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INTRODUCTION

Much analytical work has been performed during the
last decade on various forms of swing-by trajectories, par-
ticularly Earth-Moon free return trajectories and plaretary
fly-by trajectories. Such trajectories are normally calcu-
lated using a patched-conic analysis and iterating to match
the required bourdary conditions. While this approach works
quite well, and high speed computers overcome the labor re-
quired by the large number of calculations involved, the
degree of insight intc the problem is necessarily limited
by such an approach. For this reason, an analytical solution
to the problem has been derived which satisfies pre-encounter and
post-encounter boundary conditions.

The analytical solution to swing-by trajectories is
based on a new formulation of the patched-conic technique
developed in Reference 1. This formulation reduces to an
analytical form the problem of solviang pztched-conic trajec-
tories which satisfy boundary conditions both inside and
outside the sphere of influence. This is combined with the
geometry of the trajectory turn at the minor (or target) body
to produce the equations required for swing-by trajectories.

ANALYSIS

The Geometry of the Turn at the Minor Body

As the spacecraft trajectory passes through the
minor body's sphere of influence, it is turned by the gravity
field of the minor body. The geometry of the turn is shown
in Figure 1. Two relationships for the turn angle, 2f, can
be written,

2f = 2t + vy, + v, ‘ (1)
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and
2f = 2y + ¢, t ¢y (2)
€ OF INFL —_
cPHER UENcE Vib

¢b —~TRAJECTORY PATCH POINT

HYPERBOLIC MINOR-BODY-CENTERED
ASYMPTOTES MINOR SINGLE RECTILINEAR
BODY PATCH POINTS
‘ V\V'—© MAJOR BODY
Ro

TRAJECTORY PATH

TRAJECTORY PATCH POINT

FIGURE 1- THE GEOMETRY OF THE MINOR 8ODY TURN OF A SW!NG-BY TRAJECTORY

The angles Y3 and Y, 4re the displacements of the trajectory

patch points from the associated minor-body-centered single-
rectilinear patch point;* 4 and ¢ are the angles between the

*Definitions of all special terminolegy used may be found
in Appendix A of Reference 1.
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trajectory patch point radius vector and the hyperbolic asymp-
tote of the trajectory. Since the pericenter radius is
typically much smaller than the sphere ot influence radius,
the trajectory may be ta:en as traveling along the asymptote,
and ¢ then becomes the flight path angle of the trajectory.
The relationship between y and ¢ is given by (Reference 1)

V, sin )
. .1 DRT _.
Siny = Vb sIn ¢o sin ¢ . (3)

The a and b subscripts have been deleted from the equation since
it is valid for either case. The angle A DRT is the longitude

of the dual rectilinear patch point and is found from

, .
(Rl\ocos¢o + govlk) SlnADRT DRT

+‘R1V031n¢ocosl
(4)

- ROV051n¢O =0
and

k, = -1
(5)

kb = +1

For planetary configurations encountered in the solar system,
R, is considerably smaller than Ro'* i.e.,

R) = €R _ (6)

*The worst case in the solar system is the Earth-Moon
system, where RJ/Ro = ,168.
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Combining Egns. (4) and (6)

and solving for sin 2 yields

"DRT

sin XDRT =
r ~
V§ <sin(po zv cos¢ + k:gqv//ﬁ ) ( ~ sin ¢ ) + 2ke——cos¢
V1 0
‘Vr) + 2ke VI cos¢

L

Now, if the eccentricity of the minor planet orbit is less than
.15, then o is always between 81° and 90°. Thus, scos¢o, as

well as 52, may be dropped from Egn.

Equation (7) then becomes

\
= 2
DRT ~ V,

sinx sing¢
o

Combining Egns. (3) and (8),

VB 2
k t ¢ 1l - VI 51n¢o

. Vb .2 \
siny = |k * ¢ 1l - g sin ¢° sing
- 1

For a small pericenter radius, sin¢ is a small number, so that

esin¢ is a second order term. Thus,

giny = ksing

as a first order approximation. Equations (1), (2) and (10)

combinedrshow that

{(7) as second order terms.

=) (7)

8)

(9)

(10)

(11)

{
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That is, the angle between the asymptotes of the hyperbola is
equal to the angle between the minor-body-centered single-
rectilinear patch points associated with the trajectory, to

the degree that Eqn. {i0) is true. With regard to the accuracy
of the approximation, note that ¢ is a small angle, normally

in the range of 5° to 10°, so that a second order error would
be expected to be about 1°. The asymptote angle, ¥, is a large
angle, typically 45° or more. Thus, the error in t implied in
Egqn. (11) is roughly one part in 45.

Equation (11) provides the wedge required to reduce
the swing-by problem to analytical form. The angle ¢ is related
to the trajectory energy and angular momentum by

1 (12)
141

tany =

and 1 is related to the minor-body-centered single-rectilinear
patch points, as will be shown in the next section. The coor-
dinates of the minor-body-centered single-rectilinear patch
point are calculable from tne equations of Reference 1.

The Geometry of the Encounter

To find 1 from the coordinates of the minor-body-
centered single-rectilinear trajectory, consider the geometry
of the minor-body-centered trajectory segment in three dimen-
sional space. Figure 2 shows the geometrical detail for one
form of a swing-by encountcr. The geometry is slightly different
for trajectories which cross the minor body's orbital plane twice
while inside the sphere of influence instead of once, as shown
in Figure 2. Also, some significant geometrical differences
occur as the approach or departure trajectory portions lie inte-
rior or exterior to the minor body orbital path. To distinquish
between the various possibilities, descriptive trajectory names
such as "interior-exterior, double-crossing trajectories" will
be used, where "interior-exterior" refers vo the geometry of the
approach and departure trajectory segments, respectively, and
"double-crossing" refers to the geometry within the sphere of
influence. Thus, Figure 2 represents an interior-interior,
single~crossing trajectory; that is, the spacecraft approaches
the minor body sphere of influence from the direction of the
major body, crosses the orbital plane of the minor body only
once while inside the sphere of influence, and exits the sphere
of influence traveling towards the major body.
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In Figqure 2, Ba' Aa and Bb' Ab are the coordinates

of Lhe minor-body-centered single-rectilinear patch points,
and are calculated according to the equations of Reference 1l.
They are referenced to the line joining the major and minor
bodies at the time the spacecraft pierces the sphere of influ-
ence; thus, Ba' Aa is referenced to the major-minor body line

at the time the spacecraft enters the sphere of influence, and
Bb' Ab is referenced to the major-minor body line at the time

the spacecra“”t exits the sphere of influence. These two major-
minor body lines are separated by the angular distance the
minor body travels during the time the spacecraft is within the
sphere of influence. This is shown as wts. From Figure 2, one
may then write

Aka+AA =360-)\a+)\

b + wts (13)

b

From the relationships of spherical trigonometry

tan Ba ;
tan (180 - iIT

sind )\a =

tan Ba

SlnA}\a = =- t—a-fl_—i—l- (14)

and, similarly,

tan Bb

SlnA)\b = m—; (15)

The inclination has been taken as retrograde since an interior-
interior trajectory cannot be formed with a posigrade inclina-
tion. Combining Egns. (13) and (15),
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tansb

"E—an—iz = s:.n[(mts + )\b - )\a) - Ala] (16)

Then, using Eqn. (14) and the trigonometric identity for the
difference of two angles,

s:Ln(mts + Ab - Aa)

cos(wts + Ay - Aa) - (taan/tanB;T (17)

tanAAa =

Equations (15) and (17) give AAa and AAb in terms of the minor-

body centered, single-rectilinear patch point coordinates. The
angle t is related to Aka and Ay by

21
T=3 (A'ra + ATb) (18)
where
COSAT = COSBCOSA) (19)

It was shown in the previous section that t is well
approximated by ¢, and the relationship (Eqn. {12)) between y
and angular momentum was stated. Using these relationships,
Eqn. (18) becomes

AR 1
hy = wa, tan » (ATa + Atb) (20)

From Egn. (14)

tani, = - ——=2 , 90° < li,1 < 180° (22,
a

sk . o
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Calculation of the Sphere of Influence Stay Time

Fquations (20) and (21) piovide the required bridge
between the approach ard departure trajectories. The only
missing ’ink is the time the spacecraft stays within the sphere
of influence. To approximate the sphere of influence stay time,
consider the equation for the stay time

a ‘ R+ a
t, = 2/ 1 Pl ginhF-F (22)
S ul al

where

al + Rl

+ R

cosh F =
ay P

(23)

Now, a; and RP are normally much smaller than Rl' Then, trom

Egn. (23), cosh F is a large number and we may make the
approximation

F

sinh F = cosh F = % e (24)
Equation (22) then becomes
a 3 a, + R a, + R
_ A/ 71 1 1 1 1 v
t_ =2 - ln 2|{——rs— (25!
s M1 A1 3 t Rp

The behavior of the first and second terms of Egn. (25) is shown
in Figure 3 for the range of values of RP and a, normally encoun-

tered in Earth-Moon trajectories. The second term is much smaller
than the first and is relatively inveriant. Since Rp and a, are

+ R
21
suggests itself. A plot of this expression is shown as a dotted

3 1

of the same order, approximating the second term with 1ln
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line in Figure 3. For large values of aj. the approximation is
excellent, and for small values of a, the second term is very
small compared to the first; hence, the approximating term is

quite acceptable. Therefore, the stay time equation may he
written ¢z

ALUE OF EQUATION TERMS

3
1 .
ts = 2 la : - In la - (26)
M1 1 1
20
15|
Ry
5l - InZa'*R' |na_'_+_ﬂ
M7 al+Rps / "
Rps=6x10" —--—7___.___;___________
R =60x 10"
ps
0 —1 v [ l l
0 5 10 15 20 % *

aq, MILLIONS OF FEET

FIGURE 3 - VALUES OF THE TERMS IN EON. (26} FOR LUNAR TRAJECTORIES

A plot of Eqn. (26) is given in Figure 4 along with the true
stay times for a set of lunar trajectories. While the corre-

lation shown is not as good as might be hoped, it is adequate
for our purposes.
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FIGURE 4 - COMPARISON OF ESTIMATED AND KEPLERIAN SPHERF !
OF INFLUENCE STAY TIMES FOR LUNAR TRAJECTORIZS i

Correction of the Sphere of Influence Stay Time

Once the stav time has been estimated by Egn. (26),
-values for h, and il may be obtained. Onze h1 is obtained,

ts may be recalculated using

. ) i
a13 hy
ts = 2\ — + sinh F - F
_ "1 1%
where . ‘ (27)
a, + R ? i
cosh F = 1 1
hlz
1+ ) )
"1%1 L
2 .
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Equation (27) is a slightly modified version of Eqr. (25} and
is an exact expression, although the value of ts obtained from

the equation is approximate since the value used for h1 is still
approximate. If the new ts is significantly different from the
old value, hl and i, may be recaiculated using the new tge It
does not appear to be necessary to recalculate Ab or to perform
the recalculation of hl and i1 more than once to obtain good
accuracy.

The General Solution to Swing-by Trajectories

The set of equations composed of Egns. (15), (17),
(19), (20) and (26), when combined with the equations cf
Reference 1, constitutes the solution to interior-interior
single-crossing swWwing-by trajectories. For the other trajec-
tory cases, modifications are required in Egns. (15}, (17),
(20), and (21) as follows:

i) For all cases, Eqns. (15) and (17) may be written
as

tan Bb
sin Akb = EEE_II
tan o = 51n(m°ts + Ab - Aa)
a tan Bb
COS“(wots + lr;“ Xa) - W

ii) Tor double-crossing trajectories, Eqn. (20) becomes

_ 1
hl = /ulal cot i,(ATa + ATb)

iii) For all trajectories except interior-interior,. Egn.
(21) uses the principal value of tan i,. i

The equations for swing-by trajectories which have
just been derived are restated in the Appendix in the form of
a computational algorithm. It should be noted that two alter-
native expressions for combining loci were presented for the

wg+t b e
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equation sets in Reference 1. Of these two, the exprecsion
chosen for use here retains tighter control of the longitude
of the node.

Example Free Return Trajectory

Several approximations have been made in the fore-
going derivation. An example problem is now considered to -
show that these have not degraded@ the results significantly.
Specifically, consider a free return trajectory in the Earth-
Moon system with the following characteristics:

7

Injection Radius 2.15333 x 13" ft (100 n. mi. alt.)

30°

Injection Inclination

Return Vacuum Pecigee = 2.10333 » 10’ £t (100,000 ft alt.)
Return Inclination = 15°
Radius of Periselene = 6.0670 x 106 ft (60 n. mi. alt.)

The trajectory is to first enter the Moon's sphere of influence
when the Mocn is at apogee. By iterative patched-conic analysis,
the trajectory is found to have the following properties:

Approach Angular Momentum = 7.7377 x 1011 ftz/sec
Approach Semi-Major Axis = 8.6855 x 10° ft
Departure Angular Momentum = 7.6483 x 1011 ftz/sec
Departure Semi-Major Axis = 8.6658 x 108 ft
Selenocentric Inclination = 174.878°

Selenocentric Angular Momentum =  4.9551 x 1010 ftz/sec

Entry Patch Point
Latitude = - 4,931°
Longitude = -47.897°

Exit Patch Point
Latitude = 2.792°

Longitude = 46.570°

bucatas

[PV -
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Entry and exit patch points are referred to the Earih-Moon
lines at the time of entry and exit, respectively. These
lines are found to be separated by 12.720°.

Using the above input information, the trajectory
is calculated using the formulations derived here and in
Reference 1. The angular separation between the entry and
exit Earth-Moon lines is given as 13.471° using Eqn. (26)
and the anoular velocity of the Moon at apogee. From Egns.
{20) and (21):

0

5.0519 x 10%°0 £t2/sec

i

Selenocentric Anqular Momentum

174.848°

Selenocentric Inclination

So, for this case, angular momentum is found to be within 2%
by Eqn. (20) and the inclination is found almost exactly by
Eqn. (21). The angular momentum error causes the radius of

periselene to be shifted to 6.2752 x 106 feet for an error of
3%. Using Egn. (27), the angular separation between th= Earth-
Moon line at entry and exit is found to be

-— (-]
mots = 12,732

Recalculating the angular momentum and inciination:

10

Selenocentric Angular Momentum = 4.9617 x 10 ftz/sec

Selenocentric Inclination 174.828°

The angular momentum error is reduced to less than 0.1%. The

corresponding periselene radius is 6.0811 «x 1.06 feét for an

error of roughly 0,2%.
Using the angular momentum and inclination just ob-
tained, and the general equation set of Reference 1, the entry
and exit patch points are found to be:
Entry Patch Point i
Latitude = - 4.977°
Longitude = -47.904°
Exit Patch Point
ﬁatitude = 2.826°

Longitude = 46.576

v
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Using the patch points just obtained, the sphere of
influence radius, and the selenocentric angular momentum and
inclination obtained from Eqns. (20) and (21), a state vector
for the trajectory may be calculated. From this state vector
the approach and departure geocentric tralectory parameters
may be obtained; they are:

Approach Trajectory

Angular Momentum = 7.7571 x 1011 ftz/sec
Semi-Major Axis = 8.6861 x 10° ft
Inclination = 30.222°

Departure Trajectcry
Angular Momentum = 7.6554 x 1011 £t?/sec
Semi-Major Axis = 8.6661 x 10° ft
Inclination = 15.182°

The agreement with the input values is quite gnod. Using these
numbers, the approach and depca:lure perigee radii are calculated
as : '

7 ¢

Approach Peric¢ee 2.1647 x 10

Departure Perigee = 2.1073 x 10/ ft
which are within 1% of the desired values.

SUMMARY

The problem of swing-by trajectories has been reduced
to an analytical form. The resultant equations show swing-by
trajectories to be dependent on six parameters, or their equiva-
lents: the angular momentum and inclination of the major-body-
centered trajectories both before and after the encounter with
the minor body, the minor-body-centered energy, and the time of
the encounter. Thus, swing-by trajectories are dynamically
shaped by angular momentum and energy as are Keplerian two body
trajectories. The only independent geometrical parameters are

the two. inclinations. The other geometrical trajectory proper- )
ties of node line location and pericenter location are implicit

with the geometry of the swing-by trajectory.

e b Ml Aebe et 00,
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Two assumptions are made within the derivation, and
the accuracy of these assumptions will affect the results.
These are:

i) The eccentricity of the minor body's orbit is less
than 0.15.

ii) The minoxr-body-centered trajectory flight path angle
is small at the sphere of influence.

These assumptions are usually met by real trajectory problems
and the results are acceptably accurate, as was shown for an
Earth-Moon free return trajectory.

The analytical solution developed here has the dis-
advantage that swing-by trajectory problems are most commonly
stated in terms of pericenter radii and travel times, parameters
which do not readily convert to angular momentum and energy. It
'is generally true, however, that a concise analytical statement
of the c—rinciples underlying a problem facilitates its analysis.
An imradiate benefit gained from this work is the identifica-
tion of the important variables. A useful extension of the
analysis should lie in the development of derivatives of these
equations to produce useful tools for targeting swing-by
trajectories. 1In general, the formulation derived here should
expedite analysis of problems ranging from Earth-Moon free
return trajectories to interplanetary grand tour missions.

K ¥ Cokhon
2011-KMC-vh . K. M. Carlson
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APPENDIX

A COMPUTATIONAL ALGORITHM FOR SWING-BY TRAJECTORIES

The required input information for computing swing-by
trajectories is:

ha = the approach angular momentum
ia = the approach inclination
a = the minor-body-centered semi-major axis

hb = the departure angular momentum

ib = the departure inclination

f_ = true anomaly of the minor body at the tlme of entry
of the sphere of influence.

The inclinations are referred to the minor body orbital plane.
In addition, one must kncw whether the trajectory is to be
single-crossing or double-crossing, in order to set

c 1 ~ single crossing

c 2 ~ double crossing

Also, the constant k must be set according to

k., = +1 a interior approach
k., = -1 ~ exterior approach
k, = +1 ~ interior departure
k, = -1 extérior depérture

The gravitational constants for the major and minor bodies must
be known and are denoted: ,

[ PRI
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My minor body gravitational constant

My = major body gravitational constant

In addition, the minor body orbital semi-major axis and
eccentricity are:

a semi-major axis of the minor body orbit

(o]

]

e eccentricity of the minor body orbit

o

The distance between the minor body and the major
body at the time of entry of the sphere of influence is

a02(1 - eoz) (
R = A-1l)
o) 1+ eo cos fa

and the minor body orbital velocity is

2 _ .l.) (A-2)

The minor hody flight path angle is

1/2
. r""oz(1 - e°2)
R oy (a-3)
o '““o o -
The sphere of influence radius is
2/5
! '
ne o a0

At this point one is ready to begin the calculations.
The stay time within the sphere of influence is estimated from

e
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a a + R a + R
t_ = 1 la 1 _1n —1-5—1 (A-5)
M1 1 1

The angular velocity of the minor body at sphere of influence
entry is

= — (A-6)

The minor-bcdy-centered singie-rectilinear patch point latitude
is:

~
. in o
sin g _ ha,b sin la!b sin a,b
a,b R1V051n¢o
where (A-7)
tan &, p = -}V 2:35121’; RV
’ 10 o a,b "o'1

The a, b subscript means the equation is valid for either entry
or exit. The equation is read with the "a" subscript for entry
and with the "b" subscript for exit.

The minor-body-centered single-rectilinear patch point
longitude is:

-

. _-Ac:Bth2+32-c§
sin A
a,b A + B

where
A= Bovl ka,b + Rlvo cos ¢° > (a-8)
B = Rlvo sin ¢°7 ;

ROV° sin ¢° - ha,b cos 1
cos 3a,b

ML A R e Y e
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Now,

51n(wots + Ab - Aa)

tan AA_ =
a tan Bb

cos(mots + Xb - Aa) - EEH—F;

Then, the minor-body-centered inclination is

tan Ba

tan iy = - o33 Ax

If both k, and k,, are positive, then

i, = 180 ~ i,
Now
sin A) o= E_a.r_x_.e_b.
= b tan 1,
and hence
Ara,b = cos Ba,b cos Aka,b

The minor body centered angular momentum is then
j

1 -
.hl /ulal tan I(ATa + Arb), c=1

or

o
]

1 / M3y cot %—(Ata + Arb), c =2

>

(a-9)

(a-10)

(A-11)

(A-12)

(A-13)

(A-14)

e WAoo BHOGHT 7 ootz ny s Siosilstiasa) Ht o s
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The stay time

- A5 =~

is now recalculated using

’
al3 h 2 \
ts = 21 — 1 + 3 sinh F - F
M1 H1?1
where
> (A-15)
a1 + Rl
cosh F =

h12

1 +
Hiay

Using the new value of ts, return to Egqn. (A-9) and proceed as
before to obtain new values for h1 and il. This loop may be
cycled as often as desired to improve the tS estimate; however,

it does not appear that

The values of

patch point coordinates
the method of Reference

Converting to

h, =h

more than one cycle is normally justified.

h
1
for entry and exit are obtained using
]-'

and il having oeen determined, the

the notation of Reference 1,

2 a,b
12 = ia b for single crossing trajectories
’
i2 = ia’ —ib for double crossing trajectories

Bsrr2 = Ba,b

= A

AgrT2 a,b

Now, calculate the following quantities for both tho antry and

exit conditions

-AC + BY A + B® - C

sin yypp = 21 B

(A-16)

o — Sy A i T

.
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with

]
sini, - sina cosil)

sing 1

A= Rlvol(sin¢o) {cosA

SRT2 SRT2 SRT2

t ]
+ (cos¢0) (SlnASRTZSInBSRT2SIn11 + cosASRT2c0511)]

r o3 - Y
+ Ro‘l [(-1n¢1) ( 51nASRT2cosBSRT21

+ (cos¢l) (-sinASRTzsinBSRTzsini1 - cosASRTzcosil)]

B = Rlvo[-sincbocosngTzcosBSRT2 - cos¢051nASRT2cosBSRT2]

]
+ ROV1[(51n¢1) (“SlnASRTzslnBSRT251nll - cos}SRT2c051l)

+ cos¢lsinASRT2cosesRT2]

. }
C = hlc051l - h2c0512 + ROVOSln¢0

where
K cosi1
cosi, = EGEF;;;; '
and

h

1 Rlvl 51n¢1 .

. _ )

- The quantitirs il’ il and iz carry algebraic signs, according
to the rules:

Nearest minor-body-centered node

‘Asceqding ~ Descending

; -
i, and i, are negative

i, and i, are positiv1
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and
Nearest major-body-centered node
Ascending Descending
12 is positive i2 is negative

the above
| ]

1 ]
Having chosen the appropriate sign for il and i1 by
rule, this sign must be modified (for both i1 and

il) for use in the YNRT equation according to the following

algorithm:

(A? +8% —C*>eC?) ,

MO YES

USE +i,

2 2 2
(A% +B? - € <0),,

AND = YES

2
(A? +8? - C? <0) _; *
‘ - | USE +i; AND SET
NO A2+82-C2=0

!

2 2 2 2 2 2
: (A +8% - €, >R +8% - C)

T T
I

USE +i; USE - i,
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Note that the sign of i1 is changed in the YNRT
equation only. The sign on the radical in the Yygy equation
is chosen to obhtain the smallest positive value of YNRT for
trajectories from the minor body to the major body and to

obtain the smallest negative value of YNRT for trajectories
£rom the major body to the minor body.
The Non-Rectilipear Patch Point:

The patch point latitude is given by

1

_: [sins
sinBNRT = sinilsin YNRT + sin 1 ( 51nf§T2~] (A-17)

and the longitude by

A

-7 [tans -1 [tang
+ sin” ! (-.-—S-‘.‘E?-) - sin~! ( NRT) (a-18)

NRT - *srr2 tan 1, tan 1,

The State Vectors at Sphere of Influence Penetration:
A) The Minor-Body-Centered State Vector

The longitude of the nearest node line is

tang ’ - .
_ A NRT .
91 = ANRT + sin (TE‘!\_{I) - (A-~19)

-The argument of latitude of the patch point with
respect to 2, is -

sing :
o) = sin”} (._f.blgz) (a-20)

e v . e A AMBR A B Rt

T - T PR A



BELLCOMM. INC. - A9 -

B)

The position vector is then

N\ %
_ . e e R_
Xy = Rl(cosnlcosm1 + 51nnlc051151nw1)
¥y = R, {sing;cosw; - cosg;cosi;siny;) )
zy = Rysini;sing; j

The velocity vector is

Xy = Vl[sin¢l(c059151nm1 - 51nglcosi1cosm1)
- cos¢1(cosszlc05ml + sinnlcosilsinwl)]
¥y = V1[sin¢1(sinnlsinml + cosnlcosilcosml)

- cos¢1(sin91c0551 - cosnlcosilsinml)]

N
et
|

= V1[-sin¢lsini1cosm1 - cps¢lsinilsinm1]

The Major-Body-Centered State Vector

X, = R = )
2° o7 %
Yy = V) ?
22 =.'zl ) J
.. . ’

<2 = 7X) = Voc084,

Y2 =-y, + Vosin¢°

~—"

L4 .

2,5 %

The solution is now complete. -

(A-21)

$ (A-22)

(A-23)

. (A-24)




