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ABSTRACT

An analytical solution is derived to the problem of

trajectories which encounter the Moon or a planet and must

satisfy conditions before and after the encounter. Such

trajectories include free-return and fly-by trajectories.

The analysis is based on an analytical solution to patched-

conic trajectories developed previously by the author. The

conditions to be met are pre-encounter and post-encounter

inclination and angular momentum. The trajectory energy

referenced to the encountered body and the time of the

: encounter must also be known.
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INTRODUCTION

Much analytical work has been performed during the
last decade on various forms of swing-by trajectories, par-

ticularly Earth-Moon free return trajectories and planetary

fly-by trajectories. Such trajectories are normally calcu-
lated using a patched-conic analysis and iterating to match

the required boundary conditions. While this approach works

quite well, and high speed computers overcome the labor re-

quired by the large number of calculations involved, the

degree of insight into the problem is necessarily limited
by such an approach. For this reason, an analytical solution
to the problem has been derived which satisfies pre-encounter and

post-encounter boundary conditions. <

The analytical solution to swing-by trajectories is

based on a new formulation of the patched-conic technique
developed in Reference i. This fo_mulation reduces to an

analytical form the problem of solving patched-conic trajec-
tories which satisfy boundary conditions both inside and
outside the sphere of influence. This is combined with the

geometry of the trajectory turn at the minor (or target) body
to produce the equations req_ired for swing-by trajectories.

ANALYSIS i

The Geometr _ of the Turn at the Minor Body

As the spacecraft trajectory passes through the

minor body's sphere of influence, it is turned by the gravity
field of the minor body. The geometry of the turn is shown

in Figure i. Two relationships for the turn angle, 2f, can
be written,

2f = 2_ + 7a + 7b (I)
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and

2f = 2_ + _a + Cb (2)

OF INFLI

Vlb _

% POINT _,
q

-

MINOR-BODY-CENTERED -_
HYPERBOLIC

MINOR SINGLE RECTILINEAR

BODY PATCH POINTS

2_ 2T a _ MAJOR 8ODY

Vo : RO

TRAJECTORY PATH

_a V-_la tRY PATCH POINT

FIGURE 1 - THE GEOMETRY OF THE MINOR BODY TURN OF A SW_'NG-BYTRAJECTORY

The angles Xa and Xb are the displacements of the trajectory

patch points from Che associated minor-body-centered single-

rectilinear patch point;* #a and _b are the angles between the

*Definitions of all special terminolegy used may be found
in Appendix A of Reference 1.

L
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trajectory patch point radius vector and the hyperbolic asymp-
tote of the trajectory. Since the pericenter radius is

typically much smaller than the sphere ot influence radius,
the trajectory may be ta[:en as traveling along the asymptote,

and _ then becomes the flight path angle of the trajectory.
The relationship between 7 and # is given by (Reference I)

V 1 sin XDR T sin 4- (3)
sin7 = VO sin _o

3

The a and b subscripts have been deleted from the equation since

it is valid for either case. The angle XDR T is the longitude

of the dual rectilinear patch point and is found from _

(RiVoCOS_ o + _Vlk) sinADR T + RIVosin_oCOSXDR T

(4)

- ooRv sin_o= 0

and

"" k = -1
a (51

_. kb --+l

For planetary configurations encountered in the solar system,. <

_" R 1 is considerably smaller than Ro,* i.e.,

_: R1 _R° 16)

*The worst case in the solar system is the Earth,-Moon

:_ 3ystem, where R]./RO = .168.
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Combining Eqns. (4) and (6) and solving for sin IDR T yields

%

sin IDR T =

V sin¢o c°S¢o + k±e 2 _ sin2#o + 2kE..--qcos# + i
o _ v I o

2 (7)

+ 2ke 9_1 cos# ° + I

Now, if the eccentricity of the minor planet orbit is less than

.15, then2¢ O is always between 81 = and 90 °. Thus, ccos# o, as •
well as E , may be dropped from Eqn. (7) as second order terms.

Equation (7) then becomes

V° sin# O ± E - sin¢ O (8)
sinADRT = Vq IVl/ i

Combining Eqns. (3) and (8),

v°
siny = _ _ - V_ sin2_ sin@ (9) _

For a small pericenter radius, sin¢ is a small number, so that

csin¢ is a second order term. Thus,

siny = ksin¢ (10)

as a first order approximation. Equations (I), (2) and (i0)
• combined show that

= r (11)
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That is, the angle between the asymptotes of the hyperbola is

equal to the angle between the minor-body-centered single-

rectilinear patch points associated with the trajectory, to
the degree that Eqn. (10) is true. With regard to the accuracy

of the approximation, note that _ is a small angle, normally
in the range of 5° to 10 ° , so that a second order error would

be expected to be about 1°. The asymptote angle, _, is a large

angle, typically 45 ° or more. Thus, the error in T implied in
Eqn. (II) is roughly one part in 45.

Equation (ii) provides the wedge required to reduce

the swing-by problem to analytical form. The angle _ is related
to the trajectory energy and angular momentum by

h 1
tan_ = -- (12)

and T is related to the minor-body-centered single-rectilinear
patch points, as will be shown in the next section. The coor-

dinates of the minor-body-centered single-rectilinear patch

point are calculable from the equations of Reference i.

The Geometry of the Encounter

To find T from the coordinates of the minor-body-
centered single-rectilinear trajectory, consider the geometry

of the minor-body-centered trajectory segment in three dimen-

_ sional space. Figure 2 shows the geometrical detail for one
form of a swing-by encountcr. The geometry is slightly different

for trajectories which cross the minor body's orbital plane twice
_;_ while inside the sphere of influence instead of once, as shown

' in Figure 2. Also, some significant geometrical differences
occur as the approach or departure trajectory portions lie inte-

• 3_ rior or exterior to the minor body orbital path. To distinguish
between the various possibilities, descriptive trajectory names

such as "interior-exterior, double-crossing trajectories" will
be used, w_ere "interior-exterior" refers _o the geometry of the

_ approach and departure trajectory segments, respectively, and

"double-crossing" refers to the geometry within the sphere of
!, influence. Thus, Figure 2 represents an interior-interior,

- _ single-crossing trajectory; that is, the spacecraft approaches
_: the minor body sphere of influence from the direction of the

.... major body, crosses the orbital plane of the minor body only
once while inside the sphere of influence, and exits the sphere
of influence traveling towards the major body.
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In Figure 2, 8a, la and Sb' _b are the coordinates

of the minor-body-centered single-rectilinear patch points,
and are calculated according to the equations of Reference i.

They are referenced to the line joining the major and minor
bodies at the time the spacecraft pierces the sphere of influ-

ence; thus, 8a' la is referenced to the major-minor body line

at the time the spacecraft enters the sphere of influence, and

Bb' _b is referenced to the major-minor body line at the time

the spacecraft exits the sphere of influence. These two major-

minor body lines are separated by the angular distance the

minor body travels during the time the spacecraft is within the
sphere of influence. This is shown as _t . From Figure 2, one

may then write s

_la + _b = 360 - _a + Ib + _ts (13)

From the relationships of spherical trigonometry

tan 8a
sin_X =

a tan (180 - iI)

or

tan 8a

sinAAa = tan iI (14)

and, similarly,

tan 8b

sinAXb = tan iI (15)

The inclination has been taken as retrograde since an interior-

interior trajectory cannot be formed with a posigrade inclina-

tion. Combining Eqns. (13) and (15),

1971007290-008
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tanSb =

tan iI sin[ (_t s + Ib - Ia) - &1 a] (16)

Then, using Eqn. (14) and the trigonometric identity for the
difference of two angles,

sin(_t s + Ib - Ia)

tanAl a = cos(_t s + ib _ la ) _ (tanSb/tan6a) (17) :

Equations (15) and (17) give Al a and AI b in terms of the minor-

body centered, single-rectilinear patch point coordina'_es. The

angle T is related to AI a and AIb by

1 !
•r = _. (A'ra + d'rb) (18)

where
t

cOSAx = COS6COSAX (19)

It was shown in the previous section that • is well i

approximated by 4, and the relationship (Eqn. (12)) between
and angular momentum was stated. Using these relationships,

Eqn. (18) becomes

h I = _tan ½ (AT a + A_b) (20)

From Eqn. (14)

tans a . ,,

tani I = - SinA1a , 90" < llll < 180" (2.,

1971007290-009
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Calculation of the Sphere of Influence Stay Time

Equations (20) and (21) pzovide the required bridge

between the approach ard departure trajectories. The only
missing ?ink is the time the spacecraft stays within the sphere

of influence. To approximate the sphere of influence stay time,
consider the equation for the stay time

ts = 2 sinh F - (22)
v Ul al

where

a I + R 1
cosh F = (23)

a I + Rp

Now, aI and Rp are normally much smaller than RI. Then, _rom _

Eqn. (23_, cosh F is a large number and we may make the

approximation

1
sinh F = cosh F = _ e (24)

Equation (22) then becomes

= 2%F__ al + R1 el + ____i_ts _i L al In 2(_i + (25,_

The behavior of the first and second terms of Eqn. (25) is shown

in Figure 3 for the range of values of Rp and aI normally encoun-

tered in Ear_h-Moon trajectories. The second term is much smaller

than the first and is relatively inv_.riant. Since Rp and aI are

aI + R l
of the same order, approximating the second term with in

al

suggests itself. A plot of this expression is shown as a dotted
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line in Figure 3. For large values of al, the approximation is

excellent, and for small values of a 1 the second term is very

small compared to the first; hence, the approximating term is

quite acceptable. Therefore, the stay time equation may be
written _

a_13 la ( )i

= 2 i i + R1 al + R1

t s al in al (2 6 )

2o

15

F- / al

_£
_" :0-

O

O
W

5 - In2al + Ri Inal+ Ri

,Rps=60x 10_'
' 0 1 I I I I

0 5 10 15 20 25 30

al. MILLIONS OF FEET

FIGURE3-VALUESOFTHETERMSINEON.(26)FORLUNARTRAJECTORIES

A plot of Eqn. (26) is given in Figure 4 along with the true
stay times for a set of lunar trajectories. While the corre.-

_ lation shown is not as good as might be hoped, it is adequate
for our purposes.
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36
ESTIMATED
,STAY TIME

34

KEPLERIAN
32 _ STAY TIME
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18:
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SELENOCENTRIC SEMIMAJOR AXIS - MILLIONS OF FEET

FIGURE 4 - COMPARISON OF ESTIMATED AND KEPLERIAN SPHERE

OF INFLUENCE STAY TIMES FOR LUNAR TRAJECTORI-"S

Correction of the Sphere of Influence Stay Time

Once the stay time has been estimated by Eqn. (26),

+values for h ! and i I may be obtained. On:e h I is obtained,

t may be recalculated using
s

ts 2 1 hl_
= _ + _ sinh F -

where (27) +

aI + R1
cosh F =

V/ "1
1 + _la----_

"3
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Equation (27) is a slightly modified version of Eq:.. (25) and

is an exact expression, although the value of ts obtained from

the equation is approximate since the value used for h_ is still
Ju

approximate. If the new ts is significantly different from the

old value, h I and iI may be recalculated using the new ts. It

does not appear to be necessary to recalculate Ab or to perform

the recalculation of hI and iI more than once to obtain good
accuracy.

The General Solution to Swing-by Trajectories

The set of equations composed of Eqns. (15), (17),
(19), (20) and (26), when combined with the equations of

Reference I, constitutes the solution to interior-interior
single-crossing swing-by trajectories. For the other trajec-
tory cases, modifications are required in Eqns. (15), (17),

(20), and (21) as follows:

i) For all cases, Eqns. (15) and (17) may be written
as

Isin AAb = ita."i1

I sin(Uots + Xb - Aa)

< tan AA a = I ........ tan Bbcos (_ots + Xb-- Xa) tan _a

ii) For double-crossing trajectories, Eqn. (20) becomes

h 1 = /_lal COt _ (&T a + &Tb)

" iii) For all trajectories except interior-interior, Eqn.

(2l) uses the principa ! value of tan i 1.

The equations for swing-by trajectories which have
just been derived are restated in the Appendix in the form of

a computational algorithm. It should be noted that two alter-

native expressions for combining loci were presented _for the

,!

1971007290-013
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equation sets in Reference I. Of these two, the expression
chosen for use here retains tighter control of the longitude
of the node.

Example Free Return Trajectory

Several approximations have been made in the fore-

going derivation. An example problem is now considered to -
show that these have not degraded the results significantly.

Specifically, consider a free return trajectory in the Earth-

Moon system with the following characteristics:

Injection _adius = 2.15333 x 107 ft (100 n. mi. alt.)

Injection Inclination = 30 °

Return Vacuum Perigee = 2.10333 × 107 ft (i00,000 ft alt.)

Return Inclination = 15"

Radius of Periselene = 6.0670 × 106 ft (60 n. mi. alt.)
.J

The trajectory is to first enter the Moon's sphere of influence
when the Moon is at apogee. By iterative patched-conic analysis,

the trajectory is found to have the following properties:

Approach Angular Momentum = 7.7377 x i0 II ft2/sec

Approach Semi-Major Axis = 8.6855 x 108 ft

Departure Angular Momentum = 7.6483 × 1011 ft2/sec |

Departure Semi-Major Axis = 8.6658 × 108 ft

Selenocentric Inclination = 174.878" /

Selenocentric Angular Momentum = 4.9551 x 1010 ft2/sec

Entry Patch Point

Latitude = - 4.931 °

Longitude _ -47.897 °

Exit Patch Point

Latitude = 2.792 °

Longitude = 46.570 °

|

I
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Entry and exit patch points are referred to the Earth-Moon

lines at the time of entry and exit, respectively. These
lines are found to be separated by 12.720 ° .

Using the above input information, the trajectory
is calculated using the formulations derived here and in

Reference i. The angular separation between the entry and
exit Earth-Moon lines is given as 13.471 ° using Eqn. (26)
and the anoular velocity of the Moon at apogee. From Eqns.
(20) and (21):

5

i0 i0 ft 2Selenocentric Angular Momentum = 5.0519 x /sec

Selenocentric Inclination = 174 848 °

So, for this case, angular momentum is found to be within 2%
by Eqn. (20) and the inclination is found almost exactly by

Eqn. (21). The angular momentum error causes the radius of _

periselene to be shifted to 6.2752 x 106 feet for an error of i
3%. Using Eqn. (27), the angular separation between th_ Earth-

Moon line at entry and exit is found to be

_ots = 12.732 ° !

Recalculating the angular momentum and inclination: i

Selenocentric Angular Momentum = 4.9617 × I0 I0 ft2/sec li

Selenocentric Inclination = 174"828° I

The angular momentum error is reduced to less than 0.1%. The {.

corresponding periselene radius is 6.0811 x 106 feet for an I

error of roughly 0.2%. I[

Using the angular momentum and inclination just oh- 1
tained, and the gGneral equation set of Reference I, the entry !

and exit patch points are found to be: _
i

Entry Patch Point

• Latitude = - 4.977 °

Longitude = -47.904"

Exit Patch Point

Latitude = 2.826°

Longitude = 46.576 _ ,

1971007290-015
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Using the patch points just obtained, the sphere of
" influence radius, and the selenocentric angular momentum and

inclination obtained from Eqns. (20) and (21), a state vector

for the trajectory may be calculated. From this state vector

the approach and departure geocentric trajectory parameters
may be obtained; they are:

Approach Trajectory -;

Angular Momentum = 7.75"1 x i0 II ft2/sec

8
Semi-Major Axis = 8.6861 x !0 ft

Inclination = 30.222 °

Departure Trajectory i

Angular - I0 II ft2/s_cMomentum = 7.6554 x

Semi-Major Axi_ = 8.6661 x 108 ft

Inclination = 15.182 °

The agreement with the input values is quite good. Using these
nun_ers, the approach and departure perigee radii are calculated
as

Approach Peric[ee = 2,1647 x 107 ft

DepartUre Perigee = 2.1073 x 107 ft

-_ which are within 1% of the desired values.

: SUMMARY

Theproblem of swing, by trajectories has been reduced

to an analytical form. The resultant equationsshow swing-by

trajectories to be dependent on six parameters, or their equiva-
lents: the angular momentum and inclination of the major-body-

centered trajectories both before and after the encounter with
the minor body, the minor-body-centered energy, and the time of

-i_ the encounter. Thus, swing-by trajectoriesare dynamieally
shaped by angular momentum and energy as are Keplerian two bo_y .-

: trajectories. The only independent geometrical parameters are
the two inclinations. The other geometrical trajectory proper-

ties of no_e line location and pericenter location are implicit
with the geometry of the swing-by trajectory.

1971007290-016
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Two assumptions are made within the derivation, and
the accuracy of these assumptions will affect the results.
These are:

i) The eccentricity of the minor body's orbit is less
than 0.15.

ii) The minor-body-centered trajectory flight path angle

is small at the sphere of influence.

These assumptions are usually met by real trajectory problems
and the results are acceptably accurate, as was shown for an

Earth-Moon free return trajectory.

The analytical solution developed here has the dis-
advantage that swing-by trajectory problems are most commonly

£

stated in terms of pericenter radii and travel times, parameters

which do not readily convert to angular momentum and energy. It
is generally true, however, that a concise analytical statement

of the _rinciples underlying a problem facilitates its analysis.

An immediate benefit gained from this work is the identifica-

tion of the important variables. A useful extension of the

analysis should lie in the development of derivatives of these
equations to produce useful tools for targeting swing-by

trajectories. In general, the formulation derived here should i

expedite analysis of problems ranging from Earth-Moon free 1
return trajectories to interplanetary grand tour missions.

2011-KMC-vh K.M. Carlson

Attachment

Appendix
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APPEND IX

A COMPUTATIONAL ALGORITHM FOR SWING-BY TR/hYECTORIES

The required input information for computing swing-by

trajectories is: <

h = the approach angular momentum
a

i = the approach inclination

; aI = the minor-body-centered semi-major axis

i hb = the departure angular momentum

ib = the departure inclination _ _}
m

= true anomaly of the minor body at the time of entry !
fa of the sphere of influence. _

The inclinations are referred to the minor body orbital plane.

In addition, one must knew whether the trajectory is to be
single-crossing or double-crossing, in order to set

c = 1 _ single crossing

c = 2 _ double crossing

Also, the constant k must be set according to

ka = +I _ interior approach

ka = -I _ exterior approach

kb = +i _, interior departure

_ kb = -I _ exterior departure

The gravitational constants for the major and minor bodies must
be known and aredenoted_

.... C

1971007290-019
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Ul = minor body gravitational constant

u2 = major body gravitational constant

In addition, the minor body orbital semi-major axis and

eccentricity are:

a° = semi-major axis of the minor body orbit

eo = eccentricity of the minor body orbit

The distance between the minor body and the major

body at the time of entry of the sphere of influence is

• 2 (I - eo2.) ':a O
= (A-l)

Ro 1 + eO cos fa

and the minor body orbital velocity is

2 ( 2 1 (A-2) _Vo = _2,R O ,_

The minor body flight path angle is

2 2 _1/2
f v_

lao (1 eo )1
sin ,o = LR0(2%_Ro)j (A-3) 1

J
The sphere of influence radius is

":_ / t_i "2.;; /5
_ R1 = l--I RO (A-4)

At this point one is ready to begin the calculations.
• The stay time within the sphere of influence is estimated from

" I

1971007290-020
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t = 1 in (A-5)

s L el i

The angular velocity of the minor body at sphere of influence
entry is

VO sin _o
_o = R (A-6)

o

The minor-bedy-centered single-rectilinear patch point latitude
is :

sin i sin 5

ha,b a,b _a,b isin 8a, b = - R1VosinO °

where (A-7)

tan _ = - RiV°sin_° i

a,b RIV° c°s_° + ka'b R°VI • i

The a, b subscript means the equation is valid for either entry

or exit. The equation is read with the "a" subscript for entry

and with the "b" subscript for exit.

The minor-body-centered single-rectilinear patch point
longitude is:

-AC ± B V"A 2 + B2 - C2

sin la, b - A2 + B2

where

A = RoY 1 ka, b + RIV O cos _o
(A-S)

B = RIV O sin _o

RoV 0 sin _o - barb cos Jan b

C - - , COS _Ba,b .....
J

i,

1971007290-021
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NoW,

I sin(_ots + Xb - Xa) _al

= __ ___u-"_ __ (A-9)
tan A^ a tan 8b

c°S(_ots + Ab ha) tan

Then, the minor-body-centered inclination is

tan 8a

tan iI = - . (A-10)• smn AX

' i
If both k a and kb are positive, then i

iI = 180 - iI (A-II)

Now !

tan 8b

sin AX b = tan iI (A-12)

and hence

AZa, b = cos 8a, b cos AXa, b (A-13)
y

The minor body centered angular momentum is then

, h I = _ tan ½'(A_ a + ATb), c = 1

(A-141

or i

• :

.), } A_ b )h I - _ cot (A_ a + , c = 2

1971007290-022
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The stay time is now recalculated using

= 2 1 h12

ts 1 + _i sinh F - F

where

(A-15)

aI + R1
cosh F =

1 h12

+

Ulal

Using the new value of ts, return to Eqn. (A-9) and proceed as

before to obtain new values for hI and iI. This loop may be

cycled as often as desired to improve the ts estimate; however,

it does not appear that more than one cycle is normally justified.

The values of h I and iI having been determined, the

patch point coordinates for entry and exit are obtained using
the method of Reference 1.

Converting to the notation of Reference i,

h2 = ha, b

i2 = ia, b for single crossing trajectories

i2 = ia, -i b for double crossing trajectories

},

8SRT2 = 8a, b

ASRT2 = Aa,b

Now, calculate the following quantities for both the entry and
exit conditions

-AC ± B_A 2 + B2 - C 2

sin 7NRT = A2 + B2 (A-16) L

1971007290-023
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with

| I

A = RlVo[(Sin_ o) {cOSAsRT2sinSSRT2sinil - sinASRT2COSi I)

I |

+ (cos_ o) (sin_SRT2sinSSRT2sini I + cOSAsRT2cosil)]

+ Ro_"I [(sin_ I) (-sin_SRT2CoSSsRT2)

I I

+ (cos_ 1) (-sinAsRT2singSRT2sinil - cos_SRT2COSil)]

B = RlVo[-Sin_oCOSA_RT2COSSsRT2 - cOS#oSinASRT2COSSsRT2 ]

| |

+ RoVl[(sin# I) ('-sinXsRT2sinBSRT2sini I - cOs_sRT2COSi! )

+ cos_isinXSRT2COSSsRT2]

!

C = hlCOSi I - h2cosi 2 + RoVoSin_ o

where

, cosi 1

cosi I = cOSBsRT2 '

and

hI = RIV 1 sin_ 1 •

I

The quantitir,_ i1, iI and i2 carry algebraic signs, according

to the rules:

i _ i| Jl i

Nearest minor-body-centered node I

Ascending Descending '
,, J

iI and iI are negative iI and iI are positive

1971007290-024
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and

Nearest major-body-centered node

Ascending Descending

i2 is positive i2 is negative

|

Having chosen the appropriate sign for iI and iI by

the, above rule, this sign must be modified (for both iI and

iI) for use in the YNRT equation according to the following

algorithm:

; YES NO

USE ��”�USE-il

1971007290-025
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Note that the sign of iI is changed in the YNRT

equation only. The sign on the radical in the 7_:RT equation

is chosen to obtain the smallest positive value of YNRT for

trajectories from the minor body to the major body and to

obtain the smallest negative value of YNRT for trajectories
from the major body to the minor body.

The Non-Rectilinear Patch Point:

The patch point latitude is given by

sln_NRT" = sinilsin NRT + sin -I (A-17)

and the longitude by

ANRT : ASRT2 + sin-i -tin i! I sin _'tan ill (A-18)

The State Vectors at Sphere of Influence Penetration:

A) The Minor-Body-Centered State Vector i

The longitude of the nearest node line is i

! ItanSNRT _

£i = ANRT + sin-I _ tan ill -, (A-19) _I

1
The argument of latitude of the patch point with i

: ' respect to £I is

" !s nS "

_:, _i = sin-i _ sin ill (A-20) -

/

c
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The position vector is then

x I = RI(COS_ICOS_ 1 + sin_qlcosilsin_,I) _

Yl = R_ _sinRlcos_ 1 - cosRlcosilsin_l ) (A-21)

_ .A

z I = Rlsinilsin_l

The velocity vector is :_

x I = Vl[sin_l(COS_Isin_ 1 - sin_icosilcos_l )

_ cos_llCOs_icos_l + sin_icosilsinwl) ] i_

Yl = Vl[sin#l(sinnlsin_l + c°snlc°silc°S_l) (A-22)

- cos_l(sinnlcos_ I - cos_icosilsin_i) ]

z I = Vl[-sin_isinilcos_ 1 - cos#isinilsinwl]

B) The Major-Body-Centered State Vector

x 2 = Ro - x1

Y2 = -Yl (A-23)

z 2 = Zl

x 2 = -x I - VoCOS_o

Y2 = -Yl + Vosin_o _ (A-24) _

z 2 = Z1

The solution is now complete.

J
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