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THE CONTROL OF NONLINEAR STOCHASTIC CONTROL SYSTEMS
UNDER DISCOUNTED PERFORMANCE CRITERIA

ABSTRACT

This study is concerned with the optimal control of discrete
time nonlinear stochastic control systems under discounted performance
criteria. The dynamic equations, noise statistics, and stage cost are
all time invariant. The discounted performance criteria apply when
the present cost is weighted more heavily than future costs.

Systems of this type have classically been viewed as finite
Markov chains. Howard's policy iteration and dynamic programming,
the two basic methods of solution, are developed and discussed. Their
successful application rests heavily upon the state space of the fi-
nite Markov chain being small. This study, however, investigates
systems whose state is definad on the continuum. A grid is imposed
on the state space, creating a finite state space which is very large.
A numerical algorithm tailored to attack this problem is developed.
The state space is partitioned into blocks, and the stationary cost
function over each block is approximated with a quadratic surface.
The algorithm then employs the dynamic programming functional egqua-
tion iteratively to converge to the optimum control and cost functions.
Several example problems are worked, including an inventory control
problem and a nuclear reactor cooling problem. Both the high-speed
memory requirement and computation time necessary for conventional
dynamic programming are significantly reduced by the new algorithm.

viii



CHAPTER 1
INTRODUCT ION

l.1 The Problem

Often the state or position of a system can be
observed perfectly but the behavior of the system is subject
to uncertainty. Considerable effort has been expended in
recent years to develop means of controlling such systems,
which arise in many engineering and economic applications.

These systems can be explicitly defined by the

dynamic transition equation

x(k+1) = g{x(x), alk), k), k], x =0,1, ..., N " (1.1)

where,

k = time parameter

N = terminal time, which may be infinite

X = n-dimensional state vector

o = q—diﬁensional control vector

g = n-dimensional vector function

{ = r-dimensional random variable with known

probability distribution.

The objective is then to influence the evolution of thé
state x(k) with the control a(k) in such a fashion as to
minimize some criterion of system performance. The general
form of the performance criterion is

1l



performance criterion = E x(0)

™M=

z(x(k), alk), k)

k=0

(1.2)

where £ is a scalar function. This problem is called the
stbchastic control problem. It should be distinguished from
the problem of combined estimation and control studied by
Feldbaum (1960), Meier (1966), Aoki (1967), and others. The
combined estimation and control problem allows the con-
sideration of uncertainty of the system's.present state as
well as uncertainty in the system dynamics.

It has been established (Dreyfus, 1962; Kashyap,
1966) that the optimum control strategy for the stochastic
control problem is pure (i.e., deterministic) and depends
only on the present state of the system. Thus, the solution
to the stochastic control problem is a controller which upon
being informed of the state x(k) at time k generates the
control a(k) to be applied. Control of this nature is
called feedback control and the structure of the control
system is illustrated in Figure 1.1. The controller is a

function, u which maps the state x(k) into the control

kl

a(k). It is the control function u, which is sought.

This study considers a more specific problem, the

control of a time invariant system under a discounted

performance criterion. The system dynamics are described by

1 ... (1.3)

1

x(k+1) = g(x(k), a(k), C(x)], k =0



System
dynamics x(k+1)
- Delay
g(x,u,C, k)
Controller
(/
uk(x(kﬂ

Figure 1.1 Stochastic control system’



B

where the function g is time independent. The performance

criterion becomes

(-]
performance criterion = E 3 z Bkz(x(k), a(k)}
k :

X(O)i
=0

(1.4)

where 4 is a time independent scalar function and the dis-
count factor B is a constant, 0 < B < 1. The time span is
infinite. Under these conditions it will be shown that both

the control function, u and the k-stage cost Vi (2.6)

Kk’
become stationary as k > «. These properties are essential
to the numerical techniques developed in this study.

The stochastic control problem described by (1.1)
and (1.2) was first examined by Bellman (1958, 1961). The
dynamic programming functional equation was generated by
Bellman's work. It presented a means of numerical solution
even though no general analytical solution resulted. A
substantial research effort was directed at the stationary
stochastic control problem of (1.3) and (1.4) with the
additional constraint that the state space be finite.
Howard (1960) presented his algorithm upon which most
subsequent work was based. Blackwell (1962, 1965), Derman
(1964), Wonham (1967), Miller and Veinott (1969), and
Veinott (1969) considered extensions of the problems
attacked by Howard and generated many exiséence theorems

for optimal control. Miller (1968a, 1968b) considered the

finite state space stochastic control problem with
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continuous time. Martin (1967) and Riordon (1969) obtained
a solution for the adaptive stochastic control problem where
the probabilistic description of the random variable ( is
unﬁnown. However, work subsequent to Bellman and Howard
relied on either dynamic programming or Howard's algorithm.
Thus, from a practical point of view all subsequent work
also shared the numerical difficulties these techniques
possessed. In particular, Bellman's “curse of dimen-
sionality" severely limited the problems for whiqh a
numerical solution could be achieved.

In this study a dynamic programming algorithm is
presented to alleviate the problem of dimensionality by
using quadratic approximation to the cost surface in a
partitioned state space. The main contribution is this
workable algorithm whose utility is demonstrated in several

exXamples.

1.2 Organization

The second chapter discusses the control of finite
Markov chains. Optimality is defined explicitly and
behavior of the cost function under stationary and non-
stationary control policies is considered, including thé
limiting case of B = 1. Dynamic programming and Howard's
policy iteration are shown to result in an optimal control.

In Chapter 3 practical, numerical problems asso-

ciated with solving the stochastic control problem for a



continuous state space are considered. The numerical
limitations of Howard's policy iteration and conventional
dynamic programming are revealed. The algorithm which is
the basic result of this work is developed. It is shown to
dramatically reduce high-speed storage necessary and also to
reduce computation time in comparison to Howard's and
Bellman's techniques. The algorithm is then applied to
several example problems in Chapter 4 including an inventory
control problem and a nuclear reactor cooling problem.
Chapter 5 contains conclusions and suggestions for further
research. Appendices follow which contain program listings

of the numerical algorithms used in this study.

1.3 Notation and Symbols

x,0 = random variable

t, X = state variable

X = state space
f,g = transition functions

p..(°) = transition probability

P(-) = stochastic matrix
L. = a priori probability
M = a priori probability vector
a = contro; action
A = set of all at's
u = control function

U = set of all control functions



control law for all time
stationary control law

cost vector

scalar cost function
quadratic approximation to v
stage cost vector

scalar stage cost

state space partition or block



CHAPTER 2
THE CONTROL OF FINITE MARKOV CHAINS

2.1 Introduction

A meaningful analytical examination of the stochas-
tic control problem is found in considering the control of
finite Markov chains. The systems to be controlled are
stochastic in that the evolution of the system state under
a given control policy is uncertain: however, a khowledge of
the current stateoand control action determine the proba-
bility distribution of the next state. The dynamic system,
for analytical tractability is also considered to be
described adequately by a finite number of states. A finite
Markov chain representation follows naturally. Dynamic
plant equations and plant noise are modeled by a set of
transition probabilities over a finite state space. Each
control law is associated with a set of transition proba-
bilities, and a cost function is defined. It is found that
the cost function may be minimized by either dynamic pro-
gramming or Howard's policy iteration. This chapter
examines both these methods and the properties of the cost

function under various control laws.



2.2 Pinite Markov Chains

Let (Q, ¥, Prob) be a probability triple with  the
set of elementary events, w;Gr, the o-algebra of subsets of
Q) and Prob the probability measure on¥. The finite set of

" real numbers, X = {lx, 2%, ... Ix} is called the state

7

space and constitutes the range of the random variable X

mapping {} onto X. A stochastic process is a sequence
5'='{§n|n =0,1, 2, ...}
of random variables.

The stochastic process X is said to be a Markov

chain if for

E eJ with E_ = {w!x (w) = *x, *xex},
n n <n

14

Prob [E_[ENENE, ... NE_ ] = Prob [E |E ],

whenever Prob [EE,NE, ... nEn-l] # 0. That is,

i a b i
Prob [x = "x|x,="%x, 3, = "%, oo, X, 1 = %]
: i i
= = = A p. .
= Prob [x = "x|x . x] A plj(n),

where the pij(n) are the transition probabilities defining
the chain. The transition (stochastic) matrix for the
chain is

1

P(n) = [p; (] n=o0
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The transition probabilities are related by the Chapman-

Kolmogorov equation

pij(m,n) = ,T) pkj(r,n), m<r<n (2.1)

My

k
where

' A = J _ 1
pij(m,n) 8 Prob [5n = “X|x = x)

A chain is said to be homogéneous if
P(n) = P = constant
Then
P(0,n) = [p;4(0,m)] = p",

Let pj(n) = Prob [gn = Jx] be the a priori probability that

the chain is at state ix at time n, and let

u(n) = (ul(n), een, Hy(n)
be the row vector of all a priori probabilities at time n,
then

un) = p(0)P(0,n)

and, for homogeneous chains, a simplified transition equa-

\

tion can be used,

pu(n) = u(o)p™.

The states are classified as

. .

(a) Jx is persistent if Prob [5n = Ix for some nl = 1,
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(b) Jx is transient if Prob [5n = Ix for some n] < 1,

(c) Ix is aperiodic if the greatest common divisor of
the set of all n such that pjj(n) > 0 is one, i.e.,
g.c.d. {n p..(n) >0} =1,
i3
and
(a) Ix is ergodic if it is persistent and aperiodic (for

finite chains).

A chain is said to be ergodic if all states are
ergodic. Examples of state classification are given in
Figure 2.1, where the transition probabilities aré répre—
sented by arrows.

The following theorem will be useful in exXamining

the stationary control of finite Markov chains.

Theorem 1l: For a finite homogeneous ergodic Markov chain
with transition matrix P, there exists a unique stationary

probability distribution {, and
pij(n)%> He: as n —> « geometrically fast.

Or in matrix form,

P" — 1u = (Mg, Hy, ---, Hy) geometrically

P s o f

fast (Doob, 1953, Ch. 5 §2). Thus,

u(n) = p(0)P” — p(o)iu,



1/2
1/2 1/2
1/2
(a)
1/2
1/2 ! 2 1
(b)
1
1
(c)
Figure 2.1 Finite Markov chains -- (a) ergodic chains: (b)

non-ergodic chain, State 1 is transient, and
State 2 is persistents (c) non-ergodic chain,
States 1 and 2 are persistent but chain is not
aperiodic.

12
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or

p{n) — g as n — o,

and

M o= uP,

2.3 Controlled Finite Markov Chains

The dynamic system to be controlled has a finite

state space

and is observed periodically (at every discrete time period).
At each time period a control, a, which influences the
behavior of the system is applied from a set of possible
controls A, As a result of the application of the control
akeA with the system in state xkeX at time k there is a time

independent,
(1) stage cost 0 < Z(Xk,ak) < o incurred, and

(2) transition of the system from x at time t = k to

Xk+1€X at time t = k41 with

pij(ak) = Prob [x, ., = Jxlxk = 'x, a, J.

There is also a discount factor, B, 0 < B < 1; whereby, the
cost £(x,a) for being in state X and applying a control a
n periods into the future has a discounted cost of an(x,u)

at the present.
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Let U denote the set of control functions u from X
into A [i.e., ueU implies u(x)eAhfor all xeX]., A policy, m,
specifies a sequence of control functions for all time; .
T = {uo, u;, ...}. Thus, at time k, with the system in
state Xy the control ukeA'is applied. A stationary policy
is a policy for which u, =u, n= 0, 1, «o., i.e.,
m={u, u ...} 2" .

[z(lx, u(lx)], ceo, 4 J

Let L{u) X, u(Ix) ]T

[o) (), 2,(u), ..., fo(w]"

n

be the column vector representation of the stage cost for
all states under the control ueU. Let P(u) be the J x J
Markov transition matrix for the control u in the Markov

chain established by the policy .
P(u) = [p, 4(w)] (2.2)

Thus, by the Chapman-Kolmogorov equation, the transition

matrix from time £t = 0 to t = n is

P(n,m) P(uo) P(ul) ee. Plu).

For the policy m and the initial state X, the total expected

0

cost vector is

vim = [va,m, v(2,m, ..., v(g,m)*

where

v(i,m) = E z _an(gn, un(gn))

x = Tx, n§ (2.3)
X0
n=0 ‘
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or

Zi(uo) + BE ;Zﬁn—l(gn, u_(x ))‘x = ix, nf

il n-1 i
Zi(uo) + BE E) nzl B z(zn, u (xn)) glzlgo = "X, ﬂ§

Li(uo) + BE

where T = {ul, u,, I
Thus, the important functional equation of dynamic pro-

gramming results,

J
v(ii, m) = zi(ub) + szl pij(uO)V(j' ), (2.4)

or, in vector form,

’

v()

L(uo) + BP(uO)V(ﬁ)

£ 8"P(n,mML(u ), P°(m) = I.
n=0

It is desired, if possible, to obtain a policy m*

with the lowest cost,
v(n*) < v(m) for all m
where < means v(i,m*) < v(i,nm) for all mand i =1, ..., J.

Such a policy m* is defined as optimal.

2.4 Effect of General Policies

The theorems in this section are due to Blackwell

(1962) and Howard (1960) and cast light on the classes of
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policies that are profitable to be studied. The proofs
which follow Blackwell almost verbatim are included for the
insight they provide into the behavior of the expected cost
function, V(m), under different types of policies. Theorenm
2 establishes that if any optimal policy exists then there
is a stationary policy equally as good. Theorems 3 and 4
are used to obtain Theorem 5 which assures the existence of
an optimal stationary policy for A finite and also a means

of obtaining this optimal policy.

Lemma. There exists a feU such that for an arbitrary

T
V = (vl, Vo, eee, V ) v, 2 0 and any ueU

L(£f) + BP(£)V < L(u) + BP(u)Vv.

Proof. Consider the ith element

Let, @i}aj = 4(*x,0) + B T pij(a)vj for any aeA., Since
3

v, >0, @i(a) > 0. Thus, the set {@i(a)laeA} has a lower
bound of zero and hence a greatest lower bound for say aieA.

The control function f such that f(lx) = ai satisfies the

lemma.

Theorem 2 (Blackwell) If there is an optimal policy

T = {uo, u,, ...}, there is an optimal policy which is

ll

stationary.



Proof. By hypothesis,
v(n*) < v(m) for all .

v(m#*) = L(uo) + BP(uO)V(Trl),

where T, = {ul, Uy, ...

Also, V(m*) §,V(ﬂl),

thus, V(m*) z_L(uO) + BP(uO)V(n*).

By the lemma, there exists a feU such thgt
V(n*) > L(£) + BP(£)V(m*),

and, again,

v(m*) > L(£) + BP(£)[L(uy) + BP(uO)V(ﬂl)],
> L(£) + BP(£)[L(ugy) + BP(uy)V(m*)]
> L(£) + BP(E)[L(£) + BP(£)V(m=*)]
> L(£) + BP(EIL(£) + BZP(£IV(m+).

By continuing this process,

n--1
vimx) > 5 gPPM(EIL(£) + 8NP (£)V(mE).
n=0

As N — o, BUPN(£)V(m*) —> 0 since B < 1 and P (£) is
stochastic matrix.

Thus, as N — o

v(m*) > V(£")

17
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but since m* is optimal
v(m*) = V(£")

and £ is an optimal stationary policy.

Theorem 3 (Blackwell) Let 7 = {uo, u,, ...} and

1
Tr' = {f’ uo' ul, -~o}o If

v(m) < v(m') for all feU,

then 1 is optimal.

Proof. By hypothesis,

L(£f) + BRP(£)V(T) > V(m) £for all feu
Or, in particular,

L(fN) + BP(£)V(m) > V(m) for all £eU

L(f 4) + BP(£fy )V(m) > V(m) for all £, ,¢eU

L(£;) + BP(£,)V(m) > V(m) for all f,eU

Thus,

L(fl)‘+ BP(£,)[L(£,) + BR(£,)V(m) ] > v(m),

or

2
L(f;) + BPffl)L(fz) + BTP(£)P(£,)v(m) > vim).

Continuing this substitution process for the policy

= {fl, £y, +oe, £, 0

N~/ ll “°}
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LOf,) + BP(£)L(£,) + ... + BV 'R(£)P(£,) ...
N
P(fN_l)L(fN) + B P(fl) coe P(fN)V(ﬂ) > v{m),

or

v(mt) > v(m).
Again as N —> =, BVB(£,)P(£,) ... P(£)V(m) — 0.

Each £y is an arbitrary element of U; thus as N — « v(mn)

becomes the cost of any policy. That is
V(m) < V(fi) for any fi.

Thus ™ is optimal.-

Theorem 4 (Blackwell) Let mw = {u ..} and m' =

ol ull

{f, Ug, Uy, eee}. If V() < v(m), then for the stationary

policy £, V(£7) < V(m). (< means < for all elements with <

for some element.)

Proof. By hypothesis,

L(f) + BP(£)V(m) < v(m),

L(£) + BP(£)[L(£) + BP(£)V(mM)] < v(m),
thus,

L(£) + BP(E)L(E) + g2P2(£)V(m) < v(m).
Continuing thié.substitution process,

N-1
s g"p™(E)L(£) + BYPN(£)V(m) < v(m).
n=0
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Once again, as N —> « BNPN(f)V(ﬂ) —> 0, and

14

V(£®) = = gUP™MEIL(E) < v(m),
n=0

completing the proof.

Theorem 5 (Howard) If A is finite, then there is an optimal

stationary policy.
Proof. Consider any stationary policy gm, then either

(a? 2(*x, @) + B?Pij(ai)v(j, g”) > vii, g7)

for all aieA

or
(b) 2(7x, a;) + B§pij(ai)v(j, g”) < vii, g7)

for some aieA

and some i

If (a) holds, then for any feU, £(1x) = a;, the policy

mt = (£, g, g, ...) is more costly than the stationary
. o .

policy g , i.e.,

v(g”) < v(me)

and by Theorem 3 g°° is optimal. On the other hand, if g°°
is not optimal, i.e., there is some i for which (b) holds,
then a new control function, u, is defined such that for

all i,
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g(ix), for case (a)
u(ix) =

’

a, for case (b).

Then by the construction of u, for the policy m, =

{ul gl gl "'}

V(ﬂu) < Vv(g)

By Theorem 4,
vu®) < vig™).

Thus, we have a policy, um, which improves upon gm. Since A
is finite, there are only a finite number of stationary
policies. Thus, there is one which has no improvement and
is optimal.

The motivation for restricting the class of control
laws studied to those that are stationary is contained in
Theorem 2: it is seen that any optimal policy may be
replaced by a stationary optimal policy. Theorem 5 lays
the basis for a constructive method of finding this optimal
stationary policy, Howard's iteration in policy space. 1In
the next section this procedure is explained. The set of
admissible control policies is taken to be stationary: thus,
for notational convenience the policy u” = {u, u, ...} and
the control function ueU are considered to be equivalent,

and V(u) = v(u®).
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2.5 Howard's Policy Iteration for 0 < B < 1

Before the method of policy improvement contained
in the proof of Theorem 5 can be applied, there must be a
means of obtaining the expected cost vector, V(u), for any

uelU. Consider any stationary policy, u, over n stages, then

let,
v_ (i, u) 4 E g Bkz(gk, u(§k))‘§o = ix$
k=0 (2.5)
ok i
= 4;(u) + BE{E B o[z u(xk))‘§l§ %o = xg
Vn(i' u) = zi(u) + ngij(U)Vn—l(j' u). (2.6)
or in matrix form
Vn(u) = L(u) + BP(u)Vn_l(u)
= L(u) + BP(WL(u) + ... + 8P (u)L (u) (2.7)

The stage cost function 4|%x, u(lx)) is bounded for all i by

definition. Let this bound be M, Then

Vo (u) <ML+ BP(WML + ... + BTP(u)MI

1=1(1,1, ..., 1T

Vo(u) (1 + B+ ... +B8M
< —E;-l for allvO < B <1
-8 =
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It is apparent that the sequence

vo(i, u), vz(i, u), ..., Vn(i, u), ...

is monotonically increasing for all i. Since vn(i, u) is

bounded, it follows that the limit exists.

Say, lim v (i, u) = v(i, u).
n— o :
This limit is
© n i
v(i, u) = E kEO B E(gn, u(gn)}izo = xf ,

or the total excepted cost of applying the policy ueU from
(2.3).

Again taking the limit as n —> « from (2.6),

v(i, u) = Zi(u) + B T pij(u)v(j, u), (2.?)
or

V(u) = L(u) + BP(u)v(u) (2.9)
Thus,

[1 - BP(u)]V(u) = L(u),
and

Viu) = [T - gP(w) ] L(w), (2.10)

if the inverse exists.
To establish the existence of the inverse, consider
an arbitrary stochastic matrix P. [I - BP]—l exists if and

only if det[I - BP] # 0, or det[AI - P)] # O where
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=1
= 5

eigenvalues are of magnitude equal to or less than one.

A B #£ O. .However, for a stochastic matrix P all
Thus, det[ki - P] =0only if X <1, but 0 < B < 1 implies
A > 1. Therefore, det[AI - P] # 0, or equivalently
det[T -~ BP]"l # 0, and the inverse exists.
Another useful result follows immediately. For a
fixed‘policy ueU the cost V(u) is a continuous function of

8. Consider

v(w = [T - gp(w) 17 L(u).

It is apparent that the elements of the inverse are rational
functions of B with no singularities for 0 < g < 1. Thus,
v{(i, u) is a continuous function of B.

¥

Howard's policy iteration is a two-step iterative

F

process as follows:

(1) for a given stationary policy uecU determine

V(u) = [T - BP(u)]"lL(u),

and go to step 2 with V

v(u):
(2) for the cost function V = (Vl' Vo, see, vj)T select

ueU such that u(’x)eA minimizes

£ ix, u(ix)) + BZ pij(u(ix))vj, i=1, ..., J

and repeat step 1.

The process is terminated when step 2 yields no

further improvement. The resulting u is the optimal
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stationary policy by Theorem 4 for a finite control set A.
The last V generated by the process is the total expected
cost vector for the optimal policy u. The policy iteration
procedure can be started at either step 1 or step 2. 1If
thére is no convenient policy to assume for initiating the
process, that is, if there is no policy suspected to be near
the optimum, then it is attractive to let V = 0 initially.
This results in the first policy iteration improving upon
the stage cost--a reasonable procedure if no additional

knowledge is available about the optimum.

2.6 Direct Dynamic Programming

An alternative to considering the infinite duration
process with a stationary control just solved by policy
iteration is to examine a finite duration process. An
optimal control sequence whiCh minimizes the expected cost
over n time periods is sought. The conventional dynamic
.programming functional equation results, and taking the
limit as n —> « the same control is obtained as by policy

iteration. Consider,
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.y A .
vn(l) b . umln ] gEg L B z(xk u (Xk))
0771 °°° "n

+ Bn+1®(xn+l)l Xy = ix}}

= min ’Li(uo) + B?Z P; 5 (u,) min 2zjl(ul) + oo

.0
3y i u,

J
ee. + min g (u ) + B £ p. . (un)®( n+lx)€£...€
’ jn+l1 J nin+l

v (i) = min ;zf(uo) + B Z p,

1500V () z , (2.11)
0 J ‘

where 0 < v_,{(i) = ®(*x) < M is an arbitrary terminal cost,

i=1, ..., Jd. As before, the set of cost functions

{Vo(i), Vl(i), cee, Vn(i)} is bounded for all i =1, ..., Jd
since
. n+l M

where M = max £(*x,a).
i,aeA
Let v .(*x) = M/1-8 for i = 1, ..., J; for this terminal

-1

cost Vn(i) decreases monotonically. To show this, observe .

that

voli) =v (i) for all i.
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Now assume
voli) < v (i) for all i,
and show

Vo4 (i) £ v (i) for -all i.

v (1) = min gzi(u) + B ? pij(u)vn_l(j)$
= zi(u*) + B § pij(u*) vn_l(j), say.
vn+l(i) = min zi(u) + B ? pij(u) vn(j)%

IA

zi(u*) + B ? pij(u*) v (3)

(3)

= Ei(u*) + B ; pij(u*) Vo1

J

Thus v _.,(i) <v (i), and v (i) is seen to decrease
monotonically. Again, since the sequence {vo(i), v, (i),
...} is monotonically decreasing and bounded below by zero,
it has a limit as n — », say, v(i). Taking this limit in

(2.11)

i . ) .
v(i~x) = m;n bi(u) + B ? pij(u) v(j)}. (2.12)

Thus, (2.12) defines the expected cost function for an
optimal policy over an infinite duration. Furthermore, it
can be established that the solution to the equation is

unique. Assume to the contrary that two solutions, v(i)
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and y(i) exist with associated control functions u and s.

Then

v(i) = zi(u) + B ? pij(u) v(j),

y(i) f'zi(u) + B ? pij(u) v(j).

Subtracting yields,

[y(i) - v(i)] < B Epystu) [y(3) - v(3)].
J

By successive substitution,

[y(i) - v(i)] < 8% T p..(n,w) [y(3) - v(§)1.

Taking the limit as n — =,
y(i) - v(i) < 0 for all i.
By a symmetrical argument,
y(i) - v(i) > 0 for all i.
Thus,

y(i) = v(i),

T to (2.12) is seen to

and the solution V = |[v(1), ..., V(J))
be unique. Also, by letting n — « the control which results
from dynamic programming is optimal for the original cost

function (2.3), since
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v(i)

i

min {4, (u) + 8 T py (u) v(3)
u J

= zi(u*) + B ? pij(u) v(j), say.

’

There exists no geU such that,

Zi(g) + B ? pij(g) v(j) g.zi(u*) + B ? pij(u*) v(j).

It is seen that the solution to (2.12) is the same as the
solution of Howard's policy iteration procedure. Thus, the

solution of the dynamic programming iterative equation

Vn = min Ll(%) + BP(u) Vn

-1
as n —> » yields the same cost function as does policy
iteration. It is also apparent that, if the limiting
control function resulting from dynamic programming is used
as a stationary policy, then this policy is the same as the
one resulting from policy iteration.

One important question still remains unanswered.

What is the rate of convergence of the dynamic programming

solution to the stationary optimum? As before, the sequence
Vo(l), Vl(l), V2(1) cee

decreases monotonically to v(i), where



i) = mi L. . j
v(i) mtn % 1(u) + B ? plj(u) v(g)}
= zi(u%) + B ? pij(u*) v(j).
vn(i) = min zi(u) + B ? pij(u) vn_l(j)i

< Li(u*) + B ? pij(u*) v

(3).

n-1

v (i) - v(i) < B ;; pyu*) [vy 1(3) = v(i)]

1 )

e A Max {vn(i) - v(i)} > 0,

30

(2.13)

The maximum deviation of Vn from V thus decreases at

a rate of at least B. Practical experience (Beckman, 1968)

shows that this estimate of the rate of improvement is quite

close. It is seen that for B less than about .7 the rate of

convergence is very rapid.

The maximum error, € is, of course, impossible to

nl s

obtain during the dynamic programming algorithm since the

final cost V is unknown. A bound on en can however be

found.
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Let

6 = max {v
n - n
i

l(i) - vn(i)} >0

As before, for

v (i) = £i(u*) + B ? pij(u*) v

(3),

n-1

vo_1 (1) 2 2. (u*) + B X pyilu*) v

2 Py SN

Thus,

vn_l(i) -v (i) =B % pij(u*) [vn_l(j) - vn_z(j)],

J

and.

b =B Opae
However,

en = 6n+l + 6n+2 e

2
<8 [+ 8" +...]

or

e <5 b (2.14)

n— n 1-B °

Thus the error € is bounded by the observable stage differ-
ence, 5n. The dynamic programming algorithm can be termi-

nated when én gets sufficiently small.
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2.7 Howard's Policy Iteration for B = 1

The control of finite Markov chains with B =1
(i.e., no discounting) is somewhat more difficult to examine
than the discounted cost chains. It is convenient to assume
not only a finite set of stationary control laws, but also
to restrict A such that for any ueU the resulting Markov
chain is ergodic. Before defining what optimal control
means for the undiscounted costs, the behavior of the cost
function is examined.

Let

’

vn(i,u) = E

kgo z(gk, u(gk))l Xy = ix% (2.15)

be the undiscounted expected cost function for the

stationary policy, u, applied to n stages. Then, as before,

v (iu) = ﬁi(u) + ? pij(u) vn_l(j,u) (2.16)

with
V__l(l) =0,
or

vn(i,u) = Ei(u) + ? pij(u) Ej(u) I

+ ?.pij(n'U) Zj(u)
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In matrix form

Vn(u) (u)

i

L(u) + Plu) vV .

L(u) + P(u) L(u) + ... + P%(u) L(u) (2.17)

By Theorem 1,
n
P (u) = 1p + @ (u)

where Qn(u) —> 0 as n —> =, geometrically fast.

Consider,

n
#im n”'V_(u) = fim n™" £ P™(u) L(u), if the limit exists,
n>w nso m=0

-1 2 1 o
= 4im n Y 1y L) + 2im n~ = Qm(u) L(u)
n>o m=0 n>-w m=0

However,

£im n"l z Qm(u) L(u) = 0 since Zim Qn(u) = 0.
n>-w ’ n>c

Thus,
. -1, ‘
2im n” V (u) = [pn(w 11
and for large n,

V. (n) ~ nluL(u)]1 + constant
V (u) ~ nglu)l + w(u), say. (2.18)

The scalar g(u) = pL(u) is the stationary average

cost of the policy u, and the vector W(u) is called the
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potential of the policy. Also, a n-stage potential Wn(u)

can be defined as,

n
Wn(u) = I Qm(u) L(u) (2.19)
m=0
so that
V_(u) = ng(wl + W_(u). (2.20)
Thus,
Lim Wn(u) = W(u),
n>-w

and substituting (2.17) into (2.20),

ng(u)l + W_(u) = L(u) + P(u) [(n-1)g(u)1l + Wn_l(u)],
or
Wn(u) + g(u)l = L(u) + P(u) Wn_l(u),
with W_j (u) = 0.
In the limit as n —> o,
W(u) + g(u)l = L(u) + P(u) W(u) (2.21)

A stationary policy u*eU is said to be optimal if
g(u*) < g(u) for all ueU.

That is, the optimal policy for B = 1 is the one which
accrues fhe least average cost.
The question arises, does (2.21) determine g(u) and

W(u) uniquely? To answer this, consider two solutions, W,g



35

and Y,a for the same policy u. Equation (2.21) immediately

yields,

W-Y + (g-a)l = P(u)[w-v]
or

Z =P(ulz + C
where

C = (a-g)l, Z2 = W-Y.
Thus,

Z = nC + P(u)"2
—> nC 4+ 1y as n —> o,

However, the elements of Z are bounded as n —> «, thus C = 0
and g = a. Therefore, the stationary average cost is

determined uniquely by (2.21). Now, with C = 0, in the

’

limit as n — o,

I MQ

Z = 1uz, }Jj = 1 with L.lj > 0,

j=1

The only solution to this equation is

Zi = constant.

Therefore, the potential, W(u), for a given policy, ueU, is
determined up to an additive constant by (2.21).
Howard's policy iteration for undiscounted cost may
now be specified as follows:
1. For a given stationary policy, ueU, determine gf(u)

and W(u) from
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W(u) + g(u)l = L(u) + P(u) wW(u)
and go to step (2) with W = W(u),
2. For the potential function, W, select u such that
u(ix) minimizes

L(lx,u(lx) + ; pij(u)Wj i=1,2, ..., J

and repeat step (1).
Again, the process is terminated when there is no further
improvement in g(u), or equivalently when the policy u
ceases to change in step 2. To show that the policy itera-
tion indeed yields an optimum stationary policy, consider

any policy ueU, then

W(i,u) + g(u) = zi(u) + Z pij(u) W(j,u) (2.22)
J

A new policy, UeU is generated by minimizing the right hand
side of (2.22). It is apparent that the additive constant

in W as determined in (2.22) does not affect 4. Now,

W(i,4) + g(d) = zi(ﬁ) + ? pij(ﬁ) Wi(j,4),

where

W(i,u) + glu) > Zi(ﬁ) + ? pij(ﬁ) W(5,u),

and > applies for some i.

Thus,

W(i,u) - W(i,4) + glu) - g(d) > = pij(ﬁ) [W(j,u) = W(j,0)]
J (2.23)
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Recalling that for the stationary probability distribution,
g, associated with 1,

J
k=1 ¥ 13 J

and multiplying, (2.23) by My and summing yields,

-

T ai[wu',u) - W(i,8)] + glu) - gld) > ¢ aj[w(j,u) - W(§,4)]
i J

or

glu) - g(d) >0

Therefore, g(u) < g(u) and the policy, U, generated by
policy iteration is superior to u, the policy which
preceded it. Since there are only a finite number of
policies eventually there occurs a policy which can not be
improved upon in step (2). This policy is the optimal

policy.

2.8 The Optimal Control as § —> 1

The question arises whether the optimal control for
B <1 but sufficiently close to one is the same as the
control for B = 1. The answer rests in the continuity of
the cost surfaces with respect to B:; however, the mathe-
matical structure necessary to examine the question is
extensive so the result is stated. The control is indeed
the same for B = 1 and B < 1 but close to one. That is, the

optimal control derived under the discounted expected cost



38"
criteria for Blclose-to one is the same as the control
derived under the stationary average cost criteria for
B =>l. Thié result was obtained by Blackwell (1962) and
later considered more extensively by Miller and Veinott
(1969). Thus the undiscounted problem can be solved by
solving the discounted problem for B sufficiently close to
one. .This result is stated for cémpleteness. In the
remaining three chapters only discounted problems are

considered.



CHAPTER 3

A NUMERICAL ALGORITHM FOR OPTIMAL CONTROL

3.1 Introduction

In Chapter 2 the characteristics of the expected
cost function were examined, and two methods, Howard's
policy iteration and dynamic programming, were developed for
obtaining the optimal control of finite Markov chains. In
this chapter stochastic systems whose state space is defined
on the continuum are considered. However, rather than view
these systems rigorously as infinite state diffusion
processes, they will be considered as finite Markov chains
with a large but finite discrete state space. A numerical
algorithm which employs a quadratic approximation to the
expected cost function for a partitioned state space will be

developed.

3.2 System Description

The systems to be studied are defined by a set of

difference equations
x(k+1) = £[x(k), a(k)] + C(x) (3.1)

called the plant equation, where
k = time parameter

X

n-dimensional state vector

39
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0 = g-dimensional control vector
€ = n-dimensional random vector, plant noise

f = n-dimensional vector function.

The state x = (x x

10 Xgs =een xn)T is restricted to

the state space X = {x‘xmini <x, <xmaxg, i=1, ..., n}
and any transition out of this region under (3.1l) is not
considered. The control a = (al, oo, aq)T is restricted
to the control space A. The random variable {, called the
plant noise, has a known probability density function,
pg(C), which is time invariant, and C is independent from
one time instant fb another. If it is desired to model a
system with correlation between plant noise from one time
instant to the next, it is possible to define additional
state variables and new random variables for which the plant
noise is independent (Meier, 1966). Also, with no loss of
generality { is considered to have zero mean.

Stochastic control systems with continuous state
space can be considered, as an approximation, to be finite
Markov chains by establishing a grid on the state space X,
The gridApoints are states of the finite Markov chain and

the transition probabilities, p; defining the chain under

a stationéry control law, are obtained by determining the
probability of a state transition from 1x on the grid to a

hypercube about Jx on the grid. To better illustrate this,

consider the second order system in Figure 3.1. The
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transition probability pij(a) under control a is defined

as

;/‘ pg(Cl,Cz)dCl ac, (3.2)
3 1 i
x, - Fhx, - £,(7x,a)
The stage ‘cost at time k is defined, as before,

0 < £ | x(k), a(k))< M.

The total expected cost function is, as in Chapter 2, for a

stationary control law, u,

v(x) =.E3 5 Bk,e(;g(k), u(;g(m))

X(O) = X g
k=0 ~ 0

Again the control law u with u(x(k))eA is sought which

minimizes v(x) for all xeX, or, for the finite Markov chain

’

representation, all x which are grid points.

As before,

vix) = £ix,, u(xo)) + BE Co

v(f(xo, u(xoﬂ + C 2 (3.3)

3.3 Solution by Howard's Policy Iteration

To find the optimal control via policy iteration it

is first necessary to model the system as a finite Markov
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chain. A grid must be established which is sufficiently
fine to approximate the behavior of the system defined on
the continuum. Dividing each coordinate X5 into Ni equal

increments Axi wide accomplishes this for Axi small enough,

Xmax. - Xmin.
i i

i Ax, '
i
n

and defines J = 1 Ni grid points.
i=1

Now to obtain transition probabilities pij(u) under
the stationary control u it will be necessary to perform the
integration in (3..2) J2 times. Then having obtained the

J X J transition matrix

P(u) = [pij(u)],

step one of the policy iteration procedure (Section 2.5)

requires inverting
[z - sP]

also, a J X J matrix. In the minimization in step two, it
will again be necessary to evaluate (3.2) J2 times for each
control law considered. The number of control laws con-
sidered will depend on the numerical minimization technique
used, but it is evident that this number could be large even
for limited confrol spaces. To see the prodigious labor
necessary to employ Howard's policy iteration for systems
with continuous state space, consider a second order example

with
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X=1{1<=x, <100, 1 < x, <100}

1 2

and let Axl = sz = 1. Then Nl = N, = 100, and J = 104.
Thus P has 10° elements as does (1 - grl. Alfeady it is
evident that while Howard's policy iteration is a valuable
technique for finding the optimal control of finite Markov
chains with very few states and a useful theoretical tool,
it is impractical to employ it on the systems defined in
this chapter. It would be necessafy in the present example
to store 100 million transition probabilities in computer
storage and invert a lO4 b 104 matrix to achieve only step
one of the first iteration of Howard's method--clearly an
overwhelming computational task. On the other hand, it will
be shown in the next section that dynamic programming as

developed in Section 2.6 offers a more palatable numerical

technique.

3.4 Solution by Dynamic Programming
To employ dynamic programming, as before, a N-stage

minimum expected cost function is defined,

N
vix, K N) = min E X Bkz x(k),u (x(kﬁ x(0) = x
0 {fu,,u u_} k=0 - k - 0
0rlyre-eYy =
or
vix ,N) = ﬁin;z xo,uo(xo)} + BE; v(f(xo,uo(xoﬂ
0
+ QO,N-l lxo (3.4)
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with v(x,0) = 0. Again a grid is imposed on the state space
n

with Ni increments along the X5 axis and J = 1 N. total
i=1

grid points. It would now be possible to employ (3.2) to
define the J x J transition matrix P and (3.3) would become,

as in the last chapter,

J
=
J:

v(ix,N) = ming z(ix,u(ix) + B pij(u)v(ix,N—l)
u

1

for all the grid points. However, fo avoid the difficulty
of obtaining P, a more convenient approximation is to
quantify the noise in a manner similar to imposing a grid on
the state space. That is, the probability density function
pg(g) is approximated by imposing a grid on the domain of Pc
and attaching a probability to each grid point. Then the
noise is described by the set of noise values {iC, i=1, ...,
NQ} and the associated probabilities, {p(ig), i=l, ..., Ng}.

Now equation (3.4) becomes,

N
. . . C . . . ]
v('x,N) = min g z(lx,u(lx)) +B = p<3g)v(f(3x,u)+3g,N_1)

Jj=1

(3.5)

v(ix,O) =0 for i =1, 2, ..., J. Equations (3.1) and (3.5)
describe the dynamic programming numerical algorithm for the
solution of the stochastic control problem with discounted
cost., While the dynamic programming functional equation
(3.5) offers a solution to a wide range of problems

analytically, the computational requirements of high-speed
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computer memory and computing time can become excessive
except for simple problems. The memory'requirements are the
same as for deterministic problems while the computation
time is more severe., To better observe these difficulties
and to see that Bellman's "curse of dimensionality" not only
affects memory requirements but also computing time in the
stochastic control problem a more detailed examination of
the algorithm is in order.

Since it was shown in the previous chapter that
Zim v(ix,N) = v('x) there is no necessity to store all the
Ez:t functions and control functions generated as (3.5) is
solved. Only the last cost function and the present cost
function, and control function that is being generated, need
be stored. Thus, 3*J = 3 ‘ﬁ Ni memory locations are
required to store the infoi;ition vital to the iteration of
(3.4). Further, for economy in computation time, these
values should be stored in high-speed memory (Larson, 1968)
which for most computers is limited to about 105 words.
Thus for the second order example of Section 3.3 it would
be necessary to have available 3-104 high~-speed memory
locations. For a three dimensional state space with

2, 3 3'106 storage locations would be

7 ’ ?

N, =100, 1 =1
i

necessary, overwhelming the capacity of nearly any computer.

This "curse of dimensionality" is a severe limitation to the

problems solvable by dynamic programming. A first order

problem is shown in Figure 3.2. To evaluate v(tx,k) with
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Figure 3.2 The dynamic programming numerical algorithm
first order problem.
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for
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the control uk(ix) applied, it is necessary to evaluate
V(xk+l'k+l) by interpolation of the stored cost function at
time k+1'Ng times where Ng is the number of discrete noise
levels used to approximate the probability density function
pg(C).

For a second order plant with

'xl(k+l)

fl(x(k),u) + €, (k)

"

xz(k+l) fz(x(k),u) + Qz(k),

and. Cl independent of €2' both Cl and. gz could be

quantified separately into say M, and M, levels. Thus,

icL:h n
N, = M.M, and in general for a n order plant N. = m M,
C 172 n C ie1 i’
and the cost function must be evaluated J 17 M. times for

. i=1
each iteration of (3.4). Consider each noise element

quantified into, say, five levels where each state is
perturbed by noise. The number of cost function evaluations
necessary for the stochastic problem as opposed to the
deterministic problem (Prob[{=0]=1) increases by a factor of
five for each increase in dimensionality. Thus the "curse
of dimensionality" affects the computation time of the
stochastic problem with respect to the guantization of the
noise. It is the main purpose of this work to develop an
algorithm which alleviates the high-speed memory requirement
and long computational time intrinsic to a straightforward
application of dynamic programming to the stochastic control

problem. The next section begins the development of this
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algorithm. A flow diagram of the dynamic programming

algorithm is contained in Appendix B.

3.5 Dynamic Programming with a Partitioned
State Space

The problem of excessive high-speed storage which is
attendant to the dynamié programming algorithm was attacked
with considerable success by Larson (1964, 1968) for the

case of a deterministic plant and continuous time, i.e.,
() = £ x(t),u(t),t).

Larson's method, called state increment dynamic programming,
took specific advantage of time being defined on the
continuum. This restriction and the deterministic nature of
his plant equation thwart a direct application of his tech-
nique to the discrete time stochastic problem under study.
However, a basic concept of Larson's method will be employed
for the problem at hand. State space will bé partitioned
into blocks, and these blocks will be treated individually
in calculating the optimal control and cost function. The
expected cost function, v(x), over each of these blocks will
be approximated by a quadratic surface. The effect of this
partition and the quadratic surfaces is to substantially
reduce the amount of high-speed memory necessary and also to
reduce the computation time. The price paid for these
advantages is a more approximate control law than fhat

achieved by conventional dynamic programming. However, the



50°
classes of systems examined will be restricted such that
this loss of accura¢y is not substantial.

To better illustrate these concepts, consider the
second order problem and two dimensional state space in
Figure 3.3. Here the state space has been partitioned into
25 blocks of equal dimension. There is no advantage in
unequal dimensions, so for simplicity equal dimension blocks
are used for the partition. The expected cost function is
also partitioned into the surfaces above each block. In the
figure the surface partitions above blocks 0 and 6 are
illustrated. These surfaces are then to be approximated by
a quadratic fit which in the two dimensional case will be,

for block £

’

— 2
Vz(X) =a(L) + Bl(z)xl + Bz(ﬁ)x2 + Yll(ﬂ)xl
+ Yo, (L)x.x, + Y (ﬂ)x2
12 172 22 2
) th
and for the n order system,
_ n n i .
vz(x) = a(L) + -Z Bi(z)xi + .Z .Z yi.(z)xlxz. (3.6)
i=1 i=1 j=1 .

The block size is selected such that, as illustrated
in Figure 3.4, when iX is under consideration and control u
is applied f(ix,u) lies in the block containing ix or an
adjacent block. This condition can be met easily enough by
making the block size very large. However, since the cost

function or surface over each block is to be approximated
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by a quadratic surface, it is also desirable to have the
blocks small in size. Thus, a compromise must be reached,
and this compromise obviously depends upon the problem being
solved. A reflective examination of the system equations is
usually adequate to determine an appropriate block size.

Consider for example that the state space in Figure
3.3 is xmin

1= xmin2 = ~-25 and xmax, = Xmax, = 25 and that

1
Axl = sz = 1. Thus, each block would have 100 points in it
(including its boundaries) with 10 increments to a side.

The cost surface above each block would be described by

6 numbers, a, B's, and Y's. Since for each x a member of

Lth

the block (xeB,), f(x,u) is restrained to be a member of

either Bz or a block adjacent, it is possible to evaluate
(3.3) for all points in B, with only the parametric descrip-
tion of B, and its adjacent blocks in high-speed memory.
Thus, recalling Figure 3.3, only 9:6 = 54 high-speed memory
locations are necessary to store the cost surface for the
partitioned state space algorithm. For conventional dynamic
programming 502 = 2500 high-speed memory locations would be
necessary.

Obviously, even for conventional dynamic programming
it would be possible to store the entire cost function in
low-speed memory (tape, disc, or drum storage). However,

then it would be necessary to go to low-speed memory for

each cost function evaluation. This is a time-consuming
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n n
process which would involve K- m Ni T M., accesses to low-
i=1 7i=1 ’
speed storage where K is the number of controls evaluated at
each state point. With K = 10 the example considered in
Section 3.3 would require 10'1002-25 = 2.5-106 accesses to
low-speed memory. For the partitioned state space (PSS)

algorithm only NB accesses would have to be made to low-

speed. memory, where N, is the number of blocks (25 accesses

B
for the problem in Figure 3.2). 1In the next section the PSS
algorithm is shown to reduce computation time as well as
high-speed storage.

3.6 The Quadratic Approximation of
the Cost Surface

The criteria for fitting the quadratic surface to

the cost function over a given block is taken to be un-

weighted least squares regression. For block Bz recall
equation (3.6),
_ n n i
v,(x) = a(L) + £ B.(L)x, + X L ov..(2)x.x,
4 .oi=1 7 i1 921 M 1 J
and the functional to be minimized is,
J(a.,B B_,Y Y. )= % v(x)—?(x)}2
71 **** "n’’'n’ °°°* 'nn 4
xeB
L
n2+3n+2
for the M = ————— parameters of the quadratic surface.
Thus
3 _ 3 _ I,

o~ oB., T ov..
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which yields,

n n i
z a+ Z B.xX. + = L oy..x.xX. 1= X wv(x), (3.7a)
xeB, i=2 't oim1 g2 YA xeB,
n n
pX ax, + X B.x. + I Z Y. T wv(x)
xeB£ k i=1 *t 1% i=1 j=1 13 ! Jxk xeB “x
k=l, 0, n (3.7b)
and
n n i
z ox, X + & Bx.x,x 4+ I Y. X
xeB, “*m i=1 i*%m i=1 §=1 13 155"
= v(x)xnxm k=1, ..., ns m=1l, ..., k. (3.7¢)

Equation (3.6) may be summarized in matrix form as,

SZ(L) = T(1) (3.8)
where
T
z(2) = (a,Bl, ceey By Yyps o eeey Ynn)
and
T(2) = (v(x) xvix), ..., x v(x) xiv(x)
xeB£

cea, xiv(x))T

are 1 XM column vectors, and S is the M X M matrix
described by (3.8) such that (3.7) holds. Thus, the column

vector, Z, describing the quadratic surface is
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z(4) = s~ir(e).

It is not necessary to invert an S matrix for each blocks
instead, since all blocks have the same dimensions, S,T

may be calculated for a block with standard coordinates, and
v(x) transformed to this block. Thus the M x M matrix S
need be inverted only once. Further, the storage for the

surface for Bz and adjacent blocks is NS = 3™.M locations.

Thus,
n=2=>NS=54
n=3 = N, = 270
n=4 = N, = 1215, etc.

To see that the quadratic approximation not only
reduces high-speed storage requirements but also computation

time, recall equation (3.4),

v(x,N) = min { £(x,u) + BE

u

v[etx,0) g,N~i)§( .

For the noise quantified.into Ngvalues (3.3) becomes (3.4),
N

' : ¢
v({x,N) = min{ £(x,u) + B I

pov|ete,m + I, N~1)§ i
u

j=1

Therefore, it is necessary to evaluate v(x,N-1) Ng times for
each control considered, where NC will have a tendency to
increase geometrically with the dimension, n. On the other

hand, for PSS dynamic programming with £(x,u) lying in
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‘block £ and parameters Z(4) describing v(x,N-1) for xeB

v(x,N) = min gz(x,u) + BE
u

v{f(x,u) + Q,N—l]$;,
or, approximately,

n
vix,N) = min ;z(x,u) + BE% a(z)A+ izl Bi(z)(fi(x,u)+§i)

+ g 2 Yy (E)(fi(x,u)+gi)(fj(x,u)+gj)

i=1 j=1
n i
= n ;Z(x,u) + B;a(l) + = B (Z)f (x,u)+ Z by
u i=1 i=1l j=1
Ylj(Z)fi(x,u)fj(x,u)
n i
r Z .. (4L)E .C.
LA v 4 {glgj}$
v(x,N) = min; £(x,u) + B Vi(f(x,u),N—l)
u
n i
+ I I [Q C. ]” (3.9)
i=1 j=l

Thus, only one cost function evaluation must be made for

each control and the additional term,

n i
z . ELC.C.
izl 5oy Ylj(ﬂ) [CIQJ]
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calculated using known covariances, E{Qigj}. The cost
function evaluation is of v(x,N-1) rather than v(x,N-1):
however, the computation time of the two evaluations is
comparable. Thus, for PSS dynamic programming the cémputa—
tional task of Ng evaluations of v(x,N-1) is traded for the

computation of the quadratic surface,

z(8) = s~ (e).

For most problems of dimension greater than one it is
considerably less time consuming to find the parametric
surface v(x,N-1) for a biock than to evaluate v(x,N-1) Ng
times. The quadratic approximation to the cost function,

therefore, affords a significant savings in cost function

evaluations and computation time.

3.7 PSS Algorithm

Once the state space has been partitioned, the PSS
dynamic programming algorithm can be applied. A flow
diagram of the basic procedure is contained in Figure 3.5
while a FORTRAN program listing is to be found in
Appendix A.

A particular block is designated as the origin
block (for example, block 0 of Figure 3.3) and the cost
surface éssociafed with it is determined by techniques to
be discussed in Section 3.9. The origin block is generally

selected to contain the minimum of the cost function over
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all state space, if possible. For ﬁany problems it is easy
to define the origin Block appropriately, such as the
stochastic regulator problem where the‘system is to be
driven to the origin of state space.

With the cost surface for the origin block obtained,

another block, say B is considered for processing (Step

17
2). Both this block and all adjacent calculated blocks are
brought into high-speed storage. The block being processed'
must have at least one calculated block next to it. This

is not a significant restriction on the method, as, in
general, the blocks are ordered in such a manner that they
radiate out from the origin block as they are considered
(Figure 3.3).

is

The optimal control and cost of each point xeBZ

calculated (Step 4) by

v(x) = min {z(x,u) +B{'Gﬁ(f(x,u)) + I3 Yij(m)E[ging}}
’ (3.10)

where f(x,u)eBm with Z(m) known, or B, is the closest block
to the point f£(x,u) for which Z(m) is calculated. The
iteration variable N has been suppressed since the blocks
will be stored back in the same location after they are
processed. That is, the stage identity is destroyed. The
set of costs, {v(x)lxeBz}, is then fitted (Step 5) with a
quadratic surface, Z(4). During the first pass through state

space (MODE = 1), the control for B, and the parameters of

! £
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adjacent blocks are then placed in low-speed storage (Step
7) and Step 2 is repeated.

After all of state space has been considered.once;
the algorithm goes into MODE = 2 (Step 8). For all subse-
quent calculations f(x,u) is assured of lying in a calcu-
lated block for the evaluation of (3.9). Also, a comparison
of the present cost surface and the previous cost surface
over the block is made (Step 6) to determine the convergence
of the algorithm. Convergence is guaranteed for B < 1 by
(2.12). The process is continued until convergence is
attained over all of state space or until a maximum number

of iterations is reached.

3.8 Block Processing Order

Before the algorithm described in the last section
may be applied, the partition of state space must be
ordered; i.e., an integer must be associated with each block
which détermines when it will be processed during a pass
through state space. The only restriction upon this order-
ing is that each block be adjacent to a block previously
processed during the current processing sequence. This
restriction causes the blocks to tend to radiate out through
state space from the origin block as they are considered.
There is, howevér, reason to be more selective in the
ordering. Namely, it would be ideal if the optimal control,

u, at a point x always caused f(x,u) to lie in a block which

I
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had already been processed during that pass through state
space. This could be accomplished if the optimal control
were already known. The block ordefing could be‘taken
opposite to the direction [£f(x,u)-x], that is, opposite to
the direction of the expecéed transition from X under
optimal control. Obviously, if the optimal control were
known, the problem would.be solved: however, in many
problems although the optimal solution is hot known, there
is some knowledge as‘to the manner in which the system
should be controlled.

This idea was made explicit by Larson with the

concept of preferred direction of moticn. The preferred

direction of motion is, basically, the expected direction

in which the trajectories of the system tend under optimal
control. The information used in establishing the preferred
direction is a priori and rests on an intuitive feeling for
the system*'s behavior. The blocks are then processed
opposite to the preferred direction.

If the preferred direction is not known, the
algorithm still works and will converge, although more
iterations ovér state space may be necessary. Thus a
general technique for ordering the blocks in the agsence
of a preferred direction is desired. This objective can be
achieved in the following way, again suggested by Larson.

is

Let the blocks be designated as in Figure 3.3 where B0

the origin block and is defined to have coordinates
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By = (0,0). The blocks By, ---, Bg

layer one (L=1), By, ..., B,, in layer two, etc. These

are said to lie in

blocks have coordinates, B, =(0,1), B, = (0,-1), ...,
Boy = (-2,2). The ordering is achieved by counting with
2-digits modulo M = 2L + l.for the blocks in layer L. Take

for example layer one; counting MOD/3 yields 00, 01, 02, 10

? 7

11, 12, 20, 21, 22, The digits MOD/3 are associated with

the block coordinate elements as follows:

0 MOD/3 = O
1 MOD/3 = 1

2 MoD/3 = -1.

Thus, the numbers MOD/3 are associated with the block
coordinates (0,0), (0,1), (0,-1), (1,0), (1,1), (1,-1),
(-1,0), (-1,1), (-1,-1), respectively, and the block
ordering through the first layer is achieved. For the

second layer counting MOD/5 yields 00, 01, 02, 03, 04, 10,

’

11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40
41, 42, 43, 44, Again the MOD/5 digits are associated with

the block coordinate elements as follows:

0 MOD/5 = O
1 MOD/5 = 1
"2 MOD/5 = -1
3 MOD/5 = 2

4 MOD/5 = -2
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Thué, the sequence of MOD/5 numbers corresponds to the block
coordinates (0,0), (0,1), (0,-1), (0,2), (0,-2), (1,0),
(1,1), (1,-1), (1,2), (1,-2), (—l,O), (-1,1), (-1,-1),
(-1,2), (-1,-2), (2,0), (2,1), (2,-1), (2,2), (2,-2),
(-2,0), (-2,1), (-2,-1), (-2,2), (-2,-2). Deleting those
coordinates in layers lower than layer two results in the
sequence, (0,2), (0,-2), (1,2), (1,-2), (-1,2), (-1,-2),
(2,0), (2,10, (2,-1), (2,2), (2,-2), (-2,0), (-2,1),
(-2,-1), (-2,2), (-2,-2) with the associated blocks
B9, BlO' ces, B24. This counting procedure can be carried
out through an arkitrary number of layers and for a nth
order system. The nth order system would require counting

with n-digits MOD/M.

3.9 Calculating the Origin Block

To initiate the PSS algorithm it is necessary to
calculate the quadratic cost surface associated with the
origin block for the first pass through state space. This
can bg done either by dynamic programming using quadratic
approximation over the origin block or by policy iteration
also empioying quadratic approximation.

Howard's policy iteration has application in finding
the cost function of the origin block for the continuous
state space stochastic control problem. Again, let the

quadratic cost surface over the origin block be described by
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T n i :
B.x. + Z Y yv..X

vix) = a + X .
iTi ie1 =1 iji®iTj

I ™Mo

i=1

Then for a fixed policy u,eU defined for all grid points in

0
the block, it is desired that

vix) = Llx,uy) + BE% G{f(x,uo) + Q)i. (3.11)

However, there are, in general, more than (n2+3n+2)/2 points
in a block for a nth order system. Thus, a least square
equation error criteria is used to determine the quadratic

fit for the cost function. That is, letting

= ° v c -V
e, = Lix,uy) « BE | V{£(x,u;)+C] v(x),
the functional,
Jd = by e}zc
xeBO

is minimized with respect to a; B, ..., By gll' SRR S
This minimization determines a set of linear equations which
in turn define the guadratic surface, Gb(x), associated with

the policy u

0° This surface is then used in step two of
Howard's policy iteration to determine a new policy uleU.
Thus,
_ n i
min {L(X,u) + B vo(f(x,u)) + T X YijE[gigj] E
u ) i=1 j=1

for all xeBO determines the new policy u, which in turn

determines a new cost surface -\71(X)° The policy iteration
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is carried out until convergence. I£ has been found '
numerically that while this procedure works well at the
origin block (containing the minimum point of the cost
‘surface) it does not converge well for other blocks. Thus,
it cannot be used to find the cost surface for blocks other
‘than the origin.

A second technique to find the cost surface of the
origin block is to employ dynamic programming. Assuming a
terminal cost of zero, the dynamic programming algorithm can

be applied to each point in B i.e.,

Ol

v(k) = min {£(x,u)} for all xeB .

This cost function is fitted with a quadratic surface GYX),

then,

v(x) = min{ £{(x,u) + BE% Vb{f(x,u) + Q)%i (3.12)
u

is calculated for all xeB,. Again a quadratic surface v(x)
is fitted to the cost function v(x) and (3.10) applied.
This procedure is carried out until convergence, with the

speed of convergence described in (2.13).



CHAPTER 4

EXAMPLES

4.1 Introduction

In this chapter the partitioned state space
algorithm developed in the last chapter is applied to
several nonlinear stochastic control problems. Since no
exact, analytical solution has been achieved for this class
of problems, conventional dynamic programming is used to
obtain an alternative solution for comparison. The control
and cost obtained by both methods are compared. The
problems are first and second order and have scalar control.
A goldén section search was used to search the control
space (Wilde and Beightler, 1967). The CDC 6400 digital

computer was used to achieve the numerical results.

4.2 Examples

Example 4.1. This example and the following one are

simple scalar test examples. The objective is to drive the
state to the 6rigin with a bounded control. The problem is

specified by,

plant equation -- x(k+1) = x(k) + u(k) + (k)
stage cost - 2(x,u) = x? + u?
noise —— C(k) is normal with mean zero and

. 2
variance 0

68
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discount factor -- B = .7

state space -- 10 < x <+ 10
grid - Ax = ,5

control -- =-2.2 <u < 2.2,

The state space is partitioned into

By = {x|-2 < x <2}, By ={x]2 < x < 6},
B, = {x|-6 < x < -2}, By = {x|6 < x <10}, ana
B, = {x|-10 < x < -6}.

The control and cost functions are plotted in Figures 4.1
and 4.2, respectively. The percentage difference between
dynamic programming and PSS dynamic programming is less than
2% for both 02 = 1.0 and 02 = 2.5 in the cost function and
the control function was the same within the accuracy of the
golden section search routine.

Figure 4.1 indicates that the optimai control is
very nearly linear until saturation at u = + 2.2. The
control is approximately u = -.5xk. The Question naturally
arises, is this the optimal control for the linear (un-
bounded control) case? The solution to this linear
regulator problem is well documented (Sage, 1968), and the
solution to a Ricatti type equation yields = —.4xk. The
bounded control problem thus controls more heavily in its

linear region than the linear problem. To achieve the’
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optimal solution, the bounded control problems must be
considered as nonlinear.

Example 4.2. The specifications for this example

are the same as Example 4.1 except the plant equation is

changed to a nonlinear equation,
1 1 2
x(k+1) = EX(k) + iﬁx(k) + u(k) + (k).

The control and cost functions are plotted in Figures 4.3
and 4.4. The percentage differencé between cost functions
by the two methods was less than 3%, and the control
functions never deviated more than .13, or one interval of
the search routine, for both 02 = 1 and 02 = 2.5.

It is interesting to note that for x < 0 the %x and
%ﬁxz terms tend to cancel and for x = -10 they cancel
exactly. Thus, the control fdr X < 0 rises and then drops
to zero at X = -10. This effect is also noticed in com-
paring the cost functions for Example 4.1 and 4.2. The cost
function for Example 4.2 is asymmetrical and lower for x < O

while the cost function for Example 4.1 is symmetrical.

Example 4.3. Again it is desired to drive the state

to the origin'with a bounded control. The specifications

are

’

1

plant equation -~ xl(k+l) T6X2

xl(k) + (k) + Cl(k)

It

X, (k+1) X,(k) + ulk) + ¢, (k)
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Figure 4.3 Control for Example 4.2, 02 = 1.0.
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noise - Ql(k) and Cz(k) are independent and

gaussian with zero mean and variance
2

o]

stage cost -— 2(x,u) = xi + x% + u2

discount factor -- B = .7

state space --=52<%x <5
-5 < x, =< 5

control -- =2,2 <u < 2.2

grid - Axl = sz = .5

partition -- the state space is partitioned into

25 blocks ordered as in Figure 3.3

with sides 2 units long, i.e 25

grid-points per block.
Figure 4.5 presents a isometric plot of the cost surface in
the right half plane. The control and cost are symmetrical
about the origin so that knowledge of the right half plane
is adequate. The cost surface is very smooth and quadratic
in nature thus the quadratic approximation should apply.
Figure 4.6 gives the control in the right half plane at the
block corners and Figure 4.7 gives the cost at these points.
For 02 = 1.0 the percentage difference of the cost functions
is less than 6% while the control functions are identical
within the accufacy of the search. For 02 = 2.5 the cost
functions are within 10% of each other and the accuracy of

the control is unaffected.
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The PSS algorithm takes 9 sec per pass through
state space while conventional dynamic programming (DP)
requires 33 sec/pass. For DP the noise is incremented into
7 values for each noise element. PSS converges in 3
iterations while DP requires 13 iterations. Thus, the
solution time for PSS is 30 sec. and DP 460 sec. The
"curse of dimensionality" is seen to affect solution time
as stated in the last chapter. The PSS algorithm, thus, not
only has a high-speed storage advantage but also reduces the
computation time with respect to the conventional DP |
algorithm. This effect will also be seen in the next
example which has noise on both state variables. However,
in Example 4.5, whose noise is imposed on only one state
variable, the computation times of the two methods are
comparable,

Example 4.4. A classical stochastic control problem

is that of inventory control. An appropriate quantity of
goods is ordered to supply a stochastic demand and to
minimize an expected cost function. This problem was
formulated by Arrow, Harris, and Marshak (1951). Scarf
(1960) demonstrated the optimality of the (s,S) policy for
certain classes of stage costs. The problem is formulated

as follows:

X -- state, quantity of goods in storage

u -- control, quantity of goods ordered
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£(x,u) —- stage cost, reflecting ordering, storage, and
shortage costs
C ~-—- noise, the demand for the goods
x{k+1) = f(x(k), u(k)) + C(k) —- plant equation, deter-
mines the number of goods in inventory at the

end of a selling period.
Scarf showed that for x scalar and the restricted plant
dynamics,
x(k+1) = x(k) + u(k) + C(k)

and £(x,u) enjoying certain convexity properties the optimal

policy had the form

u 0 when xXx > s

u S - X when x < s.

i

This type of policy is called (s,S). The following example
has a more general two dimensional plant equation and bounded
control and, thus, is not (s,S) optimal.

A two dimensional inventory of perishables is
considered where goods in class Xy degrade to class X, and
class X, goods eventpally perish. The dynamics for this

exXample are specified as,

I

xl(k+l) .7 xl(k) + .8 u(k) + Cl(k)

X, (k+1) = .3 xl(k) + .7 x,(k) + .2 ulk) + (,(k).
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The commodity inventoried could be interpreted as, say,

eggs with,

X, -- eggs of grade A

X, —-- eggs of grade B.

The stage cost £(x,u) is the sum of the ordering cost, the

storage cost, and the shortage cost. The ordering cost is,

0 u=0
zl(u) =
k+cu u>0.

The storage cost, £2, is the cost to store the good

accumulated at the beginning of a period. Let

z = udb(u) + xlé(xl) + x26(x2)

where
8(y) =0 y <0
=1 y <0,
then
H-* z z £d
H{d-(z-4d) ) z > a4

where d is the designed storage capacity which can only be
exceeded by implementing expensive temporary storage. The

shortage cost, 23, is the cost attached to failure to meet

the demand (i.e., failure to supply customers, thus,

angering them),



fl(x,u)

13(x,u) = Ay Jr
0

(gl—fl(x,u))ng

£,(x,u) .
C,-f,(x,u) |"P. (C,)AC,.
( 2 72 )~ ¢, 22772

+ A
2 0

Thus,

(¢,)ag
1 1 1

L(x,u) = zl(u) + Ly(x,u) + 23(x,u).

The parameters for this example are:

The demand, (, is

independent and
E{¢, ]

E{C,)

k =1
H=1
Al = 10

c =1
d =1
A2 = 10.
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a gaussian random variable with Ql and Qz

i
1
N

N
!
N

The state space is,

-3

and the control space

The grid is Ax, =

IA

is

1A
o

il

.5.

Var{gl} = 1.0,
Var[gz} = 1.0.
<8,
<6,
8.

The discount factor is
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1
B = l+p ~ -9
where p = .111 = 11.1% is the interest rate. The dynamic

programming functional equation is then, as before,

-— 3 ) \
vi{x) = m;n {Z(x,u) + BE{ v(f(x,u? + g)}f

and the PSS and DP algorithms may be applied to find the
optimal ordering policy.

An isometric plot of the cost surface is displayed
in Figure 4.8. It is seen that the cost surface is not
quadratic in shape. However, by partitioning the state
space as in Figure 4.9 the quadratic approximation achieved
a cost surface within 4% of the DP solution. The noise was
incremented into five values in each variable for the DP
algorithm. The control found by the two methods was once
again within one search increment. The control and cost is
displayed in Figures 4.10 and 4.11, reSpectiQely.

The PSS algorithm takes 9 seconds per pass through
state space while DP takes 40 sec/pass. The DP algorithm

takes 35 passes to converge. Convergence is slow since
e < .9 ¢ . (2.13)
The PSS algorithm beginning with a good origin block

obtained from the DP solution takes only 5 iterations to

converge since it takes advantage of extrapolation on its
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-4.0

A %2
6.0
7 4 2
3.0
- 6 0 1
0.0
4.0 : 8.0
8 5 3
- =3.0
Figure 4.9 Block ordering for Example 4.4.
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first pass through state space. The PSS algorithm takes
about 1/15 the calculation time of DP,

Figure 4.10 demonstrates conclusively that the
optimal policy is not a generalized (s,S) policy. There is
no point S in two dimensional space which the inventory
always achieves: also, the order is on the upper bound at
several state points. Thus, the purchasing agent must, to
operate optimally, inventory his goods at the end of each
period and then order that number éf goods indicated by his
two dimensional control function, u{x).

Example 4.5. 1In this example it is desired to

reduce the core temperature of a nuclear reactor after shut
down by a pulse of coolant at fixed flow rate through the
core. At shut down the control rods are withdrawn and the
reactor is heated by y-heating. The y-heating is determined

by dynamics of the following nature
0 = -aQ,

where Q is the heat generated by y-heating and a is a fixed

time constant. The temperature dynamics are given by,

'Z.[‘=-kwT+—lH-l-—Q
C

where,
T -- temperature

w —— flow rate
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k —-- heat transfer coefficient

m, -- effective core mass heat capacity.

The temperature is to be controlled by pulsing the flow rate
w at fixed time intervals for any time up to the time
interval duration. This scheme is illustrated. in Figure

'4.12. For 0 < t < T,

WwW=w 0 <t<u

The temperature ranges from 400°R to 4000°R and the heat
generated from O Btu to 300,000 Btu. State variables are

defined as,

1
X = —0
1 mC
1
Xy = 100"

It is desired to drive the temperature to 500°R and to
restrict it to-reméin below 42000, the maximum allowable
core temperature. Also, the amount of coolant used should
be weighted in the cost function. To achieve these

specifications the following stage cost is definedqd,

X,-5 2
L(X,u):(z ) +u2+___i___.

3.5 2
(x2—4l
2

The parameters of the problem are defined as,




AXZ_T
and w
T
w \~_\
o 0 7 "1 o7 3T

Figure 4.12 Temperature control method.

S0
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=l
i

T = 5 sec 4 1b/sec
k = .025'sec/lb a = .01/sec
m, = 1000 Btu/°R

Since w is piecewise constant, the plant equations can be

integrated analytically over one period T, yielding

Q(T) = a(0)e 3T,
and
~kwu + Q(0) [e—au _ e—kwu]

kw-a

T(T) = T(0)e

+ Q(0) [e—au _ e—a‘I‘ ].
a

For a = .01/sec and kw = .1 the last equation becomes, to a

very good approximation,

T(T) = T(0)e ™ 4 o(0) [16.1 - 11.1 &7 u),
Employing state variable notation the plant equations become,
xl(k+l) = .95 xl(k)

"ol

X, (k+l) = e u X, (k) + [.161 - 111 1M

- .Olu] xl(k).

The random effects of the nuclear y-heating and the
effect of suppressed state variables are accounted for by
imposing plant noise, {, on the plant equations. Noise is
only added to the temperature equation:; thus, the plant

equations are
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Xl(k+1) = .95 Xl(k)

"ol

X,(k+l) = e u x,(k) + [.161 - .111 e~ U

+ .01u]xl(k)
+ Cz(k).

The discounted stochastic control problem is now completely
defined by specifying B = .7 and Qz to be normal mean zero
and variance one,

An isometric plot of the cost surface is given in
Figure 4.13. The cost surface has a minimum at x = (0,4)
and the cost surface is a rather gentle sloping surface
with a low edge at X, = 0. This shape motivates the state
space partition in Figure 4.14. The large block sizes are
acceptable since the cost surface has little curvature. The

long blocks in the ey direction are permissible since,

x(k+1) = .95 xl(k),

and there is little transition in the x., direction. In this

1
problem the block ordering does not spiral out through state
space, but rather a linear ordering of the blocks is used.
No attempt was made in this problem to obtain the origin
block and then extrapolate (MODE = 1) on the first pass
through state space. Instead both PSS and DP were ini-
tialized by aktérminal cost of zero.

The comparative results are tabulated in Figures

4,15 and 4.16. Again the control by the two methods is
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2
28 ¢}
1
16
0
4
300
0

Figure 4.14 Block order for Example 4.5.
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5.0 5.0 5.0 5.0 5.0 5.0
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Figure 4.15 Control for Example 4.5, parentheses indicate

PSS,
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Figure 4.16

Cost for Example

4.5, parentheses indicate PSS.



97
~ always within one search increment while the cost surfaces
are almost coincident. The PSS algorithm requires 64
seconds while DP takes 78 seconds. Since plant noise, {, is
only imposed on one state variable the time advantage of

PSS is suppressed (cf. Section 3.6). Further, the PSS bias

term due to noise,

n

23 (2) ) 2
. E .C.p = E
o1 e 13 {glgj} Y224 {QZ}'

is found to be negligible (always less than one). Thus,
this problem could.bé viewed as a deterministic control
problen for the stage cost defined. The noise, Qz, is
fepresented by five increments in the DP algorithm; thus,
the DP solution time would be cut by a factor of five if the
problem were viewed as deterministic. In the previous four
examples, however, the Yij quadratic cost coefficients were
not negligible. The effect of noise, therefore, contributes
significantly to the cost and control functions for these
problenms.

It is interesting to note in Figure 4.15 that the

control is approXimately linear up to saturation.



CHAPTER 5

CONCLUSIONS

5.1 Summary

This study examines the control of stochastic
systems under discounted performance criteria. The general
stochastic control problem and the more specific time
invariant problem considered in this study are defined in
Chapter 1. The stochastic controliproblem is viewed as a
finite state Markov chain in Chapter 2. It‘is established
that stationary control laws should be considered for‘the
infinite duration process. Howardfs policy iteration and
dynamic programming are developed as methods of solution.
Currently, they are the only feasible basic approaches to
the problem.

In Chapter 3 the state space is defined on the
continuum. To attack this new problem a grid is imposed on
the state space and a large but finite state space results.
It is shown that Howard's policy iteration is unsuited for
this problem. While dynamic programming offers a more
practical solution numerically, Bellman's-"curse of
dimensionality"'restricts the problems to which it applies.
To alleviate the difficulties assocciated with conventional
dynamic programming a modified dynamic programming algorithm

98 ’
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is developed. This practical algorithm, referred to as
partitioned state space dynamic programming, is the main
contribution of this study. It greatly reduces the high-
speed memory requirement and the computation time necessary
to achieve a numerical solution.

The essential distinction of the PSS algorithm is
the partitioning of state space into blocks and the
quadratic approximation of the cost surface over these
blocks. The reduction of computation time is demonstrated
in the examples in Chapter 4. For second order problems PSS
requires as little, as one-fifteenth the computation time of
DP. Also, the new algorithm is accurate. The cost and
control functions calculated by both methods have very small
differences. The high-speed memory necessary to store the
cost function in, say, Example 4.3 is 54 words for PSS and
800 words for DP. Thus, while high-speed memory is reduced
neither algorithm begins'to strain the limits of the CDC-
6400 computer system. It is for 3rd and higher order
problems that the high-speed memory reduction becomes
important. |

The deécription of the PSS algorithm in Chapter 3
and its application in Chapter 4 point out the main require-
ments of its application. They are,

1. Partitioning of state space into blocks.
2, Ordering the blocks.

3. Obtaining the cost surface of the origin block.
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Partitioning and block ordering require insight into the
specific problem being solved. These difficulties are
intrinsic to the algorithm. If there is not sufficient a
priori knowledge of the cost function and dynamical
behavior to partition and order adequately then the problem
may have to be solved several times. The solution of the
origin block before the PSS algorithm is employed is very
desirable since computation time is reduced, but it is not
necessary. If difficulty is encountered in solving the
origin block all of state space can be initialized to zero
and the PSS algorithm begun in MODE = 2, as in Example 4.5.

A basic requirement on the stochastic systems studied
is that the state not change excessively over one time
period, i.e., not more than one block. It is seen in the
examples that for such a restriction on the system.dYnamics,
if the stage cost function does not result in appreciable
second order curvature in the total cost function thén the
system can be modeled adequately as deterministic. Example
4.5 with a rather linear cost surface is of this nature.

The PSS algorithm finds its best application in
problems for which the-"curse of dimensionality" becomes
prohibitive or in problems which must be solved repetitively
with different parameters. In the second case, once the PSS
algorithm is set up then its time advantage becomes very

significant with repetition.
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5.2 Further Research

The last two examples in Chapter 4 are related to
reality; however, they are not truly practical problems
dictated by an existing system. Probably the most fruitful
extension of this study would be the application of the
concepts developed here to practical systems whose solution
is important.

The PSS algorithm takes advantage of the stationary
cost surfaces resulting from the discount factor, 0 < B < 1.
In Section 2.8 it is shown that the control for B = 1 can be
obtained by examin}ng the control as B — 1. However, in

practice this is difficult since,

Vv () ~ng(u)l + W), (B =1) (2.18)

and.

. (2.13)

Thus, for B very near to one the cost surface becomes very
large, the convergence becomes very slow, and the PSS
algorithm does not work well. An algorithm which handles
the undiscounted case adeptly would be significant. The
undiscounted cést criteria is of importance for continuous
time systems being treated in discrete time.

Finally, both Riordon (1969) and Martin (1967) in
treating the adaptive stochastic control problem employed

variations of Howard's policy iteration. Thus, their
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methods are severely limited to a small finite state space.
An investigation of methods to reduce the high-speed memory

requirements for the adaptive problem would be worthwhile.



APPENDIX A
PARTITIONED STATE SPACE DYNAMIC PROGRAMMING ALGORITHM

The general explanation and flow diagram of the PSS
algorithm is contained in Section 3.7 and Figure 3.5. This
appendix presents a FORTRAN program listing of the PSS
program employed to solve the first and second order examples
of Chapter 4. Since the high-speed memory requirements of
these examples do not exceed the capabilities of the CDC
6400 no referral is made to low-speed memory. All opera-
tions are performed in high-speed memory in this program.
Theviogic necessary tovimplemént the storage of the control
and cost functions in low-speed memory would be contained
in the main program, PSSDP (Figure A.1l). All subsequent
subroutines (Figures A.1l, A.2, A.3) would remain unchanged.

The program listed is the one used to solve Example
' 4.5. The subroutines SLOSS, TRANFN, LOCATE, BLOCK, and
CORNER are supplied by the user. SLOSS defines the stage

cost, COST = 4(x,u) in terms of the state, X(I) = x,, and

il
the control, u. TRANFN defines the deterministic portion
of the system dynamics, F(I) = fi(x,u). LOCATE is a sub-
routine which determines the block processing and storage
location (LOC) from the block coordinate position (IX).

BLOCK performs the inverse operation of finding the block

103
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storage location (LOC) given the block coordinate position
(IX). CORNER finds the state coordinates of corner of the

block (XLOW) such that,

XLOW(I) = min {x.‘x.e block}.
ili

All other subroutines mentioned later are independent of the
specific problem.

The problem being solved is completely specified by
the subroutines mentioned in the pfevious paragraph and by
the data input to the subroutine INITIAL. The input

parameters to INITIAL are:

TITLE —— title of the problem

M ~— order of the system

MAXLOC -~ maximum block location

NITER —— number of iterations of the search

routine (GOLDEN)

BETA —- discount- factor, B
UMIN,UMAX —- bounds on the control
RESU -- convergence criterion for the cost

surface (AV in Figure 3.5)

IPB(I) -~ increments per block in the ith coordinate,
this number must be even.

DELTAX(I) -- Ax,, state increment in the i® coordinate

R(I) -- R(1) = E{¢,¢ ), R(2) = E{¢; 6,1,

R(3) = E{QZCZ}. R(4) = E{Q3C1}'

R(Mi%ill) = E{QMQM}'

€ o0 ,
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Also, in the INITIAL program listedlin Figure A.1 the arrays
determining block order and location for BLOCK and LOCATE
are specified by FORTRAN statements. These statements may
be modified if the user wishes to define BLOCK and LOCATE in
a different way. If no a priori knowledge of the system
motivates a preferred direction and hence a block ordering
then the general block ordering techniques of Section 3.8
can be used,

The remaining program components found in Figure A.l

are:
PSSDP - qgin control program
IMPROVE ~—- performs the minimization
min { £0e,u) + 8B{T(£0e,m) + ¢]}}
u
over all grid points in a block.
POLY -—- evaluates the parametric cost surface, v(x)
Y (u) -- evaluates {E(x,u) + B{V{f(x,u))
' n i
P3Oy ol
i=1 j=1 ij i j
INWARD ~— a subroutine used by Y(u)
SCAL;TCAL ~— calculate S and T(4) in
S z(2) = T(4), (3.8)
for a standard block with XLOW = O
SIMEQ ~- Matrix inversion routine which solves

(3.8),
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z(2) =8 T(%)
(not listed in Figure A.1)

PARAM -- makes a linear transformation of Z(4) from
the standard block to the block being
calculated

GOLDEN -—- golden section search routine.

The principal variables and arrays still undefined are:

Z2(100,6) -- storage for cost surface parameters defined

in Section 3.6,

2(0) = (2(4,1), 2(s,2), ..., 2(2,6)]7

ZZ(6) -- buffer storage for the current cost surface
UU(20,20) —- control over current block

Vvv(20,20) -- cost over current block

MODE ,KEY -~ described in Section 3.7.

The origin block cost surface and the rest of state
space may be initially set to zero and the PSS algorithm
operatedAin MODE = 2 (cf. Example 4. ). An alternative
method is to calculate the origin block by some technique
and then make one pass through state space in MODE = 1 as
was done in Examples 4.1-4.4. The two origin block
algorithms discussed in Section 3.9 are listed in Figures
A.2 and A.3. The policy iteration algorithm is listed in
Figure A.2 and the DP algorithm in Figure A.3. These

subroutines need no input and introduce no new variables.
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APPENDIX B
CONVENTIONAL DYNAMIC PROGRAMMING ALGORITHM

For the time invariant stochastic control problem
with discounted performance criterion both the control and
cost function are stationary. Thus, only two cost functions
must be stored to employ the DP functional equation (3.5)
iteratively. This is accomplished by counting in MOD/2
the subscript ID which identifies the current and previously

©

calculated cost surface. Fiqure B.l gives a flow chart of

the DP algorithm. The state space is X = i{lx 2x, ...Jx}

L4
. 1 2 M .

and the control space is A = a, @, ..., af¢. K is the

number of iterations of the functional equation. The random

variable { has been quantized and has a probability mass

function p(QC).
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Initialization:
. KBefine v(x,0) for all
xeX. ID=1, i=1, k=1

i

State: Tx .
m=1, v('x, ID)=o

¥

Control: ma

¥

Trial cost: c=£(lx,ma)+BZP(C)v(x+,fﬁ)

where, x¥ = £(1x,Ma) + ¢

v(lx,ID)=c

u(ix)=ma

m=m+1

i=i+1

k=k+1
i=1
ID=ID

Figure B.l1l Dynamic programming flow chart.
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