General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

TRW

VOLUME I: FINAL REPORT AND USER'S MANUAL A COMPUTER PROGRAM TO STUDY THE MOTION AND APPENDAGE STRESSES OF A SATELLITE DEPLOYING A NUMBER OF ASYMMETRICAL SEGMENTED APPENDAGES (N-BOOM)

TRW Report No. 13548-1;004-RO-00

CONTRACTS NAS 5-11221 AND NAS 5-11258

May 1970

Prepared For

Prepared For
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbalt, Maryland
Contracts NAS5-11221 and NAS5-11258

Approved

Approved

CONLENTS

Page
NOMENCLATURE v
Part I - FINAL REPORT

1. INTRODUCTION 1.-1
2. SUMMARY 2-1
3. DISCUSSION 3-1
4. FORMULATION 4-1
5. EQUATTONS OF MOTION IN NORMAL FORM 5-1
6. FORCES AND TORQUES 6-1
7. RELEASE AND LOCK-UP OF HINGES 7-1
8. SYSTEM KINETIC ENERGY AND MOMENTUM 8-1
9. COORDINATES 9-1
10. CROSSECTION LOALS 10-1
11. SEGMENT STRESSES 11-1
12. SECTION PROPERTIES 12-1
13. CALCULATION OF SUBSEGMENT MASS PROPERTIES FROM THE MASS PROPERTIES OF THE ELEMENTS BETWEEN STATIONS 13-1
14. MOTION QUANTITIES REQUIRED AS INPUT TO THE STRESS SUBROUTINE 14-1
Part II - USER'S MANUAL
15. INTRODUCTION TO USER'S MANUAL 15-1
16. GLOSSARY OF INPUT SYMBOLS 16-1
17. TEST CASE INPUT DATA 17-1
18. TEST CASE OUTPUT 18-1.
APPENDIX A A-1

ILLUSTRATIONS

Page

4-1 Basic System Notation 4-2
4-2 Segment 1 in Appendage $k \quad$ 4-2
4-3 Paddle Appendage Coordinates 4-3
6-1 Thrust as a Function of Time 6-2
Geometry Perameters Associated with Kick-off
Springs
8-1 Fundamental Position Vectors 8-1
9-1 Coordinates Associated with Appendage k 9-1
Coordinates Associated with Appendage k if the
Second Element is a Paddle
9-3 Transformation from $\hat{x}, \hat{y}, \hat{z}$ to $\hat{e}_{1}, \hat{e}_{2}^{k}, \hat{e}_{3}$ Coordinates $\quad 9-4$
10-1 Quantities Required in the Loads Calculation Associated
with Segment k, i
10-2 Subsegment Forces and Properties 10-3
10-3 Pulse Shape Associated with the Locking of Hinge, m, n 10-7
11-1 Circular Tube Crossection Loads 11-1
11-2 Forces and Stresses on a Circular Crossection 11-2
11-3 Crossection Loads and Stresses 11-5
12-1 Polygonal Crossection Geometry 12-2
12-2 The ith Plate Element at Station j in Segment $k, i \quad 12-3$
12-3 The Definition of $Q_{\zeta} \quad 12-6$
12-4 The Portion of the Inclosed Area Corresponding to
Plate Element i
13-1 Subsegment Parameters 13-2
14-1 Quantities Defining Segment Position 14-4
17-1 Test Case: Satellite with Partialy Deployed Appendages 17-2
$a_{01}^{k}, a_{11}^{k}, a_{21}^{k}, a_{31}^{k}$
\bar{B}_{i}^{k}
\bar{B}_{T}
\bar{b}_{i}^{k}
\bar{b}_{M}

C
$\mathbf{C l}_{\mathbf{i}}^{\mathbf{k}}$

D \bar{r}
$\overline{\mathrm{Dt}}$
$\frac{d \bar{r}}{d t}$
\bar{d}_{k}
$\hat{e}_{1}^{k}, \hat{e}_{2}^{k}, \hat{e}_{3}^{k}$
\bar{F}
\bar{F}_{G}
$\bar{F}_{\mathbf{G}}^{\mathbf{k}}$
$\mathrm{F}_{\mathrm{si}}^{\mathrm{k}}$

Kick-off spring parameters associated with kick-off spring k, i.

Total external torque acting on the ith segment in appendage k (segment k, i)

Torque about 0 produced by thrust
Position vector of the center of mass of the ith segment in appendage k relative to 0

Position vector of main body c.m. rela tive to 0

Instantaneous system center of mass
Position vector of segment k, i center of mass relative to inboard pin

Inertial derivative of the vector $\overline{\mathbf{r}}$

Derivative of \bar{r} with respect to an observer fixed in the main body

Position vector of first hinge of appendage k relative to 0

Unit vector triad fixed to the main body and associated with appendage k

Total external force on the system
Gravity force on the main body
Gravity force acting on the $c . m$. of segment k, i

The magnitude of the compressive force on kick-off spring, i.k.

[^0]$\bar{F}_{\mathbf{i}}$
\bar{F}_{M}
$\boldsymbol{F}_{T^{(t)}}$
\hat{F}_{T}
$\overline{\mathbf{f}}_{T}$
$\hat{\boldsymbol{g}}$
\bar{H}_{0}

i

\bar{I}_{i}^{k}

$[J(\bar{a})]=\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]$
j

Total external force on segment $k_{r} i$ Total external force on the main body

Thrust magnitude applied to main body as a function of time

Unit vector in the direction of the thrust applied to the main body

Position vector to a point through which the thrust acts

Unit vector in the direction of 0 from the center of the earth

Moment of relative momentum of a body about the moving point 0 , defined by
$\bar{H}_{0}=\int_{\text {Budy }} \bar{r} \times \frac{D \bar{r}}{\overline{D t}} d m \quad$ where \bar{F} is the position vector of a field point in the body relative to 0

Position vector of inboard hinge of segment k, i relative to 0

Index symbol designating segment number ${ }^{1}$

Segment $\mathbf{k}_{\text {, }} \mathbf{i}$ inertia matrix in segment coordinates

Segment k, i inertia dyad in main body coordinates

The vector $\overline{\mathrm{a}}$ is transformed into 2 square matrix by the operator J so that $[J(\bar{a})]$ (b) represents $\bar{a} \times \bar{b}$

Index symbol designating station number

[^1]
ℓ
\bar{M}_{0}
m_{M}
${ }^{m} T$
n
n_{a}
n_{k}
n_{p}
n_{s}

0

O_{M}
O_{N}

$\overline{\mathbf{P}}$

Spring parameters for the i th hinge of appendage k

Distance between hinge points on the ith segment in appendage k

Index symbol designating vertex number

Total moment about 0 of external forces and torques

Transformation matrix from body fixed coordinates, $x y z$, to inertial coordinates at initial time

Mass of segment i in appendage k
Mass of main body
Total mass of the system
Total number of segments in the system
Total number of appendages in the system
Total number of elements (segments) in appenda\%e k

Total number of paddle appendages
Total number of segmented appendages (does not include paddles) i. $\mathrm{e}_{\mathrm{f}}, \mathrm{n}_{\mathrm{s}}=$ $\mathbf{n}_{\mathbf{a}}-\mathbf{n}_{\mathbf{p}}$
Main borly fixed origin
Center of mass of the ith segment in appendage k

Center of mass of the main body
Origin of the uniformly translating Newtonian frame

The total force on the inboard hinge of the i th segment in appendage k

Total linear momentum of the system

Linear momentum of segment k, i

Total spring and dashpot torque about the inboard pin of the ith segment in appendage k

Dashpot parameters for the ith hinge of appendage k

Designation of a field point in segment: k,i

Position of attachment point of kick-off spring k, i to the main body

Position vector of a field point in segment k , i from point O

Position of attachment point of kick-off spring k, i to segment $k, 1$

Position vector of system center of mass
Total kinetic energy of the system
Kinetic energy of segment k, i

Transformation matrix which transforms a vector in appendage k coordinates to main body coordinates

Kinetic energy of the main body
Time from beginning of simulation
Time of thrust termination
Time at which thrust is initiated
Release time of first segment of appendage k

Time, $t=\hat{t}$, at the instant of a release or lock-up event

Time $\mathbf{t}=\hat{\mathbf{t}}^{-}$immediately preceding a release or lock-up event

$\hat{\mathbf{t}}^{+}$	Time, $t=\hat{\mathbf{t}}^{+}$, immediately following a release or lock-up event
[U]	3×3 identity matrix
$\overline{\mathrm{v}}$	Velocity of main body reference point, O, relative to O_{N} with respect to an observer fixed in the main body
$\left.{ }^{(v)}\right)_{M}$	Means the vector $\overline{\mathbf{V}}$ is expressed in a coordinate frame fixed to the main body
$\bar{x}_{\mathrm{i}}^{\mathrm{k}}$	The position of the attachment point of kick-off spring k, i to segment $k, 1$ relative to it's main body attachment point.
$x_{i_{f}}^{k}$	The length of kick-off spring $k, 1$ at which disengagement occurs.
XYZ	Inertial coordinates with origin at O_{N}
xyz	Main body fixed coordinates with origin at O
$\hat{X}, \hat{Y}, \hat{Z}$	Unit vectors associated with the inertial frame
$\hat{x}, \hat{y}, \hat{z}$	Unit vectors associated with the main body frame
\bar{Z}_{M}	Inertial velocity of the main body
\bar{Z}_{i}^{k}	Inertial velocity of segment k_{p} i
a_{i}^{k}	Angular position of segment k, i relative to the main body
$\beta_{i}{ }^{\text {k }}$	Angular position of segment k, i relative to segment $k, i-1$ for $i>1$. $\beta_{1}^{k}=a_{1}^{k}$
$\beta_{r_{i}}^{\mathbf{k}}$	Relative angle of segment $k, i-1$ (the value of β_{i-1}^{k}) at which segment $k_{1} i$ is released in appendage k for $i>1$
$\beta_{s i}^{k}$	Relative angle of segment k, i (the value of β_{i}^{k}) at which segment k, i is locked
$\gamma_{i}^{k}, \theta_{i}^{k}$	Pre-load angles for ith hinge in appendage k

$\hat{\xi}_{i}^{k}, \hat{\eta}_{i}^{k}, \hat{\zeta}_{i}^{k}$
$\bar{\rho}$
$\bar{\sigma}$
σ_{i}^{k}
τ_{i}^{k}
$\psi^{k}, \theta^{k}, \varphi^{k}$
$\psi^{M}, \theta^{M}, \varphi^{M}$
$\bar{\omega}$
$\bar{\omega}_{i}^{k}$

Unit vector triad associated with the coordinate frame fixed in the ith segment in appendage k

Position vector of 0 relative to O_{N}
Position vector of a field point in segment k, i from the $c . m$. of segment k, i
\dot{a}_{i}^{k}, angular velocity of segment k, i relative to the main body
$\dot{\beta}_{\dot{i}}^{\mathbf{k}}$, angular velocity of segment k, i relative to segment k, i-1

Euler anglea defining plane of appendage k with respect to the main body

Euler angles defining the position of the main body in inertial space

Angular velocity of main body
Angular velocity of segment k, i

The nomenclature which follows is associated with the stress package, Sections 10 to 14. Since four indices are generally required, a different formatis is adopted to clarify the indices associated with each quantity.
NOMENCLATURE

App.k	Seg.i	Station j	Vertex ℓ	Description
\checkmark	\checkmark			The acceleration of the c.m. of segment k, i.
\checkmark	\checkmark	\checkmark		The acceleration of the c.m. of subsegment j of segment k, i (subsegment k, i, j).
\checkmark	\checkmark	\checkmark		Crossectional area of segment k,i.
\checkmark	\checkmark	\checkmark		Area enclosed by the crossection of segment k, i.
\checkmark	\checkmark	\checkmark	\checkmark	Crossectional area of plate element associated with vertex ℓ, at station j in segment k, i.
\checkmark	\checkmark	\checkmark	\checkmark	Portion of enclosed area associated with plate element ℓ, at station j, in segment k, i.
\checkmark	\checkmark	\checkmark		The position of the center of mass of subsegment k, i, j.

[^2]Symbo1
$\left(\frac{1}{C}\right)_{1}^{k}$
C_{ξ}, C_{ζ}
$\Delta \bar{C}_{\mathbf{j}}$
d_{ℓ}
E
G_{ℓ}
I
NOMENCLATURE (Continued)

App.k	Seg.i	Station \mathbf{j} Vertex ℓ	Description
\checkmark	\checkmark	\checkmark	Area moments of inertia of a non-circular section
			Operator which converts a vector, say $\bar{\omega}$, to a 3×3 matrix, that is
			$\overline{\bar{J}}(\bar{\omega})=\left[\begin{array}{ccc} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \end{array}\right]$
			$\left[\begin{array}{lll}\omega_{2} & \omega_{1} & 0\end{array}\right]$
\checkmark	\checkmark	\checkmark	Constants used in calculating the effective moments.
\checkmark	\checkmark	\checkmark	The mass of the portion of segment k, i defined by stations j, and $j-1$.
\checkmark	\checkmark	\checkmark	The mass and mass monent of inertia associated

$\frac{\text { Symbol }}{I_{\xi \zeta}, I_{\xi \eta}, I_{\eta \eta}}$
$\overline{\bar{J}}(\bar{\omega})$
k_{1}, k_{2}, k_{3}
E^{-7} \qquad
NOMENCLATURE (Continued)

App.k	Seg.i	Station ${ }^{\text {j }}$	Vertex \&	Description
\checkmark	\checkmark			The number stations associated with segment k, i.
\checkmark	\checkmark			The force acting on the outboard and inboard hinges, respectively, of segment k,i.
\checkmark	\checkmark			The force acting on the inboard hinge of segment k, i.
\checkmark	\checkmark			The force and torque, respectively, acting at the inboard end of subsagment k, i, j.
\checkmark	\checkmark^{\prime}			The impulsive forces acting on the outboard and inboard hinges, respectively, of segment k,i during a lock-up.
\checkmark	\checkmark			The impulsive torque acting on the inboard and outboard hinges of segment k, i during a lock-up.
\checkmark	\checkmark	\checkmark		The impulsive force acting on the inboard end

NOMENCLATURE (Continued)

App.k	Seg. 1	Station ${ }^{\text {j }}$	Vertex \&	Description
\checkmark	\checkmark	\checkmark		Modified moments acting on the inboard end of subsegment k, i, j.
\checkmark	v^{\prime}	\checkmark	\checkmark	Moments of crossectional areas defined by ξ and ζ, about the neutral axis, (centroid).
\checkmark	\checkmark			The moments acting on the outboard and inboard hinges, respectively, of segment k,i.
\checkmark	\checkmark	\checkmark		The maximum, through time, force and torque, respectively, acting on the inboard end of subsegment k, i, j, during a lock-up.
\checkmark	\checkmark	\checkmark		The impulsive torque acting on the inboard end of subsegment k, i, j during a lock-up.
\checkmark	\checkmark	\checkmark		The shear flow on a non-circular crossection of subsegment k, i, j.
\checkmark	\checkmark	\checkmark		The radius of segment k, if it is circular.
\checkmark	\checkmark	\checkmark		$S=2 \pi R^{2} t$, a constant required to establish the shear stress on a circular section.

*

NOMENCLATURE (Continued)

PARTI
FINAL REPORT

1. INTRODUCTION

During launch, space vehicles are generally stowed in the confining volume of the launch vehicle nosecone. If the space vehicle has appendages, these must be designed to satisfy this stowability constraint. Appendages may serve any of a number of purposes, such as:

- Experiment package isolation
- Solar cell arrays
- Communications antennas
- Inertia control for spin or gravity gradient stability

In order to be stowable, appendages are often designed as series of hinged elements which can be collapsed to fit within an allowable envelope. Once in orbit, the appendages are deployed under the action of spin of the main body, thrust applied to the main body, or by the action of springs and dashpots which may act about each hinge point.

Depioyment in general must be accomplished within constraints of maintaining stability of spacecraft motion and not exceeding the maximum design stresses for the appendages. These constraints are satisfied by selecting a proper combination of design parameters such as release times and lock-up positions of appendages; magnitude, duration and direction of applied thrust; spin rate of the spacecraft; and hinge spring and dashpot parameters.

The first step in determining whether a particular array of design parameters is appropriate is to determine the motion of a prospective system. Having the motion, one can readily determine whether motion constraints are satisfied and estimate maximum stresses.

Since the mathematical formulation describing the motion of such systems is a set of complicated non-linear differential equations, they can only be solved in general by use of numerical techniques. The NBoom Program, developed by TRW under contract to NASA Goddard, embodies such a system of equations and provides a numerical solution for use in design studies. This report describes the development and use
of the program, which calculates the motion of a spinning, accelerating spacecraft deploying a number of asymmetrical segmented appendages with arbitrury hinge torques, and which in addition, estimates appendage segment stresses.

2. SUMMARY

The satellite and its deploying appendages are modeled in the N Boom Program as a system of rigid bodies. Each appendage is composed of one or more rigid segments, which are hinged together, and attached to the central body at an arbitrary location with an arbitrary orientation. The general features and options provided by the \mathbb{N} Boom Program are the following:

System Configuration

Two general types of appendages are admissable:

- The first, involving one or more gegments and constrained to depioy in a plane fixed to the main body.
- The second, involving two segments, with the first constrained to deploy in a plane relative to the main body, while the second segment rotates about the first.
- The center of mass of each body in the system is arbitrarily located.
- The number of segments allowable is dependent on the size of computer memory available. In the case of the IBM 360 Mod 65, the 1imitation is 20 segments, while for the IBM 360 Mod 91 it may be as large as 100.

Hinge Torques

- Linear or non-1ineax springs and dashpots may be assumed to act about each segnent hinge and, in addition, nonlinear, disengaging springs may be assumed to act between arbitrary points on the main body and an arbitrary point on any appendage segment.
- Appendage segments may be released from an initially locked position. The program provides a number of release criteria options:
a. Each segment may be released at a specified time.
b. Each segment may be released when any other prescribed segment, which may be in another appendage, has attained a given relative rotation with respect to the segment inboard of it.
- Adjoining segments may be locked together when they have attained a prescribed relative angle. The motion of all. the bodies which compose the system is reinitiated whenever a hinge is locked.

Segment Stresses

- The program provides the option of calculating segment stresses which arise in the course of deployment. The stresses are pseudo-dynamic stresses. That is, the internal forces from which the stresses are obtained are calculated by means of the rigid body motion.
- The program calculates stresses and principal stresses at the four points on the crossection lying on segment coordinate axes, and in addition, establishes the most severe stress condition at each station on each segment at times specified by the user and at each lock-up.
- Internal stresses are calculated from the internal forces, obtained above, by strength of materials theory.
- Maximum internal forces during a lock-up are calculated from the impulsive forces and torques which act at each hinge point when a segment locks, and an assumed pulse shape, assoclated with the locking hinge and specifled in input.

Section Properties - Required if Stresses are to be Calculated

- The shear center and neutral axis of each seginent are assumed concurrent.
- Two types of segment crossection are admissable:
a. circular tube
b. a general polygon crossection having as many as five sides.

Thus, the user inputs the tube radius and thickness in the first case, and the coordinates of the vertices and the wall thickness between vertices in the case of the second crossection option.

- The above crossection parameters may vary from station to station on the segment. As many as 6 stations are allowed.
- The progran calculates all the geometric section properties required for the stress calculation from the above inputs.
- The user inputs mass properties of each portion of segment between stations. The program generates all required mass properties for stress calculation purposes from this input.

Plots

- A plot output option is provided.

3. DISCUSSION

The N-Boom Program is designed to predict the motion of a spinaing, accelerating spacecraft and its deploying appendages during the deployment maneuver, and, on the basis of this rigid body motion, estimate segment stresses. The satellite and appendages are modeled as a system of rigid bodies. Two types of appendage models are considered: the first is a series of bodies hinged together end to end and constrained to deploy in a plane fixed to the main body; the second type, simulating a paddle, Involves two bodies, the first deploying in a plane fixed to the main body while the second body rotates about the first. The system motion is induced by non-1inear springs and dashpots acting at the hinges and/or by external forces and torques. For the prupose of calculating stresses, two types of segment crossections are admissible: (1) circular; (2) polygonal. In addition, appendage segment crossections may vary from station to station along their length.

The external forces and torques, discussed in Section 6, arise from two sources: gravity forces which act on the center of mass of each body in the system, and thrust applied to the main body.

In practice, satellite appendages are initially unreleased, that is, initially the system is one rigid body. Appendages are then released upon command, move out to a fully deployed configuration, and are locked in place. However, a complication is introduced into this sequence of events when appendages and segments are not released simultaneously. The program allows for any hinge in appendage k to be released at time t_{i}^{k}, in addition, any hinge in appendage k may be released on the basis of a displacement criteria. That is, segment k, i may be released when segment m, r has attained a prescribed position relative to the segment inboard of it. In the program, motion must be correctly reinitialized whenever a release or lock-up event occurs. The importance of this point and the method by which this is accomplished is discussed in detail in section 7.

Counting each one of the n appendage segments and the main body, the system consists of a total of $n+l$ bodies. The main body has 6 degrees of freedom: three rotations, and three translations. The position of each appendage segment can be described by considering one additional degree of freedom relative to the main body for each additional segment in the appendage. Thus, for this system of $n+1$ bodies, there are a total of $n+6$ degrees of freedom and to completely describe the motion of the system $n+6$ dynamical equations of motion are required.

Three equations of motion are conributed by the system moment equation, Equation (4.9) of Section 4. Another moment equation is obtained for the segments outboard of each hinge, Equations (4.16) and (4.17). Finally, three equations are obtained corresponding to the translational motion of the system, Equation (4.3). Thus, a total of $n+6$ equations are provided to account for the motion of the system.

These equations are later reformulated in a form suitable for solution by standard computer techniques. This form is a matrix equation, Equation (5.1), Solution to problems such as release and lock-up are developed in terms of manipulations of this equation.

Section 8 provides equations for kinetic energy, angular momentum, and linear momentum of the system, Equations (8.11), (8.1.3), and (8.7), respectively. These equations are not used in the program to calculate motion, but these quantities are calculated from the computed motion. In the check-out phase of the program development, these quantities served as checks on the predicted motion. In addition, the user should find them useful as a check on the results.

In Section 10, Loads, and Section 11, Stresses, the two major steps required to calculate segment stress are presented. In the first of these sections, the means whereby crossection loads are calculated from the general motion or from the motion discontinuities during a lock-up are described. Presentation of this analysis first serves to clarify the most suitable form in which to have dynamic quantities and inertia properties. The crossection loads, derived in Section 10 , are
in the same format whether or not a segment is locking. Consequently, in Section 11, where the crossection stresses are calculated, it is unnecessary to discriminate whether a segment has locked or not.

In Section 11 the means of calculating crossection stresses is described. Although some complexity is introduced by a consideration of alternate non-circular and circular crossections, nc particular difficulty arises from consideration of station-to-station variations.

Sections 12 and 13 translate crossection geometry and mass paraneters input by the user into a form admissible to the loads subroutine of Section 10 , and the stresses subroutine of Section 11 . The input required is in a format most convenient to the user, and consequently, although in some cases the required input may be voluminous, the quantity of input is greatly reduced by the addition of these sections.

Section 14 converts segment motion as calculated by the motion portion N-Boom program into a form suitable for use in the loads calculation.

Appendix A provides definitions of a number of quantities derived during the course of formulation in terms of variables defined in the Nomenclature. The derivations of these is not provided in the report, although in most cases, these are readily apparent.

Part II is the User's Manual. Namelist input quantities are defined in terms of notatiow used in the formulation and defined in the Nomenclature Section. This part of the report also includes sample load sheets and test cases.

Volume II of this report is the Programmer's Manual. It includes a description of the program, descriptions of subroutines in the program, a flowchart, and a program listing.

4. FORMULATION

The system described in Section 3 involves a total of $n+6$ degrees of freedom, where n is the number of degrees of freedom in appendage segments relative to the main body. Therefore, in order to describe the motion of the system, $n+6$ dynamical equations are required. These are obtained as follows:

1) Three component equations from Newton's Second Law for the system
2) Three component equations from the system moment equation
3) A moment equation about O for all segments outboard of each hinge

Figure 4-1 introduces some of the notation used in the analysis: $\bar{\rho}$ is the position vector of the reference point O (fixed in the main body) with respect to O_{N} (fixed in inertial space); the vector \bar{b}_{i}^{k} is the position vector of the center of mass of the ith segment in appendage k, O_{i}^{k} with respect to $O ; \bar{d}^{k}$ is the position vector of the first hinge in appendage k with respect to O; and \bar{S} is the position vector of the system center of mass C with respect to O.

Figure 4-2 introduces notation associated with a particular appendage segment, the ith segment in appendage k, referred to as segment k, i. Not shown in Figure 4-2 is $\hat{e}_{1}{ }^{k}$, a unit vector normal to the plane of deployment of appendage k. The meaning of the geometric quantities is clear; remaining symbols represent forces and torques. The vector \bar{P}_{i}^{k} represents the resultant bearing force on the inboard hinge of segment i, and consequently $-\bar{P}_{i+1} k$ represents the bearing force on the outboard hinge. \vec{F}_{i}^{k} is the resultant external force and $Q_{i}^{k},-Q_{i+1}^{k}$, are the spring and dashpot moments on the inboard and outboard ends of segment i, respectively.

Figure 4-1. Basic System Notation

Figure 4-2. Segment i in Appendage k

The notation associated with a paddle appendage is almost identical to that associated with an ordinary appendage. This is shown in Figure 4-3.

Figure 4-3. Paddle Appendage Coordinates
The vector $\bar{l}_{1}^{\mathbf{k}}$ is to an arbitrary point on the axis of rotation of the paddle. Referring to Figure 4-2, Newton's Second Law for segment k, i is

$$
\begin{equation*}
m_{i}^{k} \frac{D^{2}}{D t^{2}}\left(\bar{\rho}+\bar{b}_{i}^{k}\right)=\bar{F}_{i}^{k}+\bar{P}_{i}^{k}-\bar{P}_{i+1}^{k} \tag{4.1}
\end{equation*}
$$

where

$$
\overline{\mathbf{P}}_{\mathbf{n}_{\mathbf{k}+1}}^{\mathbf{k}}=0
$$

while for the main body, it is

$$
\begin{equation*}
m_{M} \frac{D^{2}}{D t^{2}}\left(\bar{p}+\bar{b}_{M}\right)=\bar{F}_{M}-\left(\bar{P}_{1}^{1}+\bar{P}_{1}^{2}+\ldots+\bar{P}_{1}^{n} a\right) \tag{4,2}
\end{equation*}
$$

Summing (4.1) over all appendage segments and combining with (4.2), Newton's Second Law for the system is obtained

$$
\begin{equation*}
m_{T} \frac{D^{2}}{D t^{2}}(\bar{\rho}+S)=\bar{F} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{T}=m_{M}+\sum_{i, k} m_{i}^{k} \tag{4.4}
\end{equation*}
$$

is the total mass of the system,

$$
\begin{equation*}
\bar{S}=\frac{1}{m_{T}}\left(m_{M} \bar{b}_{M}+\sum_{i, k} m_{i}^{k} \bar{b}_{i}^{k}\right) \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{F}=\bar{F}_{M}+\sum_{i, k} \bar{F}_{i}^{k} \tag{4.6}
\end{equation*}
$$

is the total external force on the system.
The moment equation for the th segment of the appendage k is

$$
\begin{align*}
\frac{D \bar{H}_{o_{i}}^{k}}{D t} & +m_{i}^{k} \bar{b}_{i}^{k} \times \frac{D^{2} \bar{\rho}}{D t^{2}}=\bar{B}_{i}^{k}+\bar{b}_{i}^{k} \times \bar{F}_{i}^{k}+\bar{Q}_{i}^{k} \\
& +\bar{\hbar}_{i}^{k} \times \bar{P}_{i}^{k}-\left(\bar{Q}_{i+1}^{k}+\bar{h}_{i+1} \times \bar{P}_{i+1}^{k}\right)
\end{align*}
$$

where, it is noted that

$$
\bar{Q}_{n_{k+1}}^{k}=0
$$

The corresponding equation for the main body is

$$
\begin{align*}
\frac{D H_{o M}}{D t}+m_{M} \bar{S}_{M} \times \frac{D^{2} \rho}{D t^{2}}=\bar{B}_{M} & +\bar{D}_{M} \times F_{M} \\
& -\sum_{k=1}^{n_{a}}\left(\bar{Q}_{1}^{k}+\bar{\hbar}_{1}^{k} \times P_{1}^{k}\right) \tag{4.8}
\end{align*}
$$

In the same manner as Equation (4.3) was obtained, a moment equation for the system is obtained by summing (4.7) over all i and k and adding (4.8). Thus,

$$
\begin{equation*}
\frac{D H_{o}}{D t}+m_{T} s \times \frac{D^{2} p}{D t^{2}}=\mathbb{M}_{0} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{o}=H_{o M}+\sum_{i, k} \bar{H}_{O_{i}}^{k} \tag{4.10}
\end{equation*}
$$

is the total moment of relative momentum of the system about point O, and

$$
\begin{equation*}
\bar{M}_{0}=\bar{E}_{M}+\bar{\zeta}_{M} \times \bar{F}_{M}+\sum_{i, k}\left(\bar{B}_{j}^{k}+\bar{E}_{j}^{k} \times \bar{F}_{j}^{k}\right) \tag{4.11}
\end{equation*}
$$

is the total external moment on the system about 0 .
Equations (4.3) and (4.9) represent 6 component equations out of a total of $n+6$ (where n is the totall number of appendage segments) required to describe the motion of the system. The additional n equations required are obtained by writing the moment equation about O for all segments outboard of each hinge. This equation is obtained by summing (4.7) over indices corresponding to the ith body outward, to the outboard end of appendage k. Thus,

$$
\begin{align*}
\sum_{j=i}^{n_{k}} \frac{D H_{o j}^{k}}{D t}+\sum_{j=i}^{n_{k}} m_{j}^{k} \sigma_{j}^{k} \times \frac{D^{2}-\bar{p}}{D t^{2}}=\sum_{j=i}^{n_{k}}\left(B_{j}^{k}\right. & \left.+\sigma_{j}^{k} \times F_{j}^{k}\right) \\
& +\bar{Q}_{i}^{k}+\bar{h}_{i}^{k} \times \bar{F}_{i}^{k} \tag{4.12}
\end{align*}
$$

The interaction forces are eliminated from (4.12) by use of Equation (4.1). Summing (4.1) over j, with $j>i$, in appendage k and then solving for $\overline{\mathcal{P}}_{i}^{k}$, one obtains

$$
\begin{equation*}
\mathbf{P}_{i}^{k}=\sum_{j=i}^{n_{k}}\left[m_{j}^{k} \frac{D^{2}}{D t^{2}}\left(\bar{\rho}+\bar{b}_{j}^{k}\right)-\bar{F}_{j}^{k}\right] \tag{4.13}
\end{equation*}
$$

Substitution of (4.13) in Equation (4.12) yields

$$
\begin{equation*}
\sum_{j=i}^{n_{k}}\left[\frac{D H_{o j}^{k}}{D t}+m_{j}^{k}\left(\sigma_{j}^{k}-\bar{F}_{i}^{k}\right) \times \frac{D^{2} \bar{\rho}}{D t^{2}}-m_{j}^{k} \bar{\hbar}_{i}^{k} \times \frac{D^{2} \bar{\sigma}_{j}^{k}}{D t^{2}}\right]=\bar{M}_{i}^{k}+\bar{Q}_{i}^{k} \tag{4.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{M}_{i}^{k}=\sum_{j=i}^{n_{k}}\left(\bar{B}_{j}^{k}+\bar{\sigma}_{j}^{k} \times F_{j}^{k}\right) \tag{4.15}
\end{equation*}
$$

To arrive at the desired equation, it is necessary to eliminate unknown components of \boldsymbol{Q}_{i}^{k} from (4.14). In the case of ordinary segments, known components of \boldsymbol{Q}_{i}^{k} are normal to the plane of deployment. Thus, we obtain
$\hat{e}_{1}^{k} \cdot \sum_{j=1}^{n_{k}}\left[\frac{D H_{o j}^{k}}{D t}+m_{j}^{k}\left(b_{j}^{k}-\hbar_{i}^{k}\right) \times \frac{D^{2}-\bar{p}}{D t^{2}} \cdot m_{j}^{k} \hbar_{i}^{k} \times \frac{D^{2} b_{j}^{k}}{D t^{2}}\right]$

$$
\begin{equation*}
=\hat{e}_{1}^{k} \cdot \bar{M}_{i}^{k}+Q_{1}^{k} \tag{4.16}
\end{equation*}
$$

for each non-paddle segment, that is for $k \leq n_{s}$ all j, and for $n_{s}<k \leq n_{a}$ for $\mathrm{j}<\mathrm{n}_{\mathrm{k}}$

The corresponding equation for paddle segments is

for $n_{s}<k \leq n_{a}$ and $j=n_{k}$.
Although Equations (4.3), (4.9), (4.16), and (4.17) form a mathematically complete description of the motion of the system, they are not in a form suitable for obtaining numerical results. In their present form, all terms are implicit functions of the $n+6$ unknown parameters (3 translations and 3 rotations for the main body and n relative angular displacements, one for each of the n appendage segments). Furthermore, reducing Equations (4.3), (4.9), (4.16), and (4.17) to equations involving only the $n+6$ unknown parameters is not sufficient. In order to be amenable to standard techniques for computer solution, the equations must be reduced to normal form. An intermediate step is to be able to write
$\left[\begin{array}{l}\text { [A], a square matrix } \\ \text { whose eiements are } \\ \text { composed of geornetric } \\ \text { and mass parameters } \\ \text { only (Inertia) }\end{array}\right]\left(\begin{array}{l}\text { a column } \\ \text { vector of } \\ \text { unknown } \\ \text { derivatives } \\ \text { (accelerations) }\end{array}\right)=\left(\begin{array}{l}\text { a column } \\ \text { vector of } \\ \text { known } \\ \text { quantities } \\ \text { (forces) }\end{array}\right)$

Equation (4.18) is shown in detail in Section 5.

Proceeding with the reformulation, the system translation equation, Equation (4.3), is first considered. All terms must be first expressed in terms of the unknown parameters. The inertial acceleration of the reference point O may be expressed relative to an observer fixed in the main body as

$$
\begin{equation*}
\frac{D^{2} \bar{\rho}}{D t^{2}}=\left(\frac{d^{2} \bar{\rho}}{d t^{2}}\right)_{M}+\dot{\bar{\omega}} \times \bar{\rho}+2 \omega \times\left(\frac{d \bar{\rho}}{d t}\right)_{M}+\bar{\omega} \times(\bar{\omega} \times \bar{\rho}) \tag{4.19}
\end{equation*}
$$

and the inertial acceleration of the system center of mass with respect to O in main body coordinates is

$$
\begin{align*}
m_{T} \frac{d^{2} \bar{S}}{d t^{2}} & =\frac{d \bar{\omega}}{d t} \times m_{T} \bar{S}+\sum_{k=1}^{n_{s}} \sum_{i=1}^{n_{k}} \bar{\beta}_{i}^{(1) k} \dot{\sigma}_{i}^{k} \\
& +\sum_{k=n_{s}+1}^{n_{a}}\left[\left(\bar{\beta}_{1}^{(1) k}+m_{2}^{k} \hat{e}_{1} \times \bar{C}_{2}^{k}\right) \dot{\sigma}_{1}^{k}+m_{2}^{k} \hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k} \dot{\sigma}_{2}^{k}\right]+\bar{\beta} \tag{4.20}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{\beta}_{i}^{(1) k}=m_{i}^{k} \hat{e}_{i}^{k} \times \bar{C}_{i}^{k}+\mu_{i}^{k} \ell_{i}^{k} \hat{\zeta}_{i}^{k} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{\beta} & =\sum_{k=1}^{n_{s}} \hat{e}_{1}^{k} \times\left[\sum_{i=1}^{n_{k}}\left(\sigma_{i}^{k}\right)^{2} \bar{\beta}_{i}^{(1) k}\right]+2 \bar{\omega} \times \sum_{i, k} \sigma_{i}^{k} \bar{\beta}_{i}^{(1) k} \\
& +\sum_{k=n_{s}+1}^{n_{a}}\left\{\hat{e}_{1}^{k} x\left[\left(\sigma_{1}^{k}\right)^{2} \bar{\beta}_{1}^{(1) k}\right]+2 \bar{\omega} \times \sum_{k=n_{s}+1}^{n_{a}} \sigma_{1}^{k} \bar{\beta}_{1}^{(1) k}\right\} \\
& +\sum_{k=n_{s}+1}^{n_{a}} m_{2}^{k}\left\{\sigma_{1}^{k} \sigma_{2}^{k} \hat{\xi}_{1}^{k} \times \bar{C}_{2}^{k}+\left(\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right)\right. \\
& \left.x\left[\left(\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \times \mathcal{C}_{2}^{k}\right]\right\} \\
& 2 \bar{\omega} \times \sum_{k=n_{s}+1}^{n_{a}}\left[m_{2}^{k}\left(\sigma_{1}^{k} \hat{e}_{1}^{k} \times \bar{C}_{2}^{k}+\sigma_{2}^{k} \hat{n}_{1}^{k} \times \bar{C}_{2}^{k}\right)\right] \tag{4.22}
\end{align*}
$$

Those quantities in the above equations, or yet to be developed equations, which have not been previously defined or are not to be found in the Nomenclature section will be found in Appendix A.

If we define

$$
\begin{equation*}
\bar{v}=\left(\frac{d \bar{\rho}}{d \bar{t}}\right)_{M} \tag{4.23}
\end{equation*}
$$

then (4.3) can be written

$$
\begin{align*}
& m_{T} \frac{d \bar{v}}{d t}-m_{T}(\bar{\rho}+\bar{S}) \times \frac{d \bar{\omega}}{d t}+\sum_{i, k}^{n} \bar{\beta}_{i}^{(1) k} \dot{\sigma}_{i}^{k} \\
&+\sum_{k=n_{s}+1}^{n_{a}}\left[\left(\bar{\beta}_{1}^{(1) k}+m_{2}^{k} \hat{e}_{1}^{k} \times \bar{C}_{2}^{k}\right) \dot{\sigma}_{1}^{k}+m_{2}^{k} \hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k} \dot{\sigma}_{2}^{k}\right]=\bar{u}_{1} \tag{4.24}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{u}_{1}=\bar{F}-\bar{\beta}-2 m_{T} \bar{\omega} \times \bar{v}-m_{T} \bar{\omega} \times(\bar{\omega} \times \bar{\rho}) \tag{4.25}
\end{equation*}
$$

Equation (4.24) corresponds to the first three rows of Equation (5.1).
In order to reformulate Equation (4.9), it will be necessary to reexpress the terms of (4.9) in terms of the parameters of interest. The first term in (4.9) may be written

$$
\begin{equation*}
\frac{\overline{D H}_{o}}{D t}=\sum_{i, k} \frac{D \bar{H}_{o i}^{k}}{D t}+\frac{D \bar{H}_{O M}}{D t} \tag{4.26}
\end{equation*}
$$

where $\frac{\overline{\mathrm{DH}} \overrightarrow{\mathrm{H}}_{\mathrm{oi}}^{\mathrm{k}}}{\overline{\mathrm{Dt}}}$ is the moment of relative momentum of segment k, i about O, and is given by

$$
\begin{equation*}
\frac{\overline{D H}_{o i}^{k}}{D t}=m_{i}^{k} \bar{b}_{i}^{k} \times \frac{D^{2} \bar{b}_{i}^{k}}{D t^{2}}+\frac{D \bar{H}_{c i}^{k}}{D t} \tag{4.27}
\end{equation*}
$$

where $\bar{H}_{c i}^{k}$ denotes the relative angular momentum vector of the ith segment of appendage k about its center of mass, and where the first term is given by

$$
\begin{align*}
& m_{i}^{k} \bar{b}_{i}^{k} \times \frac{D^{2} \bar{b}_{i}^{k}}{D t^{2}}=m_{i}^{k} \bar{b}_{i}^{k} \times\left(\dot{\bar{\omega}}^{\prime} \times \bar{b}_{i}^{k}\right)+m_{i}^{k} \bar{b}_{i}^{k} \\
& \quad \times\left(\hat{e}_{1}^{k} \times \bar{C}_{i}^{k}\right) \dot{\sigma}_{i}^{k}+m_{i}^{k} \bar{b}_{i}^{k} \times \sum_{j=1}^{i-1} \ell_{j}^{k} \hat{\zeta}^{k} \dot{\sigma}_{j}^{k}+m_{i}^{k} \bar{b}_{i}^{k} \times \bar{g}_{i}^{k} \tag{4,28}
\end{align*}
$$

except for paddles, that is, if $i=2$, and $n_{B}<k \leq n_{a}$, then

$$
\begin{align*}
m_{2}^{k} \bar{b}_{2}^{k} & \times \frac{D^{2} \bar{b}_{2}^{k}}{D t^{2}}=m_{2}^{k} \bar{b}_{2}^{k} \times\left(\dot{\bar{\omega}}^{\prime} \times \bar{b}_{2}^{k}\right)+m_{2}^{k} \bar{b}_{2}^{k} \\
& \times\left(\dot{\sigma}_{1}^{k} \hat{e}_{1}^{k} \times \bar{C}_{2}^{k}\right)+\dot{\sigma}_{2}^{k} \hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k}+\bar{b}_{1}^{k} \times \dot{\sigma}_{1}^{k} \hat{\xi}_{1}^{k}+m_{2}^{k} \bar{b}_{2}^{k} \times \bar{g}_{2}^{k} \tag{4.29}
\end{align*}
$$

In order to re-write (4.9), the following relations will be of use:

$$
\begin{equation*}
\bar{g}^{(1)}=\sum_{i, k} m_{i}^{k} \bar{b}_{i}^{k} \times \bar{g}_{i}^{k} \tag{4.30}
\end{equation*}
$$

where $\bar{g}_{\mathrm{i}}^{\mathrm{k}}$ is defined in Appendix A, and

$$
\begin{gather*}
m_{M} \bar{b}_{M} \times \frac{D^{2} \bar{b}_{M}}{D t^{2}}=m_{M} \bar{b}_{M} \times\left(\dot{\bar{\omega}} \times \bar{b}_{M}\right)+m_{M} \bar{b}_{M} \times\left[\bar{\omega} \times\left(\bar{\omega} \times \bar{b}_{M}\right)\right] \tag{4.31}\\
\bar{H}_{c i}^{k}=\overline{\bar{I}}_{i}^{k} \cdot \bar{\omega}_{i}^{k}=\overline{\bar{I}}_{i}^{k} \cdot\left(\bar{\omega}+\sigma_{i}^{k} \hat{e}_{1}^{k}\right) \tag{4.32}
\end{gather*}
$$

except for $n_{s}<k<n_{a}$ and $i=2$, in which case we have

$$
\begin{equation*}
H_{c 2}^{k}=\stackrel{=k}{I_{2}} \cdot \bar{\omega}_{2}^{k}={ }_{I_{2}}^{=k} \cdot\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \tag{4.33}
\end{equation*}
$$

the rate of change of the relative angular momentum of each body is

$$
\begin{equation*}
\frac{D H_{c i}^{k}}{D t}=\bar{I}_{i}^{k} \cdot\left(\dot{\bar{\omega}}-\sigma_{i}^{k} \hat{e}_{1}^{k} \times \bar{\omega}+\dot{\sigma}_{i}^{k} \hat{e}_{1}^{k}\right)+\left(\bar{\omega}+\sigma_{i}^{k} \hat{e}_{1}^{k}\right) \times \bar{H}_{c i}^{k} \tag{4.34}
\end{equation*}
$$

except for $n_{s}<k<n_{a}$ and $i=2$, in which case we have

$$
\begin{align*}
& \frac{D H_{c 2}^{k}}{D t}=\overline{\bar{I}}_{2}^{k},\left[\dot{\bar{\omega}}+\dot{\sigma}_{1}^{k} \hat{e}_{1}^{k}+\dot{\sigma}_{2}^{k} \hat{\eta}_{1}^{k}+\sigma_{1}^{k} \sigma_{2}^{k} \hat{\xi}_{1}^{k}-\left(\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) x \bar{\omega}\right] \\
& +\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \times \bar{H}_{c 2}^{k} \tag{4.35}
\end{align*}
$$

Using Equations (4.28) through (4.34), Equation (4.9) is written in the form

$$
\begin{aligned}
& m_{T} S \times \frac{d \bar{v}}{d t}+\left(\sum_{i, k} \overline{\bar{I}}_{i}^{k}+\overline{\bar{I}}_{M}\right) \cdot \dot{\bar{\omega}}+m_{T} \bar{S} \times(\dot{\bar{\omega}} \times \bar{\rho}) \\
& +m_{T} \bar{b}_{M} \times\left(\dot{\bar{\omega}}^{\times} \bar{b}_{M}\right)+\sum_{i, k} m_{i}^{k} \bar{b}_{i}^{k} \times\left(\dot{\bar{\omega}} \times \bar{b}_{i}^{k}\right) \\
& +\sum_{i, k}\left[\overline{\bar{I}}_{i}^{k} \cdot \hat{e}_{1}^{k}+m_{i}^{k} \bar{b}_{i}^{k} \times\left(\hat{\epsilon}_{1}^{k} \times \overline{\bar{C}}_{i}^{k}\right)+\overline{\bar{l}}_{i}^{k} \overline{\bar{S}}_{i}^{k} \times \hat{\zeta}_{i}^{k}\right] \dot{\sigma}_{1}^{k} \\
& +\sum_{k=n_{s}+1}^{n}\left\{\left[\left(\overline{\bar{I}_{1}^{k}}+\overline{\bar{I}}_{2}^{k}\right) \cdot \hat{e}_{1}^{k}+m_{1}^{k} \bar{b}_{1}^{k} \times\left(\hat{e}_{1}^{k} \times \bar{C}_{1}^{k}\right)\right.\right. \\
& \left.+m_{2}^{k} \bar{b}_{2}^{k} \times\left(\hat{e}_{1}^{k} \times \bar{C}_{2}^{k}\right)+m_{2}^{k} \bar{b}_{2}^{k} \times \ell_{1}^{k} \hat{\zeta}_{1}^{k}\right] \dot{\sigma}_{1}^{k}
\end{aligned}
$$

$$
\begin{equation*}
\left.+\left\lfloor\overline{\mathrm{I}}_{2}^{k} \cdot \hat{\eta}_{1}^{k}+\mathrm{m}_{2}^{\mathrm{k}} \bar{b}_{2}^{k} \times\left(\hat{\eta}_{1}^{k} \times \overline{\mathrm{C}}_{2}^{k}\right)\right] \stackrel{o}{\sigma}_{2}^{k}\right\}=\bar{u}_{2} \tag{4.36}
\end{equation*}
$$

where

$$
\begin{align*}
\bar{u}_{2} & =\bar{M}_{o}-\bar{g}^{(1)}+\sum_{k, i} \bar{I}_{i}^{k} \cdot\left(\sigma_{i}^{k} \hat{e}_{1}^{k} \times \bar{\omega}\right)-\sum_{i, k}\left(\bar{\omega}+\sigma_{i}^{k} \hat{e}_{i}^{k}\right) \times \bar{H}_{c i}^{k} \\
& -\bar{\omega} \times \bar{H}_{c M}-m_{M} \bar{b}_{M} x\left[\bar{\omega} \times\left(\bar{\omega} \times \bar{\sigma}_{M}\right)\right]-m_{T} \bar{S}_{x}[2 \bar{\omega} \times \bar{v}+\bar{\omega} \times(\bar{\omega} \times \bar{\rho})] \\
& +\sum_{k=n_{s}+1}^{n_{a}}\left\{\bar{I}_{1}^{k} \cdot\left(\sigma_{1}^{k} \hat{e}_{1}^{k} \times \bar{\omega}\right)+\bar{I}_{2}^{k} \cdot\left[\left(\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \times \bar{\omega}\right]-\sigma_{1}^{k} \sigma_{2}^{k} \bar{I}_{2}^{k} \cdot \hat{\zeta}_{1}^{k}\right. \\
& \left.-\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}\right) \times \bar{H}_{c 1}^{k}-\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right)+\bar{H}_{c}^{k}\right\} \tag{4.37}
\end{align*}
$$

Equation (4.36) corresponds to the second three rows of matrix A defined in Equation (5.1).

The re-formulation of Equations (4.16) and (4.17) is more lengthy than that required for the system translational Equation (4.24) or the system moment Equation (4.36). Consequently the derivation will not be presented in detail. The resulting re-formulation of Equation (4.16) is

$$
\begin{align*}
& \left(\hat{e}_{1}^{k} \times \bar{\beta}_{i}^{(2) k}\right) \cdot \frac{d \bar{v}}{d t}+\left[\left(\bar{\rho}+\bar{h}_{i}^{k}\right) \times\left(\hat{e}_{1}^{k} \times \bar{\beta}_{i}^{k}\right)\right] \cdot \frac{\dot{\omega}}{} \\
& \quad+\sum_{j=i}^{n_{k}}\left\{\hat{e}_{1}^{k} \cdot \bar{I}_{j}^{k}+m_{j}^{k}\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right) \times\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right)\right]\right\} \cdot \frac{\dot{\omega}}{} \\
& \quad+\sum_{j=i}^{n_{k}}\left\{\hat{e}_{1}^{k} \cdot \bar{I}_{j}^{k} \cdot \hat{e}_{1}^{k}+m_{j}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right)\right] \cdot\left(\hat{e}_{1}^{k} \times \bar{C}_{j}^{k}\right)\right. \\
& \left.\quad+\ell_{j}^{k} \hat{e}_{1}^{k} \cdot\left(\bar{\beta}_{j+1}^{k} \times \hat{\xi}_{j}^{k}\right)\right\} \dot{\sigma}_{j}^{k}+\sum_{j=1}^{i-1} \ell_{j}^{k} \bar{\beta}_{i}^{k} \times \hat{\zeta}_{j}^{k} \dot{\sigma}_{j}^{k}=u_{i}^{k} \tag{4.38}
\end{align*}
$$

where

$$
\begin{align*}
u_{i}^{k} & =\hat{e}_{1}^{k} \cdot\left\{M_{i}^{k}-\bar{h}_{i}^{(2) k}+\sum_{j=i}^{n_{k}}\left[\sigma_{j}^{k} \bar{I}_{j}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{\omega}\right)\right.\right. \\
& \left.\left.-\left(\bar{\omega}+\sigma_{j}^{k} \hat{e}_{1}^{k}\right) \times \bar{H}_{c j}^{k}-m_{j}^{k}\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right) \times\left(\bar{g}_{j}^{k}-\bar{h}_{i}^{(1) k}\right)\right]\right\}+u_{s i}^{k} \tag{4.39}
\end{align*}
$$

that is, for non-paddle appendages ($k \leq n_{s}$), and where $u_{s i}^{k}$ is the generalized force corresponding to kick-off springs derived in Section 6.

In the case of paddles, the moment about the inboard hinge is dotted with the normal to the deployment plane, \hat{E}_{1}^{k}, while for the second segment in this appendage, the paddle segment itself, the moment is dotted with $\hat{\eta}_{1}$. The first of these equations has a different form than the corresponding equation for ordinary 2 -segment appendages, but only in that the relative angular velocity of the second body is in the \hat{n}_{1}^{k} direction. For appendage k, when it is a paddle appendage, the moment equation about the inboard hinge of the first segment in the direction of the normal to the plane of deployment, \hat{e}_{1}, is

$$
\begin{align*}
\left(\hat{e}_{1}^{k}\right. & \left.\times \bar{\beta}_{1}^{(2) k}\right) \times \frac{d \bar{v}}{d t}+\left\{\overline{\bar{I}}_{1}^{k} \cdot \hat{e}_{1}^{k}+\bar{I}_{2}^{k} \cdot \hat{e}_{1}^{k}+\left(\bar{\rho}+\bar{h}_{1}^{k}\right) \times\left(\hat{e}_{1}^{k} \times \bar{\beta}_{1}^{k}\right)\right. \\
& \left.+m_{1}^{k}\left(\bar{b}_{1}^{k}-\bar{h}_{1}^{k}\right) \times\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{1}^{k}-\bar{h}_{1}^{k}\right)\right]+m_{2}^{k}\left(\bar{b}_{2}^{k}-\bar{I}_{1}^{k}\right) \times\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{2}^{k}-\bar{h}_{1}^{k}\right)\right]\right) \dot{\omega} \\
& +\left\{\hat{e}_{1}^{k} \cdot \bar{I}_{1}^{k} \cdot \hat{e}_{1}^{k}+\hat{e}_{1}^{k} \cdot \bar{I}_{2}^{k} \cdot \hat{e}_{1}^{k}+m_{1}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{1}^{k} \cdot \bar{h}_{1}^{k}\right)\right] \cdot\left[\hat{e}_{1}^{k} \times \bar{C}_{1}^{k}\right]\right. \\
& \left.+m_{2}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{2}^{k}-\bar{h}_{1}^{k}\right)\right] \cdot\left[\hat{e}_{1}^{k} \times \bar{C}_{2}^{k}\right]+\ell_{1}^{k} m_{2}^{k} \hat{e}_{1}^{k} \cdot\left[\overline{\mathrm{~b}}_{2}^{k}-\bar{h}_{1}^{k}\right] \times \hat{\zeta}_{1}^{k}\right] \dot{\sigma}_{1}^{k} \\
& +\left\{\hat{e}_{1}^{k} \cdot \bar{I}_{2}^{k} \cdot \hat{\eta}_{1}^{k}+m_{2}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{2}^{k}-\bar{h}_{1}^{k}\right)\right] \cdot\left[\hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k}\right]\right\} \dot{\sigma}_{2}^{k}=u_{1}^{k} \tag{4.40}
\end{align*}
$$

where

$$
\begin{aligned}
u_{1}^{k} & =Q_{1}^{k}+\hat{e}_{1}^{k} \cdot\left[M_{1}^{k}-\bar{h}_{1}^{(2) k}+\sigma_{1}^{k} \bar{I}_{1}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{\omega}\right)+\bar{I}_{2}^{k} \cdot\left(\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \times \bar{\omega}\right. \\
& -\sigma_{1}^{k} \sigma_{2}^{k} \bar{I}_{2}^{k} \cdot \hat{\zeta}_{1}^{k}-\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}\right) \cdot \bar{H}_{c}^{k}-\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \times \bar{H}_{c_{2}}^{k} \\
& \left.-m_{1}^{k}\left(\bar{b}_{1}^{k}-\bar{h}_{1}^{k}\right) \times\left(\bar{g}_{1}^{k}-\bar{h}_{1}^{(1) k}\right)-m_{2}^{k}\left(\bar{b}_{2}^{k}-\bar{h}_{1}^{k}\right) \times\left(\bar{g}_{2}^{k}-\bar{\hbar}_{1}^{(1) k}\right)\right]+u_{s 1}^{k}
\end{aligned}
$$

for $n_{s}<k \leq n_{a}$, and $u_{s 1}^{k}$ is the force term corresponding to kick-off springs derived in Section 6 .

The moment equation for the second segment in the appendage is obtained from (4.17), where $n_{k}=2$ since it is being assumed that paddle appendages consist of two bodies, and where it is to be noted that $\hat{n}_{1}^{k}=\hat{n}_{2}^{k}$. Thus,

$$
\begin{align*}
& \left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right) \cdot \frac{d \bar{v}}{d t}+\left\{\hat{\eta}_{1}^{k} \cdot \bar{I}_{2}^{k}+\left[\left(\bar{\rho}+\bar{h}_{2}^{k}\right) \times\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right)\right]\right. \\
& \left.\quad+\left[\left(\bar{\sigma}_{2}^{k}-\bar{h}_{2}^{k}\right) \times\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right)\right]\right\} \cdot \bar{\omega}+\left\{\hat{\eta}_{1}^{k} \cdot \bar{I}_{2}^{k} \cdot \hat{e}_{1}^{k}+\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right) \cdot\left(\hat{e}_{1}^{k} \times \overline{\mathrm{C}}_{2}^{k}\right)\right. \\
& \left.\quad+\ell_{1}^{k} \hat{\eta}_{1}^{k} \cdot\left(\bar{\beta}_{2}^{(2) k} \times \hat{\zeta}_{1}^{k}\right)\right\} \dot{\sigma}_{1}^{k} \\
& \quad+\left\{\hat{\eta}_{1}^{k} \cdot \bar{I}_{2}^{k} \cdot \hat{\eta}_{1}^{k}+\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right) \cdot\left(\hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k}\right)\right\} \dot{\sigma}_{2}^{k}=u_{2}^{k} \tag{4.42}
\end{align*}
$$

where

$$
\begin{align*}
u_{2}^{k}= & Q_{2}^{k}+\hat{\eta}_{1}^{k} \cdot\left\{\bar{M}_{2}^{k}-\bar{\beta}_{2}^{(2) k} \times\left(\overline{\mathrm{g}}_{2}^{k}-\overline{\bar{h}}_{2}^{(1) k}\right)+\overline{\bar{I}}_{2}^{k}\left[\left(\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right)\right.\right. \\
& \left.\left.x \bar{\omega}-\sigma_{1}^{k} \sigma_{2}^{k} \hat{\zeta}_{1}^{k}\right]-\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \times \bar{H}_{c_{2}}^{k}-\bar{h}_{2}^{(2) k}\right\}+u_{s 2}^{k} \tag{4.43}
\end{align*}
$$

for $n_{s}<k \leq n_{a}$, and $u_{s 2}^{k}$ is the force term corresponding to kick-off springs derived in Section 6.

Equations (4.24), (4.25), (4.36), (4.37), (4.38), (4.39), (4.40), (4.41), (4.42), and (4.43) are the equations of motion of the system. Symbols in these equations which have no: been previotsly defined are defined in Appendix A. In the following section, these equations will be rewritten in matrix form.

5. EQUATIONS OF MOTION IN NORMAL FORM

As discussed in Section 4, an intermediate step in the numerical solution of the equations of motion of the system is to write an equation in the form of Equation (4.18). The results of the preceding section, Equations (4.24), (436), (4.38), (4.40), and (4.42), can now be used to define the coefficient matrix on the left hand side of (4.18), matrix [A]. The [A] matrix has the following structure:

A_{11}	A_{12}	A_{13}	A_{14}	\cdot	$A_{1 s}$	\cdot	$A_{1 P}$
A_{21}	A_{22}	A_{23}	A_{24}	\cdot	$A_{2 s}$	\cdot	$A_{2 P}$
A_{31}	A_{32}	A_{33}	A_{34}		0		0
A_{41}	A_{42}	A_{43}	A_{44}		0		0
$:$	$:$	0	0				$:$
$A_{\mathbf{1}}$	$A_{r 2}$	0	0		$A_{r s}$		0
$:$	$:$	$:$	$:$				$:$
$A_{P 1}$	$A_{P 2}$	0	0		0	\cdot	$A_{P P}$

So that (4.18) can be written:

$$
\begin{equation*}
[A](d)^{\prime}=(u) \tag{5.1}
\end{equation*}
$$

where the column vector (d), is the column of unknown derivatives:

while $(u)=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \cdot \\ \cdot \\ \cdot \\ u_{r} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ u_{p}\end{array}\right]$

The subscripts r and s shown in Equation (5.1) are defined by:

$$
\begin{equation*}
r=2+i+\sum_{m=1}^{k-1} n_{m} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
s=2+j+\sum_{m=1}^{k-1} n_{m} \tag{5.3}
\end{equation*}
$$

The first row of matrices in the partitioned [A] matrix are now to be defined. These have three rows and are designated A_{11}, A_{12}, and $A_{1 s}$ where $s=3, \ldots, 4+\sum_{m=1}^{n_{a}} n_{m}$ (i.e., $s=2$ plus the total rumber of appendage segments in the system). The first row of [A] corresponds to the left hand side of Equation (4.24).

$$
\begin{array}{rlrl}
A_{11} & =m_{T}[U] \text { where }[U] \text { is the identity matrix } \\
A_{12} & =-m_{T}[J(\bar{\rho}+\bar{S})] \\
A_{1 ;} & =\bar{\beta}_{j}^{(1) k} & \text { for } & k \leq n_{s} . \\
& =\bar{\beta}_{j}^{(1) k}+m_{2}^{k} \hat{e}_{1}^{k} \times \bar{C}_{2}^{k} & j=1 & n_{s}<k \leq n_{a} \\
& =m_{2}^{k} \hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k} & j=2 & n_{s}<k \leq n_{a} \tag{5.6}
\end{array}
$$

The next row of submatrices in [A] corresponds to the system moment equation, Equation (4.36).

$$
\begin{equation*}
A_{21}=m_{T}[J(\bar{S})] \tag{5.7}
\end{equation*}
$$

$$
\begin{align*}
& A_{22}=\sum_{i, k}\left|I_{i}^{k}\right|+\left|I_{M}\right|-m_{T}|J(\bar{S})||J(\bar{\rho})| \\
& -m_{T}\left|J\left(\bar{b}_{M}\right)\right|\left|J\left(\bar{b}_{M}\right)\right|-\sum_{i, k} m_{i}^{k}\left|J\left(\bar{b}_{i}^{k}\right)\right|\left|J\left(\bar{b}_{i}^{k}\right)\right| \\
& A_{2 s}=\overline{\bar{I}}_{j}^{k} \cdot \hat{e}_{1}^{k}+l_{j}^{k} \bar{S}_{j}^{k} \times \hat{\zeta}_{j}^{k}+m_{j}^{k} \bar{b}_{j}^{k} \times\left\lceil\hat{e}_{i}^{k} \times \bar{C}_{j}^{k}\right\rceil \quad k \leq n_{s} \\
& =\left(\begin{array}{c}
\overline{i_{i}^{k}} \\
1
\end{array}+\overline{\bar{I}}_{2}^{k}\right) \cdot \hat{e}_{1}+\ell_{1} m_{2}^{k} \bar{b}_{2}^{k} \times \hat{\zeta}_{1}^{k} \tag{5.9}\\
& +m_{1}^{k} \bar{b}_{1}^{k} \times\left\lceil\hat{e}_{1}^{k} \times \bar{C}_{1}^{k}\right\rceil+m_{2}^{k} \bar{b}_{2}^{k} \times\left\lceil\hat{e}_{1}^{k} \times \bar{C}_{2}^{k}\right\rceil \text { for } j=1 \text { and } n_{s}<k \leq n_{a} \\
& =\overline{\bar{I}}_{2}^{k} \cdot \hat{\eta}_{1}^{k}+m_{2}^{k} \bar{b}_{2}^{k} \times\left[\hat{\eta}_{1}^{k} \times \bar{C}_{2}^{k}\right] \quad \text { for } j=2 \text { and } n_{s}<k \leq n_{a}
\end{align*}
$$

Equations (4.38), (4.40), and (4.42), correspond to columns of submatrices of dimensions 1×3 in the first column, 1×3 in the second, and scalar quantities in the th column.

$$
\begin{align*}
& A_{r 1}=\hat{e}_{1}^{k} \times \bar{\beta}_{i}^{(2) k} \quad k \leq n_{s} \\
& =\hat{e}_{1}^{k} \times \bar{\beta}_{1}^{(2) k} \quad i=1 \quad n_{s}<k \leq n_{a} \\
& =\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k} \quad i=2 n_{s}<k \leq n_{a} \tag{5.10}\\
& A_{r 2}=\sum_{j=i}^{n}\left\{m_{j}^{k}\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right) \times\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right)\right]+\overline{\bar{I}}{ }_{j}^{k} \cdot e_{1}^{k}\right\} \\
& +\left[\left(\bar{\rho}+\bar{h}_{i}^{k}\right) \times\left(\hat{e}_{1}^{k} \times \bar{\beta}_{i}^{(2) k}\right)\right] \quad k \leq n_{s} \\
& =\sum_{j=1}^{2}\left\{m_{j}^{k}\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right) \times\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{j}^{k}-\bar{h}_{1}^{k}\right)\right]\right. \\
& \left.+\overline{\bar{I}}{ }_{j}^{k} \cdot \hat{e}_{1}^{k}\right\}+\left(\bar{\rho}+\bar{h}_{1}^{k}\right) \times\left(\hat{e}_{i}^{k} \times \bar{\beta}_{1}^{(2) k}\right) \quad \text { or } i=1 \text { and } n_{s}<k \leq n_{a} \\
& =\left(\overline{\bar{b}}_{2}^{k}-\bar{h}_{2}^{k}\right) \times\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right)+\overline{\bar{I}}_{2}^{k} \cdot \hat{\eta}_{1}^{k} \\
& +\left(\bar{\rho}+\bar{h}_{2}^{k}\right) \times\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right) \\
& \text { for } \mathrm{i}=2 \text { and } \mathrm{n}_{\mathrm{s}}<\mathrm{k} \leqslant \mathrm{n}_{\mathrm{a}}
\end{align*}
$$

$$
\begin{array}{rlr}
A_{r s}= & \ell_{j}^{k} \hat{e}_{1}^{k} \cdot\left(\bar{\beta}_{i}^{(2) k} \times \hat{\zeta}_{j}^{k}\right) & j=1,2, \ldots, i-1 \text { and } k \leq n_{s} \\
= & \hat{e}_{1}^{k} \cdot \bar{I}_{j}^{k} \cdot \hat{e}_{1}^{k}+m_{j}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{j}^{k}-\bar{h}_{i}^{k}\right)\right] \\
& \cdot\left|\hat{e}_{1}^{k} \times \bar{C}_{j}^{k}\right|+\ell_{j}^{k} \hat{e}_{1}^{k} \cdot\left[\bar{S}_{j}^{k}-\mu_{j} \bar{h}_{i}^{k}\right] \times G_{j}^{k} \quad j=1, i+1, \ldots, n_{k}
\end{array}
$$

where for paddle appendages, $n_{s}<k \leq n_{a}, A_{r s}$ is

$$
\begin{aligned}
= & \hat{e}_{1}^{k} \cdot \overline{\bar{I}}_{1}^{k} \cdot \hat{e}_{1}^{k}+\hat{e}_{1}^{k} \cdot \overline{\bar{I}}_{2}^{k} \cdot \hat{e}_{1}^{k} \\
& +m_{1}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{1}^{k}-\bar{h}_{1}^{k}\right)\right] \cdot\left[\hat{e}_{1}^{k} \times \bar{C}_{1}^{k}\right] \\
& +m_{2}^{k}\left[\hat{e}_{1}^{k} \times\left(\bar{b}_{2}^{k}-\bar{h}_{1}^{k}\right)\right] \cdot\left[\hat{e}_{1}^{k} \times \overline{\mathrm{C}}_{2}^{k}\right] \\
& +\ell_{1}^{k} m_{2}^{k} \hat{e}_{1}^{k} \cdot\left[\bar{h}_{2}^{k}-\bar{h}_{1}^{k}\right] \times \hat{\zeta}_{1}^{k}
\end{aligned}
$$

$$
\text { for } i=1, j=1
$$

$$
\left.\cdot \left\lvert\, \begin{array}{lll}
\hat{\eta}_{1}^{k} & x & \bar{C}_{2}^{k}
\end{array}\right.\right]
$$

for $i=1, j=2$

$$
\begin{align*}
= & \hat{\eta}_{1}^{k} \cdot \overline{\bar{I}}_{2}^{k} \cdot \hat{e}_{1}^{k}+\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right) \cdot\left(\hat{e}_{1}^{k} \times \overline{\mathrm{C}}_{2}^{k}\right) \\
& +\ell_{1}^{k} \hat{\eta}_{1}^{k} \cdot\left({\overline{\beta_{2}}}_{2}^{(2) k} \times \hat{\zeta}_{1}^{k}\right) \\
= & \hat{\eta}_{1}^{k} \cdot \overline{\bar{I}}_{2}^{k} \cdot \hat{\eta}_{1}^{k}+\left(\hat{\eta}_{1}^{k} \times \bar{\beta}_{2}^{(2) k}\right) \cdot\left(\hat{\eta}_{1}^{k} \times \overline{\mathrm{C}}_{2}^{k}\right) \text { for } i=2, j=2 \tag{5.12}
\end{align*}
$$

The elements of the vector (d) beyond the first six are the angular accelerations of the appondage segments relative to the main body, $\ddot{a}_{i}^{k}=\dot{\sigma}_{i}^{k}$. In view of the fact that the criteria for lock-up and release are in terms of the relative angles of adjoining segments $\beta_{s i}^{k}$, and $\beta_{r i}^{k}$, respectively, it will be found to be of use to write Equation (5.1) in terms of the relative angular accelerations of adjoining segments, $\ddot{B}_{i}^{k}=\dot{\tau}_{i}^{k}$.

For appendage k, the following transformation exists

$$
\left[\begin{array}{c}
\sigma_{1}^{k} \\
\sigma_{2}^{k} \\
\cdot \\
\cdot \\
\cdot \\
\sigma_{n k}^{k}
\end{array}\right]=\left[a_{k}\right] \quad\left[\begin{array}{c}
\tau_{1}^{k} \\
\tau_{2}^{k} \\
\cdot \\
\cdot \\
\cdot \\
\tau_{n_{k}}
\end{array}\right]
$$

where $\left[a_{k}\right]$ is an $n_{k} \times n_{k}$ matrix defined by

$$
\left[a_{k}\right]=\left[\begin{array}{ccccccc}
1 & 0 & \cdot & \cdot & \cdot & \cdot & 0 \\
1 & 1 & 0 & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & 1 & \cdot & \cdot & \cdot & 1 & 1
\end{array}\right] \text { since for } k \leq n_{s}, \beta_{i}^{k}=a_{i}^{k}-a_{i-1}^{k}
$$

$\left[a_{k}\right]=[U]$ for $n_{s}<k \leq n_{a}$, since $\beta_{1}^{k}=a_{1}^{k}$, and $\beta_{2}^{k}=a_{2}^{k}$ for paddle appendagets.

Using the transformiation defined in (5.13), the column vector (d) can be defined in terms of the relative accelerations of adjoining segments.

or, more compactly
$(d)^{\prime}=[a](d)$.

Using the matrix [a] in (5.14), a new matrix, the B matrix is defined

$$
\begin{equation*}
[B]=[A][a] \tag{5.15}
\end{equation*}
$$

Matrix B has a block structure identical to that of A shown in Equation (5.1).

The equations of motion are now written in the form

$$
\begin{equation*}
[B](d)=(u) \tag{5.16}
\end{equation*}
$$

The solution of (5.16) provides the values of the derivatives of the variables $\bar{v}, \bar{\omega}$, and τ_{i}^{k}. The rernaining differential equations are

$$
\begin{align*}
\dot{\rho} & =\overline{\mathrm{v}} \\
\dot{\beta}_{i}^{k} & =\tau_{\mathbf{i}}^{k} \\
\dot{x} & =-\frac{1}{2} \bar{\omega} \cdot \overline{\mathrm{~K}} \\
\dot{\bar{K}} & =\frac{1}{2}\left[\chi^{\bar{\omega}}-\bar{\omega} \times \overline{\mathrm{K}}\right] \tag{5.17}
\end{align*}
$$

The last four equations in (5.17) involve X, and \bar{K}, the Euler parameters. These are used to define the transformation relating inertial and body fixed coordinates at any time. The differential equations involving the Euler parameters are Equstions (9.14), and (9.15); the derivations of these are presented in Section 9 .

6. FORCES AND TORQUES

In Section 4, equations of motion were derived using rather generally defined forces and torques. It is the purpose of this section to define the internal forces and torques produced by the springs and dashpots that may act about each hinge in the system, the external forces and torques in terms of the applied thrust and the gravity field, and the generalized forces corresponding to the kick-off springs which may act between any point on the main body and any segment.

The internal forces and torques due to the springs and dashpots which act about each segment hinge are in general linear and nonlinear functions of the relative angular positions and relative angular velocities of adjoining segments. The total torque acting about the ith hinge in appendage k is

$$
\begin{aligned}
\bar{Q}_{i}^{k}= & \hat{e}_{1}^{k}\left[q_{i(1)}^{k}\left(\tau_{i}^{k}\right)^{2}+q_{i(2)}^{k} \tau_{i}^{k}+q_{i(3)}^{k}\left(\beta_{i}^{k}+\gamma_{i}^{k}\right)^{2}\right. \\
& \left.+q_{i(1)}^{k}\left(\beta_{i}^{k}+\gamma_{i}^{k}\right)+K_{i(1)}^{k}\left(\beta_{i}^{k}+\theta_{i}^{k}\right)^{2}+K_{i(2)}^{k}\left(\beta_{i}^{k}+\theta_{i}^{k}\right)\right](6.1)
\end{aligned}
$$

The first four terms in (6.1) correspond to the dashpot torque and the last two terms correspond to the spring torque. The constants γ_{i}^{k} and θ_{1}^{k} are preload angles.

A gravity force is assumed to act on the center of mass of each body in the system. In terms of the local value of g, this is defined by

$$
\begin{equation*}
\bar{F}_{G i}^{k}=-g m_{i}^{k} \hat{g} \tag{6,2}
\end{equation*}
$$

for the ith segment of appendage k, while for the main body the gravity force is

$$
\begin{equation*}
\bar{F}_{G}=-g m_{M} \hat{g} \tag{6.3}
\end{equation*}
$$

The acceleration of gravity, B, is an input quantity and is assumed constant throughout the deployment (any value of g may be used; the lunar value, for example).

Thrust is assumed to act on the main body only and to be represented by a rectangular time pulse, as shown in Figure 6-1.

Figure 6-1. Thrust as a Function of Time
Thus, the thrust vector is '

$$
\begin{equation*}
\bar{F}_{T}(t)=\bar{F}_{T}(t) \hat{F}_{T} \tag{6.4}
\end{equation*}
$$

where

$$
F_{T}(t)= \begin{cases}F_{T} & \text { for } t_{i} \leq t \leq t_{f} \\ 0 & \text { for } t<t_{i}, \text { and } t>t_{f}\end{cases}
$$

The torque about 0 produced by the thrust is

$$
\begin{equation*}
\bar{B}_{T}(t)=\overline{\mathbf{f}}_{T} \times \overline{\mathbf{F}}_{T}(t) \tag{6.5}
\end{equation*}
$$

Equations (6.2), (6.3), (6.4) and (6.5) are used to define the terms in (4.6) and (4.11). Thus corresponding to Equation (4.6) we have

$$
\begin{gather*}
\overline{\mathrm{F}}_{\mathrm{M}}=\bar{F}_{\mathrm{T}}+\bar{F}_{\mathrm{G}} \tag{6.6}\\
\overline{\mathrm{~F}}_{\mathrm{i}}^{k}=\overline{\mathrm{F}}_{\mathrm{G}_{i}}^{k}
\end{gather*}
$$

so that (4.6) becomes

$$
\begin{equation*}
\bar{F}=\bar{F}_{T}+\bar{F}_{G}+\sum_{i, k} \bar{F}_{G_{i}}^{k} \tag{6,7}
\end{equation*}
$$

The terms in Equation (4.11) are defined as follows:

$$
\begin{gather*}
\overline{\mathrm{B}}_{\mathrm{M}}+\overline{\mathrm{b}}_{\mathrm{M}} \times \overline{\mathrm{F}}_{\mathrm{M}}=\overline{\mathrm{b}}_{\mathrm{M}} \times \overline{\mathrm{F}}_{\mathrm{G}}+\overline{\mathrm{f}}_{\mathrm{T}} \times \overline{\mathrm{F}}_{\mathrm{T}} \tag{6.8}\\
\overline{\mathrm{~b}}_{\mathrm{i}}^{\mathrm{k}} \times \overline{\mathrm{F}}_{\mathrm{i}}^{\mathrm{k}}=\overline{\mathrm{b}}_{\mathrm{i}}^{\mathrm{k}} \times \overline{\mathrm{F}}_{\mathrm{G}_{\mathrm{i}}}^{\mathrm{k}}
\end{gather*}
$$

Using the relation (6.6), (6.7), and (6.8) in Equations (4.6) and (4.11) defines the external forces and torques on the system.

In Equations (4.39), (4.41), and (4.43), terms are introduced representing the effects of the kick-off springs. These terms, $u_{s i}^{k}$ in Equation (4.39), $u_{s 1}^{k}$ in Equation (4.41), and $u_{s 2}^{k}$ in Equation (4.43), are derived below by means of virtual work considerations. Figure 6.2 serves to introduce the geometrical parameters required in the derivation.

Figure 6.2 Geometry Parameters Associated with Kick-off Springs

The position of the attachment point of kick-off spring i, k relative to the main body is

$$
\begin{equation*}
\bar{x}_{i}^{k}=\bar{h}_{i}^{k}+\bar{s}_{i}^{k}-\bar{r}_{i}^{k} \tag{6.9}
\end{equation*}
$$

The magnitude of the compressive force in the kick-off spring is expressible as a non-linear discontinuous function of its length. Thus,

$$
\begin{array}{ll}
F_{s}^{k}=a_{01}^{k}+a_{1 i}^{k}\left|x_{i}^{k}\right|+a_{2 i}^{k}\left|\bar{x}_{i}^{k}\right|^{2}+a_{3 i}^{k}\left|x_{i}^{k}\right|^{3} \\
& \text { for }\left|\bar{x}_{i}^{k}\right| \leq\left|\overline{x_{i}}\right| f \\
F_{s_{i}}^{k}=0 \text { for }\left|\bar{x}_{i}^{k}\right|>\left|\bar{x}_{i}^{k}\right|_{f} \tag{6.10}
\end{array}
$$

The additional force terms to be included in the equations of motion may be obtained by mieans of virtual work considerations. A virtual change in length of the spring results in a virtual displacement erpressed in vector notation

$$
\begin{equation*}
\delta \bar{x}_{i}^{k}=\delta \bar{h}_{1}^{k}+\delta \bar{r}_{1}^{k} \tag{6.11}
\end{equation*}
$$

The virtual displacement of the attachment point on segment k, 1 relative to the segment k, i hinge may be written

$$
\begin{equation*}
\delta s_{1}^{-k}=\delta \alpha_{1}^{k} \hat{e}_{1}^{k} \times \bar{s}_{1}^{k}+\delta s_{m_{1}}^{k} \tag{6.12}
\end{equation*}
$$

where $\delta s_{m_{i}}^{-k}$ is the component of δs_{i}^{-k} corresponding to virtual displacements and rotations of the main body. The virtual displacement of hinge $k, 1$ may be expressed

$$
\begin{equation*}
\delta h_{i}^{k}=+\sum_{j=1}^{i-1} \alpha_{j}^{k} \hat{e}_{1}^{k} \times 2_{j}^{k}+\delta h_{m_{i}}^{k} \tag{6.13}
\end{equation*}
$$

where $\delta \overline{\mathrm{h}}_{\mathrm{m}_{i}}^{\mathrm{k}}$ is the component of $\delta \overline{\mathrm{h}}_{i}^{k}$ corresponding to virtual displacements and rotations of the main body.

The virtual work performed by kick-off spring k, i is

$$
\begin{equation*}
\bar{F}_{s_{i}}^{k} \cdot \delta \bar{x}_{i}^{k}=\bar{F}_{s_{i}}^{k} \cdot\left(\delta \bar{h}_{i}^{k}+\delta \bar{s}_{i}^{k}-\delta \bar{r}_{i}^{k}\right) \tag{6.14}
\end{equation*}
$$

where

$$
\bar{F}_{s_{i}}^{k}=\frac{\bar{F}_{s_{i}}^{k}-\bar{x}_{i}^{k}}{\left|x_{i}^{k}\right|}
$$

Substitution of Equations (6.12) and (6.13) into Equation (6.14) yields

$$
\begin{align*}
& \bar{F}_{s_{i}}^{k} \cdot \delta \bar{x}_{i}^{k}=\bar{F}_{s_{i}}^{k} \cdot \sum_{j=1}^{f-1}\left(i_{j}^{k} \times \bar{l}_{j}^{k}\right) \delta \alpha_{j}^{k} \\
& +\bar{F}_{s_{1}}^{k} \cdot\left(\hat{e}_{1}^{k} \times{ }_{s_{1}}^{k}\right) \delta \alpha_{1}^{k} \tag{6.15}\\
& +\overline{\mathrm{F}}_{\mathrm{s}_{i}}^{k} \cdot\left(\delta \mathrm{~h}_{\mathrm{m}_{i}}^{k}+\delta \mathrm{s}_{\mathrm{m}_{i}}^{-k}-\delta \mathrm{r}_{i}^{-k}\right)
\end{align*}
$$

The virtual displacement appearing in the last term of Equation (6.15) represents the component of the virtual change in length of kick-off spring k, i arising from virtual displacements and virtual rotations of the main body. This virtual displacement is zero since virtual rotations and displacements of the main body do not result in a virtual change in length of the kick-off springs.

Consequently, the total virtual work performed on arbitrary virtual displacements of regular segments is

$$
\begin{aligned}
\delta W & =\sum_{k=1}^{n_{s}} \sum_{i=1}^{n_{k}}\left\{\bar{F}_{s_{i}}^{k} \cdot \sum_{j=1}^{i-1}\left(\hat{e}_{1}^{k} \times \bar{\ell}_{j}^{k}\right) \delta \alpha_{j}^{k}\right. \\
& \left.+\bar{F}_{s_{i}} \cdot\left(\hat{e}_{1}^{k} \times \bar{s}_{i}^{k}\right) \delta \alpha_{i}^{k}\right\}
\end{aligned}
$$

which becomes

$$
\begin{align*}
\delta W & =\sum_{k=1}^{n_{s}} \sum_{j=1}^{n_{k}}\left\{\bar{F}_{s_{j}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{s}_{j}^{k}\right)\right. \\
& \left.+\left(\hat{e}_{1}^{k} \times \bar{l}_{j}^{k}\right) \cdot \sum_{i=j+1}^{n_{k}} \bar{F}_{s_{j}}^{k}\right\} \delta \alpha_{j}^{k} \tag{6.16}
\end{align*}
$$

From Equation (6.16) it is clear that $u_{s_{1}}^{k}$ in Equation (4.39) is given by

$$
\begin{align*}
& u_{s_{i}}^{k}=\bar{F}_{s_{1}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{s}_{i}^{k}\right)+\left(\hat{\epsilon}_{1}^{k} \times \hat{l}_{i}^{k}\right) \cdot \sum_{j=1+1}^{n} \bar{F}_{s_{j}}^{k} \\
& \text { for } k \leq n_{s} \tag{6.1.7}
\end{align*}
$$

If appendage k is a paddle appendage, the virkual work corresponding to the kick-off springs acting on the appendage is

$$
\begin{align*}
\delta W^{k} & =\vec{F}_{s_{1}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{s}_{1}^{k}\right) \delta \alpha_{1}^{k} \\
& +\bar{F}_{s_{2}}^{k} \cdot\left(\left(\hat{e}_{1}^{k} \times \bar{\ell}_{1}^{k}\right) \delta \alpha_{1}^{k}+\left(\hat{\eta}_{2}^{k} \times \bar{s}_{2}^{k}\right) \delta \alpha_{2}^{k}\right) \tag{6.18}
\end{align*}
$$

Rearranging Equation (6.18), we obtain

$$
\begin{align*}
\delta W^{k} & =\left\{\bar{F}_{s_{2}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{\ell}_{1}^{k}\right)+\bar{F}_{s_{2}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{s}_{1}^{k}\right)\right\} \delta \alpha_{1}^{k} \\
& +\bar{F}_{s_{2}}^{k} \cdot\left(\hat{n}_{2}^{k} \times \bar{s}_{2}^{k}\right) \delta \alpha_{2}^{k} \tag{6.19}
\end{align*}
$$

From Equation (6.19), it is clear that the generalized force components, $u_{s_{1}}^{k}$, and $u_{s_{2}}^{k}$, are given as follows

$$
\begin{align*}
& u_{s_{1}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{s}_{1}^{k}\right)+\bar{F}_{s_{2}}^{k} \cdot\left(\hat{e}_{1}^{k} \times \bar{l}_{1}^{k}\right) \\
& u_{s_{2}}^{k}=\bar{F}_{s_{2}}^{k} \cdot\left(\hat{n}_{2}^{k} \times \bar{s}_{2}^{k}\right) \tag{6.20}\\
& \text { for } n_{s} \leq k \leq n_{a}
\end{align*}
$$

Equations (6.17) and (6.20) provide definitions of $u_{s_{i}}^{k}, u_{s_{1}}^{k}$, and u_{s}^{k}. These are the additional terms required in Equations (4.39), (4.41), and (4.43), respectively, and represent the effects of the kicx-off. springs.

7. RELEASE AND LOCK-UP OF HINGES

An important ispect of the N-Boom appendage deployment model is that in general the hinge associated with an appendage segment is in any one of three possible states: (1) not yet released, (2) free, allowing relative motion between the segments it interconnects, and (3) locked. Thus, for the system as a whole at a particular time, some segments are unreleased, some are moving relative to adjoining segments, while others may be locked. The formulation admits this general case.

The equations of motion as given in Section 5 provide for the case in which all segments of the system are in state (2). The method by which release and lock-up of hinges are accounted for in timequations of motion is most clearly developed in terms of modifications to the equations of motion as given in Equation (5.16) and (5.17).

There are two admissable criteria for releasing segment hinges: (1) hinge k, i may be released at a specified time, $t=t_{i}^{k}$, or (2) hinge k, i may be released when another segment, segment ℓ, m, has attained a prescribed position relative to the segment inboard of it, that is, hinge k,i is released when β_{m}^{ℓ} reaches a prescribed value. In the case of the second option, it is to be noted that release may be represented as dependent on segments in other appendages.

If the ith segment of appendage k is not yet released, the matrix [B] is modified by setting all the elements in the row requal to zero except for the element in column r, which is set equal to unity. In addition, u_{r} and τ_{i}^{k} in (5.17) are set equal to zero. Thus, the differential equations corresponding to this segment result in zero relative velocity and acceleration of the segment so that the relative angle is constant.

The criteria for locking a particular hinge, hinge i, is that the relative angular displacement, β_{i}^{k}, of segment i has attained a prescribed value, $\beta_{s_{i}}^{k}$. After lock-up, the angular velocity $\dot{\beta}_{i}^{k}=\tau_{i}^{k}=0$, while in
general it is not zero preceding lock-up. This requires providing for an impulsive internal torque about hinge i, which reduces $\dot{\beta}_{i}^{k}$ to zero and introduces discontinuities into all of the angular velocities of the system. However, displacements and the velocity of the system center of mass in inertial space remain unchanged.

As in the case of release, lock-up is accounted for by manipulating Equation (5.16). Assume that Equation (5.16) has been integrated over a short period of time Δt, including the lock-up of the rth hinge, (r is defined in (5.2)), Equation (5.16) becomes

$$
\begin{equation*}
[B](\Delta d)=(I) \tag{7.1}
\end{equation*}
$$

where all the elements of (I) are zero except the rth element, which is the unknown impulsive locking torque on hinge i.

The elements of the vector ($\Delta \mathrm{d}$) are the changes in the velocities. Only one element of this vector is known, the rth element. In this case, we have

$$
\begin{equation*}
\Delta d_{r}=-\tau_{i}^{k} \tag{7.2}
\end{equation*}
$$

where τ_{i}^{k} is the relative velocity of segment i immediately preceding lock-up, that is at time $t=\hat{\mathrm{t}}^{-}$.

Thus, the system of p equations, Equation (7.1), may be solved for the ($p-1$) unknown velocity changes and the one impulsive locking torque.

In order to solve for the unknown discontinuities in the velocities and implusive locking torque, Equation (7.1) is first partitioned as follows
where

$$
\begin{aligned}
& {\left[B^{\prime}\right]=\text { a } p \times(r-1) \text { matrix }} \\
& \left\{B_{r}\right\}=\text { the rth column of }[B] \\
& {\left[B^{\prime \prime}\right]=\text { a } p \times(p-r) \text { matrix }}
\end{aligned}
$$

Multiplying, we obtain

$$
\left[B^{\prime}\right](\Delta d)^{\prime}-\tau_{i}^{k}\left(B_{r}\right)+\left[B^{\prime \prime}\right](\Delta d)^{\prime \prime}=\left\{\begin{array}{c}
(0) \tag{7.4}\\
-\overline{N^{\prime}} \\
\mathrm{I}_{r} \\
-(0) \\
(0)
\end{array}\right\}
$$

Rearranging (7.4), we obtain

$$
\left[B^{\prime}\right](\Delta d)^{\prime}-\left\{\begin{array}{c}
(0) \tag{7.5}\\
\hat{\lambda}^{-} \\
\bar{I}_{r} \\
(0)
\end{array}\right\}+\left[B^{\prime \prime}\right](\Delta d)^{\prime \prime}=\tau_{i}^{k}\left(B_{r}\right)
$$

Equation (7.5) is rewritten in the form

$$
\left[\left[B^{\prime}\right]_{1}^{\prime}-\left(e_{r}\right)_{i}^{\prime}\left[B^{\prime \prime}\right]\right]\left\{\begin{array}{l}
\underline{(\Delta d)^{\prime}} \tag{7.6}\\
\hat{\underline{I}}_{r} \\
\hdashline{\underset{-}{-}}^{(\Delta d)^{\prime \prime}}
\end{array}\right\}=\tau_{i}^{k}\left(B_{r}\right)
$$

where $\left(e_{r}\right)$ is the r th column of the $p \times p$ identity matrix.
The result yields the changes in the derivatives for the unlocked segmeats as well as the impulsive torque applied by the locking mechanism. Hence, typically, for the unlocked quantities

$$
\left\{\mathrm{d}\left(\hat{\mathrm{t}}^{+}\right)\right\}=\left\{\mathrm{d}\left(\hat{\mathrm{t}}^{-}\right)\right\}+\{\Delta \mathrm{d}\}
$$

We thus have the values of all the variables and their derivatives after lock-up with which we may continue the solution.

8. SYSTEM KINETIC ENERGY AND MOMENTUM

In addition to the details of the motion of each body, an indication of the system motion is provided through computation of the total kinetic energy, T, linear momentum, \bar{P}, and moment of momentum about the system center of mass, \bar{H}_{1}. As is well known, in the absence of external forces and torques, both $\frac{c}{P}$ and \bar{H}_{c} are conserved. If, in addition, there are no springs or dashpots, T is also conserved. When conserved, these quantities serve as a check on the accuracy of the computed results. The nutation angle, θ, i.e., the angle between \bar{H}_{c} and \hat{x}, is provided since it is like wise of interest when \bar{H}_{c} is conserved. In this section we derive the expressions for T, \bar{H}_{c}, and $\frac{c}{P}$ incorporated in the program.

Figure 8-1. Fundamental Position Vectors

In Figure $8-1,0_{N}$ denotes the origin of the uniformly translating inertial frame. An arbitrary point R on the i th segment of appendage k is specified by its position vector relative to $0^{0}{ }^{\prime \prime}$ namely,

$$
\begin{equation*}
\bar{r}=\bar{\rho}+\bar{b}_{i}^{k}+\bar{\sigma} \tag{8.1}
\end{equation*}
$$

where $\bar{\sigma}$ is a vector from the center of mass of segment k, i.

$$
\begin{equation*}
\overline{\mathrm{p}}_{\mathrm{i}}^{\mathrm{k}}=\int \frac{\mathrm{D} \overline{\mathrm{r}}}{\mathrm{Dt}} \mathrm{dm} \tag{8,2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{D \bar{r}}{D t}=\frac{D \bar{\rho}}{D t}+\frac{D \bar{b}_{i}^{k}}{D t}+\frac{D \bar{\sigma}}{D t} \tag{8.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D \bar{\sigma}}{\bar{D} t}=\bar{\omega}_{i}^{k} \quad x \quad \bar{\sigma}, \tag{8.4}
\end{equation*}
$$

setting

$$
\begin{equation*}
\bar{Z}_{i}^{k}=\frac{D \bar{\rho}}{\overline{D t}}+\frac{D_{i}^{k}}{\overline{D t}} \cdot \tag{8.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\bar{P}_{i}^{k}=\int\left(\bar{z}_{i}^{k}+\bar{\omega}_{i}^{k} \times \bar{\sigma}\right) d m=m_{i}^{k} \bar{z}_{i}^{k} \tag{8.6}
\end{equation*}
$$

Similarly, for the main body, $\bar{P}_{M}=m_{M} \bar{Z}_{M}$, so that the system linear momentum

$$
\begin{equation*}
\bar{P}=m_{M} \bar{z}_{m}+\sum_{i, k} m_{i}^{k} \bar{z}_{i}^{k} . \tag{8.7}
\end{equation*}
$$

Note that we have

$$
\bar{P}=m_{T} \frac{D}{D t}(\bar{\rho}+\bar{s}) .
$$

The kinetic energy of segmeri k, i is defined by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{i}}^{\mathrm{k}}=\frac{1}{2} \int \frac{\mathrm{D} \overline{\mathrm{r}}}{\mathrm{Dt}} \cdot \frac{\mathrm{D} \overline{\mathrm{r}}}{\mathrm{Dt}} \mathrm{dm} . \tag{8,8}
\end{equation*}
$$

We have

$$
\begin{align*}
& T_{i}^{k}=\frac{1}{2} \int\left[\bar{z}_{i}^{k} \cdot \bar{z}_{i}^{k}+2 \bar{z}_{i}^{k} \cdot(\bar{\omega} \times \bar{\sigma})+\left(\bar{\omega}_{i}^{k} \times \bar{\sigma}\right) \cdot\left(\bar{\omega}_{i}^{k} \times \bar{\sigma}\right)\right] d m \\
& T_{i}^{k}=\frac{1}{2} m_{i}^{k} \bar{z}_{i}^{k} \cdot \bar{z}_{i}^{k}+\frac{1}{2} \bar{\omega}_{i}^{k} \cdot \overline{\bar{I}}_{i}^{k} \cdot \bar{\omega}_{i}^{k} \quad . \tag{8.9}
\end{align*}
$$

Similarly, for the main body,

$$
\begin{equation*}
T_{M}=\frac{1}{2} m_{M i} \bar{Z}_{M} \cdot Z_{M}+\frac{1}{2} \bar{\omega} \cdot \overline{\bar{I}}_{C_{M}} \cdot \bar{\omega} \tag{8.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
T=T_{M}+\sum_{i, k} T_{i}^{k} \tag{8,11}
\end{equation*}
$$

The moment of momentum about the system center of mass and about the reference point, $\overline{\mathrm{H}}_{c}$ and $\overline{\mathrm{H}}_{0}$, respectively, are related by the equation

$$
\begin{equation*}
\bar{H}_{C}=\bar{H}_{0}-m_{T} \bar{S} \times \frac{D \bar{S}}{\overline{D t}} \tag{8.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{H}_{o}=\bar{H}_{o_{M}}+\sum_{i, k} \bar{H}_{o_{i}}^{k} \tag{8.13}
\end{equation*}
$$

$$
\begin{aligned}
\bar{H}_{o_{i}}^{k} & =\int_{B_{i}^{k}}\left(\bar{b}_{i}^{k}-\bar{\sigma}\right) \times \frac{D}{D t}\left(\bar{b}_{i}^{k}+\bar{\sigma}\right) d m \\
& =m_{i}^{k} b_{i}^{k} \times \frac{D_{i}^{k}}{D t}+\bar{I}_{i}^{k} \cdot \bar{\omega}_{i}^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{H}_{o_{M}} & =m_{M} \bar{b}_{m} \times \frac{D \bar{b}_{m}}{D t}+\bar{I}_{M} \cdot \bar{\omega} \\
& =m_{M} \bar{b}_{M} \times\left(\bar{\omega} \times \bar{b}_{M}\right)+\overline{\mathrm{I}}_{M} \cdot \bar{\omega}
\end{aligned}
$$

It remains to specify explicit expressions for $\bar{\omega}_{i}^{k}, \frac{D b_{i}^{k}}{\overline{D t}}$, \bar{Z}_{i}^{k} and $\frac{D \bar{S}}{D t}$.

We have

$$
\begin{equation*}
\bar{\omega}_{i}^{k}=\bar{\omega}+\bar{\Omega}_{i}^{k} \tag{8.14}
\end{equation*}
$$

where $\bar{\Omega}_{i}^{k}$ is the angular velocity of segment k, i relative to the main body, namely,

$$
\bar{\Omega}_{i}^{k}= \begin{cases}\sigma_{i}^{k} \hat{e}_{1}^{k} & \text { for } k \leq n_{s} \tag{8.15}\\ \sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k} & \text { for } n_{s}<k \leq n_{a} \\ & \text { and } 1=2\end{cases}
$$

From

$$
\begin{equation*}
\overline{\mathbf{b}}_{i}^{k}=\mathrm{d}^{k}+\bar{C}_{i}^{k}+\sum_{j=1}^{i-1} \ell_{j}^{k} \hat{\eta}_{j}^{k} \tag{8.16}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\left(\frac{d \bar{b}_{i}^{k}}{d t}\right)_{M}=\dddot{\Omega}_{i}^{k} \times \bar{C}_{i}^{k}+\sum_{j=1}^{i-1} \ell_{j}^{k} \hat{\zeta}_{j}^{k} \sigma_{j}^{k} \tag{8.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D 5_{i}^{k}}{D t}=\left(\frac{d \sigma_{i}^{k}}{d t}\right)_{M}+\bar{\omega} \times \sigma_{i}^{k} . \tag{8.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\bar{Z}_{i}^{k}=\frac{D_{\bar{\rho}}}{D t}+\frac{D \bar{D}_{i}^{k}}{D t}=\bar{v}+\bar{\omega}\left(\bar{\rho}+\bar{b}_{i}^{k}\right)+\left(\frac{d \bar{b}_{i}^{k}}{d t}\right)_{M} \tag{8,19}
\end{equation*}
$$

and, finally, since

$$
m_{T} \bar{S}=m_{M}^{\bar{B}_{m}}+\sum_{k, i} m_{i}^{k} \bar{b}_{i}^{k}
$$

we have

$$
\begin{equation*}
m_{T} \frac{D \bar{S}}{D t}=m_{T} \bar{\omega} \times \bar{S}+\sum_{i, k} m_{i}^{k}\left(\frac{d \bar{b}_{i}^{k}}{d t}\right)_{M} \tag{8,20}
\end{equation*}
$$

9. COORDINA TES

There are four types of coordinate systems associated with the system: an inertial coordinate aystem uniformly translating with the initial velocity of the system, a main body fixed system with its origin at 0 , n_{a} main body fixed systems fixed to the main body at the point of attachment of each appendage, and n coordinate systems associated with the n segments whick compose the appendages.

The equations of motion as given by Equation (5.1) are expressed in one coordinate system: the main body fixed system with its origin at 0 . Therefore, quantities referred to coordinate systems other than the main body system must be transformed into main body coordinates.

Figure 9-1 illustrates the coordinate systems associated with appendage k, where in this case it is not a padde appendage.

F'igure 9-1. Coordinates Associated with Appendage k

The n ass properties associated with the segment k, i are input in the $\hat{\xi}_{i}, \hat{\eta}_{i}, y_{i}$ coordinate system, whereas in the course of computation
the program refers these to main body coordinates. The transformation from segment to appendage coordinates is

$$
\begin{align*}
& \hat{\xi}_{i}^{k}=\hat{e}_{1}^{k} \\
& \hat{\eta}_{i}^{k}=\cos a_{i}^{k} \hat{e}_{2}^{k}+\sin a_{i}^{k} \hat{e}_{3}^{k} \\
& \hat{\zeta}_{i}^{k}=-\sin a_{i}^{k} \hat{e}_{2}^{k}+\cos a_{i}^{k} \hat{e}_{3}^{k} \tag{9.1}
\end{align*}
$$

Paddle appendages are two segment appendages in which the second rotates about the first, that is, $\bar{\eta}_{2}^{k}=\hat{\eta}_{1}^{k}$ in this case. In these appendages a_{2}^{k} is defined differently (with this change iasi definition, changes in the equations of motion from the case of ordinary appendages to paddle appendages are minimized) as shown in Figure 9-2.

Figure 9-2. Coordinates Associated with Appendage k if the Second Element is a Paddle

As noted in Equation (5.13), $a_{2}^{k}=\beta_{2}^{k}$ in the case of a paddle appendage.

The transformation to segment 1 coordinates from the paddle segment coordinates is

$$
\begin{aligned}
& \hat{\xi}_{2}^{k}=\cos a_{2}^{k} \hat{e}_{1}^{k}-\sin a_{2}^{k} \hat{\zeta}_{1}^{k} \\
& \hat{\eta}_{2}^{k}=\hat{\eta}_{1}^{k} \\
& \hat{\zeta}_{2}^{k}=\sin a_{2}^{k} \hat{e}_{1}^{k}+\cos a_{2}^{k} \hat{\zeta}_{1}^{k}
\end{aligned}
$$

where

$$
\begin{equation*}
\mathbf{n}_{\mathbf{s}}<\mathrm{k} \leq \mathbf{n}_{\mathbf{a}} \tag{9.2}
\end{equation*}
$$

The transformation to appendage coordinates from segment 1 coordinates is obtained from (9.1).

By use of Equations (9.1) and (9.2), all appendage properties at any time, mass properties, angular rates, forces, can be referred to the corresponding appendage coordinate system. These quantities must now be transformed into a common main body fixed coordinate system. Since the appendage coordinate system, $\hat{e}_{1}^{k}, \hat{e}_{2}^{k}, \hat{e}_{3}^{k}$ is also fixed to the main body, the transformations from appendage coordinates to main body coordinates are constant through time.

The twansformations are achieved by use of a set of Euler angles corresponding to each appendage, ψ^{k}, θ^{k}, and $\Phi^{k} ;$ Beginning in main body coordinates, the first rotation is through ψ^{k} about \hat{x} in the positive direction as shown in Figure 9-3.

The transformation from $\hat{x}, \hat{y}, \hat{z}$ to $\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}$ is

$$
\begin{align*}
& \hat{x}^{\prime}=\hat{x} \\
& \hat{y}^{\prime}=\cos \psi^{k} \hat{y}-\sin \psi^{k} \hat{z} \\
& \hat{z}^{\prime}=\sin \psi^{k} \hat{y}+\cos \psi^{k} \hat{z} \tag{9.3}
\end{align*}
$$

Figure 9-3. Transformation from $\hat{x}, \hat{y}, \hat{z}$ to $\hat{e}_{1}^{k}, \hat{e}_{2}^{k}, \hat{e}_{3}^{k}$ Coordinates

The second rotation is through θ^{k} about \hat{y}^{\prime} in the positive sense. The transformation from $\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}$ to $\hat{x}^{\prime \prime}, \hat{y}^{\prime \prime}, \hat{z}^{\prime \prime}$ is

$$
\begin{align*}
& \hat{\mathbf{x}}^{\prime \prime}=\cos \theta^{k} \hat{\mathbf{x}}^{\prime}+\sin \theta^{\mathbf{k}} \hat{z}^{\prime} \\
& \hat{\mathbf{y}}^{\prime \prime}=\hat{\mathbf{y}}^{\prime} \\
& \hat{\mathbf{z}}^{\prime \prime}=-\sin \theta^{k} \hat{\mathbf{x}}^{\prime}+\cos \theta^{k} \hat{z}^{\prime} \tag{9.4}
\end{align*}
$$

The final rotation, also shown in Figure 9.3, rotates $\hat{\mathbf{x}}^{\prime \prime}, \hat{\mathrm{y}}^{\prime \prime}, \hat{z}^{\prime \prime}$
 $\hat{x}^{\prime \prime}$ is

$$
\begin{align*}
& \hat{\mathbf{e}}_{1}^{k}=\hat{x}^{\prime \prime} \\
& \hat{\mathbf{e}}_{2}^{k}=\cos \varphi \hat{y}^{\prime \prime}+\sin \varphi^{k} \hat{z}^{\prime \prime} \\
& \hat{\mathbf{e}}_{3}^{k}=-\sin \varphi \hat{y}^{\prime \prime}+\cos \varphi^{k} \hat{z}^{\prime \prime} \tag{9.5}
\end{align*}
$$

Combining (9.3), (9.4) and (9.5), the $\hat{e}_{1}, \hat{e}_{2}^{k}, \hat{e}_{3}^{k}$ triad is expressed in main body coordinates as follows:

$$
\begin{aligned}
& \hat{e}_{1}^{k}=\left(\begin{array}{l}
\cos \theta^{k} \\
\sin \psi^{k} \sin \theta^{k} \\
-\cos \psi^{k} \sin \theta^{k}
\end{array}\right) \\
& \hat{e}_{2}^{k}=\left(\begin{array}{l}
\sin \theta^{k} \sin \varphi^{k} \\
\cos \psi^{k} \cos \varphi^{k}-\sin \psi^{k} \cos \theta^{k} \sin \varphi^{k} \\
\sin \psi^{k} \cos \varphi^{k}+\cos \psi^{k} \cos \theta^{k} \sin \varphi^{k}
\end{array}\right) \\
& \hat{e}_{3}^{k}=\left(\begin{array}{l}
\sin \theta^{k} \cos \varphi^{k} \\
-\cos \psi^{k} \sin \varphi^{k}-\sin \psi^{k} \cos \theta^{k} \cos \varphi^{k} \\
-\sin \psi^{k} \sin \varphi^{k}+\cos \psi^{k} \cos \theta^{k} \cos \varphi^{k}
\end{array}\right)
\end{aligned}
$$

That is, the transformation matrix is

$$
\left[T^{k}\right]=\left[\begin{array}{lll}
\hat{e}_{1}^{k}, & \hat{e}_{2}^{k}, & \hat{e}_{3}^{k} \tag{9,6}
\end{array}\right]
$$

By use of (9.6), appendage properties can be expressed in main body fixed coordinates, x y z at any time.

The remaining coordinate transformation to be defined is the transformation from main body unit vectors $\hat{x}, \hat{y}, \hat{z}$ to the inertial unit vectors $\hat{X}, \hat{Y}, \hat{Z}$. This transformation at time $t=0$ is of the same form as (9.6), ψ_{M}, θ_{M}, and ϕ_{M} replacing ψ^{k}, θ^{k}, and ϕ_{V}^{k}, respectively. The transformation is

$$
\begin{align*}
& \hat{\mathbf{x}}=\left(\begin{array}{l}
\cos \theta_{M} \\
\sin \psi_{M} \sin \theta_{M} \\
-\cos \psi_{M} \sin \theta_{M}
\end{array}\right) \\
& \hat{y}=\left(\begin{array}{l}
\sin \theta_{M} \sin \varphi_{M} \\
\cos \psi_{M} \cos \varphi_{M}-\sin \psi_{M} \cos \theta_{M} \sin \varphi_{M} \\
\sin \psi_{M} \cos \varphi_{M}+\cos \psi_{M} \cos \theta_{M} \sin \varphi_{M}
\end{array}\right) \\
& \hat{z}=\left(\begin{array}{l}
\sin \theta_{M} \cos \varphi_{M} \\
-\cos \psi_{M} \sin \varphi_{M}-\sin \psi_{M} \cos \theta_{M} \cos \varphi_{M} \\
-\sin \psi_{M} \sin \varphi_{M}+\cos \psi_{M} \cos \theta_{M} \cos \varphi_{M}
\end{array}\right) \tag{9.7}
\end{align*}
$$

Thus, the matrise M_{0} is defined by

$$
\begin{equation*}
\left[M_{0}\right]=[\hat{x}, \hat{y}, \hat{z}] \tag{9.8}
\end{equation*}
$$

that is, the above vectors form the columns of M_{0}.
The natrix M_{0} defined in (9.8) is the initial value of the transforma tion matrix M, which at time $t=0$ defines the orientation of the main body in inertial space. The columns of M are the body-fixed unit vectors $\hat{\mathbf{x}}, \hat{y}, \hat{z}$ resolved in the inertial frame. The problem now to be considered is to determine the means of finding M at any time t.

In the course of the motion the orientation varies in accordance with the differential equation

$$
\begin{equation*}
[\ddot{M}]=[M][J(\bar{\omega})] \tag{9.9}
\end{equation*}
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ are the components of $\bar{\omega}$ resolved in the body-fixed frame, i. e., $\bar{\omega}=\omega_{1} \hat{x}+\omega_{2} \hat{y}+\omega_{3} \hat{z}$.

The initial orientation is obtained by use of $[M(0)]=\left[M_{0}\right]$, which is specified by initial values of the Euler angles $\psi_{M}, \theta_{M}, \phi_{M}$ as indicated in Equations (9.7) and (9.8). The matrix [M] can be written in terms of $\left[M_{0}\right]$, a constant, and a matrix [C], a function of time. We write

$$
\begin{equation*}
[M(t)]=\left[M_{0}\right][C(t)] \tag{9,10}
\end{equation*}
$$

and note that $C(t)$ also satisfies the same differential equation as $[M$], i. e., $[\dot{C}]=[C][J(\bar{\omega})]$.

Instead of solving the above matrix differential equation for [C], we represent [C] in terms of the four Euler parameters consisting of a scalar X and a vector \bar{K} and solve only four scalar differential equations.

To introduce the Euler parameters, we note that any orientation of a body may be achieved by a counterclockwise rotation about an appropriate axis a through an angle \oplus 。

Accordingly, C has the representation

$$
\begin{equation*}
[C]=[U]+\sin \oplus[J(\hat{a})]+(1-\cos \oplus)[J(\hat{a})]^{2} \tag{9.11}
\end{equation*}
$$

The Euler parameters are defined in terms of \hat{a} and $(\mathbb{)})$ by

$$
\begin{align*}
x & =\cos \frac{\oplus}{2} \\
\bar{K} & =\sin \frac{\Theta}{2} \hat{a} \tag{9.12}
\end{align*}
$$

Then

$$
\begin{equation*}
\mathrm{C}=[\mathrm{U}]+2 \times[\mathrm{J}(\overline{\mathrm{~K}})]+2[\mathrm{~J}(\overline{\mathrm{~K}})]^{2} \tag{9.13}
\end{equation*}
$$

The above differential equation for $[C]$ leads to the corresponding differential equations for X and \bar{K}, namely

$$
\begin{align*}
& \frac{d X}{d t}=-\frac{1}{2} \bar{\omega} \cdot \bar{K} \\
& \frac{d \bar{K}}{d t}=\frac{1}{2} x \bar{\omega}-\bar{\omega} \times \bar{K} . \tag{9.15}
\end{align*}
$$

We note that by definition $x^{2}+\bar{K} \cdot \bar{K}$ is equal to one and indeed this function is an integral of (9.14) and (9.15). This fact may be used to provide a check on the computation.

As seen from (9.10): the initial value of [C] is the identity matrix. Accordingly, we take $X(0)=1$ and $\bar{K}(0)=0$ so that (9.13) yields $[C(0)]=$ [U].

At any time $t,(9.14)$ and (9.15) are solved along with the equations of motion (5.16) and (5.17). The solutions of (9.14) and (9.15) are used in (9.13) to obtain $[C(t)]$, which when substituted into (9.10) yields the required transformation matrix, [M].

10. CROSSECTION LOADS

This section provides a discussion of the method used to obtain the loads acting on each section on which stresses are desired. The motion of segment $k, 1$ at any time is given by the existing N-Boom program. The motion is specified by three quantities which must be referred to segment k, i coordinates; segment k, i angular velocity, \bar{w}_{1}^{k}, angular acceleration, $\dot{\omega}_{i}^{k}$, and the acceleration of its c.g., $\frac{D^{2}}{D t^{2}}\left(\bar{\rho}+\bar{b}_{i}^{k}\right)$.

These quantities in conjunction with the inertia properties of subsections of segment $k, 1$ are sufficient to establish the loads at each station.

The derivation proceeds from the assumption that all vector quantities are referred to segment $k, 1$ coordinates. The superscript designating the appendage number, and the subscript designating the segment number are dropped for notational convenience and to minimize confusion. Thus, while the subscripting in the analysis to follow will refer te stations and other quantities associated with a particular segment, it is implied that the process is carried out for every segment k, i.

Figure 10.1 shows quantities to be associated with segment k, i (subscript and superscript dropped).

Equation (4.1) of Reference 1 relates the motion of segment k, i to the forces acting at the hinges as follows:

$$
\begin{equation*}
M_{1}^{k} \quad \frac{D^{2}}{D t^{2}}\left(\bar{\rho}+\bar{b}_{1}^{k}\right)=\bar{P}_{1}^{k}-\bar{p}_{i+1}^{k} \tag{10.1}
\end{equation*}
$$

Dropping the k,i notation for convenience, we have

$$
\begin{equation*}
\bar{P}_{e_{2}}=\overline{m a}-\bar{P}_{e l} \tag{10.2}
\end{equation*}
$$

Figure 10.1 $\begin{aligned} & \text { Quantities Required in the Loads Calculation } \\ & \text { Associated with Segment } k, i .\end{aligned}$
where we have defined

$$
\begin{aligned}
& \bar{P}_{e 2}=\bar{P}_{i}^{k} \\
& \bar{P}_{e 1}=-\bar{P}_{i+1}^{k}=-\left(\bar{P}_{e 2}\right)_{i+1}^{k} \\
& \left(P_{e 1}\right)_{n_{k}}^{k}=0 \\
& m=M_{i}^{k} \\
& \bar{a}=\frac{D^{2}}{D t^{2}}\left(\bar{\rho}+\bar{b}_{i}^{k}\right)
\end{aligned}
$$

It is clear that by means of Equation (3.2) all the forces acting on hinge points of the segments of an appendage can be found.

As shown in Figure 3.2, a station defines a crossection through a segment normal to the η-axis and the position of the $j^{\text {th }}$ station in segment k, i is \bar{S}_{j}. Thus,

$$
\begin{equation*}
\bar{S}_{\mathbf{j}}=\mathbf{S}_{\mathbf{j}} \hat{\eta} \tag{10.3}
\end{equation*}
$$

Figui 210.2 Subsegment Forces and Properties

Mass and inertial properties ($m_{j}, \overline{\bar{I}}_{j}$) are associated with the subsegments defined by each station S_{j} and the center of mass of the subsegment of segment $k, 1$ outboard of station j is given by \bar{c}_{j}.

The acceleration in inertial space of the c.g. of subsegment f is \bar{a}_{j}, and is given by

$$
\begin{equation*}
\bar{a}_{j}=\bar{a}+\bar{\omega} \times\left(\bar{\omega} \times\left(\bar{C}_{j}-\overline{\mathrm{C}}\right)\right)+\dot{\bar{\omega}} \times\left(\bar{C}_{j}-\overline{\mathrm{C}}\right) \tag{10.4}
\end{equation*}
$$

Thus the force on the crossection at station j is

$$
\begin{equation*}
\bar{p}_{j}=m_{j} \bar{a}_{j}-\bar{p}_{e l} \tag{10.5}
\end{equation*}
$$

where \bar{a}_{j} is defined by Equation (10.4).
The moment on crossection j in segment k, i is obtained from

$$
\begin{gathered}
\overline{\bar{J}^{\prime}}\left(\bar{\omega}^{\prime} \bar{I}_{j} \cdot \bar{\omega}+\bar{I}_{j} \cdot \dot{\bar{\omega}}\right. \\
=\bar{Q}_{j}+\bar{Q}_{e l}+\left(\bar{l}-\bar{c}_{j}\right) \times \bar{P}_{e l}+\left(\bar{s}_{j}-\bar{C}_{j}\right) \times \bar{P}_{j}
\end{gathered}
$$

where $\bar{Q}_{e l}$, the total torque acting on the outboard end of segment $k, 1$, is the negative of $\bar{Q}_{e 2}$ for segment $k, i+1$, and $Q_{e 1}=0$ for $i=n_{k}$. Thus, for segment k, i

$$
Q_{e 2}=Q_{N}
$$

where N designates the last stacion at which Q_{j} is computed on the segment, and for segment $k, 1$ - 1 .

$$
\left(Q_{e l}\right)_{i-1}^{k}=-\left(Q_{e 2}\right)_{i}^{k}
$$

That is

$$
\begin{align*}
\bar{Q}_{j} & =\overline{\bar{J}}(\bar{\omega}) I_{j} \cdot \bar{\omega}+\bar{I}_{j} \cdot \dot{\bar{\omega}} \\
& -\bar{Q}_{e l}+\left(c_{j}-\bar{\ell}\right) \times \overline{\mathrm{P}}_{e^{\prime}}+\left(\bar{C}_{j}-\overline{\mathrm{s}}_{j}\right) \times \overline{\mathrm{P}}_{j} \tag{11.6}
\end{align*}
$$

Equations (10.5) and (10.6) define the forces on crossection j.

Stresses will also be required whenever a hinge has locked. If, for example, hinge m, n locks the angular velocity and the velocity of the center of mass of each segment $k, 1$ will change instantaneously. The change in the motion of each segment, which is provided by the original N-Boom Program, may be used to calculate the impulsive forces and torques acting at each hinge $k_{\rho} i$, as hinge m, n locks. If a pulse shape is associated with hinge m, n, this shape may be used to calculate the maximum forces and torques acting at each station j, in each segment k, i. The forces thus obtained are then used in the stress subroutine in the same mannex as the forces that act at any other time in the course of motion.

The calculation of the impulsive forces closely parallels that of the forces previously derived. Thus, for the last segment in appendage k, segment k, n_{k}.

$$
\begin{align*}
& \left(\hat{\mathrm{P}}_{e_{1}}\right)_{n_{k}}^{k}=\left(\hat{Q}_{e_{1}}\right)_{n_{k}}^{k}=0 \\
& \left(\hat{P}_{e_{2}}\right)_{n_{k}}^{k}=m_{n_{k}}^{k} \Delta \bar{v}_{n_{k}}^{k} \tag{10.7}
\end{align*}
$$

where the symbol (A) indicates the vector is an impulse.

In addition, as in the case of forces, the impulse on the outboard end of segment $k, i,\left(\hat{p}_{e l}\right)_{1}^{k}$ is equal to the negative of the impulse on the inboard end of segment $k, 1+1$.

The change in velocity of subsegment j of segment $k, 1$ is given by

$$
\begin{equation*}
\Delta \bar{v}_{j}=\Delta \bar{v}+\Delta \bar{\omega} \times\left(\bar{C}_{j}-\overline{\mathbf{C}}\right) \tag{10.8}
\end{equation*}
$$

The impulsive force applied to subsegment j is then

$$
\begin{equation*}
\hat{P}_{j}=m_{j} \Delta \bar{v}_{j}-\hat{P}_{e_{1}} \tag{10.9}
\end{equation*}
$$

The change in the moment of momentum about the center of mass of the segment is equal to the moment of the impulsive forces about the center of mass of segment $k, 1$.

$$
\begin{align*}
\overline{\bar{I}} \cdot \Delta \omega & =-\mathrm{c} \times \hat{\mathrm{P}}_{\mathrm{e} 2}+(\bar{\ell}-\overline{\mathrm{C}}) \times \hat{\mathrm{P}}_{\mathrm{e} 1} \\
& +\hat{Q}_{\mathrm{e} 1}+\hat{Q}_{\mathrm{e} 2} \tag{10.10}
\end{align*}
$$

Thus, for segment k, i

$$
\begin{gather*}
\left(\hat{Q}_{e 1}\right)_{i}^{k}=-\left(\hat{Q}_{e 2}\right)_{i+1}^{k} \\
\hat{Q}_{e_{2}}=\bar{I} \Delta \omega+\left(\bar{c}_{j}-\bar{S}_{j}\right) \times \hat{P}_{j}+\left(c_{j}-\ell\right) \times \hat{P}_{e 1}-\hat{Q}_{e 1} \tag{10.11}
\end{gather*}
$$

For subsegment j of segment k, ℓ we then have

$$
\begin{equation*}
\hat{Q}_{j}=\overline{\bar{I}}_{j} \Delta \bar{\omega}+\left(\bar{S}_{j} \times \hat{P}_{j}+\left(\bar{C}_{j}-\bar{l}\right) \times \hat{P}_{e l}-\hat{Q}_{e l}\right. \tag{10.12}
\end{equation*}
$$

The equation for $\hat{Q}_{e_{2}}$, Equation (10.11), is obtained from Equation (10.12) by defining the last station on segment k, i to be at the inboard hinge, i.e, for $j=N, c_{j}=c, \hat{P}_{N}=\hat{P}_{e_{2}}$.

The above expressions define the impulsive forces and moments acting on station j of each segment k, i. The maximum forces acting on each crossection of the segment are obtained from the above relations. It will be assumed that a pulse shape, as shown below, can be associated with the locking of each hinge, m, n.

Figure 10.3. Pulse Shape Associated with the Locking of Hinge m, n.

The pulse shown is of unit area. That is,

$$
\int_{0}^{T} x(t) d t=1
$$

or

$$
\begin{align*}
& c x_{\max }=1 \\
& x_{\max }=1 / c \tag{10.13}
\end{align*}
$$

For a given shape the maximum force in the course of the pulse is then

$$
\begin{align*}
& \left(\bar{P}_{j}\right)_{i_{\max }}^{k}=\left(\frac{1}{c}\right)_{n}^{m}\left(\hat{P}_{j}\right)_{i}^{k} \\
& \left(\bar{Q}_{j}\right)_{1_{\max }}^{k}=\left(\frac{1}{n}\right)_{n}^{n}\left(\hat{Q}_{j}\right)_{1}^{k} \tag{10.14}
\end{align*}
$$

A constant $1 / \mathrm{c}$ is associated with the hinge that has just locked, m, n. The forces obtained from the above are used in the stress subroutine.

11. SEGMENT STRESSES

Circular Tube Section

The loads on the circular tube section at station j are shown in Figure 11.1.

Figure 11.1 Circular Tube Crossection Loads.

The stress for each crossection load will first be determined. The total stress at any point on the crossection is then the sum of the stresses arising from these various effects.

A11 the stresses on the crossection can be expressed as functions of ξ and ζ as shown in Figure 11.2. ($-R \leq \xi \leq R$, and $-R \leq \zeta \leq R$)

Figure 11. 2 Forces and Stresses on a Circular Crossection.

The shear stress arising from P_{3} may be written

$$
\begin{equation*}
\sigma_{23}^{\prime}=\frac{2 P_{3}}{A}\left|\frac{\xi}{R}\right| \tag{11.1}
\end{equation*}
$$

and similarly for P_{1}

$$
\begin{equation*}
\sigma_{21}^{\prime}=\frac{2 P_{1}}{A}\left|\frac{\zeta}{R}\right| \tag{11.2}
\end{equation*}
$$

The normal stress σ_{22}, arises from bending and axial stresses

$$
\begin{equation*}
\sigma_{22}=\frac{P_{2}}{A}+\frac{Q_{3} \xi}{I}-\frac{Q_{1} \zeta}{I} \tag{11.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=2 \pi R t \\
& I=\pi R^{3} t
\end{aligned}
$$

The torsional shear stress is constant around the crossection

$$
T=\frac{Q_{2}}{S}
$$

where $Q=2 \pi R^{2} t$

The torsional shear stress, T, contributes to both σ_{21} and σ_{23}. Thus, these stresses are as follows:

$$
\begin{align*}
& \sigma_{21}=\frac{2 P_{1}}{A}\left|\frac{\zeta}{R}\right|+\frac{Q_{2}}{S} \frac{\zeta}{R} \\
& \sigma_{23}=\frac{2 P_{3}}{A}\left|\frac{\xi}{R}\right|-\frac{Q_{2}}{S} \frac{\xi}{R} \tag{11.4}
\end{align*}
$$

The maximum distortion energy is not only the most appropriate criteria for establishing the severity of a stress condition, but also, is the most convenient. The distortion energy (Timoshenko, 1951) is given by

$$
\begin{align*}
\mathrm{V}_{0} & =\frac{1+u}{6 \mathrm{E}}\left(\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)^{2}+\left(\sigma_{\mathrm{y}}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{\mathrm{x}}\right)^{2}\right) \\
& +\frac{1}{2 \mathrm{G}}\left(\tau_{\mathrm{xy}}^{2}+\tau_{\mathrm{xz}}^{2}+\tau_{\mathrm{yz}}^{2}\right) \tag{11.5}
\end{align*}
$$

where

$$
G=\frac{E}{2(1+v)}
$$

Since σ_{13}, σ_{11}, and σ_{33} are zero, the distortion energy in the present notation is

$$
\begin{equation*}
V_{0}=\frac{(1+U)}{3 E} \sigma_{22}^{2}+\frac{1}{2 G}\left(\sigma_{21}^{2}+\sigma_{23}^{2}\right) \tag{11.6}
\end{equation*}
$$

where σ_{22}, and σ_{21} and σ_{23} are defined by Equations (11.3) and (11.4), respectively.

Stresses in Non-Circular Sections

The loads acting on the tube crossections have been defined at points on the η axis. However, it will be assumed that the neutral axis is not necessarily on the η axis in general, but at the point $\left(C_{\xi}, S_{j}, C_{\zeta}\right)$ on the $j^{\text {th }}$ crossection of segment k, i. It will be assumed that the neutral axis and the shear center are coincident.

On the basis of the above considerations, it is clear that the moments must be recalculated about the neutral axis. The moments will be designated Q_{1}^{*}, Q_{2}^{*}, and Q_{3}^{*}.

These moments may be written in terms of the forces and moments previously defined. Thus,

$$
\begin{align*}
& Q_{1}^{*}=Q_{1}+C_{\zeta} P_{2} \\
& Q_{2}^{*}=Q_{2}-C_{\zeta} P_{1}+C_{\xi} P_{2} \\
& Q_{3}^{*}=Q_{3}-C_{\xi} P_{2} \tag{11.7}
\end{align*}
$$

We wish to find the stresses at a point ξ, ζ on the crossection as indicated in Figure 11.3.

Figure 11.3. Crossection Loads and Stresses

Bending Stress

In general, the asymmetry of the non-circular crossection will result in combined bending. Thus, a moment about one axis results in bending about both axes. This well-known effect can be accounted for by establishing effective bending moments. For convenience, we first define three constants.

$$
\begin{aligned}
& k_{1}=I_{\xi \zeta} / I_{\zeta \zeta} \\
& k_{2}=I_{\xi \zeta} / I_{\xi \xi} \\
& k_{3}=1-k_{1} / k_{2}
\end{aligned}
$$

Using the above, the effective bending moments on the crosssections are

$$
\begin{align*}
& Q_{1}^{* \prime}=\frac{Q_{1}^{*}+k_{1} Q_{3}^{*}}{k_{3}} \\
& Q_{3}^{* \prime}=\frac{Q_{3}^{*}+k_{2} Q_{1}^{*}}{k_{3}} \tag{11.8}
\end{align*}
$$

At a particular point F_{j}, ζ the bending stress is then

$$
\begin{equation*}
\sigma_{22}^{b}=\frac{Q_{1}^{*!}\left(\zeta-C_{\xi}\right)}{I_{\xi \xi}}-\frac{Q_{3}^{* \prime}\left(\xi-C_{\xi}\right)}{I_{\zeta \zeta}} \tag{11.9}
\end{equation*}
$$

The total compressive stress is found by combining the compressive stress arising from bending, σ_{22}^{b}, with the compressive stress arising from the force P_{2}. Thus,

$$
\begin{equation*}
\sigma_{22}=\frac{P_{2}}{A}+\frac{Q_{1}^{*!}\left(\xi-C_{\zeta}\right)}{I_{\xi \xi}} \cdot \frac{Q_{3}^{*!}\left(\xi-C_{\xi}\right)}{I_{\zeta \zeta}} \tag{11.10}
\end{equation*}
$$

Torsional Stress

The torsional shear flow at the point (ξ, ξ) will be designated q_{t}. The shear flow is found readily from the torsional moment Q_{3}^{*} and the enclosed area, [A]. Thus

$$
\begin{equation*}
q_{t}=\frac{Q_{2}^{*}}{2[A]} \tag{11.11}
\end{equation*}
$$

The shear flow, q_{t}, contributes to the shear stresses in two directions.

$$
\begin{align*}
& \sigma_{21}^{t}=\frac{-q_{t} \cos \theta}{t_{1}} \\
& \sigma_{23}^{t}=\frac{-q_{t} \sin \theta}{t_{1}} \tag{11.12}
\end{align*}
$$

Using Equations (11. 11) and (11.8) in Equations (11.12) we obtain

$$
\begin{align*}
& \sigma_{21}^{t}=\frac{-Q_{2}^{*}}{2[A]} \quad \frac{\xi_{1+1}-\xi_{1}}{A_{1}} \\
& \sigma_{23}^{t}=\frac{-Q_{2}^{*}}{2[A]} \quad \frac{\zeta_{1+1}-\zeta_{1}}{A_{1}} \tag{11.13}
\end{align*}
$$

The shearing forces P_{1} and P_{3} contribute to the shear stresses σ_{21} and σ_{23}. Using parameters derived in Section 5, we have

$$
\begin{align*}
& \sigma_{23}^{s}=\frac{\mathrm{P}_{3} Q_{\xi}}{\mathrm{I}_{\xi \xi}}\left(\frac{A_{1}}{\xi_{i+1}-\xi_{1}}+\frac{A_{1^{\prime}}}{\xi_{1^{\prime}+1}-\xi_{1}}\right) \\
& \sigma_{21}^{s}=\frac{{ }_{1} Q_{\xi}}{I_{\zeta \zeta}}\left(\frac{A_{1}}{\zeta_{1+1}-\zeta_{1}}+\frac{A_{1^{\prime}}}{\zeta_{1^{\prime}+1}-\zeta_{1}}\right) \tag{11.14}
\end{align*}
$$

where the superscript s indicates that these are the shear stresses arising from the shearing forces P_{1}, and P_{3} alone, and where the coefficients in parantheses in the denomenator represent the crossectional width cut by lines normal to the ζ and ξ-axes, respectively, at the point at which the stress is being calculated.

Equations (11.14) and (11.15) are combined to establish the total shear stress. Thus,
$\sigma_{21}=\frac{-Q_{2}^{*}\left(\xi_{1+1}-\xi_{1}\right)}{2[A] A_{1}}+\frac{P_{1} Q_{\xi}}{I_{5 \zeta}\left(\frac{A_{1}}{\zeta_{1+1}-\zeta_{1}}+\frac{A_{1}}{\Gamma_{1} 1^{\prime}+1}-\zeta_{1}{ }^{\prime}\right)}$
(11.15)
$\sigma_{23}=\frac{-Q_{2}^{*}\left(\zeta_{1+1}-\zeta_{1}\right)}{2[A] A_{1}}+\frac{P_{3} Q_{\zeta}}{I_{\xi \xi}\left(\frac{A_{1}}{\xi_{1+1}-\xi_{1}}+\frac{A_{1}^{\prime}}{\xi_{1^{\prime}+1}-\xi_{1}{ }^{\prime}}\right)}$
Space, as before, σ_{13}, σ_{11} and σ_{33} are zero on the crossection, the distortion energy on an arbitrary point of crossection segment k, i is of the same form as given in Equation (11.6).

$$
\begin{equation*}
v_{0}=\frac{(1+\nu)}{3 E} \sigma_{22}^{2}+\frac{1}{2 G}\left(\sigma_{21}^{2}+\sigma_{23}^{2}\right) \tag{11.16}
\end{equation*}
$$

The stress σ_{22} varies linearly on a crossection element while σ_{21}, and σ_{22} very quadratically. Consequently, V_{0} varies as a fourth order polynomial on the element. The point at which the maximum value of this polynomial occurs is the point at which the crossection element is most severely stressed. A maximum value of V is established in this manner for each plate element. The location of the maximum value among all the elements is the location of the most severe stress condition on the crossection.

12. SECTION PROPERTIES

Circular Tube Section

In this section the properties required to establish the stresses on a crossection are developed. For the circular tube crossection, Figure 12.1, these are readily obtainable as follows:
$I=\pi R^{3} t, \quad$ the area moment of inertia for the crossection
$A=2 \pi R t, \quad$ the crossectional area

The shear stress on a circular tube is proportional to the static moment of the area above the point at which the stress is desired and inversely proportional to the moment of inertia and tube thickness. For shear forces in the 5 -direction the proportionality factor $1 \mathrm{l} \frac{2 \cos \theta}{\mathrm{~A}}$, and in the ξ-direction, $\frac{2 \sin \theta}{A}$.

Non-Circular Section

The non-circular section is a general n-sided polygon. The polygonal crossection is specified by the coordinates of the vertices in segment coordinates (at each station if the section is non-uniform) and the thickness of the intervening plate elements as shown in Figure 12.1.

Figure 12.1. Polygonal Crossection Geometry
The area of the crossection is given by

$$
\begin{equation*}
A=\sum_{i=1}^{n} A_{1} \tag{12.2}
\end{equation*}
$$

where

$$
A_{1}=t_{1} \sqrt{\left(\xi_{1+1}-\xi_{1}\right)^{2}+\left(\zeta_{1+1}-\zeta_{1}\right)^{2}}
$$

and

$$
\xi_{n+1}=\xi_{1}, \zeta_{n+1}=\zeta_{1}
$$

The centroidal distances C_{ξ}, and C_{5} are obtained from

$$
\begin{equation*}
c_{5}=\frac{1}{A} \sum_{i=1}^{n} \frac{\left(\xi_{i+1}+\xi_{i}\right) A_{1}}{2} \tag{12.3}
\end{equation*}
$$

and

$$
c_{\zeta}=\frac{1}{A} \sum_{1=1}^{n} \frac{\left(\zeta_{1+1}+\xi_{1}\right) A_{1}}{2}
$$

The centroid is the neutral aris and will be assumed to be the shear center as well.

The area moments of inertia are obtained from the area properties defined above in combination with the area moments of the individual plate elements. Consider the ith plate element at station j in segment k, 1 as shown in Figure 12.2 .

Figure 12.2. The ith Plate Element at Station J in Segment k,i

The area moments of inertia of the plate crossection are derived first about the 1-2 axes through the centroid of the plate element and are subsequentiy transformed into segment coordinates. Thus, we have

$$
\begin{aligned}
& I_{1 i}=\frac{A_{1} t_{i}^{2}}{12} \\
& I_{2 i}=\frac{A_{1}^{3}}{12 t_{i}^{2}}
\end{aligned}
$$

These area moments of inertia are transformed to segment coordinates as follows:

$$
\begin{align*}
& I_{\xi \xi_{i}}=\frac{I_{1 i}+I_{2 i}}{2}+\frac{I_{1 i}-I_{2 i}}{2} \cos 2 \theta_{i} \\
& I_{\xi \zeta_{i}}=\left(\frac{I_{2 i}-I_{1 i}}{2}\right) \sin 2 \theta_{i} \\
& I_{\zeta \zeta_{i}}=\frac{I_{1 i}+I_{2 i}}{2}+\frac{I_{2 i}-I_{1 i}}{2} \cos 2 \theta_{i} \tag{12.4}
\end{align*}
$$

where

$$
\begin{aligned}
& \sin \theta_{i}=\left(\frac{\zeta_{i+1}-\zeta_{i}}{A_{i}}\right)^{t_{i}} \\
& \cos \theta_{i}=\left(\frac{\xi_{i+1}-\xi_{i}}{A_{i}}\right)^{t_{i}} \\
& \sin 2 \theta_{i}=\frac{2 t_{i}^{2}}{A_{i}^{2}}\left(\zeta_{i+1}-\zeta_{i}\right)\left(\xi_{i+1}-\xi_{i}\right) \\
& \cos 2 \theta_{i}=\frac{t_{i}^{2}}{A_{i}^{2}}\left(\left(\xi_{i+1}-\xi_{i}\right)^{2}-\left(\zeta_{i+1}-\zeta_{i}\right)^{2}\right)
\end{aligned}
$$

Substitution of the expressions for the trigonometric functions and Equations (11.3) into (11.4) yields

$$
\begin{align*}
& I_{5 \xi_{1}}=\frac{A_{1}}{t_{i}^{2}} \frac{\left(t_{i}^{4}+A_{i}^{2}\right)}{24}+\frac{\left(t_{1}^{4}-A_{1}^{2}\right)}{24 A_{i}}\left(\left(\xi_{1+1}-\xi_{1}\right)^{2}-\left(\delta_{1+1}-\sigma_{1}\right)^{2}\right) \\
& I_{\xi_{E_{1}}}=\frac{A_{1}^{2}-t_{i}^{4}}{12 A_{i}}\left(\xi_{1+1}-\xi_{1}\right)\left(\xi_{1+1}-\xi_{1}\right) \\
& I_{6 \epsilon_{1}}=\frac{A_{1}\left(t_{i}^{4}+A_{i}^{2}\right)}{24 t_{i}^{2}}+\frac{\left(A_{i}^{2}-t_{i}^{4}\right)}{24 A_{i}}\left(\left(\xi_{1+1}-\xi_{1}\right)^{2}-\left(\zeta_{1+1}-\sigma_{i}\right)^{2}\right) \tag{12.5}
\end{align*}
$$

The area moments of inertia of the section are obtained from Equations (12.5) and the moments of the areas of the plate elements about the centroid of the section. Thus, we have

$$
\begin{aligned}
& I_{\xi \xi}=\sum_{i=1}^{n} I_{\xi \xi_{i}} \\
&+\sum_{i=1}^{n}\left(\frac{\zeta_{i+1}+\zeta_{i}}{2}-c_{\zeta}\right)_{A_{i}}^{2} \\
& I_{\xi \zeta}=\sum_{i=1}^{n} I_{\xi \zeta_{i}} \\
&+\sum_{i=1}^{n}\left(\frac{\xi_{i+1}+\xi_{i}}{2}-C_{\xi}\right)\left(\frac{\zeta_{i+1}+\zeta_{i}}{2}-c_{\zeta}\right)_{A_{i}}
\end{aligned}
$$

$$
\begin{align*}
I_{\zeta \zeta}=\sum_{i=1}^{n} & I_{\zeta \zeta_{i}} \\
& +\sum_{i=1}^{n}\left(\frac{\xi_{i+1}+\xi_{i}}{2}-C_{\xi}\right)^{2} A_{i} \tag{12.6}
\end{align*}
$$

In Figure 12.3, the area above ζ is shown crosshatched. The horizontal line defined by ζ cuts the crossection between the vertices i and $1+1$, and between j and $j+1 . Q_{\zeta}$ is the absolute value of the moment of the area above ζ about the centroid.

Figure 12.3. The Definition of Q_{ζ}

The value of η_{ζ} is obtained by interpolation from a table of values of H_{ζ}, the integral of the moment of the area about ξ axis from one fixed point on the crossection. Thus, if we already have the value of H_{ζ} at vertex 1 , we obtain H_{ζ} at an arbitrary point on plate element 1 as follows:

$$
\begin{aligned}
& \mathrm{H}_{\zeta}=\mathrm{H}_{\zeta_{i}}+\int_{\zeta i}^{\zeta} \frac{\left(\zeta_{0}-C_{\zeta}\right) \mathrm{A}_{1}}{\zeta_{i+1}-\zeta_{i}} \mathrm{~d} \zeta \\
& \quad \text { for } \zeta_{i} \leq \zeta \leqslant \zeta_{i+1}
\end{aligned}
$$

Using the above, the value of H_{ζ} can be found at any point on plate element i, or H_{ζ}, may be found at the same value of ζ on element i. ${ }_{\zeta}{ }_{\zeta}$ is then found from

$$
\begin{equation*}
Q_{\zeta}=\left|H_{\zeta}-H_{\zeta^{\prime}}\right|=\left|H_{\zeta^{\prime}}-H_{\zeta^{\prime}}\right| \tag{12.7}
\end{equation*}
$$

In the same manner as above,

$$
\begin{gathered}
H_{\xi}=H_{\xi_{i}}+\int_{\xi}^{\xi} \frac{\left(\xi-C \xi_{\xi}\right) A_{i}}{\xi_{i+1}^{-\xi_{i}} d \xi} \\
\text { for } \xi_{i} \leq \xi_{i} \leq \xi_{i+1}
\end{gathered}
$$

and,

$$
\begin{equation*}
\mathrm{Q}_{\xi}=\left|\mathrm{H}_{\xi^{\prime}}-\mathrm{H}_{\xi^{\prime}}\right|=\left|\mathrm{H}_{\xi^{\prime}}-\mathrm{H}_{\xi}\right| \tag{12.8}
\end{equation*}
$$

In order to calculate the shear flow arising from torsion, the area inclosed by the section, [A]will be required.

Figure 12.4. The Portion of the Enclosed Area Corresponding to Plate Element 1.
let $g_{i}=d_{i}+d_{i+1}+\frac{A_{i}}{t_{i}}$ where $d_{i}=\sqrt{\xi_{i}^{2}+\zeta_{i}^{2}}$
then $\left.[A]_{i}=\sqrt{g_{i}\left(g_{i}-d_{i}\right)\left(g_{i}-d_{i+1}\right)\left(g_{i}-\frac{A_{i}}{t_{i}}\right.}\right)$
and

$$
\begin{equation*}
[A]=\sum_{i=1}^{n}[A]_{i} \tag{12.9}
\end{equation*}
$$

13. CALCULATION OF SUBSEGMENT MASS PROPERTIES FROM THE MASS PROPERTIES OF THE ELEMENTS BETWEEN STATIONS

In this section, the mass properties required in the loads calculation will be derived from input mass properties. These include the total mass between station j and $j-1, \Delta m_{j}$. This mass is the total of the mass of the crossection and any lumped mass, such as wire bundles, and instruments between stations f and $\mathrm{f}-1$. Similarly, $\Delta \overline{\bar{I}}_{\mathrm{j}}$ designates the mass moment of inertia of the portion of the segment between stations j and $\mathrm{j}-1$. The remaining quantity required is $\Delta \bar{C}_{j}$, the position vector, $\Delta \overline{\mathrm{C}}_{j}$, of the center of mass of $\Delta \bar{m}_{j}$.

In Section 3, the loads at otation j were calculated from \bar{C}_{j}, m_{j}, and $\overline{\bar{I}}_{j}$, the mass properties of the subsegment defined by station j, and the motion as given by the present N-Boom program. Given the mass properties of the element between stations $j-1$ and $j, \Delta m_{j}, \Delta \bar{C}_{j}$, and the mass properties for subsegment $j-1$, we can establish the required mass properties for subsegment \mathbf{j}. Thus, we have

$$
\begin{gather*}
m_{j}=m_{j-1}+\Delta m_{j} \\
\bar{c}_{j}=\frac{m_{j-1} \bar{c}_{j-1}+\Delta m_{j} \Delta \bar{c}_{j}}{m_{j}} \tag{13.1}
\end{gather*}
$$

for

$$
j=2,3, \ldots N \text { on segment } k, 1, \text { and } m_{1}=\Delta m_{1}, \bar{C}_{1}=\Delta \bar{C}_{1}
$$

$\hat{\eta}$

Figure 13.1. Subsegment Parameters
The calculation of the moment of inertia for subsegment f from the mass properties of subsegment $\mathrm{j}-1$ and the element defined by stations j and $\mathrm{f}-1$ is slightly more complex. Referring to Figure 13.1,

$$
\begin{align*}
& \bar{r}_{j-1}=\bar{c}_{j}-\bar{c}_{j-1} \\
& \Delta \bar{r}_{j}=\Delta \bar{c}_{j}-\bar{c}_{j-1} \tag{13.2}
\end{align*}
$$

The moment of inertia of subsegment f about its center of mass is obtained from

$$
\begin{align*}
\overline{\bar{I}}_{j} & =\overline{\bar{I}}_{j-1}+\Delta \overline{\bar{I}}_{j}-m_{j-1} \overline{\bar{J}}\left(\bar{r}_{j-1}\right) \overline{\bar{J}}\left(r_{j-1}\right) \\
& -\Delta m_{j} \overline{\bar{J}}\left(\Delta \bar{r}_{j}\right) \overline{\bar{J}}\left(\Delta \bar{r}_{j}\right) \tag{13.3}
\end{align*}
$$

for $j=2,3, \ldots N$ on segment k, i, and $\overline{\bar{I}}_{1}=\Delta \overline{\bar{I}}_{1}$.
14. MOTION QUANTITIES REQUIRED AS INPUT TO THE STRESS SUBROUTINE

Vector quantities obtained from the main flow of the program are generally expressed in main body coordinates. In this section, vector expressions are written for the vector quantities required as input to the loads subroutine. At the end of the section the appropriate transformations are defined for expressing all vector quantities in segment $\mathrm{k}, 1$ coordinates.

When no lock-ups are occuring, $\bar{\omega}_{i}^{k}, \dot{\omega}_{1}^{k}$, and \bar{a} are required in the loads subroutine. ω_{i}^{-k} is defined in Equation (8.14) as follows:

$$
\begin{equation*}
\bar{\omega}_{1}^{k}=\bar{\omega}+\bar{\delta}_{1}^{k} \tag{14.1}
\end{equation*}
$$

where $\bar{\Omega}_{i}^{k}=\sigma_{i}^{k}=\sigma_{i}^{k} \hat{e}_{i}^{k} \quad$ for $k \leq n_{s}, i=1,2, \ldots n_{k}$

$$
=\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{n}_{1}^{k} \quad \text { for } n_{s}<k \leq n_{a}, i=2
$$

The angular acceleration of segment k, i is obtained by differentiation of Equation (14.1) and is as follows:

$$
\begin{align*}
& \dot{\bar{\omega}}_{i}^{k}=\dot{\bar{\omega}}+\dot{\sigma}_{i}^{k} \hat{e}_{1}^{k}+\dot{\sigma}_{i}^{k}\left(\bar{\omega} \times \hat{e}_{1}^{k k}\right) \quad \text { for non-paddle segments } \\
& \dot{\bar{\omega}} \\
& 2=\dot{\bar{\omega}}+\dot{\sigma}_{1}^{k} \hat{e}_{1}^{k}+\dot{\sigma}_{2}^{k} \hat{\eta}_{2}^{k} \tag{14.2}\\
&+\sigma_{1}^{k}\left(\bar{\omega} \times \hat{e}_{1}^{k}\right)+\sigma_{2}^{k}\left(\bar{\omega} \times{\hat{\eta_{n}^{2}}}_{2}^{k}\right)
\end{align*}
$$

The acceleration $\vec{a}_{1}^{\mathbf{k}}$ of the center of mass of segment k, 1 is given by

$$
\bar{a}_{1}^{k}=\frac{D^{2}}{D t^{2}}\left(\bar{\rho}+\bar{b}_{1}^{-k}\right)
$$

The first term of Equation (7.3) is defined in Equation (14.19) as follows:

$$
\begin{align*}
\frac{D^{2} \bar{\rho}}{d t^{2}} & =\left(\frac{d^{2} \rho}{d t^{2}}\right)_{M}+\dot{\bar{\omega}} \times \bar{\rho}+2 \bar{\omega} \times\left(\frac{d \bar{\rho}}{d t}\right)_{M} \\
& +\bar{\omega} \times(\bar{\omega} \times \bar{\rho}) \tag{14.4}
\end{align*}
$$

Using the following definitions,

$$
\begin{equation*}
\because \bar{v}=\left(\frac{d \bar{\rho}}{d t}\right)_{M}, \text { and } \stackrel{\stackrel{\rightharpoonup}{v}}{ }=\left(\frac{d^{2} \rho}{d t^{2}}\right)_{M} \tag{14.5}
\end{equation*}
$$

Equation (7.4) may be written as follows

$$
\begin{align*}
\frac{d^{2} \bar{\rho}}{d t^{2}}=\dot{v} & +\dot{\bar{\omega}} \times \bar{\rho}+2 \bar{\omega} \times \bar{v} \\
& +\bar{\omega} \times(\bar{\omega} \times \bar{\rho}) \tag{14.6}
\end{align*}
$$

The second term in Equation (14.3) is somewhat more complex. For non-paddle appendages and the first segments in paddle appendages, that is, that is, for $k \leq n_{s} 1 \leq i \leq n_{k}$, and $n_{s}<k \leq n_{a}$, $i=1$, we have

$$
\begin{align*}
\frac{D^{2} \bar{b}_{1}^{k}}{D t^{2}}=\frac{\dot{\omega}}{\omega} \times \bar{b}_{1}^{k} & +\left(\hat{\epsilon}_{1}^{k} \times \bar{C}_{i}^{k}\right) \dot{\sigma}_{i}^{k} \\
& +\sum_{j=1}^{1-1} e_{j}^{k} \hat{\zeta}_{j}^{k} \dot{\sigma}_{j}^{k}+{\overline{G_{i}}}_{1}^{k} \tag{14.7}
\end{align*}
$$

While for paddle appendages, that $1 s, n_{s} \leq k \leq n_{a}$ and $i=2$

$$
\begin{align*}
& \frac{D^{2} \bar{b}_{2}}{D t^{2}}=\dot{\bar{\omega}} \times \bar{b}_{2}^{k}+\dot{\sigma}_{1}^{k} \hat{\epsilon}_{1}^{k} \times \bar{c}_{2}^{k} \\
& +\dot{\sigma}_{2}^{k} \hat{M}_{1}^{k} \times{\underset{c}{2}}_{2}^{k}+\bar{b}_{1}^{k} \times \dot{o}_{1}^{k} \hat{e}_{1}^{k} \\
& +\bar{G}_{2}^{k} \tag{14.8}
\end{align*}
$$

In the event of a locir-up, all angular velocity and velocity terms change instantaneously, while all positions remain fixed. Thus, from Equation (7.1) we have

$$
\Delta \omega_{i}^{-k}=\Delta \bar{\omega}+\Delta \sigma_{i}^{k} \hat{e}_{1}^{k} \text { for non-paddies }
$$

and

$$
\begin{equation*}
\Delta \bar{\omega}_{2}^{k}=\Delta \bar{\omega}+\Delta \sigma_{1}^{k} \hat{e}_{1}^{k}+\Delta \sigma_{1}^{k} \hat{\eta}_{1}^{k} \text { for paddle segments } \tag{14.9}
\end{equation*}
$$

The change in the velocity of the center of mass of segment k, is found from Equation (8.19) to be

$$
\begin{align*}
\Delta v_{i}^{k}=\Delta v & +\Delta \bar{\omega} \times\left(\bar{\rho}+\bar{b}_{i}^{k}\right) \\
& +\Delta \bar{\Omega}_{i}^{k} \times \bar{c}_{i}^{k}+\sum_{j=1}^{i-1} l_{j}^{k} \Delta \sigma_{j}^{k} \hat{b}_{j}^{k} \tag{14.10}
\end{align*}
$$

where

$$
\begin{array}{ll}
\Delta त_{1}^{k}=\Delta \sigma_{1}^{k} \hat{e}_{1}^{k} & \text { for non-paddle sezments } \\
\Delta त_{2}^{k}=\Delta \sigma_{1}^{k} \hat{e}_{1}^{k}+\Delta \sigma_{2}^{k} \hat{\eta}_{1}^{k} & \text { for paddle segments }
\end{array}
$$

Coordinate Transformations

Generally rwo types of coordinate transformations will be required:

1) transformation of forces and torques expressed in segment $k_{0} i+1$ coordinates to segment k, 1 coordinates, and (2) transformation of quantitites expressed in main body coordinates to segment k, i coordinates.

Figure 14.1. Quantities Defining Segment Position

Consider adjoining segments, segments $k, 1$, and $k, 1+1$ as shown in Figure 14.1.

Segment k, $i+1$ unit vectors may be expressed in terms of segment k, i unis vectors by means of the expressions

$$
\begin{align*}
& \hat{\xi}_{i+1}^{k}=\hat{\xi}_{i}^{k}=\hat{\epsilon}_{1}^{k} \\
& \hat{\eta}_{i+1}^{k}=\cos \beta_{i+1}^{k} \hat{\Pi}_{i}^{k}+\sin \beta_{i+1}^{k} \hat{\zeta}_{i}^{k} \\
& \hat{\zeta}_{i+1}^{k}=-\sin \beta_{i+1}^{k} \hat{\eta}_{i}^{k}+\cos \beta_{i+1}^{k} \hat{\zeta}_{i}^{k} \tag{14.11}
\end{align*}
$$

Thus, for example, if the vector \bar{r} is expressed in body $k, 1+1$ coordinates, it may be written

$$
\begin{equation*}
\bar{r}=r_{1} \hat{e}_{1}^{k}+r_{2} \hat{\eta}_{i+1}^{k}+r_{3} \hat{\zeta}_{i+1}^{k} \tag{14.12}
\end{equation*}
$$

Then by means of Equation (7.11), Equation (7.12) becomes

$$
\begin{align*}
\overline{\mathbf{r}}=\mathbf{r}_{1} \hat{e}_{1}^{k} & +\left(r_{2} \cos \beta_{i+1}^{k}-r_{3} \sin \beta_{i+1}^{k}\right) \hat{\eta}_{i}^{k} \\
& +\left(r_{2} \sin \beta_{i+1}^{k}+r_{3} \cos \beta_{i+1}^{k}\right){\hat{\rho_{i}}}^{k} \tag{14.13}
\end{align*}
$$

The remaining transformation, the transformation from main body to segment k , i coordinates is the reverse of the ordinary transformation pertormed. The main body unit vectors may be defined as the columns of a 3×3 matrix G_{i}^{k} as follows

$$
\begin{equation*}
[\hat{x}, \hat{y}, \hat{z}]=\left[G_{i}^{k}\right] \tag{14.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[G_{i}^{k}\right]=\left[T^{k}\right]^{T}\left[D_{i}^{k}\right]^{T} \tag{14.15}
\end{equation*}
$$

$\left[T^{k}\right]$ is defined in Equation (9.6), and

$$
\left[D_{1}^{k}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{14.16}\\
0 & \cos \alpha_{i}^{k} & \sin \alpha_{i}^{k} \\
0 & -\sin \alpha_{i}^{k} & \cos \alpha_{i}^{k}
\end{array}\right]
$$

PARTII
USER'S MANUAL

15. INTRODUCTION TO USER'S MANUAL

The four sections included in Part II of this volume comprise the User's Manual for the program. The Nomenclature, Sections 1, 2, 3, 9, 10, 11, 12, and 14 of Part I in conjunction with the four sections of Part II should provide sufficient information to the prospective user to use the program.

It is the purpose of the User's Manual to describe the quantities which may be input, restrictions on input format, and by example, to i11ustrate the output the program pxoduces.

Thus, Section 16 is a glossary of program input symbols, Section 17 describes how input is prepared for a test case, and Section 1.8 discusses the output obtained from the test case, including graphical output as well as printed output:

16. GLOSSARY OF INPUT SYMBOLS

The second column of Table 16.1 is a complete list of input symbols for the program. The left column defines the input quantities in terms of quantities defined in the Nomenclature, Part I, and subsequently used In the derivations. The right hand column provides a brief description of the meaning of the input syrubol and information as to dimensions. It is to be noted that input quantities may be input in any self-consistent units, the only restriction beings that some quantities having angular dimensions are input in degrees, while others are input in radians. Dimension symbols, in parenthesis in the right column, have the following meaning: $D=$ degrees, $R=$ radians, $F=$ force, $L=$ length, and $T=$ time. It should be noted that although the program output is correct in any self-consistent units, the output is labeled FT, LB, and SEC.

Table 16.1 does not provide sufficient information for the user to understand the meaning of all the input quantities. Referral to the Nomenclature, Part I, will clarify definitions. The coordinate frames to which the various vectors and inertia matrices are referred are described in detail in Section 9, Part I.

The table indicates that the data is input in five groups; these are: the data that appears between \&DIM and \&END, \&NXPUT and \&END, \&DYNSTA and \& END, \& DYNSTB and s END, and \& ROCK and \& END. The data groups must be input in the ordex shown although the data within a group may be input in any order der catit group.

The means of inputting data to the program is described in further detail, by example, in Section 17.

General Input Notes

The flag INSTR which controls the calling of the stress package has the following meaning when it is nonzero:

```
INSTR \(=1\) means the stress package is to be called at every
    time to print the output.
INSTR \(=N\) means the stress package is to be called at every nth
    time to print.
```

[^3]Table 16.1. List of Input Svmbols $\begin{array}{ll}\text { Mathematical } & \text { Input-Program } \\ \text { Symbol } & \text { Symbol }\end{array}$
IAB
㫕 夏
$\mathrm{W} \not \approx \mathrm{PLT}$
\& END \& NXPUT
INSTR
PROGRAM PARAMETERS
Table 16.1. List of Input Symbols (Continued)
Descriptions and Dimensions
Angular position of segment ${ }^{1}$ (D)
(relative to preceding segment)
Angular velocity of segment,
$\alpha_{i}^{k}\left(\mathrm{D}^{-1}\right.$)
Angular position of segment
relative to the main body (D)
Angular velocity of segment
relative to preceding segment
(DT ${ }^{-1}$)
Euler angles of main body by
angles (D)
Initial value of the matrix M
Release time of segment 1 of $k t h$
appendage (T)
n_{m}, where N is the segment index ($\left.N=1,2, \ldots, I X R\right)$ and where $R=1, \ldots$ NA.

1. $N=i+\sum_{m=1}^{K-1}$

Descriptions and Dimensions

The time of release of segment N if $\operatorname{IREL}(N)=0$; or the relative angle of segment IKEL(N) at which segment N is to be released.
 which segment i is released (D) ~ (FLT ${ }^{2} \mathrm{R}^{-2}$) Dashpot parameters, J=2 (FLT R ${ }^{-1}$)

Dashoot parameters, J=3 (FL R ${ }^{-2}$) Dashpot parameters, J=4 (FLR^{-1})

Table 16.1. List of Input Symbols (Continued)

Table 16.1.
Input-Program
Symbol

IREL (N)

$.4 \mathrm{H}^{-\mathrm{H}}$
-r.
$\beta_{s_{i}}^{k}$
$\beta_{i}^{k} s_{i}$
$q_{i(J)}^{k}$
$q_{i(J)}^{k}$
$\mathrm{q}_{\mathrm{i}}^{\mathrm{k}(\mathrm{J})}$
$q_{i(J)}^{k}$
$1-1$
+
[40
a
(s)
\&
1.

4

正

Table 16．1．List of Input Symbols（Continued）

EKNIR（ N, J ）
EKNIK（ N, J ）
GAMAIK（ N ）
THETIS（ N ）
$\operatorname{RIK} 1(3, N)$
$\operatorname{SIK} 1(3, N)$
$\operatorname{AES}(4, N)$ XIKF（N）
RUG
Format
I－integer
F－floating point
Format
I－integer
F－floating point
而
地

Dashpot preload angle（D）
Spring preload angle（D）

Segment attachment point of kick－ off springs（L）．
Spring constants for kick－off springs．
Disengagement length of kick－off springs（L）．
Position vector of main body
reference point．Always input
as $(0,0, n)$ ，（L）
Velocity of main body reference
point．Always input as $(0,0,0)$
ゃ
F
VAR
 \vec{r}_{i}^{k} $\mathbf{S}_{\mathbf{i}}^{\mathbf{k}}$

－ 1
$\mathbf{x}_{\mathbf{f , i}}^{k}$
Mathematical
Symbol
 a_{0}^{k} 10
\bar{v}
Table 16.1. List of Input Symbols (Continued) Format
Descriptions and Dimensions
Descriptions and Dimensions
Angular velocity of main body
(R T^{-1})
Number of segments in kth appendage,
(Integer)
Position of attachment point of $k t h$
appendage in main body coordinates (L)
Euler angles defining plane of
deplownt of kth appendage.
$J=1 \mathrm{fc}$
ϕk (D) 2 for 3^{k}, and 3 for

Distance between pins of segment $k, i(L)$

Mass of segment $k, i\left(\mathrm{FL}^{-1} \mathrm{~T}^{2}\right)$

Inertia matrix of segment k, i about center of mass of segment k, i in segment k, i coordinates (FLT^{2})

Components of the position vector
of segment k, i center of mass in
segment coordinates, where $J=1,2,3$
 respectively

\&

I
ほ
化
\& \&
[1
Exa

Mathematical
Symbol
13 \square
\bar{a}_{k}
$\psi^{k}, \theta^{k}, \phi^{k}$

$c_{i(J)}^{k}$
Descriptions and Dimensions
Mass of main body（ $\mathrm{FL}^{-1} \mathrm{~T}^{2}$ ）
Main body inertia matrix in main
body coordinates（FLT ${ }^{2}$ ）
Center of mass of main body in
main body coordinates
Euler parameter（None）
3 Euler parameters（None）
Thrust magnitude（F）
Unit vector in the direction of
thrust（None）
Position vector of the point of
thrust application（L）
Time of thrust initiation（T）
Time of thrust termination（T）
Unit vector in the direction of
gravity（positive from the center
of ene gravity field）．$\hat{\xi}$ is ex－
pressed in inertial coordinates
（None）

Table 16．1．List of Input Symbols（Continued）

Table 16.1.
Input－Program
Symbol

ABM FM
ABM
Format
Format
I－integer
F floating
F－floating point
䧉 陛明

4战 \＆ 4． E

以 W $\quad \mathrm{m}$

，

 4 EKBAR星空 THAT
FTBAR FTBAR
TINT
THIN
HS
Mathematical
Symbol
 $1.0^{2 x}$
 $\overline{\mathbf{f}}_{\mathbf{T}}$ $\mathbf{t}_{\mathbf{i}}$
$\mathbf{t}_{\mathbf{f}}$
$\hat{\mathrm{g}}$

Gravity constamic（ LT^{-2} ）

Contrei symbol
Contains up to $20,1 \leq i \leq 20,3 \times 5$ matrices（one for each segment）． Each matrix represents the vector $\Delta \bar{C}_{j}$ at up to 5 stations．Defines j the position of the center of
mass of Δm_{j} ．（L）

The row designates station and the column designates segment．The radius of the segment at station j if it is a circular segment．（L） Contains up to $20,1 \leq i \leq 206 \times 5$ matrices，
one for each segment．The matrix row cor－
responds to the vertex and the colun to the
station．The thickness of the crossectional
plate element．（L）

（1）－ךuәmBos xeโnouṭ อч7 pue wotiejs sejeutisap mol oul
（7）．「ü до ssem seufjag •suotizezs 907 dn $7 E$ fov
S×E＇OZ STST＇GZ Of in surfejuoj

[^4] | INPUT FOR STRESS | CALCULATION |
| :--- | :--- |
| | |
| | |
| Mathematical | Input－Program |
| Symbol | Symbol |
G
$\&$ END
$\&$ DYNSTA
DELCi
－
a
化
化
Table 16．1．List of INput Symbols（Continued）

Ti F
\qquad
∞
$\Delta \bar{C}_{\mathbf{j}}$
\leadsto
ℓ
${ }^{1}$ As many as 5 stations，and 6 vertices at each station are allowed．

Descriptions and Dimensions

A parameter describing the lock－up pulse shape． 1 entry for each segment． （T）

$$
\begin{aligned}
& \text { One entry for each segment. } \\
& \text { Poisson's ratio. }
\end{aligned}
$$

$$
\text { Young's modulus for segment N. (FL } \left.{ }^{-2}\right)
$$

Number of stations present in each
segment（1 to 5 ）．

$$
\begin{aligned}
& \text { Number of stations present in each } \\
& \text { segment (1 to } 5) \text {. }
\end{aligned}
$$ Number of vertices for each station

at each segment（ 1 to 6 ）．The row at each segment（1 to 6）．The row
designates station and the column designate segment．
One entry for each segment．
Poisson＇s ratio．
Young＇s modulus for segment N．（FL ${ }^{-2}$ ）
for
6

以
\qquad以

気
릉
ゃ st

GH M M
XII
ZETAi
8
4
NSTA
NVER
Mathematical
Symbol
ξ_{ℓ}
ζ_{ℓ}
Δm_{j}
E
Table 16．1．List of Input Symbols（Continued） Descridtions and Dimensions
One entry for each segment flag；
$=n$－circular segment，$\neq n-$ non－
circular segment．
Station j position from segment measured from outboard end．One entry for each station．At each segment the row designates station and the column
designates segment（L）．． designates station and the column
designates segment（L）．．
 j and segment i ．The mass moment of inertia of that dortion of a segment
defined by station j and $j-1$ ．（ ELT^{2} ） Descriptions and Dimensions
One entry for each segment flag：
$=0$－circular segment，$\neq n-$ non－
circular segment．
Station j position from segment measured Descridtions and Dimensions
One entry for each segment flag：
$=n$－circular segment，$\neq n-$ non－
circular segment．
Station j position from segment measured Descriptions and Dimensions
One entry for each segment flag：
$=0$－circular segment，$\neq n-$ non－
circular segment．
Station j position from segment measured Descriptions and Dimensions
One entry for each segment flag：
$=0$－circular segment，$\neq n-$ non－
circular segment．
Station j position from segment measured Descriptions and Dimensions
One entry for each segment flag：
$=0$－circular segment，$\neq n-$ non－
circular segment．
Station j position from segment measured Contains a 3×3 matri －－＿－＿－＿
m
Format

I－integer
F－floating point

凹
（玉）

Control symbol
RKAM input
Vector of upper beunds of pre－
dictor corrector of RKAM

[^5] dictor corrector of BKAM

 $\begin{array}{ll}\begin{array}{ll}\text { Mathematical } & \begin{array}{l}\text { Input－Program } \\ \text { Symbol }\end{array} \\ \text { ICIR }\end{array} \\ \text { S．} \\ \text { \＆END } & \text { S } \\ \text { \＆DYNSTB } & \\ \Delta I_{\mathbf{j}} & \end{array}$
正

$$
m
$$

Table 16．1 List of Input Symbols（Continued）

ELI 1
東 录 点
HPAX
TZO
TE
LSTEP
IAX
SEGSTT（N）
SEGSTT（N）
¢END segment N is initially unrealeased， segment N is initially unrealeased，
released，or locked，respectively． Control symbol

［
Descriptions and Dimensions

Number of integration steps to be
taken between printouts after the
20 th step
Segment state vector $0,1,2$ ，means
Minimun allowable step size（T）
（I）dəls otqenotie unutxewi
Vector of lower bounds of pre－ dictor corrector of RKAM

Initial time（T）
Initial time（T）
Maximum real time to run job（T）

Maximum real time to run job（T）
Maximum number cf steps to be
taken
Number of integration steps to be
山

$$
-2
$$ Control symbol

17. TEST CASE INPUT DATA

The problem considered for the test case described below is that of a satelifte with two appendages, as shown in Figure 1.7.1. The first appendage is a two-segment regular appendage, and the second is a paddle appendage. Springs and dashpots act about each hinge point and no external forces are applied. In addition, kick-off springs are attached to each segment. In the following pages, a physical description of the problem is given first and the pertinent data are then transcribed onto load sheets.

The geometric and mass data and initial conditions associated with the main body is developed first, and this will be followed by the segment data. The position vectors of the points of attachment of the hinges are:

$$
\begin{align*}
& \overline{\mathrm{d}}_{1}=10 \hat{\jmath}+0 \hat{y}+20 \hat{z} \\
& \overline{\mathrm{~d}}_{2}=-10 \hat{\mathrm{x}}+20 \hat{y}+0 \hat{z} \tag{17.1}
\end{align*}
$$

The deployment planes in this case are chosen to be radial planes. The coordinate system fixed in the main body at each appendage attachment point, appendage coordinates, are defined by the Euler angles for each appendage. These angles, expressed in degrees, are defined as follows:

$$
\begin{align*}
& \psi^{1}=90, \theta^{1}=90, \phi^{1}=0 \\
& \psi^{2}=0, \theta^{2}=90, \phi^{2}=0 \tag{17.2}
\end{align*}
$$

The main body frame, \hat{x}, \hat{y}, and \hat{z}, fixed at 0 is assumed to be initially coincident with the inertial frame, thus

$$
\begin{equation*}
\psi_{M}=0, \theta_{M}=0, \emptyset_{M}=0 \tag{17.3}
\end{equation*}
$$

Figure 17.1. Test Case: Satellite with Partially Deployed Appendages

Point 0 is chosen to be fixed at the main body center of mass, thus,

$$
\begin{equation*}
\bar{b}_{M}=0 \tag{17.4}
\end{equation*}
$$

The initial angular velocity (degrees/sec) is exclusively about the spin axis, \hat{x},

$$
\begin{equation*}
\bar{\omega}=572.9577 \hat{x}+0 \hat{y}+\hat{z} \tag{17.5}
\end{equation*}
$$

Both segments of appendage 1 will be released at specified times, namely, segment 1,1 at .007 sec . and segment 1,2 at .028 sec . The first segment of appendage 2 is to be released at .01 sec . whereas the second segment of appendage 2 is to be released when segment 2 of appendage 1 reaches 86.5 degrees.

The mass properties for the main body are

$$
\begin{align*}
& M_{M}=25 \\
& I_{M}=\left|\begin{array}{ccc}
4000 & 0 & 0 \\
0 & 2000 & 0 \\
0 & 0 & 2000
\end{array}\right| \tag{17.6}
\end{align*}
$$

Several integers are input to specify the number and type of appendages, and the number of segments in each appendage. These are in this case
$n_{a}=2$, two appendages
$n_{p}=1$, one paddle appendage
$n_{1}=2,2$ segments in appendage 1
$n_{2}=2,2$ segments in appendage 2
The segment data required as input to the stress routine will be described segment by segment.

Sepment 1, 1, or Segment 1

Segment 1, 1 is a uniform circular tube for which only one station has been defined. The subscripts for the quantities stated below represent the station number.

$$
\begin{align*}
& \Delta \bar{C}_{1}=10 \hat{\eta} \\
& \Delta \mathrm{~m}_{1}=\mathrm{m}_{1}^{1}=.5 \\
& \Delta \overline{\bar{I}}_{1}=\left[I_{1}^{1}\right]^{*}=\left|\begin{array}{rrl}
10 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 10
\end{array}\right| \\
& \mathrm{S}_{1}=0 \\
& \mathrm{R}_{1}=2 \\
& \mathrm{t}_{1}=.05 \tag{17.8}
\end{align*}
$$

Segment 1,2, or segment 2

Segment 1,2 is a non-uniform non-circular segment with a pentagonal crossection at the two ends and a triangular section in the center.

The positions of the stations are given by
$S_{1}=20$
$S_{2}=10$
$S_{3}=0$

The centers of mass and mass of the elements outboard of each station on segment 1,2 are given by

$$
\begin{align*}
& \Delta \bar{C}_{1}=\left(\begin{array}{c}
0 \\
20 \\
0
\end{array}\right), \Delta m_{1}=0 \\
& \Delta \bar{C}_{2}=\left(\begin{array}{c}
0 \\
15 \\
0
\end{array}\right), \Delta m_{2}=.2 \\
& \Delta \bar{C}_{3}=\left(\begin{array}{c}
0 \\
5 \\
0
\end{array}\right), \quad \Delta m_{3}=.2, \tag{17.10}
\end{align*}
$$

and the corresponding inertias are
$\Delta \overline{\mathrm{I}}_{1}=0, \Delta \overline{\bar{I}}_{2}=\left|\begin{array}{rrr}10 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 30\end{array}\right|, \Delta \overline{\bar{I}}_{3}=\left|\begin{array}{rrr}10 & n & n \\ 0 & 20 & 0 \\ 0 & 0 & 30\end{array}\right|$
From Equations (17.10) and (17.11) it is clear that the over-all inertia matrix for segment $1, ?$ must be

$$
\begin{align*}
{\left[I_{2}^{1}\right]^{*} } & =\Delta \overline{\bar{I}}_{2}+\Delta \overline{\bar{I}}_{3}+\left\lvert\, \begin{array}{rrr}
25 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 25
\end{array}\right. \\
& =\left|\begin{array}{rrr}
45 & 0 & 0 \\
0 & 40 & 0 \\
0 & 0 & 85
\end{array}\right| \tag{17,12}
\end{align*}
$$

The crossections at stations 1 , and 3 , the two ends of the segment, are assumed to be identical pentagons 2.52 inches on a side and are defined as follows:

ℓ	ξ_{l}	Γ_{ℓ}	${ }^{t}{ }_{\ell}=.15$
1	2.15	0	
2	.67	2.04	
3	-1.74	1.26	
4	-1.74	-1.26	
5	.67	-2.04	

While at station 2 on segment 1,2 the crossection is an equilateral triangle 10 inches on a side and is defined as follows:

ℓ	ξ_{ℓ}	ζ_{ℓ}	${ }^{t}{ }_{\ell}=.05$
1	4.33	0	
2	-4.33	5	
3	-4.33	-5	

Segment 2,1 , or Segment 3

The first segment of the paddle appendage, seoment 2,1 , is a uniform circular tube segment of radius 2 inches, . 05 inches thick, and 20 inches long. The centers of mass and mass of the elements outborad of each station on segment 2,1 are given by

$$
\begin{array}{lll}
\Delta \bar{C}_{1}=\left(\begin{array}{c}
0 \\
20 \\
0
\end{array}\right) & \Delta m_{1}=0 & s_{1}=20 \\
\Delta \bar{C}_{2}=\left(\begin{array}{r}
0 \\
10 \\
0
\end{array}\right) & \Delta m_{2}=.5 & s_{2}=0
\end{array}
$$

while

$$
\Delta \overline{\bar{I}}_{1}=[0] \text {, and } \Delta \overline{\bar{I}}_{2}=\left[\mathrm{I}_{1}^{2}\right]^{*}=\left\lvert\, \begin{array}{rrr}
10 & 0 & 0 \tag{17.15}\\
0 & 5 & 0 \\
0 & 0 & 10
\end{array}\right.
$$

and, $R_{1}=R_{2}=2, t_{1}=t_{2}=.05$

Segment 2, 2, or Segment 4

The paddle segment, segment 2,2 , is rectangular in crossection. One station is defined at the inboard end. For segment 2,2 we define

$$
\begin{align*}
& \Delta \bar{C}_{1}=\left(\begin{array}{c}
0 \\
20 \\
0
\end{array}\right) \quad \Delta m_{1}=.2 \quad s_{1}=0 \\
& \Delta \overline{\bar{I}}_{1}=\left[I_{2}^{2}\right]^{*}=\left|\begin{array}{rrr}
20 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 20
\end{array}\right| \tag{17.16}
\end{align*}
$$

and crossection parameters as follows:

ℓ	ξ_{ℓ}	${ }^{\Sigma_{\ell}}$	t_{ℓ}
1	20	1	.05
2	-20	1	.1
3	-20	-1	.05
4	20	-1	.1

Finally, for all segments
$c_{n}^{m}=.1, v_{1}^{k}=.3$, and $E_{i}^{k}=3010^{6} 1 \mathrm{~b} / \mathrm{in}^{2}$
Table 17.1 and equations following present the segment data that is required if motion alone is required, or if motion and segment stress, are both required.

Table 17.1. Additional Segment Properties (Sepment i, Appendage k)

Input Quantity	$\begin{aligned} & k=1 \\ & i=1 \end{aligned}$	$\begin{aligned} & k=1 \\ & i=2 \end{aligned}$	$\begin{aligned} & k=2 \\ & 1=1 \end{aligned}$	$\begin{aligned} & k=2 \\ & 1=1 \end{aligned}$
The length of segment $k, 1$ l_{1}^{k} (In.)	20	20	20	40
Component of segment center of mass location, $C_{i(2)}^{k}$ (in.)	10	10	10	20
The mass of segment $k, 1, m_{1}^{k}$ ($1 \mathrm{~b} / \sec ^{2} / \mathrm{in}$.)	. 5	. 4	. 5	. 5
The dashpot parameter of the dashpot acting about hinge $k, i, q_{i(2)}^{k}$	-.001	-. 001	-. 001	-. 001
The stiffness of the spring acting about hinge k, i,	-. 4	-. 1	-. 4	-. 4
$K_{i(2)}^{k}(1 b \text { in/radian })$				
Spring pre-load angle ϑ_{i}^{k} (degrees)	-20	-320	-20	-150
Release option IREL	0	0	0	2
RELTB	4007	. 028	. 01	86.5
$B_{r_{i}}^{k} \text { (degrees) }$				
Lock-up angle of segment $k, 1$ $\beta_{S_{j}}^{k}$ (degrees)	0	360	0	180
Initial segment position, α_{i}^{k}, (degrees)	90	270	90	90
Segment number ($\mathrm{N}=$)	1	2	3	4

The moments of inertia of the segments is expressed in segment coordinates about the segment center of mass. These parameters must be consistent with the mass properties input to the stress package. Thus,

$$
\begin{align*}
& {\left[I_{1}^{1}\right]^{*}=\left|\begin{array}{rrr}
10 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 10
\end{array}\right|} \\
& {\left[I_{2}^{1}\right]^{*}=\left|\begin{array}{rrr}
45 & 0 & 0 \\
0 & 40 & 0 \\
0 & 0 & 85
\end{array}\right|} \\
& {\left[\mathrm{r}_{1}^{2}\right] *=\left|\begin{array}{rrr}
10 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 10
\end{array}\right|} \\
& {\left[I_{2}^{2}\right] *=\left|\begin{array}{rrr}
20 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 20
\end{array}\right|} \tag{17.19}
\end{align*}
$$

The data as presented in the preceding pages is shown entered on load sheets on the following pages. All symbols which designate various sections, such as \& DIM, \& END, etc., must appear on separate cards with the \& symbol appearing in card column 2. Other input quantities describing the various parameters of the system may appear in any order with one or more such input quantities on one card.

Name

Problem No. \qquad
\qquad
\qquadNAMELIST INPUT FORMPriority

No. of Cord \qquad
\square Verified by
$\operatorname{DELM}(1,2)=.001, \operatorname{DELM}(1,3)=.001$,
$T 1=.05, T 2=5 * .15,0.0,3 * .05,3 * 0.0,5 * .15, T 3 * .05,5 * 0.0, .05,5 * 0.0, T 4=.05, .1, .05, .1$,
2*0.0,
$\mathrm{X} 12=2.15, .67,-1.74,-1.74, .67 .0 .0,4.33,-4.33,-4.33,3^{*} 0.0,2.15, .67,-1.74,-1.74$,
$.67,0.0$,
$\mathrm{XI} 4=20.0,-20.0,-20.0,20.0$,
ZETA2 $=0.0,2.04,1.26,-1.26,-2.04,0.0,0.0,5.0,-5.0,3 * 0.0,0.0,2.04,1.26,-1.26$,
-2.04,
ZETA4 $=1.0,1.0,-1.0,-1.0$,
$\mathrm{CMN}=4 * \cdot 1$,
XNU $=4 * \cdot 3$,
$\mathrm{E}=4 * 30$. OE6
NSTA $A=1,3,2,1$,
$\operatorname{NVER}(1,2)=5, \operatorname{NVER}(2,2)=3, \operatorname{NVER}(3,2)=5, \operatorname{NVER}(1,4)=4, \operatorname{NVER}(1,1)=1, \operatorname{NVER}(1,3)=1$,
$\operatorname{NVER}(2,3)=1$,
ICIR $=0,1,0,1$,
$S(1,1)=0.0, S(1,2)=20.0, S(2,2)=10.0, S(3,2)=0.0, S(1,3)=20.0, S(2,3)=0.0$,
$S(1,4)=0.0$,
+END
+DYNSTB
DLII1 $=10.0,3 * 0.0,5.0,3 * 0.0,10.0$, DLI21 $9 * 0.0$, DLII22 $=10.0,3 * 0.0,20.0,3 * 0.0,30.0$,
DLI23 $=10.0,3 * 0.0,20.0,3 * 0.0,30.0$, DLII31 $=9 * 0,0$, DLI32 $=10.0,3 * 0.0,5.0,3 * 0.0,10.0$,
DLI4 $1=20.0,3 * 0.0,10.0,3 * 0.0,20.0$,

Date	COMPUTATION AND DATA REDUCTION CENTER			Page
Name			Prio	
Problem No.	NAMELIST	FORM	Keyp	
No. of Cards ..._			Veri	

$+\mathrm{R} d \mathrm{Ck}$

TFx1.0,LSTEP=150,SEGSTTE 7 *0.0,
IAX=2,
+END

The elements of an array may be input in order, 0.8. , the elements of ALIK may be input in the order of increasing $N: \alpha_{1}^{1}, \alpha_{2}^{1}, \ldots \alpha_{n}^{1}, \alpha_{1}^{2}$, $\alpha_{2}^{2}, \ldots \alpha_{n_{2}}^{2}, \ldots, \alpha_{1}^{n^{a}}, \alpha_{2}^{n_{a}}, \ldots \alpha_{n_{n_{a}}}^{n_{a}}$,

Alternatively, elements of an array may be input individually, e.g., $\operatorname{ALIK}(2)=\alpha_{2}^{\prime}, \operatorname{ALIK}(4)=\alpha_{2}^{2}$, etc. The inertia matrices of the segments may be input in the same manner except that each element of the array now consists of a series of nine numbers. The elements of the inertia matrix are read by rows.

Other properties of NAMELIST input are that input quantities and symbols are separated by commas, each line of data is terminated by a comma, a series of equal quantities may be input by use of the symbol *, e.g., $4 * X$ means X, X, X, X, and symbols beginning with the letters I, J, K, L, M, N must be input as integers while other quantities are input in floating point format.

18. TEST CASE OUTPUT

The following pages are a portion of the output of the program generated by the load sheets developed in the last section. The output includes: (1) an output of the input quantities (2) printout of the results; and (3) graphical output. All of the output in (1) and (3) are included in this report, as well as a representative sample of (2).

The output of the input quantities is generally self-explanatory. The numbers in each array are output in the order in which they are input.

The parameters EU and EL are used to control the accuracy with which the RKAM subroutine obtains the numerical solution of the differential equations. Specifically, these parameters govern the halving and doubling of the integration sicep-size while in the Adams-Moulton mode. If the absolute value of the difference between the pradicted and corrected values of all of the variables being integrated is less than $E L$, the step-size is doubled, whereas, if any of these differences is greater than EU the stepsize is halved.

T is the time at which the simulation is initiated, H is the nominal step-size, HMAX is the maximum step-size allowed, and RMIN is the minimum step-size allowed.

The position and motion of elements of the system are output every time step, up to the twentieth time step. After the twentieth time step this Information is output every IAX time steps. Table 18-1 provides a description of output designations in terms of previously defined parameters.

Table 18.1. List of Output Symbols

Description or Meaning in Terms of Symbols Defined in
Output Symbol The Nomenclature

TIME	Current value of time in the simulation
NUMBER OF STEPS	Number of time steps taken since initlal time
TIME STEP	The next increment in simulated time to be attempted by the numerical routine
APP	Appendage number (k)
SEG	Segment number (I)
BETA	The current value of β_{1}^{k}
BETA DOT	The current value of $\dot{B}_{1}^{\text {k }}$
DETA DDOT	The current value of $\ddot{B r}_{1}^{k}$
ALPHA	The current value of α_{1}^{k}
ALPHA DOT	The current value of $\dot{\alpha}_{i}^{k}$.
ALPHA DDOT	The current value of $\alpha_{1}{ }_{1}$
RELEASE LOCK-UP STATE VECTOR	$-1,0,1$ means hinge k, i is unreleased, in motion, or locked, respectively
SPRING DASHPOT TORQUE	The current value of Q_{1}^{k}
KICK-OFF SPRING FORCE	The current value of $\mathrm{F}_{\mathbf{s}_{1}}^{\mathbf{k}}$
EXTENSION OF KICK-OFF SPRING	The current value of $\mathrm{x}_{1}^{\mathrm{k}}$
IN MAIN BODY COORDINATES COMP X, Y, Z	Designates the x, y, and z components of vectors referred to main body coordinates

Table 18-1. Description of Symbole Defined in Nomenclature (Continued)

Description or Meaning in Terms of Symbols Defined in the Nomenclature

Outiput Symbol

Table 18.1. Defuription of Symbols Defined in Nomenclature (Continued)

Output Symbol	Description or Meaning in Terms of Symbols Defined in the Nomenclature
$\begin{array}{cc}\text { APP k SEG } 1 & \text { CIRCULAR } \\ & \text { OR } \\ & \text { NON-CIRCULAR }\end{array}$	Sub-title preceding stress and loads data for each segment indicating segment number and shape
StATION J	Heading praceding block of output for station J of segment $k, 1$
ANG	The angle, in 90° increments, measurad from the segment ξ-axis to which the stress output corresponds.
XI-Q	The ξ - coordinate at a 90° point on the segment crossection
ZETA-Q	The 5 - coordinate at a 90° point on the seginent crossection
SIGMA22, SIGMA21, AND SIGM23	The atresses in the η, ξ and ζ directions, respectively, on a plane normal to the n-axis at a 90° point.
PRINCIPAL STRESS SIGMA-11, SIGMA-22, SIGMA-33	The eigenvalues of the stress tensor defined by $\sigma_{21}, \sigma_{23}, \sigma_{22}$, above, at each 90° point
Q-BAR	The ξ, η and ζ - components of the moment at this station.
P-BAR	The ξ, η and ζ - components of the force at this station.
THETA-MAX	The angular position measured from ξ to the most severe combined stress condition if this is a circular segment.
SIGMA 22-MAX, SIGMA 21-MAX, and SIGMA 23-MAX	The stress components at the position of the most severe combined stress condition on the crossection.
XI-MAX, ZETA-MAX	The coordinates, ε, ξ, of the position of the most severe combined stress condition on a non-circular section.

Stress Package Error Processing

Since there are no itarative calculations where a non-convergence problem might occur and the input data is relatively aimple to enter, only two types of errors are checked in the stress package. A test is made for the correct entry of key counters in the input data and a test is made for a divisor to be zero before any division is performed. An error in the input counters terminates the processing of the case. If a divide check occurs, the result in question is set to 0 and prom cessing continues. In either bituation an error message is printed out describing the problem. The error messages for input errors immediately follow the printing of the input data. The error messages for divide checks are interspersed with the data output.
A. INPUT ERROR CRECKS

All input checking and printing of messages is completed before processing of the case is discontinued.

1. If the number of stations in NSTA for a segment has not been enterad or exceeds 5 , then an error message is printed in the format:

NSTA -n IS N $N T$ FILLED IN QR IS T ϕ LARGE
where n is the segment number.
2. If, the number of vertices for a station within a segment has not been entered or exceeds 6, then an error message is printed in the format: NVER-n,m IS NOI FLLLED IN OR IS TOD LARGE
where n is the segment number and m is the s tation number.
B. COMPUTATIONAL CHECKS

A test for possible divide checks is made in all computational sections. The section where the divide check could occur is identified as well as the name of the quantity being computed. There is a different message for each section. In a case where thie occurs, an error message in one of the following formats is printed:

1. DIVIDE CHECK IN MASS AND AREA RØUTINE-CØMPUTTNG

MENT _ $\operatorname{STATIDN}$ _
2. DIVIDE CHECK IN LФADS RØUTINE-C C MPUTING \qquad SEGMENT.
\qquad
3. DIVIDE CHECK IN CIRCULAR SEG STRESS RดUTINE-CXMPUTING

4. DIVIDE CHECK IN NDN-CIRC SEG STRESS RめUTTINE-CDMPUTING

The six blanks immediately following the word computing are filled with the program name of the quantity being computed For example, SG2290 for σ_{2290} would be printed if either A or I were 0 . The current segment and station numbers are printed as shown.

See the Table below for a list of enginering symbols versus programming symbol and equation number where quantity is computed

Prog. Symbol	Eng. Symbol	Equation
AMI	I	12.5
CXZ	C_{ξ}	12.3
D	For circular seg.	Not in ma on maximu
PBAR	\bar{P}_{j}	10.14
QBAR	\bar{Q}_{j}	10.14

Prog. Symbol	Eng. Symbu!	Equation No.
CMBAR	\bar{c}_{j}	13.1
K	$k_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$	Page 11-5
QSTAR	Q_{1}^{*}, Q_{3}^{*}	11.9
D	For nonelr. Seg.	Not in manual (dependent on maximum V_{0} within a plate element)
XIM-ZETA	For nonctr. Seg.	Calculation of max ξ and 5
A.	$\left[\mathrm{A}_{1}\right.$	12.8
SIGMA22	σ_{22}	11.3 or 11.11
STG21-23	${ }_{21},{ }_{23}$	11.4 or 11.14
vSUBø	v_{0}	$11.6 \text { or } 11.15$

C. TOO MANY ARITHMETIC ERRORS

If more than a predetermined number of arithmetic errors occur, the following message is printed and the case is discontinued: MAXIMUM NUMBER ØF ARITHETIC ERRDRS. CASE IS DISCのNTINUED
D. TABLE SEARCH ERRORS

The chance of any of these errors occurring should be minimal. This would arise only if the input data describes meaningless geometric figures in computing the area and mass properties.

If one of these errors occurs the program stops and an identification dight is displayed. The following is a list of these errors, their meaning and assoclated display digit:
1.
2.
3.
4.

11

Given $\xi_{Q_{k}},{ }^{\xi_{Q_{m}}}$ and $\xi_{Q_{m+1}}$ cannot be found within the ξ_{Q} table such that

The same situation could occur for the ${ }^{5} \mathrm{Q}$ table also.

Each entry in the ξ_{Q} table is equal to each other thus defining the crosssection as a stralght line. Same thing could occur in the ${ }^{5} Q$ table.

A ζ_{ℓ} and $\zeta_{\ell+1}$ cannot be found in this ζ table such that ζ_{ℓ} is $\leq C_{\zeta}$ and $\zeta_{\ell+1}$ is C_{ζ}. This can also occur in the ξ table.
$A \zeta_{\ell}$ and $\zeta_{\ell+1}$ cannot be found in the ζ table such that ζ_{ℓ} is $\geq C_{\zeta}$ and $\zeta_{\ell+1}$ is $>C_{\zeta^{\prime}}$. This can occur in the ξ table also.

```
                                    INPLT QUANTITIES
THE TOTAL NUHBER OF APPFNOAGES 
TOTAL NUMBER UF I INKS #
LINKS PER APPENDACE # ? ?
THE MASS DF THE MAIN RODY r. 2SOOCCCOF C2
VECTOR TU ORIGIN IF APPENDAGE COOROINATES IFTI FROM ORIGIN OF MAIN BODY COOROINATES
```



```
EULER ANGLES USEO TO FXPRFSS APPENDAGF UNIT VECTORS IN MAIN BODY GDORDINATES (DEGI
```



```
    LENGTHS DF APPENDAGE SEGMENTS (FT)
```



```
    MASS OF APPENDAGE SEGMENTS (SLUGSI
```



```
    0.50500000E OO $
    INERTIA MATRICES OF APPENDAGE SEGMENTS (SLLG-FT SQI INSEGMENT COCRDINATES
I PE PRIME
0.10000000 O ARRAY 0.0 2.0
    0.0 0.50000000E 01 2.0
    0.0 0.0 0.10CCOCOOE 02
THE I PRIME ARRAY 
    0.0 0.400conNDE 02 0.0
    0.0 0.0 0.85CCCCCCE 02
THE I PRIME ARRAY
    0.10000000E 02 0.0 0.0
    0.0 C.5000CJOCE O1 0.0
    0.0 0.0
THE I PRIME ARRAY 
    0.0 0.10000000E 02 0.0
    0.0 0.0 0.2CCCOCOOE 02
    VECTOR TO CENTER OF MASS (FTI DF APPENDAGE SEGMENTS
```


DIS ENGAGEMENT LENGTH OF K ICKOFF SPRING I

```
THE X SUR F IK ARRAV 
    D.30C00000E OL
    OASH POT PRE LOAC ANGLES (RADIANS)
\begin{tabular}{rrrr} 
THE GAMMA SUB I.K & ARRAY \\
0.0 & & 0.0 \\
0.0 & & &
\end{tabular}
    SPRING PRE IDAD ANGLES (RADIANG)
THE THETA SUB I,K ARRAY
    -0.20000050E O2-0.3200n)COE D3-0.2CCCOCCOE O?
    -0.150000500E O3
    INITIAL MAIN GODY ANGULAR RATES IDEG/SECI
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IHE } \\
& 0.5729!
\end{aligned}
\] & \begin{tabular}{l}
OMEGA \\
752E 03
\end{tabular} & C. 0 & ARRAY & 0.0 \\
\hline \multicolumn{5}{|l|}{(NIITIAL SEGMENT POSITIONS (DEG)} \\
\hline \[
\begin{aligned}
& \text { THE } \\
& 0.90000 \\
& 0.90006
\end{aligned}
\] & ALPHA SUB 000 E 02 000 E 02 & \[
\begin{aligned}
& B 1, K \\
& 0.270
\end{aligned}
\] & \[
\begin{gathered}
\text { ARRAY } \\
C 0 \geqslant 00 F O 3
\end{gathered}
\] & 9.9cococcoe 02 \\
\hline \[
\begin{aligned}
& \text { THE } \\
& \cdots-0.0 \\
& 0.0
\end{aligned}
\] & beta sub & \[
\begin{aligned}
& 1, k \\
& 0.0
\end{aligned}
\] & ARRAY & 0.0 \\
\hline
\end{tabular}
    INITIAL SEGMENT ANGULAR RATES IDEG/SEC:
```



```
EULER ANGLES USED TO" EXPRESS INERTIAL COCRDINATE UNIT VEGTORS IN MAIN RODV COORDINATES (DEG)
THE PSI,THETA,PHI ARRAV
\(0.0 \quad 0.0\)
```


[^6]```
0.1月gOJCONE 03
acCELERATION OF GRAVITY (EI/SFC SQI
 G.0
UNIT VECTOQ fRIM THE OIKFCTION OF IHF CENIER OF THE EARTH TO SPAGECRAFT IN INFRTIGL COOPNINATES
 THE DIRECTIIN OF G
 O.0 C.C
Thrust magnitiode ilhi
 THE FT
 0.0
THRUST DIRECTIIN IN NAIN GOIV COOROINATES
 THE FY UNIT VECTIM
 0.0 0.0
 O.0 C.C
 VECTOR IO POINT OF APHIICATIIN OF IHRLSY IFTI IN MAIA BCOY PCOROINATES
 THE pOSIT ION OF THMLST
 0.0 O.0 C.C
THE TIME OR THBUST INITIATIINN ISEC:
 THEO INITIAL
THE TIME OF THRUST TFRMINATION (SFCI
 THET FINAL
 0.0
```

MATRIX = CMN

| 1 | $J$ |  |
| :--- | :--- | :--- |
| 1 | 1 | $C .999999 E 4 E-01$ |
| 2 | 1 | $0.99999964 E-01$ |
| 3 | 1 | $0.999999 E 4 E-01$ |
| 4 | 1 | $0.99999964 E-01$ |

MATRIX - XNU

| 1 | J | 1 |  |
| :---: | :---: | :---: | :---: |
| 1 | 1 | $0.29999595 E$ | 0 |
| 2 | 1 | $0.29999905 E$ | CO |
| 3 | 1 | $0.299999 n 5 E$ | Or |
| 4 | 1 | $0.29999595 E$ | 02 |


| 1 | $J$ | 1 |
| :--- | :--- | :--- |
| 1 | 1 | $0.30000000 E$ |
| 2 | 1 | 0.30003300 |
| 3 | 1 | 0.30300000 |
| 4 | 1 | 0.30030000 |
|  |  | 0. |


| 1 | $J$ | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 2 | 1 | 3 |
| 3 | 1 | 2 |
| 4 | 1 | 1 |


| 1 | $J$ | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 0 |
| 2 | 1 | 1 |
| 3 | 1 | 0 |
| 4 | 1 | 1 |


| 1 | $J$ |  |  |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0.20000000 E | 1 |
| 2 | 1 | 0.0 |  |
| 3 | 1 | 0.0 |  |
| 4 | 1 | 0.0 |  |
| 5 | 1 | 0.0 |  |


| 1 | $J$ |  |
| :--- | :--- | :--- |
| 1 | 1 | 0.50000000 E 00 |
| 2 | 1 | 0.0 |
| 3 | 1 | 0 |
| 4 | 1 | 0 |
| 5 | 1 | 0 |


|  |  | 2 |
| :--- | :--- | :--- |
| 0.0 |  |  |
| 0.0 |  |  |
| 0.0 |  |  |
| 0.0 |  |  |

0.0
0.0
0.0
0.0
0.0

MATRIX - DELM

```
0.55955593E-03
0.19999929E 00 \(0.19959999 E 00\) 0.0
0.0
```

|  |  |
| :--- | :--- |
| $0.20000000 E$ | 01 |
| 0.20000000 E | 01 |
| 0.0 | 0.0 |
| 0.0 | 0.0 |
| 0.0 | 0.0 |
|  |  |
|  | 0.0 |

3
$0.99999993 E-03$
0.0
0.0
0.0
0.0
0.0

MATRIX - R
MATRIX - ICIR
$0.19999999 E 00$

MATRIX - NVER

$0.2 c 0 c 00.0202$ $0.100 \operatorname{coccc} 02$ 0.0
0.0
0.0

MATRIX - TI 0.0
0.0 0.0

| 1 | $J$ |
| :--- | :--- |
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 1 |

1
$0.149 .99998 E$
$0.14999998 E$
$0.14999998 E$
0.100
$0.14999998 E$
$0.14999998 E$
0.0
2
$0.49999997 E-01$
$0.49959977 E-01$
$0.49999997 E-01$
9.0
0.0
0.0

## 3

$0.14999998 E O C$ $0.14999998 E 00$ 0.14999998 E 0 $0.14999998 E 00$ 0.14999998E 00 0.0

MATRIX - XIZ

$$
\begin{array}{cc}
2 & \\
0.43299959 E & 01 \\
-0.43299999 E & 01 \\
-0.43299995 E & 01 \\
0.0 & \\
0.0 & \\
0.0 &
\end{array}
$$

$0.21499996 E \quad 01$
$0.06699996 E$ CO
$-0.17399 ¢ 98 E$
-01
$-0.17399598 E$
$0.66999996 E$
0.0

1
0.0
$0.20400900 E$
$0.12599993 E$
01
$-0.12599993 E$
$-0.20400000 E$
-01
0.0

|  | 2 |
| :--- | :--- |
| 0.0 |  |
| $0.5 \operatorname{COCCOOOE}$ | 01 |
| $-0.500 C O C O O E$ | 01 |
| 0.0 |  |
| 0.0 |  |
| 0.0 |  |

MATRIX - ZETAZ
$0.21499996 E 01$ $0.66999996 E$ OC -0.17399998 E 01 -0.17399998 O 1 0.66999996 E 00 0.0
0.0
0.204000 OCE 01
$0.12599993 E O 1$
$-0.12599993 E O 1$
$-0.20400000 E O 1$
0.0

MATRIX - DLI21

1

| I | $J$ | 1 |
| :---: | :---: | :---: |
| 1 | 1 | 0.0 |
| 2 | 1 | 0.0 |
| 3 | 1 | 0.0 |
| 1 | $J$ | 1 |
| 1 | 1 | 0.1000000 CE |
| 2 | 1 | 0.0 |
| 3 | 1 | 0.0 |

0.0
0.0
0.0

2
0.0
0.
$\begin{array}{lll}0.0 & 3 \\ 0.0 & \\ 0.0 & \end{array}$
MATRIX - OLI22

$\therefore \quad 3$
0.0
0.0 0.3000 OOCE 02

MATRIX - DLI23

$$
\begin{aligned}
& 0.0 \\
& 0.200 \operatorname{coc} 00 E \quad 02 \\
& 0.0
\end{aligned}
$$

1

| 1 | $J$ |  | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 |  | 0.0 |
| 2 | 1 | 0.2000000 OF | 02 |
| 3 | 1 | 0.0 |  |

$$
\begin{aligned}
& 0 \\
& 0.0 \\
& 0.10000 C 00 E \quad 02 \\
& 0.0
\end{aligned}
$$

MATRIX - T3

| I | $J$ | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0.49999¢97E-01 | 0.49559¢97E-01 |
| 2 | 1 | 0.0 | 0.0 |
| 3 | 1 | 0.0 | 0.0 |
| 4 | 1 | 0.0 | 0.0 |
| 5 | 1 | 0.0 | 3.0 |
| 6 | 1 | 0.0 | 0.0 |


| 1 | $J$ |  |
| :--- | :--- | :--- |
| 1 | 1 | 0.0 |
| 2 | 1 | 0.0 |
| 3 | 1 | 0.0 |
| 4 | 1 | 0.0 |
| 5 | 1 | 0.0 |
| 6 | 1 | 0.0 |

1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

2

MATRIX - ZETA3

2
0.0
0.0
0.0
2.0
1.0
0.0

MATRIX - DLI31
0.0
0.0
0.0

2
0.0
0.0
0.0

MATRIX - DLI32
0.0
0. 50CCCCOCE 01 0.0

3
0.0
0.0 0.1000000 CE 02

MATRIX - DELC4

| 1 | $J$ |  | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0.0 |  |
| 2 | 1 | $0.20000000 E$ | 02 |
| 3 | 1 | 0.0 |  |

MATRIX - T4

| 1 | $J$ |  |
| :--- | :--- | :--- |
| 1 | 1 | $0.49999 G 97 E-01$ |
| 2 | 1 | $0.99999964 E-01$ |
| 3 | 1 | $0.49999997 E-01$ |
| 4 | 1 | $0.99999954 E-01$ |
| 5 | 1 | 0.0 |
| 6 | 1 | 0.0 |


| 1 | 1 |  | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0.2000000 OE 02 |  |
| 2 | 1 | -0.200000 OE 02 |  |
| 3 | 1 | $-0.20000000 E$ | 02 |
| 4 | 1 | $0.20000000 E$ | 02 |
| 5 | 1 | 0.0 |  |
| 6 | 1 | 0.0 |  |


| 1 | $J$ | 1 |  |
| :--- | :--- | :--- | :--- |
| 1 | 1 | $0.10090000 E$ | 1 |
| 2 | 1 | $2.100000 O C E$ | 1 |
| 3 | 1 | $-0.1000000 C E$ | 01 |
| 4 | 1 | $-0.100000 C O E$ | 01 |
| 5 | 1 | 0.0 |  |
| 6 | 1 | 0.0 |  |


| 1 | $J$ |  | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | $0.20000300 E$ | 02 |
| 2 | 1 | 0.0 |  |
| 3 | 1 | 0.0 |  |

MATRIX - DLIGI

```
0.0
\(0.100 C C O D C E\) 0.0
```

0.0
0.1
0. DOOOOCE C?


EULER ANGLES (DEG) $0.0^{\text {PSI } 0.0} 0.0^{\text {PHETA }}$

MAIN BODY FIXED UNIT VECTORS


2
0.0
0.0 0.0
1.00000ECO


| EULER | ANTLES (DFG) | PSI | THETA | PHI |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1.44.2F 22 | $1.3578 E-C 2$ | -1.4079E O? |

MAIN BODY FIXED UNIT VECTMRS
$1.00000 E 00$
$1.42628 E-04$
$Y$
-1.5424 CE-04
2
9. $9 \mathrm{~B} 201 \mathrm{t}-01$
$-1.89010 \mathrm{~F}-14$
1.97927E-04
5. 90631E-02
$-5.99631 \mathrm{E}-\mathrm{C}$ ?
9.98?01E-C1

ACC. CHECK $\# 0.54428 .577 \mathrm{~F}-\mathrm{CE}$
DELTA \# 0.402.79701E-C.7
TOTAL KINETIC fNERGY $\# \quad 0.24143583 F$ Ce
LINEAR MOMENTUM \# $-0.78976154 F-C 6-0.17999997 E 030.19904983 E$ C 3


```
fuler angles poeri osi theta phi 1.3877E 22 1.1.7875-01 -1.2787E 02
```

MAIN AOCY FIXEO UNIT VECTORS
$\begin{array}{cc}X & Y \\ 9.90999 E-21 & -1.42413 E-C 3 \\ 1.35597 E-03 & 9 . E 194 S E-01\end{array}$
9. E1 C4SE-C1
$-1.26278 \mathrm{E}-\mathrm{C}$
1.54717F-04
1.8913CE-O1
$-1.89142 \mathrm{~F}-\mathrm{C} 1$
$9.81047 \mathrm{E}-01$
OFLTA \# Ć.52154C64F-3?
TOTAL KINETIC ENEPGY \# $\quad .24150: 75 \mathrm{~F}$ C.
LINEAR MOMENTIMM $\because .27716 L E C E-63-0.17999905 E 030.19999863 E 03$


```
EULER ANGLES (DFGI PSI THETA PHI
 1.3P72E 02 1.1922F-01 -1.2775E 02
```

MAIN BOCY FIXED UNIT VECTORS

| X | $Y$ | 2 |
| :---: | :---: | :---: |
| 9.99958F-01 | -1.64.516F-03 | -1.27395 E-0 3 |
| 1. $372.66 \mathrm{E}-03$ | 9. E172 5F-01 | -1.903C2E-01 |
| 1.56.374E-0.3 | 1.90300E-01 | 9.81725 ECO 1 |

DELTA \# 0.89406967E-C7
TOTAL KINETIC ENERGV \# $0.24150 c 5 c e c t$
LINEAR MOMENTUM $\# 0.475525 \varepsilon 6 F-63-0.17999806 E 030.19999767 E 03$


KINETIC ENEAGY* 2. + 19ME SO



```
MAIN RODY FIXFD UNIT VECTORS
 X
 3.66425E-01
```

```
DFLTA \# 0.13793574E-CG
TITAL KINETIC PINERGY* 0.24149800E OE
```




```
EULER ANGLFS (DEGI PSI THFTA PHI
 1.1.GGF 02 7.1P22F 00 -2.2642E 01
```

```
MAIN PIDY FIXED UNIT VECTORS
 X }
 9.92154E-01
 1.16963E-01
 4.4167CE-02
```

$-4.81217 E-02$
3.12917F-62
S. $\$ 8351 \mathrm{~F}=01$
1.153A8E-0. 1
$-9.92643 \mathrm{E}-\mathrm{n} 1$
3.6675 AE-O2

N-BETN DYAAMIG STRESSES


## N-BCOM DYAAMIC STRESSES



# N-BOON DVNAMIC STAFSSES 

## ADPENOAGE? <br> SEGMENT 2 <br> NON-CIRCILAP



```
 N-bCON dYAANIC SThFSSES
 APPFNDAGF?
 SEGMFNT I
```


## CIRCULAR

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline station ANG & \[
\frac{1}{\times 1-(4)}
\] & ZFTA-0 & & & & & PPIRICIPI.F STP & PESS SIGMA-33 \\
\hline 0 & & zFra-o & \[
10.53 \operatorname{cog} 964
\] & C. \(0^{\text {SIGNati }}\) & S. SIGMA23 & SIGMA-11
\(0.61431 F\) & & SIGMA-33 \\
\hline 9. & & & \(7.11614 \mathrm{E}^{\text {c }}\) C & -0.17882E 34 & ก.7106CF- 3 & P.11941E 05 & -0.237979F 33 & n. 0 \\
\hline - 80 & & & - -2.43541E 04 & -0.11229E-02 & -0.97897E. C3 & 0.70153 E 03 & -0.4756FF n4 & 0.0 \\
\hline 270 & & & -0.1:918F DS & 0.14539 E 74 & -0.92195¢-ก3 & C.19030E 03 & -0.11109F 刀a & \(0 . n\) \\
\hline & & Q-HAR & P-BAR & THE TA-MAX & & S IGMA ?2-max & \(x\) sicmazl-max & Stgma \({ }^{\text {? } 3-m a x ~}\) \\
\hline & & -0.354375 & C4. C .5251 CF & 0? 0.7854JE & & 0.11852 E 05 & 5-C.!2n45En4 & ก.1Snの3E O4 \\
\hline & & -C.29311E & C4 0.23726 F & & & & -C...n45. \({ }^{\text {a }}\) & و. \\
\hline & & C. 15493 F & C4 C.2C173E & & & & & \\
\hline STATION & & & & & & & PRINCIPLE STR & PESS \\
\hline ANG & XI-0 & 2. ETA-Q & Stgma 22 & SIGNAZI & S1gMar3 & SIGMA-11 & SIGMA- ? 2 & SI GMA-33 \\
\hline 0 & & & J. 159 Q9E 05 & 0.0 & \(0.34957 E 04\) & D.16730E 05 & -0.73C42F 03 & \(n \cdot n\) \\
\hline 90 & & & -0.15649E. 05 & -0.26105E 94 & 0.1097 FF-C? & \(0 . t 0552 \mathrm{E} 03\) - & -0.11255e 05 & 0.0 \\
\hline 180 & & & - 3.16495105 & -0.16393E-22 & -0.20324E 03 & O. 250 OCOE O1 & -0.16497E 05 & \(n \cdot 0\) \\
\hline 270 & & & \(0.12154 F 05\) & 0.10884 F 04 & -0.19141F-03 & 0.12269E 05 & -0.1153AF 03 & 0.9 \\
\hline & & G-BAP & P-AAR & THF TA-MAX & & SIGMA22-MAX & X SIGMAII-MAX & Stgma 3 3-max \\
\hline & & C.32677E & C.4-2.2391CE & \(030.23562 E\) & & -0.19091E 05 & -5-C.18459E 04 & -0.14372E 03 \\
\hline & & -0.23241F & C4-0.1556EE & & & & & \\
\hline & & 0.51042 E & C.4 C. S1716E & & & & & \\
\hline
\end{tabular}
ACC. CHECK # C.55313959E-C5
ACC. CHECK # 0.55320979F-C5
ACC. CHECK # 0.49457731E-05
ACC. CHECK # J.493BACIEE- S5
DEITA # 0.35762787E-C6
TOTAL KINETIC ENERGY# 0.21904694E CE
LINEAR MOMENTUM -0.1L233521E EC-0.18004C86E 03 0.19993771F 03
```

| rime | $0.3281157 E 00$ | NIMBER OT SIFPS | 113 | IIME STEP | $0.99 \mathrm{CO9995}=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |



```
EULER ANGLES (DFGI PSI THETA PHI
 -4.16GGE 01 2.GEGIE 00 -1.7028E 02
```

MAIN BODY FIXED UNIT VECTORS

$$
\begin{array}{rr}
x & Y \\
9.98901 E-C 1 & -7.51 C 1 \in E-03 \\
-3.11746 E-02 & -8.48 C 95 E-01 \\
-3.49908 E-02 & 5.2 C 704 \mathrm{E}-01
\end{array}
$$

2

## DEPLOYMENT ANGLE BETA, SEGMENT 1, APPENDAGE 1



DEPLOYMENT ANGLE BETA, SEGMENT 2, APPENDAGE 1


DEPLOYMENT ANGLE BETA, SEGMENT 1, APPENDAGE 2
(1)

DEPLOYMENT ANGLE BETA, SEGMENT 2, APPENDAGE 2

RATE OF CHANGE OF DEPLOYMENT ANGLE, SEGMENT 1, APPENDAGE 1

rate of cllange deployment angle beta, segment 2, appendage 1


RATE OF CHANGE DEPLOYMENT ANGLE BETA, SEGMENT 1, APPENDAGE 2
A

RATE OF CHANGE DEPLOYMENT ANGLE BETA, SEGMENT 2, APPENDAGE 2


body angular rate omega 2, as a function of time

body angular rate omega 3, as a function of time


## NUTATION ANGLE THETA, A'S A FUNCTION OF TIME




ANGLE FROM THE PERPENDICULAR TO EQUATORIAL PLANE TO SPIN AXIS


## APPENDIX A

Some of the quantities used in Equations (4.24), (4.36),. (4.38), (4.40), and (4.42) were not defined in the Nomenclature. These quantities are functions of variables defined in the Nomenclature which are used to write the equations in Section 4 in a more compact form. Since the derivation of these quantities is straightforward, they will be only defined, not derived, in this Appendix.

The first eight relations are associated with appendage geometry

$$
\begin{align*}
& \beta_{1}^{k}=\alpha_{1}^{k}  \tag{A-1}\\
& \beta_{i}^{k}=\alpha_{i}^{k}-\alpha_{i-1}^{k}  \tag{A-2}\\
& \tau_{1}^{k}=\sigma_{1}^{k}  \tag{A-3}\\
& T_{i}^{k}=\sigma_{i}^{k}-\sigma_{i-1}^{k}  \tag{A-4}\\
& \bar{h}_{1}^{k}=\bar{d}^{\kappa}  \tag{A-5}\\
& \bar{h}_{i}^{k}=\bar{h}_{i-1}^{k}+l_{i-1}^{k} \hat{\eta}_{i-1}^{k}  \tag{A-6}\\
& \bar{C}_{i}^{k}=C_{i(1)}^{k} \hat{e}_{1}^{k}+C_{i(2)}^{k} \hat{\eta}_{i}^{k}+C_{i(3)}^{k} \hat{\zeta}_{i}^{k}  \tag{A-7}\\
& \bar{b}_{i}^{k}=\bar{h}_{i}^{k}+C_{i}^{k} \tag{A-8}
\end{align*}
$$

Reference to the Nomenclature should clarify the meaning of the se relations.

The following relations have been derived to make the equations in Section 4 more compact:

$$
\begin{align*}
& \bar{S}_{n_{k}}^{k}=0  \tag{A-9}\\
& \bar{S}_{i}^{k}=\bar{S}_{i+1}^{k}+m_{i+1}^{k} \bar{b}_{i+1}^{k} \quad i=n_{k}-1, \ldots, 1 \tag{A-10}
\end{align*}
$$

(A-9) and (A-10) are related to the system center of mass

$$
\begin{equation*}
\bar{s}=\left[m_{M} \bar{b}_{M}+\sum_{k=1}^{n_{a}} \bar{s}^{k}\right] / m_{T} \tag{A-11}
\end{equation*}
$$

where

$$
\bar{S}^{k}=\bar{S}_{1}^{k}+m_{1}^{k} b_{1}^{k}
$$

The following four relations define mass parameters

$$
\begin{align*}
& \mu_{n_{k}}^{k}=0  \tag{A-12}\\
& \mu_{i}^{k}=\mu_{i+1}^{k}+m_{i+1}^{k}  \tag{A-13}\\
& m^{k}=\left(\mu_{0}^{k}\right)=\mu_{1}^{k}+m_{1}^{k}  \tag{A-14}\\
& m_{T}=m_{M}+\sum_{k=1}^{a} m^{k} \tag{A-15}
\end{align*}
$$

Other derived quantities are

$$
\begin{align*}
\bar{g}_{i}^{k}= & \bar{\omega} \times\left(\bar{\omega} \times \bar{b}_{i}^{k}\right)+2 \bar{\omega} \times \bar{b}_{i}^{(1) k}+\left(\sigma_{i}^{k}\right)^{2} \hat{e}_{1}^{k} \times\left(\hat{e}_{1}^{k} \times \bar{C}_{i}^{k}\right) \\
& -\sum_{j=1}^{i-1} \ell_{j}^{k}{\eta_{j}^{k}}^{k}\left(\sigma_{j}^{k}\right)^{2} \tag{A-16}
\end{align*}
$$

$$
\begin{align*}
\bar{b}_{i}^{(1) k} & =\hat{e}_{1} \times \overline{\mathrm{C}}_{i}^{k} \sigma_{i}^{k}+\sum_{j=1}^{i-1} \ell_{j}^{k} \hat{\zeta}_{j}^{k} \sigma_{j}^{k}  \tag{A-17}\\
\bar{H}_{c_{i}}^{k} & =\bar{I}_{i}^{k} \cdot\left(\bar{\omega}+\sigma_{i}^{k} \hat{e}_{1}^{k}\right) \tag{A-18}
\end{align*}
$$

while

$$
\begin{gather*}
\bar{H}_{c_{2}}^{k}=\overline{\bar{I}}_{2}^{k} \cdot\left(\bar{\omega}+\sigma_{1}^{k} \hat{e}_{1}^{k}+\sigma_{2}^{k} \hat{\eta}_{1}^{k}\right) \quad \text { for } n_{s}<k \leq n_{a}  \tag{A-19}\\
\text { and } i=2 \\
\bar{H}_{c M}=\overline{\bar{I}}_{M} \cdot \bar{\omega}  \tag{A-20}\\
\bar{\beta}_{i}^{(2) k}=\bar{S}_{i-1}^{k}-\mu_{i-1}^{k} \bar{h}_{i}^{k}  \tag{A-21}\\
\bar{h}_{i}^{(1) k}=\bar{\omega} \times\left(\bar{\omega} \times \bar{h}_{i}^{k}\right)-\sum_{j=1}^{i-1} \ell_{j}^{k}\left(\sigma_{j}^{k}\right)^{2} \hat{\eta}_{j}^{k} \\
+2 \bar{\omega} \times \sum_{j=1}^{i-1} \ell_{j}^{k}{ }_{\sigma}^{k} \hat{\sigma}_{j}^{k}  \tag{A-22}\\
h_{i}^{(2) k}=\bar{\beta}_{i}^{(2) k} \times\left[\bar{h}_{i}^{(1) k}+2 \bar{\omega} \times \bar{v}+\bar{\omega} \times(\bar{\omega} \times \bar{\rho})\right] \tag{A-23}
\end{gather*}
$$


[^0]:    ${ }^{1}$ Dimensions of quantities input to the program and output by the program are provided in Part II, User's Manual.

[^1]:    ${ }^{1}$ Although sometimes used for other purposes, the indices $k, i, j, l$, are generally associated with appendage, segment, station, and vertex numbers, respectively.

[^2]:    Dimensions of quantities input to the program are provided in Part II, User's Manual.
    ${ }^{2}$ Superscripts and subscripts are often deleted in the analysis of segment stresses in cases where no
    significant ambiguity arises thereby.

[^3]:    It should be noted that each segment can have a maximum of 5 stations and each station can have a maximum of 6 vertices. Stations are numbered from 1 to 5 starting from the outboard end of the segment to the inboard end.

    Input names which incluie segment and station number are assigned as follows:

    For example $\xi_{l}$ data for segment 9 is entered by giving the name XI9 $=$ followed by the data for the $6 \times 5$ matrix. Data for segment 11 would have the name XIll.
    $\Delta I_{j}$ data for segment 3 and station 5 would be entered using DLI35 followed by the data for the $3 x 3$ matrix. Data for segment 15 and station 4 would have the name DLI154.

[^4]:     plate elener

[^5]:    3
    3

    INTEGRATION PARAMETERS
    \＆RめCK
    HZO
    EU1
    4
    

[^6]:    LOCK UP ANGE (BETA I,KII AT WHICH HINGE (I,KK IS LOCKFO (DEG)
    THE BETA S SUB I, K ARRAY
    $0.0 \quad 0.36000000 \mathrm{O} \quad 0.0$

