	.1567	16.1878	.2019	14,5443	.2117	11.4968	.1627	14.5741
HR Group 8				ана 1				
0σ	.1194	17.2464	.1510	15.6843	.1804	12.1118	.1402	15,5036
1σ	.1532	16.6485	.1609	15.0024	.2119	11.5841	.1517	15.1376
2σ	.1638	16.5891	.1635	14.8436	.2210	11.4734	.1544	15.0426
3σ	.1646	16.5645	.1640	14.8413	.2217	11.4524	.1546	15.0315

Table 5 (Continued)

B-9

				Sea	sons			
		1		2		3	4	1
HR Group 5	β	γ	β	γ	β	γ	β	γ
0 σ	.1105	16.3016	.2064	18.1298	.1927	15.8762	.1661	16.8306
1 σ	.1272	16.3683	.2141	17.5751	.2139	15.1458	.1713	16.5326
2 σ	.1309	16.3678	.2160	17.4420	.2204	15.0154	.1726	16.4634
3 σ	.1312	16.3605	.2162	17.4277	.2209	14.9949	.1727	16.4548
HR Group 6								
0 σ	.12.22	15.8042	.2000	16.3750	.1768	14.6395	.1319	14.5622
1 σ	.1432	15.6559	.2076	15.7243	.1932	13.9872	.1593	15.0120
2 σ	.1483	15.6035	.2095	15.5626	.1974	13.8311	.1651	15.0454
3 σ	.1487	15.5899	.2097	15.5423	.1978	13.8118	.1656	15.0411
HR Group 7								
0 σ	.1308	17.1791	.1879	15.4179	.1771	12.4247	.1494	15.2955
1 σ	.1506	16.3800	.1984	14.7104	.2031	11.6861	.1596	14.7055
2 σ	.1562	16.2137	.2011	14.5375	.2110	11.5222	.1625	14.5910
3 σ	.1567	16.1878	.2019	14.5443	.2117	11.4968	.1627	14.5741
HR Group 8								
0σ	.1194	17.2464	.1510	15.6843	.1804	12.1118	.1402	15.5036
1 σ	.1532	16.6485	.1609	15.0024	.2119	11.5841	.1517	15.1376
2 σ	.1638	16.5891	.1635	14.8436	.2210	11.4734	.1544	15.0426
3 σ	.1646	16.5645	.1640	14.8413	.2217	11.4524	.1546	15.0315

Table 5 (Continued)

Hure Group: 1 2 3 4 5 6 7 Alpha Mu Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Mu Alpha Mu Alpha Mu Alpha Mu		8	Mu Mu											15.5120	
BXTREMAL PARAMETERS FOR HOURLY PEAK WINDS (15.4-meter level) T T Alpha Mu Alphu Alpha Mu Alphu Mu			Alpha			141.				.220	142.		.1920		.15
EXTREMAL PARAMETERS FOR HOURLY PEAK WINDS (152,4-meter level) func Group: 1 Z 3 4 5 6 7 Alpha Mu Alpha Mu <th></th> <td></td> <td>Mu</td> <td></td> <td>10.2362</td> <td>1569.61</td> <td></td> <td></td> <td>10/0-1</td> <td>**/8.71</td> <td>9295.21</td> <td>1301-61</td> <td>Eusu</td> <td>*126.*1</td> <td>0169.61</td>			Mu		10.2362	1569.61			10/0-1	**/8.71	9295.21	1301-61	Eusu	*126.*1	0169.61
Hurr Group: I Z 3 4 5 6 Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Jiu Jiu Jiu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Jiu Jiu Jiu Jiu Alpha Mu Alpha Mu Alpha Mu Jiu Jiu Jiu Jiu Jiu Jiu Jiu Jiu Jiu	r level)	2	Alpha	2441.	.1.1.6	PEc1.	1802	1161.		6205.	1806.	.1/04	.1623		0.01.
EXTREMAL PARAMETERS FOR HOURLY PEAK WINDS (1) dipia Mu Alpha Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Alpha <th< td=""><th>52.4-mete</th><td>9</td><td>Mu</td><td>2061.11</td><td>5679.01</td><td>11:00.11</td><td>121157</td><td>0.00.11</td><td>0084.01</td><td>19.6258</td><td>11.6126</td><td>[*/ 5.4]</td><td>£151.PI</td><td>0446.61</td><td>0962.01</td></th<>	52.4-mete	9	Mu	2061.11	5679.01	11:00.11	121157	0.00.11	0084.01	19.6258	11.6126	[*/ 5.4]	£151.PI	0446.61	0962.01
EXTREMAL PARAMETERS FOR HOURLY PEAK W J J S Jpha Mu Alpha Mu June	INDS (15		Alpha	lect.	1261.		.205.	1602.	24.01.	0622.	.2157	89/1-	-2104	9461.	5491.
Hour Group: 1 2 3 4 Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Jan. Jive 10.9013 1 2 3 4 Jan. Jive 10.9013 .1122 10.90176 .11399 16.5100 .11316 Jan. .1199 17.55745 .11496 17.5994 .1532 .1199 17.5513 .1199 15.5716 .11309 15.2019 .1354 Mar. .11907 15.7741 .11907 15.5736 .1399 15.2018 .2215 Mar. .1197 19.5022 .1556 14.60735 .1739 15.2018 .2215 Mar. .1197 19.5522 .2202 14.7617 .2128 .2156 May .1195 11.5262 .2121 10.66472 .2146 9.5264 .2159 .2156 July .1195 11.1202 .2312 10.66472 .2146 9.5264 .2055 11.5113 .2158 July .11951 11.5262 .2312 10.66472 .2198 11.5113 .2158 .2158 July .11951 11.5262 .2312 10.5911 .2158 .2158 July .11959 12.	I PEAK W	5	Mu	+ 509.11	6+28-11	18.5023	17.8864	1/11/1	15.6120	46+++1	14.1016	15.9924	4622.01	16.9022	£200.41
Hour Group: 1 2 3 4 Jan. Jiba Mu Alpha Mu Alpha Mu Alpha Mu Jan. Jibu 1/. ⁷ nei .1 ⁴ ¹ ⁶ 1. ⁶ ¹ ⁶ ¹ ⁶ ¹ ¹ ² ¹ ⁶ ⁶ ¹ ¹ ¹ ¹ ² ¹ ⁶ ¹ ¹ ¹ ¹ ² ¹	HOURL		Alpha	4141.	7641.	.1669	÷122.	.2126	.1634	.2357	1942.	***2.	.2189	2141.	01.1.
EXTREMAL PARAME Huur Group: 1 2 3 4 Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Alpha Mu Jan. .1:'''''''''' .1'''''''''' .1''''''''''''''''''''''''''''''''''''	FERS FOF		Mu	16.5100	17.2964	17.3944	15.2018	1101.01	12.9271	•[[[.]]	1120-11	[5+6.6	£970.51	¢075.91	+609.41
Hour Group: 1 Z SXTREMAL Alpha Mu Alpha Mu Alpha Mu Alpha Mu Jan. .152 10.9076 Jan. .155 11.22 10.9076 Feb. .175 10.1015 .134% 17.5514 .14%6 10.1741 .134% 17.5514 .14%6 10.7741 Abr. .1506 15.7741 Mar. .1606 15.7741 .1876 10.1005 .1606 15.7741 Mar. .1007 15.7741 Abr. .1937 10.5022 May .1606 15.7741 Abr. .1937 10.5022 .1837 10.5022 .1606 17.0741 .1837 10.5022 .1506 15.7741 Abr. .1795 15.0175 May .1795 15.0175 .1937 10.5022 .1506 15.1356 June .2007 12.9213 .2122 13.0552 June .23551 11.9555 .2378 6.52264 Aug. .23551 11.9555 .2378 6.52264 June .23551 11.5555 .2496 9.5526 .2007 12.0106 .2728 11.5556 .2378 6.52264 June .2356 12.2016 .2378 11.5556 .2007 1	PARAME	4	Alpha	4461.	.1306	5741.	6671.	.2202	1641.	6502.	• 502 •		.2069	0651.	+241.
Hour Group: 1 2 Alpha Mu Alpha Mu Alpha Mu Alpha Mu Jan. .1504 1/.5663 .1446 16.980J3 .1145 Jan. .1504 1/.5663 .1446 16.99J3 .1146 Jan. .1506 15.7741 .1467 .1466 Mar. .1606 15.7741 .1467 .1467 Mar. .1606 15.7741 .1467 .1467 Mar. .1606 15.7741 .1467 .1755 Mar. .1607 15.7741 .1467 .1767 May .1607 15.7741 .1467 .1767 June .1937 16.55022 .1607 12.9713 .2125 June .1931 11.9553 .1891 10.066472 .2376 June .1891 10.066472 .2376 .1746 June .1891 10.066472 .2378 .1746 June .23312 10.064722 .2378 .2378 June .23591 11.955759 .2016 .001 .2591 11.955351 .1175 .1775 .2591 11.95641 .11617 12.3571 .1775 .11868 12.056350 .1818 12.35571 <	REMAL	3	Mu	10.9076	0612.11	£746.41	2610.11	13.0552	11/1-01	9.5264	1922.0	1916.11	1146.61	15.5901	U669.91
Hour Group: 1 2 Alpha Mu Alpha Mu Jan. .150% 1/.7043 .1446 .6.950J3 Feb. .130% 1/.3619 .1406 17/41 Keb. .130% 10.1005 .1606 17/41 Mar. .1658 10.1005 .1606 17/41 Apr. .1837 10.5022 .1608 14.0625 May .1837 10.5022 .1608 14.0625 May .1837 10.5022 .1609 12.0213 June .2007 11.9533 .1891 10.0035 July .2351 11.4262 .2312 10.6472 Mag. .2351 11.4262 .2312 10.6472 Mag. .2351 11.4262 .2312 10.6472 June .2007 11.9533 .1891 10.0035 July .2507 12.0706 .2128 11.5759 Mag. .2507 12.0706 .2128 11.5759 Mag. .2507 12.0706 .2128 11.5759 Mag. .2507 12.0706 .2128 11.5759 Mag. .2507 12.0706 .2128 11.5759 Mag. .2505 12.0708 .2128 11.5759 Mag. .2505 12.0068 12.0109 .1101 14.9157	EX1		Alpha	2241.	e921.	1 0 - 1 - 0	*441.	.212.	3+41.	9442.	.2376	-2018		.1.1.	
Hour Group: 1 Alpha Mu Alpha Jan. .1399 17.3643 .1446 Feb1349 17.3649 .1600 Mar. .1678 16.1005 .1600 Mar. .1837 16.5022 .1608 May .1937 16.5022 .1608 May .1937 14.3536 .2007 June .2067 11.923 .1891 July .2351 11.4262 .2312 Mag2359 .2312 Mag2359 .1891 July .2351 11.4262 .2312 Mag2359 .1891 July .1326 12.0708 .2126 Oct25850 .1819 Nov1326 .5001 .1819 Nov1326 .5001 .1819 Nov1326 .5001 .1819		2	a Mu	6009.01	6444.61	14/1.01	14.4026	6129.51	2600.01	21+0-01	1026.8	4573-11	1726.21	24+9.01	1319.41
Hour Group: 1 Alpha Mu Jan. .13u4 1/.2005 Feb. .1349 17.3019 Kar. .1837 10.5022 May .1937 10.5022 May .1937 10.5022 May .1937 10.5022 June .2007 11.4282 July .2351 11.4282 June .2307 12.0708 Oct. .1869 12.0708 .1328 15.0149			Alpha	9 1 .	5001.	1000	.1608	.2007	1691.	2162.	.2294	9212.	.181.	9461.	1441.
Hour Grou Jan. Jan. • 1 50% Feb. • 1 8 37 May • 1 8 37 June • 2 8 5 July • 2 2 6 • 2 2 6 July • 2 2 6 • 2 2 6 • 1 8 8 • 1 8 8 • 1 3 2 • 1 3 2 • 1 2 6 • 1 3 7 • 1 3 7		tp: 1	Mu	. 1. 7	11.3014	10.1005	16.5022	41.25.PI	£644.11	11.4262	9510.9	12.0/05	05850	/ [6+01-51
		Hour Grou	Alpha	Jan.	Feb.	Mar.	Apr1837	May	June .2067	July 1255.	Aug.	Sept.	Oct.	Nov.	Dec.

Table 6

8	Mu	9.8964		9066+71	10+8933	10.5647	8.6063	8-4962	8-1224	6.2101	÷-5535	9.4400	0198-8
	Alpha	9191 ·	.1784	2622.	.2177	.2456	.2272	.2815	9466.	.2067	+212-	0141.	• 2061
vei)	Mu	16-4965	0104.11	11.6076	12+6275	12.7594	1619.01	10-8160	16-1470	16.2057	16.4687	6 476	8.7770
meter le	Alpha	1441.	.1549	2861.	.2296	1272+	+2022	.2278	2142.	.2013	.2046	.1802	•2185
IDS (18.3-	Mu	\$172-+1	U+F+-41	15.6919	le e é d b (1146.01	14.4377	14.2732	14-1023	13.6382	13.5081	120/021	6224.11
EAK WIN	Alpha	.1876	.I625	• 1829	+862.	.2393	- 1969	.229.	• 2302	.2159	÷152•	.171.	6661.
IOURLY F 5	Mu	15.7052	17 . 4008	6##E*21	17.5041	4114.41	15.0767	14.3681	14-1574	+676.+1	15•2052	8476.21	14.0766
RS FOR I	Alpha	+102+	4671+	•2086	• 2365	+612+	00£2.	.2486	• 2906	.2563	• 2026	.1829	• 1 956
RAMETE	Mu	12-6536	14,5026	15.5.27	15•1484	14•0513	12 • 4 • 8 9	11.3946	10.8654	9118-11	13-6472	1164.61	1626-21
EMAL PA	Alpha	+ - /] -	5++1.	9161.	-212	+7ZZ+	•2150	•2956	• 2496	.2351	•2286	.1609	•1906
EXTR 3	Mu	1944.2	11.3218	10.0577	9.5783	4.1771	6.6224	1.2172	6.1840	7.0195	4 • 3826	9.0779	6.4352
	Alpha	TIZT	1926	1771.	5631 •	-2263	.2277	.3054	.3163	.2321	• 2052	.1632	• 1686
5	Mu	9-15B3	10.6488	9610+6	9.3063	7.5396	7+2627	5.9362	5.5797	6.6273	8.4654	6.9548	6.2125
	Alpha	• [656	6471.	- 1 9.83	.2137	• 2308	.2747	- 3112	• 3509	.2796	5 [6] Z e	.1666	2691.
.	Mu	4.1005	10.3860	1642+9	00/2.01	¥•0653	1.9008	616£•1	6-4022	0.4460	6411.0	4.229U	8074.8
Hour Group:	Alpha	Jan.	Feb. 1730	Mar. •2167	Apr. 2257	May .2333	June •2754	July •2849	1+5[. Buy 1	Sept. • 2456	Oct.	Nov. • 1800	Dec. \$2025

Table 7

1

			Ta	ble 8			
		ធ	KTREMAL PARAMI	ETERS FOR TEN-N	AINUTE PEAK WIN	DS (152.4-meter le	vel)
Jour Group: 1	2	e. E	4	£	9	~	œ
Alpha Mu Jan.	Alpha Mu	Alpha Mu	Alpha Mu	Alpha Mu	Alpha Mu	Alpha Mu	Alpha Mu
+1241 4441 .	1561.1545.	1421.41 2111.	9415+41 9241+	4143.21 PP21.	Sterer oldi.	1/80.21 6101.	-1514 15+95I
Feb	•1557 16•70U4	·1275 15.8406	•1280 15•UJ11	9247.21 4441.	č 2č[•č] odž[•	1243.14.6451.	127.41 1443.
Mar. •1727 14-9535	.1629 14.4999	•1+7# 1+•052H	•1693 I5•2326	*1939 16.8247	[[£f.=] ++01.	•10U2 14.3092	1742 15-414
Apr. .1837 14.6055	•162C i3•5016	•154,12,638b	.1793 12.8249	•2227 15•643z	אאאז•כן אנטל•	ACH1-#1 5181.	
May •1966 12•6650	•2631 11.6804	•2126 11•8586	14413.1441	•2185 1*•9070	-2156 15.4061	2404 2404 2404	
June •2141 10.4313	.1975 9.5695	0 22 -7 6471.	•1869 11-0825	1126.21 2705.	2181 - 1814 -		
July •238/ 9.4/86	2917.5 2555.	++26-2 444	•2715 9•4619	(11,11,11,11,11,11,11,11,11,11,11,11,11,			
. Aug. • 2645 5•5996	E407.7 4042.	7+23+7 5443	.2934 9.6647	•3240 12•3354	57105 12.5287	2854.715 8616.	3621•01 2662•
Sept. •22•6 10•7997	•2130 10•2748	CE10.01 7215.	•2298 11•9175	2561 14.0458	9092°F1 8531•		
Oct. •1463 11•2879	•1866 11•1524	12.12.120	+2114 13•323H	.2207 14.2236	-2198 13-5234		
Nov. •1374 14.2366	.1450 14.6274	5171.71 5621.	99470#1 EEdi.	•1573 15.3964	2808.LI 4041.		0701031 APERs
Dec.	•1477 13•6105	1199-12.9911	•lbo]]]3•0662	•1797 13•558+	•1/40 11•8353	7747•21 20/1•	-1924 [].7345 -1626 [].7345

FISHER-TIPPETT TYPE I

FISHER-TIPPETT TYPE 1

FISHER-TIPPETT TYPE I

FISHER-TIPPETT TYPE 1

FISHER-TIPPETT TYPE 1

B-17

FISHER-TIPPETT TYPE 1

Fig. 6 - Cumulative Distributions in Fall at 3.0 Meters

FISHER-TIPPETT SYPE I

FISHER-TIPPETT TYPE 1

B-21

FISHER-TIPPETT TYPE I

Fig. 10 - Cumulative Distributions in Summer at 18.3 Meters (Small Tower)

.999 .998 .997 .995 .995 .995 .990 .985 .980 .970 .970 .970

indundantantantantanta

3.0E

2.5

2.0E

....

1.0

0.5E

0.0E

- 0.5 E

·.,Ē

- 2.0 -

- 1.0 =

E

.900

.850

.700

.600

.500

.400

.200

.100

.050

.019

.001

O 1 AY EXPOSURE O SCAY EXPOSURE 10

Wind Speed (knots)40

X100AY EXPOSURE

50

439CAY EXPOSURE

COCAY EXPOSURE

60

70

B-23

LOCKHEED . HUNTSVILLE RESEARCH & ENGINEERING CENTER

FISHER-TIPPETT TYPE I

LMSC/HREC D162482
FISHER-TIPPETT INPE 1

FISHER-TIPPETT TYPE 1

B-25

LOCKHEED . HUNTSVILLE RESEARCH & ENGINEERING CENTER

FISHER-TIPPETT TYPE 1

B-26

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

·... .999 .998 6.0E .997 •.•Ē .995 5.0E 4.5E .990 .985 4.0-.980 3.5 -.970 .960 3.0E .950 .930 2.5 .900 2.0 .850 1.5 .800 1.0 -.700 .600 0.5 .500 0.0 .400 . 300 - 0.5= .200 .100 - 1.0 .050 - 1.5 .010 .005 - 2.0 E .001 50 60 20 10 Wind Speed (knots)° XIOCAY E POSURE O ICAY EXPOSURE A SHCAY EXPOSURE

Ŧ,

11

£

٧

1 6

1

٨

SCAY EXPOSURE

+15CAY EXPOSURE

B-27

LMSC/HREC D162482

- CODAY EXPOSURE

FISHER-TIPPETT TYPE 1

U

1

I

1

I

I

I

I

I

Į

L

ſ

FISHER-TIPPETT TYPE 1

Fig. 17 - Cumulative Distributions for the Year at 18.3 Meters (Large Tower)

B-29

LMSC/HREC D162482

Fig. 18 - Cumulative Distributions in Winter at 30.5 Meters

Fig. 19 - Cumulative Distributions in Spring at 30.5 Meters

FISHER-TIPPETT TYPE I

LMSC/HREC D162482

BRANK

State and

I

l

i

I

I

I

I

ĺ

Fig. 20 - Cumulative Distributions in Summer at 30.5 Meters

FISHER INPETT TYPE 1

B-33

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

FISHER-TIPPETT TYPE I

FISHER- TIPPETT TYPE I

Fig. 23 - Cumulative Distributions in Winter at 61.0 Meters

Fig. 24 - Cumulative Distributions in Spring at 61.0 Meters

B-36

LOCKHEED . HUNTSVILLE RESEARCH & ENGINEERING CENTER

LMSC/HREC D162482

FISHER-TIPPETT TYPE 1

B-39

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

FISHER-TIPPETT TYPE 1

FISHER-TIFFETT TYPE 1

B-42

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Fig. 31 - Cumulative Distributions in Fall at 91.4 Meters

FISHER-TIPPETT TYPE I

Fig. 33 - Cumulative Distributions in Winter at 121.9 Meters

Fig. 34 - Cumulative Distributions in Spring at 121.9 Meters

B-46

JCH0 > < 4 -

A 1

ŧ,

6

€,

0

FISHER-TIPPETT TYPE 1

LMSC/HREC D162482

FISHER-TIPPETT TYPE 1

Fig. 36 - Cumulative Distributions in Fall at 121.9 Meters

FISHER-TIPPETT TYPE 1

B-49

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

FISHER-ILPPETT TYPE 1

Fig. 38 - Cumulative Distributions in Winter at 152.4 Meters

·... .999 .998 .997 .995 .990 .985 .980 .970 .960 3.0E .950 .930 2.5 2.0 .900 .850 1.9E .800 1.0E . 700 E .600 0.5E .500 o.o .400 .300 - 0.5 .200 .100 - 1.0 E .050 1.5 .010 - 2.0 E .001 Wind Speed (knots) 10 50 60 70 80 90 X10CAY EXPOSURE O TOAY EXPOSURE A SUCAY EXPOSURE O SCAY EXPOSURE +1 SCAY EXPOSURE BOCAY EXPOSURE

1

1

1

I

ŀ

l

U

l

1)

£

FISHER-TIPPETT TYPE 1

B-51

LMSC/HREC D162482

FISHER-TIPPETT TYPE 1

ALSOLD-THEFT INC. I

Fig. 43 - Data Fit for the Second Bivariate Variable over 15 Days Exposure Period at 61.0 Meters

A LENGA-TINEETI TTIE I

į

Fig. 45b - Wind Profile Parameter, o

I

Į.

U

U

B-60

LMSC/HREC D162482

Ĩ

I

1

J

Contraction of the local division of the loc

Contraction of the local division of the loc

[

[]

[

B-61

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

LMSC/HREC D162482

Fig. 47 - Wind Profile Cumulative Distributions for Summer, Hours 0000 - 0200 EST

B-62

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER