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ABSTRACT

. . , n
Certain related classes of nonlinear functions F:DC R~ R

are introduced, and the convergence of two types of iterative methods
for the solution of the corresponding equation Fx = 0 is studied.

The main class of these functions is a generalization of the
P-matrices of Fiedler and Ptak. It is shown that the strictly mono-
tone mappings, as well as the M-functions, are special cases of these
P~functions, and that the inverse isotone mappings are closely related
to them. Then a generalization of the strictly and irreducibly
diagonally dominant matrices is introduced, and these {i~diagonally
dominant functions are likewise shown to be closely related to P-
functions.

For a (~diagonally dominant function F, the nonlinear generaliza-
tions of Jacobi and Gauss=Seidel iterations due to Bers are then
studied, and convergence results analogous to those available for
strictly and irrveducibly diagonally dominant matrices are obtained.

. . n . .
For convex and inverse isotone F on R, iterations of the form

1 4 6.1
Lok Pk(xk) ek x=0,1,...,

are then considered with particular emphasis on the Newton-Gauss—
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Seidel methods. A general vesult

avies the global convergence theovems of

3.

method and of Greenspan and Parter for the one-step Newton-SOR
method. The global convergence of the general Newton-Gauss~Seidel

method also follows from this theorem.
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INTRODUCTION

In this paper we analyze the convergence of two classes of
iterative schemes for finding a solution of the equation Fx = 0
where F:D C g™ + r" is, in general, nonlinear.

We first consider the nonlinear generalizations (Bers [1953])
of the Jacobi and Gauss-Seidel methods for the solution of linear
equations. Take, for example, the Gauss-Seidel method. For affine
mappings Fx = Ax - b where A is some n x n matrix and b 1is a
vector in Rn, it is well-known (Varga [1962]) that the following
conditions guarantee the existence of a unique solution =x* of
Fx = 0 and that the Gauss-Seidel iterates converge to x* for
any starting vector XO:

1. A is symmetric and positive definite.

2. A is an M-matrix.

3. A is strictly diagonally dominant.

4, A is dirreducibly diagonally dominant.

The first two of these conditions have been extended to nonlinear
systems, and appropriate convergence results have been given. To
be specific, Schechter [1962] proved global convergence for the
nonlinear Gauss—Seidel method for a certain generalization of the
first condition, and Elkin [1968]5 using a weaker generalization,
extended Schechter's results. Concerning the second condition,

Rheinboldt [1969%], following an unpublished suggestion of




J. M. Ortega, investigated an extension of the M-matrix concept

and proved a»global convergence result for the (underrelaxed)
nonlinear Jacobi and Gauss-Seidel processes. These M-functions,

and the corresponding global convergence theorem, brought together

a number of apparently separate results of Bers [1953], Ortega and
Rheinboldt [1970a], and Porsching [1969]. 1In this paper we generalize
the notion of strictly and irreducibly diagonally dominant matrices

to nonlinear systems and show that under suitable hypotheses the
(underrelaxed) nonlinear Jacobi and Gauss-Seidel schemes are glo—
bally convergent.

At first glance, the four types of matrices mentioned, and
their generalizations to nonlinear mappings, seem to involve four
different concepts. Yet, it can actually be shown that for linear
functions, they are all special cases of the more general class
of P-matrices due to Fiedler and Ptak [1964]. In fact, A is a
P-matrix if A dis positive definite or an M-matrix; and further-
more if A ds strictly or irreducibly diagonally dominant with
non-negative diagonal elements, then A is again a P-matrix. It
is therefore desirable to consider an extension of the definition
of a P-matrix to nonlinear mappings.

In Chapter T we generalize the concept of a P-matrix to nonlinear
functions and explore the basic connection between these P-functions

and other well-known classes of mappings, namely, the monotone and




inverse isotone mappings, as well as the M-functions. Some of the
results of this chapter are new, while others were developed jointly
with W. C. Rheinboldt (see Moré and Rheinboldt [1970]).

In Chapter II we present the mentioned generalization of the
strictly and irreducibly diagonally dominant matrices and investi-
gate the relationship between P-functions and these new Q-diagonally
dominant functions. 1In particular, it is shown that knowledge of
this relationship leads to a global convergence result for
Q~diagonally dominant functions. The other results obtained in
this chapter also appear to be new, even in the linear case, but
they are related to the work of Duffin [1948] and Rheinboldt [1969b]
if F is a so-called off-diagonally antitone function, and to the
results of Walter [1967] if F is linear.

In the last chapter we turn to the study of iterations of the

form

SLAEII. S Pk(xk)_lka, Kk =0,1,...,

with special emphasis on the general Newton-Gauss—Seidel methods.
Here F is required to be continuously differentiable and convex on

all of R"™ with F‘(x)ml > 0 for each x in R™.

This implies that
F dis inverse isotone, and it is through this fact that the results

of Chapter III are related to those of the previous chapters. For

linear T, results of Varga [1962] concerning "regular splittings"




are extended, while in the nonlinear case, new convergence results
are presented. In particular, a general result is obtained which
contains as corollaries the global convergence theorems of Baluev
[1952] for Newton's method and of Greenspan and Parfer [1965] for
the one-step Newton-SOR method. A sufficient condition for the

global convergence of the general Newton-Gauss-Seidel method also

follows from this theorem.



CHAPTER I

Classes of Nonlinear Functions

1.1 Preliminary Definitions and Results

We denote by R" the real n-dimensional linear space of column
vectors X = (xl,...,xn)T, topologized by any vector norm. In particu-—
lar, the & norm ”x|L)= sup {|xil:i = 1,...,n} is frequently used.
Correspondingly, L(Rn) denotes the linear space of all real matrices
of order n topologized by any norm induced by a vector ﬁorm in R".

For example, in the case of the Qw norm on R© we have

n
||A“oo = sup {.Z laijl:i =1,...,0}
j=1

where A = (aij) € L(Rn). We use the coordinate-wise partial order-
ings on R"  and L(Rn); that is, if x,y in 'Rn, then x 2y (x > vy)
if, and only if, e A (xi > yi) for i = 1,...,n, and similarly
for L(Rn). In addition, if x ¢ R™ and A € L(Rn), then Ix] =
(lxl|,...,!xn|)T and |A| = ([aij]) denotes the usual absolute value
induced by the coordinate-wise partial orderings on rR® and L(Rn),
respectively. A rectangle in R" is the Cartesian product of n
intervals, each of which may be either open, closed, or semi-open.
In particular, any of these intervals may be unbounded, and thus,
a rectangle may be all of R". The line segment [x,y] is the set
{z ¢ R%:z = ty + (1-t)x for some t € [0,1]}, and the set {1,...,n}
will always be denoted by N. Finally, the vector e ¢ R" is defined
by e, = 1 for each i ¢ N.

We now recall the definitions of certain classes of matrices
that will play a role in this article.

T
Definition 1.1.1 a) A in L(R") is positive definite if x Ax > O

5




for each x # 0 in R,

b) A in L(R™) is an M-matrix if a;; ¢ 0 for i#jin
-1
N, and A" 5 0.

¢) A im L(Rn) is strictly diagonally dominant if

EE ; la. .|
ii i i]
JFi
for each i ¢ N, where for n = 1 the sum on the right is defined to

be zero.

d) A in L(Rn) is irreducibly diagonally dominant if

|

|a, . a,,
ii ij

N
j

#1i
for each i ¢ N, where for at least one i € N strict inequality

holds, and if for every 1i,j in N, there is a sequence of non-
zero elements of A of the forma, , , a . sesesd

i1, 11,12’
The relationship between the first and the last two defini-

i L3’
r23d

tions is given by the following result, whose proof may be found in

Varga [1962].

Theorem 1.1.2 Let A in L(Rn) be a strictly or irreducibly

diagonally dominant matrix with nonnegative diagonal elements.

If A is symmetric, then A 1is positive definite. If aij <0

for 1 # 4 in N, then A is an M-matrix.
Another important class of matrices is the following:

Definition 1.1.3 (Fiedler and Ptak [1962]). A in L(Rn) is a

P-matrix if for each x # 0 in Rn, there is an index k € N such

that x, =

" Vi > 0 where y = Ax.



The following result of Fiedler and Ptak [1962] characterizes
P-matrices in terms of well-known concepts. B 1is a principal sub-
matrix of A if B = A or if B is a matrix of order k, 1 < k < n,
obtained by deleting any mn-k rows and the corresponding columns
of A; by a principal minor we mean the determinant of a principal

submatrix of A.

Theorem 1.1.4 Assume A in L(Rn). The following statements are

then equivalent.

a) A is a P-matrix.

b) The real eigenvalues of each principal submatrix of A
are positive,

¢) All principal minors are positive.

d) If B is any principal submatrix of A and D > 0 is a

diagonal matrix of the same order as B, then det (B+D) > 0.

Fiedler and Ptak [1962] proved the equivalence of a), b), and
¢) in the above theorem; d) is implicit in their proof. In the same

paper they also established that every M-matrix is a P-matrix.

Theorem 1.1.5 Assume A in L(Rn).

a) If A is positive definite or an lM-matrix, then A is a
P-matrix.
b)Y If A is a strictly or irreducibly diagonally dominant matrix

with nonnegative diagonal elements, then A 1is a P-matrix.




Gale and Nikaido [1965] showed that if A ¢ L(Rn) is a
positive definite matrix or a strictly diagonally dominant matrix
with nonnegative diagonal elements then A is a P-matrix; the ob-
servation that every irreducibly diagonally dominant matrix with
nonnegative diagonal elements is a P-matrix seems to be new. The
proof of the above result will be given (in a more general setting)

later on; part a) in the next section, part b) in Chapter II.

1.2 Nonlinear M- and P-functions

In this section we will define nonlinear generalizations of the
matrices introduced in the previous section and prove the connections
between the new concepts. We begin with a well-known generalization

of positive definiteness.

Definition 1.2.1 Consider F:Dt::Rp > Rn.

a) F is strictly monotone on D if for each x # y in

(x-y)* (Fx-Fy) > 0.

b) F idis uniformly monotone on D if there is a ¢ > 0

such that

?2

T
(x-y)" (Fx=Fy) > cflyx

for each x,y in D.




If F 4dis linear, both concepts are clearly equivalent to
positive definiteness; note, however, that a continuous, strictly
monotone function is not necessarily surjective, while Minty [1962]
proved that this was the case for a continuous, uniformly monotone
function on a Hilbert space. An elementary proof of this fact for
R" can be found in the next section.

In order to state the generalization of M-matrices, we will

need the following concept due to Collatz [1952].

Definition 1.2.2 The mapping F:D « R” » R" is inverse isotone on

D if Fx € Fy, x,y in D dimplies x £ y.

It is easy to see that Fx = Ax is inverse isotone on R" if,
and only if, A_l 2 0. The following nonlinear generalization of the

M-matrix concept was proposed by J. M. Ortega in an unpublished note

and then studied by Rheinboldt [1969b].

Definition 1.2.3 Let F:D= R" -+ R".

a) F 1is off-diagonally antitone if for any x in Rn, the

functions O"ij(x,'):{t e Rlixtted in D} -~ Rl,

aij (th) = fi(X'H:eJ)s i # Js i:j € N,

are antitone. Here e’ denotes the jth unit basis vector in R .
by F is an M~function on D 4if F is off-diagonally anti-

tone and inverse isotone on D.
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Once again, it is easy to see that Fx = Ax is an M-function
n . . .
on R if, and only if, A is an M-matrix. We now proceed to

the definition of P-functions which is just a straightforward

extension of the linear definition.

Definition 1.2.4 The mapping F:Dc R" » R" is a P-function on

D if for each x # y in D, there is an index k 1in N such that
(1.2.1) (xk~yk){ka—fky] > 0

where fk is the k-~th component function of F.

The concept of a P-function is new, although inequality (1.2.1)
was obtained by Nikaido [1968] in some related work. He, however,
never made a systematic use of this inequality.

The remainder of this section will point out the connections
among the different classes of functions defined so far. We begin

with the following simple observation.

Theorem 1.2.5 Let F:D <= R™ > R" be a strictly monotone function on

D. Then F 1is a P-=function on D.

Proof. Assume that F is not a P-function and hence that
for some x # v in D, (xk»yk}(ka_fky) < 0 for each k ¢ N. Adding
, T .
these inequalities we obtain (x-vy) (Fx-Fy) < 0 for x # v in D.

This contradicts the fact that F 1is a strictly monotone function on

D.
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Definition 1.2.6 Consider F:D = R" > R", and let L = TN

k

be a non-empty subset of N. For fixed x in Rn, define

A ~ L. A
D, = {(til,...,tik).t e D where tj = tj if j ¢ L, and tj = %y
if 3 ¢ L}. Then G:D, = RC > RX is a subfunction of F belonging
to L if

A
gi(til""’tik) = fi(t), L=, ed.

1f F:R" > R" is linear, then a subfunction of F corresponds
to a principal submatrix. If F is nonlinear, this concept of
subfunction has been used implicitly by many authors, but Rheinboldt
[1969b] seems to be the first one to make explicit use of this defini-
tion. We also remark that the subfunction G depends on a specific
value of x in Rp, but since it will always be clear which x is
being used, this x has not been made an explicit part of the nota-

tion. The next result is a direct consequence of Definition 1.2.6.

Theorem 1.2.7 Let F:D< Rn ~ g™ be a P-function. Then each sub-

function of F dis also a P-function.

Theorem 1.2.7 also holds for M-functions, but the proof is more
involved. We will need the following intermediary result which is

interesting in its own right.

Lemma 1.2.8 Let F:De= R° » R be an off~diagonally antitone P-function

on a rectangle D, Then F is an M-function on D.
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Proof. We only need to show that F 1is inverse isotone.
For this purpose, suppose that Fy ¢ Fx for y,x in D but that
L={1ic¢ N:yi > xi} is not empty. For ease of notation, assume

that L = {1,...,k}, k ¢ N, and define

gi(tl,...,tk) = fi(tl,...,tk,xk+l,...,xn)

for 1 ¢ L. By Theorem 1.2.7, G:DG C:Rk > Rk is a P-function, and

since F 1is off-diagonally antitone, it follows that

gi(xl""’xk> = fi(X> P fi(Y) 2 gi(yls"'syk)

for 1 ¢ 1 ¢ k. Hence,
(yi'Xi)[gi(yla'-'ayk)—gi(xla*":xk)] < 0
for i = 1,...,k, which contradicts the fact that G 1is a P-function.

We are now in a position to prove that Theorem 1.2.7 also holds

for M-functions.

Theorem 1.2.9 Assume F:D < R™ > R is an M-function on the rectangle

D. Then every subfunction of F 1is also an M-function.

Proof. Assume that there is a subfunction G:DGCZ Rk > Rk,

1 ¢ k < n, which is not an M=function. Since G is off-diagonally
antitone, Lemma 1.2.8 implies that G 1is not a P-function. Hence

there are x # v in D, , such that

G
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(1'2'2) (rxi_yi)[gi(xlﬁ'"!Xk)—gi(-yl""’yk)] S 03 l < i k‘

N

Since X # y, we may assume that L = {i:xi < yi} is not empty, and
moreover, for ease of notation, that L = {1,...,m}, 1 < m < k.

Then, if 1 € 1 € m,

fi(yl>--->Yk;zk+1,---azn) = gi(le"'ayk) N gi(xls""xk)
(1.2.3)

fi(xl,...,xk,zk+l,...,zn) < fi(xl,...,xm,ym+l,...,yk,zk+1,...,zn),

since F is off-diagonally antitone and (1.2.2) holds, while

fi(yl"'"yk’zk+l""’zn) < fi(xl”"’Xm’ym+l”"’yk’zk+l"'°’zn)’

if m < i < n. But (1.2.3) implies that this last inequality holds for
all i € N, and since F is inverse isotone, it follows that X, > vi
for 1 = 1,...,m. This contradicts the definition of L and concludes
the proof.

The previous result extends in part a result of Rheinboldt [1969b]
in which he proved that if F:R" + R" is a continuous and surjective
M-function, then every subfunction is again a surjective M-function.

To end this section, we generalize a linear result of Fiedler and

Ptak [1962] which points ocut the precise relationship between M~ and

P-functions.

5 - . . . RSt s S o . . P
Theorem 1.2.10 The mapping F:D — R -~ R is an M-function on the

rectangle D if, and only 1f, F dis an off-diagonally antitone

P-function.
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Proof. Lemma 1.2.8 gives us the sufficiency of the condition,
so we only need to prove the necessity. In order to obtain a contra-
diction, assume that F 1is an M-function, but not a P-function.

Then there are y,x in D, y # x, such that
(1.2.4) (yi—xi)(fiy—fix) £ 0, 1 e N,

Since y # %X, we may assume that L = {i ¢ N:yi < Xi} is not empty,
and that L = {1,...,k}, k ¢ N. Let G:DGC: Rk > Rk be the subfunction

of F defined by

gi(tl,...,tk) = fi(tl""’tk’xk+l""’xn)’ 1 <1 ¢ k.

Since F dis off-diagonally antitone, (1.2.4) implies that

gi(xl,...,xk)

fiX < fiy < fi(yl"'"yk’xk+l""’xn)

(1.2.5)

= gi(yl"""YR)

for 1 = 1,...,k. Since Theorem 1.2.9% shows that G is an M-function,
G 1is inverse isotone, and hence it follows from (1.2.5) that X, €Yy

for i = 1,...,k. This contradicts the construction of L, and there-

fore, F must be a P-function.

1.3 Properties of P~functions and Inverse Isotone Mappings

We now investigate some of the basic properties of inverse
isotone mappings and P-functions. Only those results shall be proved

which are relevant to the discussion in the next chapter: a more



15

exhaustive list of the known properties of P-functions may be found

in Moré and Rheinboldt [19701].

Theorem 1.3.1 Consider F:D < R" Rn.

a) If F is inverse isotone on D, then F is injective on
D, and F—l:F(D) =Rr" 5 R" is isotone.
b) If F is a P-function on D, then F is injective on D,

and }3‘_l is a P-function on F(D).

Proof. Assume first that F is inverse isotone on D. 1If
Fx = Fy for x,y in D, then x £ y and x > y. Hence y = x and F
is injective on D. Since Fx < Fy implies F_l(Fx) =x <y = F_l(Fy),

F is isotone on F(D).

If F dis a P-function on D and Fx = Fy for x# v in D,
then for some k € N, (xk—yk)(ka—fky) > 0 which contradicts the fact
that ka = fky. That Fml is a P~function on F(D) is clear from the
definitions.

Part a) of the above result is well-known, while if F:R" > R
is linear, part b) is due to Sandberg and Willson [1969].

If A dis a P-matrix, then it is clear that A has positive

diagonal elements. To describe the corresponding notion we need the

following definition of Ortega and Rheinboldt [1970b].

it

Definition 1.3.2 Consider F:D C?:Rn <+ R7. Then

a) For fixed =x in Rn, the i-th diagonal function
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uii(x,-):{t € Rl:x+te1 in D} > R; is defined by

i
aii(x,t) = fi(x+te ),

for each i ¢ N.
b) If each diagonal function is (strictly) isotone for each

x in Rn, then F is (strictly) diagonally isotone on D.

Theorem 1.3.3 Assume F:D =gr" » Rn is a P-function. Then F is

strictly diagonally isotone on D.

Proof. Let x € R* and 1 € N be given. If s > t and x + sel,
x+te’ lie in D, then (s—t)[fi(x+sel)—fi(x+tel)] > 0 since F is a

P-function, and hence, fi(x+stel) > fi(x+tel).

Another property of P-matrices is that SA and AS are
P-matrices if A is a P-matrix and S > 0 is an invertible diagonal

matrix. We now generalize this result of Fiedler and Ptak [1962].

Definition 1.3.4 (Ortega and Rheinboldt [1970b]) The mapping

¢:Dc:Rn ~ R” is a diagonal function on D if for each x in D and

i € N, ¢i(x) = ¢i(Xi)-

Theorem 1.3.5 Let F:D < " - r" be 'a P-function and ¢:D . < R" + R"

0

a diagonal, strictly isotone functiomn.
. , n no .
ay If ¢(DO) <D, then Ea¢:DO <R ~» R is a P-function.

b) If F(D) =D., then ¢:F:D= R" » R is a P-function.

0
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Proof. We only carry out the proof for a); that for b) is
analogous. Let x # y in DO be given. Then ¢(x) # ¢(y) in D,
and since F 1is a P~function on D, there is an index k ¢ N such
that [¢k(x)—¢k(y)][fk¢(x)—fk¢(y)] > 0. Now, o1 is strictly iso-
tone, and ¢k(x) - ¢k(y) = ¢k(xk) - ¢k(yk), so if ¢k(x) - ¢k(y) > 0,

it follows that fk¢(x) - fk¢(y) > 0 and x, -

T 0. Hence,

(xk—yk)[fk¢(x)—fk¢(y)] > 0. A similar argument yields the theorem

when ¢kx =4y < 0.

A very similar theorem is as follows:

Theorem 1.3.6 Let F:D = R" > R" be a P-function and let ¢:DO —=gr" » R"

be a diagonal mapping such that ¢(DO) =D and F(D) =D If for each

0"

k in N, is either strictly isotone or strictly antitone, then

k
G = ¢-F-¢:Do = R" > R” is also a P-function. In particular (Gale

and Nikaido [1965]), if A 1is a P-matrix and S is a diagonal,

invertible matrix, then SAS is a P-matrix.

Proof: Let x # y in D, be given. Then ¢(x) # ¢(y) in D,
and since F 1s a P~function on D, there is an index k din N
such that [¢k(x)—¢k(y)][fk¢(x)—fk¢(y)] > 0. Without loss of generality
we assume that ¢k is strictly antitone. TIf ¢k(x) - @k(y) > 0, then
fk¢(x) - fk¢(y) > 0, and since ¢ is a diagonal mapping, X < Yo
@kF¢(x) < ¢kF¢(y)“ Hence, (kayk)[¢kF¢(x)~¢kF¢(y)] > 0, If

®R(X) - @k(y) < 0, all the inequalities are to be reversed.
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In connection with certain problems in nonlinear transistor
networks, Willson [1968], and Sandberg and Willson [1969], were led
to investigate the surjectivity of functions of the type A + ¢
where ¢ 1s a diagonal mapping. In particular, they obtained that
A+ ¢ is surjective if A is a P-matrix and ¢ is continuous and
isotone on R'. In order to generalize this result, we introduce

the following definition.

Definition 1.3.7 F:D c::Rn > R® is a uniform P-function if there is

a ¢ > 0 such that for each x # vy in D,
(1.3.1) () (Ex=£,9) 3 cllyx I
for some k = k(x,y) in N.

The existence of such a ¢ > 0 for the function A + ¢ is a

consequence of the next result.

Lemma 1.3.8 If A in L(Rn) is a P-matrix, then there is a ¢ > 0

such that for each x # 0 in R" and for some index k = k(x) in N,

x &

I > cllx

where y = Ax.

Proof. Define g:Rn s~RL by g(x) = max {xjyjzymAxngN}; Then

g 1is continuous and positive on the unit sphere, and hence there is
a ¢ > 0 such that g(x) 2 ¢ for all x of unit norm. The result follows

immediately.




The interesting fact is that (1.3.1) implies that F is a

homeomorphism of R" onto R".

Theorem 1.3.9 Let F:Rn + g% be a continuous and uniform P~function

on R®. Then F is a homeomorphism of R" onto R".

Proof. Since all the norms in R"  are equivalent,- we may
assume that (1.3.1) holds for the infinity norm. Equation (1.3.1)
implies that “Fx—Fy]]oo p c”x—y“oo and hence that F is injective and

1

”F_lx—F‘ v, < %~Hx—y”wfor all x,y in F(D). Thus, only the sur-

jectivity of F needs proof.

For n = 1, surjectivity follows readily from (1.3.1); therefore

.+.
assume that the result is valid for some n > 1, and let F:Rn+l + R" I

satisfy (1.3.1). Fix t ¢ R', and define G(+,t):R" » B by

gi(xl’°'°’xn’t) = fi(xl,...,xn,t)

for i ¢ N. For each t ¢ Rl, G(*,t) is clearly a uniform P-function
on Rn, and therefore is surjective by the induction hypothesis.

Let b ¢ Rn+l be given. We can then define H:R1 - r% by

(1.3.2) fi(hl(t),,.,,hn(t),t) = bi = gi(hl(t),..,,hn(t),t)
for i ¢ N, and w;Rl - Rl by

ey = £ {hl{,t),“whm(t)ﬁs)e

n+li

To prove that H is continuous, note that for s # t, (1.3.1) implies

that
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[h, (s)-h, (£)1[g, (H(s),t)-g, (H(t),t)] > cHH<s)-H(t)Ni-
and therefore, that
lclH(s),t] = G[H(E),t]]_ = d|H(s)-H(t) ] .
Since (1.3.2) holds,
lclr(s),t]-GIH(s),s1]l > c|H(s)~H(E) ],

and the continuity of H follows from the continuity of F.
Therefore, ¢ is continuous, and if s # t, (1.3.1) and (1.3.2)

imply that
2
(s=t)[Y(s)-V(t)] 3 c|s-t]”.

Hence, 1lim ¢(t) = 4+~ and 1lim ¢(t) = —, and since ¢ 1is continuous,
Eteo troo

Y is surjective. The intermediate value property for continuous

function implies that there is a t* ¢ Rl with ¢(t*) = bn+l' It follows

from (1.3.2) that Fx* = b where x% = (hl(t*),...,hn(t*),t*)T, and the

proof is complete.

As a trivial corollary, we have the finite dimensional version

of a result of Minty [1962].

Corollary 1.3.10 Assume F:R" > R” is continuous and uniformly mono-

n L ; . n
tone on R . Then F is a homeomorphism of R onto R".

It should be noted that the last two results follow readily from
the Domain Invariance Theorem and results of Rheinboldt [1969a], but

the important point here is that knowledge about P~functions has
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allowed us to give an easy proof of an otherwise difficult result.
We finish this section with a special case of a theorem of

Sandberg and Willson [1969].

Corollary 1.3.11 Let A in L(Rn) be a P-matrix and ¢:Rn ~ R" a

continuous, diagonal, and isotone function on R”. Then F = A + o)

. , n n
is a homeomorphism of R onto R .

Proof. The result follows directly from Lemma 1.3.8 and

Theorem 1.3.9.

1.4 Differentiable P-functions and Inverse Isotone Mappings

The results of Gale and Nikaido [1965] show that if the
Jacobian of a function F defined on a rectangle D 1is a P-matrix
for each x din D then F is injective on D. The purpose of
this section is to incorporate their results into the framework
of P-functions, and, in general, to investigate the effect of
differentiability assumptions upon the definitioms.

The notions of differentiability to be used are that of the
well-known Gateaux and Frechet derivatives. Briefly: F:D < R" » rR"
is G-differentiable at an interior point x of D if there is an
A & L(R™) such that for any h € Rn9

lim w;m'i
>0

F(x+th)-Fx-tAh]| = 0,

2 o

and it is F~differentiable at x if
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lim W%W' | (x+h)-Fx-an|| = 0.

hs0
In either case, there is only one such A, denoted by F'(x),
Bfi(x)
namely, the Jacobian matrix (ajfi(x)) where ajfi(x) N
J

For a summary of the properties of G- and F-differentiable
functions, see Ortega and Rheinboldt [1970b].
We begin our investigations with a well-known result--see,

for example, Gale and Nikaido [1965].

Theorem 1.4.1 Let F:D = R"™ >~ R" be G~differentiable on the convex

set D, and assume that F'(x) is a positive definite matrix for
each x in D. Then F 1is strictly monotone and hence, injective

on D.

A similar assertion can be made if the Jacobian matrix of F
is a P-matrix, but first we shall need the following result of Gale

and Nikaido [1965].

Lemma 1.4.2 If A in L(Rn) is a P-matrix, then there is an h > 0

such that Ah > 0.

Theorem 1.4.3 (Gale and Nikaido [1965], Nikaido [1968]) Let F:D < R" » R"

be F-differentiable on the closed rectangle D, and suppose that F'(x)

is a P-matrix for each x din D. Then F dis a P-function on D.

Proof. The proof proceeds by induction on n. For n = 1 the

result is clear, so assume it holds for some n - 1 = 1, and let
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F:D « R R" satisfy the conditions of the theorem.
We observe that if for any u # v in D we have u, = vy

for some i ¢ N, then there is a j # 1 in N such that

(1.4.1) (uj—vj)(fju—fjv) > 0.

To prove this remark, assume that i = n, and define G:DG c Rn_l - Rn~l

by
gi(tl,...,tn_l) = fi(tl,...,tn_l,vn)

for i = 1,...,n-1. Since G'(tl,...,tn_l) is a P-matrix for each
(tl,...,tn_l) € DG’ the induction hypothesis implies that G 1is a

)]

P-function, and, therefore, that (uj—vj)[gj(ul,...,un_l)—gj(vl,..,,vn_l

> 0 for some j # n which is (1.4.1).

Consider now the set D0 = {x ¢ D:Fx ¢ Fz, x > z} where z ¢ D is,

for the moment, fixed. We claim that DO is empty; for if this

k . .
were not so, and {x } « DO is any decreasing sequence, then clearly

I

lim xk = x exists in D and Fx ¢ Fz. If X, =z for some i ¢ N,
koo
then x

z by our initial observation and

(1.4.2) 1im [ka—Fz»F'(z)(xkoz)] = 0.

kot [|x —z||

By Lemma 1.3.7, there is a ¢ > 0 such that some component of
k
F'(z) ETEL g greater than c¢, and by (1.4.2), some component of

k
==l . | |
Fx = ¥z must be positive for large enough k. This contradicts the

fact that xk € DOB and therefore, we have x ¢ Doa Zorn's Lemma then

vields the existence of a minimal element in DO; that is, a u ¢ Do
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such that x < u for x € DO implies x = u. This is, however,
impossible: in fact, Lemma 1.4.2 shows that there is an h < 0 with

F'(u)h < 0, and since

lim F(ut+th)-F (u)

+
£50 t

= F'(u)h < 0,

we have F(u+t0h) < Fu £ Fz and z < u + th < u for sufficiently -

0

small t0 > 0, which contradicts the minimality of wu. Hence, DO
is empty.

It now follows that F must be a P-function on D: if for
some x # y in D, (xk—yk)(ka—fky) < 0 for each k ¢ N, then X # Vi
for each k ¢ N by the remark at the beginning of the proof. Define

S = diag (sl,...,sn) by

+1 if %, >y

-1 if x, <y

and H:s"1(D) « R > R™ by H(z) = SF[Sz]. Then H'(z) = SF'[Sz]S is
a P-matrix (Theorem 1.3.6) on the closed rectangle S‘l(D); mMOreover,
H(S_lx) < H(S_ly) and S-lx > S“ly which altogether contradicts what
we have already proved.

The proof of this theorem uses ideas of Gale and Nikaido [1965]
and Nikaido [1968]. 1In fact, if F satisfies the conditions of
Theorem 1.4.3, Gale and Nikaido [1965] showed that F 1is injective
on D, while Nikaido [1968] derived (1.2.1) and noted that injectivity

followed from this relationship.
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The converse of Theorem 1.4.3 is false as shown by the one-
dimensional example f(x) = x3, but certain partial converses are
known (see Moré and Rheinboldt [1970]). A similar remark can be

made about the next result.

Corollary 1.4.4 Assume that F:D cR™ > R" is F-differentiable on the

closed rectangle D, and that F'(x) is an M-matrix for each x in D.

Then F is an M-function on D.

Proof. Note that for each i # j in N, and x € rR® aij(x,-)
is defined on a closed interval, and has there a non-positive deriva-
tive. Since F is a P-function, the result therefore follows from
Theorem 1.2.10.

The last two results raise the question of whether or not
F'(x)"l > 0 for all x in a suitable set D dimplies that F is

inverse isotome. This is not kmown, but a partial result using the

notion of convexity is available.

Definition 1.4.5 The mapping F:D cR™ > R" is convex on the convex

set D if

FOx+(1-0)y) € AFx)+(A-\)Fy

for each x,y din D, and X din [0,1].

If F dis differentiable, then convexity can be chavacterized

as follows:
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Lemma 1.4.6 Let F:D < R™ ~ rR® be G=differentiable on the convex

set D. Then F is convex on D 1if, and only if,
(1.4.3) Fy = Fx 2 F'(x) (y—=x)
for each x,y in D.

The proof of this result can be found in Ortega and Rheinboldt
[1970b) . It is now very easy to prove the following characterization

of inverse isotonicity.

Theorem 1.4.7 Let F:D C:Rn + R" be convex and G-differentiable on

the open convex set D. Then F is inverse isotone on D if, and

only if, F'(x}_l > 0 for all x in D.

Proof. Assume first that F is inverse isotone and suppose
F'(x)h = 0. By (1.4.3) it follows that F(x+h) - Fx = 0, and inverse
isotonicity implies h = 0. Since F'(x)h > 0 implies h > 0O, F'(x)--l >0
as desired. Conversely, if F'(x)ml 2 0 for each x din D and
Fy € Fx for y,x din D, (1.4.3) implies that v € x and F is there-

fore inverse isotone on D.



CHAPTER II

Strictly and {l~diagonally Dominant Functiomns

2.1 Definitions and Preliminary Results

In the previous chapter several classes of nonlinear functions
were introduced and were shown to be natural generalizations of known
types of matrices. For these classes of functions, in this and the
next chapter, we study the convergence of iterative methods to the
solution of Fx = 0 where F:D = R ~ R” is known to have a zero in D.

In this chapter we consider the following two iterations:

The Gauss-Seidel iteration: Solve

(2.1.1) fi(x?+l"'"Xiti’xi’xi+l" .,XE) =0
for X and set

(2.1.2) e = (e )xs x4 Lo, ko= 0,1,
and the Jacobi iteration: Solve

(2.1.3) fi(xi,...,x?_l,xi,x§+l,.,.,x§) = 0

for X s and set

k41 k .
(2.1.4) xg T o= (lmw)xg twx, = 1e..m, k= 0,1,
where w, € (0,2) is a given sequence of relaxation parameters.

k

These two iterative schemes are analyzed by generalizing the neotion
of strictly and irreducibly diagonally dominant matrices and examining
the relationship of this generalization to P-functions.

27
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In order to introduce our generalization of a strictly dia-
gonally dominant matrix, we will have to look at this class of
matrices from a somewhat different point of view than is usual.

The following result will indicate the way.

Lemma 2.1.1 Let v ¢ Rn; then

a) ]vkl > j;k!vjl for some k ¢ N
if, and only if, for any x ¢ R*
n
b) jzl vixy = 0, x # 0, implies that lxkl < Jxl,-
n
Proof. Assume that a) holds, and that Z Vij =0, x # O.
=1
Then VX =T 2 v,x,, and lvklkal < E |vjluxmm, from which b)

ik I ik
follows.

If b) holds but Ivk] € z |vj|, then dlvkl

= 2 Ivjl for 0 2 1.

0 itk itk
Define x € R~ by x, = Osgn v, , Xy = -Sgn Vi, j # k; then ”x”oo = o= |x
n
and Z ijj = 0. This contradicts b) since x # 0. Hence, a) must
j=1
hold.

i = l,...,n, then

If A € L(Rn), and for some k € N, Vj = akj’ A

a) is equivalent to assuming ''strict diagonal dominance on the kth

row'". Condition b) can be generalized to the nonlinear case.

Definition 2.1.2 a) A functional £:D = Rr™ » Rl is strictly diagonally

dominant on D with respect to the kth variable if for every x # v

in D,

fx = fy, implies that ixk’yk} < “X“YIL=

|
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b) A function F:D = R™ » R" is strictly diagonally dominant
on D if for each k ¢ N, the kth component function of F, fk’

is strictly diagonally dominant with respect to the kth variable.

From Lemma 2.1.1 we obtain immediately:

Theorem 2.1.3 Let A ¢ L(R"). Then A is a strictly diagonally
dominant matrix if, and only if, the induced mapping Fx = Ax is a

strictly diagonally dominant function on R".

We next prove several results that give sufficient conditions

for a function to be strictly diagonally dominant.

Theorem 2.1.4 Let F:D < r™ +_Rn be G-differentiable on the convex

set D, and assume that F'(x) is a strictly diagonally dominant matrix
for each x in D. Then F 1is a strictly diagonally dominant func-

tion on D.

Proof. Let k € N be given, and assume that ka = fky for some
x # v in D. Then ¥(t) = fk(x+t(ynx)) is differentiable on [O,l],

and Y(0) = Y(1). By Rolle's theorem, there is a t. € (0,1) such that

0

9]
P (ey) = z

3 - - -
3 jfk(x+t0(y><))(yj Xj) 0.

1

The conclusion now follows from Lemma 2.1.1 with

B - 8 I ke F e KR,
vj ij(thO{y ®¥3J), ] Lyooe,tts
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Later we shall see that this result admits a certain converse.
On the other hand, Theorem 2.1.4 does not account for the case where
F'(x) is not strictly diagonally dominant at all points. The next
result will point out how this theorem can be extended to cover this

case.

Theorem 2.1.5 Let £:D © R > Rl be continuously differentiable on

the convex set D, and assume that for some fixed k € N, either

a) lakf(x)| > z |3.£(x)| for each x € D,
itk J
or,
b) 9. £(x)| = z |8,f(x)| for each x € D, where
: ik J

Skf(x) does not change sign on D, and f is not constant on any

line segment [x,y] for which X # Vi

Then £ 1is strictly diagonally dominant on D with respect to

the kth variable.

Proof. If a) holds, the proof is identical to the one given
in Theorem 2,1.4, so assume that b) holds. If for some x # y in D,

fx = fy and IX = “me“w, then X # Yi» and without loss of

k-yk ]

generality, we may suppose that Vi T % > 0. Since ka(X) does not

change sign for x € D, assume that Skf(x+t(ymx)} %> 0 for each

£ € [0,1] and set Y(t) = f(x+t(y=x)) for ¢ € [0913. Then
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V) = Gttty Oy + ]

J ajf(x+t (y-x)) (yj—xj) )

k
and by b)
vre) 2 ) |8 £ttty [ ly=xll~ly.~x. ) > o.
st 373
1
Since 0 = fy - fx = Y(1) - V(0) = g Y'(£)dt > 0,
it follows that Y(t) = 0 for. t € [0,1] which contradicts the fact

that f is not constant on the line segment [x,yJ.

Corollary 2.1.6 Let F:D < R" » R" be continuously differentiable on

the convex set D, and assume that for every x in D, F'(x) is
a diagonally dominant matrix whose diagonal entries do not change

sign. If for each k € N, either

> .
a) |8kfk(x)| .2 Iijk(x)l for each x in D,
jFk
or
b) fk is not constant on any line segment [x,y] for which

Then F is strictly diagonally dominant on D.

Proof. For each k € N, fk satisfies the conditions of

Theorem 2.1.5 and is therefore strictly diagonally dominant with

respect to the kth wvariable.
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The preceding result extends the class of functions which

Theorem 2.1.4 identifies as strictly diagonally dominant.

Example 2.1.7 Let F:R2 - R2 be defined by

' x, - sin x l
, " 2
Flxpoxy) = 3 :
i X

Direct computation shows that F satisfies the hypotheses of

Corollary 2.1.6 and is therefore strictly diagonally dominant on
Rz. Note, however, that F'(x) is strictly diagonally dominant only

if x

2 is not an even multiple of T.

Suppose now that A € L(Rn) is irreducibly diagonally dominant,
but not strictly diagonally dominant; then Fx = Ax is not a strictly
diagonally dominant function. Since this type of matrix function
arises frequently in practical situations, it is interesting to
consider a corresponding extension of the diagonal dominance concept.

We begin with an analog of Lemma 2.1.1.
Lemma 2.1.8 Let v € Rn; then

a) lv > z le] for some k € N

j#k
if, and only if, for any x € Rn,
<

X X

;m? or

m
b) Z vixj = 0, x # 0, implies that either &F

= ”Xﬂm = 1xj’ whenever vy # 0.
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n
Proof. Assume that a) holds and that Z vjxj = (J for some
j=1
x # 0. 1If ka| < ”XIL there is nothing to prove, hence suppose
that |xk| = ”x“w. Then
v, X, = —j;k ijj’

and

vl bl = vl < 3 vl

Thus,
, -1x.,|) €0,
PALCEE
which shows that |Xj| = Hx“oo whenever vy # 0.
Conversely, if b) holds, and
(2.1.5) lv. | < ¥ |v.l,
gk
then ulvk' = j;klvj| for o > 1. Define x in in by X, = Osgn vy,
Xj = ~-ggn vj, i # k; then “X“m = ( = [xk’, and jzl Vij = (0, By b),
Ile = ”XHOo whenever Vj # 0, but since |xj| <o = ”X“m, we have

Vj = 0 for all j # k. This contradicts (2.1.5).

Lemma 2.1.8 is the clue to generalizing the notion of a
diagonally dominant matrix; we only need to specify the nonlinear
counterpart of the condition v, # 0 in b). To do this, we will use
the well-known notion of a finite directed graph or network. For our

purposes a network @ = (N,A) consists of a set of n nodes
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N={1,...,n}, and a set i = N x N of (directed) links which contain
no loops, that is, (i,i) ¢ A if i € N. A link from i to j is
then an element (i,j) of A, and a (directed) path from i to j

is a sequence of links of the form
(i,il),(il,iz),...,(ir,j).
With these concepts in mind, we formulate our next definition.

Definition 2.1.9 A mapping F:D < R" +~ R" is diagonally dominant on

D with respect to the network £ = (N,A) if for every x # y in D,
ka = fky for some k in N, implies that either a) {Xk—yki < “x—yuw,

or b) |xk—yk| = ”x~y”oo = [xj—yj‘ whenever (k,j) € A,

Note that if F dis diagonally dominant with respect to a
network £ = (N,A), then it is also diagonally dominant with respect
to any sub-network QO = (N,A)) in the sense that AO(: A, The
"largest' network that we will consider here is the associated
network QF = (N,AF) of the mapping F. It is defined by AF =

{(i,3) e N x N: 1 # j, and for some x € D, &ij(x,°) is not constant}

where uij(x,°) is specified in Definition 1.2.3.

Theorem 2,1.10 Let A € L(Rn). Then A is a diagonally dominant

matrix if, and only if, the induced mapping Fx = Ax is diagonally

. n . .
dominant on R with respect to the associated network QFQ

Proof. The result follows directly from the definition and

Lemma 2.1.8.
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It should now be apparent how to generalize the notion of an
irreducibly diagonally dominant matrix; instead, we shall generalize
a weaker concept which, for a special class of off-diagonally

antitone functions, seems to be due to Duffin [1948].

Definition 2.1.11 The mapping F:D < R" > R" is 0-diagonally dominant
y

on D if there is a network = (N,A) such that

a) F is diagonally dominant with respect to the network
Q= (N,A), and

b) There is a nonempty subset J(F) of N such that for each
ie J(F), fi is strictly diagonally dominant with respect to the
ith variable, and for each i ¢ J(F), there is a path in @ from 1

to some j = j(i) & J(F).

For linear F:R™ - R" Walter [1967] has considered Definition
2.1.11 in a somewhat different form. More specifically, he defines
A  to satisfy condition Z2 if A is diagonally dominant, and if
there is a non-~empty J(A) < N such that for every non-empty proper
subset L of N for which L i J(A) is empty, there exists an

i eL and a j ¢ L such that 24 # 0. The equivalence of condition

22 and Definition 2.1.11 is a consequence of the next result.

Lemma 2.1.12 Let © = (N,A) be a network and J a non-empty subset

of N. Then for each i £ J there is a path from i to some
j = 3{(i) € J if, and only if, for every non—empty Subset L
of N such that L y J is empty, there is an (i,j) in A with i € L

and j £ L.
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Proof. Assume first that for each i ¢ J there is a path
from i to some j = j(i) € J, and let L be a non-empty

subset of N such that L N J is empty. Choose iO € L; then

ig ¢ J and hence, there is a path (10,11),.,.,(1r_l,1r) to some

i €J. Let p be the first integer such that ip £ L, and note

that 1 £ p € r since i, € L and ir £ L. Then (ip_l,ip) € A with

0

i €eLand i ¢ L.
p-1 p

Conversely, let iO ¢ J be given. With L = {io}, our assump-

tions imply that there is an il ¢ L with (io,il) e A, If i, €J,

then (io,il) is the desired path; otherwise, set L = {io,il} and
note that L n J is empty. Hence, there is an 12 £ L with
(k2,12) € A for some kz e L = {10,11}. Since J is a non-empty
subset of N, the continuation of this process will yield an

i ¢g1L={i
P

O’il""’ip-l} with (kp,ip) € A for some kp € L and

such that ip £ J. Our desired path is then (iO’kZ)’(kZ’kB)"“"

(kp,ip) if k, = il; otherwise k, = and the path is (iO’kB)’

2 2 " 1o
(k3,k4),...,(kp,ip),
Note that with J(F) = {l,...,n}, Definition 2.1.11 reduces
to the definition of a strictly diagonally dominant function.

Therefore we will be able to develop the theory of strictly and

fiediagonally dominant functions in parallel.
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2.2 Basic Properties of {l-diagonally Dominant Functions

In this section we will generalize some of the facts known
about strictly and irreducibly diagonally dominant matrices (see,
for example, Varga [1962]) to functions that satisfy Definitions

2.1.2 or 2.1.11.

Theorem 2.2.1 Let F:D = R" > R™ be fi-diagonally dominant on D.

Then each subfunction of F is also {l-diagonally dominant on D.

Proof. Let L < N be a non-empty proper subset, and for ease

{1,...,k}, 1 < k < n. Let G:D, = RS 5 RS

of notation assume that L

be the subfunction of F belonging to L with components
gi(xl,...,xk) = fi(xl,...,xk,zk+1,...,zn), i ¢ L.

In order to show that G is {i-diagonally dominant, we must exhibit
a network Q* and a non-empty subset J(G) of L which satisfy

Definition 2.1.11. Define
J(G) = {i € L:(i,j) € A for some j ¢ L} U (LNJ(F)),

and set Q* = (LSA*) where A* = AN (IxL). We show first that J(G)
is not empty. For this assume that L n J(F) is empty; otherwise

there is nothing to prove. Then there exists an € L such that

0
iO g J{(F) and a path

s . . . s PR
(2°2°1) (3“093~l)9<11912)9°“‘5(]“1:__‘_1311,/
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connecting i to some ir € J(F). If p is the first integer

0

€ { . -
0 L and i ¢ L There

fore, J(G) is not empty, since necessarily i

such that ip g L, then 1 € p € r, since i
p-1 e J(G). Assume
now that iO ¢ L is any index for which io g J(G); then iO g J(F),
and thus there is a path (2.2.1) connecting iO to some ir € J(F).
If p dis defined as above, then 1 € p € r, and, since iO g J(G),

we have p # 1. Hence, (io,il),. ) is a path in L

"’(lp—Z’lp—l

connecting i to i

0 p-1 € J(G). Clearly, G 1is diagonally dominant

with respect to Q*, and hence, we only need to show that for
i e J(G), fi is strictly diagonally dominant with respect to the
ith variable. For i € J(F), this is clear; hence assume that

i ¢ J(F) and that for x # y in Dy ;% = gy Then

fi(xl,...,xk,zk+l,...,zn) = fi(yl""’yk’zk+l""’zn)’

and consequently, ‘Xi—yil < “x~y“w, for otherwise, [zj=zj] = 0
= Hx—y“m, since (1,j) € A for some j ¢ L.

Note that for an irreducibly diagonally dominant matrix A,
not every principal submatrix of A 1is irreducibly diagonally
dominant. However, each principal submatrix is, at least, non-

singular as the following result shows:

Theorem 2.2.2 Assume that F:D < R » R" 4is Q=~diagonally dominant on

b. Then ¥ and all of its subfunctions are injective.

Proof. 1In view of the previous result, it is sufficient to

prove the assertion for F itself. For this, we will use the



alternate definition of {i-diagonally dominant functions given by

Lemma 2.1.12. If Fx = Fy for x # v in D, define
L={ice N:‘Xi_yit = ”x—y“m},

and note that L dis a non~empty subset of N such that L n J(F)
is empty. By Lemma 2.1.12, there is an (i,j) € A with 1 € L and
j ¢ L. But fix = fiy and Ixi—yi| = ”x-—y”Oo implies that |xj—yj|
= “x—y"00 since (i,j) € A, contradicting the fact that j € L.

For our next result, recall that when F:D = g" - rR® is given,

then for each x € Rn, the ith diagonal function

oLi;'L(x,‘):{t € Rl:x+te1 £ D} > Rl

is defined by aii(x,t) = fi(x+tel) for i € N.

Theorem 2.2.3 Assume that F:D ©R" - R" is continuous and Q—diagonally

dominant on the rectangle D. Then for any fixed k ¢ N, akk(x,-) is,
for arbitrary = din D, either strictly isotone or strictly anti-
tone. Moreover, if for some y # x in D, lxk=yk[ = ”x—-y“Oo and

- _ B S . Y i d

£, x # fky, then (Xk yk)(ka fky) 0 if ukk(x, ) is isotone, and

_ B < . oy s .
<Xk yk)<ka ka) 0 if dkk(x, ) is antitone.

Proof. Let x € D and k € N be given. By Theorem 2.2.2, akk(x>°)

ig dinjective on its domain of definition. Since the domain of

@kk(xg”) is an interval ik and &kk(x’@> is continuous, &kk(x,s)




must be either strictly isotone or strictly antitone. Assume that

ukk(x,-) is strictly isotone. We now claim that for any y € D,

gkk(y,-) is also strictly isotone. To prove this, let

DO ={y ¢ D:akk(y,-) is strictly isotone on Ik}’ and note that

y ¢ D, if and only if o (y,s) > O . (y,t) for at least one pair of
0 kk kk

real numbers s > t with Yy + s and Yy + tin I 0f course, if

K
Ik is only one point, then trivially DO = D; hence assume that

Ik is a non-degenerate interval. We observe now that D0 is not

empty since x € Do and show that D0 is closed in D. For this

purpose let v € D be a limit point of D and {ym} < D, such

0 0
that 1lim ym = y. Since 1 is a non-degenerate interval, and
R} k
m™+
{y"} = D, there is a & # 0 such that YZ + § belongs to Ik for

sufficiently large m. For the sake of being definite, assume that
m m
. > >
§ > 0. Then akk(y ,8) ukk(y ,0) and hence, akk(y,S) akk(y,O)
since F is continuous. But ukk(y,‘) is injective and therefore,
akk(y,é) > ukk(y,O), which in turn implies that y € DO. On the
other hand, DO is also open in D, for if y € Dys there is a
§ # 0 (which is again assumed to be positive) such that v, + § belongs
6 > . .
to Ik and consequently dkk(y, ) Ukk(y,O). Continuity of F now
implies that Gkk(Q,S) > @kk(Q,O) for all § in a sufficiently small
relative neighborhood of y in D, and therefore § € DO°
We have now shown that DO is a non-empty subset of D which

is both open and closed in D. Since D dis connected, this implies

D0 = D as desired. To finish the proof, we must show that if v € D
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is such that y # x ka—xkl = Hy—x"Oo and fky # ka then
(xk—yk)(ka—fky) > 0. In order to arrive at a contradiction,
assume that X > Yy and ka < fky. Define g:[0,1] >~ D by gk(t) = x
and g, (t) = ty; + (1-t)x; for i # k. Then |gj(t)—yj1 < lg®)-yl,

k

for each t € (0,1] and j # k. Since F is Q~diagonally dominant,

we must have f. g(t) # fky for each t € (0,1], and, since

kg
fkg(t) < fky for t = 0, the continuity of ¥ implies that

k
fkg(t) < fky for t € [0,1]. Hence, fkg(l) = fk[y+(xk~yk)e 1 < fky,

contradicting the assumptions that o,, (y,*) is strictly isotone and

kk
X, > Yy

Corollary 2.2.4 Let F:D = R™ + R"” be continuous on the rectangle D.

Then F dis strictly diagonally dominant on D 1if, and only if, the
following two conditions hold:

a) For each fixed k ¢ N, o,, (x,¢) is, for arbitrary x ¢ D,

kk(

either strictly isotone or strictly antitone.

b) If | = ”y—x“oo for y # x in D and k € N, then

|ykka
(Xk-yk)(ka—fky) > 0, if o, (x,*) is isotone, and (x.-v,) (,kav-fky) <0,

if ukk(x,‘) is antitone.

Proof. If F is strictly diagonally dominant, then it is
also {i~diagonally dominant, and the sufficiency of the two conditicns
follows by noting that if for some v # x in D we have Ekayk‘ = ”X“yﬁmB

then necessarily, £.x = f%y& The necessity of the condition is clear.

k
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Corollary 2.2.5 Let F:D = R" > R" be continuous and {i~diagonally

dominant on the rectangle D. Then F is a P-function if and

only if ¥ is diagonally isotone on D.

Proof. If F 1is a P-function, then F is diagonally isotone
on D by Theorem 1.3.3. Conversely, if x # y are given, we must

show that there is a k € N such that (Xk—yk)(ka—fky) > 0. Let
L=1{ice N:fix—fiy,]xi-yi =|x-y|_},

and note that if L dis empty, then there is necessarily a k € N

such that ]xk—ykl = ”x—y”oo and ka # fky. Theorem 2.2.3 then implies
that (xk—yk)(ka—fky) > 0. Otherwise, L 1is a non—empty subset

of N such that L n J(F) is empty. Since F is Q-diagonally dominant,
Lemma 2.1.12 yields an (i,j) € A with i ¢ L and j ¢ L. It follows

that ]xjwyj] = Hx~y“m, and since j ¢ L, we have fjx # ij. Theorem

2.2.3 now shows that (Xj—yj)(fjx~ij) > 0.

The last result we prove in connection with Theorem 2.2.3 repre-

sents a converse of Theorems 2.1.4 and 2.1.6.

Corollary 2.2.6 Assume that F:D e R" > R" is continuous, G-differentiable,

and {i~diagonally dominant on the open set D. Then F'(x) is a diagonally

dominant matrix for each x in D.

Proof. Let x € D be given. Since ¥ is continuous on the open

set D, we can apply Theorem 2.2.3 to any open rectangle DO<Z»D
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containing x. Hence, for any given k ¢ N, akk(x,-) is either
strictly isotone or strictly antitone, and--to be definite--assume
that ukk(x,') is strictly isotone. Now let u be the vector with

the components uy = 1 and uj = —-sgn ijk(x) for i # k, and let

§ > 0 be such that x + tu € D, for t € [0,8). Then, for t & (0,6),

0

t = Hx+tu~x[Lﬁ and therefore
t[fk(x+tu)—fk(x)] > 0.

. . o + .
Dividing by t2 > 0 and passing to the limit as t » 0 , we obtain,
n

(2.2.2) fi(x)u = jzl ajfk(x)uj > 0.

But kak(x) > 0 since akk(x,") is strictly isotone and hence (2.2.2)

is equivalent to
o, £ )| > ) |9, x)].
k'k j#Kk ik

To conclude this section, we investigate the relationship
between {l~-diagonally dominant functions and M~functions. The
functions to be considered will be assumed to be defined on a set
of the form

n
(2.2.3) D= 1 Iis
i=1
where each Ei is an interval of the form (&is%m} or [@iﬁ%n)w
In the first case, Oy = = is permitted; otherwise, o ig real.

We set Ri = {t g R:t » O}.




Theorem 2.2.7 Let F:D =R" ~ R" be a continuocus, off-diagonally

antitone function on a set D of the form (2.2.3). The following
three statements are then equivalent, and in either case F is
©an M-function.
a) F 1is a diagonally isotone, strictly diagonally dominant
function on D.
b) For each x in D, F(xtte) is strictly isotone as a function
of t & Ri.

. _ c o S
c) For any x # v in D, (Xk yk)(LkX fky) 0 whenever

]Xk‘—ykt = ”X—YHOO'

Proof: By Corollary 2.2.4, a) and c) are equivalent, and
moreover, c¢) implies that ¥ is a P-function. Since F 1is off-
diagonally antitone, F is an M-function by Theorem 1.2.5, and
thus, to conclude the proof, it suffices to show that b) and c)

are equivalent.

If F satisfies b), and for some x # vy in D we have
- = e >
lxk yk] = y“m, then X, # Vi If Ve T X then b) together
with the off-diagonal antitonicity of ¥ dimplies that

. _ < ) . . ,
ka < fk(X+(yk xk)e) fky Similarly, if x, > ¥, e obtain that

k
fky < fk(y+(xk«yk)e) < ka. In either case, (kayk)(ka~fky) > 0

and ¢) is satisfied. On the other hand, if F satisfies ¢) and

s> t 20, thep 8 -~ ¢ = H(x+se}m(x+te)ﬁm for any x £ D. Hence,

(Smt)[fk(x+se)ufk(x+te}] >0
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for each k € N and therefore F(x+se) > F(x+te).
If F dis not necessarily strictly diagonally dominant, we

have the following result.

Theorem 2.2.8 Let F:D =R™ > R" be off-diagonally antitone on a

set D of the form (2.2.3), and suppose that for any x € D,

F(x+te) is an isotone function for t on Ri. Assume further

that
JF) =1{j ¢ N:fj(x+te) is strictly isotone
in t on Ri for any x € D}
is not empty, and define = (N,A) by
D= L0,9) € NX Nt # 3, 0 Gre) = £ Goveed)
is strictly antitone in t on Ri for any x € D}.

If for any i ¢ J(F) there is a path in © from i to some

i € J(F), then F is {)~diagonally dominant, and hence, an M-function

on D.

Proof. We prove first that F is diagonally dominant on D.

et x # vy in D be given, and suppose that f x = £ For

Kk ke

A

i
’X ”x“y”m there is nothing to prove; thus, assume that

kgyk!

[kaykj = HX“?“we Then X, # Yy s and without loss of generality, we

XjMyjlﬁ

may take X > Vi If (k,3) € A but Ekayk‘ mtﬁxmyg

jee]

_ S B m Sy - . .
then X =Yy Xj Vs and X, "V 2 X 7Yy for i # Since
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ukj(y,-) is strictly antitone and F(y+te) isotone,
< - <
£y & £ (yhx -y de) < fx,

which is a contradiction. Hence, XY = xj—yj whenever (k,j) € A
and therefore F 1is diagonally dominant on D.
To show that F 1is {i~diagonally dominant on D, we only need
to prove that for k € J(¥), fk is strictly diagonally dominant
with respect to the kth variable. Let x # y in D be given,
and assume that ka = fky with ka—yk| = ”X‘Y”m. If we let

Xy > Vies it follows that

< - <

since k € J(F) and F is off-diagonally antitone. A contradiction
is also reached if we take x, < y. ; hence, Ix -y [ < ”X“Y” and
k k k 'k o
F is therefore {I~diagonally dominant on D.
Finally, it will follow from Theorem 1.2.5 and Corollary 2.2.5
that F dis an M~function if F 1is shown to be diagonally isotone
on D. To do this, let x € D and k € N be given, and suppose that

s > t with x + tek and x + sek in D. Since F is off-diagonally

antitone and F(y+%e) is isotone int > 0 for any v € D, we have
£ Gobe) € £ Gebre“H(smt)e) € £ (s,

which is the desired result.
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For D = Rn, this last result is a special case of a theorem
of Rheinboldt [l969b]. His proof, however, was direct and did not

use the concept of {i-diagonal dominance.

2.3 Convergence Theorems

In this section we will see how the nonlinear generalizations
of diagonal dominance allow us to extend the following classical
result: If A e L(R™) is a strictly or irreducibly diagonally

. . . n .
dominant matrix, then for every b in R, Ax = b has a unique

solution x%; and for any XO in Rn, the Jacobi and Gauss—Seidel
sequences converge to Xx¥.

The following convergence proofs are somewhat long, but the
ideas behind them are rather simple. Specifically, we will define
an iteration function H for the Jacobi and Gauss—Seidel sequences,
which will allow us to represent these implicit iterative methods

o e . k-+1 k . .

as explicit iterative schemes x = Hx , k = 0,1,... . The iteration

function H will then be shown to satisfy the hypotheses of the next

result which is esséntially due to Diaz and Metcalf [1968].

Lemma 2.3.1 Let H:D L map the closed set D into itself,

0 0

and suppose that H has a fixed point x* in DO. If for some m 2 1,

(2.3.1) Na"x-1"y || < |x~y

i& whenever x,vy € D, x # v,
then x* iz the only fixed point of H in D and for any XQ € DO§

0°
+
the sequence xk L ka converges to x%.
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Proof. Assume for the moment that m = 1. Then (2.3.1)
implies that x* is the only fixed point of H in DO, and that
Ek = ka—x*u is a decreasing sequence of nonnegative numbers and

hence convergent. Thus {xk} is bounded, and if {x 1 ois any

k,
convergent subsequence such that lim x T = y* # x*, then
1t
lim € =|]Hy*—x*“ = “Hy*—Hx*“ < “y*—x*i = lim €
irtoo ki+l l irteo ki’

which contradicts the fact that {ek} is convergent. Therefore,

k,
lim x © = x%, and consequently, lim x< = x%. Tf m > 1, then (2.3.1)
itoo Kketoo
implies that H" and H have the same number of fixed points. More~

. . . +

over, the previous argument applied to " implies that yk L Hmyk
converges to x* for any yO € DO. Setting yO successively equal
to XO,...,Hm_lxo, we obtain the desired result.

The hypothesis that H has a fixed point cannot be completely
removed as shown by the one-dimensional example h(x) = Qn(l+ex);
but as noted by many authors, it can be replaced by the boundedness

of DO.

Lemma 2.3.2 Let H:D_ < R™ > R" map the compact set D into itself,

0 0

and assume that for some m > 1, H satisfies (2.3.1). Then H has

a unique fixed point x*%* in D and for any XO £ D, the sequence

0’ 0
+ :
xk - ka converges to x¥,
Proof. Assume first that wm = 1, and define g:DO‘% Rl by
g(x) = HHwan= Since DO is compact and g 1s continuous on Dog
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there is a x* € DO such that g(x%*) < g(x) for each x € DO. If

Hx* # x%, (2.3.1) implies that
[ u2xck—ak || < ||Hxr-x*]),

that is, g(Hx*) < g(x*) contradicting the definition of x*. Hence,
x* 1s a fixed point of H. If m > 1, then the previous érgument
yields that H" has a fixed point =x*. However, (2.3.1) implies tha
the fixed points of H and H  are the same, and thus, Hx%* = x%,

The rest of the proof follows from Lemma 2.3.1.

We now prove that under suitable assumptions, the Jacobi and
Gauss—-Seidel sequences (2.1.1)-(2.1.4) are well-defined and are given

by an iteration function which satisfies (2.3.1).

Theorem 2.3.3 Let F:DO < R" > rR" be {i~-diagonally dominant on the

rectangle DO’ and suppose that for each x in DO and i € N, the

one~dimensional equation
fo(xs..0,%, t,x, veesX = 0
( ] 3 3 1 ] 3 s 1’ $ )

. , \ % \ %
has a (necessarily unique) solution ti with (Xl""’xi~l’ti’xi+l"'

in DO. Then the Jacobi and Gauss-Seidel sequences (2.1.1)-(2.1.4)

with wk =W eE (0,1], k=0,1,..., are well-defined for any xo € DOe

p . . . - . . It
Moreover, for either method there is an iteration function H:DO < R

such that

a) The method is equivalent with xk+i = ka, k=0,1,...,

b) H(Dy) = Dy,

t

+ R
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c) ”Hx-—Hy“oo g ”x—-y”Oo for every x,y in DO’ and

-8 =4
n +lX _ Hn +ly"

d) ||u W < |x=y|l, for every x # y in D, where

2 denotes the number of elements in J(F).

Proof. We will first present the proof for the Gauss-Seidel
method.

Let x ¢ D, be given, and define the iteration function

0

H:DO = R > R® of the Gauss-Seidel method as follows: By assumption

there is ti —- which by Theorem 2.2.2 is unique -- such that

* =
fl(tl’XZ""’Xn) 0

T
o = - ®
and <ti’x2""’xn) € DO. Set hl(x) (1 w)xl + wtl
. T
is convex, (hl(x)’XZ""’Xn) £ DO' Assume that hj(x)

, and note that

since DO
for j = 1,...,i-1 have been defined such that (hl(x),...,hi_l(x),

X ,...,xn) € DO' Once again, there is a unique ti such that

fi<hl(x)""’hi“l(x>’ t?,xi+l,...,x Y = 0,

and we set hi(x) = (l—w)xi + wt%. In this way, we have defined

H:D. « R" > R" such that H(DO)!: DO’ and that for any xO € DO, the

0
, . . . . kt+1 k
Gauss~Seidel method is well-defined and equivalent with x = Hx .

To show that H satisfies c¢) and d), we first prove that for

every x # v in DO and i ¢ N, either

i

(2.3.2) fhi(x)whi{y)] < ey

oo ?

or
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b, G-, )| = lx=yll, and,

]

(2.3.3) b G-b | = b GO-h, ] i G,5) e A, 5> g,

b, G)-hy (] = gy [ 4E (1,9) € A, 1 < g,

The proof is by induction. Set % = (tl*(x),xz,...,xn)T where

fl(g) = 0, and similarly for ¥. Since
. A faY
(2.3.4) [hy GI=hy () | & (L=ed Jxgmyy |+ wlxy -y, |

21 = §l implies that lhl(x)—hl(y)| < “x-—y”Oo and (2.3.2) applies.

If X, # ¥, then x # ¥, and, since £ () = £,(5) and F s
A A A A
Q~-diagonally dominant, either le—yl' < “x~~y“oo <”x—y"w and (2.3.4)
implies that (2.3.2) occurs; or |Q1-§i| = HQ’QHM = !xj—yjl for j > 1,
and the second part of (2.3.3) holds. Since HQ-?“w = !Xjﬂyjl g Hx—y"m,
(2.3.4) yields that Ihl(x)-hl(y)l £ “x-—y"oo as desired.
Assume now that (2.3.2) and (2.3.3) hold for i = 1,...,k-1,

and set R = (h, (x) h (), 5 (x),x X )T where f (Q) = 0

1 R TSN ) * "k TR+17T T n k i

and similarly for 9. If Qk = Qk’ the result follows from

(2.3.5) b, G)-by ) | < (Gw) [ -y |+ wfx, -5 |,

A~ A A A A A
and if X, # Vi then x # y. Since fk(x) = fk(y) and F is

24 A AT
(r-diagonally dominant, either 1kayk| < HwaUm < “wa“w and (2.3.5)
. . . g‘“\ A f/\f‘\ AN
implies that (2.3.2) holds, or Ekayki = LxMyHm)m Exjwng for any
(ky3) ¢ A, If k < j the third part of (2.3.3) takes place, while if

k > j, the second part holds. In either case, {ka?kz < ﬂxMyHm, and
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(2.3.5) yields |h (x)~h ()] < [x=yl,.
Note that (2.3.2) and (2.3.3) together imply that
HH(X)—H(y)[[oo < ”x—yﬂm, and thus, we only need to verify that d)

k~1

holds. For the proof we will use the notation h?(x) = hi(H (x))

where k > 1 and £ € N; it will also be important to note that

(2.3.2) applies whenever i £ J(F). Assume for the moment that

1

2 =1, and let x # y in D, be given. If 2 M (x) = Hn_l(y),

0
then ”Hn(x)~Hn(y)|]oo < ”x—ynm; otherwise Hn"l(x) # Hn_l(y). Let
i ¢ N be given; we prove that ]h?(x)~h?(y)| < Hx—y"w. If
!h?(x)—h?(y)] < “Hn_l(x)-—Hnnl(y){[oo there is nothing to prove;

otherwise i ¢ J(F) and there is a path
(2’3'6) (l’ll),(il,lz),""(lr_l’ir)’

with ir = § ¢ J(F) and r < n-1. Hence,

b} (0 -hl () |

I} )-nf ] if i >4,
1

1

or

it

n-1 n=-1 P e .
]hi (x)whi (y)l if 1 < i

1 n
|8} ) -0} () | ) .

1
Repeat the procedure until [h?(x)—h?(y)} < Hx«y”m, or

Eh?(x)mh?(y)] = [h? (x)-h? (y)} for some k with 1 € n-r € k € n.
T T
Since ir = i & J(F),

1 , , .
}hﬁ{x)whi{y}l < HH‘ (w)-H {y}ﬁm < thy“ma

Hence, lh?(x)mh?(y)i < Hx»ynw for each 1 ¢ N, and thus,




1™ G- [, < ey e

If 1 < £ € n, and Hn—ﬁ(x) = Hn‘z(y), there is nothing to
prove; otherwise, Hn—Z(X) # Hn_z(y), and the proof proceeds as
before by noting that each i ¢ J(F) can be joined to an ir e J(F)
by a path (2.3.6) with r < n-{.

The proof for the Jacobi method is very similar, but now full
use is made of the assumption that D0 is a rectangle. The distinc-
tion occurs in the definition of the iteration function H for the
Jacobi method. The first component function of H is defined by

= (1- %
hl(x) (1 w)xl + wt¥ where

fl(ti’XZ""’Xn) = 0

and (ti,xz,...,xn)T £ DO. Assume that hj(x) for j = 1,...,i-1
. T
have been defined such that (Xl’°"’xj—l’h (x),x 410 .,xn) € DO
for j = 1,...,i-1. If we set hi(x) = (l—w)xi + wti where
fi(xl"°°’Xi—l’tz’xi+l"'°’xn) = (
d ( t¥® X )T eD then
And AXqsee Xy o biaX g ea®y 0’
(Xl"'"Xi—l’hi(x)’xi+l’°'"Xn)T £ DO since DO is convex, and,

T

since D, is a rectangle, (hl(x),.,,,hi(x),x "Xn> e D

0 i+1*°” 0°

In this way the iteration function for the Jacobi method is defined,
and it satisfies b). The rest of the proof proceeds along steps
similar to those for the Gauss-Seidel sequence: This completes the

prootf.
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1f F:R" > R" is linear and irreducibly diagonally dominant,
Marik and Ptak [1960] have proved a result related to d) of
Theorem 2.3.3 in the sense that their theorem can be used to
prove that for the iteration matrix H of the Jacobi method,

“Hn—2+l" < 1. A consequence of the next example is that

[oe}

n - £ is the largest number k such that ”Hk"oo = 1.

Example 2.3.4 Consider the matrix of order n > 1:

1 =0,
-0 0 S A O 1
- -

where there are £ alphas. Then J(A) = %, and the iteration matrix

for the Jacobi method is given by

0 'l <:>

O
o

]
<

04
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By direct computation, NHkNoo =1 for 0 ¢ k ¢ n-%, and

”H . ‘al < 1. Note that if ¢ = 0, A 1is not irreducibly

diagonally dominant but {~diagonally dominant with respect to the
associated network QA.

With the help of the previous theorem, we can now prove our

first convergence result.

Corollary 2.3.5 Assume that F:D, « R” + R satisfies the hypotheses

0

of Theorem 2.3.3 on the closed rectangle DO. If either DO is

bounded or Fx = 0 has a solution in D then Fx = 0 has a

OS

. . 0 .
unique solution x* in DO; and for any x € D the Jacobi and

09

Gauss-Seidel sequences (2.1.1)-(2.1.4) with ®w, = w € (0,1], k = 0,1,...

k

are well-defined and converge to x¥*.

Proof. We only carry out the proof for the Jacobi method; the
proof for the Gauss-Seidel method is similar.

Suppose first that DO is bounded. By Theorem 2.3.3, the

Jacobi method has a well-defined iteration function H:DO < Rp > Rp

which satisfies (2.3.1) withm=n - £ + 1. Since DO is compact,

Lemma 2.3.2 implies that H has a fixed point x% in DO° But

1
fi(xl,,e,,xi_lﬁ(l - &)Xi

-+

1
E~hi(x), xi+l,ae.,xn)

for each 1 € N, and therefore, Fx#® = (., The uniqueness of x%*
follows from Theovem 2.2.2 while the convevgence of the Jacobi

iterates to x%* is a consequence of Lemma 2.3.2 and Theorem 2.3.3.
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If Fx = 0 is assumed to have a solution in D then this solu-

0!
tion is unique by Theorem 2.2.2, and the result now follows from
Lemma 2.3.1 and Theorem 2.3.3.

An important case of Corollary 2.3.5 occurs if F:R" + RY is

{i~diagonally dominant on all of R%. In this case the assumption

that the one-dimensional equation
fi(xl""’xi~l’t’xi+l"'°’Xn) = 0

. . n , .
has a solution t? for each 1 € N and x € R is essentially

"diagonal surjectivity'. We make this precise.

Definition 2.3.6 The mapping F:R” + R" is dia onally surjective
g

‘):R; -+ Rl is surjective. Here,

if for each x € R® and k € N, akk(x,

as usual, akk(x,t) = fk(x+tek).

In connection with Corollary 2.3.5 note that the next example
shows that if F:R" + R" is a diagonally surjective, {-~diagonally
dominant function on Rn, then Fx = 0 does not necessarily have a

solution.

Example 2.3.7 Define F:R2 - R2 by
~ -
Xy Ry F g(xl)
F(xlgxz) = .
e + g(xz)
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where g(t) = arctan t — 7/2. By Theorem 2.2.7, F 1is a strictly

0 does not have a

diagonally dominant M-function. However, Fx
solution, for otherwise, there would be an x = (Xl’X2>T such that
F(t,t) € 0 = F(Xl’XZ) and, since F is inverse isotone, t X5

t < X, for every t € Rl. This is clearly impossible.

In contrast with this example and Corollary 2.3.5, the next
result shows, in particular, that if F:R" » R" is i-diagonally
dominant on all of R and Fx = 0 has a solution x%, then the

Jacobi and Gauss-Seidel iterates are well-defined and converge to

. . . n
x% provided F is continuous on R,

Theorem 2.3.8 Let F:D & R" > R” be continuous on the set D, and

assume that Fx 0 has a solution x* in D, and that for some

m

r> 0, D, = {x anﬂx—x*"oo < rle D, If F is Q-diagonally

0

, . . . 0
dominant on D then x¥% dis unique in DO’ and for any x in

03

DO the Jacobi and Gauss-Seidel sequences (2.1.1)-(2.1.4) with

wy = we (O,l], k =0,1,..., are well-defined and converge to x%*.

Proof. The result will follow from Theorem 2.3.4 if we prove

that for each x dn D and i € N, the equation

0
ficxl"""Xi~l’t’xi+l’°"’xn) = (
has a unique solution t% with {x.,...,x £F,x S ¢ )T €D,
i R G T s B B T 0

To show this, let x € DO and 1 € N be given, and define w:Rl + pt by




Y(t) = fi(xl,...,xi_l,t,xi+l,...,xn).

Clearly, Uy is defined for lt—xil € r, and by Theorem 2.2.3,

Y dis either strictly isotone or strictly antitone. In either case,
Y(t) = 0 has at most one solution. We now proceed to show that such
a solution exists if Y is strictly isotone; for the strictly
antitone case the proof is analogous. Since x € DO’ ”x—x*uOo = p<€r,
and if P = 0 there is nothing to prove:; hence assume that p > 0 and

+ + T
let t, = xi + 0. If v= (Xl,...,xi_l,ti,x ,Xn) , then

IERERER

|t;—x§] = “v—x*"w, and by Theorem 2.2.3,

PY(t,) > 0,

+ +
ek - %
(ti xi)[fiv fiX ] i

or w(tz) > 0. Similarly, if t; = x* = p, then Y(t;) < 0. The
-+
continuity of ¢ yields a ti € [ti,ti] with w(ti) = (0, and
T
i F-x®| < i oo # P .
since 1ti xil r, it follows that (xl, ’Xi-l’t{’xi+l’ ,xn) € DO

This completes the proof.

If F:R" > R" is linear and {i~diagonally dominant on R" with

respect to the associated network £ then F 1is necessarily

'k
surjective; and in the particular case where W = 1, the previous
theorem is due to Walter [1967]. If F is not defined on all

of Rn, then, in general, it is very difficult to find a set DO
which satisfies the hypotheses of the last two results; however,

if F s off-diagonally antitone and for some u,v, Fu £ 0 £ Fv,

then D, can be taken to be the set {u,v) = {z € R%:u € 2z < v},
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Theorem 2.3.9 Let F:De R" + R” be continuous, off-diagonally

antitone, and {J-diagonally dominant on the set D. If there are
u,v in D such that ¢u,v) « D with Fu < 0 € Fv, then Fx = 0

has a solution x* in (u,v) which is unique in D; and for any

xo in (u,v}, the Jacobi and Gauss-Seidel sequences (2.lﬂ1)—(2.l.4)
with w, = w € (O,l] for k = 0,1,..., are well-defined and converge

k

to x*.

Proof. By Corollary 2.3.5 we only need to verify that for
each x € {u,v), Y(t) = fi(xl""’Xi—l’t’xi+l""?xn) = 0 has a
unique solution ti € [ui,vi]. Note that Y 1is defined on

[ui,vi]. Moreover, since F dis off-diagonally antitone,

fi(vl’""vi—l’t’vi+l""’vn) < P(t) € fi(ul,...,ui_l,t,ui+l,...,un),

and hence, w(ui) <0< w(vi). The continuity of Y on [ui,vi] then

implies that there is a t? € [ui,vi] with W(ti) = 0,

Under the hypotheses of the previous theorem, F 1is necessarily
diagonally isotone and hence Theorem 1.2.10 and Corollary 2.2.5 imply
that F dis an M-function. In fact, Theorem 2.3.9 can be shown to
hold if ¥ 1is a continuous M-function on the set D. 1In this form
this last theorem is implicit in the work of Rheinboldt El969b].

Theorem 2.3.9 can be used, for example, to obtain results about
non-negative solutions of two-point boundary value problems. Con-

sider
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(2.3.7) u"(t) = g(t,u(t),u'(t)) for a < t < b; ula) = qa, ulb) = B,

where g is continuously differentiable on

3

(2.3.8) S = {(t,u,u') e R7tag t b, 0 ¢uc<n -o<u' < +o},

and
(2.3.9) gu(t,u,u‘) > 0, |gu,(t,u,u‘)| < M < 4o, for all (t,u,u') e S.

Then, as shown, for instance, by Bailey, Shampine, and Waltman [1968]
it is known that (2.3.7)-(2.3.9) has a unique, twice-continuously
differentiable, non-negative solution provided that o,B > 0, and
g(t,0,0) £ 0 for t € [a,b]. To obtain a numerical solution of this

problem, we introduce the partition sj =a+ jh, 7= 0,...,n+1,

_ b-a
h = n+l

mation of (2.3.7)

, of [a,b], and use the standard finite difference approxi-

(2.3.10) Ax + P(x) - ¢ =0
where
- -
2 -1
4 o, 4 O
(2.3.11) A = o , ¢ = (0,0,...,0,B)
-1 2 -1
O I

and QS:Rm + R" is defined by
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X -—X
2 e i e T
(2.3.12) ¢i(x) = h g(si,xi, o Y, i =1,...,n.

We want to find a solution of (2.3.10) in R: ={x ¢ R%ix > 0}.

Theorem 2.3.10 Consider the mapping Fx = Ax + ¢(x) - c defined by

(2.3.10)-(2.3.12) where g is continuously differentiable on the

set S of (2.3.8) and satisfies (2.3.9). If o,8 > 0, g(t,0,0) = O

for t ¢ [a,b], and h = bié‘a (O,ﬁ), then the equation (2.3.10) has

. . , n 0 n
a unique nonnegative solution x% ¢ R+, and for any x & R

" the

Jacobi and Gauss—Seidel iterates (2.1.1)-(2.1.4) with
w S we (0,1], k = 0,1,..., are well-defined and converge to x%.
Moreover, x* ¢ <O,t0e> where ty satisfies

t.~0

2, "o
0° 2h

2 2
tg t hgls,,t > a, ty + higls ,to,—55) > B.

0 0

Proof. Clearly F 1is off-diagonally antitone, and Theorem 2.2.8
implies that F is {i~diagonally dominant on Ri with respect to the
associated network QF. Moreover, F(0) = ¢(0) - ¢ € 0, and

F(te) 2 0 for t » t Hence, the result follows directly from

0
Theorem 2.3.9.

The use of the approximation (2.3.10) is of course standard,
but it is usually assumed that (2.3.9) holds for all
(t,u,u') ¢ [a,b] x Rl X Rl, Discrete analogues of mildly mnonlinear

elliptic boundary value problems of the form Au = g(t,u) with

2(t,0) = 0 and g(t,u) » 0 for u » 0, have been considered, for
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example, by Greenspan and Parter [1965], and these authors obtain
an existence result similar to ours. However, they do not treat
either the (nonlinear) Jacobi or Gauss-Seidel method.
In the case where (2.3.9) holds for all (t,u,u') € [a,b] X Rl X R1
and hence when F is defined on all of Rn, the techniques used in

this paper allow us to prove also some results about overrelaxation.

For this we introduce the following concept.

Definition 2.3.11 The mapping F:R" + R” is uniformly diagonally

dominant if there is a q € [O,l) such that for every x # y and k £ N,

ka = fky implies that 'xk—yk| < q”x-y“m-

Clearly, every uniformly diagonally dominant function is strictly
diagonally dominant on Rn, but the following example shows that the

converse does not hold.

Example 2.3.12 Let FiR? + R2 be the function of Example 2.1.7 and

assume that there is a q € [O,l) such that Definition 2.3.10 is
i1
k"’ k
have then ]sin<%! < ql%| and for k + +« it follows that q > 1 which

satisfied. Since, for each k > 1, fl(sin ) = fl(0,0), we

is a contradiction. Hence, F 1is not uniformly diagonally dominant.

Uniformly diagonally dominant functions usually appear in the
literature under the disguise of a uniformity condition on the Jacobian.

T

he next result illustrates this point.
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Theorem 2.3.13 Let F:R" + R be G-differentiable on Rn, and

. n .
assume that for every x in R, F'(x) has non-zero diagonal

entries. If for each x € R” and k € N, there is a constant
g € [0,1) such that

LoleaE ol < qld £ o,

34k i’k kk

then F 1is uniformly diagonally dominant.

Proof. Assume that fk(x) = fk(y) for x # v and some index
k € N. Then ¥(t) = fk(x+t(y—x)) is differentiable on [0,1],

W{0) = PY(1), and by Rolle's theorem, there is a t,. € (0,1) such

0
that

n
Pty = jzl 9,8 Gebe g (y=30) (v =x,) = 0.

The result now follows from this equation.

If, in addition to the hypotheses of the previous theorem,
we assume that there is an m > O such that for each x € R” and
k € N, lakfk(x)l 2 m, then F 1is diagonally surjective. The next

result shows, in particular, that F must then be surjective.

Theorem 2.3.14 Let F:R™ = R” be diagonally surjective and uniformly

. i N ; . . . 0 0
diagonally dominant. Then ¥ is surjective and for any x € R
the Jacobi and Gauss—Seidel iterates (2.1.1)-(2.1.4) with

w € [w,0], K = 0,1,..., and
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- 2
O<_ug<w<l+q s
are well-defined and converge to the unique solution x¥* of Fx = 0.

Moreover, there is a q € [0,1) such that

k+1
”x -X

(2.3.13) ® < (!l—wkl+wkq)ka—x*ﬂm < Bka~x*"w :

for each k 2 0 where B = max {1j@(l—q),a(l+q)—l} < 1.

Proof. We will only carry out the proof for the Jacobi
method; for the Gauss-Seidel method it proceeds in a similar
fashion.

To prove the surjectivity of F and hence the existence of
x*, let b ¢ R" be given, and consider the iterates {yk} of the
Jacobi method for E(x) = F(x) - b with mk = 1 and arbitrary yO € R".
The diagonal surjectivity of F together with Theorem 2.2.2 implies

that the iterates {yk} are well-defined. Now let k > 1, and note

that, since

¢ (gEL k-1 k k-1 ely gk Kk kHl k ky
ERLATEERARE PSS ER SR NS NS RS A RARRERETS LR IED AT LR A

for each 1 & N, the uniform diagonal dominance of F implies that

k+1 k 4 ko k-1 )
!yi vyil < qHy -y ”m for some q ¢ [O,l), Hence,
[yk+lwyk[Oo < qﬂykmyk‘luw, and by the triangle inequality, it follows

‘ k .
that {v '} ds a Cauchy sequence. Consequently, {yk} converges to

A
gome x* where Fy* = Fx%* = b = 0.
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The uniqueness of x* follows from Theorem 2.2.2, and thus,

to complete the proof it suffices to prove (2.3.13). For this,

note that x?+l = (l—w)xi + wt?(xk) where
k k k k k
* = = *
fi(xl""’xi—l’ti’(x ),xi+l,...,xn) 0 fi(X )

for each 1 ¢ N. Hence, |t§(xk)—x§| £ q“xk—x*“w, and therefore,

R LI M T B R RS e

for each i e N, which in turn implies (2.3.13).

To apply this theorem to functions arising as discrete analogues

of (2.3.7), we will need the following result of Ostrowski [1956].

Lemma 2.3.15 Let H ¢ L(Rn) be nonnegative. Then for each € > 0

there exists a diagonal and invertible matrix D > O such that
“D—lﬂD“oo € p(H) + ¢ (= spectral radius of H + €).
Consider now the two-point boundary value problem
(2.3.14) u"(t) = g(t,u(t)) for a < t < b; u(a) = q, ub) =B
where g 1is continuously differentiable and
(2.3.15) gu{ﬁsu) > 0 for all (t,u) ¢ [a,b] x le

The discrete analog corresponding to (2.3.10)-(2.3.12) now assumes
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the simpler form
(2.3.16) Fx = Ax + ¢(x) - ¢

where A € L(Rn) and ¢ € R are again given by (2.3.11) and

q;:Rn + R™ has components

b, (x) = hzg(si,xi)

. . b-a
where Sj =a+ jh, j=0,...,ntl, h =m.

Theorem 2.3.16 Fix h > 0. Under the stated assumptions concerning

the mapping Fx = Ax + ¢(x) - ¢, Fx = 0 has a unique solution x¥
and for any xo e R" the Jacobi and Gauss-Seidel iterates (2.1.1)~

(2.1.4) with w_€ [w,0], k = 0,1,..., and

- 2
O<wgwcs 1+cos(m/n+l)

are well-defined and converge to x¥*.

Proof. Let H be the Jacobi iteration matrix for the matrix

A; that is, H has the elements h,, = - *El', i#3j, h,, =0,
ij aj; ii

i,y =1,...,n. Then H > 0, and it is well-known (see Varga [1962])
that p(H) = cos (n/ntl). If € > 0 is chosen so that cos (m/ntl) + € < 1
and w < 2/ (l+et+cos(n/n+1l)), then Lemma 2.3.15 yields a diagonal,
invertible matrix D > 0 such that ﬁleHDuw £ cos {(w/otl) + ¢ < 1.
Hence, AD is uniformly diagonally dominant with g = cos (7/ntl) + €.

A

~ A
Define F:R" » R" by F = ¥F*D and note that Theorem 2.3.13 ensures F
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to be uniformly diagonally dominant with q = cos (w/ntl) + €.
Since, in addition, F is diagonally surjective, Theorem 2.3.1l4
guarantees that Fx = 0 has a solution y* and that the Jacobi
or Gauss-Seidel iterates {yk} for % converge to y* for any
set of relaxation parameters wk € Eg,a], k=0,1,... . But D
is a diagonal matrix, and @ = FeD. Thus, Fx* = 0 where

X% = D_ly*; and if {xk} are the Jacobi or Gauss-Seidel iterates

1.k

for F, then < =D vy~ for each k » 0. Consequently, {xk} also

converges to x* as long as € [@,5] for k = 0,1,... .

“k
The last two convergence results for discrete analogues of
two-point boundary value problems were only meant to illustrate
the convergence theorems and thus were not stated in their most
general form. In particular, Theorem 2.3.16 could have been
stated for a function of the form Ax + ¢(x) - ¢ = 0 where
A e L(Rn) is any matrix with nonnegative diagonal elements and
such that for some diagonal and invertible D > 0, AD dis strictly
diagonally dominant, ¢:Rn + R" is a continuous, diagonal, and
isotone function, and ¢ 1is a vector in R™. In this case,
cos (m/n+l) should be replaced by the spectral radius of the

absolute value of the Jacobi iteration matrix for A.




CHAPTER I1I

Global Convergence of Newton-Gauss-Seidel Methods

3.1 Introduction and Preliminaries

In the previous chapter, the convergence of the nonlinear
Jacobi- and Gauss-Seidel iterations was considered and in
particular global convergence was proved provided that F:R" > R
is continuous and {i-diagonally dominant on R” and Fx = O has a
solution x*. If F:R" + R” is continuously differentiable, then
there are many iterative methods which make use of the derivative
of F to find the solution =x*. The best known method of this

kind is Newton's method:

xk+l = xk - F'(xk)’lka, k=0,1,...

The use of Newton's method, however, implies that at the k-th

stage the linear system

(3.1.1) F'(x)z = F' (x5 - FxE

. . + .
has to be solved for =z in order to obtain xk l, and this fact

leads to iterative methods of the form

(3.1.2) L Pk(xk)"lka, K =0,1,...,

i it

where Pk(x) is Yeasily"' dnvertible. In particular, the use of a
relaxation parameter Wy and m > 1 steps of the SOR method to

solve for =z din (3.1.1) leads to the Newton-Gauss—Seidel methods:

68
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-1 m -1 -1
(3.1.3) P (x) =wk[I+...+Hk(x) ][D(x)—ka(,x)]

where

1]

(3.1.4)  H ) [D(x)—ka(x)]_l[(l—wk)D(x)+wkU(x)]

and

i

(3.1.5) F'(x) D(x) - L(x) - U(x)

is a splitting of the Jacobian matrix F'(x) into diégonal, strictly
lower and strictly upper triangular parts; For a full discussion of
these and related methods, see Ortega and Rheiﬁboldt [l970b].

In this chapter we will be interested in global convergence
theorems for iterative methods of the form (3.1.2). One of the first
such theorems was given by Baluev [1952] for Newton's method, while
Greenspan and Parter [1965] gave a global convergence theorem for
the special case of (3.1.2)-(3.1.5) in which m = wk =1 and F
arises as a discrete analogue of certain nonlinear boundary value
problems. Ortega and Rheinboldt [1970a] presented a more abstract
formulation (see Corollary 3.2.4 for a precise statement) but not
sufficiently general to permit either wk Z 1 or m # 1. In Section
3.2, we give a still more general result which contains the others,
but allows an arbitrary sequence mk 2 1 and wk in [w,l], w > 0,
under the basic assumption that F dis a convex mapping. In the

remainder of this section, we collect various definitions and lemmas

dealing specifically with the case when F dis linear.
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Definition 3.1.1 Let G, P, Q be mappings from R" to L(R™). The

ordered pair (P,Q) is a splitting of G if P(x) is invertible for

n

each x in R" and Gx = Px - Qx for all x in R . Moreover, if

P(x)’l > 0 for all x in R", then the splitting is

a) regular, if Q(x) > 0 for all x in Rn,

b) R-weak regular, if Q(X)P(X)_l > 0 for all x din Rn,

¢) L-weak regular, if P(x)th(x) > 0 for all x in Rn,
and

d) weak regular, if both R- and L-weak regular.

In the important special case in which G is constant, that
is, G(x) is a fixed matrix for all x in Rn, we will assume that
P and Q are also constant. In this case regular splittings were
first considered by Varga [1962] while weak regular splittings were
introduced by Ortega and Rheinboldt [1967] who also gave examples to
show that weak regular splittings need not be regular. Similar
examples show that R- or L-weak regular splittings need not be
weak regular.

If we are trying to find the solution of Ax = b, where A is
invertible, then a splitting (P,Q) of A dinduces the iteration
xk+l = xk - P_l(Axk—b) which, as is well-known, converges to A‘lb
for all XO £ R” if, and only if, Q(QPml) < 1 where { denotes the

1y 4

spectral radius. Necessary and sufficient conditions for p(QP
have been obtained by several authors. In particular, Varga [ 1962]

showed that if (P,Q) is a regular splitting of A and Aml > 0, then
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p(QP—l) < 1; later, Ortega and Rheinboldt [1967] showed that this
remains true for weak regular splittings and that the converse
also holds. Their proof holds verbatim for L-weak regular splittings

while a trivial modification gives the following result.

Lemma 3.1.2 Let (P,Q) be an R-weak regular splitting of A in

L(R"). Then A'_1 > 0 if, and only if, p(QP—l) < 1.

Proof. Assume A~l 2 0, and let H = QP~1° Then H > 0, and

since

=
i
e
]
i
"Pl
N
)
=]
~

(I-H) (I+...+H") =

. -1
we have, since A © 2 0,

AT < a7 m = 1,2,

]

0 < P I[1+. . .+H"]
But P contains at least one non-zero element in each row,

and therefore, I + ... + H" is bounded for all m. Since H > a,

the series converges, and consequently, p(H) < 1. Conversely, if

1

p(H) < 1, then (I~H)'1 %0, and A~ = P“l(I—H)"l 2 0.

The next two lemmas are also of interest in connection with

Lemma 3.1.2. The first lemma is essentially due to Price [1968].

Lemma 3.1.3 Let A € L(R). Then At s o if, and only if, there is

1

an R-weak regular splitting (P,Q) of A such that p(QPW o< 1.
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Proof. If A1 5 O, then P = A, Q = 0, is a splitting of A

with the desired properties.

Conversely, if (P,Q) is an R-weak regular splitting of A

Ly

with p(QP_l) < 1, then Lemma 3.1.2 shows that A 0.

The next result is closely connected to work of Bramble and

Hubbard [1964].

Lemma 3.1.4 Let A € L(Rn). Then A—l 2 0 and has an R-weak regular
splitting if, and only if, there is an S > 0 such that AS is an

M-matrix.

1

Proof. Assume that A ~ 3> 0, and that (P,Q) is an R-weak regular

I - QP"l, and if we let § = P'l, we

only need to show that AS = I - QP—l is an M-matrix. Let H = QP’l > 0.

splitting of A. Then AP—l

Then I - H has non-positive off-diagonal elements, and by Lemma 3.1.2,

p(H) < 1. Hence, (I—H)"l > 0, and therefore AS = I — H is an M-matrix.

Conversely, if for some S > 0, AS is an M-matrix, then S 1is

L

nonsingular and A 0. Let D = diag (AS) and B = D — AS. Then

(D,B) is a regular splitting of the M-matrix AS, and by Lemma 3.1.2,

1 l,BSbl) is an R-weak

p(BD ) < 1. Hence, Aﬂl 2> 0 and, clearly, (DS~
regular splitting of A.
We now return to the connection between the splittings of A

and the convergence of the iteration
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(3.1.6) . Pk”chxk~b), K=0,1,... .

Theorem 3.1.5 Let A € L(Rn) be invertible, and (Pk’Qk) a sequence

of R-weak regular splittings of A. Then each of the following
statements implies the next statement.

a) The iterates (3.1.6) converge to x* = Aﬁlb for any XO

, n
in R .

b) A1 s 0.

¢) The iterates (3.1.6) converge for any xo in R".

Proof. Without loss of generality we may assume that b = 0.
By (3.1.6),

k
(3.1.7) axET o qear Ak = (1 Rj)AxO

3=0

where R, = I -~ AP T = QAPTl 2 0
h] j i3

Now assume that a) holds:; then it suffices to show that AxO > 0

implies xo 2 0 for any XO. But (3.1.7) shows that Axk 2 0 for all

k, and by (3.1.6) that xk+l < xk < xo for all k. Since a) guaran-

tees that lim Xk = (0, it follows that XO > 0.

Next assume that b) holds. We first prove convergence for all

k+ k
XO such that AXO 2> 0. 1In this case, as before, Axk > 0, and x 1 £ x
- | k41 ) I

for all k. Since A oy 0, xk > x5 5 0 for all k, so {x } converges.
Now note that since A is invertible, the diterates (3.1.6) converge

k
for arbitrary XO if, and only if, ( I R,)x converges for each x ¢ rR™.

=0 3"
But we have already shown convergence if Ax = x 2 0; therefore




74

el converges or eac asls vector e an ence oY a X
(3.1.6) £ h basi + d h f 11

in R". This completes the proof.

N

Note that (3.1.6) implies that Pk(X
therefore ¢) implies a) if {Pk} is bounded. 1In particular, this
occurs if we have only one splitting. In general, however, none

of the implications of Theorem 3.1.5 can be reversed without addi-

tional hypotheses as the following examples show.

Example 3.1.6 1) Consider the one-dimensional example in which

A=1,b=0andP_= (+2)” for k = 0,1,... . Then linm x* =
%—xo # 0 if XO # 0. Hence, b) does not imply a) in general. This

1

example also illustrates that if AT 0, and XO # x*, then the

iterates (3.1.6) need not converge to the solution of Ax = b, but
as Theorem 3.1.5 shows, these iterates must converge.

ii) Consider now the one~dimensional example where A = =1,

0

b =0, and P for k = 0,1,... . Then lim xk = 2x  #

xO if xo # 0. Hence, c¢) does not always implies b).

1
kT (k+1) (k+3)

The next lemma is essentially a rewording of the conclusion
a) implies b) in Theorem 3.1.5, but now A 1is not assumed to be

invertible.

Lemma 3.1.7 Let (P ) be a sequence of R-weak vegular splittings
k
If  Lim I R, =0, then
rqeo 4=0 I

k’Qk

; n , . _ =1
of A in L{(R7), and set Rk = Qkpk .
~1

. -1
A exists, and A 7 » 0.
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Proof. It suffices to show that ATx %> 0 implies x 2 0.

Since

T, ~1 T
x“AP,” = x" (I-R,
; ( 3)’

ATX > 0 implies that XTRj < xT for j = 1,2,... . But R.j > 0, and

Hence, x = 0.

The next result will play an important role in the next section;

it also contains a partial converse of the previous lemma.

Lemma 3.1.8 Assume (P ) is an R-weak regular splitting of

0%
Ak 5 L(Rn), and set Rk = QkP;l for k = 0,1,... . If there is a

nonsingular C » 0 in L(Rn) such that CAk > I for all k > 0, then

a) A;l 50 for k = 0,1,...,

k
b) 1 R, is convergent {and hence bounded) as k - +®, and
3=0
mo_q k-1
c) 8§ = 2 P I R, converges as m 7 +%.,
mog=1 ¢ =07
Proof.  For fixed k, we first show that A;l > 0. Since

-1
> I I - = P foi 11 > i
CAk % L, and Rk Ak x or all k » 0, it follows that

S
(O]
l—_&
O
p—_
o
AN
o
AN
]
[
e
P
J—
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X is nonsingular, (3.1.9) implies that [I—Ri]u >0

Now, since P
where u = CTe > 0, and by a well-known theorem of Fan [1958], we

conclude that Q(RE) = Q(Rk) <1, and Lemma 3.1.2 then implies that
-1

Ak 2 0.

k
To prove b) and c¢), let Tk = I Rj’ and note that (3.1.9)
j=0 ’
implies that
m
(3.1.10) s_ < Ckzl(Tk“l_Tk) = CT, - CT_ < CT,,

for all m > 1. Since Sm < 8§ 1 for all m > 1, it follows that

m+

Sm is convergent and therefore, that c¢) holds. From (3.1.9) we
obtain that 0 < CTm < CTm—l' Hence, CTm converges as m > +®, and
since C 1is nonsingular, so does Tm'

It is very important to note that in parts b) and c¢) of Lemma
3.1.8 the condition CAk 2 1 cannot be replaced by 0 < A;l € C for

all k > 0, as the following example shows.

Example 3.1.9 Let

1 =u6k

A‘k:
_a6k+l 1

where Sk =1 if k is even, and 6k =0 4if k dis odd. If o > 0,

then 1 a]

-1
o ij

< <
0 <&y
for each k » 0, and if Pk = T and Qk =P ~Akg then QPR%Qk) is a

W

regular splitting of for each k » 0. However,
g P g
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k 0 §
k+1 k
HR:J:OL 3
3=0 0 S
k
and therefore, the sequence Il R, diverges whenever a > 1. It is
3=0

also clear that Sm diverges as m + 4+ if o > 1.

3.2 Global Convergence Theorems

We begin with our main convergence result.

Theorem 3.2.1 Let F:R" > R" be a continuously differentiable and

convex function. Suppose that (Pk,Qk) is a sequence of R-weak
regular splittings of F' with {Pk} uniformly bounded on compact
sets and such that for each {yk} in R",

k-1

i

k-
j=0

o0 k—- j
(3.2.1) P. (y ) R, (y7")
kzl k J

converges, where Rj(x) = Qj(x)Pj(x)—l. Assume furthermore that
either
a) F dis surjective, and
k .
(3.2.2) IR, ()
3=0 7
. ky . n
is bounded for each {y } in R, or
b) Fx = 0 has a solution, and (3.2.2) converges to zero for
each {yk} in R™.
Then Fx = 0 hag one and only one solution x%, and for any

0 n
x ¢ R, the sequence
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(3.2.3) x = x - Pk(x Y TFx, k=0,1,...,
converges to x¥*.

Proof. We first show that F is inverse isotone on R".
To do this, note that {Pk(x)} is bounded for each x ¢ Rn, and since
(3.2.1) converges when yk = x for all k > 0, we have
k
1im ITR,(x) =0
K~k §=0
for each x € R°. Furthermore, (Pk(x),Qk(x)) is a sequence of R-weak
regular splittings of F'(x), and thus, Lemma 3.1.7 implies that
F'(x)“l 2 0 for each x € Rn, and hence, F is inverse isotone on
R” by Theorem 1.4.7. But by either a) or b), Fx = 0 has a solution

x*, and since F 1is injective by Theorem 1.3.1, Fx = 0 has only the

solution =x*.

To prove the convergence of (3.2.3) to x%*, we begin by showing
that this sequence is bounded below. Since F 1is convex on Rn,

Lemma 1.4.6 yields

k+1

Fx 5 F'(xk)(xk+lmxk

) + ka = [I—F'(xk)Pk(xk)—l]ka,
-1
and since Rk(x) =1 - F'(X)Pk(x) ~ 2 0, it follows that

k .
(3.2.4) ka+1 b Rk(xk)ka > [ 1 RE(XJ)JFXOM
j=0 4

Assume now that F is surjective, and that (3.2.2) is bounded for

the sequence defined by (3.2.3). Then there is a v € R” such that



ka+l > v for all k » 0, and by the surjectivity of ¥, there is a

+
u e R" such that ka 1 > Fu. The inverse isotonicity of F now

yields that xk+l > u, and {xk} is therefore bounded below. Now,

instead of a), assume that b) holds. By the classical inverse func-
tion theorem, F is a local homeomorphism, and thus there are two
open balls Bl and BZ’ centered at x* and zero respectively such

that F is a homeomorphism from B, onto B Choose v > 0 such

1 2°
that v ¢ B2' Then by (3.2.4) and the convergence of (3.2.2) to zero,
there is a ko > 0 such that if k > ko,
k+1 k j 0
< s [ n R, DIz’ » -v.
j=0 7

But -v ¢ BZ’ and hence, there is a u ¢ Bl such that Fu = —~v. Conse-
quently, ka+l 2 Fu for k 2 ko, and the inverse isotonicity of F

again implies that {xk} is bounded below.
Next, we show that {xk} is also bounded above, and that it has

only one limit point. By (3.2.3) and (3.2.4)

k-1
+ B .
£ K < Pk(xk) 1 I R.(xj)lFxols
. J
j=0
and therefore,
o . k-1 .
3.2.5) P LM T e TR, 63 |0,
= k j=0 J

for any m,p » 1. The series on the right is convergent by assumption,
and thus, for fixed m 2> 1, (3.2.5) shows that {Xk} is bounded above.
Hence, {xk} is bounded and has limit points. If now u is any limit

point of {Xk}, then there is a subsequence of {xk} converging to u,
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and (3.2.5) implies that
o k-1
u - x" < z (Pk(xk)"l I
k=m j=0

Rj(xj))lFxol.
If v 4dis any other limit point of {xk}, the above inequality shows
that u - v < 0. By reversing the roles of u and v, we can simi~-
larly obtain v - u < 0, and hence, u = v. Since {xk} hasAonly one
limit point, {xk} converges to, say, 2%. But {Pk(xk)} is bounded,
and it follows from —ka = Pk(xk)(xk+l—xk) that FX = 0. The injec~—
tivity of F now implies that % = x* which is the desired result.

The proof of the previous theorem uses ideas found in the papers
by Greenspan and Parter [1965] and Ortega and Rheinboldt [1970a].
Note also that the proof shows that assumptions a) and b) can be
replaced by any assumptions which guarantee that Fx = 0 has a solu-—
tion x*, and that the sequence defined by (3.2.3) is bounded below.
Finally, note that if b) holds, then the use of Lemma 3.1.7 yields
that F'(X)—l > 0 for all x 1in Rn, and hence that F is inverse
isotone without using the uniform boundedness of {Pk}. Therefore, if
b) holds, (3.2.3) converges even if {Pk} is not uniformly bounded on
compact sets, but not necessarily to x* as shown by i) of Example
3.1.6.

We now derive several important corollaries of Theorem 3.2.1,

which illustrate how the different hypotheses of the theorem are

satisfied. We begin with a result of Baluev [1952].
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Corollary 3.2.2 Let F:R" > R" be continuously differentiable and

convex on R, and suppose that F'(x)-1 > 0 for all x in R".

If Fx = 0 has a solution x%*, then this solution is unique, and for

0 n
any x € R, the sequence

(3.2.6) o e

il

0,1,...

converges to X%,

t

s = v E
Proof. Define Pk(x) F'(x) and Qk 0, so that Rk(x) 0.

Then, trivially, Theorem 3.2.1, using assumption b), applies.

Note that, as is well-known, the iterates (3.2.6) exhibit
monotone convergence under the conditions of Corollary 3.2.2 at least

for k » 1, although this is not a direct comnsequence of Theorem 3.2.1.

Also note that the hypothesis that Fx = 0 has a solution is not implied

by the remaining assumptions as the one-dimensional example f(x) = e”

shows.
In the remaining results, the existence of a solution to Fx = 0

will be a consequence of the following theorem of Hadamard [1906].

Lemma 3.2.3 Let F:R" » R be continucusly differentiable, and assume

) n

there is a constant M such that HF‘(X) <M for all x in R .

Then F is a homeomorphism of R" onto R".

For a more accessible proof of the above result, see Ortega and

Rheinboldt [1970b].
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The next theorem illustrates how Hadamard's result can be

used in conjunction with Theorem 3.2.1.

Corollary 3.2.4 (Ortega and Rheinboldt [1970a]) Let F:R" -+ R"

be continuously differentiable and convex, and assume there is a

regular splitting (P,Q) of F' such that

0<PE)T < Cq

0 € Qx) < ¢

for all x in Rn, where pP(C) < 1 with C = COCl. Then for any xo
in Rn, the iterates
+ ey
xk L. Xk - P(xk) lka, k=0,1l,00.,

converge to the unique solution x* of Fx = 0.

Proof. By assumption, (P,Q) is an R-weak regular splitting of

F', and since

F'(x) € P(x) = F'(x) +Q(x) € F'(x) + Cl’

the continuity of F' vyields that P is bounded on compact sets.
In order to show that (3.2.1) converges for each {yk} in R, note

that 0 € R(x) = Q(X)P(x)ml £ C.C & where p(e) = pn(€) < 1. Then,

1% =
k 4

0 < T Ry <
3=0

ek%i



which shows that (3.2.2) converges to zero. Moreover,
m k~1 . m
} ey I R(y) < ) ok < co[I—EJ L
k=1 j=0 k=1
for any m » 1, and since (3.2.1) is a series of nonnegative terms,
it converges. We conclude the proof by showing that F 1is surjective.

This follows from Lemma 3.2.3 since F'(x) = [I-R(x)]P(x), and thus

0 < F'(x) "t = P(x)"l[I—R(x)]’l < co[1~6]”l.

The previous result could have been proven under either
assumption a) or b) of Theorem 3.2.1 since F was surjective and
(3.2.2) converged to zero. We now present a case in which (3.2.2)

does not necessarily converge to zero, but it is bounded.

Theorem 3.2.5 Let F:R' = R" be a continuously differentiable and

convex mapping, and suppose that (Pk,Qk) is a sequence of R-weak
regular splittings of F' with {Pk} uniformly bounded on compact

sets. Assume there is an A in L(Rn) such that

a) A‘-l > 0,
and
b)Y F'(x) > A,
for all x in R". Then Fx = 0 has one and only one solution x%,

- . S0 L
and for any x in R, the sequence
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xk+l = xk - Pk(xk)anxk, k=0,1,...,

converges to x¥,

Proof. Sinmce for each fixed x € R', (P, (x), Q (x)) is an
R-weak regular splitting of F'(x), and CF'(x) > I where C = Aml 2 0,
Lemma 3.1.8 applies, and shows that F'(x)—l > 0 for all 2 e R
Therefore, by a) and b), we also obtain that ‘F'(x)—l < A—l. Hence,
F'(x)-—l is uniformly bounded on Rp, and Lemma 3.2.3 implies that F
is surjective. The result will follow from Theorem 3.2.1 if we show
that for any sequence {yk} in R", the series (3.2.1) converges, and
the sequence (3.2.2) is bounded. To do this, note that for any

{yk} in R, (Pk(yk),Qk(yk)) is an R-weak regular splitting of

Ak = F'(yk), and that Lemma 3.1.8 applies.

Note that the above theorem would still hold if instead of a)
and b), we would have assumed the existence of a nonsingular C > 0
such that CF'(x) > I for all x in R™. A similar remark can be
made in the following results when conditions of the form a) and b)

appear, but note that the next example shows that a) and b) of

Theorem 3.2.5 cannot be replaced by the assumption that
0P ) e

PN ;'
for some B in L{(R ).
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Example 3.2.6 Define F:R2 > R2 by

Xy + g(xl—nx2
Fx = F(Xl’XZ) =
%, + g(xz—xl)
where g:Rl > Rl is a continuously differentiable, isotone and convex

mapping. Then F is continuously differentiable, convex, and

0 < F'(xl,xz)—l < B =

Hence, by Lemma 3.2.3, F is a homeomorphism from R" onto Rn, and
consequently F(Xl’x2> = 0 has a unique solution x* = (x¥, XE)T- Consider
now the (one-step) Newton-—Jacobi method, that is, P(x) = diag F'(x);
we will show that it is possible to choose g in such a way that the
Newton-Jacobi method does not converge to x¥.

Choose g:Rl *-Rl continuously differentiable, isotone, convex

and such that

g(~1) = -1, g'(-1) = 0, g(1) = g"'(1).

+
For example, if g(s) = E%a (~§§l y -1, 1 <a< 2, for s » -1 and
g(s) = -1 otherwise, then g satisfies the above conditions.

1 m
Tf now xo = (O;l)T it is easy to verify that x = (1,0) and

2k T . , s
x = (0,1} for k » 0, and thus, the Newton-Jacobl sequence will not

converge to x¥,




Theorem 3.2.5 can in turn be used to give a global convergence
result for the Newton-Gauss-Seidel method (3.1.2)-(3.1.5). We shall
need the following lemma whose proof is due to Ortega and Rheinboldt

[1967] for weak regular splittings.

Lemma 3.2.7 Let (B,C) be an R-weak regular splitting of A in L(Rn),

and assume that A"l > 0. Set H = CB“l 2 0, and

R = B I[I+...+H"]

for some m 2 1., Then R is invertible, and (R_l,R-l—A) is an R-weak

regular splitting of A.

Proof. Lemma 3.1.2 yields that p(H) < 1, and hence, I - H and
I - " are invertible. Therefore, since [I+...+H"J[I-H] = T - Hm+l,
R 1is invertible. Next, (R—l—A)R = 1 - AR, so (R—l,R_l—A) is an R-weak

regular splitting of A if AR < I. Now
AR = [1-HIBR = 1 - B <1,

and the proof is complete.

Corollary 3.2.8 Let F:R" > R" be continuously differentiable and

n , . .
convex on R , and assume that F'(x) is an M-natrix for each x in

n . . . n

R". Assume further that there is an M-matrix A in L{R") such that
=t . o 0 . It

F'(x) » A for all x din R . Then, for any =x in R, any sequence
{mk} of positive integers, and any sequence {wk} in [yw.1], o > O,

the Newton-Gauss-Seidel iterates (3.1.2)-(3.1.5) are well-defined
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and converge to the unique solution of Fx = 0.

Proof. Set

- 1 - L

B, (x) = S [DG)-w, Lx)], € (x) = o [ (1=, )DG)+w, UG T,

and note that for each x € Rn, and k 2 0, (Bk(x),Ck(x)) is a weak
A -
regular splitting of F'(x). Let Hk(x) = Ck(x)Bk(x) 1 and
-1 A mk~1

Rk(x) = Bk(x) [I+...+Hk(x) ]. Since Lemma 3.2.6 applies,

. . . RPN _ -1 A ~ o
Rk(x) is invertible, and if Pk(x) = Rk(x) , then (Pk(x),Pk(x) F'(x))
is an R-weak regular splitting of F'(x) for each x € R" and k > 0.
1

= Pk(x)ml where Pml is defined by (3.1.3), the Newton-

A —
Since Pk(x) K

Gauss—Seidel iterates are well-defined. To conclude the proof, we
need to show that {Pk} is uniformly bounded on compact sets; the

rest follows from Theorem 3.2.5.

Since F'(x) = Bk(x)[I~Hk(X)], (3.1.3) implies that Pk(x) =

M1
F'(x)[I—Hk(x) 17", and therefore,
3.2.7) | el < [Fr ool eI < [Fre oo™ s @l

Moreover, ]Bk(x)! < %[D(x)+L(x)], and by continuity, all three
factors on the far right of (3.2.7) are bounded on compact sets.
Thus, {Pk} is uniformly bounded on compact sets.

In a completely analogous manner, we can state a global
convergence rvesult for the general Newton~Jacobi method which is

obtained by applying m steps of the Jacobi method to solve for =z

k
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in (3.1.1). This can also be done for the general Newton-Peaceman-
Rachford iteration (see Ortega and Rheinboldt [1970b]), but in this
case the acceleration parameters {rk} must be chosen sufficiently
large so as to have R-weak regular splittings; otherwise divergence
may occur as shown by Caspar [1968]. Finally, it is important to
note that Corollary 3.2.7 contains, as a special case, the following

result:

Corollary 3.2.9 Let A in L(Rn) be an M-matrix, and o:R" » R" a

diagonal, isotone, convex and continuously differentiable mapping.
Then for any b in Rn, Ax + ®(x) = b has a unique solution x%,
and for any XO in R", any sequence {mk} of positive integers,
and any sequence {wk} in [w,1], w > 0, the Newton-Gauss~-Seidel

iterates (3.1.2)-(3.1.5) with Fx = Ax + ®(x) - b are well-defined

and converge to x¥%,

Proof. 1If Fx = Ax + &(x) - b, then F is continuously
differentiable and convex on R'. Since & is diagonal and isotone,
®' (x) is a diagonal, nonnegative matrix for each x € Rn, and hence,
F'(x) = A4+ 0 (x) » A for all x ¢ R™. That A + o' (x) is an M-matrix
for each x ¢ R” follows from many considerations (see, e.g., Varga
[1962]); in particular, note that A + ¢'(x) has a weak regular
splitting (P,Q) where P 1is the diagonal part of A, and that
Aul{A+®*(X)} = 1 4+ Aﬁléi(x) > I, so that Lemma 3.1.8 vyields the

desired result.



if m E W = 1, then the previous result was proved by

Greenspan and Parter [1965].
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