Translation of
"ISSLEDOVANIYE DHNAMINI ATMOSERRY VENERY S POMOSCH'YU AVTOMATICEESKIKÄ VEZHPLANQANYKH STANTSIY "VENERA-5" i "VENERA-6".

STUDY OF THE DYNAMC OF MEE VENUS ATMOSPHERE USING THE AUTONATIC INTEAPLANETANY STATIONS
 "VENER-5" ara "VENER-6"

V. V. Kerzhanovich, B. N. Anãejev, and V. M. Gotlib

Source:
Doklaãy Akademii Nauk, SSSR.
Vol. 194, No. 2, 1970, pages 288-290

Translated by SCITRAN (Scientific Translation)
P. O. Box 5456, Santa Barbara, Calif.

93103

Prepared for and issued by tine Jet Propulsion Latoratory California Institute of Technology, Pasadena, Calif. Under NASA contract NAS 7-100.

STUDY OF TEZ DYNAVIC OF THE VENUS ATMOSPHERE USING
 THE AUMGATIC INTERPLANETARY STATIONS
 "VミNER-5" and"VENER-6"

V. V. Kerznanovich, B. N. Anảreyev, and V. M. Gotlib
Presented by academician V. A. Kotel'nikov 12 December 1906

During the motion of the landing capsuie (LC) oi the automatic interplanetary stations "VENER-5" and "VENER-6", measurements were made of variations in the radial veiocity of the $L C$ in the atmosphere of Venus. These measurements were used to determine the wind veiocity pulsations. The same methods used auring the landing of "VENER-4" [1] were usea to measure the velocity and to analyze the results.

During the landing by parachute, the velocity of the $L C$ with respect to "VENER-5" wās determined by the wind velocity, atmospheric density, and erodynamic characteristics or the $L C$ and the parachute. The radiai velocity component of the $L C, V_{r}$, was determined as

$$
Y_{r}=Y_{s}^{\prime} \cos \lambda+Y_{r}^{\prime \sin \lambda \cos \lambda, ~}
$$

where λ is the angle between the direction toward the Earth and the local vertical at the landing poins; is is the angle between the
horizontal velocizy component 0 : the LC wa tine projection of the direction towara the Earth on the local hory zontal plane. Eased on the data oi the trajectory measirements, the ancle λ was approximately 2.5° for tine landing point of "VENER-5" ani $V_{r} \approx V_{2}$, and for "VENER-6", $\approx \approx 7^{\circ}$ ard

$$
V_{r} \approx V_{2} \div 0,2 \mathrm{~V} \cdot \cos / 4
$$

As the measurements showed, the velocity of both iC changed smootnly. This made it possible to disregard the inertia of the LCparachute system, and to assumc that at any moment of time we have

$$
\Delta V_{\Delta}=W_{\Delta} ; \quad \Delta Y_{r}=V_{r}^{\prime}
$$

where $H_{n}, W_{r}, \Delta J_{n}, M_{r}$ are the vertical ard horizontal velocity components of the wind W and the veiocity variation of LC under the influence of the wind ΔV. In view O the smallness of angies λ for both LC, the quantity V_{r} has no significant influence on the radial velocity. Therefore, furiner estimates pertain only to the vertical velocity component of the wind.

Variations in the radial velocity were measured by a noninterrogating Doppler method. Based on data from studies performed under terrestrial conditions and during the - -ight of the interplanetary stations, the naturai frequency fluctuations of the master LC oscillators for the carrier did not exceed one Hertz, which when we convertec to racial velocity - comprises approximately $0.32 \mathrm{~m} / \mathrm{sec}$. When the measurements were analyzed, allowance was made for the regular drjif of the oscillator frequency. This drift was caused by an increase in the temperature within the LC during the landing.

Aiter narrow-bari filtration, the signai was slipplied to the measurement circuit for the Doppler irequency; Whose measurement units operated in a frequency measuremeni regine (regine I) and in a period
measurement neđ̈me (regime II). The meaubloment crarasteribitica are Given in pabie 1 . rine errors are given as converted to raiial velocity.

Figure i. Puisations of the vertical wind velocity during the landing of "VEAER-5" and "VENER-6".

To determine the wind veiocity from the radial velocity values obtainea, calculations were made of ail the known quantities connected with the motion of Venus and the Earth, as well as tre radial velocity component of the parachute, calchiated from telemetry measurements of pressure and temperature in the asmosphere of Venus.

Figure 1 presents the results derived from determining the pulsations of the vertical wind velocity component during the motion of tre landing capsules of "VENER-5" anc "VENER-6", which were obtained iy averaging the measurements in a onv-minute interval. The plisation velocity $W^{\prime}=\bar{W}-W_{0}$ is plotted along the ordinate axis, where "ु is the average vertical wind velocity component in oneminute; W_{0} is the possibse velocity of the vertical flow, which is constant throusinout the entire ianding or the LC. The mean square measurement error during one-minute averaging was primarily determined by the brief frequency fluctuations of the master operators, and was approximateiy 0.2 m/sec.

「AZ以こ ニ。

negime I Regime II

Measurenent tirie，seconds
Averaging time，seconds
Recording discreteness error， $\mathrm{m} / \mathrm{sec}$
Maximum fluctuation error， $\mathrm{m} / \mathrm{sec}$

1.8	0.8
1.0	0.4
0.32	0.002
0.2	0.3

These data as well as the results of an analysis with a smaller averaging period show that the maximum pulsation of the vertical wind velocity were within the limits of measurement errors through－ out ．．ene entire landing of both $I C$ and did not exceed $0.3-0.5 \mathrm{~m} /$ sec．There were no changes in the velocity of the vertical flow， and its gradient did not exceed $0.02 \mathrm{~m} / \mathrm{sec} \cdot \mathrm{km}$ ．

The method employed made it possible to record the pulsations lasting several seconds and more，which corresponds to a spatial turbulence scale of more than $20-100 \mathrm{~m}$ ．Assuming that the turbu－ lence was approximately isotropic，we arrived at a majorant estimate of the horizontal component pulsations on the order $0.3-0.5 \mathrm{~m} / \mathrm{sec}$ ．

Using the magnitude of the puisations，we can make an indirect estimate of the norizontal wind velocity．Since the temperature stratification in the atmosphere of venus is close to being neutral ［2］，we may expect that the relative intensity of turbulence is at least on the same order of magnitude as in the atmosphere of the Earth（0．1－0．02 according to［3］，while the value 0.1 pertains to the wind velocities up to $5-6 \mathrm{~m} / \mathrm{sec}$ ．In this case，we obtain the majorant estimate $0-(3-25) \mathrm{m} / \mathrm{sec}$ ，for the horizontal wind velocity，and the smailer values are more probable．These estimates are of the same order of magnitude as data derived from direct measurements of the horizontal wind veiocity obtained on the last 18－20 km of the landing of＂VENER－4＂，and do not contradict the theoretical estimate of the characteristic wind velocity in the atmosphere of Venus given in i4］．The larger values of wind velocity
 related to the difierence in metcorologicai conätions, au vell as to the oreat distance from the lancitio point.

REFERENCES

1. Kerzanovicin, V. V., V. Vi. Gotlio, et al. Kosmicheskiý Issledovaniya, Vol. 7, No. 4, 1969.
2. Avauyevskiy, V. S., M. Ya. Varov, V_{1}. K. Rozhdestvenskiy. Kosmicheskiye issleciovaniya, Vol. 7, No. 2, 196 E.
3. Vinṅchenko, N. K., ana N. Z. こ̇nus et al. Turbulentnost'v svoboanoy athosifere (Muroulerce in a Free Atmosphere). Leningrać, i908.
4. Golitsyn, G. S. Doklady Akaçemii Nauk, Vol. 190, No. 2, 1970.
