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SUMMARY
Schweiger12 jntroduced a graphical technique in order te

analise series-pirallel networks in the form of rectangular diagrams
~ with the aid of these in a forward process he was able 1o obtain

equ]falent drivars while in the reverse process he obtained the sClution

aF e = = thage ) I UeT=
e Cna network, Jn this article it 1.8 showzt that vwhe equivalent deivers,
that Scii... . P e $ £ e e

- wsp obtained by a sueP by-step graphical trapsf&r 0F diivers

is nothing else ... wie s~y 2aiivaléit. Subsequently the rectangular

diagram proofs 0f tse Thevenin's and the Horton's theorem's are deduced.,

‘\.1; T
INTRODUCEION NOT REPRODUCIBLE

Rectanigular diagrams were First introduced by Schwaiger .

His method will be exposeq in this article, an indirect form of re-
ctangular diagrams t0o s0lve power distribution systems. In his in-
direet form, the diagrams arw used like a slide rule to0 aid the solution.
in the direct reading form, that we will also use in this article, the
element values, voltages, Cirents, and even the consumed and supplied

powers, can be directly read irom the diagrams. These type of diagrams

were used by Magyarilg

Ej

to solve Jinear resistive and reactive networks,

1

by Rovattama~”, Cherry

. 5 . R
snd Erds;~ to solve non-linear vesistive networks,
Linear and non-linear netuS.y properties and theorems in rectangular dia-

gram form wewre exposed by Qherryig Brdey2s 34575 Magyerilﬂ and Maynell,



On Fig. l-a @ linear resistive network is given. Its re=-
ctangular diagram is given on Fig. l-b. On this diagram each element
is represented with a component rectangle, the vertical side of which
represents the voltage across, and the horizontal side represents the
current through, while its area gives the powsr through the element.
In cases of linear resistors as in the given example the slope of ther
diagonal giveé the element value while the non-linear elements are re-
presented with their general v-i charactecistic curves. Studying re-
ctangular diagrams with dual non-linear elements with the aid of re-
ctanguiar diagrams led Cherryl to his "Classes of 4-Fole Networks having

Non-Linear Transfer Characteristics but Linear JFterative Impedances”,

In cases of linesy resistive networks there is a straight
forward construction technique coined by one of the authors as “locﬁs
method? since the loci of the vertices of the individual rectangles move
on straignt lines, as the size of the rectangle is proportionally in-
crzased or decreased., Fig. 2 shows the case when the size ¢f a rectangle
is propertionally enlarged into the rectangle drawn with the broken sides.
The proportionality ensures that the diagonals will have the same slopes,
which ensuves that the element value of the resistor is not changed by
this proesss. The loei of the four vertices always intersecl each other
in one common point {point P on Fig. 2). The physical meaning of this is
that in the case when no current is flowing through a resistor the voltage
across it will alsc become zero {rectangle shrinks into a point}, This
method is a routine operation in case of planar wetworks bui bacomes a

little more cumbersome in case of non-planay networks®.



The Schwaigerian Method of Step~bvStep Transfer of Drivers

let?s take the twe series connected R, and R, elements of
Fig 3-a in which oniy Rl is excited by the ideal cuvrrent driver ign
On Fig 3~b an equivalent current driver ie is given which produces the
san@ voltage scross nodes A and C that ig produces across the terminals
on Filg. 3-~a. The Schwsigerian graphical solution of the equivalent current
is given on Fig. 3~c. On this diagram the two series connected elements
are treated as if the same ig current is flowing through both of them
in order to define the Rj, resultant resistance. The.operaﬁing point of
the Rl resistance of Fig. 3-a is at point Plo Since the R, element in
this network is idling the voltage across the terminals A and € is the
same as that of the B and . In order to obtain the same voltage atross
the A and C nodes on Fig. 3~b, we have to move the Pl point to the left
until it intersect the Rlé resultant resistance line at P,. The per-
pendicular from P, to the base cuts the length of the i, equivalent
current, and which we will show that is equal to the l\?om::anian equivalent
current, which is obtained by short - ¢ircuiting the pair of nerminals.
By short - circuiting terminals A and C we obtain ¥ig. 3~d, where the
short - circult current is equal to the current flowing through element
R_. We have to show that this current is equal to the one in Fig. 3-b.

2
This is obtained graphically on Fig. 3=e,



On Fig. 3-e the excited resistor of Fig. 3-a is given by
P1PoPsP, / /s while Pig, 3-b is represented by the PgP,PzPg /.
Since both the rectangles have the same height (PoPzy -the Fefminal
voltagaes are the same in both the cases as required., The parallel

connected Ry and R2 resistors of Fig. 3-d are given by P1P2P5P7

/ 7. It can be noticed that the current through RQ element {re-
presented by P8P2 remained the same in Figs. 3~b and d, and thus we
have shown that the Schwaigerian equivalent driver and the Wortonian

are the same for this particular case.

The Schwaligerian graphical driver transfer technicue was de-
monstrated for a series comnected elements on Fig., 3. It is very east
to demonstrate that the same technique can be applied to any series

parallel connected network,



The Thevenin'®s and The Norton's Theorem,

It was just pointed out with a particular example the
Schwaigerian equivalent current driver, which is obtained by & step-
by-step .transfer of drivers to a preditermined pair of terminals is
pothing else but cenrrent driver in the Horton's equivalent. Since the
Thevanin's znud The Nortonis egquivalents of a two terminal active networks
are closely interrelated to sach other, we will eMpose these Cheorems in
their graphiczl forms in order to obtain a visual image and understanding

of these basic eauivalencies.

iet's take the two-termimal linear active network ¥ of Fig.
4 which a lced L {which may be a second network) is connected across i.ts
terminals. The active network N can be represented with a voltage driver,
in series with an limpedance { Thevenin representation} or with a current
driver simted by the same impedance (Norton's vepresentation}. When
the load is disconnected the terminal veoltage of ¥ is equal 'i:o the ter-
minal witage of the ideal voltage driver in the Thevenin's equivalent,
When th: load is replaced with a shoyt - cirveuit; the currvent through
the shat -~ circuit is equal to the terminal current of the ideal current
drive: in the Norton's equivalent. The series impedance in the Thevenin
repreentation and the shunt impedance of the Nerton's representation are
equal to each other and equal to the input impedance of network N, looking

into it at its terminals, when all internal drivers have zero value,



It can be shown that simisoidally excited RIC networks can
be represented with rectanguiar diagrams too since their vector diagrams
can be broken into inphase and quadrature components. Siace the com-
ponents themselves are rezl quantities, naturally the component re-
ctangular diagrams have the same characteristics as the rectangular
diagrams of resistive networks. Therefore, without any leoss from
generality we can confine ourselves to the rectangular diagrams of

resistive networks when we prove The Thevenin's and The Norton's theorem.

The simplest case of the Thevenin'®s and The Norton's equivalent
is usnally referred by driver or source transformation in the literature.
7ts simple graphical proof ig given on Fig. 5 as follows: Iet us consider
a practical voltage driver. As indicated on Fig 5-a it can be decomposed
into an ideal driver series with a resistor {Thevenin equivalent)., This
decomposition can be justified by measurements. If we measure the open
cironit voltage of the practiecal driver, we can assign this vy éalue
for the ideal driver on Fig 5~a. When a load is comnected across iTs
terminzl {Pig 5-b} then from the load resistance R2 and the vy voltage
across the load according to the rectangular diagram of Fig. 5-o, the
Ry internal resistance can be defined., When the terminals of this
practical driver are short - circulted its corresponding diagram is
given in Pig. 5-d. Purther, when this driver is loaded by another re-

sistor Ry, Fig 5-e the diagram for the complete network can be constructed



as shown im Fig. 5-f. In this figure, the broken iines complete the
diagranm into thet given in Fig. 5=d and one can see that given in PFig.
5=d and one can se2 that the terminal conditions for Ry will not‘ change
if Ri vere comnected in parallel to Rﬁ; rather than series to iz and also
if the voltags driver v, is replaced by a current driver i ss is shown
in Fig. 5-h. Ttis diagram corpesponds to the network in ¥ig. 5-g and
its lefi sides is called the Norton's equivalent of the prastical driver

which is loadel by RLQ

e 4iil prove the general case of the Thevenin®s and The
Wocton's Theswrem with the aid of superposition theoremy that iz we ave
taking ince account the effects of each driver separvately. WUWe tan as»
sume that all deivers ave current drivers. If this would not be the
case with the given driver transformation technique, that we have just
sgen or Fif. 3. In ecass if we take into account sach deiver separately
we havz t possibilitiess

a., The equivalent driver has a common node with
the original drdvar

b, The equivalent driver has no common node with
the original driver,



SCLUTION OF THE TWG SUBCASES

If we have the first case at hand then we can eliminate
alil wertices with the aid of of e 8, or Rosen's transformation®, ex-
cept the 3 vertices that are involved in the problem. Afier this process
the network will have the form of Fig. 6-~a. The rectangular diagram
solution to this problem is given on Fig.6~c. ‘When nodes B and C are
shorted the network has the form of Fig. 6-b, the solution of which is
gi-en in Pig. 6-c by PzP4PsP, [ 7., In Fig. 6-d an eauivalent driver
is copnected across terminals B and €. The rectanguisr diagram solution
of the network wsith the equivalent driver is given in Fig. &6-¢ with
PoPPePy [ 7, the width of which is the same as the width of the
R2 rectangle in the short - eircuited case., Thus; we have proved
that the short ~ ¢ircuit current Ts egual to the Norton's equivalent

current.

In the case of the Thevenin's equivalent we have to find the
open cireuit voltage at the required pair of termimals. In Fig. 7-c
with the PyPoP P, 7, the conditions of the origianl loaded network
of Pig. 6-a are vepeated. When the terminals are open circuited {RL
removed) Fig. 7-3 is obtained, The form of the solution in this case
is given by PyP14PisPs [/ /. In order to adjust the dlagram to the
apélied corrent I, the diagram has to be proportially eniarged into
P1P2P12?l3-£:::7° In this enlarged diagram the open cirguit vnltagé

(voltage scross the Ry element} is givem by PP, o Let's show that

——

the voltage v, thus obtained is as an ideal voltage driver connected

in seriés to the internal resistance of the network of Fig. 7-a

5
The graphical form of the \,_ p and of its generalization, the
Rosen’s transformation, was presentea/by the authors in anothor papsr’.



and applied to the RL' load {as given on Fig. 7=b) then the solution for
Rﬁ remains the same s the one we had in the orginal network. Iet's

add in series R, of the PgPgPsPyy [/ to R of the P P.P.P. /7
Where the resultant Ryo line dntersects the R, line we obtain the

point Qif It can be shown that Q is at the same ievel ofAP'G° Thus

the rectangular diagram solution of the network in Fig. 7-b is given

by PoPoPoPig /7. Since the original rectangle of R, is an intact
subrectangle of the obtained solution we have just verified the validity

of the Norton's equivalent for the gase a.

In the case of b after the elimination of the vertices to
which neither the given driver nor the load is connected we obtain
the form in PFig. 8-a. Note that in the given form any of the Ffive
Gl to Gg condﬁetances can be zero, This will mean that the pertinent
reetangle will have a zero width, but otherwise the proecedure will be

the same,

In Fig, 8-c the P,,P P P.. [ 7 is the solytion of the
network of Fig., 8-a., When nodes B and C are short circuited, in order
to obtain the Horton's equivalent current, the Fig. 8-b is obtained.
In this case in the rectanguler diagram the intersection point of the

resistance lines of the parallel Ry and R, lines is at P 5 anct

2

similarly the R_ and R4 lines iIntersect each other in point Po. The

3
horizontal distance between these two pointsis equal to PP, and is

equal to the short ~ cireuit current. On PFig B-e this current is used



1c

in the V¥orton's equivalent across the B and € terminals parallel

to the internal resistance of the de-energized network of Fig. B-a
looking dinto it at terminals B and C. This equivalent network is
driving the RL Joad. The rectangular diagram solution except relative
positions of the rectangles of the network on Fig. U-e is given by the
P5?7PBP5.£::::7 on Fig. 8-c. Just for the sake of clavity the solution
is redrawn on Fig. 8-d once again. Since the size of the Ry rectangle
on this diagram remained the same as before, thus it is proved that

as far as the load is concerned the two networks (Figs (-a and e) are

aquivalent,

¥t is sufficient to obtain the Morton's equivalent to ny
configuration, since the driver transformation shown on Fig. 5 can
convert it into the Thevenin's form., Just to show the reade~ how the
Thevenin's equivalent is obtained the additional comstruction Idnes dn
Pig. 8=¢ are related to the finding of the Norton's equivalent wyltage
is found in the p.rticular case when GS = 0 and Ry, is the resultaat
of the previous parallel RL and Rg. In this particular case. the oren
cireuiting procedure makes Ry and R3 and similarly R, and R, wlenents
series to each other. The intersection of the pertinent resistence
lines is at Poo and Pyz. 1In order to sliminate the gaps between the
jeft and right sections %Pe resultant RlE and R24 rectangles are

proportionally enlarged till they intersect each other at Pou



11

After the enlargement 522 moved to P, and P23 to P3° Thus the

open cirvcuit voltage for this particular case is given by'ﬁgﬁz,

The reader should notice that the Worton's equivalent in this parti-
cular case is the same as before, Thus the Py7P1889F08 /7
represents the IS V, rectangle the diagonal which should represent
the input resistance across terminals B and C. This can be seen
from the fact that this rectangle breaks down inte a series of

subrectangles of elements RS and Ry and parallel to them are the series

rectangles of elements R, and RQ,

The Seneral Case

in the above procedures the drivers were taken into
account individually, This is possible since we ware dealing with
linear networks and thus superposition theorem is applicable. Since
the equivalents each time are taken across the samg pair of terminals
the input impedance of the network femains the same and the short -
eircult current will be the same as the short - cireult currents with

the individual drivers.



190,
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