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FOREWORD

The work reported in this technical note has been supported

partially by Contract No. NAS$-2473 and partially by the Georgia

;y;
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Tech. School. of Electrical Engineering. 	 The results are related to

r^
and motivated. by the subject contract and ^a1so by the graduate
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,k','' course sequence EE 641, 642., 643 - Computer Simulation, taught by
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i

Dr . Hammond
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The author wishes to thank Dr. C. 0. Alford for several
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discussions of certain topics covered by .the technical note,. and

^`'`',^• for reading a portion of the text.
.,:,
,`^ ^ '

-

,;
^:,`

^^ r.,

;;,+^,
^,.	 .;
J,.,;

,.:^	 y'
^^#

•^^

t S.
{	 ,

i t ^̀ ^4.

%iii r.:!
F. .^^11

-

Vic,'

:'
fir'

^'.^	 s

+^ ,

'(,,;+.

ja

'yj..
.'.':	 ;,

,M1.

,..,f,.

y	 4

u 9,

'i<..

N
^;

t	 ,

•.I.ai



iV

,_

''.!,,,^i,	 TABLE OF CONTENTS
. ^,^ `^_,.,..

^^^ ^	 Page
1

FOREWORD	 i ^a

ABSTRACT v

, i; I. xNTRODUCTION 1

^	 '
"°

2. METHODS FOR OBTAINING DIFFERENCE EQUATIONS
TO APPROXIMATE DIFFERENTIAL EQUATIC)NS. 2

`^̂̂ 2-1	 One Step Methods. 4	
K

•.^^ ^

^^ 2-2	 Multistep Methods 6
dr'	

^

.	 ^ ^ ^,	 «^,. 2-3	 A General Difference Formula (^J

t^

<<

^	 ^	 ^^ 3, MEASURES OF	 UALITY OF APPROXIMATION	 .Q 14
+^,

^ '^^N 4. POINTWISE ERROR. 18^.`^ 'i
^^.•

^.^':^^

^^^'
. ^a ta

r, 5. EVALUATION OF APPROXIMATIONS WITH TEST PROBLEMS 23

'^ n̂,^ 5-1	 Stability	 . 24#4
;,' ,	

:,

.^:^ 5-2	 Accuracy. 2:5,,
^^-

'' ^^=;3'"" 5-2,1	 Root Shift 27
^'.^ ^ t;;

r	 .^^^^, 5 -2, 2	 Forced Error	 . 28
d= ^ ' ^^ '̂

,:..^

^.

^.^,^`^
e

^'^.^^ 6. EXAMPLES 30

`` ^^	 `^`^ !a 6-1	 General Example 30,,^,
..^ ^"^-

^ '̀^ t ^^^` 5=2	 Digit'. a1 Filter.	 , 33

^ ^^ 6-3	 Stiff E nationsq 38

REFERENCES 40

,^
a, .

^.

-^^^

k

V
^^

i^	 1

+^^t

^.
t^	

t^w,^^'ti

ST
^̂ ^^

^;^^`y
,:^^ 5

., yF

^,

V
a.

'^	 g j

,^ ^
.	 ._

^
r



—^

This technical note. reviews and consolidates material. pertaining
ti

to one°step and multistep numerical methods with the objective of

^'^
;^^

developing ^^ tractable method for evaluating the. error resulting from
:rr

• ^j *' the use of c:^ifference equations to approximate ordinary differential

^°

^;
,: ;

equations.

•,',^ A tractable approximate relation is developed between the error

`:,,^ due to finite sampling rates and parameters describing numerical
^:	 ,I

^'̂
'

methods.	 The results are valid for small values of the product of

••^ }" the sampling period, h, and natural frequencies, l^, of the analog
'^^

^t, system.

^.•-^ =̂' The approach used approximates the analog system by isolated•

^? b	 o	 e	 ndmodes and the dlgltal algorithm-for each mode.	 y its	 rd r, p, a,,.^

^,

`^^^
p^

certain constants C, Ao ,	 ., Ap .	 The results show that approxi-
S

:,^^ mating an analog system by a digital algorithm results in a shift,. ^^; ,

'^ ^^^ of .each. root and an error corresponding to each forcing function.
,..'

The root shift is _given by -Ch p^ p , while the error caused by each forcing.-.

.function,	 ye t , is given by -Chp ^ A.^. lcup ^•
0i	 i	 •

The results of the study are applied to a nontrivial numerical

analysis problem,. a digital filter problem and to an elucidation of
',

•	 ^	 '^ the problem of "stiff" equations..
^a
r
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DIFFER ^' CF ^Q,UATx^NS T8 A^pROXTD ORDINARY

ATPF +^ LN`I'IA'L EQU.^TTON'S

^, INTRODUCTION

The interest in digital simulation. using large scale computers and the

development of digital filtering techniques has led. in recent years to exten-

.•
^

sive use of digital. systems described by difference equations. as a means of
aY

,:`` either solv'^.ng diffe y^ential equations ar replacing analog systems described.

lay differential equations.:i,

^,'^	 ,^; The underlying mathematical problem of approximating the solution of a
•

•,, differential equation	 by the solution of a difference equation has received
;;

•M'^^ considerable attention over a numberof years in the area of numerical analysis

'^",^ and more recently	 for Linear equations, in the area of digital filter theory.
^^'	 ^;i

;h.^ Results in the former area are typified by the detailed text of Henrici [1] 	 '
,r:

^^-	 "' and the summary articles off' Benyc^n	 ^2] and ^iloi [3] .	 The ls,tter area is dis--
:^^	 .;

:' cussed, for example, in the. book by Gold and Rader { 1+].	 Refexence^s [l], [2],
.-}

^"^ and [4].have extensive bibliographies.s,-;	 .
^:

,,	 ,1

w^	 M Applications in general sa.r^ulation and digital . filters are not such as to
^^,

r'I	 ,	 :.'y

i tE

•'.^^
,

make possible a sa:ngle unique answer to the question of what.-difference equation
^,

^`^ to use in approximating a given differential equation. 	 .Thus, the: literature

1
contains a number of methods for obtaining difference equations which in some

sense approximate differential equations. 	 The plurality of methods leads to

the necessity of defining measures of the quality of approximation and e,lso to

•..^v an analysis problem in evaluating particular methods.,;

^
ì

The purpose of the present paper iS to present a new and. tractable method

..'':^ ^'or studying .the accuracy of stable difference equation approximations to the
t^

•^:^
t

:

'^T	 -^ -

^a
^''^

•^r. ^^ .,
a 4

'^,^



2

solution ©f differential equations. Background for the new method. is devel-

oiled through a tutmri.al summary giving; (1) a unified discussion of the.

common methods used in numerical analysis for approximating differential equa-

t;ions with difference equations and (2) a discussion of the important pars-

meters and central theorems necessary in evaluating the. approximations.

The work iaa intended to be useful in the design and analysis of digital

filters and digital simulations. For such. applications errors arise from two

sources, namely: (l) in approximating a differential equation by a difference

. [^

equation Ind (2)	 in solving the resulting difference equation. 	 This paper

. ^a
gives a detailed analysis of the former source o.f error but does not consider

``^? the latter.	 Thus	 the results of this paper give a complete answer for accuracy

:' if .errors (primarily due.. to round off) . in solving the required .difference equa-

'	 • f
E Lion are negla,gibl.e. 	 In general, errors due to round off and related sources^,.,

;^ must be determined through additional analysis...

'•^^^.	

••,

2,	 METIiODS .FOR OBTAIKIN^ ^IFFEREI^^E EQiJATIQNS T^
'^a

^;^}. ^^f APPROXIMATE DIFFERENTIAL EQUATIONS

^;

r ' k ^^' In this section some of the more conanon classes of methods for obtaining•
',^

^-•	 ,^	 ^; difference equations to approximate differential equations wz11 be developed
^,

.^
.i*a

using direct procedures for approximating continuous variables with discrete.

;-" variables.	 With this motivation, a much more g;;eneral class of difference equa-

I
Lions is then presented for analysis in later sections .of the paper.

Attention will be restricted to .the class of differential equations which

,, can be expressed as

r
•	 :^.•,

y(t) =	 f(y ^t)	 (1)R='

k^.
f'	 ^F

'^Y(Y;
i. ^4

L	 °.^

'. (•:^

•i'

a



a •,

^^

,.
Mr"

^ •F

`:i,^f
:^

s g.. ,,

^	 w:
;^,

.,
^:^

'a'.

^^i
^^,	 ^..

^;

;^^
;;	 ; ^:;

,: X(
^^
.^

.i4
`'^^`	 ^.

^.

P	 '^	 ^^

^,

(4)y(t)	 Ay(t) + Bu(t)

4:

^	 ^•.
^r

i

...:».

where y and f .are. vectors and E is suitably restricted. sa that a unique s^1u-

tion exists. Commonly assumed restrictions on f are. given, for example, by

Henra.ci. [1]. zf (^.} models a physical system any input is included im-

illicitly in f. This work is concerned with. obtaining difference equations

whose solutions in some sense approximate. the solution, y(t), of (1).

Equation (l) can be integrated to yield

T+t

	

y (T+t) - Y (T) = J^	 £[y (^r) , T ^ d^^ ,	 (2)
T

which carp be used. as a basis;; for obtaining many of the desired difference

equations. Let T and t be integer multiples of a basic step size h so that

T ; nh and t - kh. Using the notation. y(mh) =ym,(2) can be written as

(n+k) h

yn+k	 yn ^ .^nh
	 ^CY(T )^ T J dT
	

(3)

A difference equation approximating (1) results when any ore of several dis=

cretQ approximations are used for the right-hand side of (3).

In the special case of a linear equation. with constant coefficients, (1)

becomes

where the.. inputs, u(t), are now shown explicitly. The equation corresponding

to (3) for the. linear constant coefficient ca ge is

`	 (rrF^k) he,,	
yn+k _ yn = f'
	

[Ay (T) + B^t(T)) dT	 (5)
.	 ,1 nh

i

t	 ^'t
., M1

	 `.•t.^^ 1

	

i^5

^.^'i	 In this case, however, use can be made of the closed .form solution of (4) to
r .	 :^

;,	
obtain the equation

.,

'^

,^	 ^. ,
'^

6

,_,	 , ,	 ,^
..	 ..,	 .,	 „_..__ ^_._^.	 ^	 ^	 ^	 ^...,...	 ^W	 _.Aa__._. _.



^(n+k)h

yn^-k '^ ^k yn ^ ti^	 ^ ^ (n+k) h - T a ^u (T) dT
nh

where ^^^) is the transition matrix of (k). Note in tb) that for u(t) ^ 0

the equation

g3:ves y for t _ (n+k)h exactly £or any value of k. This fact makes (b) much

more accuxate than (5^ in most applications where (6) is valid. If u(t in

(6) is not zero, however, it is necessary in obtaining a difference equation.

from (6) to u.se a discrete approximation for the integral in the same manner as

.	 in the general.. case..

Conunon methods for obtaining a discrete approximation for the right-hand.

side of (3) are classified as one step methods and multistep methods. Direct

intuitive procedures resulting in subsets o£ these two classss wi11. be presented

below followed by a general formulation..

'	 2-1 One Step Methods

'^^	 For one step methods, k a,s set equal to one and (3) becomes
^;fi

,(n+1)h	
-t

n+1	 n J fCY(T) ^T^ d T 	 (^)Y	 Y
nh

The integrand can be expanded in a Taylor series about t - nh to obtain

^	 T-nh 2 ''
fCY(T) ^T^ ^ fn + (T - nh) fn +	 2	 fn + ....	 ($^

where

nh nh =and (f>	 dlf^y(t),t]
dti

t= nh

.^	 Introducing ($) into (7) then yields

' ^;

-^
.;

^.

	

	 ^`
^.. ^,•x

...,^-

(^)

(^)



^;̂f

Txuncet3.on of the. ^.n^'^.n3.te Nex^.es of (}) after p berms y^.elds 	 .

.	 ^-1,

n

^^ a class cif difference cqua^3.ons re^'erx^ed to as the ^aya.ox expans-.ion. a^.^oxathn^s

^' The s^ec^.al case off' ^ = ^. ^,s cc,lled Eider's method. 	 Note th^.t p ^-s the only

a^;
parcmeter ^^' ^1^.^.s method.

l	 _'.^

-; ^n ^arae^3.ca.l work., ^.^ is seldom d.es^.xable to generate der^.vata.ves of ^'
;;^
-.:
•^ because of th,e noise produc^.n^ nature off' the derva'^a.ve operat^.on. 	 Thus, *hc

^;	 ^	 ,

^r^^	 '^^
a^.^or^.thms of (l0) w^^h p > ^, have l^.mit ed u^ ^ .

. ^;o.
The class of ^unge ,^ut^a, formulas make u^tc of the fact ^^ia^ derivatives

^^	 =	 .,e^^ of ^' can. be approxma,^ed in terms off' F itself. 	 The- particular approximation
.	 G:•

^'' identifa,ed with this name is given by
4. .	 y^i

/.t

,̂ f (n^+-1 )h	 N
,.^	 ^^

r	
f^(y(T),r] dT	 ti h	 ^	 w ;̂  f^µi ^^li^	 (Zl)

M^ i.-0
.y

^	 ^^

Y,^I^i

s
x'g.=

where
^^:
^.:

^

r	
4.

^ ty;^:
. µonh	 ,	 µ i ^µo +aih,	 «i s1.; x - 1, 2,	 ... N

i-

^o	 yn	 ' ^i ^ ^o ^ h	 ^'	 aik f (µk'^k ) '	 a. - 1, ^,	 ... N.
k-0

As can be noted in (ll), the Runge -Kutta cla^^s of da,fference equations has the
y«

._
following parameters t	 N, N-^-^. values wi , N values of a^i and 2 (N^^-1) v'alues of

;:'	 '	 a ^ (3ik,	 These paxameters are evaluated, by expanding

.	 ,	 `
. aN

w	 ^

"^

,^
^^



F	
.:

W

4
F

I^

.;

r

V

(n^l^h	 ^^
r	 ^'^^^^},^^ dT and h	 ^^ w^ fCw^^^^^

^^^^^ ^n ^ayl^^x ser^.es and choos^.ng the psr€uneters so that the coefficients

^^f lir are equal for x = 1, 2, . , . , M. the tec.^ious expansion operation. is

f^isrussed, f nr example, ^y ^Ienrici [^.^ and. Ralston. (;^] ,

The results ^^' a st^^dy of Lunge-Kutta methods canne summarized as

Follows. ^ matching of coefficients ca,n be carried only ^,s far as Ni ^ N^-1.

^'xactcal Runge-Kutta methods employ N = 1, 2, 3, and sometimes 4. Iior any

value. of N, the matching of coefficients of hr will. fix most of the parameters

but at least one always remains fxee so than a class off' algorithms exists for

each val^^e of N. For example, far N = 1 there is one independent degree of

freedom and for N - 3 there rare two independent degree. of freedom.

'1'he Taylor series and Runge-Kutta methods are the. more important one

step methods, and attention is now given to multistep methods.

^;

	

^.}	 2-2 Mult^te^ Methods..
},;

	

^: ' ;	 Many of ^Ghe common. multistep methods can be developed From {3) ix ^Lhe
^*.

.

	

^^'' K	 foi.^.owing manner. 7.'he function f[y(t),t^ in (^) is approximated by an inter--
_..., ;

	

.	 polat:ng polynomial and the necessary integration. is then carried out to obtain
'F

a difference equation..

Given a function ^ t an intex olat.n of	 pree less.^	 p	 g p ynoma.al P(tj of de,,

than or equal to p can be found such that

^'(ti ^ - z(ti )	 ^: - 0, 1, .. , p ,,

F

This polynomial can be expressed in -Germs of backward differences. as1

	

,.	 , ..;
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f
	 1

t -t

^^	 p t	 ^	 ^ '^	
m	 (12)

m=0
.m.,:.;

where pmzn is the mth ba,ckwar d dif:f'erence of ^ (t) at t o given ^y

0o zn = zn

l0 zn -- zn - zn-1

(l3)

. ... j	
i	

^

0 zn -	 ^	 (-^-^	 Zn- i^.=p 	i

and	 f v^are the binomial coefficients given by

(u^ 1 (u 1 _ u(u^l)	 (u-v+l) ,	 (1^)
`	 J	 .o	 '	 v	 1.^	 v

w^^,,,,<',s,^
^;^t

	^^	 Vote that, as in the. case of (12)^u in the binomial coefficient does not

^.
have to be a natural number. It is also useful to observe in (13) that p^zn	^ '

,y*,

.i

depends exclusively on the set of discrete. values of z..gven by

r	 r

	

^.:;	 The polynomial p(t) can be introduced in (3) to approximate f[y(t),t]
.s

	{z	
Equation. (3) then becomes.

-
to+r T

	

^	 ( n+k) h p	 ,

	

'^ 3	
r

	

. ^	 ^'n+k	 yn _ .i	 ^ (-1)m	 h	 ^mf n+r. dT	 (,^..^)	
,

	

`°r	 nh	 m=0

	

.,:	 m. ;^^
;,̂>

,;•	 ,d

	

^	
_

^^ ^
:.	 __^..

^^.	 _..	 ^__^_..	 4^.^_.	 _ ..^_, ;^,.. ^	 ..:v	 ,._	 ^,^
__ . .



Note that since the left-hand side of (15) involves discrete values of y at the

times nh and (n+k)h, backward differences of f can reasonably be taken for any

time between nh and (n+k)h so that r can range between 0 and k. Since only

^tt

h^

'S

M.4

f w`

I 4r^^r ^^

rt

}

the binomial coefficients depend on T, (15) can be expressed as

y	
_ y _	 p	 m

n+k	 n h mF0 Ym,k,r Q fn+r	 (16)

where

(-1)m	 (n+k)h	 to+r-T
Ym,k,r =	 h	 I	 h	 dT	 (17)

nh
M

It can be shown that since 
v  f

n+r 
depends ex	 n+r	 n+r-m,

(16) can also be expressed as

P

yn+k yn = h E am,k,r, ,p fn+r-m	 (18)
m=p

Either (16) or (18) defines a general class of difference equations depending

on the parameters p, k, and r so that particular values of p, k, and r

result in fixed values of the y m,k, r and 
pm,k,r,p' 

The ym^k,r are given, ex-

plicitly by (17) and similar relations can be derived for the P
m,ksr^P

The general class of difference equations given by (18) has two major sub
t	 ',

divisions deteri'L ned by whether or not r is chosen equal to k so that values of

fn+k f[yn+k'tn+k] are required in the algorithm. If r k, (16), or (18) then
ti

M	 hasyn+k on the left-hand side and also on the right-hand side in fnk . Such

{
formulas are called implicit or closed formulas since in general they cannot be

solved directly for yn+k' 
If r k, the resulting formulas can be solved

'E	 directly and are called open or explicit formulas.

P
.a

WX



9

Closed formulas can be solved iteratively by the following procedure:
(C)	 (l)

(a) estimate yn+k for use in fn+k, 
(b) solve (16) or (18) for yn+k, (c) use

yn+k 
in fn+k to obtain Yn+k 

from (16) or (18), and (d) repeating the process.

r

Typically, the first estimation is accomplished with an open formula called a

predictor. The closed formula is then referred to as a corrector and the com-

plete calculation as a predictor corrector algorithm.

Examination of (18) shows that to compute ynak requires yn and values of

f  from i n+r to i = n+r-p. Since p is in general greater than r, values of

f prior to to are typically required. This causes a problem in starting multi-

step methods since (18) cannot be applied unless all required past values of f 

are given. The starting problem can be solved by computing the required values

with some type of one step method since these methods are self-starting.

2=3 A, General Difference Formula

A general. difference formula, which ;includes all of the formulas above as

special cases is given by

kk 
	 r	 « yn+i - h' F f h ' n ' yn-p' .... , Yn+k' f	 (l9 )

i=O

where k and p are fixed, and n = p, p+1 5 ....	 Equation (19) has parameters k,

P, the cxi and the function F.

For the common multistep algorithms F is given by

k
F - F Pi n+	 (20)i=0

so that (19) becomes

Sim

t-

.: nett



k
7 o!. y

	
=h

i=0	
n+^.

7

10

k

ir0 ^ i f nili
	

(21)

Note that (21) has parameters k, the cx i , and the p i . Table I gives the para-

meter values for a number of common open multistep methods. For such methods

Ok is always zero. Table 11 gives the parameters for common closed multistep

methods. Both tables give truncation error for the algorithms, a parameter

which will be defined and discussed below.

For one step methods, oi
o
 = -1, cal = 1 and all other cxk in (19) are

zero. For the Runge-Kutta algorithms, which are the most practical one step

methods, F is the function defined in (11). Thus, (19) reduces to

yn+l yn = h
N
E wif[p i ,' i]
i=0

(22)

where

wo = nh ; P
i	

µo + 0 i h , i = 1, 2 p ... , N

0i s 1

% yn , ^i = % + h
i-1

7	 Pik f (µk ,V .
k=0

Typical values for the parameters N, w i 6i , and 
Rik 

of the Runge-Kutta

algorithm are given in Table III.

The formulas preceeding (19) were derived so as to insure that their

solutions approximate that of (1) in some -sense. Equation (19), on the other

hand, is much more general and in order for it to have any utility in approxi-

mating the solutions of (1), restrictions on its parameters must be developed.

The next section discusses such restrictions through defining measures of

quality for the required approximations.

NOW

:
f

J	 4
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3. MEASURES OF QUALITY OF APPROXIMATION

Attention is given in this section to the problem of restricting the para-

meters of (19) in such a, way as to insure that its solution, yn, for n = p,

p+l^ ..., approximates in some sense the solution, y(t), of (1) at t nh

for the same values of n. To avoid confusion, in the remainder of the paper

the solution of (1) will be denoted as Y(t).

Two a, rp iori restrictions are placed on F, namely: (1) F is restricted

so that small changes in its parameters result in small changes in F, a con-

dition similar to t1,at required of f, and (2) F is restricted so that F{h,n,

yn_p, .... , yn+k' 01	 0.

Equation ( 19) is an algorithm for determining yn+l given Yn and other re-

q ^uired data. Thus much of the evaluation of (19) ca,n be based on a, considera-

t^.on of the typical. step in the iterativecalculation of yn To consider the

effect of a, single step in the calculation, yn and other required data, are

assumed to be exact at the beginning of the typical step and (19) is used to

'	 calculate yn+l . Tht^ quantity yn+l . Assuming the errors occurring in only

one step, is denoted  yn+l'

A, quantity of central importance in studying (19) is local truncation

error, Tn+l' defined by

k
r

T
n+l = y n+l Y[(n+1)h]	 (23)



Equat.ons (19) and (23) can be i.tsed to express 
Tn+k 

as

k

Tn+k ' hF(h, n,Y [ (n-p )h] , ... , Y[ (n+k,) h; f] } -- Z a!i Y[ (n+i )h]
j=0

15

(24)

where the subscript n+k is used because the general algorithm evaluates yn+k

using past data.

For a given algorithm.Tn
+k

 is conveniently computed by expanding

k	 z
F cxi Y(t) and hF[h,n,Y[(n-p)h], ..., Y[(n+k)h];f) in Taylor series about

i=0

a convenient point such as t = nh and subtracting the series term by term

to obtain

h2	 h3
T	 + h^ + h2 + h3 0 + ... 	 (25)n+k	 o	 l 2 ^a 6	 3

where the (hi depend on both F and Y(t). In any particular case the first p+l

functions	 i = 0, 1, 2, ..., p will be zero and the method is termed to be

of order.

It will be useful below to note that for many methods Tn+k can be ex-

pressed as

	

Tn+k - hp+10 (P Y) + 0(hp+2)	 (26)

where p is a point "near" (n+k-1)h and 0(hp+2 ) indicates a, group of terms,
F

which approach zero as h approaches zero at least as rapidly as hp+2.

The function O(u,y) is called the princple error function by Henrici

t	 [1] in discussions of one step methods For many such methods 	 (u,Y) for a

scalar problem equation is given by

ra

ii

. F

j



i

s+"

16

	

(P +l)	 p	 u

	

O(u,Y) = a p+l (u,Y) Y(u) a p (u,Y) Y(u)	 + a 2 (u^Y) Y(u)	 (27)

where p is the order of the method and the a  are in general functions of

u and Y which depended on the given problem equation. The principle error

functions for several Runge-Kutta Algorithms applied to scalar problem equations

are given in Table Tll.

For most multistep methods

(p+l)
O(u,Y) = C Y	 (u)	 (28)

Thus, for such methods O(u,Y) can be obtained by dividing the truncation

error (a,s given for several methods in Tables 1 and 11) by hp+l.

If a, method is of at least first order, it is said to be consistent.

Note that for a consistent method the local truncation error is at least

O(h2),

The cumulative effect of truncation error in all of the steps from n = p

to n = j is a total pointwise error, ej , at t jh. This quantity, given by

ej = yj 	Y(jh)	 (29)

differs from.T
j 

in that e j includes the total effect o f errors in many steps,

rather than in a single step.

Using pointwise error it is possible to define convergence of y  to Y(nh)

for a given method as follows,

If for any f (y,t )

max ) e I	 0 a,s h	 0,

	

n	 n	 r'



0

k

01 Yn-i = 0
j=O i

(31)
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then the method is convergent.

Using (19) to express Yn and (23) and (24) to express Y(nh), a difference

equation can be obtained for en from (29) as

k
T a e n+	 h[Ffh , n^ yn-p)"'-'Yn+k;t) - F(hn,Y[ ( n-p)h,...., Y[ ( n+k)h];:C)

J=O

+ T n+k 4	 (30)

Several types of stability can be discussed for algorithms in the

class (19). A type which is tractable for the general case can be termed

limiting stability in the sense that 
it is applied for either h or f assumed

to be identically zero. With this assumption, (19) becomes

iA

k
The solution to this difference equations has the form E Cy	 where the Ni

i=l i0i

are the roots of the polynomial

k	
iP7, 0?	 0

j=0
(32)

Thus, (31 ) is stable if and only if the Ri satisfy the conditions

JP j j	 (33)

with the additional requirement that if IPjI	 1 then Pi must be a simple

root. This condition is referred to as the root condition. The root condi-

tion, which guarantees limiting stability is necessary but not sufficient for

more general types of stability.



18

The following theorem which relates the root condition to convergence

of y. to Y(nh) can be proved: 3 If (19) is consistent, then it is convergent if

and only If the root condition is satisfied. Thus, If the root condition is

satisfied and (19) is consistent, some small enough h can always be found so

that yn is a good approximation to Y(nh). The stability and pointwise error of

(19) for fixed nonzero values of h will be investigated below but much more re-

strictive conditions will. have to be assumed.

4. POINTWISE ERROR

The purpose of this section is to derive a tractable differential equa-

tion for pointwise error starting from the difference equation (30) assuming

that the method is stable and that T n+k can be approximated by hP+'O(U,Y),

(see (26)). Consider the function F(hn,YC(n-p)h] , .... YC(n+k)h],- f3.

Using (29) 5 the true value Y(nh) can be expressed as

Y(nh) = yn - en'	 (34)

and F can then be expanded in a Taylor series about the points yn .  Assuming

that en is small it is reasonable to truncate the Taylor series to two terms

and the result is

F(h,n,Y[(n-p)h],	 .... Y[(n+k)h]; fj	 (35)

Ffhpn, Yn-p	 'yn+k;fl
bF	 en-p 

+	 +	
6y,,,	n+kbyi',-,^ n+

Using (35) in (30) then gives the difference equation

—'A
k

a.e	 hj0	 J n+J=
6F	

e	 +3yn	 n -p e
2,yr.+k	 n+ 1

+ T
n +kP	 (36)_p

3 See for example Isaacson and Keller [6]



1 t/

C

which applies for a. general F.

Th	 h	 °. ^	 4-1-1	 ^1 t'o	 of (36 ) b the solution ofe approac n appro^ima a "C5 e s u a n en	y

a differential equation is to find, to a given order of accuracy, a differen-

tia: equation which results in the difference equation (36) through a-pplica-

tion of the algorithm of the method being investigated. The procedure will be tarried

out for the two special cases of one-step and multistep methods.

For one-step methods (19) becomes

yn+l - yrI - 
hF{ h, n, yn ; f l	 (37)

ti.

:*F

I

` J

,A

yli ,x.

^t
^•t

r?

4 t

i

•'Y	
`.Xt

and the equation analogous to ( 36 ) for the specific F of (37) becomes

	

en+.l - en = h 
ayF 

en + hp (b(µ Y	 (38)
n

with nh -4 p :^4 (n+l)h,

Now by defining

en = en hyp ,	 (39)

(39) becomes

_	
dF	 i

en+l en h ^y en + 0 ( Î ' Y	 (40)

	

n	 J
But Euler's method applied to z g(z;t) yields the difference equation

zn+l z  = h g(zn,nh) . Thus, it can be asserted by choosing
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that the differential equation

e(t) 
= 6f 

e + 0 (µ,Y)	 (42)

has a solution e(t) which approximates en to within an error 0(h). In obtain-

ing (42) use is made of the fe,ct that F approximates f within errors which are

0(h). Equation (42) written in terms of e(t) rather e(t) becomes

e(t) _ by e(t) + hp O(µ,Y)	 (43)

and the errors are now 0(hP+l)

A. similar dine of reasoning is used to give the result for multistep

methods. For such methods

k
F - s a fn+	 (44)

j=0 J

and

aF _	 afn+J.

	^.	 aYn+j	 j aYn+j

Thus, the equation corresponding to (36) becomes

h	 k	 afn+.	
P	

1

E «jen+j	
h	 E 

Pj	 aY , j e
n+j + h 6(p,Y)	 (45)

j=0	 j=0	 n, 	 J

A.multistep algorithm using (44) can be expressed as

k

zn+l z
n = h E R zn+j	 (46)

	

i
	 j=0

1k^

	

f	
y

	

Eti	 .

I

Elk
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where
Equation (46) shows that within an errorz f(z^t) has been assumed,

which is O(h) the following equation holds

z 
n-Fl-zn	

k	

0h	
Z 
n 
= E P i z 

n+j=0
(47)

•If O(p,Y) is identified with z(t) in (47), it follows that within an error

which is 0(h), O(p,Y) can be expressed as

k
45 4) =	 F, 0	 O( ji + jjh^Y)-	 (48)j=0

Hence (49) can be written as

h	 —	 k	 of n+j
T ol	 h	 F,	 P	 e	 + O(p + jh,Y)	 (49)

J=O j
e n+j	 j=0 i	 ayn+j	

n+j

where en is defined as in (39). But the differential equation

e(t) = of 
_e(t) + O(p,Y)	 (50)y

results in the difference equation (49) using the multistep methods. Thus,

_when (50) is transformed to use e(t) instead of e(t), an equation identical

to (43) results.

If a method with pointwise error en has an order p, then e(nh) given by

(43) satisfies

e	 e(nh) + 0(hp+')	 (51)n

and the error in approximating en by e(nh) is of an order in h one higher

than the order of the method.



h,

L

i

Since (51) approximates pointwise error at all time, t, it is reasonable

to consider a variable y	 n^(t), defined so that y 	 = y which represents(nh)	 ,	 p

the solution of the approximating difference equation at all tames. In analogy

j	 to (32), Y(t), y (t), and e(t) are related by

Y (t ) = Y (t) - e(t) .	 (52)

It is useful to note that the function O(p,Y) of (43) can be expanded in

a, Taylor series about a point (t,y* ) to obtain

O(µ, Y )	 0(t 'y )	 e a + (p - t) DI + ...
	

(53)

If aY and a are bounded, as is usually the case, then for e at least -0(h)

and p t s h

O(µ ,Y) = O(t 3Y ) + 0(h)	 (54)

Thus, to the accuracy being used, (43) can be expressed as

	

e(t)	 aY e(t) + hp 0(t ,Y )	 (55)

Using (55), (52) and the equation resulting from differentiating both

sides of (52), it is a, simple matter to obtain the equation

y (t ) aY y* + Y(t) - aY Y(t) + hp O(t ^Y )	 (56)a a

" the solution of which closely approximates the solution of a, difference equa-

Lion obtained by the one step or multistep methods. 	 Fo;, the test problem to

be discussed in the next section 	 (56 ) gives a tractable expression for

1
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evaluating accuracy.

5. EVALUATION OF APPROXIMATIONS WITH TEST F-ROBLLMS

The discussion up to this point pertains to the general class of differ-
h	

ential equations given by (l). To proceed further with the development of a

tractable procedure for evaluating difference equation approximations to

differential equations, it is necessary to make simplifying assumptions. The

approach which has been chosen is that of using a tractable linear constant

coefficient test ;problem to replace the given differential equation in the

evaluation of difference equation approximations. Such an approach, which

is not uncommon in engineering analysis, can be justified in several ways.

For example, the linear constant coefficient equation can be chosen to represent

the incremental behavior of a general system described by (l) about some

average tracjectoryo

Lomax [7] gives an extended discussion justifying the linear test pro-

blem approach. In addition, he shows that errors associated with each

natural frequency of a, coupled system of linear constant coefficient equationst

and with each forcing function ca,n be treated separately so that it is suffi-

cient for the test problem to contain only a single (possibly complex) eigen

value and a single forcing function. Thus, an adequate test problem. is given by

y(t)	 ?,y(t) + yewt-	 -(57)

where y(t) is a, scalar and k and w can be either .,real or complex.

When using (57) to study a difference equation approximation for a,

specified problem,	 and cu are chosen to correspond to extreme or "worst ease"

.3
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natural frequencies or forcing function components in a manner which

will be illustrated below.

Two considerations, namely stability and accuracy are necessary

in evaluating an approximation and these will now be treated separately

using the test problem.

5-1 Stability

Limiting stability as defined above can be studied without recourse

to a test problem and it can be noted that all one step methods are

stable in this sense. In practical work, however, the question of

stability for non zero values of h must be faced and one approach is

to study such a situation using the test problem of (57). When studying

stability a forcing function is not required and thus , ir can be set equal

to zero.

Generally speaking, stability can be studied by formulating the

difference equation resulting from a particular algorithm applied to

the test problem of (57) with 'y = 0. Due to the nature of the test

probler, the difference equation thus obtained is linear with constant

coefficients. Since the test problem has a single root, one step

methods produce a difference equation with a single root. Multistep

methods on the other hand produce extraneous roots. In any case, the

solution of the difference equation is the sum of terms of the form

n
(r i ) , where the r  are the roots of the difference equation. It

follows that the condition r I < 1, (with all roots for which r i = 1

simple), insures stability. Note that the r. depend on 	 and h sor	
1

that boundaries onhX, which insure thatj'r

l

i < 1, can be obtained.
r a 

One way to resent these boundaries is to lot the real versus the.:^	 y	 P	 p

{1,

I
I^
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imaginary part of hX for the condition that Irmaxl - 1. Curves of

stability boundaries for a number of methods are given by Benyon.4

5-2 Accuracy

The test problem given by (57) can also be used to investigate 'the

accuracy of a given algorithm. After the algorithm has been shown to be stable,

the differential equation (56) applies and gives a good approximation to the

solution that is obtained by solving the difference equations corresponding

to the algorithm being investigated. Thus, to study accuracy, (56) is

formulated for the test problem by evaluating 
6Y 

and O(t,y*) for this equation
of

and algorithm being investigated. The quantity aY is obtained easily as

of
by

The principle error function ¢(t,y ) is obtained as follows. For one step

methods applied to the test problem, the a i (p,Y) in (27) are found to be

independent of p and Y and 6(t,Y) can be expressed as

p+1
p	 p-i

0(t 5 Y) _ ' [ Gl X	 Y(t) + C2 -yewt E a 
X1 

w	 ]	 (59)
^.. _O

where for one step methods C 1 = C2 = C

For example in considering the Runge-Kutta methods for N = 1

and 3 as given in Table III, the only nonzero partial derivative of

f `_ XY + ye'O
	

is ay which is equal to X.	 Thus, for N = 3 the ai of
ti

1
2	 3

-^`	
-2X

k (27) become	 a
5

-	 , a	 =
2880	 4

, a	 =	 and a	 _	 For N = 1
576	 3	 288	 2	 192

4Op.	 cit.[2]	 p. 227.

f

(58)
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the values are a 3 =	 - 6, 
a2	

In each case

p+l

C2 = L^ a.
i=2 i

p+l

	

Ai = C Z	 a 	 i = 0 2 1 2	p-1	 (60)
2 p+l - i

A = 1
P 

Nom.

f+

For the multistep methods, cp(t,Y) as given by (28), becomes equal to the

expression, of (59) with C 1 = C 2 = C and the Ai = 1, i = 0, 1,	 0 . p•

There are methods with digital filter equations being the prime example,

for which C1 and C2 are not equal. In fact, for the digital filter

case C1 = 0. For all the algorithms investigated, however, cp(t,Y)

can be evaluated and expressed in the form of (59)

When (58) and (59), with y* replacing Y, are introduced in (56)

the equation becomes

P
y (t ) - ^^	 C 1hP	 P-^1] y* (t) + Yy e t - C 2hp y ewt 1) Al Xi 

P-i 
(61)

i=0

Note that the solution of (61) approximates the solution of a difference

equation for the test problem obtained using an algorithm described by

an order p, constants C1 and C 2 and Ai = 0 1 1, .,	 P.

If (61) is compared to (57), it can be seen that using a difference

i
equation to approximate a differential equation has produced two types of

error, namely:

f
(1) The root X has been shifted to the new position X - C h P XP+1r r^ l

and

Iwo



1
k

^tY

	

I	 f

2/
^^ f

(2) The forcing function has been perturbed from ye Wt to

P
Y ep [ - 

C2
hp ^ Ai 3. P"^-] .

i=0

These effects will be considered separately by obtaining the "moot

shift" with no forcing function and the "forced error" assuming no root

shift.

5-2.1 Root Shift: If fractional root shift, E r , is defined in an obvious

fashion there results

Cl	
_hp Xp+1) %
	

P PE r -	
%	

-Clh

where it should be recalled that both E r and X can be complex. This

equation can be expressed in the following equivalent and useful ways

	

Er ^	 1/P

1

- ^-	 Cl l /p
hl X1	

(	 ! Er ) )	 ( 64 )

	

in j Er f = p In h 1 X j + In I C 1 I
	

(65)

f	 Note that the units of 
1	

are steps/radian.hi N 

Equation (68) shows that (Er ) increases with h. Therefore, if

1Erlis regarded as maximum permissible root shift, h1Xjmust satisfy
v.

	4	
hIX)	 (	 Er	 ) 1/p	

(66)
♦ 	 ati	 l

n

,a

(62)
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F ^.	

and similar expressions can be obtained to correspond to (64) and (65).

Equation (65) plots on log-log paper as a straight lin g: with

slope p intercepting h jhj	 l at a point equal to IC 1 1 The normalized

quantity 1 Er I /C 1 is plotted versus hW and 2n /h'l%l for various values

of p in Figure I.
5-2.2 Forced Error: A fractional forced error, E f , is defined as

Ef = v
* (t)Y

 
Y(t) 	

(67)
O	 '

Since (57), and (61), whose solutions are Y(t) and y* (t), are linear, it

follows that

p

y(t)	 [ - C2hp F Ai%' 
W p-'] Y(t).	

(68)

i=0

(Recall that root shift is being ignored in considering forced error

so that the homogeneous parts of (57) and (61) become identical.)

Substituting (68) into (67) yields

P

Ef -C 2hp F Ai Xi
c u p-i.

i=0

Note that Ef is independent of time since y*(t) is a constant times Y(t).

It is reasonable to consider three cases which result in the

following tractable approximations:

Case 1:	 1% ( < < all

4

(69)
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Gas e.._. 2: ,...^A I > > ^1

E f ,., A  G 2 hp XP	 (71)

Case 3:

Et - C 2 hp )?	 E Ai 	 (72)
J=O

In all three cases, E  has the same form as Er given by (62). in cases

Z and 3 E  is proportional to hp ?,p jus t as is Er but with different constants

in the two cases.

In case 1 ., E f is proportional to hpu p which has th e same form as Ex, with

co replacing X. Thus the expressions and curves for E r can also be used for E 

with appropriate changes in the constants and with X replaced by w for case 1.

Applications of the accuracy equations in studying difference equation

approximations will be given in the next section.

6. EXAMPLES

t^ 6-1 General Example;

a	 To illustrate the techniques presented above, consider the problem of

choosing a numerical algorithm for -digital, simulation of an aerospace vehicle
^ff

N4	
using the simplified model discussed by Ryan et al [8]. This model can be

represented as a forth order linear differential equation with a t ime varying

coefficient which is proportional to vehicle attitude. The differential

equation has a'random forcing function (caused by wind perturbation) whose

power spectral band width is also proportional to attitude,
f

In order to study various algorithms, the problem can be regarded as

quasi-stationary with roots whose position depends on the time varying altitudf,

spry
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The ranges of these roots and of the power spectral band width of the forcing

function are tabulated in Table IV.

Table IV. Frequencies associated with the Space Vehicle Problem.

s4:

y.

.FM1^^E

1j

x j	 5a

`hr

1

Range of Root Location

Bandwidth

or Maximum

Real Roots Al = 0 - 0.05 < X20

Complex Roots 4 = cud ZLi270	0„5 < wG < 2.0

Forcing Function
Power ;spectral 0 < cu < B

T
;	 0 < B _< 6.0

Band width

In considering various algorithms, it is clear that stability is required

for successful approximation. For purposes of illustration let it also be

required that fractional root shift, E r , and fractional forced error E  be

limited in magnitude to 1%.

Use is now made of the normalized curves of Figure 1 and. Benyon's [2]

results on stability to obtain limits on the step size for stable and

accurate operation u4ing representative algorithms. Limits on hj%l for

stability are tabulated for a test problem with a real root and a root

location along the 127 degree, line, in the complex plane for five repre

sentative methods in Table V. The table also gives the limit on hj%j for

IEr I < 
1% and the value of h Q for IE f I	 1% under the three assumptions

L^ < < 0, JXJ	 0 and JXI > >Q where Q is the single forcing frequency

and X is the single natural frequency of a test: problem.

It can be noted from Table V that for the one-step methods, (Euler,

. ; u.	 D. T7 _ 7	 -7 77 — A \	 s. L. r. l .:.... ^- n .... 	I 1 ^	 /..•... L. /'1\ 	^ ....a. .. ♦-. n 1.. T ^... 1- f.._.7. t- ^ 	.. .. 1	 S L d	 ..... _ 1- '1
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larger than the limits imposed by E r or Ef . On the other hand for the

multistep methods, (AB-4 a AM-4) , the limits imposed by stability tend to

be approximately the same as those imposed by E r and Ef.

For the space vehicle problem, the complex roots will be the limiting

factor due to the relative sizes of the four roots.

The forcing function for the problem covers a range of frequencies such

that the results for the single test frequence, Q, approximately equal to the

magnitude of the complex root would seem to be the best guide to accuracy of

the forced problem. Thus setting Q = B and IXI = u) c yields the numbers given

in Table Vlwhich lists bounds on h caused by we and by the forcing.; function.

The table also gives final bounds on h assuming the two conditions W e	 2,

B = 6, and we = B = 2. The table shows that the RK-4 algorithm has the

largest limiting step size for both of the conditions cited.

6-2 Digital Filter

A recursive digital filter is an algorithm, usually implemented in real

time, which can be expressed as a difference equation. One importa',-A digital

filter design techni,,,;- involves tailoring the difference equation defining

the digital filter so that its response closely approximates the solution of

'r a differential equation defining the response of an analog filter, 	 ( see for

;. example Raderp and Gold 9[	 ]).	 Using this point of view, the general results

of this paper apply and will give,	 for example, the accuracy with which the
r

digital filter response approximates the analog filter response in the region

of excitation for which the product of step size and frequency is small.

The latter point should be noted since digital filter responses are

^t

xr .	 ^•
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sometimes examined in the frequency region where this restriction

does not.apply.

The considerations involved in obtaining accuracy for digital

filters can be adequately illustrated by considering the realization

of a single complex pole pair. An impulse invariant digital filter

corresponding to an analog filter satisfying the differential equation

y + 2a y + (a 2 + b 2 ) y	 a X(t) + X(t)	 (73)

satisfies the difference equation , [9]

yn+2 21 
2e-ahcos bhyn+l - e-2ah yn + 

h[xn+2 - e 
-at cos, bh Xn4-1 1 .	 (74)

Equation (73) corresponds to the transfer function

T(s)	 s+a
(s+a)2+b2

which has a pair of complex poles

X 122 = - a - jb.

It is convenient in using the results of section 5 to consider a

first order equation with y(t) complex, instead of (73) in which y(t)

is real. It is straight forward to show that the first order equation

5 Digital filter designs are typically normalized to h _1. This does
not seem approximate here and an h multiplying the braketed term in
(74) is added to Rader and Gold's equation.

d
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Y (t ) _	 Y(t) + X (t) ,	 (75)

with	 y(t) and X(t) complex and X	 a+jb

has the property that Re y(t) in (75) satisfies (73) if the excitation is Re

X(t). The difference equation corresponding to (74) can similarly be shown

to be

Yn=YYn-1+hXn
	 (76)

where yn is complex and K = .eXh

The techniques of section 5 will now be used to determine the accuracy

of the solution of (76) as an approximation to the solution of (75). 	 Equation

(75) can be identified as being identical to the test problem of (57) if the

1 excitation is chosen to be ye
t .	

Hence, the equations for Er and E 	
given

in (62) - (72) can be used for accuracy by identifying C 11 C2 , and p for the

algorithm	 of ( 76)

The principle error function T(t,Y), which is given by (59) for differen-

tial equations in the form of (73) or (57), gives implicitly the required

constants C
V C2 and •p

k The principle Esrror function for (76) is evaluated as follows. 	 The

chain of approximations

-(p+1)

O(t^Y)	 _ ' h	 Tn(77)= 9(µ, Y )	 +l '

r-^

where (n+l)h Z µ 	 n h, has been established and discussed above. 	 Thus, what

If,
,	 . is required is Tn+1 given byt

E

,
t

Mt
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Tn+l = ^n+l - Y[(n+1)h] 	 (78)

where yn+l and Y[(n+l)h] are defined with (23) above.

From (78), ^n+1 
is expressed us

n+1
e-(a-jb)h 

Y ( nh ) + hX[ (n+l ) h ]	 (79)

Tae true solution of (79) at (n+1)h, l[(n+l)h], can be expressed in terms of the

soultion at nh using the well known analytic solution for linear constant

coefficient equations. The result is

Y[(n+l)h] = e-(a'
-jb)h v

(nh) + r 
(n+1)h 

e-(a.+jb)[(n+l)h-v]	 (80)

nh
X(v dv .

Using (79) and ( 80), ('8) becomes

(n+l)h	
-(a-jb)[(n+l)h-v]

	

Tn+1	
h X[(n+1)h] 

-	 r	
e	

X(v) dv	
(81)

nh

The integra.nd of the integral appearing in (81) can be expanded in a. Taylor

series and the integration carried out term by term to obtain

	

T	 = -1 h2
n+1	 ^(a-jb) X[n+1)h] + X[(ntl)h]} + higher order terms (82)

The fact that Tn+1 is 0(h2 ), shows that the algorithm of (76) is first order so

that p = 1. Thus using (77),

o(t l y ) = +	 [ (a.-jr) X(t) + X(t)]	 (83)

Note that with X(t) = yewt , 6(t,Y) becomes
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et (t , Y) _ -42 ,u- X ] ve``lt
	 (84)

which is in the form of (59) with C 1 = 0 ar,d C2 = I.

It is interesting to note that since C 1 = C, (^(t,Y) is independent of Y,

there is no root shift and Er = 0. This of course results from making use of

the analytic solution of the differential equation in obtaining the homogeneous

part of the difference equation in the digital filter design.

The forced error E f is not zero and, in fact, in this example is that of

a. first order method. Equation (69) gives E  for this example as

E 
	 h(X w) •	 (85)

and the approximations of (70) through ( 7 2) become

I E'fI —	 2 hI'j' I , I X i < < I w I	 (86)

Ef I 	 hl a i , I Xj - (u) I	 (87)

IEfI-	 1; hIXI ,	 I X I > > I-u1	 (88)

Among other conclusions that can be drawn from these. expressions is the fact

that for a fractional forced error of less than 1^,, hjwj < .01, or 628

samples must be made per cycle of the highest forcing frequency.

-3 Stiff Equations

In numerical analysis,equations with widely separated eigenvalues are re-

(erred to as "stiff" equations. Difference algorithms corresponding to stiff

differential equations usually require a considerable computing time for solu-

tion. The reason for this fact can be illustrated by considering algorithms

-=-omit-	 ._.	 -----	 - --
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For solving an equation whose solution is given by'

Y(t) ;= Ale 	 I t + A2 e -%2t
	

(89)

where X1 and X2 
will be assumed to be real with X 2 =UX I 

and a large.

In solving mwit problems, a solution over at least one time constant of

the lowest frequency is typically required. Thus the solution time T must

satisfy an equation of the form

T = 1/%1	
(90)

At the same time the solution must be both stable and accurate in the

sense defined above and this imposes an upper limit on hX for all eigenvalues.

The latter requirement can be expressed for this example by the equation

hX 
2	

h 11	 (91)

where 8 is determined by a particular algorithm.
krelation for the number of steps, N, required to obtain a solution under

the condition etated, results from combining ( 90) and ( 91) to obtain,

N	
a	

(92)
0

Values for p can be obtained from Table V which shows limits on real

roots for stability and reasonable root shift for typical algorithms. The

values range from 1 . 05 for the RK-4 to .02 for the Euler method,, If Q! is

assumed to be 103 the required N becomes 1050 for the RK-4 and 43,500 for the

Euler method.
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