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ABSTRACT

In this first pesper we treat the motion of test particles
in strong electromagnetic waves considering both plane and
spherical wavefronts, both with and without radiative reaction.
Various limiting cases are discussed. Initially low-energy
particles dropped into a strong plane wave are accelerated in
the propagation direction up to an energy proportional to B2
while oscillating with a '"transverse energy' proportional to B.
Radiative "losses" paradoxically lead to an increase rather than
a decrease in the total energy of these particles. In spherical
waves particles injected very close to the source become "phase
locked" with the driving wave and are accelerated in the manner
described in the authors' earlier work; particles injected further
out follow orbits like classical particles in a repulsive inverse
cube force-field except that, for certain classes of initial con-
ditions, an essentially random energy redistribution (of limited
range) is possible.

Charged particles of arbitrary initial energy will radiate
strongly when injected into strong wave fields. The non-linear
Compton ("NIC") rediation so produced depends on particle energy
and field-energy density like, and has a spectrum like, synchro=-
tron radiation. It is suggested that this mechanism is, in fact,
responsible for the radiation in many astronomical "synchrotron"
sources.

The physical processes elshorated here provide channels for
converting rotational kinetic energy of condenged bodies into fast
particles and the fields in which these particles can radiate.
Further work will be needed to see if these processes are operat-
ing in any of the extragalactic "nonthermal" sources, but existing
obgservations and calculations indicate that wave acceleration and
NIC radiation probably are occurring in the Crab Nebuls.

Further, we suggest that since wave acceleration of ions is
likely to occur in the debris of young supernovs remnants,
pulsars way be able to produce the bulk of the galactic cosmie
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I. INTRODUCTION

' treats pulsars as

A widely accepted class of theories
rotating magnetized neutron stars, which are remnants of
some common category of supernova explosions. The initial
rotational energy is quite uncertain but estimated to be in

0.0 to 1052'5ergs. This energy is sufficiently

the range 10
large and the birth of pulsars sufficiently frequent (cf.
Gunn and Ostriker 1970, "NP III") so that the average luminosity

-1.5 +1.0 L@/pcz _

from pulsars in the galactic plane - 10 to 10
may be competitive with that from the burning of nuclear fuel
in stars.

Since the observed pulsed luminosity is a trivial fraction
of the total pulsar output, it remains important to study the
final disposition of this significant energy resource.

In one subec¢lass of the theories mentioned (cf. Pacini 1968,
and Gunn and Ostriker 1969) the magnetic and rotational axes
are assumed to be not aligned and energy is lost, in the first
instance, by the emission of magnetic dipole radiation. If
this picture is correct, then there are electromagnetic wave
fields in the environs of pulsars of very high intensity, low
frequency, and largely unexplored properties. Since these
waves cannot propagate in the interstellar medium, their
energy and momentum must ultimately be transformed into higher

frequency radiation or particle motions in order to escape the

pulsars’ vicinity.

i . .
See Goldreich and Julian (1969}, Ostriker and Gunn (1969, "NPI"™)

and Michel (1969) for details and references to earlier work.
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In this paper we will examine the simplest relevant problem,
to wit, the intewmction between charged test particles and a
strong monochromatic wave field. Although we will consider
neither the effect of particles on one another, nor the back
effect of particles on the wave, both effects may be estimated
after the fact.

The "strength" of a wave field can be measured in terms
of a dimensionless Lorentz-invariant parameter,v, defined in
terms of the charge e and mass m of a test particle (an

electron, unless otherwise specified), the frequency of the

wave, {, and the maximum magnetic field in the wave, Bm

eBm (1)

mc

Vo=

Interstellar starlight has a strength parameter v = 10—14

and, even in the center of highly evolved stars (T ~ 2 x 108 °K)

v < 10—2. In contrast, v = lOll in the near wave zone of the

Crab pulsar and may reach values of = lO13 in the early history
of such objects.® Various equivalent physical interpretations
of this parameter are possible. It represents the ratio of the
formal cyclotron frequency Wy = eBm/mc in the wave field to

the wave frequency, and so may be thought of as a measure of
whether the particle feels it is moving in a nearly static
field (v >> 1) or oscillates in direct response to field
variations (v << 1). Alternatively, we shall see that very

large or very small v corresponds to ultra-relativistic or

non-relativistic motion of a particle initially at rest.

a - 13 @ v wa F g
For a given pulsar and a given point in space v a ¢, but at the
2
wave radius (which is a function of Q) v a @




A first problem, to find the motion of a "phase-locked"
particle injected near the center of a strong spherical wave
field, was treated in Paper I and will be recovered here as
a special case. In this paper we will consider arbitrarily
strong (or weak) plane and spherical waves, find the basic
motion, the radiative losses, and the effects of the radiative
reaction on the basic motion. In the limit v » 0, the problem
degenerates into the classical Compton case. In contrast, we
will find that the bremsstrahlung of particles in strong waves
(v >> 1) bears closer resemblance to synchrotron emission than
inverse Compton radiation.

Although some remarks will be made here on the character
of the radiated spectrum, a detailed discussion will be re-
served for a subsequent paper.

In Section ITI we treat the motion in stationary and slowly-
changing plane waves; in Section IITI the effect of radiative
reaction on the motion in a plane wave; and in Section IV we
discuss the radiation itself. Section V considers various
aspects of the motion of charged particles in spherical waves.
We reserve for Section VI a summary and a discussion of the
applications of the previous mathematical results to some

situations of astrophysical interest.




IT. MOTION IN A PLANE WAVE

&) The Egquations

The motion of a charged particle in a strong plane wave
has been considered by several authors, notably as an exer-

cise in Landau and Lifschitz Classical Theory of Fields (1951).

We will review the problem briefly here in a slightly gener-

alized form to bring out its fundamental features and to es-

tablish the units and notation we will use throughout.
Neglecting radiative reaction, the four equations of

motion can be written

dU._L
g T e (o) B
duz
me - = e u . E, (2)
and mc dy = e u E
C T 1 E.

Here the propagation direction is taken to be +2 so that E, B,
and u, are 2-vectors in the x-y plane. The quantities

(EL ;U Y) are the dimensionless components of the four
velocity (c_ldx/dr, c—ldy/dr, c_ldz/dr, dt/dt) and 1T the
proper time. We will further choose the x and y axes to be

aligned with the principal polarization axes so that

E = [Exocos Ql{t~z/c), Eyosin Q(t“z/cﬂ

B = [mEYOSLn olt=z/¢), EXOcos Q(tmz/cﬂ (3)
B = (E 2 + E 2)% AT 2me/0
“m X0 VO ! N




We introduce dimensionless variables

Hi

Qt, ¢ Q z/c, E=Qt

v = Ee/mcR, ¥ = Q (t-z/c),
and, noting that |v| is just the nonlinearity parameter (1)

we rewrite (2)

(4)

(5a)

(5b)

~ L
‘an_= (y- uc) B(X)l
du
T _ dy _ .,
s an T W v{x) .
Note that ug = dg/dn = u, s and uj is unchanged. It is immed-

iately verified that the four—-force is orthogonal to the

four-velocity, so that

Also, since from (5b)

a constant

(6)

(7)




gquite independent of the form for v, provided only that the

fields are those for a wave in the z-direction. Thus, we

have the immediate solution from eguations (5) - (8)
X = on + XO (9a)
Y = uC + a (9b)
2 2
u,. =1 -9 + uL (9¢c)
¢ 20, 20
~
u= v, +[Y (x") dx' _ (9d)
0

b) Plane-~Polarized Wave

Consider first a plane-polarized wave, with E in the x-direction.

Then u, is parallel to the x-axis, and

uyp = ouy g + Vox sin ¥ (10)
where Vog = eEXO/ch. The motion can be decomposed into two
parts. The particle oscillates in the x and ¢ directions, and
in addition, the phase-averaged (represented by < >X) position
undergoes an arbitrary uniform translation. The latter will be
called the motion of the "guiding center.” In the frame in
which the "guiding center"” is at rest the particle moves in a

figure-8 orbit:




= 1 - 1
up = v .osin x, o= (1 + 5 )
(11)
v 2
- . _ox Lo 2k
Uz Ty % o8 X (ry, <L+ v 0

Note that the motion is relativistic or non-relativistic

as v is greater or less than one. In the weak or "linear"

oX
case (v << 1) there is negligible ¢ motion; as v becomes
larger, the x velocity becomes relativistic before the wave
reverses so magnetic forces begin to influence the motion.
For very large v the ratio of the x and ¢ amplitudes is of
order unity and is independent of the intensity of the wave;
the orbit has changed from a line to a figure 8 of fixed
shape.
It is instructive to consider next the motion of a particle

injected at rest into the wave at arbitrary phase Xo* In this

case o = 1 and

uy = Voo (sin x = sin XO)
(12)
2 . . 2
= L - -
u, 5 Vox (sin ¥ sin xo)
Although the particle does come to rest periodically,
the phase-averaged velocity and energy are not zero:
(ugy, = =v gin ¥y (1 = Loy 2 (1 + 2 sinzx }
L2y ox SN Xo v (Mpoy * Vox o'’ (13)
2 . 2 ’
= 1
(Y)X 1+ % v, (L + 2 sin"x,)




The direction of translational velocity in the plane of the
wave depends on polarization and initial phase. 1In the strong-
wave case the average four-velocity component in the direction
of wave propagation is much greater than the transverse com-
ponent; the former of order vz, the latter of order v.

In this idealized case, as mentioned earlier, the particle
returns to rest periodically; the frequency and fundamental

length of this motion are simply expressed in terms of the

wave frequency and wavelength:

2 .2 -1
a, = 9[1 + %v,, 2 (@ + 2 sin X,)]

(14)

2 .2

V= v, (I + 2 sin Xo)/4
The cycle, of course, coincides with the particles see-

ing one complete cycle of the wave, a change in y of 2.

The maximum energy reached in every period is

2
= ;’ 1
Yna 1+ Vg (1 + |sin XO])

2 (15)

Notice in (14) that as v » = the "period" becomes very long
and the motion approaches the "phase-locked" condition des-
cribed in NPI. However, the energies given by (13) and (15)
are nmuch greater than those found in NPI where Yomax = v2/3.
The origin of the difference is the assumption made here of
an infinite train of plane waves. This/éiearly not applica-

ble when considering particles injected in the near wave zone




of the Crab pulsar. There v, 1011 and Av = 1030cm, only

somewhat larger than the Hubble radius and very much larger
than the Crab Nebula. However, over most of the nebula

v, = lOl - lO3 and the analysis given here would be valid
for particles injected at rest, the criterion for local ap-

plicability at radius r being r>> AV.

c) Elliptically Polarized Waves

The results for circularly and elliptically polarized
waves are easily obtained and are substantially the same. In

the guiding center frame the amplitude of the z-motion ==

2 2 2
1 - 1 1
i (Voo Vyo T L. Voo

wave departs from linear polarization and vanishes for circu-

2)—% ~ decreases as the

lar polarization. Thus the orbits of particles in a circu-
larly polarized wave field of arbitrary strength are similar

to those in a uniform magnetic field; they are skewed circular
helices. A particle starting at rest in an elliptically
polarized wave acquires a drift velocity now in the y-direction

as well, (uj, y> X = Vv cos X, - The energy and the z-drift

yO
2
velocity depend, as before, primarily on v, and slightly on
the initial phase - the phase dependence disappears, of course,

for circular polarization.

d) Motion in a Slowly Changing Plane Wave Field

Let us now consider the motion of a charged particle in a plane

wave within which the strength E and frequency Q vary slowly with




phase.

Thus, we assume that the driving fields are given,

as before, by eqguation (3) with the phase Q(t - z/c) replaced

by % and
X. Then
of motion

strictly

then the

(5a) and

E , E , and Q considered to be weak functions of
X0 yo

equation (2) still represents the particle eguations
and it is easily shown that the integral o is still

constant. If we further define

dn = Qdrt (16)
phase ¥ is still given by equation (9a) and equations

(5b) are unchanged. Choosing as independent variable

¥ and specializing, for simplicity, to the case of linear

polarization, we have

where

Assuming

duy
'a—X— = \)O (x) cos ¥ (17)
v o (y) = EEEQ_in (18)
o X' % meq (x) °
now
v, )= vy @+ B, 18] <<1, (19)

we can integrate (17) to give

uyp = v g [(l + By) sin x + B cos X] + const

= v (¥) sin yx + dvo cos ¥ + const

) — (20)
= v& (x) sin [X + e <Xﬂ *o(ul),

10




where

(21)
* P N
Vi (x) \)O(,<) 1+
and
e (x) = tan -1 d lnv 1 d?v
X o + 0 5 2 0 ’
dX 0 dX (22)
The corresponding z-motion and energy are given in terms of
(u ,0) as before by eguations (9b) and (9c). Thus, for example:
<Y)X = [(l + a?) + <ui>x + L v; (X)z] /20, (23)

The principal result of this exercise is that, apart from un-
important changes in phase [ i.e. e(x)] the energy and longi-
tudinal velocity of a particle are determined by its initial,
or its current, conditions depending on which environment

has the stronger field. Particles remember the strongest

field region (largest v) they have encountered and, in general,
do not lose substantial amounts of energy in going to weak

field regions.

III. RADIATION REACTION IN A PLANE WAVE

a) The Equations

The equations of motion are now

BN dt A

U \ 2 o du 2 M
LTS kR < B

1l




where Fvu is the Maxwell field tensor and the secornd and third

terms represent the reaction force on the particle due to the
radiation it emits. We shall assume in this treatment that
the radiative reaction forces are relatively very small so
that the change in any quantity per cycle due to the radiative
reaction is very small compared to the guantity itself. 1In
this approximation, the terms in the bracket can be evaluated
at the current value of the dynamical guantities without
inclusion of radiative reaction. That is, we will linearize
about a small parameter to be introduced shortly and later
investigate the domain of validity for the resulting approximations.
In the dimensionless variables introduced in equation (4),
equation (24) can be written like equation (5) if we add to

the right-hand sides a four-vector

¢u - 2e29 du® dua ut o+ d2uu (25)
~ 3mc’ dn dn dn?
representing the radiative reaction force. Now, using the

solution found in Section II, we have

d
u“caiﬁ_u_ﬁz_az\,.vuu
n dn ~ <
(26)
dzuu dvx dvy , dv , dv
dn? zaadx’ddx’v+gl'ﬁ'v+gl'§—i

Consistent with our assumption of a small radiative reaction,

we will average its effect over one gyration cycle and obtain

12




(27)
duB du
dn dﬂ U= -4a 2y < > 0
where, for notational simplicity,we have omitted the ¥y
subscript on the phase averages. Equations (25) - (27)
determine the phase-averaged radiation reaction force. The
equations of motion now reduce to
duy
b da 2
— =V -ca Ju = = =€d
dy ~ <’”',‘>, ax
Y = u, + 0, u, = (1 - a® + u? ) /20, (28)
where
eZQvOZ *e“B$
® 3me’ T 3mcoq (29)

is a dimensionless parameter which is a measure of the radiative
drag. Except in the immediate vicinity of pulsars € will be

very small. In the Crab Nebula where v, lOl to 103, the

radiation parameter & = 10—19 to 10_15. In deriving the
radiative reaction force, we have treated o as a constant

which it no longer is. Rather, we see from (28) that this

(positive) quantity is a monotonically decreasing function of

13




time. A satisfactory requirement for the wvalidity of our
linearization procedure is |dln a/dy| << 1. From (28) we

see that this is eguivalent to the requirement ca<<l for

weak radiative reaction. If one does not average over phase,
it is still possible to treat the equation for uy with reason-
able ease, and one finds that the only effect is an additional
phase lag in the particle motion of order ea. Returning to the
case of weak radiative reaction in a plane wave, we find some
rather bizarre long-term effects. The equation for o can be

immediately integrated. We find

o
9]

“ = TTF ea _x) (30)

where o, is the initial value of a. The solution for uj is
as given in Section II except now the average perpendicular

velocity is not constant but decreases with time

<ul>o . (31)
upd = (1 + eaox)
Now, since
<ur>= <WL>2 +l§v02 (32)

we find, from (28), (30) =-(32),

oy = -4%; (2 + v 2) (L + eax) + %0‘_0 Cug2y +a®)/ (1 + eax), (33)

and a similar expression for u, Equations (31) through (33)

are valid even if eaox>>l so long as go<<l.

4




We see that for any initial conditions, the radiative
losses will ultimately lead to increases in the particle
energy, and that for the conditions considered here, the
energy will continue to increase without limit. This paradoxical
result is perhaps most easily understood by considering motion
in a circularly polarized wave.

Here the rate of change of y is proportional to u; oV,
simply the projection of the electric field along the motion.
In the absence of radiation u; lags V by exactly w/2; the
field is always perpendicular to the velocity, and dy/dn
vanishes. The effect of radiation drag, however, is to induce
a phase lag in u, , as remarked earlier, making uyp v always
positive around the orbit. Since, for a plane wave,
uy - E = iEL X ?} , a similar acceleration is induced in the

~

¢ motion in the direction of propagation.

b) "Radiative Pumping"”

We can easily find the dependence of y on time in the

asymptotic region where ea X is large. Here

KY> = % (2 + v ?) ey, (x ~ =),  (34)

The dependence of time (t = £/Q) on phase is found by noting

that, since vy = o di/dy,

at =%dxz%(2+\)02) e2 y2dy

E =~ (2 + voz) €2 y3 /12 + const, (x + ®)

15




Finally, (34),(35) and the definition of & give

<0 {1% (2 + v ?)? eﬂ} /3 13 (t > o) (36)

The energy increases very slowly with time. This mechanism
of "radiative pumping" is probably not important in the Crab
Nebula now. Taking vV, = 102, which might be typical in the
inner portions of the nebula, € is = 5 x 10_17 and (y) for
a particle whose guiding center is at rest is of order Vi
the time required for the energy to double, say, is of order
lO8 yr, much longer than the age (or expected lifetime) of
the Crab. In addition, we shall see that particles trapped
in spherical wave fields always suffer radiative losses larger
than their gains. The fact that charged particles moving in
the direction of a strong Wave will gain, not lose, energy
when they radiate remains true, however, and may prove to be
of interest in other applications.

IV. RADIATION FROM PARTICLES MOVING IN A PLANE WAVE

a) The Equations

The nature of the radiation from particles moving in a
strong wave field will be investigated in detail in a subseguent
paper; let us now note a few of the salient features. The total
energy radiated by a particle of charge e per unit time,

integrated over all frequencies, is

o 2e202  fau® au® 1 a2y
T T TR [dn an~ Ty an” | (37)

le




where the bracketed terms in the standard formula have been
expressed in our dimensionless variables. To find the energy
radiated per cycle, we must average over time (£), not phase
(x). Then, since d& = vy dn = vy dx/a, the time average of any
quantity ¥ is

_— <‘PY>: , (38)

Y

<>X
and the time-averaged power output of a particle in a plane
wave is, from equations (27), (37), and (38),

= 6292 2

e v 2 -1 2 _ 2y 2
= 3C<Y>X atv (y}x 3 a (v v ) (39)

0X oy

This can be written in the more transparent form

P = £ mc?a?Q Q (40)

where € is the radiation parameter [cf. eq. (29)} and Q is a

factor of order unity:
2 2 L] 2 2 L 2
1 + a + lul '>X, t (Vg +6\)Oy Vox +voy )/4\)O (41)

2 2\ 2 1 2
1+ 0% + <u_|_>x+2vo

Q:

The total range possible for Q is
3 < Q<2
3

and (42)

01 as  lup/v, e
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in that commonly important limit. Eqguation (40) simply says

that in units of its rest energy mc2 a charced particle loses

fet

an amount -~a’e per period of the wave which forces its motion.

b) Radiation from a Particle Injected at Rest

Let us look at this result {equations (39) and (40)} in
two interesting limiting cases. First, consider a particle
starting at rest. ©Noting that o = 1 and Q is near unity
under all circumstances we find from (29) and (40) that an

electron dropped at rest into a strong field will radiate

kg2
) e'B 16

m - 2
® 3ror = 8 x 10 B erg/sec (43)

independent of the frequency of the driving wave.

c) Highly Relativistic Particles

For the second case, consider |u,]| >>v_ + 1 corresponding
to a highly relativistic particle moving obliquely to the wave

front. The energy is nearly constant and deviations from

rectilinear motion are slight. Here y = <Y>X and
2 2 2 2
5= & QR° v° o, (qL>>vo +1) (44)
3¢
Now, noting that %szoz = ezEg/mzczs 4mU/m?c?, where E,

is the R.M.S. electric field and U the mean energy density in

the field, we can write

18




? z'w U 'Y2 (l _ VZ/C)Z , (Iu“L' >>\)O+‘l) (45)

which is identical to the standard expression for the power
radiated via "inverse Compton" losses. For an isotropic
distribution of relativistic particles (y>>1), the power
radiated per particle is exactly the same as the same particles
radiating via synchrotron radiation in a uniform field of
enerqgy density U, to wit:

iZ_TLQiUYZ y >> 1

9m2c? igotropic velocity
distribution

P = (46)

d) "NIC" Radiation

The character of the radiation emitted by these processes
[eqs. (40) and (46)}15, in general, different from both

inverse Compton and synchrotron radiation. Consider vo>>l
(if vo<<1 the radiation calculated by eqg. (46) is ordinary

inverse Compton, of course,) and u; >> vo ~— the conditions of

(c) above. Let us investigate the angular deviation in the
trajectory produced by the wave. The amplitude in u; is just
V,r SO the angular amplitude is vo/Y (an exact result in the
limit considered). The beamwidth of the radiation from a
relativistic particle is of order 1/y,so for v, 1 the beam

of the particle sweeps back and forth past the observer

more or less in the manner of a gyrating synchrotron particle,

and one expects the spectrum to resemble more nearly that of

synchrotron radiation than that of inverse Compton. One can

19




estimate the critical frequency simply as follows: The
angular change in velocity is ZVO/Y in the time it takes

for the particle to travel from one wave node to the next,

1 -1

At = 270 © (1 - vz) . This corresponds to an average

circular frequency

2vo v Q1 - vz) e EO (1 - vz)
Uo T Y AE T Y = TmCY '(’ull>>vo>>l) (47)

independent of the wave frequency. It depends only on the

wave amplitude and the particle energy, and, in fact, does so
in the same manner as the relativistic gyrofrequency in a
static magnetic field depends on field strength and energy.

Thus, the critical frequency is

= - 2
v, = 2ﬂwcy e EOY (u_L>>\)O >>1) (48)

mmc

The highest frequencies emitted in ordinary inverse Compton

radiation are of order vIC ~ 27Y2%2Q so the ratio of frequencies
is
V.
crit _ o (v ) (|ul|>>vo>>l) (49)
Vic

for relativistic particles traveling at large angles to the
wave propagation direction. Thus, the behavior changes at vO~l

from the freguency-dependent, strength-independent classical in-

verse Compton process to the frequency=-independent synchrotron-like

process described here. We propose to call radiation in this

20




regime nonlinear inverse Compton (NIC) radiation. The radiation
rates are given by equations (40) or (46) and the peak frequency
by equation (48). NIC radiation is clearly polarized if the
radiation field is coherent (or even reasonably unidirectional

and itself polarized.)

V. MOTION IN A SPHERICAL WAVE FIELD

a) The Equations of Motion

While the plane wave theory given in parts I and II is
in many cases satisfactory locally, we have seen that extreme
caution must be used in applying its predictions to the real
world. A much better model for most cases of interest is a
spherical radiation field. We will treat in some detail a
dipole field, but there is no essential complication in treating
fields with arbitrary angular dependence. We consider only the
far-field region; there the propagation direction is accurately
radial.

The equations of motion are

duu

u V.o _ e VU
. + Fvc u u . F uv . (50)
Now let
r = Qr/c, u° = Y, u6 = Yve, v¢ = Yv¢
eE r ek r
6 _ 6 o _ ?
£ = mc? ! £ = mc (51)

and (&£, n, y) retain the definitions given in equation (4)
with v substituted for z. In these variables equation (50)

becomes

21




du, 2 dy _

| S _ _..C
L TR AR Tl A
- _ 0 o) S
where f = (fe ; f¢ ), u; = (u, u’), and 5 denotes the absolute
derivative on the sphere (reducing to the ordinary derivative

¢

at the equator). ©Note also that ue, u’ are physical components,

not contravariant components, so that

y2 - u? - u? =1 ' (53)

as can be verified by integration of (52) (the notation differs
slightly from that used in NPI.) In the dipole case, the
field strength f can be given in terms of a constant fo repre-

senting the magnetic dipole luminosity Lmd:

- 1 = 2 - £
fe fo sinX, f¢ fo cosB cosy , £ fe + L¢
where {54)
2 2
£f = fiffgﬁé = const
o [?m c ‘

Note that fO is just Vo evaluated at the wave radius ¢= 1

(r = ¢/Q) at the equator. If we again let o = y - ub = dy/dn,

then, using (53) we find

u, = (1 - o2+ ui Yy /20 (55)

as before. The other equations of motion can now be written

(cu,) = £, 3= = - = (56)

(52)




b) Motion of the Guiding Center

First we discuss the orbits of relativistic particles
injected into the far wave zone. Following the example of
the plane wave treatment, we shall first look at the regime
where the guiding center approximation is valid; i.e., the
approximation in which the amplitude of the gyration in space
is small compared to the scale length of the fields --
typically the radial distance from the center, Note that in
a dipole field afe /3¢ = 8f¢ /3¢ = 0. It then easily follows
(since excursions in 6 do not produce first-order changes in

£ and likewise for 6) that, averaging over phase

el

5 Eud) =0 (57)

Thus, the guiding center angular momentum is conserved, and the
orbit of the guiding center is planar, if the excursions
introduced by the fields are small. The oscillatory part of

v

. 1s clearly just

u, - <E%> = %—( - fo cos X, fo cos 6 sin y), (Ag/g<<l) (58)

where the parenthesized condition expresses the requirement
that the excursions in ¢ be small compared to . Thus, if

we denote the angular momentum per unit mass vector by h Eg(ul>,

hg + hé = h? = const. (59)
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and

] et

(hemfO cos X, h@ + fo cos0 sin Y,

(60)

2y . 2 Ly 2 + 2 -2 _ 2, Lg 2 + 2
(ul> [h + 2fo (1 cos G)J z <El> + zfo (1 cos“0)¢

Note from (56) that o is a monotonically, and slowly (if u, is

not too big) decreasing function of n. Thus, we can replace

(56) with 5
u

Let us pause for a moment to investigate the conditions
under which our approximations are valid. We require first

that the total excursion in 6 or ¢ in one cycle be small. The

— 1
RMS u, is of order ¢ 1 (h2 +f02)/2 and
2 1
-1 _1 (h +f02)§
AB, Ap ~ T u, o ~—_— << 1, (62)
ag?
The excursion in ¢ is of order
£ 2 4n? £ 2 +h?
° << 7 , or -2 << 1 (62)
0t2 CZ 062 C.3
for z%< fo?+ h2.°®
The condition that a—l %% be small reduces to the same inecguality
as (63); we assume that we are in the far wave zone (>»>1),

so (62) is satisfied whenever (63) is, and the satisfaction
of (63) is necessary and sufficient for the guiding center

picture to be valid.

o

wt . . . . .
It is clear that the case ?>fo?%+ h? is uninteresting, since
in this case neither the field nor the angular momentum is

significantly affecting the motion of the particle.

2k
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We can solve for the orbit simply in one interesting
case which contains all the essential features of the problem.
Let the guiding center travel initially in the equatorial

plane. Thus we have no f6-variation. Let

22 = h* + £2/2 = 22w ?) (64)

Then the problem is solved if we can find o and g, the radial

coordinate of the guiding center; the differential equations

are
do _ _ %2
an ~ 7%
dg _ 1 - 0%, 2
a “<Pc> = + (65)

20, 202

Let us assume that the particle recedes to » as n » «, and let
o, be the limiting value of a. Then the system (65) can be

integrated (eliminating n) to yield

42 1+ ai
ETEQ&> = — a - (1 +a?
(66)
1+ a2 1+ ol
<UC> = ‘—'ZT—— - 0 ,<Y> = ‘—2—&———‘ = const

Thus, the mean energy of the particle is conserved.

Let us assume that (y>» >> 1. Then the particle initially
came from infinity with uC = ={y>and o = 2<y;>.1t reaches
periastron ((pz> = 0) whena = <Y> and then recedes, with ¢
approaching (2<Y>)ml as the radius goes to infinity. The orbit

and periastron distance are found by noting that
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2 fOZ 'Lz
<Ul> = = 1 + ShY (67)

and that, using (66) and the definition of a,

2
(" =D -1 (68)

From (67) and (68) we determine the orbit in the usual way and

find

1
z z;p sec [(1 + f02/2h2 Y2 (6 —eO)J (69)

where

1
]

c h* + £ %/2 2 (70)
N ISP &

is the periastron distance.

It can be seen from (68), in fact, that the orbit of the guiding
center is the same as that for a classical particle moving in

a central-force field having a repulsive potential f02/4c2.

c) Validity of the Guiding Center Approximation

Let us check the goodness of our approximations. It is
clear that, since a is of order {( v ) for the entire first half
of the orbit, that the criterion (63) is worst satisfied on
the incoming branch at periastron. There o =), ¢ = Lo and
22/0%r% =yv/%; so the criterion is satisfied if y<<2, §p>>l.

Thus, if the particle remains in the far wave zone, there is

no trouble while it is incoming. For the outgoing branch we
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can write

L1 22 22
O{,-W[?‘f'ljj and C;Zgj

This latter quantity is less than unity (our criterion) only if

L4l ? e’ . (71)
- (£z+ z)z

g

ay < o

The phenomena that occur at higher energies, however,
are relatively simple. It is easy to see, first, that if the
criterion (63) is violated, the trouble occurs at a value of
z < &; physically, for ¢ > &, o ~(2(Y>f1and the particle
essentially no longer interacts with the wave. Let us look at
the radius as a function of phase, and let us assume that
§p>>l. Thus, the approximations run into trouble when £>>C s
a<< (¥> . If o is small compared to (Y), <pg>z<x>, and we

can write
de _ 1 0. 2(y yr? | (72)
d ~a Y Ty

recalling that o = 22 (2(x>§2)-1, since <<g.

Thus, the residual phase from ¢ to "infinity" (actually
to ¢ ~ %, since it is there that our expression for o breaks
down) is

02
2(y)%¢

This becomes of order unity at the same value of ¢ for which

Ax =

(73)

the amplitude of the guiding center motion becomes large.
Thus the trouble occurs because the particle becomes

"phase-locked" -- it is traveling radially at so nearly the
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velocity of light that large changes in the radius occur for
small changes in the phase.

It is easy to see that this causes real difficulty only
if fo > h,for if h >> fO (and hence J4-h), the perpendicular
motion is always dominated by the "constant" (h/g) part,
da/dn is then independent of the oscillatory part and it

doesn't matter whether the phase locks or not; y ={Y)and

is nearly constant over the whole orbit (which is nearly
rectilinear). 1If fO > h, however, one expects major modificatiqns
to the guiding center picture.

We can see how this goes easily for the case (y) >>2%;
i.e., for those particles for which the breakdown is in some sense
"strong." First of all, we have an exact expression for uy
[cf. Egs. (59) - (GOﬂ as a function of ¢ and Y. Using Equation
(52), and again assuming
that a<<y, it is easy to show that the fractional change in

vy from z to infinity on the exit orbit is bounded by

by | 2 (74)
kol © e

which is small for ¢ > 2% ¢y>?. Comparing (74) with (73)

we see that y changes little after phase locking occurs, so

we may confine our attention to the region near g_ ,.*® L2/Cy> %,

for which the value of o is about « = ¢y> /282, Now

crit
2

Olit so we can write the expression (55)

2
<<<Ui >at Ccrit’

£ as
or uC
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dg  « 4 ¢ (75)
I 2a’ (Copie S & <)
which will be true except (possibly) when cos x is near zero.
On the other hand, Equation (56) tells us that oadoa/dy = - qi/c
exactly. Thus, we can solve (75) to obtain
92 76
0 = — (¢ .. < [ <<Q) (76)
27>t” crit =~
which is the same as previously obtained under other circum-
stances [Eq. (71)]. Now if we insert (60) into (75) and
integrate, we find
9" 1 1 2 P
=T |- = = % + % f 2
27> Cr z X i £.° sin 2y (77)

where Cr is some earlier value of ¢ at which the phase was
zero (modulo 2m).

It is clear that the phase at any value of g well before
phase locking occurs is essentially random for an assembly
of particles with random initial conditions, and so we obtain
the somewhat surprising result that y locks and becomes large

at an essentially random phase Xy,» The value of Yy is

asymptotically

2 2 2
(h"+ fO cos” X1)

Y o~ ) K

and is thus distributed between (fé + h?) 2—2(y> and h2g” 2 Yy

(78)

The phase=locking phenomenon thus introduces a dispersion

in energy which is large for orbits of small angular momentum.
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Note that this dispersion represents a net energy input for
particle distribution functions which increase toward lower
energies, and thus,in a sense, the phase locking gives rise
to an acceleration mechanism. The phenomenon is essentially
unchanged for particle orbits out of the equatorial plane,

and the redistribution in energy is of the same order.

d) Particles Injected at Rest

Before leaving this topic, let us investigate the
behavior of particles dropped at rest into the wave. The
initial value of o is, of course, unity. Let the phase at

the initial instant be X, and the radius Co' Then from (60)

h = fo Cos X v h, = —fo cos eo sin X, (79)

8 )

so that h? fo2 and £?2 53/2f02. The formal "average" energy

of the guiding center motion is, from (66),

22 f02
<Y> = 2‘:02+ 1 =0 ""EZ . (80)

This energy is in general, however, not reached because, as
we saw in the last section, phase locking can invalidate

the guiding center picture. There are no problems if cO>Q3/“;

phase locking does not occur, (y) < O (21/2) and the particle

goes to infinity with vy = (v¥>. For particles with (R in the
2/3 3/4

range fo S A fo

o phase locking occurs before they

reach ¢ = 2and v » 0 ({)) at infinity, but randomized, as

described in Section Ve. Let us now look at the particles
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starting ﬁearer the center of the wave source, for which
§O< f02/3° For these the total phase change from rest is
small, as was pointed out, using other technigues, in NPI.
First, we calculate the total phase change occurring as the
particle goes from ¢, to some large ¢ using equation (77)

(rather than equation (73), which only applies if the

guiding center approximation is valid)

2Co4 1 1\ 1 3 (81)
. 5 C_ - Z' = -3- sSin XO (X - XO) 14 l:(X_ XO) << 1]-
o
o
Recalling that, in this case,
' -1
o= (g /8)® , u = £_ (cos x - cos x )¢ °, (82)
we obtain
u? £ %2 sin? x_ (X -X_\2 2/3
~ <t o [e] o) 3 .
Y — = - = — £ (1 -z /z) sin ¥ (83)
20, 2t Jr © o o ’

in agreement with the result in NPI. The result is easily

generalized to arbitrary initial angular coordinates and becomes

2/3 1/3

3 £, (L -z /0
vz

s 2 2 2 .
+ S
(sin® x, + cos®6_ cos®x )

2/3
y = 1< < £, ) (84)

Note that y goes to a value at infinity which is independent

of Qo for this case.
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We thus have the following behavior: For 1< L, < foz/3
the final energy is independent of position Co,depends weakly

on initial phase X, and is of order f02/3.

2/3

As Co ig increased
past fO , the total phase change becomes rapid at first but
later locks, the ultimate y being approximately (y), which

for particles starting from rest takes the form [cf. Eqg. (664

' . -2 2 2 .2
Yy = 1L + % fOZCO [1 + 2 cos Xo + cos 60 (1 + 2 sin Xo)} (85)
. , _ 2 -2
but distributed between Yin = 0 and Yimax = 2 fO Co for

small changes in Co' Finally, for very large Co’ Y is exactly
<Y> and is given by Equation (85).

We note that the approximate results agree, as they must,

2/3 3/4

in the interface regions where Lo = fO o

or Cotv £

e) Motion Out of the Equatorial Plane

We begin our discussion of the guiding center motion of
particles out of the equatorial plane by noting from
Equation (65) and the definition of o that

2 2
()= 1+o . (86)
20, 202

for particles which are not phase-locked, where here 22 = f2 + h?2,

Also, from equation (65) we have

2 2
dey> _ 1 de? _ 1 ag (87)

dn 20z dn ~ 4doc? dn

We found <y>constant for motion in the equatorial plane because
|£f] and consequently % are constant in that plane. Although

2% is now variable, its range of variation is small;
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‘f’ changes at most by a factor of two from equator to pole

for a dipole radiation pattern and the changes in f are
2 + L f2)1/2

diluted by any angular momentum since 2 = (h

[

We will, therefore, do the analysis under the assumption that
the deviations of % from some average value £ are small. We
assume that the orbits and o-dependence are described adequately

by constant £ = ¥. In this case, we obtain from Equation (66)

that
1
1 _ 1 i¢y)-=[1 (88)

and it is easily shown that the % term has negligible effect
when Y>> >> l(essentially because o small implies that uC~Y,

the motion is nearly radial, and % is, therefore, nearly

constant). Then, from this result and Equation (69) we find
o= <y |1 - sin 2L (89)

where Y is the angle measured in the plane of the orbit from
the periastron direction to the position of the particle

(Fig. 1) with vertex at the origin; we assume for definiteness
that the particle passes above the pole.

We then find

ry 2
Aoc=-<-\2(—>- (l+sin-2'h—w>-c%r-l—&— ay (90)

where Ay is the difference between final (exit) and initial
(entrance) energies. If we integrate by parts and use the

assumption that % is nearly constant, we obtain
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hy = SX2 | 2 _ g 2 L 2 _ g2 3] 2| - (91)
Y 172 £ i £ £ cos |[5f| 4 |F
where ?2 = 4 (ff2 + fiz) But from Equation (54), f2 = f02 (1 + 0032

and from geometrical considerations (See Figure 1),
cos 6§ = cos 60 sin Yy + sin 60 cos B cos Y (92)

where eo is the polar angle to the tangent to the orbit at
periastron (essentially the incident direction for small
deflection) and B is the angle between the orbital plane and
the plane of the tangent and the polar axis. If we specialize
to nearly rectilinear orbits (f small compared to h), we can

easily perform the integration in Equation (91) and obtain

>

Y =

=4 _. 2
5 £ 7% sin 20 (1 + cos 60) cos B

(93)
2772 |cos® 6 - cos2 B sin’ ©
o o

The first term is negligible for small deflections, since then

fO << 9; most of the change in y comes from the effects of
changing amplitude with 6 near periastron passage. Note that

the deflection is always in the sense of decreasing 6 for passage
above the pole. (The particle is repelled by the wave source.)

The sense of the change is most easily seen from Equation
(87). All else being equal, the rate of change of y is
proportional to 1/a. Thus, at a given ¢ and through a given
change in y the exit segment of the orbit contributes more heavily

than the corresponding entrance portion because o is smaller there.

Thus, for 60 near zero the particle exits in a field region in
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which £ is decreasing, and the energy decreases; for 60 near

m/2, the exit orbit is toward the pole where f is increasing;

the energy thus increases. It is easily shown that the average
Ay over all incident directions vanishes, so that this phenomenon
provides a diffusion in energy of the same character as the

phase locking.

f) Radiative Effects

We conclude the discussion with a brief look at radiative
reaction. It is clear that the equations for u; and a in the

spherical case become [cf. Equations (28), (65@

a 2 -
T lray) = - ea cup it
2 (94)
do __2% _ po’
dn [ z?

for non-phase—-locked particles in the equatorial plane; here
we define a new radiation parameter p:

e?nf 2
_ o

P = TheT (95)

a constant. Note that p is simply the old parameter ¢
evaluated at z=1 (r = ¢/Q), so that p/rz? is the "local" value
of €. From Equation (86), by direct differentiation, we find
e 2

u_po pahz

- e 28 (96)

515

Thus, the situation is analogous to the plane-wave case;
if the motion is radial (h=0) and.<ﬁ£> is positive (outgoing

branch), the particle gains energy by the same "pumping”
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mechanism as discussed before; on the incoming branch, the
particle loses energy, and it is clear that losses far
overbalance gains, since o is, on average, much smaller going
out than coming in. To estimate radiative effects, let us
assume they are small, h is nearly constant, and we can
integrate Equation (96) along the unpefturbed orbit. Omitting
the remaining straightforward analytical steps, we present

the conclusions that due to radiative effects the energy changes

by an amount

(ay)_ . o= - T (1 4y 1292 (97)
rad Ep

This is, happily, in accord with one's intuitions; pcp—z

is proportional to the square of maximum field encountered
on the orbit. The particle feels this amplitude for a time

of order ;p. Thus, the "power" is proportional to
=2 and the total loss to pych_l.

The energy gained in the outgoing orbit due to radiative

2
PY Cp

pumping can be shown to be

2

4

2
(ay),, = 2 [5/3 - m/2 - h
P

/9,2 ('n/8 - 1/6)] , (98)

and unless h is quite small (h < 0.6 fo) losses dominate over
gains on the exit orbit. For the complete orbit, gains on
the exit balance only about three percent of the losses on

the entrance orbit even in the most favorable case when h = 0.
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The radiative changes ing¢yymust, of course, be added to the
changes ingy>» due to the independent effects due to the
variation in £ and phase locking.

The orbit is greatly modified if the particle loses a
significant fraction of its energy in one passage. The

condition for this is

g %
. P L (99)
LYY 2 min s EEJ
. — 1 1/2
which for the Crab (p = 5) happens for y > 7 fo in the

extreme case h = 0. This implies that electrons from infinity,

regardless of energy, cannot get closer to the star than the

periastron distance corresponding to this critical energy, about 4 fO

or in physical units about lO14 cm.
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VIi. SUMMARY AND DISCUSSION

a) Summary

Two important parameters appear in the theory developed here.
eB
mcf?

magnetic wave in terms of its ability to accelerate particles of

The first, v = is a measure of the strength of an electro-

a given e/m. In the usual model of wave particle interactions,

V is implicitly assumed to be very small as indeed it must be

for any known particles in any plausible thermal radiation. In

this usual weak case a particle initially at rest is not accelerated
in the direction of the wave; it absorbs energy from the wave and
oscillates non-relativistically about its original position; As

a conseguence it radiates at the driving frequency, Q. This is
ordinary electron scattering. If the particle was relativistic

to begin with, then in the usually studied weak case, it oscillates
about its initial rectilinear motion and as a consequence emits what
is often called "inverse Compton" radiation at frequencies of order
Y2Q.

In the case of a strong wave (v >> 1), the particle motion has a
fundamentally different character. In any chosen frame, the particle
will become relativistic at some phase of its periodic motion. In
the frame in which the average velocity vanishes (the"guiding
cénter“ velocity is zero) the orbit is a figure-8 described by
equation (11); in this frame the average energy is of order wv.
Particles accelerated from rest reach energies (y) of order v2
and travel in one cycle a distance of order VZ times the wavelength
of the radiation, [eg. (14)] in the wave propagation direction.

It is clear that in this regime (v >> 1) familiar concepts like the

plasma frequency have no immediate significance (see NPI).
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Inclusion of the radiative reaction produces a slow runaway
solution (whose character is fundamentally unlike the classical

spurious runaway solutions) in which the energy of the particles

grows as tl/3

-1/3

[eg. (36)], motion transverse to the wave decays as

, and the radiated power decreases as t_2/3a This process of

t
"radiative pumping" is probably too slow to be of any interest in
likely astrophysical situations.

The second important parameter, € = (e4B2/3m3CSQ5 measures
the significance of radiative losses, the average power emitted
by an isotropically distributed collection of particles with energy
Y being about € Yz(mcz) per particle [Eg. (40)].
The power output has the same dependence on particle energy and
field density as both inverse Compton and synchrotron radiation.
The radiation, which will be discussed in detail subsequently,
becomes inverse Compton for v << 1, but in the more interesting
strong-wave case (v >> 1), this non-linear inverse Compton ("NIC")
radiation is qualitatively different from either of the usual
high-energy proceéses. In terms of total radiated power and
peak frequency as a function of B and vy NIC radiation is
similar to synchrotron emission. For particles injected at rest

-15 .2

into a strong wave the power radiated is simply 1.6 x 10 BY s

erqg sec_l per particle. In more astrophysical units, this come

2
rms

to 5 x 108 B solar luminosities per solar mass injected
at rest into a strong electromagnetic field. This result, like
all those presented in this paper, is dependent on the assumption

of independent test particles and as such is meaningless if the

luminosity of the radiating particles becomes comparable to the
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power in the underlying low-frequency radiation field; the particles
act as catalysts, transforming very low-frequency waves to radio
or higher frequency output.

The treatment of spherical waves introduces many new facets,
some due to the geometry and others to the dependence of field
amplitude on radius. The phase averaged energy (y) is found to
be a constant for a particle injected far from the radiating sources
and the particle's guiding center moves as a classical particle in
a repulsive r_3 force field. It follows that the angular momentum
of the guiding center motion is conserved. An orbit is characterized

2 2)1/2

by (Y) and an angular momentum parameter £ = (1/2 fo + h

where h is the normalized guiding center angular momentum and

f measures the strength of the spherical wave field. If

o
1/2

vy > % the particle on its exit branch finds itself traveling

nearly radially at a velocity sufficiently near ¢ that it

"locks phase" with the driving wave. This causes particles with
slightly different initial orbits to undergo an essentially random
redistribution of energy about the value (y). A dipolar (or
higher multipolar) pattern in the driving radiation field produces
much the same effect. The acceleration of particles from rest

is found to involve two rather distinct regimes. For initial

radii satisfying r < r_ = c Q -l 2/3

we find the particle
o c ') o) s

is phase-locked throughout the part of its flight in which it

interacts significantly with the wave and, on exit, vy = f02/3
independent of ro(rO < rc), thus recovering the result of NPI.

For particles injected at v > r. (rC ~ 3 x 1015 cm  for the Crab
2

pulsar), at least one gyration is completed and v =~ fOZ(C/Qro)
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which is less than they would receive if injected close to the

star and approximately the energy they would reach if the spherical
wave at injection were treated as a local piece of a plane wave.
"Radiative pumping" is never important in a spherical wave since
the gains on the outgoing branch of an orbit are always greatly
exceeded by the losses on the incoming branch.

b) Applications

Detailed application of these results will be made elsewhere
but two of the most interesting possibilities will be mentioned
here.

In the Introduction we noted that rotating magnetic neutron
stars are good candidate objects for the pulsars. In NP III we
arguedAbriefly that collections of these objects in their associated
nebulae would have some of the properties of the extragalactic
point sources. Morrison (1969) and Fowler (1970) have suggested
that single , very massive, rotating magnetic objects power the
extragalactic sources and recently Bardeen (1970) and Wagoner (1969)
have shown that as much as 40 percent of the rest mass energy can
be liberated by rotating, highly-relativistic, slowly collapsing
discs (this is about 10 times the amount of energy that can be
liberated from non-rotating configurations).

It appears now that such rotating magnetic objects either singly
like the Crab pulsar, like a concert of such objects, or like a
"super-pulsar" can: a) provide an energy input to the surrounding
medium via the emission of low=frequency electromagnetic waves;

b) accelerate particles to very high energies in these waves; and

¢} provide the field (the waves themselves) in which the fast
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particles can produce synchrotron-like continuum radiation. These
properties are essential prerequisites for the sources in a large
class of astronomical objects.The results for the Crab Nebula are
quantitatively reassuring; the amplitude of the waves at the edge
of the Nebula is about lO“4 gauss, if the previously derived neutron
gstar field (Gunn and Ostriker 1969) is correct. This is essentially
the field value obtained from other arguments (cf. Scargle 1968);
the synchrotron spectrum of the Crab can be understood on the basis
of the mechanism and will be considered in detail in a later paper.
The other immediate application of the results concerns the
origin of cosmic rays. Earlier we (Gunn and Ostriker 1969) suggested
that the high-energy tail of the cosmic ray distribution may be
ions accelerated from the wave zone (r < rc) of pulsars via the
mechanism which we have rederived in § V of this paper. Although
pulsars are energetically capable of producing all the cosmic rays,
they assuredly do not make them by this process, because, as we
have pointed out elsewhere (Ostriker 1969) moderate energy (~ GeV)
particles cannot be made in this way and the composition of
particles originating on the surface of neutron stars, while
entirely conjectural, is most unlikely to resemble the common
distribution found in cosmic rays. We also pointed out in the
earlier work that unless the estimates used for particle injection
rates were entirely wrong [these were adapted from the work of
Goldreich and Julian (1969)], the waves were not likely to be
saturated with particles near the source. Thus they will reach
the debris in the supernova remnant with the wave energy density

diluted mainly by the geometrical inverse square factor. We have
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seen in this paper that such waves are still capable of accelerating
ions in the nebula provided that ZeB/Ame is large there. This
condition is satisfied early in the life 5 supernova remnant
containing a pulsar. Using parameters appropriate to the Crab, we
show elsewhere that ions would have been accelerated to relativistic
energiesvfor about the first 5 years after the explosion, during

48 ergs of kinetic energy. Thus

which time the pulsar loses ~ 10
cosmic rays can be produced in situ from the highly evolved nuclear
material in the remnant. It is interesting to note in this con-
nection that the helium-to-hydrogen ratio in cosmic rays is high
(both as observed and as inferred at the "source") just as it is
in the Crab Nebula.

Using the theory developed in this paper, we will return at
a later date to examine the possibility that the bulk of the

galactic cosmic rays are produced by wave acceleration in supernova

remnants.
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Figure 1l: Schematic of the guiding center orbit near
periastron for arbitrary initial conditions,
identifying the angles used in the text. The

vector 1 is the tangent to the orbit at periastron.
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