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Progress Report to the National Aeronautics & Space Administration, on

Grant NGL-u0-002-080 (Plasticity Aspects of Fracture Mechanics Analysis) :

Progress Reoort on EBlastic~Plastic Finite Element Analysis of Cracked Solids

Introductory Note: Several topics relating to plasticity aspects of fracture are

under study through Grant NGL-40-002-080, This report deals exclusively with one
phase of the work, namely elastic-plastic finite element analysis. It reports pro-
gress and problems to date on studies directed toward: 1) the analysis of practi-
cal fracture test specimens, especially the notched round tensile bar employed in
the experimental program, and 2) the development of versatile singularity ele-
ments for crack tips, of a form which are readily merged with standard elements of
an isoparametric or triangular type. Unanticipated difficulties have arisen in
attempts at obtaining the highly accurate numerical solutions which have been a goal
of the study. These are explained here together with a presentation of numerical
results, The work has been carried out by Mr, D. M., Tracey, Research Assistant -

on Grant NGL-L4L0-002-080,

Introduction

The numerical analysis of cracked solids under external load is difficult
because of the singular deformation state near a crack tip. Elastic crack solutions

are governed by an inverse square root stress and strain singularity [1] while elas-

tic perfectly-plastic solutions for stationary cracks involve a 1/r shear strain
crack tip singularity [2]. Hutchinson [3] and Rice and Rosengren [4] have found

near tip solutions to power law hardening materials which have stresses and strains
exhibiting N/(1+N) and 1/(1+N) types of singularity respectively, where N is
the hardening exponent. Rice [2] has offered the Prandtl slipline stress field as

the asymptotic stress distribution at the tip of a sharp crack in a non-hardening

material in plane strain.

The goal in the present work is to obtain finite element solutions to typical
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elastic-plastic problems which are reliable at the troublasome singularity as well
as being accurate globally. A solution to the circumferentially grooved round ten-
sile bar is described in this progress report. The numerical treatment of the near
tip region was based on the method used by Levy et al. [5] in their study of the
small scale yielding boundary layer problem. They developed the '"polar'" element,

a four-node element whose edges are described by lines at constant angle and arcs
of constant radius in a polar coordinate system (r,0). Centering the coordinate
system at the crack tip and choosing an (r,8) bilinear interpolation function
allows a l/r strain variation within the element. Using this they obtained a

stress solution very close to the Prandtl field.

The geometry of the round bar motivated the use of straight edged isoparametric
elements which when focused into the crack tip allows the 1/r strain variation.
Surprisingly this procedure failed to give a reasonable near tip solution. The
small scale vield solution to this round bar problem differed significantly from
Levy et al. The asymptotic boundary layer problem was then used as a test problem
to learn the essential differences between the polar and focused isoparametric ele-
ments. It is concluded that two features of these singular elements require fur-
ther study: Tirst is the use of the area average stress as an approximation to the
stress state at each of the integration stations of the element, and second is the
singular dilatation allowed by the interpolation function, Currently a new ele-
ment is being developed which will allow only a singular shear strain in its set

of admissible deformations.

The large scale yielding solution to the round bar problem demonstrated that
the numerical method of calculating the elastic-plastic stress strain matrix that
is in common use (Marcal and King [6]) is a source of accumulative error. Stated
briefly this method bases the plastic flow rule for an increment on the initial
stress state, instead of on some estimated average stress state experienced during
the increment, with the result that the stress state wanders away from the yield

surface. Currently a revised procedure is heing adopted to correct this problem.

Numerical Procedure

The finite element procedurs used consisted of transforming the actual elastic-
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plastic problem into that of solving a system of linear algebralc equations in the




displacements (displacement increments for plasticity) of a finite number of

"nodes" of the bodv. The coefficient matrix of this system is constructed from

the stiffness matrices of "elements" of material associated with the nodes. The
behavior within the elements is a priori specified in terms of the unknown nodal motion
through the elements' interpolation functions. The element stiffness matrix de-

pends exclusively on the interpolation function chosen and the constitutive law

of the material.

If B(X) is the matrix derived from the interpolation function which relates
an element's nodal displacement increments, AS , to strain increments at an interior
point X , Ae(X) , and D is the incremental stress-strain matrix, the element

stiffness is written as

K=Jg DB dA (1)

= A tar)
For a Prandtl-Reuss material that continues to load D depends upon the elastic
o s el . -
coefficients D , the current work-hardening rate H'(sp) , and the stress state;

the dependence on the latter is through the vector

0/or = 3LS,,S;, - J/20y

where Si are the deviatoric stresses and % the current yield stress. The

matrix expression for D is

(2)
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I 1is the identity matrix.

Integration of eq. (1) is usually done by some quadrature rule that approxi-
mates the integral as the sum of products of the integrand evaluated at selected
stations XN times an associated fraction or "weight' of the total area. The sum
of the weights equals the total area.

The algorithm of an elastic-plastic solution begins with the assembly of the

. . . . . el .
master stiffness matrix from the element stiffnesses obtained using D in




_eq. (1). The equations are solved, stresses are evaluated at selected position(s)
within the elements, and the solution is then scaled to render that stress state

with the greatest equivalent shear to the point of incipient yield. Next a "small"
load increment is specified, the meaning of "small" will be explained shortly. Each
stress state in the mesh is checked to see if during the load increment the region
would yield if the deformation continues proportionate to the previous solution. For
those regions that would yield, a weighted average D matrix is constructed from

el el-pl

D and D according to the method of Marcal and King [6]. For the points

el-pl is formed based on the current stress state. With the new master

at yield D
stiffness matrix a displacement increment solution is obtained, the stress increments
are added to the previous stress states and the process repeats itself until the
final load has been achieved. Since the dependence of the constitutive matrix on

the stress state is the feature fhat makes this a non-linear problem, the size of

the load increment must be judged according to the size of stress increment it pro-
duces, Since for perfectly plastic materials continuing to load the only permissible
stress increment is tangent to the yield surface there is always an amount of error
involved in using finite load increments. The pérmissible size of a load increment

depends upon the tolerance set for the amount a stress increment can venture away

from the yield surface,

The near tip elements used in the present study were given interpolation func-
tions which allow the expected singular deformation. The 1/r shear singularity
expected in the plastic case motivated the use of centered trapezoidal shaped iso-
parametric elements, fig., 1. The elements nearest the crack tip have two coin-
cident nodes at the tip., This allows the displacement discontinuity ar r = 0 that
is associated with a 1/r singularity. The isoparametric interpolation function is

expressed in terms of the element's natural coordinates (&,n) as
W=b + byt + bysn +byy (3)

The cartesian displacement vector E(X) depends upcn the nodal displacement vec-
tors which are linearly related to the generalized displacements ?i . For the
trapezoids of fig. 1 which are considered in the unit square (0 € £ <1, 0 ¢ n < 1)

in parameter space the natural coordinates are
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The strain distribution in this element referred to the local coordinate system
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The constants depend upon the displacements of nodes I,J,K,L and the element
dimensions. Clearly the 1/s terms indicate the element is capable of duplicating

the 1/r singularity characteristic of the non-hardening case.

The inverse square root elastic singularity motivated the design of an element

with the shape of those in fig, 1 with the interpolation function
U0 = by by VT + ba V' ©)

The coincident nodes of the near tip elements are constrained to move together in
this formulation. This elastic singularity element has been used to obtain very
accurate stress intensity factors in typical elastic crack problems [7]. An inter-

polation function that provides a strain distribution with 1/r and 1//r terms is

U =sb+ b, V/T % by VT + by (7)

There remain questions to be considered such as whether or not an exact elastic
interpolation function should be used to gain the elastic solution to a body which
actually experiences yielding under infinitesimal load. There is also the problem
of determining the most rigorous method of numerical integration of the element
stiffness matrix. The questions of how many quadrature stations are necessary and
what stress states within an element should be stored are the basis of the problem.
It is found that the solution is quite ensitive to all of these choices, a detailed

discussion of these points appears in the last section.




~ Circumferentially Cracked Round Bar

The first problem solved was the circumferentially cracked round bar with an
inside to outside diameter ratic (d4/D) of 1/2 . The length was chosen as 3.75 D
which was sufficient to obtain a uniform stress solution at the end when a uniform
axial displacement was imposed there, A mesh with 768 degrees of freedom associa-
ted with 340 axisymmetric ring elements was employed in the upper half of the body
which is naturally described in terms of a (p,z,4) cylindrical coordinate system.
The centerline is along the =z axis and the crack is along the line (d/2 < o < D/7,0)
in a meridional plane ¢ = const , fig. 2. When viewed in the p - Z plane the
cross sections of the elements were centered trapezolds near the tip, rectangles
near the end, and arbitrary quadrilaterals elsevhere. There were 300 trapezoids
in 13 rings centered about the crack tip. These elements had an angular dimension

of w/24 , The nodes described arcs of radius

r =L0,l,1.5% 2% 2.5% - 6% 4545921 d/72 (8)

The integration of the element stiffnesses was accomplished by a 9 point
Gaussian quadrature, The integration stations within a near tip element using this
procedure are pictured in fig. 3d, When viewed in (£,n) parameter space the sta-
tions are at the intersections of the coordinates lines (1 + Y375)/2 and 1/2 .
The weight of the £-n area associated with the "corner'" stations is 25/324 , the
center weight is 16/81. and the other stations on the coordinate lines £,n = 1/2

have weight 10/81 .

In the integration a further approximation was made. Only the stress state of
the center of the element was stored. If this state satisfied yield the D matrix
for all integration stations was derived based on this state. This approximation
was made with the inkling that stress gradients within a plastic element are not
large enough to provide a significant variation of the D matrix within the element.
Subsequent findings that the numerical procedure of the early deformation history
near the crack tip has a marked influence on the large deformation results there
renders questionsble the effect this approximation has in view of its obvious in-

adequacy when the element is along the elastic-plastic boundary.

Two elastic, incipient vield solutions were obtained. The first was gained by

using the isoparametric interpolation function for all elements, the second formu-




lation made use of the "dual" sinsularity interpolation function (7) for the near
tip elements. Plots of the inplane stress components at the near tip element cen-
ters appear in figs. (Ma,b,c) for these solutions along with the stress distribu-

tion of the leading term of the Williams expansion for plane strain with
1z
K/tzorn" = 1.07 o3 (9)

which is satisfied when one point at radius r 1is at yield. For the geometry con-

sidered, Bueckner [14] gives the stress intensity factor as
K=2.46 oo /Vd % 1% (10)

Eqs. (9) and (10) taken together predict yield at the near tip element midpoint,
r/d = 1/144 , when

Ow/0; = 0.093 (11)
The isoparametric solution had Ow/go = 0.108 while the dual singularity solution
predicted o /o = 0.0916 at incipient yield. )

At the near tip element centers the circumferential strain was of the same order
of magnitude as the in-plane normal strains. This suggests that the state of plane
strain that exists at the crack tip is very localized, prevailing in a region less

than r/d = 1/144 about the tip.

The dual singularity solution was chosen as the best and further loading was
continued from this solution; although the isoparametric interpolation function was
used thereafter (once yielding takés place there is no reason to expect any singu-
larity other than the 1/r form). The displacement of the end of the bar was in-
creased to a value of 15.25 times the end displacement at first yield in 47 in-

crements in the following order

7 increments of 0.25 u
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The load-deflection curve is presented in fig., 5. The curve levels off at
O et = 2.72 o, This compares favorably with the limit pressure of axisymmetric in-
dentation of a semi-infinite rigid perfectly plastic Tresca material given by Shield [8].
He computed the average pressure as 5.69 k where k 1is the flow stress in shear. The
ratio of the finite element limit net stress to Shield's using the appropriate tensile
yield stresses is 2,72/2.85 = 0.96. When matched in shear the ratio is 4.71/5.69 =
0.83. An important feature of the present solution is that the yield zone spreads to
include the entire bar cross-section at limit load. The 2 to 1 diameter ratio chosen
is seemingly'too small to affect the localized flow at limit load found by Shield. The
deformation was confined to a radius of 1.58 times the punch radius in Shield's solu-
tion., Fig. 6 presents the elastic-plastic boundary at progressive stages of loading.
The net section stress distribution at limit load is compared to Shield's and the axi-
symmetric punch finite element results of Lee and Kobayashi [9] in fig. 7. The latter
authors considered a specimen with geometry D/d = 2.7 and L/d = 1.7 and used a
somewhat coarser mesh than the present study. Their net section distribution agrees
reasonably well with the present result except near the crack tip. Shield's distri-
bution is different in that the greatest tension is at the centerline. The present use
of the Mises yield criterion makes a pointwise comparison of this Tresca solution du-
bious. The high stress predicted at the crack tip in the current solution is the first
symptom of numerical procedural problems at the singularity, this topic will be con-

sidered shortly.

The flank opening, fig. 8, is seen to change from a small fraction of the end ex-
tension to the point where the flank opening velocity is 80% of the imposed end velo-
city. Of course, if the flank was included in the rigid region the limiting flank

opening velocity would be 100% of the end velocity.

The near tip stresses are plotted in figs. (%a,b,c) at Unet/oo = 1.12 , 1.90,

and 2,72 along with the Prandtl stress distribution. For the first two load states

there is good agreement with the Prandtl field for o, in the range 056<n/2 . The

%

opp curves are close for the first two states while the finite element pr curves

G

are much different than the Prandtl field. The sz distribution for Gnet/co = 1,12,
1.90 looks much like the elastic distribution, fig. Uc, for the range 0<8<n/2. The
large almost constant shear state over the range 6>7/2 1is a clear indication that

the solution is amiss in view of the traction free crack surface boundary condition.

It was suspected that the size of the fivst plastic increments were the source of

the strange stress




solution. The problem was rerun up to Gnetfﬂo = 1.12 in increments of 0.10 u:
with essentially the same near tip distribution resulting. Previous finite element
work has been done by Levy et al. [5] using the procedure of embedding the expected
1/r singularity. The solution obtained agreed very well with the Prandtl field

at the crack tip. The essential difference in that work from the present is the
use of an r-6 polar element instead of the centered trapezoids, Although they
used a nine point integraiion procedure with only the midpoint stress stored like
the present formulation, it has been subsequently discovered that the final near
tip solution is very sensitive to the integration procedure used for straight-
edged trapezoidal elements. This topic has been investigated in detail and rules

have been established which define the best integration procedure to use for non-

hardening plasticity. This is one of the subjects of the next section.

The finite element method calculates velocities from which strain rates are
obtained, Using the constitutive matrix stress rates are obtained from the strain
rates, The normality flow rule of plasticity which is incorporated in the con-
stitutive matrix renders the stress rates tangent to the yield surface at the posi-
tion of the previous stress state, While this is the correct method for infini-
tesimal steps, the finite load increments used may produce tangent stress increments
so large that the yield condition is drastically violated. The stresses at the load
/0o = 2,72 are unbelievably large just because of this problem. Fig. 10 is a

/oO = 2.72 . Obviously for the

cnet _
plot of 0/0o for the near tip elements at et
perfectly plastic material considered here this ratio should not exceed unity. In
the last section a new method is formulated which uses the initial and anticipated

final stress states to define a more appropriate flow rule for finite increments.

The strength of the 1/r shear strain singularity is defined as

RO = 1N, lin ¥, = [2Ucto,0fon - U0 /Y (2
Y0
where Yo is the yield strain in shear (co//§G) . The numerical analogue for

an element in the angular range Bl <6 < 92 is

R (e O @39 b 2,{ D,8 ,&{W.ﬁ%,’ toin o ot
R(§, do %2‘3 — E U Qézaj - w(0,8) . U Le, j‘}?j L%_fi"l‘?ﬁ] iléfg (13)
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Fig. 11 is a plot of R(G—)/(K/o‘o)2 obtained from (13) for ORQT/OO = 1,12

along with the result of Levy et al. [5] and the analytical predictions [3,4,10]
based on the "total strain" or "deformation" theory. The present result differs
significantly from the other estimates which isn't surprising in view of the
peculiar stress solution of fig. 9. The crack opening displacement can be ob-

tained from the R(®) function by the relation [2]

30/

gt = Y, f R(®) sms de
/4

Levy et al. predicted that 6t depends upon K2/Bco in small scale yielding
through the relation Gt/(KQ/Eco) = 0.425 . Rice [2] offered a factor of 0.613

while the non-hardening limit of the power law hardening singularity gives a
value of 0.717 , [10]. The smaller amplitude of R(8) in the present result
suggests a correspondingly smaller 5t « The plot of 6t/d vs. K2/Ecod s

fig. 12, obtained from the uz(Ogﬂ) nodal point displacement data indeed indi-
cates a smaller factor of proportionality between Gt and KQ/EOO . The first
four increments indicate a factor of 0.27 while a line through the data points
of increments 7 to 13 has a slope equal to - 0.3h., Nevertheless, the inaccurate

near tip stress distribution casts doubt on these numerical values.

The vertical displacements of the nodes on the crack face are plotted in
fig. 13 for various load levels. The interesting feature of the curves is the
large variation of uz(r,ﬂ) close to the crack tip and the nearly uniform dis-
tribution for r/a > 1/6 . The large gradients near the tip become more pro-

nounced with increasing load,

Asymptotic B. C, Problem

A convenient approach to studying the "small-scale yielding'" of a cracked
body is to use the boundary layer formulation proposed by Rice [2]. Here the
crack tip deformation is investigated by enlarging the near tip region so that

-the characteristic elastic singularity
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Cij = K//amr ‘gz.;j(@ (14a)

u, = KV ‘h/a’i’;’/&@ %L(@) (14b)

is approached as r » « . This is the problem that was solved by Levy et al. [5]
by using the polar element. Hence this was chosen as the problem to test the
effect of the choice of numerical integration scheme and interpolation function

on the near tip solution in centered trapezoidal elements.

The finite element adaptation of this formulation considered a circular
region about the crack tip cut out of the enlarged region and boundary conditions
applied to the outer surface according to the formula (145) evaluated there, The
near tip element dimensions are chosen sufficiently small that the stress state
near the outer boundary would continue to conform to (14) even after near tip

elements have yielded.

There were two meshes used. The first consisted of 10 rings of 15° elements

with nodes at radii of

ve=l0,1,1.5% 2% -, 552]

Call this mesh I and the mesh consisting of 4 rings of 7.5° elements followed by
8 rings of 15° elements mesh II, fig., 14, The nodes of the latter fall on arcs

of radius

v =[0,05,1 1625, 1.5% 2%, -+ 5.5%]

The nodes on r = 2,25 not common to the adjacent 7.5° and 15° elements were
constrained to move in a compatible manner [11], Mesh I had 120 elements and 143
nodes while mesh IT had 192 elements and 229 nodes. The boundary conditions at
the outer surface were imposed displacements according to eq. (l4b). The plastic
‘Incremental solution was gained by a continual increase in K . The loading was
not continued beyond the point when the maximum extent of the plastic zone ex-
ceeded 15% of the outer radius so that the asymptotic boundary condition was at

all times reasonable. The first study involved the variation of the number and
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location of integration stations used in the numerical integration of the near

tip element stiffness. The isoparametric interpolation function was used through-
out and as in the round bar problem at each station the midpoint stress state was
used to evalvate D . The stations of the four integration schemes used are

-~

pictured in fig. 3. Procedure A involved one station at the element midpoint;

\

procedure B had three stations along s/s = 1/2 at tan ¥/tan o = 2/3, 0, - 2/3;

procedure C had three stations along ¢ = 0 at s/s“ 1/6, 1/2, 5/6 . Procedure D

was the 9 point Gaussian quadrature rule used in the round bar problem.

The elastic near tip solutions are compared with the exact incipient yield
solution in figs. 15. Solutions C and D are very close as are A and B. The
former solutions have the shape of the exact elastic solution while the latter
have a shape reminiscent of the Prandtl stress field. The prime ingredient which
seems to couple C with D and A with B is the fact that the former two have sta-
tions at three distances along the s axis while the latter solutions have all

stations at a fixed value of s .

The plastic stress solutions are compared in figs. 16. The runs A aﬁd B
were continued up to K/Ko = 4,0 while C and D were stopped at K/Ko = 2.2,
A and B agree reasonably well with the Prandtl solution, the deviation is greatest
over the range 6 > 37/4 where elasticity prevails. At K/Ko = 4,0 A remains
closer to the Prandtl field than B which has Tex and Oyy larger than ex-
pected in the range © < w/4 ., C and D deviate considerably from Prandtl at
K/Ko = 2.2 in the same manner as the round bar near tip solution. It is note-
worthy that the plastic shear stress distribution in each case has the same shape
as its elastic counterpart. This is evidence that the elastic stress solution
dictates the plastic stress solution. The effect is probably enhanced near the

tip where at incipient yield many of the elastic elements are very close to yield.

Fig. 17 presents the shear singularity strength as a function of 6 for
procedures A and B at K/Ko = 4,0 ., A has an unrealistic valley at 6 = 82.5°
but the distribution obtained from smoothing this erratic behavior agrees well
with the other predictions [3,4,5,10]. Ostergren [12] obtained an R(8) with
- the same erratic behavior when he used a one-point (midpoint) integration rule
with the polar element. Levy [13] seemed to offer a method of correcting this
behavior by using a nine-point rule. This rule specified integration stations

at the midpoints of 9 equally sized polar rectangles. The weight associated
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with each station was the area of the corresponding region. The nine-point
Gaussian rule used in procedure D failed to give a solution close to the one-
point rule solution, procedure A. Procedure B has a smooth R(8) , fig. 17,

however the amplitude is much smaller than the other estimates.

Some conclusions can be drawn from the preceding four solutions: Since
there can be significant differences in solutions obtained by using procedures
involving different approximations to the D matrix at the integration stations,
it is necessary to store the stress state at each integration station. This will
allow the large stress gradients found when the element is at the elastic—plastic
boundary and will be consistent with the large gradients of the 8 matrix which
are built into the element stiffness when integrations stations at different

values of s are used,

The solutions of procedures A and B differed in two respects. B predicted
excessive normal stresses Oy ? ny in the range 6 < 45° and a much smaller
shear strain singularity than that of A which, although erratic, was of the ex-
pected amplitude, A look at the B matrix of the isoparametric centered trape- -
zoidal element provides likely reasons for the differences. Egs. (5), which are
the result of the matrix multiplication B8 - § , show that the dilatational strain

has a singularity of the form

2 Exy — {(uf-ur) Tan ¥ +(vi-vj)}cme;/5» (15)

Only the shear strain Ypo is expected to be singular in perfect plasticity [2].
This possibility is included in eqs. (5) as can be seen by the strain component
Yot which is equal to Yo at ¥ = 0 . The source of the dilatational singu-
larity is due entirely to the component g Procedures A and B embed the
singular strain matrix B into the stiffness matrix in substantially different
ways. The single integration station of A is on ¢ = 0 ., This integration scheme
produces an element stiffness of a material with a dilatational singularity of

the form

Z €yy == (Vg-Vz)etuals (16)
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The dilatation is bounded if the solution finds VI equal o VJ . Procedure B
produces a stiffness with the singularity (15) embedded due to the integration
stations at tan Y/tan o = 0, + 2/3 . Although the strains were calculated from
the solution on Y = 0 so that a bounded dilatation appears from the solution
if VI = VJ , & singular €y Was integrated into the stiffness. It seems the
use of eq. (15) in constructing the stiffness induced a solution involving both
types of singularity evidenced by the excessive normal stresses and small shear
singularity. If a bounded dilatation is expected, it seems reasonable to con-
clude from these results that integration stations should be chosen so that this

is at least allowed,

Another procedure tested involved four integrations stations at the inter-
sections of s/s* = 1/4, 3/4 and tan ¢/tan o = + 1/2 . Each station is in
the center of one of the four equal size subregions of the transformed & - n
element. The areas of the subregions were used as the weights. The stress state.
at each station was evaluated and stored after each load increment for use in
evaluating the D matrix there. This run was made to test the significance of
the odd dependence of ? on ¢ about the line ¥ = .0 and also to check the
constant D assumption made previously. Mesh I was used and K was increased

to 4,15 Ko in six increments of 0.3 KO and three increments of 0.Uu5 Ko .

The shear strain singularity strength R(6) obtained from this solution is
in excellent agreement with that obtained by Levy et al. [5], fig. 18a. The
displacement solution was such that the difference between the local s com-

ponents of displacement of the two crack tip nodes of a near tip element

U "?U:‘;"Uj
was from 10 to 100 times greater-than the difference between local
components
' an”VJ’
*
in the region 6 > U45° . The stresses presented are those at s/s = 1/b ,
tan ¢/tan e« = + 1/2 . These two inner element states are connected by a straight

line in figs. (18b - g). The shear stress distribution is in reasonably good

agreement with the Prandtl distribution, fig. 18b . There are enormous variations
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s, O, C + 0 + O , about the Prandtl field in the
®x? Tyy’ Txx vy 77
fan region while in the range 6 < U45° +the stresses are larger than the Prandtl

of normal stresses o

prediction, figs. (19¢ - e). The latter behavior was found in procedure B above.
Elasticity prevails in the range 6 > 135° , The deviatoric stresses Sxx’ Syy
are plotted in figs. (18f,g). They agree very well with the Prandtl field in

the fan - a fact which explains how an excellent R(8) solution could accompany

an unrealistic normal stress distribution.

It is easy to see how the large normal stress variation within an element

is possible by looking at the dilatational strain field within an element:

2 Exp = (VT-U" tan¥¥) ciw /s + const (A7)

Since u  was at least ten times greater than v~ the terms v and u tan ¥
are comparable even for the small angle of $ = 3,75° which has a tangent equal
to 0.065., Hence the change in sign of tan ¢ in going from one integration sta-

tion to its image about ¥ = 0 accounts for the large dilatational variation found.

Doing a Mohr's circle rotation of angle -0 from the local strain components

€ to the global components shows how the reasonable R(6) resulted

ss’ “tt’ Vst
in the fan from the displacement solution:

Zny = i(u’ €082 =V sin2g)- (18)
(U"sm2® +V'cos 28) Tan %’} cine /s + const

Coupling the facts that over most of the fan

U~ s>V~
O(cos2®) = 0(smw26)

we can say

2%y = (cos20 - 520 ta )] chue/s (19)

The term sin 20 tan ¢ is obviously negligible compared to cos 20 over most

of the fan hence
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Z\é,yy i Ua C?N e (o8 %@/S (20)

there. The solution found u  approximately even about © = 90° hence the
even distribution of R(8) about this line, fig. 18a. Although the confusing
stress and strain results of this procedure can be easily explained in terms
of the displacement solution it is difficult to rationalize why this procedure

induces an excellent displacement solution.

The most disturbing feature of the five procedures outlined above is the
seemingly strong influence the elastic crack tip stress solution has on the
resulting plastic crack tip stress solution. In an attempt to elucidate this
phenomenon it was decided to use the elastic singularity interpolation function,
eq. (6), to gain the elastic solution and then switch to the isoparametric in-
terpolation function for the plastic increments. With the integration procedure

issue basically unresolved, the procedure A which gave reasonable results with

mesh I except for an erratic R(8) curve was chosen along with mesh II with the
hope that the extra degrees of freedom would correct the R(8) curve. The elas-
tic solution was everywhere within 2% of the exact solution as reported separately
in a recent paper by Tracey [7]. The elastic solution gained from using the dual
singularity interpolation function, eq. (7), procedure A and mesh II appears in
figs. 19 along with the nearly exact elastic solution and that isoparametric solu-
tion using procedure A and mesh I presented earlier. Surprisingly the dual singu-

larity formulation and the isoparametric result, resemble the Prandtl distribution.

In the round bar problem these formulations were similar but they were closer
to the exact elastic than the Prandtl solution; of course the round bar problem

used the integration procedure D .

The elastic-plastic solution was solved by ten plastic increments of 0.1 KO
and then fifteen increments of 0.2 KO so that a total load of K=25.0 Ko was
reached. The resulting near tip stress solution is plotted in figs. (20a,b,c).
The sh ape of the stress distributions resemble the exact elastic distribution
more than the Prandtl; the shear stress is the best evidence of this. The
associated crack tip solution had the peculiar and physically unreasonable fea-

o

ture of a negative UV over the range 0 < 6 < 90° , fig. 20d. This feature

suggests that the coincident crack tip nodes are '"too free'" and perhaps should be
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constrained to the specific relative motion expected from a 1/r shear singu-
larity. This feeling motivated consideration of the previous problem modified

by adding the constraint

Vp = Vg

for each near tip element. This constraint in conjuhction with integration pro-
cedure A disallows a singular dilatation while allowing a singular shear strain
whose strength is proportional to (uI - uJ) . The load was increased to
K=14,1 KO in 31 increments of 0.1 Ko . The crack tip displacement solution
appears in figs. (2la,b). The unreasonable negative uy values at r» = 0
disappear by employing the constraint although the slope of the displacement dis-
tribution is oscillatory in the region 45° < 6 < 133° , This latter effect is
evidenced by the R(6) curve of fig., 2lc. The stress solution, figs. (21d,e,f),
is very close to the Prandtl solution over 0 < 6 < 120°, Elasticity prevails
over 8 > 150° , The region 120° < 8 < 150° resembles a constant state region.
This is the only solution obtained so far which has distinetly different elastic
and plastic stress solutions each of which are reasonable. The one worrisome

detail of this solution is the oscillations in the crack tip displacements.

dwa
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