SAMMSOR II - A FINITE ELEMENT

aerospace engineering oepartment

TEXAS A\&M UNIVERSITY

JOE R. TILLERSON AND WALTER E. HAISLER

> TEES-RPT-70-18
> OCTOBER 15, 1970

SAMMSOR II - A FINITE ELEMENT PROGRAM TO DETERMINE STIFFNESS AND MASS MATRICES OF SHELLS OF REVOLUTION

Joe R. Tillerson* and Walter E. Haisler**

October 15, 1970
TEES-RPT-70-18
Texas A\&M University
College Station, Texas

[^0]** Assistant Professor, Aerospace Engineering Department

ABSTRACT

A user's guide for the SAMMSOR II (Stiffness And Mass Matrices for Shells Of Revolution) computer code is presented in this report. The finite element method of analysis is employed using a curved shell of revolution element to determine structural stiffness and mass matrices. Documentation of the analysis technique is included along with user hints and a discussion of the program limitations. Instructions for preparing the input data is included along with procedures for modifying the code. This program has the capability of internally generating the geometry of a number of important classes of shell configurations (such as shallow caps, cylinders, cones, hemispheres, etc.). Several example problems are presented to aid the user.

ACKNOWLEDGEMENTS

This research was supported under Sandia Contract 82-3683, Sandia Corporation, Albequerque, New Mexico and NASA Grant NGL-44-001-044, Manned Spacecraft Center, Houston, Texas. Appreciation is expressed to Dr. Walter Von Riesemann of Sandia and Dr. Fred Stebbins of the Manned Spacecraft Center who served technical monitors for this research effort.

Appreciation is also expressed to the principal investigator for the research grants, Dr. James A. Stricklin, Professor, Aerospace Engineering Department, Texas A\&M University, for his supervision and guidance in the development of this program.

SOR - Shell Of Revolution
 Computer Programs

A family of compatible computer codes for the analysis of the shell of revolution (SOR) structures has been developed by researchers at Texas A\&M University. These analyses employ the matrix displacement method of structural analysis utilizing a curved shell element. Geometrically nonlinear static and dynamic analyses can be conducted using these codes. The important natural frequencies and mode shapes can also be determined by employing another of the codes. Efficient programming provides codes capable of performing these desired analyses in relatively small amounts of computer time.

Each of these programs has been extensively tested using problems the solutions to which have been reported by other researchers in order to establish the validity of the codes. In addition, the capabilities of the codes have been demonstrated in a number of publications by pre= senting solutions to problems which were unsolved by other researchers.

SAMMSOR II - Stiffness And Mass Matrices for Shel1s Of Revolution are generated utilizing the first member of this family. This program accepts a description of the structure in terms of the coordinates and slopes of the nodes and the properties of the elements joining the nodes. For shells with simple geometries (such as cylinders, shallow caps, hemispheres, etc.) the shell geometry can be internally generated. Utilizing the element properties, the structural stiffness and mass matrices are generated for as many as twenty harmonics and stored on maqnetic tape. Each of the other SOR programs utilizes the output tape qenerated by SAMMSOR as input
data for the respective analyses. One advantage of creating the stiffness and mass matrices in a separate program is that a variety of analyses can be performed on the same shell configuration without having to create the matrices more than once. Obviously, a variety of boundary and loading conditions can be employed without having to create new mass and stiffness matrices for each case.

SNASOR II - The Static Nonlinear Analysis of Shells Of Revolution subjected to arbitrary mechanical and thermal loading is performed using the second computer code. Utilizing the stiffness matrices generated by SAMMSOR and the loading conditions and boundary conditions input to SNASOR II, the equilibrium equations for the structure are generated. The nonlinear strain energy terms result in pseudo generalized forces (as functions of the displacements) which are combined with the applied generalized forces. The resulting set of nonlinear algebraic equilibrium equations is solved by one of several methods: Newton-Raphson type iteration, incremental stiffness method, or a modified incremental stiffness method. In general, the Newton-Raphson procedure is the best and yields accurate results for highly nonlinear problems.

DYNASOR II - The third code is used for the DYnamic Nonlinear Analysis of Shells \underline{O} Revolution. The equations of motion of the shell are solved using Houbolt's numerical procedure with the nonlinear terms being moved to the right-hand side of the equilibrium equations and again treated as generalized loads. The displacements and stress resultants can be determined for both symmetrical and asymmetrical loading conditions. Asymmetrical dynamic buckling can be investigated using this program. Solutions can be obtained for highly nonlinear problems in reasonable periods of time on the computer utilizing as many as five of the harmonics generated
in SAMMSOR. A restart capability is incorporated in this code which allows the user to restart the program at a specified time without having to expend the computer time necessary to regenerate the priorecespoese. FAMSOR - Frequencies And Modes for Shells Of Revolution can be determined using the fourth code. Using the stiffness matrix generated by SAMMSOR and a lumped mass representation developed from the consistent mass matrix generated by SAMMSOR, a specified number of natural frequencies (beginning with the lowest or fundamental frequency) are obtained using the inverse iteration method. The mode shapes for each of the frequencies are also obtained.

Table of Contents

Page
ABSTRACT $i 1$
ACKNOWLEDGEMENTS iii
SOR - SHELL OF REVOLUTION COMPUTER PROGRAMS iv
TABLE OF CONTENTS vii
NOMENCLATURE viii
INTRODUCTION 1
SECTION
I METHOD OF ANALYSIS 3
II GUIDELINES AND PROGRAM LIMITATIONS 10
III PROGRAM INPUT 15
IV EXAMPLE PROBLEMS 30
REFERENCES 47
APPENDIX

1. Description of SAMMSOR II Subroutines 49
2. Glossary of Significant Fortran Variabies in SAMMSOR II 51
3. Subroutine Call Map SAMMSOR II 56
4. Flow Chart of Basic Operations SAMMSOR II 57
5. Program Output 59
6. Modification of Program Capacity 62
7. Coding Sheet for Input Data 64

NOMENCLATURE

Variable

$$
\begin{aligned}
a_{1}, a_{2}, a_{3} & =\text { coefficients in the expansion for shell slope repre- }^{\text {sentation }} \\
C_{1} & =E_{S} t /\left(1-v_{s \theta} \nu_{\theta s}\right) \\
C_{2} & =E_{\theta} t /\left(1-v_{s \theta} \nu_{\theta s}\right) \\
D_{1} & =E_{S} t^{3} /\left[12\left(1-\nu_{s \theta} \nu_{\theta s}\right)\right] \\
D_{2} & =E t^{3} /\left[12\left(1-\nu_{s \theta} \nu_{\theta S}\right)\right] \\
E & =\text { modulus of elasticity } \\
\mathrm{e} & =\text { linear strains and rotations of shell middle surface } \\
G & =\text { shear modulus } \\
G_{1} & =\text { Gt } \\
G_{2} & =\text { Gt }{ }^{3} / 12 \\
I A & =\text { number of Fourier cosine harmonics } \\
{[K] } & =\text { structural stiffness matrix } \\
{[M] } & =\text { structural mass matrix } \\
\mathrm{Q} & =\text { generalized nodal displacement (cylindrical coordinates) } \\
\mathrm{T} & =\text { radial coordinate normal to the axis of revolution } \\
U & =\text { meridional coordinate } \\
& =\text { strain energy }
\end{aligned}
$$

```
u, v,W = meridional, tangential, and normal displacements, respectively
    z = axial coordinate
    \alpha = generalized coefficient of a displacement function
    0 = circumferential angular coordinate
    v = Poisson's ratio
    \phi = angle between meridian and axis of revolution in the unde*
        formed shell
    x = changes in curvature
    \sigma = stress component
```


INTRODUCTION

The SAMMSOR (Stiffness And Mass Matrices for Shells Of Revolution) II code has been developed as the basic code used by the three SOR family analysis programs --- SNASOR II, DYNASOR II, and FAMSOR. This report is a user's guide for the SAMMSOR II code and is divided into four self-contained sections with an extended appendix.

The first section of the report describes the method of analysis used to obtain the output matrices. This documentation is not intended to be a detailed derivation of the element and structural properties but is intended to show the basic sets of equations employed in calculating the element and structural properties.

A section providing guidelines for the user and enumerating many of the limitations of the code is then presented. The hints contained in this second section concern mainly the selection of an element idealization for the shell. The limitations presented result partly from the method of analysis and partly from the programming procedures and storage capacity utilized.

A description of the input data required by the code is presented in the third section. Limitations placed upon the input parameters are once again presented and examples are provided in cases where the wording might, at first glance, seem to be unclear or insufficient.

A final section containing a number of example problems follows the description of the input data. Copies of the input data required for each case are presented along with selected output that may be scrutinized by a user who desires to check his output. The user should study and understand the example problems before attempting to input to the code.

While the appendix which follows the main report may seem to be quite extensive, it is believed that the user will find the various sections extremely useful, especially if a thorough understanding of the program is desired. A description of the various subroutines, a glossary defining the significant FORTRAN variables, a subroutine call map and a flow chart of the basic operations are included in this ap pendix. A discussion of the program output is also included. Since undoubtedly some users will find it neccessary to modify the element capacity of the code, a section in the appendix describes this procedure. A sample coding sheet for use in preparing input data is provided to aid the user.

An extended effort has been made to anticipate the questions which a user might ask before running the program. In particular, the report attempts to provide guidelines and hints for the successful use of the options for inputting the shell geometry and for the selection of the element idealization.

SECTION I

METHOD OF ANALYSIS

Introduction

The purpose of this section is to provide theoretical documentation of the equations and procedures employed in the SAMMSOR II code to calculate the mass and stiffness matrices used by the Shell of Revolution (SOR) analysis programs. This program uses the curved shell element of Stricklin, Navaratna, and Pian ${ }^{1}$ and the displacement function investigated by Mebane. ${ }^{2}$ Since the nonlinear terms are treated as pseudo generalized forces in both the static ${ }^{3}$ and dynamic ${ }^{4}$ nonlinear analyses, the stiffness and mass matrices remain the same as in the linear analysis of shells of revolution. Detailed presentations of the methods of linear analysis can be found in Refs. 1, 2, and 5.

Structural Idealization

The shell of revolution is idealized as a sequence of consecutively numbered curvied elements. The slope of each element (Fig. 1) is reprem sented by a second-order polynomial in the meridional distance s :

$$
\begin{equation*}
\phi=a_{1}+a_{2} s+a_{3} s^{2} \tag{1}
\end{equation*}
$$

where ϕ is the slope between the vertical axis and a tangent to the shell in the meridional direction, s is the meridional distance along the element, and a_{1}, a_{2}, and a_{3} are coefficients that are evaluated by requiring the slopes of the structural idealization and the actual shell to be the same at the nodal points.

Fig. I GENERALIZED COORDINATES OF SHELL ELEMENT

Displacement Functions

The displacements of an element in the normal, meridional, and circumferential directions are represented by cubic polynomials in the meridional distance s and by a Fourier expansion in the circumferential angle θ :

$$
\begin{align*}
w= & \sum_{i=0}^{I A}\left[\alpha_{1}^{\mathbf{i}}+\alpha_{2}^{\mathbf{i}} s+\alpha_{3}^{\mathbf{i}} s^{2}+\alpha_{4}^{\mathbf{i}} s^{3}\right] \cos \mathbf{i} \theta \\
u= & \sum_{\mathbf{i}=0}^{I A}\left[\alpha_{5}^{\mathbf{i}}+\alpha_{6}^{\mathbf{i}} s+\alpha_{9}^{\mathbf{i}} s(s-\ell)+\alpha_{10}^{\mathbf{i}} s^{2}(s-\ell)\right] \cos \mathbf{i} \theta \tag{2}\\
v= & \sum_{i=0}^{I A}\left[\alpha_{7}^{\mathbf{i}}+\alpha_{8}^{\mathbf{i}} s+\alpha_{11}^{\mathbf{i}} s(s-\ell)+\alpha_{12}^{\mathbf{i}} s^{2}(s-\ell)\right] \sin \mathbf{i} \theta
\end{align*}
$$

In these expressions, the α 's are the generalized coefficients; ℓ is the length of an element in the meridional direction; and \mathbf{i} is the harmonic number.

Four degrees of freedom of the element are eliminated using the technique of static condensation. 6 After condensation each element has an 8×8 element stiffness matrix. The net result is therefore a stiffness matrix based upon higher order displacement functions without requiring additional geometrical data about the elements.

Linear expressions for u and v are used in the SAMMSOR I codes ${ }^{4}$ but it has been recently shown ${ }^{2}$ that the cubic polynomials better represent rigid-mody motion and converge somewhat faster than the linear displacement fields. The input data for the SAMMSOR I and II codes is identical.

In both the SNASOR II and DYNASOR II codes, linear displacement functions are used for evaluating the nonlinear terms; justification for this is provided in Ref. 4.

The generalized coordinates, q_{j}, of the shell are defined as the displacements and rotations at the nodes in cylindrical coordinates for each harmonic (Fig. 1). The shell generalized coordinates are related to the generalized coefficients, α, through the relation

$$
\begin{equation*}
\{\alpha\}=[A]\{q\} \tag{3}
\end{equation*}
$$

where

$$
[A]=[B]^{-1}[\Psi]^{-}
$$

The matrices $[B]^{-1}$ and $[\Psi]^{\text {, }}$ are presented as expressions (5) and (6) in Ref. 3.

Strain-Displacement Relations

While the nonlinear shell theory of Novozhilov ${ }^{7}$ is applied in the SNASOR and DYNASOR codes the method of treating the nonlinear terms allows calculation of the stiffness matrix for each harmonic based upon the following linear strain-displacement relations for the midsurface strains:

$$
\begin{align*}
& e_{s}=(\partial u / \partial s)-\phi^{\prime} w \\
& e_{\theta}=(1 / r)[(\partial v / \partial \theta)+u \sin \phi+w \cos \phi] \tag{4}\\
& e_{s \theta}=(1 / r)(\partial u / \partial \theta)-(v / r) \sin \phi+\partial v / \partial s
\end{align*}
$$

where

$$
\phi^{\prime}=\frac{\partial \phi}{\partial s}
$$

The changes in curvature of the shell element are given by:

$$
\begin{align*}
& x_{s}=-\partial \hat{e}_{13} / \partial s \\
& x_{\theta}=-(1 / r)\left(\partial \hat{e}_{23} / \partial \theta\right)-(1 / r) \sin \phi \hat{e}_{13} \tag{5}\\
& x_{s \theta}=-(1 / r)\left(\partial \hat{e}_{13} / \partial \theta\right)+(1 / r) \sin \phi \hat{e}_{23}-\partial \hat{e}_{23} / \partial s
\end{align*}
$$

where

$$
\begin{aligned}
& \hat{e}_{13}=(\partial w / \partial s)+u \phi^{\prime} \\
& \hat{e}_{23}=(1 / r)(\partial w / \partial \theta)-(v \cos \phi) / r
\end{aligned}
$$

The strains at any point through the thickness of the shell can be written as

$$
\begin{align*}
& \varepsilon_{s}=e_{s}+x_{s} z \\
& \varepsilon_{\theta}=e_{\theta}+x_{\theta} z \tag{6}\\
& \varepsilon_{s \theta}=e_{s}+x_{s \theta} z
\end{align*}
$$

Stress-Strain Relations

The stress-strain relationships used in this analysis are valid for an orthotropic material whose principal lines of orthotropy are the s and θ directions. These expressions can be written as:

$$
\begin{align*}
\sigma_{s} & =\frac{E_{s}}{1-v_{s} \theta_{\theta S}}\left(\varepsilon_{s}+\nu_{s \theta} \varepsilon_{\theta}\right) \\
\sigma_{\theta} & =\frac{E_{\theta}}{1-v_{s \theta} \nu_{\theta s}}\left(\varepsilon_{\theta}+v_{\theta s} \varepsilon_{s}\right) \tag{7}\\
\sigma_{s \theta} & =G \varepsilon_{s \theta}
\end{align*}
$$

Strain Energy

The strain energy expression for orthotropic shells is given by

$$
\begin{equation*}
U=\frac{1}{2} \iiint\left[\sigma_{s} \varepsilon_{s}+\sigma_{\theta} \varepsilon_{\theta}+\sigma_{s \theta} \varepsilon_{s \theta}\right] r d \theta d s d z \tag{8}
\end{equation*}
$$

Substituting Eqs. 7 into Eqs. 8 and integrating through the thickness,
the strain energy can be expressed in the following form

$$
\begin{align*}
U=\frac{1}{2} \iint & \left(C_{1} \varepsilon_{s}^{2}+C_{2} \varepsilon_{\theta}^{2}+2 v_{s \theta} C_{1} \varepsilon_{s} \varepsilon_{\theta}+G_{1} \varepsilon_{s \theta}^{2}+D_{1} x_{s}^{2}+D_{2} x_{\theta}^{2}\right. \\
& \left.+2 v_{s \theta} D_{1} x_{s} x_{\theta}+G_{2} x_{s \theta}^{2}\right) r d \theta d s \tag{9}
\end{align*}
$$

The strain energy can also be written as a quadratic form and the element stiffness matrix calculated using

$$
\begin{equation*}
u^{i}=\left[q^{i}\right]\left[k^{i}\right]\left\{q^{\mathbf{i}}\right\} \tag{10}
\end{equation*}
$$

where i denotes the harmonic number. This procedure has been explained in detail in Refs. 1 and 3.

Mass Matrix

The element mass matrices, which include the effects of rotary inertia, can be obtained by considering the expression for the kinetic energy:

$$
\begin{equation*}
T=\frac{1}{2}\left\{_{01}\left(\dot{u}^{2}+\dot{v}^{2}+\dot{w}^{2}\right) d m\right. \tag{11}
\end{equation*}
$$

Substituting the proper derivatives of the displacement functions, the kinetic energy can be written as a quadratic form in the generalized velocity coefficients.

$$
\begin{equation*}
T=\frac{1}{2}[\dot{\alpha}][\bar{M}]\{\dot{\alpha}\} \tag{12}
\end{equation*}
$$

The $\{\dot{\alpha}\}$ matrix is related to the velocities of the generalized structural coordinates, $\{\dot{q}\}$, by the transformation

$$
\begin{equation*}
\{\dot{\alpha}\}=[A]\{\dot{q}\} \tag{13}
\end{equation*}
$$

The terms in $[\bar{M}]$ are listed in the appendix of Ref. 4. Because of the in clusion of the effects of rotary inertia, the mass matrix is a function of
the harmonics being used. The mass matrix in structural coordinates is then obtained from

$$
\begin{equation*}
\left[\mathrm{M}^{\mathrm{e}}\right]=[\mathrm{A}]^{\top}[\overline{\mathrm{M}}][\mathrm{A}] \tag{14}
\end{equation*}
$$

The mass matrices for the individual elements are then combined (in the same way as for element stiffness matrices) to obtain the structural mass matrix.

SECTION II

Guidelines and Program Limitations

Guidelines for the use of the SAMMSOR II code along with the limitations placed on the analysis are enumerated in this section. Some of these limitations result from the method of analysis utilized while others result from the programming procedures which are used. Most of these limitations are minor in nature and hence this code, when coupled with the other compatible SOR programs, can be used to analyze a large number of practical shell of revolution problems.

First of all, the shell must be idealized as a sequence of curved elements. As is the case with most computer codes using the finite element method, the selection of the element breakdown of the structure requires the application of engineering judgement. The following considerations should prove most helpful in the selection of the idealization:
(1) Elements should be closely spaced in regions where rapid variations of the displacements and stresses are anticipated.
(2) Elements should be concentrated in regions of rapidly varying material properties.
(3) The change in slope over an element should, in general, be kept less than about 10°.

Examples of judicious choices of element breakdown can be seen by considering the example problems presented in Section IV. If doubt still exists about how many elements to use, it is recommended that the maximum number of elements allowed by the program (50) be employed.

The material used in the shell may be isotropic or orthotropic. For an orthotropic material, the principal directions of orthotropy must be in
the meridional and circumferential directions. It is also assumed that the material properties for any aiven element are constant in the two directions, but these properties may vary from element to element. The properties of an element must be constant through the thickness of the element. The thickness of an individual element is constant, but thickness variations from element to element are allowed.

Slope discontinuities are not allowed between elements, i.e. the slope at the end of element \mathfrak{i} must equal the initial slope of element $\mathbf{i}+1$.

The code requires that the units for the input, and hence output, data be given in inch-pound-seconds. A different set of consistent units may be utilized if the value of the FØRTRAN variable GRAVTY is changed in subroutines AZERO and NONAB.

The integrals which are required for the calculation of the element stiffness and mass matrices are evaluated exactly in the circumferential direction, but Simpson's rule is applied at twenty-nine (29) equally spaced stations along the element in the meridional direction. Fewer stations could probably be used for most problems, but good results have been obtained in all cases using 29 stations.

Stiffness and mass matrices may be generated for the first 20 Fourier harmonics. In general, it has been found that few problems require more than $3-5$ of the harmonics. Unless the exact number of harmonics to be used by the solution programs is known, it is better to generate a relatively large number of harmonics say (6-8) in SAMMSOR so that they will be available if needed.

Utilizing only the cosine harmonics necessitates that the meridional line traced by $\theta=0$ be selected so that the displacements, u and w, of the shell will be symmetrical about this line in the θ - direction.

A maximum of fifty (50) elements are allowed in the SAMMSOR code. It is believed that 50 elements is sufficient for a very large number of shell of revolution problems. More elements may be needed for analyzing geometrically complex structures such as the shell with negative Gaussian curvature depicted in Fig. 2-d of Ref. 3. Since undoubtedly some users will find it necessary to change the maximum allowable number of elements in the program, instructions for changing the capacity are given in Appendix 6.

A different output tape unit number (NT - Card III) must be specified for each of the cases of a particular run. Logical units 5 and 6 are used for the card reader and printer. Three scratch tapes are used by the code.

Utilizing FORTRAN IV language, it has been noted that double-precision arithmetic is necessary for operation on an IBM $360 / 65$ computer. This additional word length is not believed necessary when the program is employed on machines with a longer built-in word length (such as a CDC 6600 machine).

The following limitation is placed upon the values of the Poisson's ratios of the materials:

$$
v_{S \theta} v_{\theta S}<1
$$

If this criterion is violated, the stiffness matrix is no longer positive definite.

The slope, ϕ, at a node is considered positive if the tangent drawn in the direction of increasing node numbers is rotated counterclockwise from the positive z-axis. A negative slope exists if the tangent is
rotated clockwise from the positive z-axis. The magnitude of ϕ is thus limited to the range $-180^{\circ} \leq \phi \leq 180^{\circ}$. Considering Fig. 2 it should be noted that at nodes a and b the value of ϕ is positive while nodes c and d give rise to negative values of ϕ. Reversing the direction of node numbering therefore changes both the sign and the magnitude of the slope at a node.

Restrictions or limitations placed upon input geometry are:

1. The magnitude of ϕ must be in the range $-180^{\circ} \leq \phi \leq 180^{\circ}$.
2. A generating segment cannot have a change in slope greater than 180° (this restriction is easily circumvented by using a greater number of segments to generate the element data).
3. The generating segments must always be placed in the r - z coordinate system so that r and z are always positive (first quadrant).
4. The circular and parabolic segments cannot be degenerated to flat elements (linear segments).
5. A segment cannot contain, except at an end point, the "discontinuity" in slope at $\pm 180^{\circ}$. To circumvent this restriction use one segment whose slope is -180° at its final node and a second segm ment whose initial slope is $+180^{\circ}$.
6. Only elements which are consecutively numbered may intersect. This restriction is imposed to maintain the banding which is present in the stiffness and mass matrices.

In addition to the major limitations presented here, the section describing the input to the code enumerates a number of minor requirements which are necessary for valid input data. Other limitations and guidelines are also presented in the user's manuals for the solution programs:

SNASOR II, DYNASOR II, and FAMSOR.

Axis of Revolution

FIG. 2 SIGN CONVENTION FOR SLOPE SPECIFICATION

SECTION III

Program Input

The SAMMSOR code has been written so that the program can readily be utilized by investigators who are not familiar with the inner workings of the program. Using the hints and adherring to the limitations presented in the previous section, it is believed that a user with only a superficial knowledge of the finite element method can effectively employ the SAMMSOR II code.

The double-precision version of the code requires a storage space of about 190K bytes on the IBM $360 / 65$. The single-precision code requires approximately 110 K bytes. The code is written in the FORTRAN IV language.

The input data for the program consists of one card I (card types will be explained on the following pages) followed by a complete data set for each of the cases to be run. A final card VIII is added at the end of the last data set. A case consists of cards of type II through VII and is all the input data required to generate the desired stiffness and mass matrices for a particular shell. The set of cards II - VII for a case is also referred to as a data set. There is no limit on the number of cases which can be included per run, but the logical unit number of the output tape (NT from Card II) must be different for each case of a run.
I. RUN CONTROL CARD

This card is used to identify the number of cases to be run and the logical unit numbers of the scratch tapes used in the run. (ONLY ONE CARD I IS USED PER RUN.)

Card Type I Format (4I5)
Columns Variable Description

1-5 NCASES The number of different data sets utilized for this run.

6-10 ND Logical unit number for scratch tape. Al1 the input data for the run is read onto this unit at the start of the run and is stored here until needed in the program.

11-15 NS Logical unit number for scratch tape used by the program.

16-20 NS2
Logical unit number of a second scratch tape used by the code.
II. CASE IDENTIFICATION CARDS

These cards allow the user to print out comments which identify the problem being run.
A. Control Card (ONE CARD II-A PER DATA SET)

Card Type II-A Format (2I5)

Columns Variable Description

1-5 NCARDS Number of comment cards (Type II-B) which follow.

6-10 NT Unit number of the tape on which stiffness and mass will be stored. The value of NT must be different for each case of a run.

B. Identification Cards

The information printed on these cards is printed as output for the SOR programs and should identify the particular shell being analyzed. (IF NCARDS=0, OMIT CARDS II-B, OTHERWISE INCLUDE NCARDS OF TYPE II-B.)
Card Type II-B Format (20A4)
Columns Variable Description

1-80 COMENT Any desired alphanumeric information may be printed on these cards.
III. CASE CONTROL CARD

Identifies the number of elements and harmonics used and gives the unit number for the output tape. (ONE CARD III PER DATA SET)

Card Type	Format (3I5)	
Columns	Variable	Description
1-5	NELEMS	Total number of elements used to idealize the shell (NELEMS ≤ 50).
6-10	IA	Total number of harmonics for which mass and stiffness matrices are to be calculated ($1 \leq I A \leq 20$).
11-15	NPRNMS	If the mass and stiffness matrices are to be printed, set NPRNMS $=1$. If not, set NPRNMS $=0$.

IV. MATERIAL PROPERTIES

The elastic and mass properties in the meridional and circumferential directions are constant over an element, but the properties can vary from element to element. (THE NUMBER OF CARDS OF TYPE IV \leq NELEMS (CARD III) PER DATA SET.)

Card Type IV	Format (2I5, 5F10.0)	
Columns	Variable	Description
1-5	IELM1	Number of the first element to which the properties on this card apply.
6-10	IELM2	Number of the last element to which the properties on this card apply.
11-20	EE1	Young's Modulus of elasticity in the meridional direction (psi).
21-30	EE2	Young's Modulus of elasticity in the circumferential direction (psi).
$31-40$	GG	Shear modulus (psi). For an isotropic material, GG=E/2(1+v).
41-50	FFNU1	Poisson's ratio. The contraction in the meridional direction due to stress in the circumferential direction.
51-60	RHO	Density of the material (1b./in. ${ }^{3}$).

NOTE: The elastic and mass properties can be read in for each individual element using NELEMS cards of type IV. If the properties of a consecutively numbered group of eTements are the same, the input data can be simplified considerably by using only one card to describe the properties of this group of elements. In particular, if the elastic and mass properties of all the elements are the same, only one card of type IV is necessary per data set.

EXAMPLE: Consider a shell that is idealized using 20 elements. Assuming that the elastic properties of elements 1 through 10 are the same, different properties exist for the eleventh element and elements 12 through 20 have the same properties as the first groun. Three cards should be
used to input the properties of the shell. The following values for IELM1 and IELM2 should be used.

```
Card 1: IELM1 = 1 IELM2 = 10
Card 2: }\quad\mathrm{ IELM1 = 11 IELM2 = 11
Card 3: }\quad\mathrm{ IELM1 = 12 IELM2 = 20
```

A less sophisticated procedure would be to use one card for each element. Note that the properties for the elements $12-20$ must be read in on a different card from those of elements 1-10.

V. THICKNESS

It is assumed that the thickness is a constant over the element in the meridional and the circumferential directions. Essentially the same procedure is used here as is employed with cards IV for the material properties. (THE NUMBER OF CARDS OF TYPE V MUST BE \leq NELEMS FOR ANY GIVEN DATA SET.)

Card Type	Format (2I5, F10.0)	
Columns	Variable	Description
1-5	IELM1	Number of the first element to which thickness properties on this card apply.
6-10	IELM2	Number of the last element to which thickness properties on this card apply.
11-20	TT	Thickness of the shell element or group of elements (in).

VI. SHELL GEOMETRY

A most important part of any shell of revolution analysis is the gen eration of the qeometry and the element idealization of the shell. For this reason, an extended discussion follows which describes in detail the procedure used to generate the geometry of the idealized shell. Slope discontinuities between elements are not allowed.

The shell nodal coordinates and slopes can be generated using either of two options available (or a combination of the two):

OPTION 1: The user may specify the coordinates and slopes of the nodes by inputting the values of these parameters at each of the nodes.

OPTION 2: For shells of relatively simple geometry (shallow caps, hemispheres, cylinders, etc.) the program has the canability of generating internally the desired nodal point data.

The shell is considered as being composed of one or more seqments, with the segments being divided, in turn, into one or more sub-segments. The sub-segments are then divided into the desired number of finite elements. A segment may contain only one element or the entire shell may in some cases be considered as a single segment. The choice of the segment breakdown depends upon the ootion selected for inputting the shell geometry as well as the geometry of the shell itself.

If the geometry for a particular seament is to be generated internally, the profile of the segment must be linear, circular or parabolic. A segment is divided into a maximum of five sub-segments with each sub-segment being divided, inturn, into a specified number of equally spaced elements. Obviously, if the segment consists of only one element, no division into sub-segments is necessary. A set of cards (type VI) is required for each segment, with a set consisting of one card of types VI-A, VI-B, and VI-C .-. in that order.

In order to generate the reauired nodal point data for a given she 1.1 , the following procedure must be used:

1. Select a breakdown of the shell into segments.
2. Establish the desired breakdown of the segments into sub-segments and determine the number of elements to be used for each sub-segment.
3. Input the reauired three data cards for each segment until the data for all the segments has been input.

The total number of data cards necessary for establishing the geometry of the entire shell is equal to three times the number of segments. If the first option is used for generating the geometry, the user will find that the total number of cards required will equal (3* NELEMS) where NELEMS was defined on card III. However, only (NELEMS + 1) of these cards will be different since duplicate cards and blank cards are used. The procedure may therefore seem somewhat cumbersome when the user desires to specify the slopes and coordinates of each node. The procedure is, however, extremely simple when the nodal point data is to be internally generated. In addition, it has been found that fewer input errors arise when using this simple but repetitious procedure. It is for these reasons that the procedure is used in the code. An example of the effective use of this scheme can be seen by considering the first example problem presented where only three cards are reauired to aenerate the desired nodal data.

A. Segment initial node data

The data furnished by this card provides the node number, slope and coordinates of the initial node of a given seqment.

Card Type	Format (I5, 3F10.0)	
Columns	Variable	Description
1-5	NN1	Number of the node at the beginning of this shell segment.
6-15	Z1C	Axial coordinate of node NN1.
16-25	R1	Radial coordinate of node NN1.
26-35	PHII	Slope of the shell in the meridional direction at node NN1 (degrees).

***The slopes PHI1 and PHI2 are measured from the positive axis of revolution to the tangent to the meridian (see Fig. 2). Refer to Fig. 3 for an explanation of the input parameters.
B. Segment terminal node data

The data furnished by this card provides the node number, slope, and coordinates of the final node of a given segment.

Card Type	Format (I5, 3F10.0)	
Columns	Variable	Description
1-5	NN2	Number of the node at the end of the segment (NN2 must be > NN1).
6-15	Z2C	Axial coordinate of node NN2.
16-25	R2	Radial coordinate of node NN2.
26-35	PHI2	Slope of the shell in the meridional direction at node NN2 (degrees).

Axis of Revolution

FIG. 3 INPUT VARIABLES SPECIFYING THE GEOMETRY OF A SHELL SEGMENT

C. Coordinate generation control card

This card controls the internal qeneration of data for the shell segment whose end coordinates are described on cards III-A and III-B of this set by describing the type of shell profile and the element breakdown to be used in the idealization of the segment. Each segment can be divided into a maximum of five sub-segments.

If (NN2 $=$ NN1 +1), obviously, the segment under consideration consists of only one element and the coordinates and slopes at the two adjacent nodes completely define the geometry of the shell seament. If this is the case, the user must include a card III-C in the set; but it must be blank.

```
Card Type VI-C Format (I5, 5(I5, F10.0))
```

Columns	Variable	Description
1-5	ICLASS	```Control parameter which defines the shell profile ICLASS = 1 - linear profile ICLASS = 2 - circular profile ICLASS = 3 - parabolic profile```
6-10	NERAT (1)	This data specifies the number of elements
11-20	RA (1)	and the relative lengths (decimal frac-
21-25	NERAT (2)	tions) into which the sub-segments of the
26-35	RA (2)	shell segment are divided. The sum of the
36-40	NERAT (3)	RA (I)'s must equal 1.0.
41-50	RA (3)	
51-55	NERAT (4)	
56-65	RA (4)	
66-70	NERAT (5)	
71-80	RA (5)	

An understanding of the use of this card can be obtained by studying the input data for the example problems and by considering the following example. Consider a circular segment to be divided into four sub-segments which are each divided into five elements. Sub-segment lengths are
given as $1 / 10,2 / 10,1 / 2$, and $2 / 10$ respectively of the length of the segment. The following values would be used on card VI-C for this segment:

$$
\begin{aligned}
\operatorname{ICLASS} & =2 \\
\operatorname{NERAT}(1) & =5 \\
\operatorname{NERAT}(2) & =5 \\
\operatorname{NERAT}(3) & =5 \\
\operatorname{NERAT}(4) & =5 \\
\operatorname{NERAT}(5) & =0
\end{aligned}
$$

(circular profile)

$$
R A(1)=0.10
$$

$$
R A(2)=0.20
$$

$$
R A(3)=0.50
$$

$$
R A(4)=0.20
$$

$$
R A(5)=0.00
$$

$$
\Sigma=\frac{1.0}{}
$$

If the segment was divided instead into 20 equally spaced elements, then the data would be:

$$
\begin{array}{rlrl}
\operatorname{ICLASS}=2 & \\
\operatorname{NERAT}(1) & =20 & \operatorname{RA}(1) & =1.0 \\
\operatorname{NERAT}(2)=0 & \operatorname{RA}(2) & =0.0 \\
\operatorname{NERAT}(3)=0 & \operatorname{RA}(3) & =0.0 \\
\operatorname{NERAT}(4)=0 & \operatorname{RA}(4) & =0.0 \\
\operatorname{NERAT}(5)=0 & \operatorname{RA}(5) & =0.0 \\
\sum & =1.0
\end{array}
$$

VII. FINAL DATA CARD FOR A CASE

Place this card after the last card VI-C of each data set. This signifies the end of the input data for a case. (USE ONE CARD VII PER DATA SET.)

Card Type VII	
Columns	Punch
$1-11$	END \varnothing F CASE

VIII. FINAL DATA CARD FOR A RUN

This card must be placed after the card VII of the last case to be run. This card denotes the end of the input data for a run. (ONLY ONE CARD VIII IS USED PER RUN.)

Card Type VIII	
Columns	Punch
$1-10$	END $\emptyset F$ RUN

SECTION IV

EXAMPLE PROBLEMS

The example problems which follow were chosen to demonstrate the various facets of the input data required to run a given case and to acquaint the user with typical problems which have been analyzed using the SOR programs. As stated in a prior section, the choice of the element idealization must be juciciously selected. The example problems should provide the user with a "feel" for the selection of the element idealization for an analysis. The input data for the various shell geometries should answer any questions the user might have concerning the input procedure for cards VI of the input section.

Stiffness and mass matrices for selected harmonics are presented as output for the example problems. The output was generated using double-precision arithmetic on an IBM $360 / 65$ system.

Example Problem 1

The first example problem is a shallow spherical cap ($\lambda=6$) that has been analyzed extensively using the SNASOR II, DYNASOR II and the FAMSOR codes. The geometric and material properties for the shell are presented in Fig. 4.

The selection of the element breakdown and the number of harmonics to be generated depends not only upon the geometry of the shell, but also upon the loading to be applied to the shell. In order to be certain that the data for a sufficient number of harmonics will be generated, six (6) cosine harmonics will be used. The static and dynamic analyses previously conducted on this shell have shown that thirty (30) elements provide a good idealization for the loadings used providing these elements are concentrated near the apex of the shell, where a singularity obviously exists, and near the clamped edge.

A set of input data for this case is presented in Fig. 5. The geometry is input using the second option for inputting the data and the shell is considered as a single segment with a circular profile. Obviously, the geometry could have been input for each node, but the process would have been tedious.

A selected portion of the output generated for this case is presented in Figs. 6-10.

$$
\begin{aligned}
& \text { SHELL DESCRIPTION } \\
& R=0.9 \quad \text { in. } \\
& H=0.0859 \text { in. } \\
& t=0.01576 \mathrm{in.} \\
& \lambda=6.0
\end{aligned}
$$

MATERIAL PROPERTIES ALUMINUM

$$
\begin{aligned}
& E=10.0 \times 10^{6} \mathrm{psi} \\
& G=3.85 \times 10^{6} \mathrm{psi} \\
& \nu=0.30 \\
& \rho=0.0942 \mathrm{lb} . / \mathrm{in}^{3} .
\end{aligned}
$$

ELEMENT BREAKDOWN

> Sub-segment $1-6$ elements
> Sub-segment $2-12$ elements
> Sub-segment 3-12 elements

Fig. 4 SHALLOW SPHERICAL CAP

Fig. 5 INPUT DATA - EXAMPLE PROBLEM 1
geometric and elastic prcperties of structure

Fig. 6 ELEMENT PROPERTIES (OUTPUT) EXAMPLE PROBLEM 1

$\begin{array}{lll}-0.220202730 \\ -0.454797000 & 07 & 0.183325980 \\ 03\end{array}$

 $\begin{array}{llll}-0.145722770 \\ -0.46638300 \\ 03 & 0.120585290 & 04\end{array}$

 $\begin{array}{llll}0.126511390 \\ 0.29314990 & 09 & 0.130878240 & 05\end{array}$

$\begin{array}{lll}0.17652559 \\ 0.31646530 \\ 08 \\ 04 & 0.141510030 & 05\end{array}$
-0.919779350 o8

Fig. 7 ZEROTH (0) HARMONIC STIFFNESS MATRIX

0.1.467189800-07	0.50333220-12
	0. $100666530-11$
	0.15094760-12
$0.5888989830-07$	0.201316970-11
0.733621300-07	0.251630910-11
\%.112552720-06	0.766859290-11
0.121786980-96	0.139940330-10
	0.109733090-10
0 0.2592569090-06	0.199507320-10
${ }_{0}^{0.2979895540-26}$	0.229260360-10
	0.259989060-10
	0.28869260-10
0.11114140770-90	0.313360810-10
	0.367997540-10
	0.377597330-10
	0.07158020-10
	0.436673480-10
	0.236122870-10
	0.169212960-11
0.144507810-06	0.171082780-11
	0.174071640-11
	0.176499520-11
	$0.178926400-11$
	0.111352260-11
0.15729750-09	0.18377n10-11
O.15946 1000 -06	0.188200920-21
	0.1886033600-11
O. 0.16979989806	0.191095340-11
${ }_{\text {a }}^{\text {a }}$	0.193465955-11
	0.975960220

Fig. 8 ZEROTH (0) HARMONIC MASS MATRIX

Fig. 9 FIRST (1) HARMONIC STIFFNESS MATRIX

Fig. 10 FIRST (1) HARMONIC MASS MATRIX

Example Problem 2

The second example problem, a little more geometrically involved than the first problem, is the cap-torus-cylinder configuration shown in Fig. 11. To generate the required geometry, the shell is considered to be the combination of a spherical cap, a torus, and a cylinder. Hence, three segments are used for innutting the shell geometry. The profiles of the first two segments are circular and obviously, the profile of the cylinder is linear. The elements are concentrated in the area of the apex of the shell, close to the cap-torus intersection, around the torus, and near the clamped end of the cylinder with the maximum number of elements (50) being utilized. Obviously, for this case the advantage of using the segmentized procedure for inputting the geometry is quite evident since only nine cards are required to input the geometry for this complex configuration.

Since the thickness is constant for the shell, only one card is necessary for this data. The same is true for the mass and elastic properties. Again, a set of input data (Fig. 12) is presented and a portion of the output is included (Fig. 13).

ELEMENT BREAKDOWN

Segment 1 - Sub-segment 1	4 elements	
Sub-segment 2	8 elements	
Sub-segment 3	8 elements	
Segment 2-Sub-segment 1	18 elements	
Segment 3 - Sub-segment 1	4 elements	
	Sub-segment 2	4 elements
Sub-segment 3	4 elements	

Fig. 11 CAP-TORUS - CYLINDER CONFIGURATION

Fig. 13 ELEMENT PROPERTIES (OUTPUT) EXAMPLE PROBLEM 2

Example Problem 3

For illustrative purposes, a cylindrical shell (Fig. 14) with a stiffening ring at its midpoint has been selected as the third example. The input data for this shell should serve to illustrate many of the features of the code. In particular, the procedure used for a variable thickness shell will be demonstrated along with the option for inputting the nodal point geometry at each individual node.

To demonstrate these input procedures the cylinder will be idealized using nine elements: four on each side of the ring, and one containing the ring. If this shell were to actually be analyzed, many more elements would obviously be necessary. The elements on each side of the ring are considered to be five inches in length (s-direction) and one-eighth inch thick while the element for the stiffener is three inches long and one-fourth inch thick.

Two sets of input data are presented in Figures 15 and 16. The first set inputs separately the thickness of each element and the geometry for each node. The second data set effectively employs the program capabilities and inputs the thickness and geometry for the three segments of the cylinder.

SHELL DESCRIPTION

$$
\begin{array}{rlr}
D & =10 & \text { in. } \\
Z_{1} & =20 & \text { in. } \\
z_{2} & =3 & \text { in. } \\
t_{1}=0.125 i n . \\
t_{2} & =0.250 \mathrm{in} .
\end{array}
$$

MATERIAL PROPERTIES STEEL
$E=30.0 \times 10^{6} \mathrm{psi}$
$G=11.55 \times 10^{6} \mathrm{psi}$
$\nu=0.3$
$\rho=0.289 \mathrm{lb} / \mathrm{in}^{3}$.

ELEMENT BREAKDOWN

Segment 1-4 elements
Segment 2-1 element
Segment 3-4 elements

Fig. 14 STIFFENED CYLINDRICAL SHELL

Fig. 15 INPUT DATA (SET \#1) EXAMPLE PROBLEM 3

REFERENCES

1. Stricklin, J. A., Navaratna, D. R., and Pian, T. H. H., "Improvements on the Analysis of Shells of Revolution by the Matrix Displacement Method," AIAA Journal, Vol. 4, No. 11, Nov. 1966, pp. 2069-2072.
2. Mebane, P. M., "An Improved Shell of Revolution Element Utilizing Cubic Displacement Functions," Masters Thesis, Texas A\&M University, Aug. 1970.
3. Stricklin, J. A., Haisler, W. E., MacDougall, H. R., and Stebbins, F. J., "Nonlinear Analysis of Shells of Revolution by the Matrix Displacement Method," AIAA Journal, Vol. 6, No. 12, Dec. 1968, pp. 2306-2312.
4. Stricklin, J. A., Martinez, J. E., Tillerson, J. R., Hong, H. H., and Haisler, W. E., "Nonlinear Dynamic Analysis of Shells of Revolution by Matrix Displacement Method," Report 69-77, Aerospace Engineering Department, Texas A\&M University, Feb. 1970.
5. Percy, J. H., Pian, T. H. H., Klein, S., and Navaratna, D. R., "Application of Matrix Displacement Method to Linear Elastic Analysis of Shells of Revolution," AIAA Journal, Vol. 3, No. 11, Nov. 1965, pp. 2138-2145.
6. Pian, T. H. H., "Derivation of Element Stiffness Matrices," AIAA Journal, Vol. 2, No. 3, March 1964, pp. 576-577.
7. Novozhilov, V. V. Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, N. Y., 1956.

APPENDIX

Appendix 1 Description of SAMMSOR II Subroutines

Subroutine	Description
MAIN	Controls the flow of the program by calling the other subroutines to both obtain the structural stiffness and mass matrices for the shell and prepare the input tape for use in the other compatible programs.
INPUT	Reads input data and program control parameters and prints a description of the idealized structure.
SLOCOR	Reads coordinates of shell segments and controls the calculation of the z, r, ϕ coordinates for the specified element breakdown.
FLAT	Calculates the z, r, ϕ nodal coordinates for a shell segment with a linear profile.
CIRCUL	Calculates the z, r, ϕ nodal coordinates for shell segment with a circular profile.
PARABO	Calculates the z, r, ϕ nodal coordinates for a shell segment with a parabolic profile.
FUS	Used by subroutine PARABO to calculate arc lengths for the elements of the segment.
ELEMCA	Calculates geometrical parameters i.e., r,ф, $\phi^{\prime}, \phi^{\prime "}, \sin \phi, \operatorname{cosine\phi ,~etc.~for~each~element~}$ between the nodal points. In addition, this subroutine calculates the transformation matrix $f A]$ which relates the shell generalized coordinates, q_{i}, to the generalized coefficients, α_{j}, of the displacement functions.
CRETAL	Calculates the values of integrals in the meridional direction which are to be used in calculating the terms in the mass and stiffness matrices.

Appendix 1 Continued

Subroutines	Description
CREATL	Evaluates the element stiffness matrices based on generalized coefficients. The element stiffness matrices are condensed in this subroutine.
CREMAS	Controls the calculation of the element mass matrices according to harmonic number.
AZERO	Generates the element mass matrices based on generalized coefficients for the zero harmonic only.
NONAB	Generates the element mass matrices based on generalized coefficients for harmonics other than zero.
MMPLT3	Premultiplies the element mass and stiffness matrices based on generalized coefficients by $[A]^{t}$ and post-multiplies by[A] to form the element stiffness and mass matrices[k] and [m].
SIMP	Evaluates the integral of a given function using Simbson's integration.
ASEMBL	Assembles element stiffness and mass matrices to form structural stiffness and mass matrices, [K] and [M], for each harmonic.

Appendix 2 Glossary of Significant FORTRAN Variables in SAMMSOR II

Variable	Subroutine where variable is defined or calculated	Description
AK	MMPLT3	Element stiffness matrix [k]
AKK	MMPLT3	Element mass matrix, [m]
AL	CRETAL	Integral of functions used in the [L] and [EMASS] matrices.
AM	ELEMCA	Matrix $[B]^{-1}$ which relates the generalized a coordinates to the generalized shell coordinates.
AR	ELEMCA	Matrix of the radial coordinates, r, of the NET stations between the nodes of an element.
ARCL	ELEMCA	Arc length of an element (s-direction).
AS	ELEMCA	Matrix of the meridional distances, s, of the NET stations between the nodes of an element.
CHECK	ELEMCA	Matrix [A], which relates the shell generalized coordinates to the generalized coefficients of the displacement functions
COMENT	INPUT	Alphanumeric data printed as output for problem identification.
COSINE	ELEMCA	Matrix whose elements are the cosine of ϕ for NET stations along the element.
E1	INPUT	Matrix of Young's Moduli in the meridional direction, E_{s}.
E2	INPUT	Matrix of Young's Moduli in the circumferential direction, E_{θ}.
EMASS	CREMAS	Element mass matrix based on generalized coefficients.

Appendix 2 Continued

Variable	Subroutine where variable is defined or calculated	Description
F	CREATL	Element stiffness matrix based on generalized coefficients.
FNU1	INPUT	Poisson's Ratio, $\nu_{s \theta}$.
FNU2	INPUT	Poisson's Ratio, $\nu_{\theta s}$.
G	INPUT	Shear Modulus, G [for an isotropic material $G=E / 2(1+v)]$.
IA	INPUT	Total number of harmonics for which the mass and stiffness matrices are to be determined.
ICLASS	SLOCOR	Designates the type of profile for a given segment of the shell.
NCARDS	INPUT	Number of comment cards used for problem identification.
ND	MAIN	Logical unit number of the binary scratch tape on which the input data is stored.
NELEMS	INPUT	Total number of elements used to idealize the structure.
NELEMT	SLOCOR	Element number of the first element of a segment.
NEQ	INPUT	Number of equilibrium equations (degrees of freedom) per harmonic.

Appendix 2 Continued

Variable	Subroutine where variable is defined or calculated	Description
NET	INPUT	Number of Simpson's integration stations used over the meridional length of the shell elements. NET is set equal to 29 in the program.
NH	INPUT	Total number of harmonics for which the mass and stiffness matrices are to be determined.
NNODES	INPUT	Total number of nodes, equal to NELEMS + 1 .
NS	MAIN	Logical unit number of a binary scratch tape.
NSIZE	INPUT	The number of terms in the structural stiff ness or mass matrix (in vector form) for a particular harmonic.
NT	INPUT	Logical unit number of the tape on which stiffness and mass matrices will be stored.
PHII	SLOCOR	Slope of the shell at the first node of a segment.
PHI2	SLOCOR	Slope of the shell at the last node of a segment.
PHIMAT	ELEMCA	Matrix [Ψ] which relates the generalized shell coordinates for an element to the global or cylindrical coordinates of the structure.
PHP	ELEMCA	$\mathrm{d} \phi / \mathrm{ds}$ for NET stations along an element.
PHPP	ELEMCA	$d^{2} \phi / \mathrm{ds}^{2}$ for NET stations along the element (constant).
PHPRIM	ELEMCA	$\mathrm{d} \phi / \mathrm{ds}$ at the middle of an element.

Appendix 2 Continued

Variable	Subroutine where variable is defined or calculated	Description
PHYI	INPUT	Slope at node \mathbf{i} of element \boldsymbol{i}.
PHY2	INPUT	Slope at node ($\mathbf{i}+1$) of element i.
R1	SLOCOR	Radial coordinate of the first node of a segment.
R2	SLOCOR	Radial coordinate of the last node of a segment.
RA	SLOCOR	Decimal fraction corresponding to the lengths of the sub-segments into which a segment is being divided.
RHOS	INPUT	Matrix of the material densities of the elements. lbs/in ${ }^{3}$.
R01	INPUT	Radial coordinate of node \mathbf{i} for element \mathbf{i}.
R02	INPUT	Radial coordinate of node ($i+1$) for element i.
SINE	ELEMCA	Matrix whose elements i are the sine of ϕ for the NET stations along the element.
STIFM	ASEMBL	Structural stiffness matrix, [K], for a given harmonic.
THICK	INPUT	Matrix of element thicknesses.
TMASS	ASEMBL	Structural mass matrix, [M], for a given harmonic.
Z1	INPUT	Axial coordiante of node \boldsymbol{i} for element i.
Z2	INPUT	Axial coordinate of node ($i+1$) for element 1.
Z1C	SLOCOR	Axial coordinate of the first node of a segment.

Appendix 2 Continued

Variable	Subroutine where variable is defined or calculated	Description
Z2C	SLOCOR	Axial coordinate of the last node of a segment. $\ldots . ~$

Appendix 3 Subroutine Ca1I Map SAMMSOR II

Appendix 4 Flow Chart of Basic Operations SAMMSOR II

Appendix 5 Program Output

The output for the SAMMSOR code consists basically of four parts:

1. The input data for all cases comprising the run.
2. Alphanumeric data used for case identification.
3. Listing of the element properties and nodal point geometry.
4. The upper half of the diagonal band of the stiffness and mass matrices for each harmonic (if desired).

Section 2-4 are repeated for each of the cases of the run.
The output of part 1 is extremely helpful to the user since the input data for all cases is printed at the start of a run. If an error occurs in the program as a result of an error in the input data, then this printout should readily show the source of the error.

The comments of the user which describe or identify the case or problem considered are printed in the second section of the output. This information is stored on the output tape and is also printed as identifying data in the other SOR programs.

The fourth part of the output lists the lower half of the diagonal band of the structural stiffness and mass matrices. The program output and the vector form of storage used in the program contain only those terms within the band of the matrix which are on or above the diagonal. One line of output is printed for each degree of freedom when writing the stiffness and mass matrices. The last term on a particular line of output is the diagonal term corresponding to the degree of freedom. The terms which appear to the left of this diagonal term are the terms on the row (corresponding to the degree of freedom) which are within the
band of the matrix. In other words, the terms for the stiffness matrix of a particular harmonic with N degrees of freedom would appear as shown in Fig. A5-1. As is shown in Fig. A5-1, the maximum number of nonzero terms which appears in any row of the banded matrix is eight (8).

Terms whose value is zero will appear on the diagonals in the printout of the stiffness and mass matrices for harmonic zero. These terms correspond to the V-direction displacements which are identically zero for this harmonic. Since diagonal terms of zero value cause problems when solving a system of equations, these diagonal terms are set equal to one in the analysis programs to provide equations of the form

$$
(1.0) q_{n}=0.0
$$

In addition to the four major parts of the printout, several checks have been included which generate output remarks if an error is encountered.

K_{11}							
K_{21}	K_{22}						
K_{31}	K_{32}	K_{33}					
K_{41}	K_{42}	K_{43}	K_{44}				
K_{51}	K_{52}	K_{53}	K_{54}	K_{55}			
K_{61}	K_{62}	K_{63}	K_{64}	K_{65}	K_{66}		
K_{71}	K_{72}	K_{73}	K_{74}	K_{75}	K_{76}	K_{77}	
K_{81}	K_{82}	K_{83}	K_{84}	K_{85}	K_{86}	K_{87}	K_{88}
K_{95}	K_{96}	K_{97}	K_{98}	K_{99}			
$\mathrm{K}_{10,5}$	$\mathrm{K}_{10,6}$	$\mathrm{K}_{10,7}$	$\mathrm{K}_{10,8}$	$\mathrm{K}_{10,9}$	$\mathrm{K}_{10,10}$		
-	-	-	-	-		-	
$\mathrm{K}_{12,5}$	-	-	-	-	-	-	$\mathrm{K}_{12,12}$
$K_{13,9}$	$\mathrm{K}_{13,10}$	$\mathrm{K}_{13,11}$	$\mathrm{K}_{13,12}$	$\mathrm{K}_{13,13}$			
-							
-							
-							
-							
-							
-							
$\mathrm{K}_{\mathrm{N}, \mathrm{N}-7}$	$\mathrm{K}_{\mathrm{N}, \mathrm{N}-6}$	-	-	-	-	-	$\mathrm{K}_{\mathrm{N}, \mathrm{N}}$

Fig. A5m Banded Stiffness Matrix Output Format

Appendix 6 Modification of Program Capacity

The procedure for modifying the maximum number of elements which can be utilized in the SAMMSOR code is presented in this section. With only one exception, the modifications consist of changing only DIMENSION and COMMON statements. The following terms are defined to facilitate the modifications:

```
NE = Maximum number of elements
\(N 1=(26 * N E)+10\)
\(\mathrm{N} 2=6\) * NE
```

Having calculated these constants for the desired maximum number of elements, the following cards in the specified subroutines must be changed by substituting the values of the above constants.

Main Program

CQMMON /B2/ RO1(NE), RO2(NE), Z1(NE), Z2(NE), PHY1(NE), PHY2(NE)
CQMMgN /B3/ E1(NE), E2(NE), FNUI(NE), FNU2(NE), G(NE), THICK(NE), RHOS(NE)

CดMM $9 \mathrm{~N} / \mathrm{B} 21 / \mathrm{F}(8,8), \operatorname{AK}(8,8), \mathrm{STIFM}(\mathrm{N} 1)$
CøMM9N /B30/ $\operatorname{EMASS}(8,8), \operatorname{AKK}(8,8), \operatorname{TMASS}(N 1)$
DIMENSIŋN XZ(N2), CøMENT(20), JUNK(20), CARD(20), SL(NE)

Subroutine INPUT
*CDMMON /B2/
*CDMMON /B3/
CФMM@N /BT3/ SS(NE)

[^1]**NELMAX = NE
Subroutine SLØCØR
DIMENSION RA(5), NERAT(5), Rø1(NE), Rø2(NE), Z1(NE), Z2(NE), PHIII(NE), PHII2(NE)

Subroutines FLAT, CIRCUL, and PARAB \emptyset
DIMENSION Rø1(NE), Rø2(NE), Z1(NE),Z2(NE), PHII1(NE), PHII2(NE)

Subroutine ELEMCA

*СФMMФN /B2/
*CØMM9N /B3/
*CØMM9N /B13/

Subroutine CRETAL
***CØMM9N /B3/

Subroutine AZERQ and NONAB
*CØMM@N /B3/
*CØMM@N /B30/

Subroutines MMPLT3 and ASEMBL
DIMENSIGN $F(8,8), \operatorname{AK}(8,8), \operatorname{STIFM}(N T)$

[^2]
Appendix 7 Coding Sheet for Input Data

Appendix 7 Continued

VI SHELL GEOMETRY

VII END $9 F$ CASE
******** Add an END DF RUN card at the end of the final case
****** Add a Card I at the start of the first data set: This card contains NCASES, ND, NS, and NS2 -- in that order

[^0]: * Research Assistant, Aerospace Engineering Department

[^1]: *Elements in this block are previously shown.

[^2]: ** This is the only card that must be changed which is not a CØMM@N or DIMENSION statement.
 ***Replace $G(N E)$ by $G G(N E)$ in this block.

