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The work reported in this technical note has been supported
partially by Contract No. NAS8-2473 and partially by the Georgia
Tech School of Electrical Engineering. The results are related to
and motivated by the subject contract and also by the graduate
course sequence EE 641, 642, 643 - Computer Simulation, taught by
Dr. Hammond.

The author wishes to thank Dr. C. O. Alford for several
discussions of certain topics covered by the technical note, and

for reading a portion of the text.
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ABSTRAC "

This technical note reviews and consolidates material pertaining
to one=-step and multistep numerical methods with the objective of
developing a tractable method for evaluating the error resulting from
the use of difference equations to approximate ordinary differential
equations.

A tractable approximate relation is developed between the error
due to finite sampling rates and parameters describing numerical
methods. The results are valid for small values of the product of
the sampling period, h, and natural frequencies, A, of the analog
system.

The approach used approximates the analog system by isolated
modes and the digital algorithm for each mode by its order, p, and
certain constants C, Ao’ o o ey Ap. The results show that approxi-
mating an analog system by a digital algorithm results in a shift
of each root and an error corresponding to each forcing function.

The root shift is given by -Chpkp, while the error caused by each forcing
function, yewt, is given by -ChP l=OAi%imp-i.

The results of the study are applied to a nontrivial numerical
analysis problem, a digital filter problem and toan elucidation of

the problem of "stiff" equations.



DIFFERENCE EQUATIONS TO APPROXIMATE ORDINARY

DIFFERENTIAL EQUATIONS
I. INTRODUCTION

The interest in digital simulation using large scale computers and the
development of digital filtering techniques has led in recent years to exten-
; sive use of digital systems described by difference equations as a means of
; either solving differential equations or replacing analog systems described
§ by differential equations.

The underlying mathematical problem of approximating the solution of a
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differential equation by the solution of a difference equation has received

considerable attention over a number of years in the area of numerical analysis
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and more recently, for linear equations, in the area of digital filter theory.

Results in the former area are typified by the detailed text of Henrici [1]

LT T
R T

and the summary articles of Benyon [2] and Giloi [3]. The latter area is dis-

e

cussed, for example, in the book by Gold and Rader [4]. References [1], [2],

and [4] have extensive bibliographies.

Applications in general simulation and digital filters are not such as to

make possible a single unique answer to the question of what difference equation

to use in approximating a given differential equation. Thus, the literature
contains a number of methods for obtaining difference equations which in some
sense‘approximate differential equations. The plurality of methods leads to
the necessity of defining measures of the quality of approximation and also to
an analysis problem in evaluating particular methods.

The purpose of the present paper is to present a new and tractable method

for studying the accuracy of stable difference equation approximations to the
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solution of differential ecuations., Background for the new method is devel-
oped through a tutorial summary giving: (1) e unified discussion of the
common methods used in numerical analysis for approximating differential equa-
tions with difference equations and (2) a discussion of the important para-
meters and central theorems necessary in evaluating the approximations.

The work is intended to be useful in the design and analysis of digital
filters and digital simulations. For such applications errors arise from two
sources, namely: (1) in approximating a differential equation by a difference
equation and (2) in solving the resulting difference equation. This paper
gives a detailed analysis of the former source of error but does not consider
the latter. Thus, the results of this paper give a complete answer for accuracy
if errors (primarily due to round off) in solving the required difference equa-
tion are negligible. In general, errors due to round off and related sources

must be determined through additional analysis.

2. METHODS FOR OBTAINING DIFFERENCE EQUATIONS TO

APPROXIMATE DIFFERENTIAL EQUATIONS

In this section some of the more common classes of methods for obtaining
difference equations to approximate differential equations will be developed
using direct procedures for approximating continuous variables with discrete
variables. With this motivation, a much more general class of difference equa-
tions is then presented for analysis in later sections of the paper.

Attention will be restricted to the class of differential equations which

can be expressed as

y(t) = £(y,t) (1)



where y and f are vectors and £ is suitably restricted so that,a unique solu-
tion exists. Commonly assumed restrictions on £ are given, for example, by
Henrici [1]. If (1) models a physical system any input is included im-
plicitly in £. This work is concerned with obtaining difference equations
whose solutions in some sense approximate the solution, y(t), of (1).

Equation (1) can be integrated to yield

T+t
y(T+t) = y(T) = [ Ely(r),r] ar (2)

T
which can be used as a basiy for obtaining many of the desired difference
equations. Let T and t be integer multiples of a basic step size h so that

T = nh and t = kh., Using the notation y(mh) = Ym,(Z) can be written as

.(n+k)h
Youk - Vn = | £ly(r),7] dv . (3)

nh
A difference equation approximating (1) results when any one of several dis-
crete approximations are used for the right-hand side of (3).
In the special case of a linear equation with constant coefficients, V)

becomes

y(t) = Ay(t) + Bu(t) (4)

where the inputs, u(t), are now shown explicitly. The equation corresponding

to (3) for the linear constant coefficient cage is

(mHo)h

Yo = Vg = Jnh [Ay(t) + Bu(r)] dr . (5)

In this case, however, use can be made of the closed form solution of (4) to

obtain the equation



(ntk)h

(]

yn+k = ék yn + U @[(n-%'k)h - T] Bu(r) dr (6)

where z(t) is the transition matrix of (4)., Note in (6) that for u(t) = 0

the equation
ylotk)h] = 5 (kh) y(nh) (7)

gives y for t = (ntk)h exactly for any value of k. This fact makes (6) much
more accurate than (5) in most applications where (6) is valid. If u(t; in
(6) is not zero, however, it is necessary in obtaining a difference equation
from (6) to use a discrete approximation for the integral in the same manner as
in the general case,

Common methods for obtaining a discrete approximation for the rieht-hand
side of (3) are classified as one step methods and multistep methods. Direct
intuitive procedures resulting in subsets of these two classes will be presented

below followed by a general formulation,

2-1 One Step Methods

For one step methods, k is set equal to one and (3) becomes

(nt+1)h
-y = | £ly(r),7] dr . (7)
nh

The integrand can be expanded in a Taylor series about t = nh to obtain

. , 2 ..
fly(r),nl= £ + (v -oh) £+ B e g (8)
where
(i) i
f = f[y(nh),nh] = and f = d £ly(t),t] .
n n dti

t=nh

Introducing (8) into (7) then yields



hB v hP (P'l)

h™ ‘ _
yn+l - yn - hfn + 2 fn o}« 6‘" fn d v P! fn o+ o (9)
Truncation of the infinite series of (9) afber p terms ylelds ’
= by Pl (pe1)
R R R p! £, 1 (20)

a clags of difference equations referred to as the Taylor expansion algorithms.
The special case of p = 1 is called Euler's method. Note that p is the only
parameter of this method.

In practical work, it is seldom desirable to generate derivatives of f
because of the nolse producing nature of the derivative operation. Thus, the
algorithms of (10) with p > 1 have limited use.

The class of Runge-Kutta formulas make use of the fact that derivatives
of £ can be approximabed in terms of f itself. The particular approximation

identified with this name is given by

(n+1l)h N .
r f[(,V(T),T] dr ~h & W, f\}bi:ﬂi] (11)
nh i=0 ’
where
By = nh , by = Byt aih, o, sl 3 i=1, 2, N
i-1
T]o =¥, o ﬂi = 'ﬂo + h EO Bik f(Mk’ﬂk> si=1,2, ... I

As can be noted in (11), the Runge-Kutta clags of difference equations has the

following parameters: N, N+l values w, 5 N values of oy and g(N+l) values of

Bik“ These parameters are evaluated by expanding
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(n+Ll)h N
£f{y(r),r] dr and h iEO Wy f[ui,ﬂij

nh
voth in Taylor series and choosing ‘the parameters so that the coefficients
of h¥ are equal for r = 1L, 2, ..., M. The tedious expansion operation is
discussed, for example, by Henrici [1] and Ralston [5].

The results of a study of Runge-Kutta methods can be summarized as
follows., A matching of coefficients can be carried only as far as M = N+1.
Practical Runge-Kutta methods employ N = 1, 2, 3, and sometimes 4. For any
value of N, the matching of coefficients of h¥ will fix most of the parameters
but at least one always remains free so that a class of algorithms exists for
each valre of N, TFor example, for N = 1 there is one independent degree of
freedom and for N = 3 there are two independent degrees of freedom.

The Taylor series and Runge-Kutta methods are the more important one

step methods, and attention is now given to multistep methods.

2-2 Multigtep Methods

Many of the common multistep methods can be developed from (3) in the
following menner., The function £[y(t),t] in (3) is approximated by an inter-
polating polynomial and the necessary integration is then carried out to obtain
a difference equation.

Given a function z(t), an interpolating polynomial P(t) of degree less

than or equal to p can be found such that

P(ti) = z(ti) 3 1=0,1, ..., p .

This polynomial can be expressed in terms of backward differences asl

lSee, for example, Henrici [1].



o t -t
P(t) = 5 (-1)" 'n'ﬁ" al (12)

m=0

where vmzn is the mth backward difference of z(t) at tn given by

(13)
- J J
J i
Ve = »  (=1) Z .
n 520 g J »-1
and (E)are the binomial coefficients given by
uy _ u) _ u(u=l) . . . . . (u-v+l)
(o) =1 (v) - 1.2, ...V C (1k)

Note that, as in the case of (12),u in the binomial coefficient does not

have to be a natural number. It is also useful to observe in (13) that vazn

depends exclusively on the set of discrete values of z given by

{Zn’zn-l’ e Zn-j}

The polynomial P(t) can be introduced in (3) to approximate f[y(%),t] .
Equation (3) then becomes
(n+k)n

b —_—
m h m e
A G SRR (15)



Note that since the left-hand side of (15) involves discrete values of y at the

times nh and (n+k)h, backward differences of f can reasonably be taken for any

time between nh and (n+k)h so that r can range between O and k. Since only

the binomial coefficients depend on t, (15) can be expressed as

Y
¥y Y = m
ntk " 0n 5B EO Ym,k,» ¥ Ly (16)
where
t =T
(-1)™ (n+k)h n-+r
= h dr . 1
Yo = mo (17)
m
v . n s
It can be shown that since V fn+r depends exclusively on fn+r’ ceeey fn+r-m’
(16) can also be expressed as
P
yl'l+k B yn =h mEO Bm,k,l’,P fn+r-m ‘ (l8>

Either (16) or (18) defines a general class of difference equations depending
on the parameters p, k, and r so that particular values of p, k, and r
and B

result in fixed values of the Y.k The vy 4 . are given ex-
b b

T m,k,r,p

plicitly by (17) and similar relations can be derived for the Bm k,r,p
. E Rl Al |

The general class of difference equations given by (18) has two major sub-

divisions deterwined by whether or not r is chosen equal to k so that values of

fn+k = f[yﬁ+k’tn+k] are required in the algorithm. If r = k, (16), or (18) then
has Vo4 OB the left-hand s;de and also on the right~hand side in fn+k' Such

formulas are called implicit or closed formulas since in general they cannot be

solved directly for y If r # k, the resulting formulas can be solved

n+k*

directly and are called open or explicit formulas.



RS

Closed f?r?ulas can be solved iteratively by the followin% grocedure:
0 L
(a) estimate Ypep FOr use in £ ., (b) solve (16) or (18) for Vi (¢) use

(1) (2)

Vpup 0 £, To obtainy .. from (16) or (18), and (d) repeating the process.

Typically, the first estimation is accomplished with an open formula called a
predictor. The closed formula is then referred to as a corrector and the com-
plete calculation as a predictor-corrector algorithm,

Examinabion of (18) shows that to compute ¥

: ; o
nige requires y and values of

fi from 1 = n+r to i = n+r-p. Since p is in general greater than r, values of

f prior to tn are typically required. This causes a problem in starting multi-

step methods since (18) cannot be applied unless all required past values of fi

are given. The startimg problem can be solved by compubting the required values

with some type of one step method since these methods are self-starting.

2=3 A General Difference Formula

A general difference formula which includes all of the formulas above as

special cases is given by

o,
i=0 *

e = B F{h,n,yh_p, coves Vo £} (19)

|| e B2

where k and p are fixed and n = p, p+l, .... Equation (19) has parameters k,

p, the @y and the function F.

For the commen multistep algorithms F is given by

k

F= % B, f .
so0 & o (20)

so that (19) becomes



10

(21)

Note that (2Ll) has parameters k, the oy, and the B,. Table I gives the para-
meter values for a number of common open multistep methods. For such methods
Bk is always zero, Table II gives the parameters for common closed multistep
methods. Both tables give truncation error for the algorithms, a parameter

which will be defined and dilscussed below.

For one step methods, o = -1, ¢y = 1 and all other ¢ in (19) are

zero. For the Runge-Kutta algorithms, which are the most practical one step

methods, F is the function defined in (11). Thus, (19) reduces to

N
yn+l - yn = h '2 wiftp’ibni] (e2)
i=0
where
B =mh 5 op,=p 06,k o, 1=1,2, ..., N
ei <1
i-1
To =¥p 3 My =M+ 8 & & Py £l Tye) -

Typical values for the parameters N, w; 5 ei, and Bik of the Runge-Kutta

algorithm are given in Table IIT.

The formulas preceeding (19) were derived so as to insure that their
solutions approximate that of (1) in some sense. Equation (19), on the other
hand, is much more general and in order for it to have any utility in approxi-
mating the solutions of (1), restrictions on its parameters must be developed.
The next section discusses such restrictions through defining measures of

quality for the required approximations.
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3. MEASURES OF QUALITY OF APPROXIMATION

Attention is given in this section to the problem of restricting the para-
meters of (19) in such a way as to insure that its solution, y , for n =p,
p+l, ..., approximates in some sense the solution, y(t), of (1) at t = nh
for the same values of n. To avoid confusion, in the remainder of the paper
the solution of (1) will be denoted as Y(t).

Two & priori restrictions are placed on F, namely: (1) F is restricted
so that small changes in its parameters result in small changes in F, a con-
dition similar to that required of £, and (2) F is restricted so that F{h,n,

N O}:O.

n-p’°tnt? Vnrk
Equation (19) is an algorithm for determining Vo4l given Yy and other re-
quired data. Thus, much of the evaluation of (19) can be based on a considera-
tion of the typical step in the iterative calculation of Yy To congider the
effect of a single step in the calculation, Yy and other required data are
assumed to be exact at the beginning of the typical step and (19) is used to
calculate Y

41 The quantity‘yh+l. Assuming the errors occurring in only

. 2 A
one step, is denoted Yo

A quantity of central importance in studying (19) is local truncation

error, T defined by

n+1’

»

v =3 - v(aa)n] (23)

2Note that in computing yn true values are assumed for all yh,i=0,l,....,

+1°
k-1 and also for any Yok required as an argument of F.
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Equations (19) and (23) can be used to express T i &8

k

= hF{h,n,y[ (n-p)h], ..., Y[ (n+k)h; f]}-‘ZB oy Y[ (n+i)h] (24)
1=

Tn+k

where the subscript nt+k is used because the general algorithm evaluates Yok

using past data.
For a given algorithm,Tn+k is conveniently computed by expanding
k .
2 ooy Y(t) and hF{h,n,¥[(n-p)h], ..., Y[ (n+#k)h];f} in Taylor series about
. 20
a convenient point such as t = nh and subtracting the series term by term
to obtain
2 h3

- h- h~
Tope = 0o ¥ 08y + 58 Y g Byt e (25)

where the ¢, depend on both F and Y(t). In any particular case the first p+l
functions . 5 i=0,1, 2, «.., P will be zero and ‘the method is termed to be
of order p.

It will be useful below to note that for many methods 'I'n+k can be ex~

pressed as

T = 1% (1) + 0(P?) (26)

where y is a point "near" (nt+k-1)h and O(hp+2)

indicates a group of terms,
which approach zero as h approaches zero at least as rapidly as hP+2.
The function ¢(u;y) is called the princple error function by Henrici

[1] in discussions of one step methods. For many such methods ¢ (u,¥) for a

scalar problem equation is given by
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~(p#1) Y "
(u,Y) ='ap+l(u,Y) Y(u) 4‘ap(u,Y) Y(u) + o.ou. 4*a2(u,Y) Y(u) (27)

where p is the order of the method and the a, are in general functions of

i
u and Y which depended on the given problem equation. The principle error
functions for several Runge-Kutta Algorithms applied to scalar problem equabions
are given in Table IIT.

For most multistep methods

| (p+1)
p(u,¥) =CcY  (u) (28)

Thus, for such methods ¢(u,Y) can be obtained by dividing the truncation
error (as given for several methods in Tables I and JI) by p+l'

If a method is of at least first order, it is said to be consistent.
Note that for a consistent method the local truncation error is at least
o(h2)

L

The cumulative effect of truncation error in all of the steps fromn = p

to n = J is a total pointwise error, ej, at t = jh. This quantity, given by

ey =¥y - Y(jh) , (29)

differs from Tj in that ej includes the total effect of errors in many steps,
rather than in a single step.

Using pointwise error it is possible to define convergence of ¥, o Y(nh)
for a given method as follows.

If for any £(y,t)

max |e | =0 ash~- o0,
n
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then the method is convergent.
A Using (19) to express v, end (23) and (24) to express Y(nh), a difference
| equation can be obbained for e, from (29) as

= h{F{h,n,y

n»p"""yh+k5f} - F{h,n,¥Y[ (n-p)h,...., Y[ (n+k)h];f}

@ €

[ e By

jop O Tnd

+ Tn+k ' (30)

Several types of sbability can be discussed for algorithms in the
NE class (19). A type which is tractable for the general case can be termed

Limiting stability in the sense that it 1s applied for either h or f assumed

to be identically zero. With this assumption, (19) becomes

k
L oy ¥,_:=0. (31)
x n
The solution to this difference equations has the form I aiBi where the gi
i=1 ’
are the roots of the polynomial
£
P(B) =% a.BY =0. (32)

j=0 J

Thus, (31) is sbable if and only if the B; satisfy the conditions

lg;l <1 (33)

with the additional requirement that if IBJ| = 1 then Bj must be a simple

root. Thig condition is referred to as the root condition. The root condi-

tion, which guarantees limiting stability is necessary but not sufficient for

more general types of stability.
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The following theorem which relates the root condition to convergence
of ¥, to Y(nh) can be proved:3 If (19) is consistent, then it is convergent if
and only if the root condition is satisfied. Thus, if the root condition is
sabisfied and (19) is consisbent, some small enough h can always be found so
that Yy is a good approximation to Y(nh). The stebility and pointwise error of
(19) for fixed nonzero values of h will be investigated below but much more re-

strictive conditions will have to be assumed.
. POINTWISE ERROR

The purpose of this section is to derive a tractable differential equa-
tion for pointwise error starting from the difference equation (30) assuming

that the method is stable and that Tn can be approximated by hP+l¢GJ,Y),

-+
(see (26)). Consider the function F{h,n,Y[(n-p)h] ,.... Y[ (nt+k)n]; £}.

Using (29), the true value Y(nh) can be expressed as

Y(nh) =y, - e (34)

n

and F can then be expanded in a Taylor series about the points Yy Assuming
that e is small it is reasonable to truncate the Taylor series to two terms

and the result is

F{h,n,Y[ (n-p)h], ...., Y[ (n+k)h]; £} = (35)
oF QF
F{h’n’y ) "t ; ;f} - ¢ - + o aee e}
n-p n+k ayn-p n=p ayn+k n+k

Using (35) in (30) then gives the difference equation

k

; oF ofF
Y a.e . =nh e+ e + T ., (36)
3=0 ¢ n+j ayh_P n-p Oy Bt n%k

3 gee for example Isaacson and Keller [6]
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which applies for a general P,
The opproach in approximating the solution e of (36) by the solution of
a differential equation is to find, to a given order of accuracy, a differen-
tial equatbion which results in the difference equation (36) through applica-
tion of the algorithmof the method being investigated. The procedure will be gzarried
out for the two special cases of one-step and multistep methods.

For one-step methods (19) becomes

yn+l -

n = hF{hanathf} (37)

and the equation analogous to (36) for the specific F of (37) becomes

ce =nRE o 4P :

e - ¢ =h A e, th dw,Y (38)
with nh < u £ (n+l)h.
Now by defining

Eﬁ = e n? (39)

(39} becomes
oF \
€ 41 - & =0h 5t (L,Y) ', (4o)

: J
But Euler's method applied to z = g(z;t) yields the difference equation

7 -z =nh g(zn,nh) . Thus, it can be asserved by choosing

SNF —
g(zn,nh) = 33 en + @ (MJY> (ul}
n
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that the differential equation

stt) = &£ T g (,Y) (42)

Y

has a solution e(t) which approximates Eﬁ to within an error O(h). 1In obtain-
ing (42) use is made of the fact that F approximates f within errors which are

0(h). Equation (42) written in terms of e(t) rather e(t) becomes

e(t) = 2 e(t) + nP p(u,¥) (13)

and the errors are now O(hP+l).

A similar line of reasoning is used to give the result for multistep

methods. For such methods

k
F= v B. f .. (Lh)
§=0 g ntd
and
oF = B afn+j
Thus, the equation corresponding to (36) becomes
L k LA . ] )
Y g.e . =nh T B. —2 e o+ v e(u,Y)! . (45
=0 J o j=0 J ayh+,j n+d J
A multistep algorithm using (44) can be expressed as
k .
Zog " %y =B jzo Bj Zopg " (46)
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where z = £(z,t) has been assumed., Equation (46) shows that within an error

which is O(h) the following equabion holds

Zn*}'l‘zn . .
*—-——1-1-———- ~ Zn = = B,’J Zn+;j , (LW)

M=

If ¢(u,Y) is identified with z(t) in (47), it follows that within an error

which is O(h), ¢(u,Y) can be expressed as

k
$(u,Y) = jzo B, #(u + ih,Y). (18)
Hence (49) can be written as
h k LT
jE Y3y TP jE 3 Wy + ¢lu + §n,Y) (49)

where En is defined as in (39). But the differential equation

e(t) = L B(6) + glu,¥) (50)

results in the difference equation (49) using the multistep methods. Thus,
when (50) is transformed to use e(t) instead of e(t), an equation identical
to (43) results.

If a method with pointwise error e has an order p, then e(nh) given by

(43) satisfies
e, = e(m) + o) | (51)

ard the error in approximating e, by e(nh) is of an order in h one higher

than the order of the method.
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Since (51) aprroximates pointwise error at all time, t, it is reasonable
to consider a variable y%(t), defined so that y*(nh) = Y, which represents
the solution of the approximating difference equation at all times. In analogy
to (32), Y(%), y*(t), and e(t) are related by

Y(t) =y () - e(t) . (52)

Tt is useful to note that the function ¢(u,Y) of (43) can be expanded in
*
a Taylor series about a point (t,y ) to obbain

#ws¥) = oty ) - e Baw-v) Ll (53)

If %% and %ﬁ are bounded, as is usually the case, then for e at least O(h)

and u -t <h

*
¢(u,¥) = ¢(t,y ) + O(n) . (54)
Thus, to the accuracy being used, (43) can be expressed as

. £ N
e(t) = & e(t) + 1% o6,y ) (55)
Using (55), (52) and the equation resulting from differentiating both

sides of (52), it is a simple matter to obtain the equation

7 (6) = 85" 4 w(8) - & w(s) + 1P gty (56)

the solution of which closely approximates the solution of a difference egua-
tion obtained by the one Step,or'multistep methods. Foir the test problem to

be discussed in the next section, (56) gives a tractable expression for
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evaluating accuracy.
5. EVALUATION OF APPROXIMATIONS WITH TEST PROBLEMS

The discussion up to this point pertains to the general clasgs of differ-
ential equations given by (1L). To proceed further with the development of a
tractable procedure for evaluating difference equation approximations to
differential equabions, it is necessary to make simplifying assumptions. The
approach which has been chosen is that of using a tractable linear constant
coefficient test problem to replace the given differential equation in the
evaluation of difference equatinn approximations. Such an approach, which
is not uncommon in engineering analysis, can be justified in several ways.

For example, the linear constant coefficient equation can be chosen to represent
the incremental behavior of a general system described by (1) about some
average tracjectorye

Lomax [7] gives an extended discussion justifying the linear test pro-
blem approach. In addition, he shows that errors associated with each
natural frequency of a coupled system of linear constant coefficient equations
and with each forcing function can be treated separately so that it is suffi-

cient for the test problem to conbain only a single (possibly complex) eigen-

value and a single forcing function. Thus, an adequate test problem is given by

y(t) = ay(t) +ye¥® (57)

where y(t) is a scalar and A and w can be either real or complex.
When using (57) to study a difference equation approximation for a

specified problem, \ and @ are chosen to correspond to extreme or "worst case"
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natural frequencies or forcing function components in a manner which
will be illustrated below.

Two considerations, namely stability and accuracy are necessary
in evaluating an approximation and these will now be treated separately
using the test problem.

5-1 Stability

Limiting stability as defined above can be studied without recourse
to a test problem and it can be noted that all one step methods are
stable in this sense. In practical work, however, the question of
stability for non zero values of h must be faced ahd one approach is
to study such a situation using the test problem of (57). When studying
stability a forcing function is not required and thus’ can be set equal
to zero.

Generally speaking, stability can be studied by formulating the
difference equation resulting from a particular algorithm applied to
the test problem of (57) with ¥ = 0. Due to the nature of the test
problem, the difference equation thus obtained is linear with constant
coefficients. Since the test problem has a single root, one step
methods produce a difference equation with a single root. Multistep
methods on the other hand produce extraneous roots. In any case, the
solution of the difference equation is the sum of terms of the form
(ri)n, where the r, are the roots of the difference equation. It
follows that the condition |ri' < 1, (with all roots for which r, =1
simple), insures stability. Note that the r, depend on A and h so
that boundaries on hh, which insure that lri‘ < 1, can be obtained.

One way to present these boundaries is to plot the real versus the
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imaginary part of h) for the condition that 'rmax' = 1. Curves of

stability boundaries for a number of methods are given by Benyon.

5~2 Accuracy

The test problem given by (57) can also be used to investigate the
aceuracy of a given algorithm. After the algorithm has been shown ‘to be stable,
the differential equation (56) applies and gives a good approximation to the
solution that is obtained by solving the difference equations corresponding
to the algorithm being investigated. Thus, to study accuracy, (56) is
formulated for the test problem by evaluating é% and. ¢(t,y*)‘for this equation

o
of
and algorithm being investigated. The quantity 3y is obtained easily as

>f
aY = )\, (58)

. . (3 * 3 3
The principle error function ¢(t,y ) is obtained as follows. For one step
methods applied to the test problem, the ai(u,Y) in (27) are found to be

independent of y and Y and ¢(t,Y) can be expressed as

t

6(6,7) = -[c] W™ w(t) + 0, ye¥ a 0P (59)

| R Rie

i=0

where for one step methods C1 = 02 =C

For example in considering the Runge-Kutta methods for N = 1
and 3 as given in Table III, the only nonzero partial derivative of

f =AY + 7emt is-%§ which is equal to A« Thus, for N = 3 the a; of

1 - 2 -3
(27) become a: = 7880° %, ~ 376’ 23 _ 288 and a, = Jog For N=1

“op. cit.[2] p. 227.
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=1 _1 = =A
the values are d3 80 6’ az 8 In each case
ptl

C ==§3 a,

2 i=n i

ptl
A S D a5i=0,1, ... pl (60)
2 phHl-i

A =1 e

P -

For the multistep methods, ¢(t,Y) as given by (28), becomes equal to the

expression of (59) with C, = C, = C and the Ai =1, i=0,1, . . « p.

2

There are methods with digital filter equations being the prime example,

for which C1 and 02 are not equal. In fact, for the digital filter

case C1 = 0. For all the algorithms investigated, however, @(t,Y)

can be evaluated and expressed in the form of (59).
When (58) and (59), with y* replacing Y, are introduced in (56)

the equation becomes

L] p . -

%* + % \ -
A0S T C N L L TS SR VE S L2 b I W e S (39

i=0
Note that the solution of (61) approximates the solution of a difference

equation for the test problem obtained using an algorithm described by

an order p, constants C, and C, and Ai =041, . ¢ «, P

1 2

If (61) is compared to (57), it can be seen that using a difference
equation to approximate a differential equation has produced two types of
error, namely:
nP AP*1

(1) The root A has been shifted to the new position A - C1

and
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(2) The forecing function has been perturbed from Yewt to

p .
ve® [1 - g hPZ ant P,

2" oo

These effects will be considered separately by obtaining the 'zoot
shift" with no forcing function and the "forced error" assuming no root
shift.

5-2.1 Root Shift: If fractional root shift, Er’ is defined in an obvious

fashion there results

O - c.hP APy o
1
= i = -C hp }\p (62)

Ey N 1

where it should be recalled that both Er and A can be complex. This

equation can be expressed in the following equivalent and useful ways:

ol
hh = (=% ) (63)
: l 1}
S L) P
mn - ¢CTE) (64)
i*ij
. tnlE_{ = p 1n nlA] + 10l ¢l (65)

Note that the units of h%%l are steps/radian.

Equation (68) shows that [Er) increases with h. Therefore, if

lEr|is regarded as maximum permissible root shift, hlk]must satisfy

E
hial < ( }-ﬁ y /e (66)
1
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and similar expressions can be obtained to correspond to (64) and (65).
Equation (65) plots on log-log paper as a straight line with

slope p intercepting hid] =1 at a point equal to ICll The normalized
quantity lErl/C1 is plotted versus h’l]and 21 /h]A] for various values
of p in Figure 1.
5-2.2 Forced Error: A fractional forced error, Ef, is defined as

By = Y1) - ¥(6) th;‘ L (67)
Since (57), and (61), whose solutions are Y(t) and y*(t), are linear, it

follows that

p
y () = [1 - c,h’ 2J ,Aixl oP 7 (). (68)

i=0
(Recall that root shift is being ignored in considering forced error
so that the homogeneous parts of (57) and (61) become identical.)

Substituting (68) into (67) yields

P

E; = -C,h° Z . A NPT (69)
i:

w5
Note that E_ is independent of time since y (t) is a constant times Y(t).

f

It is reasonable to consider three cases which result in the

following tractable approximations:

case 1: I\ << laﬂ

E. ~- A ChPuP (70)
0

£ 2
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case 2:  Al>> |wl

- P,P
B v - A Gy bPA (71)
| Case 3: IAI r~ lw{
p.p o A
E. ~=C, h') i (72)
£- 2 1=0

In all three cases, Ef has the same form as Er given by (62)., 1In cases

Py

'f 2 and 3 Ep is proportional to bPaP just as is E. but with different constants

g in the two cases,

« In case 1, E_. is proportional to hPwP which has the same form as Er with

1 b

w replacing A. Thus the expressions and curves for Er can also be used for Ef

R EEUF

with appropriate changes in the constants and with ) replaced by w for case 1,

-E Applications of the accuracy equations in studying difference equation
ﬁ approximations will be given in the next section,

6. EXAMPLES

? 6-1 General Example:

i To illustrate the techniques presented above, consider the problem of

choosing a numerical algorithm for digital simulation of an aerospace vehicle
g using the simplified model discussed by Ryan et al [8]. This model can be
represented as a forth order linear differential equation with a {ime varying
coefficient which is proportional to vehicle attitude, The differential
equation has a random forcing function (caused by wind perturbation) whose

power spectral band width is also proportional to attitude,

In order to study various algorithms, the problem can be regarded as

2
:
3

quasi-stationary with roots whose position depends on the time varying altitude,

TRy

ERIDREA . T

.‘:‘—3_, ..,.,,.,

o vk

T
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The ranges of these roots and of the power spectral band width of the forcing

function are tabulated in Table IV.

Table IV, Frequencies associated with the Space Vehicle Problem,

Range of Root TLocation or Maximum
Bandwidth
Real Roots Al =0; ~-0,05< Az_ﬁ 0
= ! 0 .

Complex Roots }\3’4 w, {;_{_-127 ; 0.5 fmc_SZ.O
Forcing Function
Power Spectral 0O<w<B; 0<B<6.0
Band width

In considering various algorithms, it is clear that stability is required
for successful approximation, For purposes of illustration let it also be
required that fractional root shift, Er’ and fractional forced error Ef be
limited in magnitude to 1%,

Use is now made of the normalized curves of Figure 1 and Benyon's [2]
results on stability to obtain limits on the step size for stable and
accurate operation using representative algorithms, Limits on hixl for
stability are tabulated for a test problem with a real root and a root
location along the 127 degree line,. in the complex plane for five repre-
sentative methods in Table V. The table also gives the limit on h|x| for
lEr]_f 1% and the value of h Q for lEfl = 1% under the three assumptions
|x| < <Q, |k||::Q and ]Al > > (Q where () is the single forcing frequency
and A is the single natural frequency of a test problem,

It can be noted from Table V that for the one-step methods, (Euler,

RK-2, RK-4), the limits on h|h§ (or h()) for stability tend to be significantly
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. larger than the limits imposed by Er or E On the other hand for the

£
multistep methods, (AB-4, AM~4), the limits imposed by stability tend to
be approximately the same as those imposed by Er and Ef.

For the space vehicle problem, the complex roots will be the limiting
factor due to the relative sizes of the four roots,

The forcing function for the problem covers a range of frequencies such
that the results for the single test frequence, (J, approximately equal to the
magnitude of the complex root would seem to be the best guide to accuracy of
x:;; the forced problem, Thus setting Q = B and \Al = W, yields the numbers given
in Table VIwhich lists bounds on h caused by o, and by the forcing function,
The table also gives final bounds on h assuming the two conditions W, = 2,

B = 6, and W, = B = 2, The table shows that the RK-4 algorithm has the

largest limiting step size for both of the conditions cited,

6-2 Digital Filter

A recursive digital filter is an algorithm, usually implemented in real
time, which can be expressed as a difference equation, One importapt digital
filter design techni:.2 involves tailoring the difference equation defining

the digital filter so that its response closely approximates the solution of

a differential equation defining the response of an analog filter, (see for

example Rader and Gold [9]). Using this point of view, the general results

of this paper apply and will give, for example, the accuracy with which the
digital filter response approximates the analog filter response in the region
of excitation for which the product of step size and frequency is small,

The latter point should be noted since digital filter responses are
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sometimes examined in the frequency region where this restriction
does not.apply.

The considerations involved in obtaining accuracy for digital
filters can be adequately illustrated by considering the realization
of a single complex pole pair. An impulse invariant digital filter

corresponding to an analog filter satisfying the differential equation

¥ +2ayt(a® +b2) y =a y(t) + x(t) (73)
satisfies the difference equation5 L9]

-2ah

- ~ah _ _ _-at
Yo+o 2e ~ cos bhyn+1 e Yo + h[xn+2 e " cos bh Xn*ij' (74)

Equation (73) corresponds to the transfer function

+
I(s) = ———
(sta)
which has a pair of complex poles
+
A = - a = jb.

1,2

It is convenient in using the results of section 5 to consider a
first order equation with y(t) complex, instead of (73) in which y(t)

is real. It is straight forward to show that the first order equation

5Digital filter designs are typically normalized to h = 1. This does
not seem approximate here and an h multiplying the braketed term in
(74) is added to Rader and Gold's equation.
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v () = A y(t) + x(t)s (75)

with y(t) and x(t) complex and A = ~ a+jb

has the property that R, y(t) in (73) satisfies (73) if the excitation is Ry

%x(t). The difference equation corresponding to (74) can similarly be shown

to be

v, =Ky, thx (76)

* Ah
where Yy is complex and K = e .
The techniques of section 5 will now be used to determine the accuracy
of ‘the solution of (78) as an approximation to the solution of (75). Equation
(75) can be identified as being identical to the test problem of (57) if the

excitation is chosen to be yébt. Hence, the equations for Er and E_, given

f
in (62) - (72) can be used for accuracy by identifying ¢y, C,, and p for the
algorithm of (76).

The principle error function g(t,Y), which is given by (59) for differen-
tial equations in the form of (78) or (57), gives implicitly the required
constants C,s C

1" 2

The prineciple error function for (76) is evaluated as follows. The

and p.

chain of approximations

~-(p+1)
3(t,Y) > plu,¥) » =0 T ., (17)

where (n+l)h = p = n h, has been established and discussed above. Thus, what

is required is Tn+l given by
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== == \
T . =8, - Y(n4D)n]

(78)
where &n+l and Y[ (n+l)h)] are defined with (23) above.
From (78), 9n+1 is expressed us
§ g = e @I y(an) 4 ny[(ne1)n] . (79)

Tae true solution of (79) at (n+l)h, Y[(n+l)h], can be expressed in terms of the

soultion at nh using the well known analytic solution for linear constent

coefficient equations. The result is

(n+l)h
Y[ (n+1)n] = &~ (®"IP)B y(mn) 4 fnz B s - )
Using (79) and (80), (78) becomes
(n+l)h
Tn+1 = h x[(n+1)h] - I‘ e'(&'db)[(n-*'izssvgv . (81)

The integrand of the integral appearing in (81) can be expanded in a Taylor

series and the integration carried out term by term to obtain

L2 :
Tivpr=ZH {(a-jb) x[n+l)n] + x[(n+l)h]} + higher order terms (82)

The fact that T, is O(hz), shows that the algorithm of (76 ) is first order so

that p = 1. Thus using (77),

B(6,Y) ~ + % [ (a-gb) x(t) + x(t)] (83)

Note that with x(t) = 7ewt, #(t,Y) becomes
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wt

#(t,Y) ~ 4 '%(cn-ﬂ've (84)

which is in the form of (59) with C, =0andC, = 2.

Tt is interesting to note that since C, = O, #(t,Y) is independent of ¥,

1
there is no root shift and Er = 0, This of course results from making use of
the analytic solution of the differential equation in obtaining the homogeneous
part of the difference equation in the digital filter design.

The forced error E, is not zero and, in fact, in this example is that of

a first order method. Equation (69) gives E, for this example as

f

E, = L h0ew) . (85)

and the approximations of (70) through (72) become

|E.l ~ % hlo| , |A] << |0 (86)
1Bel = nl| 5 ||z lul (87)
|Eg~ 2 nr], IA] >> Jo| . (88)

Among other conclusions that can be drawn from these expressions is the fact
that for a fractional forced error of less than 1%, h|w| < .01, or 628

samples must be made per cycle of the highest forcing frequency.

H=3 Stiff Equations

Tn numerical analysis,equations with widely separated eigenvalues are re-
ferred to as "stiff" equations. Difference algorithms corresponding to stiff
differential equations usually require a considerable computing time for solu-

tion. The reason for this fact can be illustrated by considering algorithms
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for solving an equation whose solution is given by

B -t At
y(t) = Ale 17+ AE e "2 (89)

where M and KZ will be assumed to be real with x2==axl’and.a large,
Tn solving most problems, a solution over at least one time constant of
the lowest frequency is typically required. Thus the solution time T must

satisfy an equation of the form

T=1/n (90)
At the same time the solution must be both stable and accurate in the

sense defined above and this imposes an upper limit on hA for all eigenvalues.

The latter requirement can be expressed for this example by the eguation

where B is determined by a particulsr algorithm.
A relation for the number of steps, N, required to obtain a solution under

the condition gtated results from combining (90) and (91) to obtain,

Q.
N = 5 - (92)

Values for B can be obtained from Table V  which shows limits on real
roots for stability and reasonable root shift for typical algorithms. The
valueg range from 1.05 for the RK-4 to .02 for the Euler method. If ¢ is
assumed o be 105 the required N becomes 1050 for the RK-L4 and 43,500 for the

Euler method.
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