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ABSTRACT 

A set of twenty-one point masses gravitationally 
equivalent to the L1 lunar potential model is presented. By 
construction, the equivalence is valid only in a region of 
space "sampled" by Apollo spacecraft. That region is taken to 
be a finite, torus-shaped shell. When used in place of the 
L1 model for Apollo 12 lunar orbit determination, the solution 
set gives spacecraft positions identical to within about 300 feet. 

The solution is developed in two steps: first the 
L1 potential is examined to determine favorable mass loca- 
tions, and then the mass values are computed to force an 
optimum matching of the L1 potential. Therefore the solution 
set is "artificial." It is related to the moon's actual mass 
distribution only in its similar gravitational effects in a 
limited region of space. 
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Case 

TECHNICAL MEMORANDUM 

1. INTRODUCTION 

DATE: February P ,  L97L 

FROM: S, L ,  Levi.e, Jr, 

TM-70-2014-2 

A distribution of twenty-one point masses gravita- 
tionally equivalent to the L1 lunar potential model over a 
restricted region of space is determined in this paper. 
Since the results must be understood in a rather detailed 
context, they are deferred to Section 4. Although for 
practical work the distribution seems to be neither more nor 
less useful than the L1 model, it does offer a usable, 
alternative representation of the L1 model. More generally, 
the method employed may be used to construct a mass repre- 
sentation for any potential. 

The object being matched, the L1 lunar potential 
model, is an approximation to the moon's gravitational poten- 
tial. It has been used extensively in real-time orbit deter- 
mination for recent Apollo flights. Consider a series expansion 
of the moon's potential V in terms of solid spherical harmonics. 
This may be written as 

[C,, cosm( -k 

in which GM is the gravitational constant times the moon's 
mass and R the mean lunar radius; * (r ,6, ( )  are the spherical 
polar coordinates of a field point outside the moon, at which 

the potential is to be evaluated; ' 1  (cose ) is the unnorrnalf zed 

*The v a l u e s  assumed f o r  these quantities are 

GM = 1 .7313991  x f t3/sec2 and R = 5 , 7 0 2 , 3 9 5  f C .  



associated 1,egendre function defined in 61 3 o r  'i 29 ; and 
CLm and Spm are the expansion coefficients of V. The L 1  

potential is a fini.ke approximation to the infinite series (1). 
It is characterized by the six non-zero coefficients listed in 
Table P. These coefficients were determined by a cornunity of 
American selenodicists after careful processing of doppler 
tracking data from Lunar Orbiter satellites and from Apollos 8 
and 10 [ 3 ] .  In the region of lunar space sampled by these 
spacecraft, the L1 model gives a representation of the under- 
lying lunar potential which has been satisfactory for lunar 
navigation and orbit determination in the Apollo program. 

TABLE *1 

Non-Zero Expansion Coefficients 
Characterizing the L1 Lunar Potential Model 

Recognizing that the moon's gravitational potential 
exists by virtue of a mass distribution, one would like to 
draw conclusions about the mass distribution from the present 
knowledge of the potential. Unfortunately, because the poten- 
tial is an integral over the mass distribution, it is impossible 
to infer a unique distribution from knowledge of the potential 
alone. A classic example of this phenomenon is given by a 
point mass and a uniform spherical shell of equal mass, both of 
which have the same external potential. However, when additional 
information (such as extensive seismic data) about the moon8s 
interior becomes available, it may be possible to use it to 
discriminate between various distributions d e t e r n ~ i n e d  by con- 
sidering o n l y  the potential, 



For the present, since there is no means for such 
discrininatinn, we will he content to determine a simple mass 
distribution which is gravitationally equivalent to the El 
potential model. wEquivalent'Yi cons t rue6  as requiring the 
$1 potential and the simple distribution to produce nearly 
the same state vectors at all times during lunar orbit deter- 
mination for a spacecraft orbiting within a region in which 
the L1 potential is valid. The region is taken to be a torus- 
shaped shell lying within the space blocked out by the orbits 
studied for the construction of the L1 potential. It simu- 
lates the lunar space explored by Apollo spacecraft. "Simple" 
is construed as requiring a smallest distribution of point 
masses which will produce equivalence. 

The method employed involves selecting the locations 
of point masses within a distribution and then using a least 
squares integral criterion to determine the optimum mass values 
for the distribution. The mass values are optimum in the sense 
that they force a minimum of the integrated square of the dif- 
ference between the L1 potential and the potential due to the 
selected distribution. The integration region is the torus- 
shaped shell just described. The mass locations may be iter- 
ated to diminish the value of the criterion integral until it 
is satisfactorily close to zero. Satisfactoriness is checked 
by applying the gravitational equivalence criterion mentioned 
above. 

This method is believed to have been suggested origi- 
nally by McLaughlin [ 4 1 .  A least squares matrix reformulation 
[ll of McLaughlinls integral criterion was adopted for this work 
because of its superior flexibility. 

It may be noted that this program is qualitatively 
related to recent efforts at JPL [5,6,7] and Aerospace [81, in 
which hundreds of masses on the nearside lunar surface are fitted 
directly to spacecraft doppler data on a single-pass basis. 
Whereas those efforts are designed to include local gravitational 
information, use of the L1 potential restricts this work to 
information averaged over the whole moon. Both approaches share 
the problem of inherent non-uniqueness of solution mass distri- 
butions, but this does not obscure physical interpretations in 
the referenced work, due to the presence of supplementary, 
topographic information. 

This work is also related to studies reported in [ 9 ]  
and 6101, in whish surface mass distributions are obtained for 
the earth from satellite tracking data and from gravity anomaly 
information. 



Section 2 deals with the method 0 5  determining the 
mass values f o r  an assumed d i s t r i b u t i o n ,  while Section 3 dis- 
cusses the selection of the mass locations within a distribu- 
tion. The distribution of twenty-one point masses which solves 
the posed problem is the subject of Section 4. Some concPusions 
about the work are given in Section 5. 

CALCULATION OF THE MASSES 

Once a distribution of masses has been selected, its 

net gravitational potential ? can be computed, provided the 
mass of each body has been specified. Since it is desired to 

have ? match a given potential v over some region D of space, 
McLaughlin [ 4 ]  proposed selecting the mass values so that the 
integral 

is minimized. Thus the resulting solution will be optimum in 
an integral least squares sense. Since potentials are linear 

in the mass, can be written as 

C\J % 
v = f m, v,, 

th where n is the total number of bodies, m, the mass of the h- 
C\J th 

body, and rn, v, the potential of the b- body. Thus f is 

quadratic in the masses, and its minimum is unique. 

In the application being presented, v was taken as 
the Ll potential model. It was represented as a sum of solid 
spherical harmonics in the form of (l), but truncated after 
L=7. The potentials of each of the masses under consideration 
in (3) were expanded in similar series, truncated after 1 = 7 .  
The coefficients for these series may be computed from formulas 

in [Ill . From (3) , then, is also a truncated sum of solid 
spherical harmonies, and each coefficient in the sum is a cer- 
tain linear combination of n undetermined masses, 

With the problem in this form, the integral criterion 
(2) can  be reformulated as a classisaE least squares rnat.rix 



problem, reported in [ I ] ,  This formulation was used f o r  the 
csanputatians, since it allows convenient  utilization of a 
computer, by isolating the i n t e g r a l  i n  f i n  a weight m a t r i x ,  
Every element of t h e  weight ma t r ix  i s  an i n t e g r a l  over  D of 
products  of p a i r s  of s o l i d  s p h e r i c a l  harmonics, and t h e s e  
i n t e g r a l s  can be  a n a l y t i c a l l y  precomputed. 

The r eg ion  w i t h i n  which t h e  L 1  p o t e n t i a l  and t h e  
mass d i s t r i b u t i o n  were matched -- t h e  i n t e g r a t i o n  r eg ion  D 
i n  ( 2 )  -- was chosen t o  be  a  f i n i t e ,  torus-shaped s h e l l .  I ts  
i n n e r  and o u t e r  s u r f a c e s  a r e  s p h e r i c a l ,  wi th  r a d i i  R and 

R + 2 x l o 6  f t , *  and t h e  no r the rn  and sou thern  s u r f a c e s  a r e  
cones of l a t i t u d e  a t  30' and -30'. The weight ma t r ix  f o r  such 
a  r eg ion  i s  given i n  [ I ] .  The r eg ion  was a r b i t r a r i l y  chosen 
a s  modeling t h e  space sampled by Apollo s p a c e c r a f t ,  and it i s  
conta ined  w i t h i n  t h e  r eg ion  i n  which t h e  L 1  p o t e n t i a l  model 
i s  presumed t o  be  a  good r e p r e s e n t a t i o n  of t h e  under ly ing  
l u n a r  p o t e n t i a l .  

3. SELECTION OF THE MASS LOCATIONS 

The a v a i l a b i l i t y  of t h e  i n t e g r a l  c r i t e r i o n  f o r  se -  
l e c t i n g  mass va lues  f o r  t h e  bodies  i n  a  d i s t r i b u t i o n  subs tan-  
t i a l l y  s i m p l i f i e s  t h e  problem under cons ide ra t ion .  The remaining 
problems a r e  t o  s e l e c t  t h e  necessary  number of bodies  and then  
t o  determine l o c a t i o n s  f o r  them. For s i m p l i c i t y ,  it w i l l  be  
assumed t h a t  a l l  t h e  bodies  a r e  p o i n t  masses. This does  n o t  
seem t o  weaken t h e  s o l u t i o n ,  even f o r  a  smal l  number of masses. 

There appear  t o  be  t h r e e  ways of s e l e c t i n g  p o i n t  
masses f o r  t h e  d i s t r i b u t i o n .  Each r e q u i r e s  a  s i n g l e  mass a t  
t h e  o r i g i n  t o  account f o r  t h e  g r o s s ,  r a d i a l l y  symmetric p a r t  
of t h e  moon's d e n s i t y  func t ion .  The methods a r e :  

1. P lace  a  p o i n t  a t  t h e  l o c a t i o n  of each suspec ted  
inhomogeneity. 

2 .  D i s t r i b u t e  p o i n t s  evenly over  some s p h e r i c a l  
s u r f a c e ,  t o  approximate a  s u r f a c e  d i s t r i b u t i o n  
of ma t t e r .  

3 .  Place  "mult ipole"  p a t t e r n s  of p o i n t s  very c l o s e  
t o  t h e  o r i g i n ,  

*R i s  de f ined  in Sec t ion  1, and is 5 , 9 8 2 , 3 9 5  ft, 



The f i r s t  approach i s  out o f  the q u e s t i o n  due to insufficient 
information, The second and third are re la ted,  in the scheme 
which was used, and both are deeply rooted in potential theory. 
The second is based on a theorem that on the surface of a 
sphere there exists a distribution of matter which reproduces 
a given external potential [12]. The third states a result in 
electrostatics, that any external potential may be replaced by 
a suitable collection of multipoles [13]. A multipole is an 
infinitesimal arrangement of point masses whose total external 
potential consists of just one term of (1) and (except for the 
central body term) whose total mass is zero. Each term of (1) 
has its corresponding multipole. 

The multipole approach has been the most useful one 
for obtaining mass point locations. Since the symmetries of 
a single multipole distribution are connected with the locus 
of zeros of the corresponding spherical harmonic, only the 
pattern of zeros needs to be consulted to get an indication 
of the relative positions of mass points in the corresponding 
multipole. These patterns are shown in Figure 1 for the spheri- 
cal harmonics needed in the L1 potential model, omitting the 
central body term. The distribution of twenty points in Figure 
2 seems to capture all the symmetries shown in Figure I. It 
also seems to be the smallest such set. Mass points at the 
indicated locations plus a mass point at the origin constitute 
the distribution of twenty-one point masses whose values were 
determined by minimizing (2) . 

The radius of the sphere on which the points were 
placed is 0.2109R. For the distribution to approximate a true 
set of multipoles, the sphere's radius should approximate zero. 
This cannot be done in practice, of course, since the resulting 
distribution would appear to a computer to be singular. The 
adopted value was therefore a compromise between the require- 
ments of a good multipole representation and numerical 
tractability. 

Although the distribution has just been presented in 
the context of multipoles, it has another interpretation. It 
is also a simple approximation to a continuous distribution of 
matter on a spherical surface, The approximation consists of 
a uniform surface distribution, represented by the point mass 
at the origin, which is modulated by a sprinkling of twenty 
discrete masses on the surface. This interpretation emphasizes 
that the moon's actual mass distribution is not being determined 
here. What is being determined is some distribution which 
reproduces the effects of the EL potential model within a torus-  
shaped shell, 



4, RESULTS 

The mass distribution determined by the methods of 
the last two sections is presented in Table 2. It consists 
of twenty point masses placed symmetrically on a sphere of 
radius 0,2109R, plus a point mass at the center. This mass 
point contains nearly all the mass in the distribution, to 
within one percent, The total mass of the distribution equals 
the moon's mass; the center of mass is within ten feet of the 
origin; and the cross products of inertia are zero. These 
results stem from matching a spatial distribution and a poten- 
tial with related symmetries, while using a highly symmetric 
region for the fit. 

Table 3 lists the expansion coefficients Cem (refer 

to (1)) for this distribution up to l = m = 7. The S-coefficients 
are all zero. Comparison with Table 1 shows that the expansion 
coefficients for the distribution are not the same as those of 
the L1 potential. The reason is that the distribution is inher- 
ently incapable of reproducing the L1 potential at all points 
of space. That is, it cannot generate the L1 coefficients 
exclusively. 

The solution distribution does give a satisfactory 
facsimile of the L1 potential within the torus-shaped shell, 
however, This was demonstrated by using the potential coef- 
ficients in Table 3 for two-pass orbit determination with 
free-fall doppler data from Apollo 12." Comparison with 
results from orbit determination using the L1 potential model 
revealed errors in the epoch state amounting to 328 ft and 
0.12 fps. The doppler residuals for the two potentials were 
nearly indistinguishable over a five revolution propagation 
of the two epoch state vectors. When the number of mass points 
in the solution set was decreased, these results were seriously 
degraded, indicating that the set presented is the simplest 
practical one. 

It is interesting to compare equipotential contours 
for the L1 model and the solution mass distribution, These 
are shown in Figures 3 and 4, respectively, Careful comparison 
of the two figures reveals an excellent match within the fit 
zone and a deteriorating match outside the fit zone. The 
fine information in the L1 potential near -180' in the fit 
zone suffers some distortion in the mass point representation, 
but, on the basis of the previous paragraph, this does not 
seem to be particularly harmful. The situation probably would 
be improved by adding one or two mass points to the solution 
set. 

*The elements of the orbits considered were approximately 
a = 6,061,500 ft, e = 0,00502, i = 164?86, R = 335t6, w = 66'26, 
in the selenographic frame, The period was about 1.979 hr, 



Table 2 -- A distribution o f  mass points reproducing the 
gravitational ef fec ts  of the LI lunar potential 
model throughout a torus-shaped shell,* 

*The inner and outer surfaces of the shell are spheres of - 

radii R and R + 2 x lo6 ft, where R = 5,702,395 ft. The northern 
and southern surfaces are cones of latitude at +30° and -30"- 

**All the mass points lie on a sphere of radius 0 . 2 1 0 8 5 7 8 9 R ,  
except for one at the coordinate origin, 

***The mass unit is micromoons, or Lunar masses. 



Table 3 -- Low-order expansion coefficients for the potential 
of the mass distribution in Table 2, The S- 
coefficients are n o t  g iven ,  s i n c e  they are aLP 
zero. Mantissa-exponent format is used, 



5. CONCLUSIONS 

On the basis of the orbit determination comparison, 
it is concluded that the mass distribution in Table 2 and the 
L1 lunar potential model yield similar gravitational effects 
in the region of space "sampled" by Apollo spacecraft. That 
region is assumed to be a torus-shaped shell. Some calcula- 
tional comparisons of these two representations of the lunar 
potential have shown that neither is more efficient than the 
other. This underlines the practical equivalence of the two 
representations in the stated region. 

There appear to be three ways of improving the 
correspondence of the distribution's potential to the L1 
potential: 

1. Increase the number of mass points, to make a better 
approximation of a continuous surface distribution, 

2. Move all the mass points closer to the origin, in 
the spirit of multipole theory, to diminish the 
size of unwanted expansion coefficients in the 
distribution's potential, 

3. Adjust the region in which the match is to be valid 
so that the distribution needs to match fewer con- 
volutions of the given field. 

The first approach is plausible, but unesthetic, and the second 
is limited by numerical considerations in the calculations. 
However, the third approach is simultaneously practical, con- 
sistent with the spirit of McLaughlinBs criterion, and con- 
sistent with the realities of our present understanding of the 
moon's gravitational potential, 

It is expected that if the scheme for determining an 
equivalent mass distribution is applied to potentials only 
slightly more intricate than the L1 field, then the number of 
mass points required will grow steeply, This is because a 
mass point distribution must capture simultaneously all the 
symmetries of the spherical harmonics comprising the gravi- 
tational potential to be matched. This would mean exhorbitant 
numbers of mass points in the multipole sets for such fields. 

It is not meaningful to discuss the physical reality 
of the solution mass distribution. This is because, as shown 
in [13], a mass distribution whose external potential precisely 
matches some given potential lacks uniqueness. However, as 
more becomes known about the moon's interior, the new informa- 
tion can possibly be used to differentiate between acceptable 
solutions. For the present, the solution obtained must simply 
be regarded as an alternative representation of the L1 lunar 
potential model for Apollo orbits, 
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FIGURE "1 PATTERNS OF ZEROS OF THE SPHERICAL HARMONICS IN THE C1 LUNAR POTENTIAL MODEL 

(EXCLUDING THE CENTRAL BODY TERM). NOT DRAWN TO SCALE 
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FIGURE 2 - DISTRIBUTION OF TWENTY MASS POINTS WITH THE SYMMETRIES OF THE SPHERICAL HARMONICS OF THE ~1 
POTENTIAL PJtBDEb (EXCLUDING THE CENTRAL BODY TERM). THE SOUTHERN E-IEWIISPHEREIIS 
REFLECTION - SYMMETRIC WITH THE NORTHERN HEMlSPHERE. DRAWN TO SCALE 



FIT 
ZONE 

FIGURE 3 - EBUIPOTENTIAL CONTOURS FOR THE b l  POTENTIAL. THE FIT ZONE LIES BETWEEM 
+30° AND -30° LATITUDE, AS SHOWN 
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FIGURE 4 - EQUlPOTENTlAL CONTOURS FOR THE 21 MASS POINT POTENTIAL. THE FIT ZONE LIES 
BETWEEN +30° AND - - 3 0 O  LATITUDE, AS SHOWN 






