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ABSTRACT

A user's guide for the DYNASOR II (DYnamic Nonlinear Analysis of
Shells Of Revolution) computer code is presented in this report. The
finite element method of structural ana]ysis is utilized for the analy-
sis with the Houbolt numerical scheme being employed to solve the
eugations of motion of the system.. Documentation of the analysis
techniques is presented along with a section presenting guidelines for
utilizing the code and enumerating the limitations placed upon its use.
The procedures for preparing the input data are presented and several
example problems demonstrate the required input data for specific load-
ings. The extended appendix provides additional insight into the inner
workings of this code. Using the DYNASOR II code, the nonlinear dynamic
response of shells of revolution can be obtained in relatively short

periods of computer time for a large number of important shell problems.
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SOR - Shell Of Revolution

Computer Programs

A family of compatible computer codes for the analysis of the sheil
of revolution (SOR) structures has been developed by researchers at
Texas A&M University. These analyses employ the matrix displacement method
of structural analysis utilizing a curved shell element. Geometrically
nonlinear static and dynamic analyses can be conducted using these codes.
The important natural frequencies and mode shapes can also be determined
by employing another of the codes. Efficient programming provides codes
capable of performing these desired analyses in relatively small amounts
of computer time.

Each of these programs has been extensively tested using problems
the solutions to which have been reported by other researchers in order
to establish the validity of the codes. 1In addition, the capabilities
of the codes have been demonstrated in a number of publications by pre-

senting solutions to problems which were unsolved by other researchers.

SAMMSOR II - Stiffness And Mass Matrices for Shelis Of Revolution are
generated utilizing the first member of this family. This program accepts
a description of the structure in terms of the coordinates and slopes of
the nodes and the properties of the elements joiningithe nodes. For shells
with simple geometries (such as cylinders, shallow caps, hemispheres, etc.)
the shell geometry can be internally generated. Utilizing the element
properties, the structural stiffness and mass matrices are generated for
as many as twenty harmonics and stored on magnetic tape. Each of the

other SOR programs utilizes the output tape generated by SAMMSOR as input



data for the respective gna]yses, One advantage of creating the stiff-
ness and mass matrices in a separate program is that a variety of
analyses can be performed on the same shell configuration without having
to create the matrices more than once. Obviously, a variety of boundary
and Toading conditions can be employed without having to create new mass
and stiffness matrices for each casé°

SNASOR II - The Static Nonlinear Analysis of Shells Of Revolution
subjected to arbitrary mechanical and thermal Toading is performed using
the second computer code. Utilizing the stiffness matrices generated by
SAMMSOR and the loading conditions and boundary conditions input to SNASOR
II? the equilibrium equations for the structure are generated. The non-
Tinear strain energy terms result in pseudo generalized forces (as func-
tions of the displacements) which are combined with the applied generalqzed
forces. The resulting set of nonlinear algebraic equilibrium equations
is solved by one of several methods: Newton-Raphson type iteration,
incremental stiffness method, or a modified incremental stiffness method.
In general, the Newton-Raphson procedure is the best and yields accurate
results for highly nonlinear oroblems.

DYNASOR IT - The third code is used for the D¥namic Nontinear Analysis
of Shells Of Revolution. The equations of motion of the shell are soived
using Houbolt's numerical procedure with the nonlinear terms being moved
to the right-hand side of the equilibrium equations and again treated as
generalized Toads. The displacements and stress resultants can be de-
termined for both symmetrical and asymmetrical loading conditions. Asym-
metrical dynamic buckling can be investigated using this program. Solutions
can be obtained for high1y nonlinear problems in reasonabie periods of

time on the computer utilizing as many as five of the harmonics generated
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in SAMMSOR. A restart capabiiity is incorporated in this code which
aliows the user to restart the program at a specified time without having
to expend the computer time necessary to regenerate the prior respoase.
FAMSOR - Frequencies And Modes for Shells Of Revolution can be de-
termined using the fourth code. Using the stiffness matrix generated by
SAMMSOR and a lumped mass representation developed from the consistent
mass matrix generated by SAMMSOR, a specified number of natural frequen-
cies (beginning with the Towest or fundamental frequency) are obtained
using the inverse iteration method. The mode shapes for each of the fre-

quencies are also obtained.
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INTRODUCTION

The DYNASOR II (DYnamic Nonlinear Analysis of Shells Of Revolution)
code has been developed to determine the time varying resﬁonse of shells
of revolution to a variety of loading conditions. The code utilizes the
stiffness and mass matrices created by the SAMMSOR code for selected har-
monics, generates generalized fofces from a mechanical and thermal load
history, and solves the resulting initial value problem. This report is
a user's guide for the DYNASOR II code and is divided into four self-
contained sections with an extended appendix.

The first section describes the method of analysis used to obtain
the displacements, stresses, and stress resultants for the desired time
increments. The formulation of the equations of motion is presented
along with the numerical technique employed to obtain the solution to
these equations.

A section is then presented to enumerate the limitations of the
code and to provide valuable guidelines to aid the dser in performing
the desired analyses. The limitations result partly from the procedures
utilized in the method of analysis and partly from the storage capacity
and programming procedures employed.

A description of the input data required by the DYNASOR II code is
presented in the third section. Examples are provided in instances
where the wording might, at first glance, appear to be unclear or insuf-
ficient. The Timitations placed upon the input parameters are once

again enumerated.



The final section contains selected example problems which are
designed to illustrate the wide variety of input variations allowed
by the code. A copy of the input data required for each of the cases
is presented along with selected values of the output data. A
thorough understanding of these example problems is mandatory if the
user is to become adept at operating the code.

The extended appendix which follows the main report should prove
to be extremely helpful if a thorough underétanding of the program is
desired. A description of the subroutines and the significant Fortran
variables is supported by the presence of the subroutine call map and
a flow chart of the basic operations of the code. The sections de-
scribing the restart capability and the specification of the loads
should prove invaluable to users who desire to obtain optimum perfor-
mance from the code. A discussion of the program output is then fol-
Towed by a description of the changes necessary to modify the capacity

of the code.



SECTION I
METHOD OF ANALYSIS

Introduction

The purpose of this section is to provide theoretical documenta-
tion of the equations and procedures employed in the DYNASOR II code
to perform the DYnamic Nonlinear Analysis of Shells Of Revolution.

The matrix displacement method of a structural analysis is utilized.
Since the documentation for the development of the stiffness and mass
matrices has been adequately presénted in the SAMMSOR II user's man-
ual,! this section will not attempt to duplicate the previous presen-
tation. The dynamic equations of motion are derived and the numerical
techniques utilized to effect the solution of these equations are

discussed.

Equations of Motion

The matrix displacement method is an energy formulation and,
consequently, the equations of equilibrium for the nonlinear dynamic

response are obtained from Lagrange's equation:

T G + 8- o O
where
q? = generalized degree of freedom i of harmonic n
T = kinetic energy
(2)
U = internal energy

2
i

generalized force for degree of freedom i of harmonic n



Since the internal energy of a structure is a scalar quantity,
the expression for this quantity may be separated into various parts.

The formulation used in this analysis considers the internal energy as

_ ot ot
U= U+ Uy = (U + Uy (3)

where the superscript, t, denotes the inclusion of thermal effects and

UL = strain energy based upon linear strain
displacement relations

Uy, = strain energy due to the inclusion of

nonlinear contributions in the strain
displacement relations

NL

By substituting Eq. 3 into Eq. 1 and taking the nonlinear strain energy
terms to the right-hand side, the equations of motion for the nonlinear

dynamic analysis of shells of revolution can be written in matrix form
as

Uy,

n} (4)

"1™ + K"a" = Q" + (Qf) - ¢
o aq aq

The column matrix, {Qg}, of pseudo 1inéar thermal loads is evaluated

exactly from {BUE/aqn}. It should be noted that Eq. 4 is valid for any

harmonic n with the coupling between the harmonics appearing on the

right-hand side. In this formulation the nonlinear terms are treated as

pseudo generalized forces which are applied to the structure. The

obvious advantage of this formulation is that a tremendous savings in

computer time can be realized since the stiffness matrix does not change

as the displacements vary and must, therefore, be calculated only once. With

most other formulations for geometric nonlinearities, the stiffness

matrix must be updated at each time step.



Strain Displacement Relations

The DYNASOR II code utilizes the strain displacement equations
given by NovozhilovZ? as restricted to shells of revolution with the
additional assumption being made that the only important nonlinear
contributions arise from rotations about the shell coordinate axes.

The midsurface strain expressions can then be written as

-

.
es = & T 7 €53
- 1~ 2

E@ = e + ?’823 (5)

~

£s0 = €59 T €13%23

where
és = (su/ss) - ¢'w
ée = (1/v)[(av/36) + u sing + w €oS¢]
e, = (1/r)(au/20) - (V/r)sing + av/ss (6)

€3 = (sw/as) + u¢'

]

(1/r)(aw/38) - (v cos)/r
The changes in curvature are those used in linear theory
XS = - 3613/83

Xg = ~(1/r)(3ep3/98) « (1/r)sing é13 )

>
i

$6 "(T/r)(3é13/99) + (Si”¢/r)é23 ) aé23/aS



Pseudo Nonlinear Forces

The nonlinear terms.in this analysis are treated in the same way
as the generalized forces due to external loading. The generalized
forces due to the nonlinearities are evaluated for each element and
are then combined at the nodes. A detailed presentation of the pro-
cedures utilized in calculating the nonlinear forces has been made in
Ref. 3 with an overview of the same material being provided in Ref. 4.

The pseudo forces are obtained by retaining strain energy terms
containing the rotations raised to the fourth power. The retention
of the fourth order terms has been shown® to be absolutely essential
in cases where the nonlinear terms are substantial. The results pre-
sented in Ref. 6 for static shell analysis did not include the effects
of the fourth order terms but results obtained after the incorporation
of these terms revealed once again the necessity of retaining these
contributions.

The generalized forces due to nonlinearities are evaluated using
linear displacement functions in the variables u, v, and w and
employing strip integration over the length of the element. The in-
tegrals around the circumference are evaluated in closed form for the
pérticu]ar harmonics chosen. This procedure is simpler than the one
employed in Ref. 6 and permits the nonlinear forces to be evaluated
without the use of secondary storage on the computer. Detailed justi-
fication for this simplified procedure has been made in Ref. 3 so
these arguments will not be enumerated again. It will suffice to note

that due to the exact evaluation of the integrals in the circumferential



direction, it is reasonable to expect rapid convergence as the number
of harmonics is increased. Examples have shown (Ref. 3) that the use
of the strip integration over the length of the element produces con-

vergence quite rapidly as the number of elements is increased.

Thefma] Terms

The temperature distribution and the temperature gradients in
the normal direction for an element are expanded in a Fourier series
in a manner similar to that used for the displacement functions. The
temperatures and temperature gradients for an element are assumed
constant over each element in the meridional direction with step vari-
ations allowed in the circumferential direction. In cases where the
step variation in the circumferential direction is not considered
accurate enough, the Fourier coefficients may be specified as input
information.

The linear and nonlinear contributions are separated with the
linear thermal loads for each harmonic being evaluated as

ik

L
{Qn} = {—=} (8)
t 3qn

Employing a coordinate transformation to change to partial derivatives
with respect to the generalized shell coordinates, the problem reduces
to the evaluation of the partial derivatives of Uf.with respect to

the coefficients Gps QGps «ns Gg. These partial derivatives are pre-
sented in Eqs. 26 of Ref. 3, and the terms of {Qg} are listed in the

appendix of the same report.

The nonlinear thermal loads are treated in essentially the same



manner as the generalized forces due to nonlinearities are treated.
Utilizing the same approximations as for the nonlinearities due to

applied forces, the expression for the nonlinear thermal contribu-

tion is given by Eq. 28 of Ref. 3.

Stress Resultants

4

In this code, the stress resultants are determined by the use

of the assumed displacement functions and finite difference relations

at the mid-point of each element.

where
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For orthotropic shells the stress resultants may be written as

2 Xsej

s6Vos)

(10)

The shear resultants are determined approximately from the equations of



equilibrium of the undeformed shell as

oM
0 = 7 g () + 3% - Mysing)
3M (1)

T .9 ) .
Q = 7 GGz (rMg) + 557 + Mggsing]

Numerical Solution of Equations of Motion

Since a closed-form solution of Eq. 4 is generally not available,
a numerical method must be used to determine the solution to the equa-
tions of motion. A finite difference procedure developed by Houbolt
(Ref. 7) has been selected for use in the DYNASOR II code.

The equations of motion, Eq. 4, can be reduced to a system of

equations of the form
MI{a} + [KI{q} = {F(t,q)} (12)

The load matrix, {F(t,q)} is equivalent to the right-hand side of
Eq. 4. The initial displacements and velocities of the nodes must be

specified and can be written as

9, = {a},

(13)

q0 {q}O

Utilizing the Houbolt procedure, the accelerations of the nodes of

the shell are approximated by a third-order backwards difference expres-

sion

. _ 'l _ .
i1} = )7 1%~ 59, ¥ 49,01 - 90! (14)

Substitution of Eq. 14 into Eq. 12 yields the following eXpression which
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is utilized to solve for the displacements at the end of each time

step, except the first one:

(2(M] + (at)2[K1){q 4} = (at)2{F(t.q) .}
(15)

+ [M] {.5qn"'4qn”_-| +qn_2}

To determine the displacements at the end of the first time step, the

following equation is employed

(6[M] + (at)2[KI){qq} = (at)2{F(o.q,)}

. . (16)
+ [M]{Z(At)2q0 + 6Atq0 + 6q0}

It éhou]d be noted that the selection of the Houbolt procedure
for inclusion in the code was made only after evaluating the advantages
and disadvantages of a number of solution schemes (Ref. 8). The
Houbolt procedure proved to be the only method capable of providing
stable solutions for highly nonlinear problems while utilizing a
reasonably large time increment. The significant observations made
in Ref. 8 concerning Houbolt's procedure will now be presented.

It was found that double-precision arithmetic is necessary if
the code is utilized for highly nonlinear problems on an IBM 360/65
system (or comparable system). It is believed that if the DYNASOR II
code is used on computers which have a longer word length than the
360/65 system (such as the CDC 6600) double-precision arithmetic will
not be necessary. Utilizing the Houbolt scheme, it has been shown
that the solution converges as the number of elements is increased.
Although the Houbolt procedure has been shown to be unconditionally

stable for the linear problem, it has found that this is not the case
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with the nonlinear formulation. The damping inherent in the Houbolt
procedure was noted in some instances, but the savings in computer
time resulting from employing this procedure far outweighs this slight
drawback. Solutions (without the damping) were obtained, in some in-
stances, in one-eighth (1/8) the amount of time required by other
procedures. In all cases which were run, stable, undamped solutions
were obtained using larger time increments than could be used with

the other methods.

Extrapolation of Forces

In order to ehp]oy Eq. 15, the loads at the end of the (n+1)th
time step must be known. These loads, because of the presence of the
nonlinear terms, are a function of the displacements to be calculated
and therefore cannot be evaluated exactly. The right-~hand side of
Eq. 12 is, therefore, evaluated using a first-order Taylor's series

th

expanded about the n~ increment:

(F(£,0) 473 = (F(t.q) ) + S (F(t.q) }at + 0(at)? (17)

A second-order extrapolation process has been employed (Ref. 8), but
the results indicated that the Tinear extrapolation procedure was

more stable.
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SECTION II
USER GUIDELINES AND PROGRAM LIMITATIONS

Guidelines for the use pf the DYNASOR II code along with the 1imi-
tations placed upon the analysis are enumerated in this section. Some
of these Timitations are the result of the procedures used to program
the equations while other limitations are inherent in the formulation
of the equations. Since most of the limitations are minor in nature,
the DYNASOR II code may be used to solve a wide variety of important
shell dynamics problems.

The maximum number of elements which the program may use is fifty
(50). The maximum number of harmonics which may be coupled for the
analysis is five (5). It is believed that these limitations will not
hinder the user in solving most problems. However, since undoubtedly
some users will want to modify the program capacity, instructions for
increasing or decreasing the allowable number of elements and/or har-
monics are provided in Appendix 8.

In all analyses using the DYNASOR II code, the zeroth (0) harmonic
must be specified as one of the input harmonics.

The coefficients of thermal expansion are assumed to be constant
in the two princ%pa] directions for any given element but may vary
from element to element.

The number of nodal restraints must be less than or equal to the
maximum number of degrees of freedom for each harmonic (204).

The displacements of the nodes may be calculated for as many as

twenty (20) angles around the circumference of the shell element.
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While the displacements are calculated at every time increment,
it is necessary to calculate the stresses only at time steps where a
printout of the stresses is desired. The stresses and stress resui-
tants are calculated at the middle of the elements (s-direction) for
up to twenty (20) angles in the circumferential direction. The angles
at which the stresses are calculated are the same as those at which
the displacements are determined. The stresses on both the inner and
outer surfaces are determined.

The units used in the program must be consistent with those used
in the SAMMSOR code. Al11 calculations in the versions supplied to the
users of the code are given inch-pounds-seconds units.

The program accepts the mechanical and thermal load histories by
accepting descriptions at discrete points in time. The difference
between the times for which loads are specified must, in all cases,
be greater than the value of the time increment used in solving the
equations of motion. The load variation curve is approximated by
assuming a linear variation of the generalized forces between the
times at which the loads are specified. It may therefore be necessary
to specify the loads and temperatures at a fairly large number of
points in time if the loads vary rapidly with time.

If the Toads and/or temperatures propagate in any direction
(moving loads), it will also be necessary to specify the loads at a
fairly large number of points in time.

Pressure loadings, temperatures, and temperature gradients are
assumed to be constant over the meridional length of the element but

may vary in the circumferential direction. The variation in the
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circumferential direction (except for shear loadings) must be
symmetric about the meridian corresponding to © = 0 degrees. These
lToadings may be input either by specifying the values at a number

of circumferential angles for each e]ément or by specifying the values
of the Fourier coefficients for each harmonic.

If the program is not being restarted. the loads and temperatures
must be specified at‘time Tl = 0.0. Times at which loads must be
specified when restarting the program are noted in Appendix 6.

One of the most impqrtant considerations in any dynamic analysis
is the selection of the time increment to be used in the analysis.
Several criteria have been developed for use in selecting a time in-
crement in analyses utilizing finite difference techniques. Most of
these criteria require that the time increment be less than the time
required for a signal to travel at the speed of sound from one dif-
ference point to the next. These criteria have been found (Ref. 8)
inadequate for use in this analysis. A "feel" for the selection of
a time increment must be obtained by the user. To facilitate the
development of this “feel" the time increments utilized in a number of
problems have been carefully documented in Refs. 3 and 4. 1In addi-
tion, the input data for the example problems should prove helpful.

A restart capability is incorporated in the code to enable the
user to calculate the response from a specified point in time without
having to recalculate the response prior to this time. A most valuable
use of this capability arises if, after evaluation of the results of

a run, it is decided to extend the calculations to observe more cycles
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of response. If it is desired to emp?oy a different time increment
(either smaller or larger), the user should refer to the discussion
in Appendix 5. Effective use of the restart capability can result
in a substantial savings of computer time. In general, the informatﬁon»
necessary for restarting the code should be placed on tape at least
every 100-400 time 1ncreménts to insure that the information will be
available if it is deemed desirable to restart the program.

The pseudo loads due to the nonlinearities associated with the
initial displacements are neglected when calculating the response at
the end of the first time step. However, when restarting the code,
the initial increment utilizes both the mechanical and pseudo forces.

An extended effort has been made to ;heck all aspects of the code.
Comparisons of the response obtained using DYNASOR II with the re-
sults obtained by other researchers are presented in Ref. 3 and 4.
These comparisons firmly establish the validity of the code. Although
the programming logic and the formulation have been thorough]y checked
to insure the correctness of the code, the authors assume no respon-

sibility for the results obtained using the code.
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SECTION III

PROGRAM INPUT

The DYNASOR II code has been written so that the code can be
employed by researchers who are not familiar with the inner workiﬁgs
of the program. Utilizing the guidelines and adhering to the limi-
tations presented in the previous section, it is believed that most
users will find it relatively easy to employ the code.

The code is available in the FORTRAN IV language using double-
precision or single-precision arithmetic. This double-precision
version requires a storage space of about 330K bytes on the IBM 360/65
system while the single-precision storage space is about 200K bytes.
Efforts have been made to make this code compatible with a Targe
number of computing systems. In particular, adantion of the code for
use on a CDC 6600 computer requires only minor changes.

The input data for a run consists of one card.I (card types will
be explained on the following pages) followed by a complete set of
data (cards II-X) for each case. The set of cards II-X is the input
data required to generate the response of a shell for a given number
of harmonics due to a particular loading. The cards comprising the
data deck for both an initial run and a restart are schematically
represented in Fig. 1. The cards specifying the Fourier harmonics,
the initial conditions, and the boundary conditions are omitted from
the input deck when using the restart mode. If more than one case is
to be run, include a set of data for each of the cases. There is no
1imit on the number of cases which may be included in a run. A card XI

must be placed at the end of the data for the final case.
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I. RUN CONTROL CARD

This card is used to identify the number of cases to be run and
the logical unit numbers of the scratch tapes used in the run. (ONLY

ONE CARD I IS USED PER RUN.)

Card Type I Format (3I5)

Columns Variable Description

1-5 NCASES The number of different data sets utilized
for this run.

oooooooooooooooooooooooooooooooooooooooooo

6-10 ND Logical unit number of the scratch tape
onto which all the data is read at the
start of the run.

------------------------------------------

11-15 NS Logical unit number of a second scratch tape
used by the program.

------------------------------------------
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II. CASE IDENTIFICATION CARDS

These cards allow the user to print out comments which identify the

problem being run.

A. Control Card (ONE CARD II-A PER DATA SET)

Card Type II-A Format (2I5)

Columns Variable Description
1-5 NCARDS Number of comment cards (TYPE II-B) which
follow.
6-10 NT Logical unit number of the tape (prepared

by SAMMSOR) from which the stiffness and
mass matrices, element properties, and re-
start information, if needed, will be read.

-------------------------------------------

B. Identification Cards - The information punched on these cards is
printed as output and should identify the problem being run. These
comments shou]d‘not duplicate those of the SAMMSOR case since the SAMMSOR
comments will also appear as output. (IF NCARDS=0, OMIT CARDS I[I-B,
OTHERWISE INCLUDE NCARDS OF TYPE II-B.)

Card Type II-B Format (20A4)

Columns Variable Description

1-80 COMENT Any desired alphanumeric information may be
printed on these cards.

oooooooooooooooooooooooooooooooooooooooooo




ITI. CASE CONTROL CARDS
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A. Control Constants - Time parameters, restart information, and other

miscellaneous control constants are input on this card.

(INCLUDE ONE CARD III-A PER DATA SET.)

Card Type III-A Format (2F10.0, 4I5)

Columns

1-10

11-20

21-25

26-30

31-35

36-40

Variable

TOTIME

DELTE

IRSTRT

INCRST

NCLOSE

ITELF

Description

The maximum time (seconds) for which the cal-
culations are to be performed.

-------------------------------------------

Time increment (seconds) used in solving
the equations of motion.

ooooooooooooooooooooooooooooooooooooooooooo

Control constant which indicates if the so-
Tution is being restarted. If the solution
is being restarted set IRSTRT = 1. 1If not,
set IRSTRT = 0.

ooooooooooooooooooooooooooooooooooooooooooo

The number of the time increment at which
the solution is to be restarted. INCRST
must be an integer multiple of the value of
NPRNIT used in the previous run. If IRSTRT=
0, set INCRST = 0.

ooooooooooooooooooooooooooooooooooooooooooo

For a closed shell (such as a spherical cap
or a hemisphere) where node 1 is at the apex,
set NCLOSE = 1. Radial and rotational re-
straints will then be applied for the zeroth
harmonic to aid the numerical stability of
the solution. If the shell does not fit the
above description, set NCLOSE = O.

ooooooooooooooooooooooooooooooooooooooooooo

If thermal loads are to be applied in the
program, set ITELF =-1. Otherwise, set
ITELF = 0.

-------------------------------------------
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B. Print Control Card - The constants used to control the program

output are punched on this card. (INCLUDE ONE CARD III-B PER DATA SET.)

Card Type I1II-B Format (10I5)

Columns

1-5

6-10

11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

Variable

NPRNTQ

IPRINT

NCLCST

NSTRSS

NPRNT

NPRNIT

NPRNTL

NPRNTF

NPRNTH

NPRNMS

Description

If the displacements are to be printed, set
NPRNTQ = 1. If not, set NPRNTQ = O.

---------------------------------------------

If NPRNTQ=1, the displacements will be print-
ed every IPRINT time increments beginning
with the first time step. If NPRNTQ=0, set
IPRINT = 0.

.............................................

If the'stresses and stress resultants are to
be calculated, set NCLCST=1. If not, set
NCLCST=0.

---------------------------------------------

If NCLCST=1, the stress and stress resultants
will be calculated and printed every NSTRSS
time increments beginning with the first step.
If NCLCST=0, set NSTRSS=0.

ooooooooooooooooooooooooooooooooooooooooooooo

If restart information is to be placed on
tape, set NPRNT=1. 1If not, set NPRNT=0.

.............................................

If NPRNT=1, the restart information will be
written on the output tape every NPRNIT time
increments. If NPRNT=0, set NPRNIT=0. It is
suggested that relatively large values of NPRNIT
be used, say 200, 400, etc., if the total num-
ber of time steps is relatively large.

----------------------------------------------

If a printout of the applied loads is desired,
set NPRNTL=1., Otherwise, set NPRNTL=0.

ooooooooooooooooooooooooooooooooooooooooooooo

‘If a printout of the generalized forces is de-

sired, set NPRNTF=1, Otherwise, set NPRNTF=0.

ooooooooooooooooooooooooooooooooooooooooooooo

If the Fourier coefficients for the temperature
and temperature gradient are to be printed, set
NPRNTH=1. Otherwise, set NPRNTH=0.

---------------------------------------------

If the mass and stiffness matrices are to be
printed, set NPRNMS=1. If not, set NPRNMS=0.

---------------------------------------------




22

IV. CIRCUMFERENTIAL ANGLE CARDS

The circumferential angles at which the displacements and stresses

are to be calculated are read from these cards.

A. Control Card - (ONE CARD IV-A PER DATA SET.)

Card Type IV-A Format (I5)

Columns Variable

1-5 NTHETA

Description

The number of circumferential angles at which
the displacements and possibly stresses are
to be calculated. (1 < NTHETA < 20)

---------------------------------------------

B. Circumferential Angles - (INCLUDE 1-3 CARDS IV-B PER DATA SET, DE-

PENDING UPON THE VALUE OF NTHETA.)

Card Type IV-B Format (8F10.0)

Columns Variable
1-10 THETA(1)
11-20 THETA(2)

n it

Description

Circumferential angles at which the displace-
ments and possibly stresses will be calculated.
(If it is desired to calculate the displace-
ments only along the line © = 0, then include
one card IV-B and set THETA (1) = 0.0.)

! THETA(NTHETA) t t o v eeiieienenocvnnnncconnsscnssnsencoses
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V. FOURIER HARMONICS CARD

This card provides the number of Fourier cosine harmonics to be
employed for this analysis and enumerates the specific harmonics to be
used, (IF IRSTRT=1, OMIT CARD V. OTHERWISE, INCLUDE ONE CARD V PER
DATA SET.)

Card Type V Format (615)

Columns Variable Description

1-5 NH The total number of Fourier cosine harmonics
to be utilized in this analysis (1<NH<5).

---------------------------------------------

6-10 THARM(1) Specific harmonic numbers to be employed. NH
11-15 IHARM(2) values must be given and the zero harmonic
16-20 THARM(3) must always be specified as one of the input
21-25 THARM(4) harmonic numbers. The user should check to be
26-30 THARM(5) certain that the information for each of these

harmonics has been created and stored on tape
by the SAMMSOR code.

ooooooooooooooooooooooooooooooooooooooooooooo

Example: Consider a case where it is desired to utilize harmonics 0, 2, 3

and 4. The input data for card V would then utilize the following values:

NH =4

THARM (1) = 0 NOTE: IHARM (1) should always
be set equal to zero.

THARM (2) = 2

IHARM (3) = 3

IHARM (4) = 4

Columns 26-30 corresponding to IHARM (5) should be left blank for this

example since only four harmonics are being run.
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VI. NODAL RESTRAINT CARDS (Boundary Conditions)

The displacement constraints applied to the shell are described
utilizing these cards. (IF IRSTRT=1, OMIT CARDS VI-A AND VI-B.)
A. Control Card - (ONE CARD VI-A PER DATA SET, UNLESS IRSTRT=1.)

Card Type VI-A Format (I5)

Columns Variable Description

1-5 NODRES Total number of displacement constraints to
be applied to the shell (0<NODRES<204)

---------------------------------------------

B. Boundary Conditions - (THE NUMBER OF CARDS OF TYPE VI-B MUST EQUAL
NODRES, UNLESS IRSTRT=1. IF NODRES=0, OMIT CARDS VI-B.)

Card Type VI-B Format (2I5)

Columns Variable Description

1-5 NP Number of the node where fhe restraint is to
be applied.

---------------------------------------------

6-10 NDIRCT Key used to indicate the degree of freedom
which is restrained. '

NDIRCT = 1 applies axial restraint

NDIRCT = 2 applies circumferential restraint
NDIRCT = 3 applies radial restraint

NDIRCT = 4 applies rotational restraint
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VIT. INITIAL CONDITIONS CARDS

The initial ve]ocities and displacements of the nodes are specified
on these cards. (IF IRSTRT=1, OMIT CARDS VII-A, VII-B, AND VII-C.)
A. Control Card - Utilization of this control card greatly simplifies
the specification of the initial conditions if either the initial
velocities or the initial displacements, or both, are equal to zero.

(ONE CARD VII-A PER DATA SET)

Card Type VII-A Format (215)

Columns Variable Description

1-5 ION If the initial velocities at all the nodes
are zero, set IQN=0. If not, set ION=1.

.............................................

6-10 IQN1 If the initial displacements at all the nodes
are zero, set ION1=0. If not, set IQN1=1.

---------------------------------------------

B. Initial Velocities - The initial nodal velocities must be specified
for each node of the shell for each harmonic to be run. The Tlogic
used to input the nodal velocities is essentially the same as the
procedure used to specify the element properties in the SAMMSOR code.
The initial velocities for each of the nodes are specified for the
first of the input harmonics, then for the second input harmonic, etc.
This process is repeated until the nodal velocities for each harmonic

have been specified. (IF IQN=0, OMIT CARDS VII-B.)
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Card Type VII-B Format (215, 4F10.0)

Columns

1-5

6-10

11-20

21-30

31-40

41-50

Variable

IN1

IN2

Description

First node to which the velocities specified
on this card are applied.

---------------------------------------------

Last node to which the velocities specified
on this card are applied.

ooooooooooooooooooooooooooooooooooooooooooooo

Initial nodal velocity in the axial direction
for a particular harmonic.

ooooooooooooooooooooooooooooooooooooooooooooo

Initial nodal velocity in the circumferential
direction for a particular harmonic.

---------------------------------------------

Initial nodal velocity in the radial direction
for a particular harmonic.

ooooooooooooooooooooooooooooooooooooooooooooo

Initial nodal rotational velocity in the meri-
dional direction for a particular harmonic.

---------------------------------------------

C. Initial Displacements - In identically the same manner as is utilized

for the initial velocities, the initial displacements are specified

for each harmonic.

(IF ION1=0, OMIT CARDS VII-C)

Card Type VII-C Format (215, 4F10.0)

Columns

1-5

6-10

11-20

21-30

31-40

41~50

Variable

IN1

IN2

Description

First node to which the displacements specified
on this card are applied.

ooooooooooooooooooooooooooooooooooooooooooooo

Last node to which the displacements specified
on this card are applied.

---------------------------------------------

Initial nodal displacement in the axial direc-
tion for a particular harmonic.

---------------------------------------------

Initial nodal displacement in the circumferen-
tial direction for a particular harmonic.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Initial nodal displacement in the radial di-
rection for a particular harmonic.

Initial nodal rotation in the meridional
direction for a particular harmonic.

---------------------------------------------
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VIII. COEFFICIENTS OF THERMAL EXPANSION

If the thermal effects are to be included in the analysis, the
coefficients of thermal expansion must be specified using these cards.
These coefficients are assumed to be constant for a given element but
may vary from element to element. These coefficients are read in the
same manner as the element properties in the SAMMSOR code. (THE
NUMBER OF CARDS VIII MUST BE < NELEMS FOR ANY GIVEN DATA SET. IF
ITELF = 0, OMIT CARDS VIII.)

Card Type VIII Format (215, 2F10.0)

Columns Variable Description

1-5 IELM1 Number of the first element to which the
properties on this card apply.

---------------------------------------------

6-10 TIELM2 Number of the last element to which the
properties on this card apply.

ooooooooooooooooooooooooooooooooooooooooooooo

11-20 ALSI1 Coefficient of thermal expansion in the meri-
dional direction (in/in/deg).

---------------------------------------------

21-30 ALTI1 Coefficient of thermal expansion in the cir-
cumferential direction (in/in/deg).

.............................................
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IX. APPLIED LOADS, TEMPERATURES, AND TEMPERATURE GRADIENTS

Since the concentrated nodal loads, distributed pressures, tempera-
tures, and temperature gradients may vary in time; it may be necessary
to specify these l1oads at a number of points in time. If these loads
and temperatures are input at times Tli and T1i+1’ the program will cal-
culate generalized forces due to these loads at each of the input times.
A Tlinear variation of the generalized forces is then assumed between the
times the loads are input. As soon as the value of the time reaches
T11+1, a new set of loads is read in at T11.+2 and the process of cal-
culating the generalized forces is repeated. The time increment, DELTE
(CARD III-A), used in the solution of the equations of motion must be
less than the difference between any two of the times at which the Toads
are specified. If the loads and/or temperatures propagate in any direc-
tion (moving loads), it is advisable to specify the loads at more times
than is necessary if they vary in intensity only.

Ring loads can be applied at the nodes and must be input for each of
the harmonics. The ring loads utilize the same sign convention employed
for the shell nodal displacements.

The pressure loadings, temperatures and temperature gradients are
assumed constant over the meridional length of the element but variations
in the circumferential direction are allowed. These loadings may be in-
put in one of two ways. Either the Fourier coefficients can be specified
for each harmonic or the values of the loads may be specified at a number
of circumferential angles around the shell elements. Utilizing this
second procedure a step function variation is assumed in the circumferential
direction. That is, the load is assumed constant from 0, to 0341 with

the value of the loads being equal to those specified at 0;- Sign
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conventions for the pressure loading are given in Fig. 2.

A control card (Card Type IX-A) containing several key variables
is used to guide the reading of the Toading conditions. Proper selec-
tion of the values of these key variables results in a highly efficient
procedure for specifying a wide variety of loading conditions. The
key words and their meanings are explained in Fig. 3.

Before attempting to input loads to the code the user is advised
to study the guidelines presented in Sec. II, the example problems of
Sec. IV, and appendix 6 which presents a fhorough discussion of the

various procedures necessary for specifying the loads.
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(a) Membrane force resuliants (b) Transverse force resultanis

(¢) Moment resultants (d) Loads per unit area

FIG 2 POSITIVE DIRECTION OF FORCES, MOMENTS,
AND LOADS ON SHELL SEGMENT
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This control card is utilized to direct the input of the loads for

a given time.

This card indicates the presence or absence of concen-

trated forces and distributed pressure loadings and indicates the pro-

cedure to be utilized for creating the generalized thermal forces.

(ONE CARD IX-A IS NECESSARY FOR EACH TIME AT WHICH THE LOADS ARE BEING

INPUT.)

Card Type IX-A Format (F10.0, 415, A8)

Columns

1-10

11-15

16=20

21-25

26-30

31-38

Variable

T1

NCF

IDELF

IDCOE

ITCOE

CONSTF

Description

The time for which the loads are being
input (sec).

---------------------------------------------

If concentrated ring loads are applied to
the structure at time T1, set NCF = 1. If
not, set NCF = 0.

---------------------------------------------

If distributed loads are to be applied to
the shell at time T1, set IDELF =1. 1If not,
set IDELF = 0.

---------------------------------------------

If the Fourier cosine coefficients for the
distributed loadings are to be read in at time
T1, set IDCOE = 1. If not, set IDCOE =0.

---------------------------------------------

If the Fourier cosine coefficients for the
temperatures and temperature gradients are to
be read in at time T1l, set ITCOE = 1. If not,
set ITCOE = 0.

ooooooooooooooooooooooooooooooooooooooooooooo

If the applied loads, temperatures and temp-
erature gradients are constant from time, T1,
to the final time, TOTIME (CARD III-A), punch
the word CONSTANT-in columns 31-38. If these
parameters are not constant, leave columns
31-38 blank.

---------------------------------------------
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B. Concentrated Ring Loads
The concentrated ring loads must be specified for each harmonic.
(IF NCF = 0, OMIT CARDS IX-B.)
1. Control Card - This card indicates the presence or absence of
concentrated ring loads for a particular harmonic. (ONE CARD

IX-B-1 FOR EACH HARMONIC.)

Card Type IX-B-1 Format (I5)

Columns Variable Description
1-5 NCF1 If there are concentrated ring loads for this
particular harmonic, set NCF1=1. If not, set
NCF1=0.

---------------------------------------------

2. Concentrated Ring Loads - For harmonics having ring loads asso-
ciated with them, the Toads are specified using these cards.
(IF NCF1=0, OMIT CARDS IX-B-2 FOR THE HARMONIC BEING_CONSIDERED.)
ONE OR MORE CARDS IX-B-2 MAY BE USED, BUT NEVER UTILIZE MORE THAN
51 PER HARMONIC.

" Card Type IX-B-2 Format (215, 4F10.0)

Columns Variable Description
1-5 IN1 First node to which this loading applies.
6-10 IN2 Last node to which this loading app]ies.A
11-20 F1 ‘Axial ring Toad applied at a node (1b).*

---------------------------------------------

* The total value of the ring load for each harmonic is input, not the
load per unit length of circumference. For complicated ring loads the
value of the load input for each harmonic is obtained by integrating the
product of the load and the corresponding displacement function around the
circumference.
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Columns Variable Description
21-30 F2 Circumferential ring load applied at a node (1b).*
31-40 F3 Radial ring load applied at a node (1b).*
41-50 F4 Concentrated moment applied at a node (in-1b).*
Examples:

The use of cards IX-B should become clear after considering the follow-
ing examples

1. Consider the case where a uniform tensile ring loading of
100 psi is being applied in the axial direction to the first
node of a cylinder. The solution for this problem has been
presented in Fig. 20 of Ref. 3. The thickness of the cylin-
der is 0.1 inches with the radius being given as 6 inches.
Consider that harmonics 0 and 2 are being run. The total
ring load for the zero harmonic will be (100) x 2w(6) x (0.1) =
376.9 1b.

Five cards of type IX are required to input these loads assuming they
are constant from time T1 = 0.0 to TOTIME and assuming 50 elements are

used to idealize the structure.

CARD VARIABLE VALUES
IX-A T1 = 0.0 NCF = 1 IDELF = IDCOE = ITCOE = 0
IX-B NCF1 = 1 (HARMONIC 0)

IX-C  IN1=1 IN1=1 F1=-376.9 F2=F3=F4=0
IX-C  IN1=2 IN1=51 F1=F2=F3=F4=0
IX-B NCF2 = 0 (HARMONIC 2)

* The total value of the ring load for each harmonic is input, not the
load per unit length of circumference. For complicated ring loads the val-
ue of the load input for each harmonic is obtained by integrating the pro-
duct of the load and the corresponding displacement function around the
circumference.
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2. The second example considers a radial ring load of F coso
applied to a cylinder of radius r.

Performing the integration, one obtains the radial ring load for

harmonic 1 as

2m
; {F coso)rcosodo
0

F3

mrF
The Fourier coefficients for the other harmonics are zero.

C. Distributed Loads - (IF IDELF = 0, OMIT CARDS IX-C) The distributed
loadings may be input in one of two ways: the Fourier coefficients may
be read in for each harmonic or the loadings may be specified at a de-
sired number of circumferential angles (< 37). If the second option is
used, the Fourier coefficients will then be generated internally. The
user should note that it is possible to input distributed loads in only
one of two ways.
1. Distributed Loads - (Input at various circumferential angles)

Since the choice of the displacement functions utilized in

this analysis necessitate the presence of loads symmetric about

the meridian @ = 0, it is necessary to specify the distributed

loadings for angles from 0 - 180°. The code then assumes that

the distribution from 180° » 360° is the mirror image of the

input distribution. (IF IDCOE = 1, OMIT CARDS IX-C-1)

a. Control Card - Utilize this card to indicate the number of

angles for which the loads will be specified.
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Card Type IX-C-1-a Format (3I5)

Columns Variable Description

1-5 IELM1 First element to which this distributed
loading applies.

--------------------------------------------

6-10 TIELM2 Last element to which this distributed load-
ing applies.

--------------------------------------------

11-15 NDP Number of circumferential angles at which the
distributed loads are to be specified (1<NDP<37).
If the loadings are constant in the circumfer-
ential direction set NDP = 1.

oooooooooooo :

----------------------------------

b. Distributed Loads at Specified Angles* - This card specifies
the angle at which the Toads are being input and provides
the values of the loads at that angle. (INCLUDE NDP CARDS
OF TYPE IX-C-1-b FOR EACH CARD IX-C-1-a.)

Card Type IX-C-1-b Format (4F10.0)

Columns Variable Description

1-10 THETB Circumferential angle (degrees) for which this
data is given.

---------------------------------------------

11-20 P Distributed Toad in the meridional direc-
tion (psi).

---------------------------------------------

21-30 R Distributed load in the normal direction (psi).

---------------------------------------------

31-40 S Distributed load in the circumferential direc-
tion (psi).

---------------------------------------------

Example: Consider the normal pressure distribution on an element depicted

in Fig. 4. To input the pressure on this element requires specification of

*NOTE: The first loading must always be given for 0 = 0°. The next load-
ing is given at the angle where the load changes in value. If the load is
constant with respect to ©, only one card will be necessary to input the
load. Do not input values for the loads at @ = 180° since the load at that
angle will be equal in all cases to the load input at the previous value of
THETAB.
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85=90°
84]=120

o
92= 30 9 =O°

FIG 4 REPRESENTATIVE VARIATION OF
DISTRIBUTED LOADS APPLIED TO A
TYPICAL ELEMENT
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the pressures for four values of o.

THETB R(I)

0.0 —Q1
30.0 —Q2
90.0 -Q3

120.0 0.0

2. Distributed Loads - (Fourier Coefficients) The Fourier coeffi-
cients for the distributed loads may be specified using these
cards. The coefficients must be specified (even though they
may be zero) for each harmonic being employed in the analysis.
The coefficients are specified for each harmonic of the first
groﬁp of elements, then for each harmonic of the second group,
etc. until the values have been input for all the elements.

(IF IDCOE = 0, OMIT CARDS IX-C-2)

a. Control Card

Card Type IX-C-2-a Format (2I5)

Columns Variable Description
1-5 IELM] First element to which these loads apply.
6-10 IELM2 Last element to which these loads apply.

---------------------------------------------

b. Fourier Coefficients - (NH CARDS OF TYPE IX-C-2-b FOR EACH
CARD IX-C-2-a.)
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Card Type IX-C-2-b Format (3F10.0)

Columns Variable Description

1-10 p Fourier coefficient of the distributed load
in the meridional direction for a particular
harmonic (psi).

ooooooooooooooooooooooooooooooooooooooooooooo

11-20 R Fourier coefficient of the distributed 1oad
in the normal direction for a particular har-
monic (psi).

---------------------------------------------

21-30 S Fourier coefficient of the distributed load
in the circumferential direction for a parti-
cular harmonic (psi).

---------------------------------------------

D. Temperature Distribution and Gradients -

Essentially the same logic is employed for inputting the temp-
eratures and gradients that was used for the specification of the
distributed loads. The explanation of this procedure should there-
fore not need be repeated.

The temperatures are specified for the midsurface of the shell.
The temperature gradients (through the thickness) are considered
positive if the temperature for the outer surface is greater than
the temberature on the inner surface. (IF ITELF = 0, OMIT CARDS IX-D.)
1. Temperature Distribution and Gradients - (Input at various cir-

cumferential angles)

Again, the requirement of symmetry about the meridian o = 0,
makes it necessary to specify the temperature distribution and
thermal gradients only from 0° -> 180°. The temperature distri-
bution and gradients are input on the same cards for the various
angles. (IF ITCOE = 1, OMIT CARDS IX-D-1.)

a.  Control Card - Utilize this card to indicate the number of

angles for which the tempekature and gradients will be specified.
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Card Type IX-D-1-a Format (3I5)

Columns Variable Description
1-5 IELM1 First element to which this data applies.
6-10 [E2  Last elenent to which this data applies.
11-15 op Munber of circunferential angles at which the

temperature distribution and gradient are to
be specified (1<NDP<37). If the temperature
is constant in the circumferential direction,
set NDP = 1.

ooooooooooooooooooooooooooooooooooooooooooooo

b. Temperature and Temperature Gradient at Specified Angles -
This card specifies the angle at which the temperature and
temperature gradient (through the thickness) is being input
and provides the value of'the temperature at that angle.

(INCLUDE NDP CARDS OF TYPE IX-D-1-b FOR EACH CARD IX-D-1-a.)

Card Type IX-D-1-b Format (3F10.0)

Columns Variable Description

1-10 THETB Circumferential angle for which this tempera-
ture and gradient are given.

11-20 p Distributed temperature at 0 = THETB (°F).

21-30 R Temperature gradient (through the thickness)
at © = THETB (°F/in).

ooooooooooooooooooooooooooooooooooooooooooooo

]

2. Temperature Distribution and Gradient - (Fourier Coefficients)

If the user so desires, the Fourier coefficients for the tempera-
ture distribution and gradient may be specified for each of the
harmonics being used. Again, the éoefficients are specified for
all harmonics for the first group of elements, then for the second
group, etc., until all the element coefficients have been input.

(IF ITCOE = 0, OMIT CARDS IX-D-2)




41

a. Control Card

Card Type IX-D-2-a Format (2I5)

Columns Variable Description
1-5 TELM1 First element to which these properties apply.
6-10 TELM2 Last element to which these properties apply.

b. Fourier Coefficients - (NH CARDS OF TYPE IX-D-2-b FOR EACH
CARD IX-D-2-a.)

Card Type IX-D-2-b Format (2F10.0)

Columns Variable Description

1-10 TH1 Fourier coefficient of the temperature distri-
bution (°F) for a particular harmonic.

ooooooooooooooooooooooooooooooooooooooooooooo

11-20 DTH1 Fourier coefficient of the temperature gradient
(°F/in) for a particular harmonic.

---------------------------------------------
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X. FINAL DATA CARD FOR A CASE
Place this card after the last card IX of each data set. This signi-

fies the end of the input data for a case. (ONE CARD X PER DATA SET.)

Card Type X

Columns Punch

1-11 END pF CASE




43

XI. FINAL DATA CARD FOR A RUN

This card must be placed after the card X of the last case to be
run. It denotes the end of the input data for a run. (ONE CARD XI PER
RUN)

Card Type XI

Columns Punch

1-10 END @F RUN
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SECTION IV
EXAMPLE PROBLEMS

The example problems which follow were chosen to demonstrate the
versatility of the code and to further acquaint the users with the pro-
cedures for inputting the data to the code. The data presented herein
is typical for the problems solved by the code and demonstrates many
of the input procedures.

Since the most complex portion of the input data is the specifica-
tion of the loading conditions, a variety of Toadings are demonstrafed.
Response curves are presented so the user may check his output with the
previously obtained curves. The first two example problems utilize the
shells described in example problems 1 and 2 of the SAMMSOR user's guide
(Ref. 1) while the third example problem demonstrates the two procedures

for specifying distributed pressure loadings.
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Example Problem 1

The first example problem was chosen to demonstrate the procedure
for inputting a concentrated ring load and to demonstrate the program's
capability to solve highly nonlinear problems. For the forty pound
load applied in this problem, the static solution shows that the non-
linear displacement is more than four times as large as the Tinear
solution.

The shell to which the load is applied is the shallow spherical
cap‘(x=6) utilized in the‘first example problem in the SAMMSOR user's
guide. The edges of the shell are assumed to be clamped. Since the
loading is symmetric, the displacements and stresses will be calculated
only along the line @ = 0. Only the response for the zev'oth harmonic
will be determined. A set of input data for this case is presented in
Fig. 5 with the displacement response of the apex of the shell being
presented in Fig. 6. This response curve should allow the user to check

his version of the code.
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Example Probiem 2

The shell described in the second example problem in the SAMMSOR
user's guide is now subjected to a 50 psi internal pressure. The load-
in is applied at time T1 = 0.0 and remains constant for the duration of
the calculation.

Two sets of input data are provided for this example problem. The
first set (Fig. 7) allows the program to calculate the response for the
first 300 time steps. The second set of input data (Fig. 8) will restart
the code at the end of the‘300th time step and will then allow the pro-
gram to calculate the response for an additional 300 increments.

Since this problem is only moderately nonlinear, itﬂié interesting
to note that a much Tlarger time step can be used for this problem than
was employed in the previous example problem. The displacement response

obtained for this problem is presented in Fig. 9.
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Example Problem 3

This example problem was selected to demonstrate the procedures
for inputting the distributed loadings on a shell. A cylindrical shell
(Fig 10) is subjected to a half cosine loading which is symmetric about
the meridian = 0. This load is applied along the entire length of
the shell. The pressure loading may be specified in one of two ways:

1) The Fourier coefficients may be input for each
harmonic.

2) The pressure may be specified at various cir-
cumferential angles with the Fourier coeffi-
cients then being internally generated.

The first set of input data (Fig. 11) utilizes the first of the
above procedures and inputs the Fourier coefffcients. The input data
presented in Fig. 12 describes the loading by specifying the value of
the pressure at the various angles. The same procedure is employed to
describe the temperature and temperature gradient distributions.

Considering the symmetry of the Toading and the boundary conditions
applied to this shell, it can easily be recognized that the displace-
ments and stresses will be symmetric abour the center of this cylindrical
tube. Therefore, only one-half of the shell needs to be analyzed. The

plane of symmetry is assured by applying an axial and a rotational re-

straint at node one (1).



Node | Node 21

SUONUONUNOUNNANNNN
SISl

FIG 10 CYLINDRICAL SHELL SUBJECTED TO HALF
COSINE PRESSURE LOADING
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NCASE= 4
PRINTOUT OF INPUT DATA
CARD 10 20 30 40 50 60 70 80
TYPE 12345678901234567890123456789012345678901234567890123456789012345678901234567890
II - A 6 4
B s g koK Sk ok 3K ool sk ol e 3K ook ek ook otk ook o ok s kol ke o sk ok ko s s 2 ok e e ok ot sk ok ok o sl ool e ok ok ok ok
- B EXAMPLE PROBLEM NO. 3 DYNASOR II USER'S MANUAL
- B CYLINDRICAL SHELL IDEALIZED USING 30 ELEMENTS [S SUBJECTED TO A HALF COSINE
B LOADING TO DEMONSTRATE THE OPTIONS FOR INPUTTING DISTRIBUTED LOADS.
- B *% [N THIS CASE THE PRESSURE IS SPECIFIED AT VARIOUS CIRCUMFERENTIAL ANGLES **
B8 e e et A ke Aok koK e ok ook sk akok ok ool sk s ok ok ok o sk ek oKk ok o skl kol ok ok kol okl ok ok o ok Kk ok Kok ok e ol o ok g sk ok ok ok
I - A 0.0005 0.00001 0 o 0 0
- B 1 5 1 10 1 50 1 1 0 0
IV - A >
v B 0.0 30.0
"o 2 0 1 2 3 4
-B 1 1
-B 1 4
-B 21 1
-B 21 2
- g 21 3
VII - A 23 3
IX - A 0.0 0 1 0 OCONSTANT
-C-1-a 1 20 137
-b 0.0 0.0 =~ 9.9976 0.0
-b 2.5 0.0 = 9.9786 0.0
-b 5.0 0.0 = 9.9406 0.0
-b 7.5 0.0 - 9.8836 0.0
-b 10.0 0.0 - 9,8079 0.0
-b 12.5 0.0 - 9.7134 0.0
-b 15.0 0.0 = 9.6005 0.0
b 17.5 0.0 = 9.4693 0.0
b 20.0 0.0 = 9.3201 0.0
-b 22.5 0.0 =~ 9.1531 0.0
-b 25.0 0.0 - 8,9687 0.0
-b 27.5 0.0 =~ 8.7673 0.0
- b 30.0 0.0 - 8.5491 0.0
-b 32.5 0.0 ~ 843147 0.0
-b 35,0 0.0 - 8,0644 0.0
-b 37.5 0.0 =~ 7.7988 0.0
-b 40,0 0.0 - 7.5184 0.0
-b 42,5 0.0 - T7.2236 0.0
-b 45,0 0.0 = 6.,9151 0.0
-b 47.5 0.0 - 6.5935 0.0
- b 50.0 0.0 = 6.2592 0.0
-b 52.5 0.0 - 5.9131 0.0
-b 55,0 0.0 - 5,5557 0.0
-b 57.5 0.0 = 5.1877 0.0
-b 60.0 0.0 - 4,8089 0.0
= b 62'5 0.0 - 404229 0-0
-b £5.0 0.0 - 4.0275 0.0
-b 67+5 0.0 - 3.6244 0.0
b 70.0 0.0 - 3.2144 0.0
- b 72.5 0.0 - 2:7983 0.0
- b 75-0 0.0 - 2.3769 0-0
b 77-5 0.0 - 1-9509 0.0
- b 80.0 0.0 - 1-5212 0.0
- b 8205 0‘0 - 1.0887 0.0
-b 85.0 0.0 = 0.,6540 0.0
-b 87.5 0.0 - 0.2181 0.0
- b 90-0 0.0 O-OOOO 0.0
X END OF CASE

Fig. 12 INPUT DATA - (SET #2) - EXAMPLE PROBLEM 3
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Appendix 1 - Description of Subroutines DYNASOR II

Subroutine Description

1. MAIN Controls flow of program by incrementing the time and
calling subroutines 2-15 to obtain the displacements,
stress resultants, and upper and lower surface stresses.

----------------------------------------------------

2. INPUT Reads stiffness and mass matrices from tape. Reads
program control parameters. Prints stiffness and mass
matrices, shell properties, loads, restart informa-
tion, etc.

----------------------------------------------------

3. SETUP Calls subroutines to solve equations of motion and
checks the stability of numerical solution.

----------------------------------------------------

4. NLTERM Computes various terms necessary for calculating the
nonlinear loads. Adds generalized loads due to exter-
nal loads and temperatures to nonlinear loads. Con-
trols calculation of stress resultants.

----------------------------------------------------

5. QPRIME Calculates generalized nonlinear Tloads.

----------------------------------------------------

6. HOUBQ1 Set up the equations for calculating the displacements
for the first time increment and prepares coefficient
matrices for use in all subsequent steps.

oooooooooooooooooooooooooooooooooooooooooooooooooooo

7. HOUBQN Sets up equations for calculating the displacements
for each time increment except the first one.

oooooooooooooooooooooooooooooooooooooooooooooooooooo

8. NRESTR Applies the desired boundary conditions to the left
side of the equations of motion.

9. MATMUT Multiplies two specialized matrices.

10. SOLVEQ Utilizing a modified Gaussian elimination technique

which considers the diagonal symmetry of the matrix
equations the solution to a set of simultaneous linear
algebraic equations is obtained.

----------------------------------------------------
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Appendix 1 - Continued

Description

Subroutine
11. STRESS
12. FRCES
13. THCOE
14. TFORCE
15. TRI40R

Calculates and prints stress resultants and stresses
at upper and lower faces.

----------------------------------------------------

Reads distributed loads and calculates linear gen-
eralized forces.

....................................................

Reads temperatures and temperature gradients and cal-
culates thermal Fourier coefficients.

----------------------------------------------------

----------------------------------------------------

Calculates various trigondmetric integrals required
in the calculations made in subroutine QPRIME.

----------------------------------------------------
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Appendix 2 - Significant FORTRAN Variables DYNASOR II

Subroutine where
Variable variable is defined Description
or calculated

ALS INPUT Matrix of coefficients of thermal expansion in
the meridional direction for the elements.

---------------------------------------------

ALT INPUT Matrix of coefficients of thermal expansion in
the circumferential direction for the elements.

---------------------------------------------

ARCL INPUT Matrix of the arc lengths of the elements (s-
direction).

ccc TRI40R Matrix containing integrals from 0 to 2v of
cosine i6 cosine j6 cosine ke.

ccce TRI40R Matrix containing integrals from 0 to 2r of
cosine i6 cosine jo cosine ko cosine 16.

CONSTF INPUT Alphameric constant which controls input of

‘ Toads.
COSINE INPUT Matrix whose elements are the cosine of ¢ at

each of the nodes.

---------------------------------------------

COSM INPUT Matrix whose elements are the cosine of ¢ at
the middle of each element.

ooooooooooooooooooooooooooooooooooooooooooooo

DELTE INPUT Time increment used in solving the equations
of motion of the shell.

---------------------------------------------

DELTEP INPUT Used in restarting the solution, this variable
is the time increment used in the previous run.

---------------------------------------------

DTH INPUT Matrix of Fourier coefficients for the cir-
cumferential temperature gradient distribution.

---------------------------------------------

DT2 INPUT The square of the time increment.

---------------------------------------------
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Appendix 2 - Continued

Subroutine where

Variable variable is defined Description
or calculated
ES QPRIME Matrix of the Tinear strains, é , used in cal-
culating {aUNL/aq} for each harfonic.
EST QPRIME Matrix of the linear strains, é » used in
calculating {BUNL/aq} for each ﬁgrmonic.
ET QPRIME Matrix of the linear strains, €gs used in cal-
culating {BUNL/aq} for each harmonic.
El INPUT Matrix containing the Young's modulus in the
meridional direction, Es’ for each element.
E2 INPUT Matrix containing the Young's modulus in cir-
cumferential direction, Ee’ for each element.
E13 QPRIME Matrix of the nonlinear strains, e,,, used in
calculating {BUNL/Bq} for each har%gnic.
E23 QPRIME Matrix of the nonlinear strains, é , used in
calculating {3UNL/aq} for each har%gnic.
FNU1 INPUT Matrix containing the values of Poisson's ratio,
v.. » for each element.
So
FNU?2 INPUT Matrix containing the values of Poisson's ratio,
v_.» for each element.
8S
FORCE INPUT Matrix of generalized forces due to external
TFORCE lToads and temperatures.
FRCES ittt it irereasscacesaeatossasennsasenan
F1 INPUT Axial ring load applied at a specified node.
F2 INPUT Circumferential ring load applied at a speci-
fied node.
F3 INPUT Radial ring load applied at a specified node.

---------------------------------------------
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Appendix 2 - Continued

Subroutine where

Variable variable is defined Description

or calculated

F4 INPUT Concentrated moment applied at a specified node.

G INPUT Shear modulus, G [for an isotropic material
G = E/2(1+v)].

IDCOE FRCES Input constant which indicates whether the
Fourier coefficients will be read as input
data or will be generated internally.

IDELF INPUT Control parameter used to indicate the pre-
sence or absence of distributed pressure Toads
at a given time.

IHARM INPUT Matrix of harmonic numbers for which displace-
ments and/or stresses will be calculated.

INCRST INPUT The time increment at which the program will
be restarted.

IPRINT INPUT Input constant which controls printing of dis-
placements.

IQN INPUT Input constant which controls the reading of
the nodal initial velocities.

IQN1 INPUT Input constant which controls the read%ng of
the nodal initial displacements.

IRSTRT INPUT Input constant which indicates if the program
is being restarted.

ITAM MAIN Number of time cycle.

ITCOE INPUT Input constaht which indicates whether the

Fourier thermal load coefficients are to be
read in or to be internally calculated.

---------------------------------------------
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Appendix 2 - Continued

Subroutine where

Variable variable is defined Description

or calculated

ITELF INPUT Input constant which indicates the inclusion
or exclusion of thermal Tloads.

ITP INPUT Number of the time cycle at which restart data
has been written on tape.

JUNK INPUT Dummy variable used for reading and writing on
tape without violating the minimum record
lTength allowed.

KKP2 MAIN Largest value which ITAM can assume for a
given case.

LARGE SETUP Constant which controls termination of pro-
blem if displacements become excessive.

LK INPUT Matrix indicating the nodal restraints which
are applied on the shell.

NCF INPUT Input constant which indicates the presence
or absence of concentrated nodal loads at a
specified time.

NCLCST INPUT Input constant used to indicate if the stress-
es and stress resultants are to be calculated.

NCLOSE INPUT Constant used to indicate the presence of a
singularity at the first node of a closed shell.

ND MAIN Logical unit number of the scratch tape on
which the input data is stored.

NDIRCT INPUT Constant indicating the direction of the re-
straint applied at a node (1<NDIRCT<4).

NDP FRCES Number of circumferential angles at which

THCOE distributed Toads or temperatures are to be

specified.
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Appendix 2 -~ Continued

Subroutine where

Variable variable is defined Description

or calculated

NELEMS INPUT Total number of elements used to idealize the
structure.

NEQ INPUT Number of equilibrium equations per harmonic.

NEQT INPUT Total number of equilibrium equations for all
harmonics.

NH INPUT Total number of harmonics used in the dynamic
analysis.

NHNS INPUT Length of structural stiffness or mass matrix
for all harmonics stored in vector form.

NHP INPUT Number of harmonics that are stored on the
data tape created by SAMMSOR.

NNODES INPUT Total number of nodes, equal to (NELEMS + 1).

NODRES INPUT Number of displacement constraints applied to
the shell.

NOIT MAIN Number of time increments to be utilized in a
given case.

NPRNIT INPUT Input constant denoting how often the restart
information is to be placed on tape.

NPRNMS INPUT Input constant which determines if the mass
and stiffness matrices are to be printed as
output information.

NPRNT INPUT Input constant which determines if restart

information is to be placed on tape.

---------------------------------------------
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Appendix 2 - Continued

Subroutine where

Variable variable is defined Description

or calculated

NPRNTF INPUT Input constant which determines if the gen-
eralized forces are to be printed as output
information.

NPRNTH INPUT Input constant used to control printout of
the Fourier coefficients for temperature and
temperature gradient.

NPRNTL INPUT Input constant which determines whether or
not the applied loads will be printed.

NPRNTQ INPUT Input constant denoting whether or not the
displacements will be printed.

NS MAIN Logical unit number of one of the scratch
tapes. ‘

NSIZE INPUT The number of terms in the structural stiff-
ness or mass matrix (in vector form) for a
particular harmonic.

NSTRSS INPUT Input constant which determines how often the
stress resultants and stresses will be print-
ed.

NT INPUT Logical unit number of the tape from which
the mass and stiffness matrices will be read
and onto which the restart information will
be printed.

NTHETA INPUT The number of circumferential angles at which
displacements and/or stresses are to be cal-
culated.

P FRCES Distributed load in the meridional direction.

p THCOE Element temperature which may vary circumfer-

entially.

---------------------------------------------
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Appendix 2 - Continued

Subroutine where

Variable variable is defined Description

or calculated

PH INPUT Slope at the middle of an element.

PHP INPUT dé/ds at the middle of an element.

QLOAD HOUBQ1 Right-hand-side of the dynamic equations of

HOUBQN motion before calling SOLVEQ.

QN INPUT Initial nodal velocities.

QN HOUBQN Displacements at time increment (n-1) up to
statement 11. After statement 13 this matrix
has been changed the displacements at time
step (n). -

QN1 INPUT Initial nodal displacements.

QN1 HOUBQN Displacements at time increment (n-2) before
statement 10 and at time increment (n-1)
after statement 11.

QN2 HOUBQN Displacements at time increment (n-3) before
statement 10 and at time step (n-2) after
statement 11.

QP NLTERM {Q}r - {BUNL/aq} at time step (n-1).

QP1 HOUBQN Q¥ - {aUNL/aq} at time step (n-2)

QPR QPRIME -{BUNL/aq}.

R FRCES Distributed load in the normal direction.

R INPUT Matrix whose terms are the radius to the

middle of each element.

---------------------------------------------
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Appendix 2 - Continued

Subroutine where

Variable variable is defined Description

or calculated

R THCOE Temperature gradient (through the thickness)
which may vary circumferentially for an ele~
ment.

S FRCES Distributed load in the circumferential di-
rection.

SINE INPUT Sine of ¢ at the nodes of the structure.

SINM INPUT Sine of ¢ at the middle of the elements.

SSC TRI40R Matrix containing integrals from 0O to 2r of
sine i6 sine je cosine k8.

SSCC TRI40R Matrix containing integrals from 0 to 2n of
sine i8 sine jo cosine ko cosine 16.

SSSS TRT40R Matrix containing integrals from 0 to 2n of
sine i6 sine jo sine ko sine 196.

T INPUT Matrix of element thicknesses.

TH INPUT Matrix whose elements are the Fourier coeffi-
cient of the circumferential temperature dis-
tribution.

THETA INPUT Matrix containing circumferential angles at
which stresses and/or displacements are to be
calculated.

THETB FRCES Circumferential angle at which distributed

THCOE loads or temperatures are to be input.

TIMEP INPUT Time at which restart data has been written
on tape for future use.

TOTIME INPUT Total time, in seconds, for which the analy-

sis is to be performed.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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Appendfx 2 = Continued

.. Subroutine where
Variable variable is defined Description
or calculated

- XN INPUT Structural stiffness matrix as read from in-
put tape. After the first time step, this
matrix is replaced by a combination of the
mass and stiffness matrices {(At)2[K]+2[M]}.

---------------------------------------------

XP INPUT Structural mass matrix as read from input
tape.
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MAIN
INPUT
RESTART
TRI4OR lﬁ FRCES ONLY THCOE TFORCE
/r'
[ ]
NLTERM HOUBQ1
STRESS QPRIME MATMUT NRESTR SOLVEQ
~L
TOTIME
SETUP ONLY
NLTERM
INPUT NLTERM
STRESS QPRIME
STRESS QPRIME
HOUBQ1 HOUBQN
MATMUT NRESTR SOLVEQ MATMUT SOLVIEQ
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APPENDIX 4 - Flow Chart of Basic Operations DYNASOR II

Cam

v

Read input data, program control
parameters and output from
DYNASOR I. Subroutine used -

INPUT
Read data for restart from
YES tape.
Subroutine used - INPUT
NO
3 A
Calculate generalized nodal loads Calculate generalized loads
for element and add to load matrix due to nonlinearities BUm/aq
{Q}, at time = 0.0. Subroutines Subroutines used - NLTERM,
used - INPUT, FRCES, THCOE, TFORCE QPRIME

Set generalized nod- e

al loads at time =
TOTIME equal to
loads at time = 0.0

Forces
constant

Calculate generalized nodal loads
at time = TI1.
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Loop -

Number of cycles

7]

Caiculate general-
ized forces for time

Tl+i+l' Subroutines

used - INPUT, FRCES,
THCOE, TFORCE

equations. Write displacements.

and moment resultants.

Form dynamical equations. Solve dynamical

nonlinear loads. Calculate and write stress

Calculate

Segment C-C' is
flow-charted at
the end of APPENDIX 4

_Displacements

Return to START >
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End loop

Calculate and write stress
and moment resultant. -
Subroutine used - STRESS

(:;eturn to START,>
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Flow Chart C-C'

Whenever appropriate write data
for restart on tap€. Subrou-
tines used -~ SETUP, INPUT

YES First

time cycle

Calculate generalized loads due to non-~

linearities U
NLTERM, QPRIME

NL/3q. Subroutines used-

Whenever appropriate calculate and write
stress and moment resultants. Subrou-—
tine used - STRESS

-3}

Loop
Number of harmonies fE-
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Form dynamical equations,
apply boundary conditions
to right and left-hand
sides, and solve for dis-
placements. Subroutines
used - HOUBQl, MAUMUT,
NRESTR, SOLVEQ
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Form dynamical equations,
apply boundary conditions
to right-hand side, and
solve for displacements.
Subroutines used - HOUBQN,
MATMUT, SOLVEQ

When appropriate, write
displacements.
Subroutine used - SETUP

Displacements > 1.0E+04

When appropriate, write displace-
ments on tape for restart. Sub-
routines used - SETUP, INPUT
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Appendix 5 - Use of the Restart Option

In order for efficient use to be made of the DYNASOR II code, the
user should become familiar with the option provided for restarting
the program.. Through effective use of this option the dynamic response
studies can be completed using a minimum amount of computer time.

Use of the restart option may prove invaluable in a number of
situations. Abnormal termination of the program may occur if a numeri-
cal instability is noted in the response. If this occurs, the restart
option can be used with a different value of the time increment.
Another important use of the restart option arises when the user is
satisfied with the results previously obtained but desires to extend
the response data to a further point in time. In such a case the
program is restarted at the last time step for which the restart infor-
mation was placed on tape. A MOst effective use of this option can be
made when conducting dynamic stability analyses where it is desirable
to evaluate the response to see if buckling has occurred. If it has
not, the decision can then be made to extend the run to further points
in time.

Utilizing large time steps can result in a damping effect upon
the solution so it is advisable to run the problem for a couple of
oscillations, check to see if the solution is significantly damped,
and then run the problem for the desired number of oscillations. If
an evaluation of the initial results indicates that a smaller or larger
time step should be used, the restart facility might be used to»keep from

having to repeat the initial calculations.
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The displacements, velocities, and forces should be written on
tape for almost all of the cases to insure that the restart informa-
tion will be available if an evaluation of the calculated response
indicates that the program should be restarted. The time required to
write the restart information on tape is negligible when compared
with the amount of time required to obtain the total response.

If it is desirable to decrease the time increment when restarting
the program, the user should exercise care in selecting the increment
(INCRST) at which the program will be restarted. The decision to de-
crease the size of the time step will usually be based upon the obser-
vation that the solution has become unstable or that significant
damping is present in the response. To restart the program the user
must be sure that the increment (INCRST) has been selected small enough
to insure that the inaccuracies created by the larger time step can be
neglected.

On the other hand, if the results from a previous run indicate
that it is possible to increase the size of the time step for the re-
maining calculations, then care must also be taken in the selection of
INCRST. For the numerical extrapolation procedure to produce accurate
sets of displacements, it is recommended that the solution be restarted
on a relatively straight portion of the displacement response curve.
Considering the curve presented in Fig. 6 , it would be recommended
that the program be restarted at 500 microseconds rather than at 600
microseconds because of the extrapolation procedure being utilized

(i.e. the curve is smoother at 500 microseconds).
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When using the restart option, it is possible to specify different
values for a number of the control constants and input parameters. The
‘data on cards I-IV may be changed, but the same Fourier harmonics and
boundary conditions must be used. It is also required that the coeffi-
cients of thermal expansion remain the same when restarting the program.
These requirements allow the user to omit card types V, VI, and VII
when preparing data for restart operations. The considerations effect-
ing the input of the loads for restart operations are presented in

Appendix 6.
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Appendix 6 - Load and Temperature Input Discussion

Since the DYNASOR II program accepts time varying loading and
temperature/conditions, the logic required to input these conditions
is of necessity more compTex than the logic required to input the
other parameters. A discussion of the procedures for inputting these
Toading conditions is contained in this section. In this appendix the
term loads refers to all distributed and concentrated forces while the
term temperatures refers to both the temperature and temperature gra-
dient distributions.

If there are no loads or no temperatures, it should be noted that
a proper selection of the input constants allows omission of the input
cards pertaining to the missing terms. In other words, the user selects
the proper values for input keys and the proper read statements are
automatically skipped.

To illustrate the procedure for inputting time varying loads and
temperatures the information presented in Fig. A6-1 is utilized. The
load-time and temperature-time curves are approximated as a series of
linear segments by specifying values of both the loads and temperatures
at discrete points in time and then assuming Tlinear variations between
the times. In order to specify the loads and temperatures in Fig. A6-1,
it is necessary to specify both the loads and the corresponding tempera-
tures at times Tll, T12, and T13. Both the applied loads and temperatures
are constant from time T13 to the selected TOTIME so the value of CONSTF

should be set equal to CANSTANT at time T13. Obviously, if the loads or
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temperatures vary rapidly with time, it may be necessary to specify
these conditions at a large number of times in order for the linear
variation to be an accurate representation of the load-time and
temperature-time curves.

The logic for the load and temperature input is now discussed

for each of the two program start conditions, namely:

]
1]

IRSTRT = 0 Calculation begins at time increment = 0

IRSTRT

INCRST

i

1 Calculation begins at time increment

Although the considerations for inputting the loads and temperatures
differ in many respects for the two modes of starting the programs,
several considerations are the same for both modes:
1. The loads and the temperatures must both be
input at each time T1 at which the loads or
temperatures vary. In other words, the loads
cannot be input at one time and the tempera-
tures at another,
2. The difference between successive times at
which the loads and temperatures are input
(Tli+1- T14) must always be greater than the

time increment (DELTE) specified for solving
the equations of motion.

IRSTRT = 0
The cases which may arise when considering the loads and tempera-
tures and the input logic required to describe these situations are as

follows when the program is making an initial run on a problem:
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CASE INPUT LOGIC

1. Loads and temperatures are con- Input only one set of loads and
stant (in time) on each element. temperatures. These must be speci-
Note, however, that variations fied at time T1 = 0.0 and the value
from element to element are of CONSTF should be read as CHNSTANT.

allowed.

2. Loads or temperatures (or both) Input, in order, the Toads and temp-
vary with time. eratures at times T1,; (must be equal
to 0.0), Tlp, Tl3, ... until the
value of T1, reaches or exceeds the
value of TO?IME (total time for the
case). The columns for CONSTF
should be left blank.

IRSTRT =1

The program may be restarted utilizing a new value for TOTIME which
may be less than, equal to , or greater than the value which was utilized
in the previous run which created and stored the restart information for
use in this run. The previous value of TOTIME will be referred to as
TOTIMEP. The input logic varies according to the relative values of TO-
TIME and TOTIMEP so each possible combination will be discussed separately.

Procedures which may not be utilized in the restart mode are:

1. If the program was originally run as case A with
IRSTRT = 0, it is not possible to input loads and
temperatures at any time until the value of TOTIMEP
has been exceeded.

2. Consider that the program is being restarted at a
time which is within the interval Tl; -- Tlj47.
The loads and temperatures were inpu% in the pre-
vious run for times Tl; and Tlj+1. The first
value of T1 for which the loads and temperatures
may be specified in the restart mode must be great-
er than the time Tlj4+; which was utilized in the
previous run.
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Consideration will first be given to the cases where the new

value of the maximum time is less than or equal to the one previously

used.

TOTIME < TOTIMEP

CASE

INPUT LOGIC

1. Both the loads and the tempera-
tures are constant (in time) and
are equal to the values specified
for IRSTRT = 0, Case 1.

No loads or temperatures are
input.

2. Both the loads and temperatures
are constant (in time) but are
different from the values speci-
fied for IRSTRT = 0, Case 1.

This problem is not allowed by the
program. If the user desires to
run this case, it is suggested that
the problem be rerun beginning at
time = 0.0.

3. Loads or temperatures vary with
time. (This cannot be a restart
of Case 1, IRSTRT = 0.)

Input Tloads and temperatures at
times T11, Tl,, ... until the
value T1, reaches or exceeds the
value of TOTIME. The value of

Tl1 must be greater than the value
of Tlj+1 of the previous run.

The possible cases which may arise if the value of TOTIME is greater

than TOTIMEP are now presented. It should be noted that cases differ

only slightly from those previously discussed.
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TOTIME > TOTIMEP

CASE

INPUT LOGIC

Both the loads and temperatures
are constant (in time) and are
equal to the values specified
for IRSTRT = 0, Case 1.

The loads and temperatures must

be input for T1 = TOTIMEP and the
value of CONSTF is set as CONSTANT.
The specified loads and tempera-
tures must be identical with those

Both the Toads and temperatures
are constant (in time) but are
different from the values speci-
fied for IRSTRT = 0, Case 1.

read for the previous run (IRSTRT=0).

The new loads will not be applied
until TOTIMEP 1is reached. The
logic for Case 1, above, is then
applied.

Loads at temperatures (or both)
vary with time.

The Toads and temperatures must
be input at times Tly, Tlos ..
until the value T1, reaches or

exceeds the value of TOTIME.
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Appendix 7 - Program Output

The output of the DYNASOR II code consists basically of seven
parts.
1. The input data for all cases comprising the run
2. Alphanumeric case identification data

3. Case control constants, boundary conditions,
and initial conditions

4. OQutput generated in the SAMMSOR code
5. Loading and temperature information
6. Nodal displacements

7. Stresses and stress resultants

The output of part 1 is helpful since the input data for all
cases is printed at the start of a run. If an error occurs in the
execution of the program, a glance at the listing of the input data
may in many cases reveal the source of the error.

A description of the particular case being run may be printed
by the user utilizing the case identification cards. In addition,
the descriptive comments prepared by the SAMMSOR code to identify the
shell are printed.

At the start of each case a number of the control constants are
printed. In addition, the initial and boundary conditions are speci-
fied. A printout of these constants allows the user to check to see

if the desired options of the program are being properly utilized.
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If desfred, the stiffness and mass matrices for each of the
specified harmonics appears as output for the DYNASOR II code. The
printout of the stiffness and mass matrices may insure that the tape is
being properly read if a check with the SAMMSOR output is made
(identical formats are used). A table of important element proper-
ties is always printed.

If desired, a description of the loading, temperatures, and temp-
erature distribution is printed at each time for which the loads are
input. The generalized forces resulting from these contributions may
also appear as output.

The nodal displacements for each harmonic may be output at each
selected time increment. In order to 1imit the amount of output, a
control parameter is utilized to indicate how often the displacements
will be printed. The generalized displacements (in cylindrical co-
ordinates) are printed at up to twenty angles for all of the harmonics.:

For each desired time step the stress resultants and stresses
are printed. The force, moment, and shear resultants for each element
are underscored by the stresses at the upper and lower surfaces. Once
again a control parameter regulates how often these stresses will be

ca]cu]afed and printed.
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Appendix 8v— Modification of Program Capacity

The procedure for modifying the maximum number of elements and
cosine harmonics which can be utilized in the DYNASOR II code is
presented in this section. The modifications consist of changing
only DIMENSI@N and CPMMPN statements. The following terms are de-

fined to facilitate the modifications:

NE = Maximum number of elements
NHM = Maximum number of harmonics
NN = NE + 1

NSZ =26 * NE + 10

NSZ1 = NHM * NSZ

NR =4 * NN

NS = NR * NHM

NS2 =2 * NS

NL =6 *NE

NSC3 = Value from table A8-1

NSC4 = VAlue from table A8-1

NMAX = Maximum of NS2 and NSZ

Having calculated these constants for the desired maximum number
of harmonics and elements, the following cards in the specified subrou-

tines must be changed by substituting the values of the above constants.

Main Program

COMM@N  /QS/QN(NS), QN1(NS), F@RCE(NMAX), QP(NS), QP1(NS), QN2(NS)
COMMPN  /HARM/NHP, THARM(NHM) :

Subroutine INPUT

COMMPN  /SLVEEQ/ XN(NSZ1), QLOAD(NR)
*COMMON  /QS/

COMMON  /RSTRNT/ NODRES, NCLOSE, LK(NR)

COMMBN  /PS/XP(NSZ1) :
COMMEN /GEPM/ FNU1(NE), FNU2(NE), E1(NE), E2(NE), G(NE), T(NE), SINE(NN),

COSINE(NN),SINM(NE), COSM(NE), R(NE), PH(NE), PHP(NE), ARCL(NE)

*COMMON  /HARM/

COMMPN /THER/ TH(NE, NHM,2), DTH(NE, NHM, 2), ALS(NE), ALT(NE)

* Elements in this block are previously shown



DIMENSIPN
DIMENSIQN
DIMENSIQN

Subroutin
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QQN2(NS), QQN1(NS), QON(NS)
COMENT(20), JUNK(20), TH1(NHM), DTH1(NHM)
DUM(NSZ)

e SETUP

*COMMPN
*COMMPN
*COMMON

Subroutin

/SLVEEQ/
/QS/
/HARM/

e NLTERM

*COMMPN
*COMMON
CMMPN
CMMPN

Subroutin

/Q5/

/GEOM/

/EES/ ES(NHM), ET(NHM), EST(NHM), E13(NHM, E23(NHM)
/NLTRMS/ QPR(8, NHM)

e QPRIME

**COMMPN
Fk*COMMPN
*COMMON
*COMMPN
*COMMPN
*COMMN
*COMMON
*COMMN

DIMENSIMN

Subroutin

/CS/ CC(NSC3), SSC(NSC3), CSS(NSC3)

;CS45 CCC(NSC4), SSSS(NSC4), SSCC(NSC4), SCCS(NSC4)
EES

/NLTRMS/

/GEQM/

/HARM/

/THER/

/Qs/

E23Q1(NHM), E23Q3(NHM), E23Q5(NHM), E23Q7(NHM), ESTQI(NHM),
ESTQ3(NHM), ESTQ5(NHM), ESTQ7(NHM), ETQ2(NHM), ETQ6(NHM)

e HOUBQ1

*COMMPN
*COMMON
*COMMEN
*CPMMON
DIMENSIQN

Subroutin

/SLVEEQ/
/QS/
JRSTRNT/
/PS/
QLOADT(NS)

e HOUBQN

*CPMMEN
*CPMMON
*COMMON
*C@MMON

Subroutin

/SLVEEQ/
/Q5/
/RSTRNT/
/PS/

e NRESTR

*CAMMEAN
*C OMMEN

/SLVEEQ/
/RSTRNT/

*%
*k%

Value of
Value of

NSC3 should be taken from table A8-1
NSC4 should be taken from table A8-1



Subroutine MATMUT

DIMENSIPN A(NR), STIFM(NSZ1), FORCE(NMAX)
Subroutine SPLVEQ

*CPMMPN  /SLVEEQ/
DIMENSI@N A(NSZ), R(NR)

Subroutine STRESS

*COMMPN  /EES/
*CPMMPN  /GEOM/
*COMMPN  /HARM/
*COMMPN  /QS/
*COMMPN  /THER/

Subroutine FRCES

*CPMMPN  /QS/
*COMMPN  /HARM/

Subroutine THCPE

*COMMPN  /THER/
*COMMPN  /HARM/

Subroutine TFORCE

*CPMMPN  /GEOM/
*C@MMPN  /THER/
*COMMPN  /HARM/
*COMMPN - /QS/

Subroutine TRI40R

*COMMPN  /CS/
*COMMPN  /CS4/
*COMMON  /HARM/
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Table A8-1

Number of Elements in Sine and Cosine Integration Arrays

Maximum No. of

No. of Terms 3rd

No. of Terms 4th

Harmonics Order Arrays Order Arrays
NHM NSC3 NSC4
1 1 1
2 4 8
3 10 33
4 19 92
5 31 201
6 46 376
7 64 633
8 85 988
9 109 1457
10 136 2056




