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Determination of Wind Response of Saturn V by Statistical
 
Methods
 

1.0 INTRODUCTION
 

1.1 The Problem
 

This report describes the development and application
 
of a non-stationary statistical method of estimating the
 
response statistics of a vertically rising vehicle. The
 
method used is based on the solution of the adjoint
 
differential equations of the vehicle. The technique is
 
referred to as "The Method of Adjoint Systems", (Ref. 1).
 

The method of ad3oint systems has received increased
 
attention in recent years. This increased popularity is
 
due to more widespread recognition of the power of the
 
method. Application of the method to the problem described
 
in this report illustrates this power.
 

The problem attacked in this study was
 

given;
 

O 	 Wind field statistics - (non-stationary), 
o 	 Thrust variation statistics (non-stationary), 
o 	 Center of Pressure variation statistics 

(non-stationary), 
o Vehicle model parameters (time-varying).
 

Determine the resulting Saturn V
 

o 	 Mean-plus-three-sigma bending moment at a 
selected station,

o 	 Mean-plus-three-sigma angle of attack, 
o 	 Mean-plus-three-sigma engine angle, 

response in the region of peak dynamic pressure/angle
 
of attack.
 

Through application of the adjoint method, the vehicle
 
response statistics itemized above are obtained in a very
 
efficient manner.
 

In the sections which follow the method of adjoint
 
systems is explained; the variational models of wind, thrust
 
and center-of-pressure are described; the vehicle model is
 
described; and results are analyzed.
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The most difficult and time consuming part of the
 
effort was synthesis of the wind filter. A considerable
 
portion of this report is devoted to this most difficult
 
and important problem. The wind filter model work
 
described has important applications outside its use
 
with the adjoint method. It's application to load relief
 
controller design is an example of one such application,
 
(Ref. 2).
 

1.2 Summary of Results
 

All major objectives of the effort were met, with
 
one significant exception. This exception being the
 
omission of the small scale wind effects, or turbulence,
 
model. This omission resulted from the unavailability of
 
covariance data defining the turbulence model.
 

The most significant result was the demonstrated ability

of the method of adjoint systems to accurately predict vehicle
 
response statistics efficiently. The key words here are
 
accurately and efficiently.
 

The method proved to be accurate in that response statistics
 
obtained using this method compared favorably with response
 
statistics estimated by the more conventional ensemble averaging
 
techniques.
 

The method proved efficient in that, with one computer
 
run, the bending moment,angle of attack, or engine deflection
 
angle statistics resulting from combined stochastic variations
 
in wind, thrust and Center of pressure can be calculated. The
 
ensemble averaging technique requires from 100 to 500 runs to
 
obtain this information for a selected flight time. In contrast
 
to the previous adjoint effort (Ref. 3) average computer run
 
time on the IBM 7094 averaged 12 minutes per run as compared

with 40 minutes in the previous effort.
 

This reduction in run time was achieved through loosening
 
the overly restrictive tolerance constraints on the predictor­
corrector integration algorithm.
 

Other significant results of this effort were:
 

o A method for synthesizing a filter capable of
 
matching non-stationary wind statistics was developed.

The filter resulting was verified and actually used
 
to obtain vehicle response statistics. The filter
 
generated statistics within the 90% confidence
 
interval of the wind data.
 

Stochastic models representing statistical thrust
 
and center of pressure variations were developed
 
and used with the wind model to obtain response
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statistics from the combined effects of
 
stochastically varying winds, thrust magnitude
 
and center of pressure location.
 

Numerical results from application of the adjoint
 
technique are presented in Section 5.0. Filter output
 
statistics are presented in Section 3.0.
 

1.3 	 Recommendations
 

The following changes to the implementation are
 
recommended:
 

o 	 Program the adjoint model on a hybrid computer.
 
Cost savings associated with operation on a
 
hybrid would be significant.
 

o 	 Incorporate other (and better) stochastic
 

variational models of vehicle parameters.
 
The models used were limited to white noise
 
models of XCP location and thrust magnitude.
 

o Develop and incorporate a wind turbulence model.
 

To fully capitAlize on developments of this effort,
 

the following extensions to other applications are recommended:
 

Apply the developed method to Space Shuttle Analysis.
 
The efficiency of the method lends itself to any
 
statistical response study. The similarity of
 
the Space Shuttle statistical response analysis
 
requirements makes it a natural application.
 

o Apply the wind model to other problems, notably
 
load-relief controller design, wind predictor
 
models and other simulation applications.
 

o 	 Apply the Wind Filter Synthesis methodology to
 

other stochastic model synthesis requirements.
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______ 

2.0 THE ADJOINT METHOD
 

2.1 Reviewing the Method
 

The adjoint method is applicable to linear time
 
varying systems. To illustrate it's application,

consider the time varying system of Figure 2-1.
 

Input Output
 

FIGURE 2-1 Generic Linear Time-Varying System
 

In this figure, g(t ) is the system weighting function. 
The mean square response, or autocorrelation of the 
system output is given by: 

t2 t2* 
4yy (t2)= y(t 2 )

2 =. g(t 2 , I ) dT1 g(tl,T 2 )4xx (TitT 2 )dT2 , (2-1) 

where:
 

4yy = autocorrelation of the output,
 

g(t,T) = system weighting function, and
 

4xx = autocorrelation of the input.
 

If the system input is gaussian white noise, equation (2-1)
 
simplifies to:
 

2 t 2 2
 

4yy(t 2) = y(t2 ) =j. g(t2t) dT (2-2) 

See Ref. 3, p 2-9.
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The method of adjoint systems is applied at this
 
point to generate g (t2 ,T) as a function of 'r" for a
 
selected value of t2.
 

The procedures that are developed for this purpose
 
are quite simple. The logical derivation of these
 
procedures is covered in Lanning and Battin,(ref. 4)
 
Appendix F, page 398, and will not be covered in this
 
report.
 

One method of forming the adjoint of a system is to
 
start with an analog representation of the system and
 
convert this representation to an adjoint model. The
 
step by step conversion procedure is described in Rogers
 
and Connolly, (ref. 5) page 236 as follows:
 

(1) 	Turn each element in the loop around and
 
reverse the direction of signal flow.
 

(2) 	Let the time-varying elements start from
 
time t2 and run backward relative to their
 
action in the regular system.
 

(3) 	Interchange inputs and outputs of the system.
 
The new input will be 6(T). The output will
 
be g (t2rT).
 

To illustrate these rules, consider the system of
 
Figure 2-2 and its adjoint transformation, Figure 2-3.
 
If the time varying coefficient, (t), in the original
 
system is equal to t, then in the adjoint model it becomes
 
(t2 --T).
 

To simplify the transformation of a system to its
 
adjoint, the following rules should be adhered to in drawing
 
the original computer-circuit diagrams.
 

(1) 	No potentiometer should have more than one out­
put. Use multiple isolated potentiometers
 
instead.
 

(2) 	Consider amplifier and summers to have only

gains of unity. Gain reapportionment between
 
potentiometers and amplifiers may be performed
 
in the adjoint system.
 

This procedure was utilized, even though the equations
 
were solved on a digital computer. The DYNASAR algorithm
 
was used in implementing the solution. DYNASAR permits the
 
engineer to think in terms of analog computer diagrams and
 
solutions while actually solving the equations numerically
 
on a digital computer. General Electric report "Development
 
of Adaptive Modular Analysis Techniques, (ref. 6) written
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~SYSTEM
 

Input 	 g (t, 0 Output = 

f(t) = t, the running variable
 

FIGURE 2-2 	 Forward System Model With Time-Varying
 
Coefficient.
 

Impulse SYSTEM Adjoint
 
Input -- Output
g(t2,T) 

f(T) = t2 -T, T the running variable 

FIGURE 2-3 	Adjoint of System of Figure 2-2.
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under NASA Contract NAS8-18005 describes the DYNASAR
 
algorithm and its use in detail.
 

An alternate approach to defining the system adjoint
 
using a state variable development is described in DeRusso, Close,
 
and Roy, State Variables for Engineers, (ref. 7) pp 376-394.
 

Once the adjoint model is generated, the mean square
 
response is obtained by applying equation (2-2). The
 
solution of equation (2-2) is mechanized by utilizing the
 
adjoint model as shown in Figure 2-3. Figure 2-2 shows the
 
forward model of a system for which a mean square response
 
due to noise is desired. By applying the rules described
 
above, the adjoint of this system can be drawn as shown in
 
Figure 2-3. The impulse response of the adjoint model
 
yields the desired mean square response of the system for
 
any defined time, t2 . The impulse input function is
 
introduced by loading the integrators in the adjoint system
 
with the appropriate initial conditions. A novel way of
 
accomplishing this loading of initial conditions is
 
described in section 4 of this report.
 

2.2 Application to Saturn V Response Statistics
 

By assuming that g(t,T), in Figure 2-2, represents the
 
weighting function of the Saturn V vehicle (relating wind
 
to vehicle bending moment). The method of adjoint systems
 
can be applied to determine the mean square value (i.e. variance)
 
of the bending moment. An immediate observation is that,
 
as formulated, the applicability of the method of adjoint
 
systems to the solution of this problem is predicated on
 
the assumption that the input be white noise. Obviously,
 
the wind cannot be considered white noise. The solution to
 
this problem is very simple, conceptually.
 

If a filter is synthesized such that when forced with
 
white noise, the output signal has the covariance equal
 
of that of the wind, the combined system (vehicle plus
 
filter) represents the desired problem formulation. Figure
 
2-4 shows the combined vehicle - wind filter model. Figure
 
2-5 shows the adjoint model of this combined system.
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INDFILER N Bending
 
MODEL X VEHICLE MODEL - Moment
 

Noise
 

FIGURE 2-4 Combined Wind-Saturn V Vehicle Model
 

t 2 (t2, ) v DT 

Mean Wind, V s 0 fD 

~2 
F GFBM(t)


SATURN V WIND FILTER
 

u VEICLE ADJOIT ADJOINT
puLe i MODEL MODEL
 

FIGURE 2-5 Combined Wind-Saturn V Adjoint Model.
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Figure 2-5 illustrates application of the adjoint
 
model to obtain the mean and variance of the vehicle bending
 
moment at a given flight time, t2.
 

Using the same approach, the variance of the bending
 
moment due to stochastic variations in center of pressure
 
and thrust is determined. These statistics can be
 
calculated at the same time, on the same simulation model.
 
Figure 2-6 illustrates how this is done.
 

Thrust
 
Model 
 2 (t
Adjoin 	 BMt2
 

Thrust
 

|Filer I--\/ q 	 (t 2 ) 

Input 
 W n
Wind
 

joln -- CBM(t2 )Xc
 
XXcp
 

FIGURE 2-6 	 Determination of Bending Moment Variance
 

Resulting From Combined Stochastic Variations.
 

Extending the adjoint method to calculating response
 
statistics other than bending moment response is straight
 
forward. For each response statistic desired, a new
 
g (t2,t) is generated. This was done in this study to
 
obtain angle of attack and engine deflection statistics.
 
The results, Section 5, summarizes these response statistics.
 

2-7
 



SECTION 3.0
 

WIND MODEL DEVELOPMENT 

3-1
 



3.0 WIND MODEL DEVELOPMENT
 

3.1 Data Requirements for "Ideal" Wind Model
 

Granularity of Covariance Data
 

In order to obtain first and second vehicle
 
response moments (mean and covariances), means and
 
covariances of the incident wind, Vw(t), must be
 
known. Ideally, the wind model should contain
 
covariance data at altitude intervals fine enough
 
to define forcing frequencies in the range of the
 
first several vehicle bending modal frequencies. In
 
the case of the Saturn V Vehicle the rigid body mode
 
is in the neighborhood of 1 radian per second and
 
the first three elastic modes are approximately'6,
 
13 and 18 radians per second. This means that the
 
wind statistics must be calculated in fine enough
 
increments to include frequencies up to approximately
 
20 radians per second. To convert this requirement to
 
a specific sampling interval, knowledge of the vehicle
 
velocity in the area of interest and application of
 
the sampling theorem is required. At peak dynamic
 
pressure the vehicle velocity is approximitely 500
 
meters/second. The 3rd bending modal frequency is
 
20 radians per second or 3.18 cycles per second.
 

Then;
 

V (Velocity of Vehicle)

(Wind Wave Length) = f (3rd modal frequency) 

500 m/sec
 
157 meters,
3.18 c/s = 

Using the sampling theorm, it is required that a
 
signal be sampled at least every half cycle to determine
 
its presence. This means that covariance data must be
 
available in intervals of less than approximately 75
 
meters in altitude. The ideal filter should match
 
the covariance at these 75 meter increments.
 

Directional Components
 

The complete wind model includes statistics of the
 
east-west components (zonal) and north-south (meridional)
 
components as well as correlations between the components.

The general form of this wind model is shown in Figure
 
3-1.
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vEW (h)
SEw (h) E 

91(h E 

Xa(h) 

NSN
 

X(h) = Intralevel correlation v s(h)
 

coefficient between EW & NS
 
wind components.
 

Figure 3 - 1 Ideal Wind Model 

Sample Size and Statistical Grouping by Month,
 

Season or Year
 

Of course the ideal sample size of wind soundings is
 
infinity. The real question though, is how should the
 
available data be grouped. For example, the data could
 
be grouped by day and the windiest day statistics selected
 
as the statistics to design to. This would insure that on
 
any given day (even the windiest), the probability of
 
structural failure would not exceed a specified value. The
 
problem here is lack of sufficient data for a given calendar
 
day to place any confidence on the statistics for that day.
 

If the windiest week were selected, the probability of
 
exceeding the structural limit of the vehicle launched in
 
the windiest week could be established. However, if the
 
windiest day of the windiest week were selected as the
 
launch date, the probability of structural failure would
 
be greater than the specified amount. In addition, it is
 
possible that the windiest day may not even occur in the
 
windiest week.
 

Another consideration is that over a given period of
 
time, for example a week or month, the statistics are
 
relatively stationary with time. Therefore, there is some
 
logic in taking a larger grouping, such as a week or month
 
for establishing the design wind statistics.
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To summarize, there are conflicting considerations
 
in establishing the "best" grouping of data for defining

the wind statistics to be matched by the "ideal" wind
 
model. Balancing these considerations resulted in
 
selecting the windiest month statistics, (March) as the
 
best grouping for design purposes.
 

3.2 Available Wind Statistics - Limitations and Assumptions
 

Source of Statistical Data on Wind
 

Two sources of wind data were available for use:
 

(1) 	Computer printout of Mean and Covariance of
 
winds over Cape Kennedy as measured by the
 
Jimsphere Wind Sounding Program. This print­
out was an output of NASA-MSFC Contract NAS8-21444
 
(Ref. 8)
 

(2) 	NASA T ND 3815, "Scalar and Component Wind
 
Correlations between Altitude Levels for Cape
 
Kennedy, Florida and Santa Monica, California".
 
(Ref. 9)
 

Both sources utilize tracking of an ascending balloon,
 
as the method for obtaining wind velocity data. Data at
 
50 meter increments was obtained from the Jimsphere measured
 
data. The rawinsonde data yielded statistics in 1000 meter
 
increments.
 

Use of data obtained in this manner requires assumptions

of statistical regularity and time constancy. The statistical
 
regularity assumption means that if the measurements were taken
 
sometime in the future, the same statistics would result. The
 
time constancy assumption is that, over a time interval
 
corresponding to the ascent of the balloon, the wind at a
 
specific altitude is constant. This assumption has been
 
experimentally verified by comparing the winds calculated
 
from balloons released at one-hour intervals. The correctness
 
of this assumption regarding turbulence remains questionable,

however, (see reference 10.)
 

Recognizing the assumptions inherent in the raw wind
 
measurements (and accepting them as valid, as most do), it
 
remains to identify the shortcomings of the statistical data
 
derived from these measurements. The constraints these
 
limitations placed on the wind filter synthesis effort can
 
then 	be itemized.
 

Limitations of Available Wind Statistics
 

(1) 	Jimsphere Mean and Covariance Data from Contract
 

NAS 	8-21444, (Ref. 8)
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The original intention was to use this data as a model
 
for developing the wind filter. This data was selected
 
because it was available in 50 meter increments. (The
 
other source of data gave covariance data only in 1000
 
meter increments.) The shortcomings of this data however,
 
included;
 

o The data was based on annual wind measurements.
 

Thus, design of a vehicle based on these statistics
 
would be adequate for a launch date picked at random,
 
but would be underdesigned for a vehicle launched on a
 
typical windy March day.
 

o The data contained only the Zonal wind component statistics.
 

o The data contained discontinuities in the covariance curves.
 

These discontinuities consisted of step decreases at 1000
 
meter increments above an altitude of 12 Kilometers, see
 
Figure 3-2. These step decreases appeared to result from
 
loss in Jimsphere data at these 1 Km intervals. Examina­
tion of a sample of Jimsphere profiles, (from Ref. 11,)
 
revealed that some of the Jimsphere information was lost
 
at higher altitudes. It was always the profiles showing
 
the largest wind magnitudes that were lost at the high
 
altitudes. Thus, the missing data represented only the
 
higher magnitude winds. The omission of these high
 
values in the calculation of wind covariances resulted
 
in step decreases in the covariance curves at the
 
altitudes where the Jimsphere profiles were terminated.
 
These discontinuities not only represent biased covariance
 
data, but greatly affect filter synthesis. Filter
 
synthesis requires calculating derivatives of the
 
covariance curves.
 

o The data contained small irregularities.
 

In addition to the discontinuities, small irregularities
 
occurred randomly in the covariance data. It was difficult
 
to establish if these irregularities contained covariance
 
information or if they were primarily due to lack of an
 
infinite sample size. It was concluded that the later was
 
true. This meant that the covariance data must be smoothed
 
to eliminate these irregularities.
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(2) Rawinsonde Mean and Covariance Data from NASA TH D
 

3815, (Ref. 9).
 

This data was available from 8 years of twice
 
daily measurements over Cape Kennedy. From this
 
large sample of data, it was possible to consider
 
the March wind statistics, which was one ob3ective
 
from an "ideal" wind model standpoint. The 8 years of
 
twice daily wind measurements resulted in 30*8*2 = 480
 
samples for the month of March. However, since the
 
wind remains correlated for approximately 3 days, there
 
were only 480/6=80 independent samples. This is a
 
sufficient sample size, but the problem associated with
 
this data was;
 

O 	 The data was available in only 1000 meter increments.
 

This is insufficient to include the "small scale"
 
or 	turbulence information.
 

3.3 Final Wind Model Specification
 

As a result of data limitations the following approach
 
to wind model design was taken:
 

o Use two sets of data; the rawinsonde data for 
large scale effects and the Jimsphere for small
 
scale or turbulence effects.
 

Model the large scale effects by synthesizing a
 

filter capable of converting white noise to an
 
output having the covariance of the rawinsonde
 
measured winds.
 

O 

O 	 Model small scale effects by passing each of
 

1200 Jimsphere profiles through a high pass
 
filter, filtering out all the large scale, low
 
frequency, (rawinsonde-measured) effects and
 
leaving only turbulence. The ensemble of
 
turbulence profiles then is processed to obtain
 
the covariance information.
 

O Model small scale effects by synthesizing a
 

filter capable of converting white noise to a
 
signal having the covariance of the wind turbulence.
 

The total wind model then consists of two wind
 

filters for each directional component (N-S, E-W).
 
The output of the two filters, one representing
 
large scale effects, the other representing
 
turbulence, are then summed, producing a synthetic
 

O 
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wind field having both large and small scale
 
effects. Figure 3-3 illustrates the form of
 
the resulting wind model of the zonal (E-W)
 
winds.
 

yEW(h)
91(h) 
 (h 

Uncorrelated +4
 
White Noise
 

W.(h) 

-/T 
0 EW (h)
 

gl(h) = Large scale effects (March)
 

gf(h) = Small scale effects (annual)
 

Figure 3-3
 

Wind Model Containing Both Large & Small
 
Scale Effects
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The model depicted in Figure 3-3 implies the
 
assumption of statistical independence of turbulence
 
and large scale effects. That is, the magnitude of the
 
turbulence is independent of the magnitude of the large

scale effects. This assumption is only approximately
 
true, and its acceptability was to be checked when the
 
turbulence component was extracted from the Jimsphere
 
data. If it turned out not to be true, a correlation
 
coefficient would be introduced between the signal from
 
the large scale effects filter and that from the turbulence
 
filter. This would be accomplished in a manner similiar
 
to that shown in Figure 3-1 for incorporating a correlation
 
coefficient between E-W and N-S winds.
 

Because of time constraints only the zonal wind model
 
was considered. The task of separating the turbulence
 
from the Jimsphere data and obtaining its covariance was
 
assumed by S&E-AERO-YE. Because of problems in processing

this data the results were not available at the time of
 
publication of this report. Thus, only the large­
scale model was synthesized.
 

Working within the constraints described above;
 

(1) 	The model shall consist of a zonal wind iodel
 

made 	up of two elements
 

0 a 	large scale effects model
 

0 a 	turbulence model 

(2) 	The model shall be valid from 0 to 16 Kilometers
 

(3) 	The large scale effects model shall consist of
 
a linear, time varying filter capable of converting

white noise to an output having the same covariance
 
as the winds over Cape Kennedy during the month of
 
March. The output statistics shall be within the
 
90% confidence limits of the rawinsonde data from
 
NASA-TND-3815).
 

(4) 	The turbulence model shall consist of a linear,
 
time varying filter capable of converting white
 
noise to an output having the covariance of the
 
turbulence portion of the winds over Cape Kennedy.

Covariance of the turbulence shall be determined
 
in the manner described above. It shall be based
 
on the most complete set of Jimsphere data available
 
and thus be based on ensemble averaging over a
 
complete year (as opposed to the month of March).
 
The output covariances shall be within the 90%
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confidence limits of the covariance data obtained
 
in this manner.
 

(5) 	If turbulence is found to be correlated with large
 
scale effects, a correlation coefficient as a
 
function of altitude shall be calculated and
 
incorporated in the model.
 

(6) 	Time permitting, a meridional wind model having
 
the same specifications as those listed in items
 
1 - 5 above shall be synthesized. The two models
 
shall be related by the intralevel correlation
 
coefficient between the zonal and meridional
 
wind components, as shown in Figure 3-1.
 

It is unfortunate that turbulence data never became
 
available. The influence of turbulence statistics on
 
overall vehicle response, would be an interesting statistical
 
relationship. It is highly recommended that this effort be
 
reinitiated when this data becomes available.
 

3.4 Filter Synthesis
 

3.4.1 The Synthesis Problem
 

The problem of constructing a filter meeting the
 
specifications itemized in the preceeding paragraph is a
 
particularly difficult one. The difficulty stems from the
 
non-stationarity of the statistics being matched. In order
 
to match the non-stationary statistics, synthesis of a time
 
varying filter is required. No general solution to this
 
problem is known. Several approaches to synthesis were tried.
 
These included;
 

o Linear Regression
 
o Parameter Optimization
 
o Constrained Response Optimization
 
o Impulse Response Generation/Curve Fit.
 

The method ultimately used was the Constrained Response
 
Optimization method.
 

Since the names assigned to the methods are not completely

descriptive, a brief description of each is given here, together
 
with an evaluation.
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3.4.2 Linear Regression Method
 

Background
 

This method of filter synthesis was used by Bailey,
 
Palmer & Wheeler in NASA CR-846 (Ref. 12), and subsequently by
 
Palmer as described in the final report on contract
 
NAS 8-21444 (Ref. 8). In both efforts, annual zonal wind
 
statistics were used as a basis for the wind model. In the
 
first effort the covariance data was derived at 1000 meter
 
increments from 600 Jimsphere wind soundings. In the NAS 8­
21444 effort, covariance data was derived at 50 meter
 
increments from 1200 Jimsphere soundings. Results from
 
these efforts were not used here for these reasons;
 

The models derived from these statistics
 
were annual wind models instead of the
 
desired March wind model.
 

In the 1000 meter model, output statistics could
 
not be verified (see Ref. 3, p 2-18).
 

Examination of the 50 meter covariance data,
 
(Ref. 8), showed discontinuities in the co­
variance curves, (se- Figure 3-2). Since
 
the linear regression method uses derivatives
 
of the covariance curves in determining the
 
filter coefficients, the discontinuities
 
resulted in wildly varying coefficients. There
 
is no physical reason for the discontinuities
 
and hence coefficients derived from this data
 
are significantly in error .
 

Since the filters developed in the above efforts were
 
not directly usable, synthesis was required. One
 
approach was to take advantage of the linear regression work
 
from the above mentioned efforts and apply the same methods to
 
the March wind covariance data with minor modifications.
 

Description of Method
 

The linear regression method is a two step method. The
 
first step yields the time varying coefficients on the left
 
hand side of the filter equation; and the second step yields
 
the right hand side coefficients. To illustrate, the filter
 
equation for an nth order filter in the altitude domain is;
 

a.(h) dnX(h) + . . + a (h) X(h) = b (h)df (h) . .n + (h )dhn 0 m d(h)m 
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where;
 

ai(h), bj(h) = Altitude varying
 

coefficients
 

X(h) = filter output
 

(h) 	 = white noise input
 
to filter.
 

The a. (h) coefficients are determined first, then
 
the bj (h)coefficients are determined.
 

As derived in Ref. (8), the covariance of the filter
 
output, satisfies its differential equation;
 

d C (b2,h) 	 dmg (h2 ,h)
h)

a0 (h2 ) C(h 2,h) = bm(h 2 ) d h2 m 

"'+a dh' 

n~ 2
2) 
 dh2m (3-2)
 

+ .. + b0 (h2 )g(h ,h), 

where:
 
c(hh) = Covariance between the filter
~h2' output at altitudes h2 andh
 

g(h2 ,h) = Response of the filter at altitude
 
"h2 " due to an impulse input at
 
altitude "h".
 

It is easily seen that for h>h , (ie, an impulse input 
after the response to it is measure&) g (h2,h) E o. Equation 
3-2 then can be written as; 

an 
C(h2,h)
 
a,(h2 ) d h ..+ a (h2 ) C (h2 ,h) = 0; h>h 2 (3-3)
 

dh2
 

For a third order filter, equation (3-3) becomes;
 

d 3C(h 2 , h ) ad 222(h2+a(hC(h 2 , h ) +lh)dC2 ) dh(h +O( (h2 )C(h2 ,h) 0; h 2 >hSCbh + 2	 h) d h22 , h ) +a 03 d2h2 	 = 

(3-4)
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It is seen that if the derivatives of the covariance
 
between altitudes h2, and h(h h2 are known),the ah 2 ), i=0,
 
2 can be determined uniquely if there are exactly 3 equations
 
of the form of Eq. (3-4), (ig 3 values of i used). If more
 
equations of this form are available, a linear regression
 
procedure is used. This procedure is formulated as follows;
 

For a fixed h , find the set of a0 (h2),al(h2 ) and a2 (h2 )
 
which, when substituted into;
 

I, 
 / 

C(h 2 ,hi)+a 2 (h2 )C(h2 ,hi) + al(h 2 )C(h2 ,hi)
+ ao(h2)C(h 2 ,hi ) = 0,
 

for i = 1,2, ..., r
 

minimizes;
 

n 2 

SC(h2 ,hi)+a 2 (h2 )C(h2 ,hi)+a I (h2)c(h 2 ,hi)+ao(h 2)c(h2 ,hi) 2
 

(3-5)
 

where Ct= d Coy (h2 hi)
 

dh 2
 

For example the "a" coefficients for an altitude of 8
 
kilometers are obtained from the least squares fit to;
 

3 2 
d C(8,7)) a2 (8) d C(8,7) +al(8)dC(S, 7) + ao (8)C(8,7) = 0 

3 2 dh 
dh dh 2 

2 2 

3
 
d C(8,6) + a2 (8)d

2C(8,g) + al(8)dC(8,6) +a0 (8)C(8,6) = 0
 
3 2 dh2
dh dhdh 

2 2 a 

3 2
 

d C(8,1) +aa(8) d (8,1) +al (8)dC(8,1)
3 dh + a0()C(8,1) = 0 
dh dh 2
 

2 2
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This was the procedure used to obtain the filter
 
coefficients. The method used to obtain the derivatives of
 
the covariance data required in,equation 3-4 is described
 
in Appendix A.
 

The second step in the linear regression method is
 
determination of the right hand side coefficients. The
 
method used was a direct extension of the method used in
 
Ref. (8) for a second order filter. The same logic was
 
used for the third order filter. The equations describing
 
the procedure used to get both second and third order
 
filter numerator coefficients are given in Appendix B.
 

Evaluation of the Method
 

Two sets of filter coefficients were obtained using
 
the linear regression method,
 

(1) 2nd order filter coefficients, and
 
(2) 3rd order filter coefficients.
 

In neither case did the filters defined by these
 
coefficients yield covariances within the 90% confidence
 
intervals of the given covariance curves. In fact, the
 
results were not even of the same order of magnitude.
 

The problem source is in evaluation of the right
 
hand side coefficients. This problem can be illustrated
 
by considering the equations for obtaining the right side
 
coefficients of the second order filter. From equation B-7
 
in Appendix B the coefficient b1 (h2 ) is given by:
 

dC(h2,h)
S(h dC(h 2 'h)
 

dh h=h 2 dh h=h 2+
 

Only near the point hl h2- h2+ is this equation valid.
 
The data from which the covariance derivatives are taken are
 
1000 meters apart. Thus, there is no adequate way to evaluate
 
the bl(h2) coefficient.
 

Physically, there is no reason why the derivatives at 
h2 +, and h2- should be different from each other. If 
this is assumed, the bl(h 2 ) coefficient would always be = zero. 
This was tried but did not yield any better results. 

The method was dropped after all attempts to verify the
 
results from it failed.
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3.4.3 Parameter Optimization Method
 

Background
 

When the filter derived from the linear regression
 
method failed to yield covariances within the specified
 
limits of the given covariances, an effort was made to
 
improve the estimates of the coefficients. This improve­
ment effort was applied to the second order filter only.
 
The method employed consisted of changing the four altitude
 
varying coefficients in the direction which tended to
 
minimize the error squared between the covariances of the
 
wind and the covariances of the filter output.
 

Description of Method
 

The parameter optimization method was applied in several
 
ways. The objective function in all cases was minimization
 
of the sum-of-the-errors squared between actual and calculated
 
covariances; 

16 Km 16 Km 2 
Obj. Function=J= -7 ' [CoA(ij) -Covc(i j (3-7) 

i=l j=i 

where:
 
Coy (i,j) = Actual coariance of wind at altitudes i & j
 A for the month of March 

Covc(i,j) = Calculated covariance of the filter adjoint. 

In one case the filter coefficients were allowed to change 
by a constant multiple factor; 

N (i) NEW K0 b0 (i) OLD 

b1 (i) NEW= K1 bl (i) OLD 

a0 NEW K2 a0 Ci) OLD 

a1 (i) NEW = K3 a1 (i) OLD 
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The four "K's" which yielded the smallest objective
 
function were then determined using the "hillclimbing"
 
optimization procedure. This procedure yielded Ki's of;
 

K0 = -. 00558 

K1 = .42605
 

K2 = .05575
 

K3 = 1.095
 

These K's were based on minimizing the error squared of
 
the covariances over the first 8 kilometers. The procedure
 
resulted in reducing the sum-of-the errors squared of the 36
 
covariances from 9.7 X 105 to 8.13 X 104. 
In terms of average
 
error in the covariances this is a reduction from 164M 2/Sec2
 

.
to an average error of 47 .5M 2/Sec 2 Although this is
 
considerably lower in terms of average error, it is still
 
unacceptable. It appeared that the coefficients must be
 
allowed to vary independently at all altitudes. When this
 
was tried using the coefficients obtained from the above
 
procedure as a starting point, the average error in
 

-
coVariance was reduced from 47.5M2/Sec2 to 46.1M2/Sec 2
 

This was not a significant imprcvement.
 

A second application of the optimization procedure to
 
obtain better estimates of the filter coefficients was tried.
 
This application was based on the idea that no physical reason
 
exists for a discontinuity in the derivatives of the covariance
 
curves C(h2 , h) at h = h2- From equation (3-6) we saw that the
 
"bl' filter coefficient is determined from the difference in
 
derivatives at h = h2;
 

dC (h2 ,h) - dC (h2 ,h) (3-6) 

bl (h2 ) = h ­ dh +
 
h=h2 h=h2
 

Assuming the value under the square root sign is = 0;
 

b1 (h2 ) = 0 ) h 2 = 0, ... , 16 Km.
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The optimization scheme was applied to the a1 (h 2 ) 
a0 (h2 ), and b0 (h2) coefficients. The originally 
calculated " ai (h)" coefficients were used as a starting 
point for the optimization procedure. The starting values 
for the b0 (h2 ) coefficient were selected by forcing the 
b0 (h2) coefficients to yield the correct variances. The 
a0 (h2) & b0 (h2 ) were then varied to minimize the sum of 
the errors in the covarances over the first ten kilometers. 
This procedure yielded an average error in the covariances of 
20 M 2/Sec2 over the first 10 Kilometers. At this point, the 
optimization routine became "caged", and slight improvement 
become costly. 

The computer program used to optimize the second order
 
filter coefficients in this manner is listed in Volume 2
 
of this report.
 

Evaluation of Method
 

The parameter optimization method is a brute force
 
attempt at finding filter coefficients. It is extremely
 
costly computationally. For this reason the method is not
 
desirable. Another problem with the technique is it's
 
succeptability to local minimums. When the average error
 
in the covariances reached 20 meters2/ Sec2 , a local mimimum
 
was reached and improvement became impossible.
 

The method was applied to determining coefficients
 
only up to 10 kilometers. The reason for this was to limit
 
the number of variables allowed to vary in the optimization
 
routine. If the technique would have converged more rapidly,
 
the procedure would have been extended to the full 16,000
 
meter range of interest. Also, improvement of the third
 
order coefficients would have been attempted. Computation
 
expense prevented extension of the technique.
 

3.4.4 Constrained Response Optimization Method
 

Background
 

Because of the excessive computer run times and local
 
minimum problems associated with the parameter optimization
 
method of paragraph 3.4.3, an alternate approach was initiated.
 
This alternate method used the same optimization scheme and
 
same objective function, but utilized a different set of
 
ad3ustable parameters for matching the covariance of the wind.
 
To illustrate the method, it is desirable to compare it with
 
the previously described parameter optimization method.
 

In the parameter optimization method we started with
 
an estimate of the filter coefficients as determined from
 
the linear regression procedure. These estimates defined
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a second order filter of the form shown in Figure 3-4.
 
The filter defined in this manner is verified by
 

Figure 3-4 	Form of filter Synthesized by
 
Linear Regression Method.
 

first forming its adjoint. This is done by the rules
 
of paragraph 2.1. The resulting adjoint model is shown
 
in Figure 3-5.
 

T = h_ - h
2 

Figure 3-5 	 Form of Filter Adjoint Synthesized
 
by Linear Regression Method
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When forced with a unit impulse at an altitude
 
(ie.set all coefficients equal to their value at h2) 
the output of the filter is the weighting function g(h2 ,h), 
generated as a function of h. As developed in paragraph 
2.1, this g (h2 ,h) can be squared and integrated for l = 0 
to h2 , yielding the variance of the output of the filter at 
altitude h2 ;
 

2h

2 /j2(h2,h) 

a (h2 ) = COV (h2,h2) = dh. (3-8) 

0
 

Or, two separate simulation models of the filter can
 
be used to obtain the covariance between the outputs at
 
two different altitudes. This is accomplished by forcing
 
the adjoints of the two models at different altitudes, h2

and hl, multiplying the responses and integrating the product
 
to obtain the covariance between the filter outputs at h2
 ,

and hl, < h2;
 

COV (h2 , h) =f g(h2 ,h) g(hl,h) dh. (3-9)
 

0 

By repeating this process for all combinations of h?
 
and h1 , h2 = 0,16; hl = 0, h2 , the covariance curves defining

the filter output statistics are obtained, thus forming a basis
 
for comparison with the actual measured wind statistics.
 

It is seen that this filter verification procedure is
 
quite lengthy computationally. In order to accurately
 
generate the impulse response functions, g (h2 , h) from the
 
digital simulation models of the filters, it is necessary
 
to use a small integration interval. Because of this require­
ment for a small integration interval, run times to obtain the
 
complete covariance matrix are quite lengthy. Using the GE
 
635 time share system, it takes approximately 15 minutes of
 
terminal time (approximately $.00 computer cost) just to
 
generate the covariance matrix at 1000 meter increments,
 
Cie 136 values of covariance).
 

In order to apply the parameter optimization procedure
 
described in the paragraph 3.4.3 it is required to calculate
 
this covariance matrix many, many times in order to determine
 
which coefficients should be changed, how much they should
 
be changed,and at what altitudes they should be changed in
 
order to minimize the sum of the errors squared over the
 
entire covariance matrix.
 

3-19
 



Description of Method
 

The "Constrained response optimization method"
 
described here significantly reduces the time required
 
to determine the covariance matrix. The source of this
 
time savings is a result of an allowable lengthening
 
of the integration interval by a factor of 100. This
 
2 orders of magnitude increase in integration interval not
 
only makes the optimization procedure feasible, but permits
 
consideration of higher order filters.
 

The significant difference in this method and the
 
straight parameter optimization method of paragraph
 
3.4.3 is in the manner in which the impulse response
 
curves, g(h2,h) are generated. In the parameter optimiza­
tion method, these curves were generated from the output

of the filter adjoint digital simulation models.
 

In the constrained response optimization procedure,

these response curves are generated from an assummed
 
analytical expression;
 

al (h)*h (h* 
g(h2 ,h) = A(h2) e + B(h2 ) e COS(w(h)h+*(h 2 )). (3-10) 

The optimization problem here, is to find the set of
 
coefficients, A(h2) B(h2) ,a (h), c2 (h), t(h) andA (h,)

which minimize the ob3ectiA function, equation 3-7. in
 
this procedure, the only required integration is that of
 
the product of the g(h2 , h) *g(hl, h) for all pairs of h2 , hI.
 

The method gets its name, "constrained response method"
 
from the fact that the response is constrained to the form
 
of equation (3-10). In terms of a "frozen" filter function,
 
this constrained response limits the filter to having exactly
 
one real root and one complex pair at a given altitude. In
 
the parameter optimization method there is no such limitation.
 

The optimization logic used in determining the direction
 
and magnitude to change each of the coefficients at each of
 
the 16 discrete values of altitude, was developed for
 
application to this specific problem. Details of the method
 
are given in Appendix C.
 

The computer program is documented in volume 2 of this
 
report. The program name is "OPTFIL".
 

The actual filter coefficients are derived from the
 
constrained response coefficients. Details of this transforma­
tion are given in Appendix D. The result of this transforma­
tion is definition of a third-order filter of the form shown
 
in Figure 3-6. The computer programs for performing this
 
transformation are documented in Volume 2 of this report
 

3-20
 



under the name "ICC" and Filter".
 

gl (h2 'h)
 

92 (h2 h2'
 
ra
 

Figure 3-6 Adjoint Filter Form from Constrained
 
Response Synthesis Effort.
 

Evaluation of Method
 

The Constrained Response Optimization method yielded
 
a large-scale zonal wind model meeting the specifications
 
of paragraph 3.3. The average error in the covariances was
 

2
14 M2/Sec . The method is reasonably efficient and adaptable
 
to higher order models. It is recommended for use in any immediate
 
wind filter synthesis efforts. A complete summary of results
 
from this filter is presented in paragraph 3.4.7.
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3.4.5 Impulse Response Generation/
 

Curve Fit Method
 

This method was never fully developed and evaluated.
 
It does, however, deserve mention here because of its potential
 
promise as a synthesis technique. This method is based on
 
developing a set of impulse response curves, g(h2 ,h), which,
 
if matched, would yield the desired covariances. The desirability
 
of this technique lies with the fact that it is a curve that
 
is being fit, rather than the integral of the product of the
 
curve with another curve. The problem is infinitely
 
simpler.
 

The key to application of the method is the ability
 
or the inability t specify a set of g(h2 , h) curves to be
 
fit.
 

An approximate method for specifying a set of g(h2th)
 
curves was developed during the course of this effort. The
 
method is as follows; 

given; 1000 2 11000 

COV (1000, 1000)= 
0 

g (l000,h)dhpl00* g(l000,h) 

(3-11) 

where, 

1000 

g(1000,h) = average value of the impulse response
'0 curve over the range of altitudes from 

0 to 1000 meters. 

then;
 

1000
 
_ I COv(1000,1000)

g(1000,h) = 1000 
0 

For compactness, let:
 

gll = g(1000,h) 11000"0 

Now, in a similiar manner, 
2000
 

COV (1000, 2000) = g(2000,h)g(1000,h)dh 
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COV (1000,2000)[000 * g(2000,h) *gll
 

0 

'1000 g2 1 *g1 1
 

or
 
21= COV (1000, 2000)
 

1000 * gll
 

This process can be continued and eventually, all
 
the average values of the g(h 2 ,h) can be calculated over
 
each 1000 meter interval. The only thing left to do at
 
this point is to fit an altitude varying function through
 
these average values of g (h2,h).
 

It would have been interesting to explore this
 
technique further, but time did not permit. It is entirely
 
probable that this technique may result in an even more
 
efficient method of synthesizing the filter coefficients,
 
than the constrained response optimization method actually
 
used. This method is actually another approach to the
 
constrained response method, but it is more direct since
 
all the variances and covariances do not have to be calculated
 
repeatedly as they did when the constrained response approach
 
of paragraph 3.4.4.
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3.4.6 Transformation from Altitude to Flight-Time
 

Domain
 

In order to be combined and used with the vehicle
 
model, the filter must be converted for use in the flight­
time domain. This transformation is derived in Appendix E
 
for the third order filter configuration of Figure 3-6. Coefficients
 
defining the filter are shown in Figures 3-7 through 3-12.
 

3.4.7 Wind Model Output
 

The final form of the wind model is that of figure 3-6,
 
resulting from the constrained response optimization method.
 
Filter coefficients are shown in Figures 3-7 through 3-12.
 
The covariances obtained from this model are plotted in
 
Figures 3-13 through 3-15. The method used to obtain the
 
covariance curves from the filter simulation model is
 
described in paragraph 3.4.4. To illustrate the degree to
 
which the filter derived covariances fell within the 90%
 
confidence intervals of the given covariance data the 9000
 
meter covariance curve is plotted together with its 90%
 
confidence interval in Figure 3-16. The covariance curve
 
calculated from the filter output is also plotted here.
 

The 90% confidence band was determined from the Chi-

Squared probability tables, (Ref 13), based on an independent
 
sample size of 80.
 

The 90% confidence band is that range of values for which
 
one can be 90% confident that the true variance lies within
 
this interval. Of course, the more samples used in calculating

the sample variance,the narrower the confidence band.
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4. SATURN V VEHICLE MODEL
 

4.1 	FORWARD VEHICLE MODEL
 

The vehicle model used in this analysis was
 
taken directly from Reference 3. The following changes
 
were 	made to the model as reported on in Reference 3.
 

o The time varying coefficients were linearized
 

around a new mean value consistent with the
 
new mean wind input.
 

0 	 A thrust stochastic variational model was
 
added to the model.
 

An XCP stochastic variational model was added
 
to the model.
 

The AS-504 vehicle model used for determination of
 
Bending Moment Statistics via the ad3oint technique includes:
 

o 	 Two Bending Modes
 
o Four Slosh Modes
 
O Control Filters and Actuator Dynamics.
 

The bending contributions to attitude, attitude rate and
 
engine deflection angle are fed back to the vehicle control
 
system.
 

The coordinate system is shown in Figure 4-1.
 

The "forward" linear planar vehicle model from which the
 
adjoint was formed is shown in Figures 4-4, 5, 6 and 7. The
 
DYNASAR computer program for the I.B.M. 7094 was written from
 
these diagrams.
 

Nomenclature is defined in Appendix F.
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Figure 4-. Coordinate System
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4.1.1 Vehicle Dynamics and Control Equations
 

This paragraph describes the equations for vehicle dynamics and control
 

shown in Figures 4-4 and 4-7.
 

The translation equation is,
 

m Y = qACN+FTcx +(FTX-FAX) , (4-1)
 

There: m = Vehicle Mass
 

Y = Translational Acceleration
 

qACN qACN
 
A - Normal Force Coefficient Slope
 

a mean
 

FTCX = Axial Force Thrust Control
(4 Engines)
 

FTX = Axial Force Thrust
 

(5 Engines)
 

FAX = Axial Drag Force.
 

FAX' FTX' FTCX' QACN' 'mean and m were obtained as functions of time
 

from the 6 D.O.F. non-linear model response to a deterministic mean wind. They
 

were then input as tabular function in the linear model.
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The rotation equation is,
 

, (4-2)
IZZz=qACN(Xcp_-XCG)FTcx XCG 


Where: I = Vehicle Moment of Inertia about the Center of Gravity 

Z= Yaw Attitude Acceleration 

- qACN 

qACN = - = Normal Force Coefficient Slope 
a mean 

X = Vehicle Center of Pressure 

XCG Vehicle Center of Gravity 

FTCX = Axial Force Thrust Control. 
(4 Engines) 

XCp , XCG and I were obtained as functions of time from the 6 D.O.F. 

non-linear model and input as tabular functions in the linear model. 

The angle of attack equation is, 

Siz ind (4-3) 
VRS 

Where:
 

a = Angle of Attack
 

OZ = Yaw Attitude Angle
 

Y = Translational Velocity
 

VRS = Magnitude of the Relative Velocity
 

A deterministic mean wind profile was input as a tabular function. The
 

mean wind profile was determined from wind readings at Cape Kennedy. VRS was
 

obtained from the 6 D.O.F. non-linear model and input as a tabular function.
 

The control system used in this study is shown in Figure 4.2.
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The control law is defined as,
 

S = T3 (S) { TI(S)O + T2 (S)0 } + A6zBend. (4-4) 

Where: 0 = Z - AOz Bending 

Z= Yaw Attitude Angle
 

A z Yl(XM)nl + Y2(M)"2 

= Attitude Angle Correction Due To Bending
 

= Z + AOz Bend
 

= Yaw Attitude Rate 

AZ Bend = Y1 (XM)TI + Y2 (Xm)n 2 

- Attitude Rate Correction Due To Bending 

A6zBend = YI(XE)I + Y2(XE)1 2 

= Engine Angle Correction Due To Bending.
 

The transfer functions T1 (S) and T2 (S) describe the networks designed for
 

control system stability. All break frequencies below 100 radians per second were
 

included. T3 (S) is the transfer function which describes the engine actuator
 

characteristics. Position and rate limits on the actuator are not included.
 

The transfer functions used are:
 

Tl(S) =37.63S
3 + 479.54S2 + 7440.6S + 739.3 (4-5)
 

$4+93.253 + 2481.6352 + 17528.8S + 821.44
 

T S) =11.30311S4 T2()+ =,48.225S3 + 6065.1552 + 7429.85S + 498784 (4-6) 
$5+47-354+ 6324.4S3 + 90258S2 + 462383S + 722876 

1188.87 

T3 (S) = (4-7) 

S2+29.9286S + 1188.87 
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Equations 4-1 , -2 , -3 , -4 and -7 are shown in block diagram in Figure
 

4-4. Equations 4-5 and 4-6 are shown in block diagram form in Figure4-7
 

4.1.2 Bending Dynamics Equations
 

This paragraph describes the equations for bending dynamics shown in
 

Figure 4-5.
 

Assumptions
 

(1) 	Engine inertial forces are negligible. There is little tendency
 

for "tail-wag-the-dog" action since gimballed mass is small and
 

motion is small.
 

(2) Axial forces, i.e. drag forces, which act normal to the vehicle
 

because of bending along the vehicle, are negligible.
 

(3) 	Aerodynamic damping of the bending motion is negligible.
 

(4) 	Local angle of attack effects are sufficiently small to be
 

negligible. In effect, the rigid body angle of attack is thus used
 

to determine the aerodynamic forcing function on each vehicle segment.
 

(5) 	Bending modes are uncoupled. Structural damping factors are assumed
 

for 	each mode and are assumed independent.
 

(6) Time varying aerodynamic coefficients, thrust forces, and slosh
 

masses are used.
 

(7) 	Engine forces and slosh forces act in wind force plane.
 

The 	equation to be solved is,
 

•ENG. + QAERO. + QSLOSH. 
+ ~c~ nn.i = , (4-8)

T1 i n Tji +W2n iTi T (­i iT 
Ti 

Where: ni = generalized displacement of ith mode, referenced to vehicle
 

nose. 

= structural damping of ith bending mode. 
1 
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wn. = 1th modal freq 
1 

ENGINE. = Generalized engine force, ith mode.
 
1
 

- th 
mode.
OABRO. = Generalized aerodynamic force, i 

1 

QSLOSH. = Generalized slosh force, i mode. 
1 

T = Generalized modal mass.
i
 

To obtain each of the generalized forces:
 

QENG = FTCY Yi(XE) 4-9 

Where: FTCY = Translational force thrust control
 
TCYh
 

Yi(Xn) = 1th mode displacement at the gimbal point.
 

AERO =qA E C a (4-10)ER1 

All
 
Segments, 3
 

Where: q = dynamic pressure
 

A = vehicle cross sectional area
 

=CN Yij th mode normal force coefficient slope summed 

overall vehicle segments j.
 

(4-11)
QSLOSH i1 msK CKYl(XK) + AXmSKYi(XSK)K 

Kt h
Where: mmsK = slosh mass 

kth 
K' K slosh mode acceleration, displacement
 

- .th 
YCXK) =i bending mode slope at XK
i KK
 

Yi(XK = ith bending mode displacement at XK 
AX = Axial Acceleration.
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Slosh mass, bending mode displacement and slope, bending frequency,
 

bonding structural damping, and axial acceleration were obtained from "SA-504
 

Structural Dynamic Characteristics," DS-15522-4B (ref.14).
 

The forth assumption, which assumes negligible local angle of attack
 

effects was evaluated using the 6 D.O.F. non-linear DYNASAR model. Two runs were made
 

using this model. The first run included local angle of attack effects for each
 

vehicle segment. In the second run, the angle of attack for all vehicle segments
 

was assumed to be identically equal to the rigid-body angle of attack. The
 

second run resulted in consistently lower values of bending moment of between
 

4 and 5 percent. The peak mean bending moment considering local a effects being
 

14.81 x 106 N-M and without local a, 14.23 x 106 N-M.
 

It is felt that at this time 5% is within the error band for our linear
 

model. The additional complexity associated with inclusion of local a effects might
 

be considered later when a better wind model is developed.
 

Equations 4-8,, 9 , 10, and 11 are shown in block diagram form in 

Figure 4-5 for both bending modes. 

4.1.3 Sloshing Dynamics Equation
 

This paragraph describes the equations for bending dynamics shown in
 

Figure 4-6. The slosh model and equation were obtained from "The Influential
 

Aspects of Atmospheric Disturbances on Space Vehicle Design Using Statistical
 

Approaches for Analysis" by R. Ryan and A. King (ref. 15) 

Assumptions
 

(1) All sloshing occurs in the wind plane.
 

(2) The slosh model for each tank can be represented by a mass, 

spring and damper as shown in Figure 4.3. 
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Figure 4-3. Slosh Model 
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The equation to be solved is,
 

Y+(XcG-Xsi) Z+Yj (Xsi)nj+ Si-XOZ 

-AX [Y j ] +2wi i+ igiC0. (4-12) 

Where: 

Y = Translational Acceleration of the Vehicle. 

XSi = i Slosh Mode Attach Point. 

th .th 
Yj (X) = j Bending Mode Displacement at the i Slosh Mass 

Attach Point. 

ii = Generalized Displacement of the jth Bending Mode. 

Si = Displacement of the ith Slosh Mass. 

0Z = Yaw Attitude Angle. 

AX = Axial Acceleration. 

I 
 th
Y.(Xsi) = j th Bending Mode Slope at the i Slosh Mass Attach Point. 

W tSiSlosh Mode Frequency. 

CSi = i Slosh Mode Damping. 

Slosh mass, slosh frequency, slosh mass location, slosh damping and 

axial acceleration were obtained from "SA-504 Structural Dynamic Characteristics," 

DS-15522-4B (ref.5 ). 

The S-II and S-IVB fuel tanks were not modeled because the slosh forces 

exerted by these tanks were negligible compared to the other four tanks. 

Equation 4-12 is shown in block diagram form in Figure4-6 for the 

S-IC LOX, S-IC fuel, S-II LOX and S-IVB LOX tanks. 
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4.1.4 Bending Loads Equation
 

The bending moment calculation used in this study includes engine
 

control forces, aerodynamic forces, bending dynamics forces and sloshing dynamics
 

forces. The bending moment equation for station 25 is,
 

2
 
B.M.(2S)=Maa(t) + M 8 (t) +E M.. n~ (t) (4-13) 

4 j=l Tj 

+ M..C.t
 

j=l Ej
 

Where:
 

M = Bending Moment Coefficient, Angle of Attack
 

M = Bending Moment Coefficient, Engine Deflection
 

M.. = jth Mode Bending Moment Coefficient, Bending
 
TI 

M.. = jth Mode Bending Moment Coefficient, Slosh
 

Values for M and M were obtained from "Rigid Body Control Data for
 

the SA-504 LOR Vehicle," R-ABRO-DD-46-65 (ref. 1') Values for M.. were obtained
 
TIj
 

from "A Method for the Determination of Control Law Effect on Vehicle Bending
 

Moment," NASA TM X-53077 (ref.17).
 

Values for M.. were obtained by summing moments due to sloshing aft of
 

station 25.
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4.1.5 Stochastic Thrust Model
 

The stochastic thrust model is very simple. Since
 
covariance data on thrust variations during flight was
 
not available, it was assumed that thrust varied as white
 
noise.The magnitude of the white noise was adjusted using
 
a time varying coefficient. This magnitude was set at
 
a one sigma value of 1% of the total thrust.
 

4.1.6 	 Stochastic Center of Pressure
 
Model
 

This model took the same form as the thrust model.
 
A one sigma value of XCP variation of 5% nominal was
 
selected.
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4 .'2 Adjoint Vehicle Model 

The adjoint model was formed from the model described in Section 4.1.
 

The nomenclature for the adjoint model is the same as the "forward" model. The
 

interconnections in the adjoint model are designated as in the "forward" model.
 

It should be recognized that the signal present in the adjoint model is not related
 

to the same signal in the forward model. The nomenclature is included to aid in
 

tracing signal flow.
 

4.2.1 Forming the Adjoint 

The adjoint model with filters, bendingand slosh is shown in block 

diagram form in Figures 4.7, 8, 9, and 10. Each adjoint block diagram was 

formed from the corresponding "forward" block diagram as indicated below. 

FORWARD ADJOINT
 

OVERALL BLOCK DIAGRAM 4-4 4-8 
BENDING DYNAMICS 4-5 4-9 
SLOSHING DYNAMICS 4-6 4-10 
CONTROL FILTERS 4-7 4-7 

The adjoint model was formed using the rules set forth in Rogers and
 

Connolly.
 

The values for all tabular functions are listed in AppendixG 

Timing control for the adjoint model is shown in Figure 4-8 . The 

final time "t 2" for which the system weighting function '(t ,T) is determined is 

controlled by changing box 702 in the DYNASAR control deck. The bending moment from 

a deterministic wind input can be determined by convolving the system weighting function 

with a deterministic wind profile. The wind profile is input in table 399. The
 

convolution is performed in boxes 301 and 302.
 

All tabular functions are interpolated based on the output of box 704, '
 

"t 2 -T . 
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4.2.2 	Program Initial Value Calculation.
 

The initial values for all integrators are calculated automatically
 

by the computer program at time T=Q.
 

The input to the combined adjoint model, 6(t), is simulated by a switch
 

(BOX 10). The output of box 10 equals I for T=0 and equals 0 for T>O. The input
 

to each integrator that has an initial value is sampled at T=0 and the initial value
 

is held by a sample and hold circuit. The output of each integrator is held open
 

at t=0 to prevent the initial value of that integrator from affecting the initial
 

value calculation of the other integrators. For time t>0 the switches on the output
 

of the integrators are closed and the program runs in its normal operating mode.
 

4.2.3 Operating the Model
 

The vehicle adjoint model by itself, when forced by an impulse, yields
 

the vehicle weighting function,g (t2,T). A family of vehicle weighting functions
 

near peak "q" can be obtained by varying time t2 , (i.e. Set t2 = 65, 70, 75, 80).
 

The vehicle bending moment at t2 is calculated by convolving the vehicle weighting
 

function with a deterministic wind profile. Bending moment variance at time t2
 

is determined by forcing the combined vehicle-wind adjoint system with an impulse.
 

The bending moment variance is calculated by squaring and integrating the output
 

of the combined model.
 

The adjoint vehicle model developed during this study uses AS-504 vehicle
 

data and control filters. The time-varying vehicle parameters were obtained using
 

a 6-D.O.F. non-linear model of the AS-504 vehicle developed under contract NAS8-18005'
 

(ref.6 ). The 6-D.0.F. model was forced by a mean wind in the YAW plane. Thus, the
 

adjoint model calculations are made about the mean wind operating point.
 

The combined vehicle-wind model adjoint developed during this study was
 

programmed using DYNASAR on the IBM 7094 computer.
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5.0 RESULTS
 

5.1 Bending Response Statistics
 

Figure 5-1 shows the mean + 3a bending moments at
 
Station 25 obtained from application of the ad]oint method.
 
This figure shows the mean bending moment, the mean + 3a
 
bending due to wind variations alone, and the mean + 3a due
 
to the combined stochastic effects of wind, thrust, and
 
center-of-pressure.
 

Stochastic variations in thrust and Xcp were considered
 
to be in the form of white noise of magnitude equal to 1% of
 
the thrust level and 5% of the Xcp location. A 5% increase
 
in peak bending moment resulted from adding the stochastic
 
vehicle parameter effects.
 

Since zonal winds were used as the wind model, rather
 
than scalar winds, the input process can be considered gaussian.
 
Assuming gaussian variations in the vehicle parameters as well,
 
permits the mean + 3a bending moment to be interpreted as the
 
99.7 percentile bending moment. Without the assumption of
 
normality this interpretation cannot be made.
 

Figure 5-2 shows a comparison between the results of
 
Contract NAS8-21134, TMX-53567, and the response obtained from
 
the current model. The differences in the three bending mom­
ent curves stems primarily from the differences in the wind
 
model used. The wind model used in NAS8-21134 was an annual
 
wind model the TMX 53565 wind model was an ensemble of wind
 
profiles from annual sampleSalso. In all 3 cases, the peak
 
bending moments are in good agreement.
 

Sensitivity of the bending response to wind model changes
 
was tested. To check this sensitivity, a "not-so-good" wind
 
model was tried. This wind model had a mean-squared-error

double that of the model actually used. Figures 5-3 through
 
5-5 show the covariance curves from this "not-so-good" wind
 
filter. The maximum effect of this change in wind model
 
occurred at 75 seconds flight time, the point of maximum
 
bending moment variance. The poorer filter yielded a bending
 
moment variance of 17.2 E+12 n2-m2 . The better filter yielded


2 2
a variance of 17.7 E+12 n -m . This is a difference of 5%
 
maximum, for a filter whose mean squared error was double. This
 
supports the conclusion that the filter obtained is an adequate
 
model of the wind.
 

5.2 Angle of Attack Statistics
 

Figure 5-6 shows the mean + 3a angle of attack resulting
 
from wind variations and from the combined effects of stochastic
 
wind, thrust and center of pressure. The effect of the 1% thrust
 
variational model and the 5% Xcp variational model was less than
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a 1% increase in angle of attack at 75 seconds.
 

5.3 Engine Deflection Angle Statistics
 

Figure 5-7 shows the mean + 30 engine deflection angle

resulting from wind variations alone, and from the combined
 
effects of stochastic wind, thrust, and center of pressure.

The effect of 1% thrust and 5% Xcp variational models was to
 
increase the mean plus 3aengine deflection 5%.
 

5.4 Run-Time Reduction
 

An effort was made to reduce the computer run times of
 
the adjoint model. In the previous effort, IBM 7094 run
 
times averaged 40 minutes per run. Adjustment of the pre­
dictor-corrector integration technique tolerance controls
 
reduced this average run time to 12 minutes. The possibility

of reducing this further through alternate control system

filter modeling techniques proved to be impractical. With
 
the 3rd order wind model used in this study, the pacing vari­
able occurred in the wind model and not in the 5th order
 
control filters. The "pacincf" variable is that variable
 
which limits the size of the integration interval. It is
 
associated with the loop having the shortest time constant.
 
While the pacing variable was in the control loop filters
 
in the previous effort (Reference 3), it occurred in the
 
wind filter loop in this effort.
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APPENDIX "A"
 

CALCULATING COVARIANCE DERIVATIVES
 

The process of calculating derivatives of functions de­
fined by discrete data points is somewhat of an art. There is
 
always a trade off between placing too much faith in the num­
bers, and introducing smoothing functions which destroy per­
tinent information contained in the data. By placing too much
 
faith in the sampled data containing uncertainties, tremendous
 
errors in actual derivatives are introduced.
 

Because of the problems inherent in numerical differentiation,
 
an analytic function description of the covariance data was chosen.
 
Examination of the covariance curves, however, did not suggest any
 
analytical function which would be particularly good to fit to the
 
covariance data. This dilemma was alleviated by separating co­
variance into a product of its component parts.
 

Cov (hl,h) = ?hl(h)G'(hl) S(h) 

The component parts consisted of:
 

1. Correlation coefficient =Qhl(h)
 

2. Stand. deviation =O'(h)
 

These two functions of altitude, were plotted and
 
appeared more adaptable to analytical curve fitting. The
 
standard deviation points were fit to a curve of the form;
 

B(h-B4) 
 B7
 
((h) = B1 + B 2 eB 3 + B45)(h/22)B6(1-h/22)
 

The standard deviation data was least squared fit to
 
this function. The resulting fit is shown in Figure Al.
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The correlation coefficient, Ch (h) for all h, and h
 

were fit in a similiar manner. The analytic function
 
selected to describe the correlation coefficient was;
 

B3 2 3
 
+B4h + B5h

2 +B6h
h (h) = B1 +B2h 

for
 

h 4 10,000 meters, 

and,
 

B4h
 

* SIN (Ki(h-hl)h1 (h) = B1 + B2 h + B3 e 

for
 
h> 10,000 meters.
 

The method used to perform these non-linear curve fits is
 
applicable to any defined function. The procedure used is de­
scribed in "A Method For Solution Of Certain Non-Linear Problems
 
In Least Squares", by K. Levenberg, Quarterly Applied Mathematics,
 
1944, pp 164-168. The technique has been programmed in Time-Share
 
Fortran for the GE 605/635 and is a standard packaged routine.
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APPENDIX "B" 

CALCULATING NUMERATOR COEFFICIENTS
 

For white noise input, the output covariance is
 
found from:
 

C(h2 ,h) = (h2,X) g (h,X) dX ; h>h (B-I)2 


h 

C(h2 ,h) = (h2 ,x) g (hX)dX ; h 2 <h (B-2) 

Where;
 

g (h2 ,X) = Weighting function of 2nd order
 
system, weighting an input at
 
to an output at h2.
 

From I.C's (See Figure BI) we have
 

g(hh 2 ) Impulse response at h2 + - b1 (h2) (B-3) 
h=he due to an input at h 

2 2 

B-1
FIGURE B1 FILTER CONFIGURATION, 2nd ORDER 




Taking Derivatives Of (B-1) & (B-2) W/Respect To "h" Yields:
 

h 

2
 

h 

h=h2+ 
 h=h 2 

Subtracting (B-4) from (B-5)= 2 fr*(B3 
dC(h2 ,h) - dC (h2 ,h) = (h h 2 (1-6) 

h=h2 h h=hS 2 =h 2 ) 

fro (B 3 7 

SO(h2 )= dC(h2 ,h) d(h 2 ,h 

bl (h2) = dh dh 

h=hh=h 


The following numerical procedure was used to obtain the b0 (h2 )
 

coefficient.
 

Figure B-2 shows a typical filter impulse response resulting
 
from an impulse input at h2 . The response is shown for 3 points
 

near h2 , i.e. h1 0 h11, h12
' 


Figure 8-2 Impulse
 
Response at 3 points
 

I near impulse input at
 
Ih2.
 

I, 
hL0 hit -2 

B- 2
 



Since g(hlh 2 ) is the impulse response to an impulse
 
in at h2, it satisfies the homogeneous D.E.
 

dg(hl,h 2) d2g(h1 ,h2 )
a0 (hl)g(hl,h2 ) + al(h) dhl + dhl2 - 0 h1 >h2 (B-7A) 

Approximating the derivatives in terms of g(hlh 2) at
 
three points near hl = h2 (see figure B2) we have:
 

dg(h1 ,h2) 1[F-3g(h1 0 ,h2 ) + 4g(h1 1 1h2 )-g(hl2,hl (B-8) 
dh1 I 2[ 2 

hl = hl0 

dg(hlh 2) [-g(hlo,h 2 ) + g (h12,h 2) (B-9) 

dh1 

hl=hll
 

f I g(hl,h2)-4g(hllrh2)+3g(hl2,h2 (B-10)dgdhl'2(h17h2) =1 B-a
 

hl=hl2
 

d2g(hh 2 = [(h 0 ,h2)-2g(hllh 2 )+g(hl2,h 2) (B-11) 

h1=hl0
 

By substituting the equations for the derivatives,
 
(B-8), (B-9), (B-10), and (B-Il) into (B-7A) and assuming

the 2nd derivative constant over the interval hl0 h12,
 
3 equations in g(hl0, h2 ), g(hil,h 2 ) and g(hl2,h2 ) result.
 
These 3 homogeneous equations can be equated since they are
 
all = 0. The resulting pair of equations can be solved for
 
g(hll, h2) and g(hl2 , h), knowing g(hl0 ,h2)from (B-6).
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The equations to solve are:
 

[a0(hll)-2al(hlo)]g (hll,h2) +[al(hio) + al(hll)g] (h12 ,h2 
2a 2 

0[aO(hl 0 ) - 3 al(hl0 ) + a(h 1 l) g(hl0, h2 ) 

ral (hll)_ a •hl3a I h g~ 

1 2)
[a0 (hll) +2a l (h ,2) ] g(hll,h2)+[- a 0 Ch1 2 (h1 2 )] (h 1 2 

al(h12 ) + a g(hhl) h 2 )F 2 g(hl"h2 

From (B-6);
 
dC(h 1 0 ,h 2 ) - dc(hlo,h 2 ) 

dhl 0g(hl 0 ,h 2 ) = dh1 0 

hl0=h2 +hl0=h2 


Therefore by solving the above 2 equations we obtain;
 

g (hll,h2 ) 
& g(h12 ,h2 )
 

From knowing these values of g, at 3 consecutive points,
 
the derivatives of g at h2+ can be calculated, using equations
 
(B-8) & (B-i).
 

Referring now, to Figure BI, it is seen that:
 

dg(hl h2 ) d[b0 (h 2 ) x +bl(h2)1j=bo(h2X+blh2)X 
~lh)
)i b h2 


dh Idh 

h=h2+ h=h+ 

& X -a1 (h2 )X -a0 (h2 ) X 

& X=
 
X= 0 
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--

dg (h2+,hd=h+ 2 ) b0 (h2) -al (h2 )*bI (h2) (B-12) 

dhhh-


In (B-12) the only unknown is b0 (h2) which can now
 
be determined by solving (B-12).
 

3rd order Numerator Equations
 

Since g(hlh 2 ) is the impulse response function;
 

dg(hl,h 2) d2g(hl,h 2) +d3g(hl 'h2)
 
a0 (hlg(hlh 2 )+al(hl) dhI (h) dh2 d3h 1
 

1 

Ohl>h2 (B-13) 

By approximating: 

dg , d 2 g ,, 3g in terms of gl0, g 1 l' g1 2 , g 1 3 
dh1 1 ddE 

In a manner similar to the 2nd order system development 
we can obtain the numerator coefficients; 

dg(h'h2)1 =_[-I6gl0 + 18g 1 1 - 9g1 2 + 2g1 3] = go (B-14) 

dhI 
hl=hl0
 

' (B-15)
dgih(,h 2 [-3g1 1 + 4g1 2 - g 1 3 ] g1 

dhj
 

hl=hll
 

1 (B-16)
dg(hlh 2 ) = 2 [gl 0 - 4gl + 3g 1 2] =2 

dhl
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dg (h1 ,h2) j 
dh i 

hl=hl3 

= 1 [-2g1 0 

6 

+ 9g1 , ­ 1 8g12 + llg13 = g3 (B-17) 

d2g (h1 ,h2) 

2h= 2gl0 5gLl + 4g12 g1 3 = go 
(B-18) 

hl=hl0 

d2g(h17 h2) 

dh
2 

1J 
hl=hll 

=+ g = gl (B-19) 

d2g(h1 h2) 
dhlrh gll 2g12 + 913 = 

it 
2 

(B-20) 

dh
2 

1 hl=hl2 

d2g
_______= 

dh2 

hl=hl3 

-gl0 + 4g1, - 5g1 2 + 2g13 g3 
(B-21) 

d3g(h11 h2)= 

dh3 
1 

-gl0 + 3gll - 3g1 2 + g13 g (B-22) 

hlB=hl0 
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With these equations in (B-13) and assuming the
 
third derivative constant over the interval we obtain a
 
set of simultaneous homogeneous equations in glo, g1l,
 

g12 , and g13 - As with the second order development,
 
these values can be used to obtain the numerator coefficients.
 
Knowing the values of gll above, the derivatives can be
 
estimated. The following procedure is then used to obtain
 
the "b" coefficients:
 

b 

(-a 

Figure B-3 3rd Order Filter Configuration
 

Using the nomenclature of Figure B-3 and the same development
 
as for the second order system we see:
 

___h__+b2( 2) = J dC(h,52 )g(hl'hdh 
 dh (B-23)
 
h=h2 h=h+
 

h=h2
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dg(h,h 2 ) d [b 2 X + blX +bo]X 

dh = dh
J 
d 2h~ 

= b2 [-a 2X - alX - aoX] + blX + boX
 

h=hj 

& at h=h2X=l-, X=O, X=O so) 

dg(h,h2 ) 
 (B-24)
 

dh = 1(h 2) - a 2 (h2b 2 (h 2)
 
h=h+
 

Since dg(hl,h 2 ) ' b2 (h2) & a2(h2 ) are all known, (B-24)
 

dh
 
can be solved for blCh2)•
 

In a similar manner:
 
d g (h'h2) 
 2 

dg 2 ) = b0 (h2 ) -a2 
_h (h2 ) bl(h2 ) - al(h 2 )b2 (h2)+a2 (h2 )b2 (h2 ) 

2 
(B-2 5) 

The equation is then solved for b0 (h2); now all numerator
 
coefficients are known.
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APPENDIX C - Optimization Algorithm
 

Although basically a "method of steepest decent"
 
several features were added to make the method as
 
efficient as possible for this specific application.

The optimization procedure is as follows:
 

Let: 

16 16 

J= f g(i,h)*g(j,h)dh -COV (i,j) (C-1) 

i=lj=i h 

where:
 

h2 = 16000 meters
 
hi = 16000 - 1000 i meters
 

g(i, h) = constrained response function
 

= A(i)e al(h)*h + B(i)ea2(h)*h COS(w(h)h+V(i))
 

COV(i,j) = covariance between altitudes
 
i, j Kilometers from March
 
zonal wind table.
 

J is evaluated for the set of initial values of the
 
coefficients defining g (i,h) above. The initial values are
 
,best guesses at what they should be.
 

The partial derivatives are then calculated for each of
 
the coefficients, A(i), B(i), f(i), al (h) c2 (h), & w (h)

for all i and h. This is done by adjusting the value of
 
each coefficient for each i and each h above by 10% and
 
determining the effect on the objective function, J.
 

The sign and magnitude of the new estimates of the
 
constrained response coefficients are determined from these
 
partial derivatives. The corrections to the original estimates
 
are loaded into a correction- vector, "Q".
 

If the objective function is made smaller by these new
 
estimates, Q is set equal to and held at .I*Q. A new set of
 
coefficient estimates is now calculated. This process is
 
repeated until no further reduction in the objective function
 
can be made. Q is not changed after it is set at .1*Q. This
 
completes the optimization for this path.
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If the objective function is made larger by the new
 
estimates. Q is set equal to -.5*jQ I. New estimates are
 
calculated. If the objective function is still not reduced
 
below the value for the first guess estimates, Q is again
 
set equal to -.51Q I and new estimates are calculated. This
 
is repeated until success is achieved. When this has been
 
completed, Q is set and held at Q= .1*Q. New parameter
 
estimates are now calculated and the objective function
 
evaluated for these values. This is repeated until no
 
further success is possible.
 

Since the majority of computation time is spent in
 
determining the partial derivitives, the most effective
 
use of these values should be made. This can be done by
 
determining which set of variables has the largest partials
 
and setting the entire set's partials equal to zero.
 
This may be done only after new estimates for this set
 
have been determined. Setting the partials of this set
 
equal to zero is equivalent to optimizing relative to one
 
less set of variables. New estimates are now calculated
 
and the optimization process is reinitiated. When this is
 
completed the set with the next largest partials is determined.
 
This set's partials are now set equal to zero and the
 
optimization process is again reinitiated. This is done
 
until only one set of variables is left to be adjusted.
 
This represents the maximum usage of the partial derivitives.
 
New partials are now calculated and the complete optimization
 
process is started again. The procedure is stopped when
 
"J" (objective function) is sufficiently small.
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APPENDIX "D"
 

Calculating Filter Coefficients From Constrained
 
Response Coefficients
 

The problem here is to convert the constrained
 
response coefficients;
 

A(h2), B(h2), i (h2) and a1 (h)1 a2 (h) & c(h)
 
in the response function:
 

A(h2)el(h)*h + B(h2 )e 2(h)*h (COS( (h)*h + P(h 2 ) 

to filter coefficients. A filter of the form shown in 
Figure D-1 was selected because of the ease with which 
the conversion can be accomplished using this filter form. 

Figure D-1 Third Order Filter Form
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As shown in Figure (D-l)-, the third order filter
 
form is presented as the sum of a first order filter and
 
a second order filter. The first order filter is
 
associated with the first term of the constrained
 
response equation,
 

A(h2) e-al ( h)*h 

and the second order filter is associated with the second
 
term,
 

- a2()* 
B(h2) e 2 (h)*h (COS ( (h) *h + *(h2)) 

Derivation of the coefficients, aI (h), a2 (h),
 
a3(h), b0 (h), bl(h) and b2 (h) is as follows:
 

g1 (h2 ,h) = A(h2 )ea(h)*h, (D-1) 

hgl(h 2 ,h) = A(h 2 )*[ alC(h) + pl(h)*h]el )' (D-2) 

where the dot represents the derivative with respect 
to h. 

With (D-i) -4 (D-2), we have
 

gl(h2 ,h) = lat(h) + a(h)*h] gl(h 2 
,h) (D-3)
 

or,
 

al(h) cz1(h) + a(h)*h (D-4) 

b 0 (h2 ) = A(h2)' (D-5) 

In a simliar, but slightly more complex manner, the
 
second order coefficients are derived.
 

g2 (h2,h) = B(h2 ) ea2 (h)*h COS (w(h)*h + V (h2) (D-6) 

Simplifying the notation, for compactness, the derivation
 
continues;
 

• a h
 
g - Be 2 (a2 + a2 h) COS (w * h + 7)
 

-B e2h[SIN (wh + *)]I w -4 hi (D-7) 
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h o 2 00
 

g2=e2( + a2h) COS(h + f) + Bea2h(2a2 + C2h)
 

* COS (wh + 4) - Be t2h(a2 + a2h) SIN (wh+*) (w+wh) 

-	 Bea2h (a2 + az2h) (w + w) SIN (wh +4,)
 

BeQ2h ( + oh) GOS (h + 4,)
 

-	 BeQ2h( 2w +0h) SIN (uh+ 4) (D-8) 

From (D-7);
 

Be 2 (w +wh) SIN (wh+ip) = -g 2 + (c 2+a2 h) 92 

and, 

Bea2h COS (mh+) =2 (D-9) 

Now, substituting the relations D9 into D8; 

yields: 

92 	 2#+ h / + 2h)+g 2
+2 a h)-(wiwh) - 2 	 (+-a(a+cth) 2+h
 

r( h 2w + wh 
+ a2h) + TTTTE' g2 	 (D-10) 

where, in equation D-10, 

a3 (h) = coefficient of 92 

a2 (h) = coefficient of g2 

The bi(h) coefficients become b2 (h) = B(h2 ) COS (1p(h 2 )) 

bl(h) = B(h2 )a2COS (*) - B(h2)o SIN (4) 
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APPENDIX "E"
 

Conversion of Filter From Altitude to
 
Flight-Time Domain
 

Referring to Figures E-I & E-2 we can write:
 
v= velocity, dh
 

z1 (te) = gl(h) (E-1)
 

z2 (te) = g2 (h) 	 (E-2)
 

dzl(te) = dg I (h) 	dh 
dt (t) g,(h) v(t)(E-3)dt dh 	 zI 


dz2 (te) = dg(h) dh t g2 (h) V Ct)(E-4)
2(
d
dh
dt 


Also from figure El & E2
 

Z(t) = Z1 (t) R0 (t) 	 (E-5)
 

gl(h) = gl(h) CO (h) 	 (E-6)
 

With (6)- (3)
 

Zl (t) = gl(h) CO (h) v (t) 	 (E-7)
 

Equating (7) & (5):
 

zl(t) R0 (l)=gl(h) C0 (h) v(t) (E-8)
 

Using (1) - (8) yields
 

Ro(t) = CO(h) v (t) 	 (E-9)
 

In a similiar manner
 

z2 (t) = g2 (h) v (t) (E-1O)
 

z2 (t) = R2 (t)z2 (t) + R3 (t)z2 (t) (E-lI) 

g2 (h) C2 (h) g2 (h) + C3 (h) g 2 (h) (E-12) 
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With (2) & (10) -o (ii)
 

z2 (t) = R2 (t)4(h)v(t) + R3 (t) g(h) (E-13)
 

Also, differentiating (10) yields:
 

z2 (t) = g 2 (h) v (t) + g(h) v2 (t) (E-14)
 

With (12) -4 (14)
 

Z2 (t) = g2 (h)v(t) + CC2(h,) g 2 (h) + C3 (h) g 2 (h] v2 (t) (E-15)
 

Equating (13) & (15) yields
 

R2 (t) v(t) g(h) + R3 (t) g(h) = g2 (h)v(t)+C 2 (h)g2 (h)g2 (h)]v2(t)E )
 

Equating coefficients of g(h) yields: 

R3 (t) = v2 (t) C(h) (E-17) 

Equating coefficients of ;(h) yields 

v(t)R2 (t) = + 2(h ) (E-18) 
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Figure E-1 FILTER ADJOINT IN ALTITUDE DOMAIN
 

Figure E-2 FILTER ADJOINT IN FLIGHT-TIME DOMAIN
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APPENDIX F 

VEHICLE NOMENCLATURE 

NOMENCLATURE 

SYMBOL PARAMETER UNITS 

A Reference Cross Sectional Area of Vehicle M2 

A Axial (X)Acceleration M/Sec.2 

x 

1 Wind Filter Coefficients 

b ,b1 

B.M. Bending Moment Newton-Meters 

CN Normal Force Coefficient 

ith Slosh Mode Displacement, Velocity, Acceleration Meters, 

Meters/Sec., 

Meters/Sec.
2 

0z' 0Z'0Z Yaw Attitude Angle, Rate, Acceleration Radians, 

Radians/Sec., 
2 

.th 
Radians/Sec. 

W-1, Si i Mode Bending, Slosh Frequency Radians/Sec. 
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NOMENCLATURE 
CContinued) 

SYMBOL PARAMETER UNITS 

CN = CN/ Normal Force Coefficient Slope 
mean 

CN Y13 ith Mode Normal Force Coefficient Slope 

Summed Over All Vehicle Segments j. 

FTX Axial (X) Force Thrust (5 Engines) Newtons 

FTCX Axial (X) Force Thrust Control (4 Engines) Newtons 

FTCY Translational (Y) Force Thrust Control Newtons 

FAY Translational Aerodynamic Force Newtons 

FAX Axial Aerodynamic Force-Drag Newtons 

h(t2,t) System Weighting Function for Time t2 

IZZ Vehicle Moment of Inertia about the Center of Gravity Newton-Meter­

2 
Sec 

m Vehicle Mass Kilograms 

th 
msi i Slosh Mass Kilograms 

m, Bending Moment Coefficient, Angle of Attack N-M/Rad. 

MB Bending Moment Coefficient, Engine Deflection N-M/Rad. 

SIth Mode Bending Moment Coefficient, Bending N-Sec 2 

Ei 

Mith Mode Bending Moment Coefficient, Slosh N-Sec2 

q Dynamic Pressure Newtons/Meter2 

ith Mode Generalized Force Newtons 
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NOMENCLATURE 

(Continued) 

SYMBOL PARAMETER UNITS 

TCp Z Aerodynamic Moment Newton-Meters 

.th 

T i. l Bending Mode Kilograms 

VRY Translational Relative Velocity Meters/Sec. 

VRS Magnitude of Relative Velocity, Space Meters/Sec. 

XCp Vehicle Center of Pressure Meters 

XCG Vehicle Center of Gravity Meters 

.th 
XS3 i Slosh Mode Attach Point Meters 

Y1(X) 1th Bending Mode Displacement at X 

Y-(X.) 1th Bending Mode Slope at X. Rad/M 
32 

Y Translational Acceleration Meters/Sec.2 

Translational Velocity Meters/Sec. 

a Angle of Attack Radians 

Total Engine Angle Radians 

6 Engine Angle (Without Bending Correction) Radians 

A6Z Bend Engine Angle Correction Due to Bending Radians 

&oZ Bend Attitude Angle Correction Due to Bending Radians 

A Z Bend Attitude Rate Correction Due to Bending Radians/See. 

i'cSi ith Mode Bending, Slosh Damping Ratio 

thi Bending Mode Generalized Displacement, Meters, 

Velocity, Acceldration, Referenced to Vehicle Meters/Sec., 

Nose. Meters/Sec 2 
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